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İzmir Institute of Technology

Prof. Dr. Nejat BULUT Prof. Dr. Tuğrul SENGER
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ABSTRACT

FRÖHLICH POLARON CALCULATIONS IN NON-INTEGER DIMENSIONAL
SPACE AS A MODEL OF CONFINEMENT

Polaron is a quasiparticle describing an electron in interaction with phonons of a

medium. A microscopic description of large polaron is given by the Fröhlich Hamilto-

nian which does not admit exact solutions. For calculating the ground state energy and

effective mass of polaron there are several approximation methods, some of which are

valid only for large or small values of the electron-phonon coupling constant. In low-

dimensional systems, where the polaron is confined by an external potential such as in the

form of slab or wire geometries, the polaronic energy and effective mass are known to get

enhanced.

In this thesis we present an approach towards quantifying the degree of confine-

ment on a large polaron provided by a parabolic potential. On that purpose, first, vari-

ation of polaronic ground state energy as a function of the parameters of the confine-

ment potential for both slab- and wire-like geometries and using a methodology valid

for all values of electron-phonon coupling constant is calculated. Then, applying a non-

integer-dimensional-space algebra the polaron problem has been solved in an isotropic

D-dimensional space using the same approch (D varies continuously from 3 to 2 for slab,

and from 3 to 1 for wire geometry.)

Finally, by matching the polaron ground state energy values obtained from the two

calculations in large electron-phonon coupling constant limit, we identify the effective

dimensionality D, of the polaron for a given set of confinement and material parameters.
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ÖZET

BİR SINIRLAMA MODELİ OLARAK TAMSAYI OLMAYAN BOYUTLU UZAYDA
FRÖHLICH POLARON HESAPLAMALARI

Polaron bir ortamın fononlarıyla elektronun etkileşimini tarif eden tanımlayan

sözde parçacıktır. Büyük polaronun mikroskopik açıklaması tam çözümleri kabul et-

meyen Fröhlich Hamiltonyen tarafından verilir. Polaronun temel durum enerjisinin ve

etkin kütlesinin hesaplanmasında bazılarının sadece büyük veya küçük elektron fonon

çiftlenim sabiti için geçerli olduğu birkaç yaklaşım yöntemi kullanılır.

Polaronun levha veya tel geometrisi gibi bir dış potansiyel tarafından hapsedildiği

düşük boyutlu sistemlerde polaronik enerji ve etkin kütlenin artış gösterdiği bilinmekte-

dir. Bu tezde büyük polaron üzerindeki parabolik potansiyelin getirdiği sınırlama dere-

cesinin miktarının belirlenmesi yönünde bir yaklaşım sunacağız. Bu amaç doğrultusunda

öncelikle, elektron fonon çitflenim sabitinin tüm değerlerini kapsayan bir metodoloji kul-

lanarak, levha ve tel benzeri geometriler biçimindeki sınırlandırma potansiyelinin parame-

trelerinin fonksiyonu olarak temel durum enerjisinin varyasyonu hesaplandı. Daha sonra

aynı yaklaşım çevresinde tam sayı olmayan boyutlu uzay cebirini uygulayarak polaron

problemi izotropik D boyutlu uzayda çözüldü. (Boyut parametresi D levha geometrisi

için kesiksiz olarak 3ten 2ye, tel geometrisi için 3ten 1e kadar değişir.)

Son olarak elektron-fonon çiftlenim sabitinin büyük olduğu limitde, iki hesapla-

madan elde edilen polaronun temel durum enerjilerini eşleştirerek verilen sınırlama ve

malzeme parametreleri için polaronun etkin boyut parametresini tanımladık.
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CHAPTER 1

INTRODUCTION

The polaron concept, first proposed nearly 80 years ago by Landau [1]. Theoreti-

cal and experimental studies on the polarons are increasing gradually day by day. There

are host of reasons why polarons carry on receiving much attention nowadays. One of the

main reasons which constitutes great importance is offering a simplificative and nontrivial

model consists of an electron interacting with a phonon field. And the other significant

one is leading to implementation of many approximation methods which are extremely

powerful tools in the absence of exact analytical solution. These methods are applied in

order to overcome challenges come from mathematical structure of polarons and making

them to be a test bed for the application of these techniques. The explicit connection of

the issue to the electronic structure of the ionic or polar-semiconductor materials is re-

quired to investigation of the electron phonon interaction effects to find out the properties

of materials in detail. Within the last few decades much attention has been paid to low

dimensional semiconductor structures that play a central role in the areas of electronics,

optoelectronics and theoretical condensed matter physics. Thanks to great advances in

semiconductor fabrication techniques, low dimensional microstructures namely quantum

wells, wires and dots have recently become available.

In these microstructures, charge carriers are restricted in one or more spatial di-

rections. Two dimensional systems are member of the low dimensional systems confined

in one dimension. In actual systems the polaron will not be exactly two dimensional; it

is more justified to speak about quasi 2-D polarons. The thickness of the 2D electron

layer perpendicular to the layer is nonzero [2]. Another member of the low dimensional

structures are nanowires which are quasi-one dimensional semiconductor systems. The

formation of a strictly one-dimensional systems requires strong confinement in the x-y

direction. And finally quantum dots are mesoscopic devices in which the number of free

charge carriers is strongly quantized.

There is an inverse relationship between the ground state properties and the struc-

ture geometry. It is found that ground state energy and the effective mass of the polaron

are increase rapidly with decreasing the confinement lengths. Accordingly, it is under-

stood that polaron and its characteristic ground state properties within the framework of

lower dimensionality have been the subject of considerable views for a long time.
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The theory of polaron arises from the motion of an electron in an ionic or polar

semiconductor crystals. The long range Coulomb interaction of the electron with the ions

of the crystal, displaces the positive and negative ions. A separation of ions from their

equilibrium positions produces a polarization field and modifies the electron motion in

classical frame. From the view of the quantum field theory, electron which couples to the

phonon modes of the crystal is surrounded by the phonon field. The compound system

of electron plus accompanying phonon field can be treated as a quasiparticle called a

”polaron” . Polarons can be divided roughly into two groups. Polarons whose electronic

chrage carriers are not self-trapped are labeled as weak coupling polarons because of the

weak interaction. By contrast, polarons whose electronic carriers are self-trapped are

termed strong coupling polarons due to the strong interaction [3]. Also, strong coupling

polarons are treated as consisting of two sub-groups namely large and small polarons

respectively. The polaron is considered as large when the spatial extent is large compared

to the lattice constant a. A large polaron generally moves as a free particle with coherence

in an elastic continuum except for weak scattering due to the phonons. Furthermore long

range interaction causes a formation of large polaron in the strong coupling and weak

coupling regimes. When the spatial extent becomes comparable to a lattice constant a,

the polaron is treated as small.

The electron phonon interaction brings about modified properties of electron such

as reducing the self energy and increasing the inertia of it by an amount according to

the strength of coupling. It has been reported in the literature that the polaronic quantities

(binding energy, effective mass etc.)get considerably larger in low dimensionally confined

systems than their corresponding values for the bulk polaron.

During the thesis, we will concentrate merely on large polarons called Fröhlich

polarons and bulk phonon approximation will be applied. We deal with dynamical char-

acteristic of the electron’s motion limited to the external potential , and let alone all the

other effects like coupling of the electron to the confined phonon modes as well as in-

terface surface-optical(SO)phonons. Thus our main purpose to gain a perspective of the

bulk phonon effects purified with not taking into account other perturbing quantities. We

neglect not only SO phonons but also other kinds of phonon modes’ contributions, addi-

tionally we will also ignore any screening effects. There can be some complications ow-

ing to non-parabolicity corrections to the electron band or we encounter conditions such

as those due to loss of validity either the effective-mass approximation or the Fröhlich

continuum Hamiltonian in very small microstructures.

Although in low dimensional systems numerous results has been discovered in the
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last years there are just few results concerning non-integer dimensional systems. Aside

from investigating the movement of the polaron in low dimensional confined systems,

recently it is crucial to understand how polaron behaves in D-dimensional space. F.M

Peeters, Wu Xiaoguang, and J.T.Devreese pointed out that the Fröhlich Hamiltonian can

be generalized to the case of an electron moving in n space dimensions by using Feynman

path integral formalism [4]. Polaron under the influence of the confinement in low dimen-

sional systems can not move freely but in non-integer dimensional space it moves loosely

namely it does not feel any confinement. The calculations of ground state energy and

effective mass are performed here based on conventional approximation methods except

Feynman path integral formalism which is seemed to be most successful approach. Ac-

cordingly, we will have considered variational method and perturbation theory for large

and small electron-phonon coupling constant values in NIDS. However in some cases

electron-phonon interaction constant has intermediate values. For these cases we have to

introduce an other approach covers all electron phonon coupling strengths. Variational

perturbative approach will be quite appropriate for taking into account weak and strong

coupling counterparts simultaneously in NIDS.

We need to reflect polaron problem in two separate cases; one is to reconsider the

properties of the Fröhlich polaron confined in a parabolic quantum well with adjustable

dimensions and the other one is determine the behaviour of the optical polaron in non-

integer dimensional space as if, polaron does not sense any confinement. Both cases

will be studied in detail with making a delicate comparasion between free polaron and

confined polaron by reviewing the ground state properties. Our goal is presenting a the-

oretical model which establishes a relationship between dimensionality and confinement

parameter. The overwhelming majority of the results obtained from calculations are used

to set up functional dependence to each other. Such a correlation has been established for

weak coupling polaron by [5].

After this general introduction we now present our work in four chapters. The re-

mainder of this thesis will be organized as follows. We will give definition for the Fröhlich

Hamiltonian in next section of this chapter and in the other two sections, as a warm up

,the ground state properties of weak and strong coupling polaron in confined media will

be discussed without going into details. The derivation of ground state properties of ar-

bitrary coupling polaron will be presented by using variational perturbative approach in

the last section of this chapter. In chapter 2 we will give a brief information about mathe-

matical structure of the NID space to introduce the notation. The explicit calculations and

numerical results related to non-integer dimensional polaronic properties will be given
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the 3rd chapter. And also functional dependence of effective dimensionality D on the

confinement parameter Ω in large α limit for the slab- and wire-like geometries will be

given in the last section of the 3rd chapter. Finally in the last chapter, we will conclude

with summarizing the analytical and numerical results in NIDS for the completeness. We

also discuss physics of the simple relation between D and Ω in conclusion.

1.1. Fröhlich Hamiltonian

In this section we introduce the Hamiltonian describing the large (Fröhlich) po-

larons. It should be emphasised that polaron consists of the single electron confined in an

external potential and LO phonons of a medium. As we mentioned before certain require-

ments should be provided in expressing the Hamiltonian like avoiding the contributions

that may come from all other kinds of phonon modes and also ignoring the screening

effects and further details. We will not give the derivation of the Fröhlich Hamiltonian

in here but one may refer to the original paper by Fröhlich et al., [6] and some relevant

books [7–9] in order to get a detailed information about how quantized form of the Hamil-

tonian can be obtained from classical electrodynamics by using second quantization. The

Hamiltonian of an electron confined in a various geometries interacting with the field of

bulk LO-phonons is given as

H =
p2

2m∗
+ Vconf (r; {Ωi}) + ~ωLO

∑
Q

a†QaQ +
∑
Q

(VQaQe
iQ.r + VQ

∗a†Qe
−iQ.r) (1.1)

This Hamiltonian will be the starting point of many investigations in the following chap-

ters. Scaling energies by the phonon quantum ~ωLO as a unit of energy and (~/2m∗ωLO)1/2

as a unit of length, the Hamiltonian is rewritten in the following form

H = p2 + V (r; {Ωi}) +
∑
Q

a†QaQ +
∑
Q

VQ(aQe
iQ.r + a†Qe

−iQ.r) (1.2)

with the appropriate polaron units (~ = 2m∗ = ωLO = 1) are set in our calculations to

simplify the notation. In the Fröhlich Hamiltonian the first two term

He = p2 + V (r; {Ωi}) (1.3)

4



is the electronic part with the confining potential V (r; {Ωi} or due to the anisotropy it

takes this form Vconf (ρ, z; Ω1,Ω2) in cylindrical coordinates.

The following term is the phonon-related part of the Hamiltonian

Hph =
∑
Q

a†QaQ (1.4)

and the last term, is given below, expresses the non-local interaction Hamiltonian which

defines the interaction between electron and a LO phonon branch

He−ph =
∑
Q

VQ(aQe
iQ.r + a†Qe

−iQ.r) (1.5)

where a†Q(aQ) is the creation (annihilation) operators respectively for bulk LO phonons

with wavevectorQ. In the above, r denotes the electron position in spherical coordinates

and Ωi denotes tunable parameter which is useful to gain a comprehensive understanding

about effect of confining potential on the ground state property of polaron with manipu-

lating the degree of confinement. Amplitude of the electron phonon interaction which is

assumed to be real and spherically symmetric function [10] is given in this form,

VQ =

√
4πα

ϑ3

1

Q
(1.6)

where

VQ = VQ
∗ = V (|Q|) (1.7)

with unitless coupling constant α is considered as strength of the interaction for the

Fröhlich polaron model. The explicit form of α is expressed by

α =
e2

2~ωLO

(
2m∗ωLO

~

)1/2(
1

ε∞
− 1

ε0

)
(1.8)

5



ε∞ and ε0 are high-frequency and static dielectric constants of the material, respectively.

The LO phonons are usually represented by an Einstein model in the study of single

polarons. In the Einstein model, optical phonon frequency is independent of phonon

wave vector, namely , i.e. ωQ ≡ ωLO.

1.2. Weak Coupling Formalism

The scope of this section we concentrate on the case where the kinetic energy of

the electron is much smaller than the phonon modes of a medium. In other words we con-

sider availability of electron-phonon interaction constant is quite small, α � 1. Since,

electron-phonon interaction is rather weak, lattice deformation tends to follow the elec-

tron moving in the crystal. In order to clearly display such a case, it is appropriate to treat

the electron phonon interaction as a perturbation in weak interaction domain. In summary

the main theme of the weak coupling formalism is perturbation theory comprises with the

effect of small disturbances. We present a revised version of weakly coupled polarons

within second order perturbation theory that is studied previously [11].

Derivations of the expressions for ground state energy and the effective mass of the po-

laron start with recalling the Fröhlich Hamiltonian. In the following calculations we shall

restrict our consideration to the slab and wire-like geometries by setting the confining

potential in a flexible way.

First, let us concentrate quasi-2D slab-like configuration for the confinement of the

electron. Confining potential has the form Vconf (ρ, z) = 1
4
Ω2z2 to reflect the ground state

energy and the effective mass which are considered as most obvious features of Fröhlich

polaron for bulk (3D), slab-like (quasi-2D), and slab (strictly 2D) polaron properties. One

might ask a question what could be the impact of the dimensionless frequency (Ω) on

the confining potential? In the absence of an confinement, Vconf (ρ, z) = 0. In this case

we deal with the bulk (3D) optical polaron. In the presence of confining potential, by

varying Ω from zero to infinity, a continuous transition from bulk geometry to the strict

two dimensional geometry is achieved. It is possible to set the trial total wave function in

a product form as following

Ψtotal = ψk,nφph (1.9)

where ψk,n is the part of the total wavefunction describing position of the electron and

6



φph is the part that describes phonon state.

One has to solve eigenvalue equation provided by electronic part

Heψk,n(ρ, z) = En,kψk,n(ρ, z) n = 0, 1, 2, ... (1.10)

Electronic wave function is separable in transverse and longitudinal coordinates in the

form

ψk,n(ρ, z) =
1√
2nn!

( ω
2π

)1/4

Hn

(√
ω

2
z

)
exp

(
−1

4
ωz2

)
φk(ρ) (1.11)

where in the plane wave representation sets the system in motion along the transverse

direction to the z-axis and harmonic oscillator states with Hermite polynomials of degree

n represents the confined electron along the z direction.

Corresponding energy eigenvalues of Eq.(1.10) can be readily obtained as given

En(k) = (n+
1

2
)ω + k2 (1.12)

We begin by considering the system, consists of three term including zeroth order, first

order and second order contributions to the energy of the ground state

E = E0
k + E1

k + E2
k (1.13)

and these contributions are listed in a compact form, respectively as

E
(0)
k = 〈ψk,0|Ĥ0|ψk,0〉 (1.14)

E
(1)
k = 〈ψk,0|Ĥe−ph|ψk,0〉 (1.15)

E
(2)
k =

∑
i

〈ψk,i|Ĥe−ph|ψk,0〉
E0 − Ei

(1.16)

Let us consider the explicit forms of contributions to the energy of the ground state, start-
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ing with the derivation of the zeroth order term

〈ψk,0|〈0QĤ0||0Q〉ψk,0〉

= 〈ψk,0|〈0Q|Ĥ0|0Q〉|ψk,0〉

= 〈ψk,0|〈0Q|

(
∇2 + V (ρ, z) +

∑
Q

a†QaQ

)
|0Q〉|ψk,0〉

= k2 +
1

2
ω (1.17)

We immediately see that, in Eq.(1.17) the phonon-related term of the unperturbed Hamil-

tonian does not give any contribution to the ground state energy. Then, the first order term

is given as

〈ψk,0|〈0Q|Ĥe−ph||0Q〉ψk,0〉

= 〈ψk,0|〈0Q|
∑
Q

VQ(aQe
iq.ρeiqzz + a†Qe

−iq.ρe−iqzz)|0Q〉ψk,0〉 (1.18)

It is clear that, contribution coming from the first order term is zero.

Finally, the second order term

E
(2)
k =

∑
Q

∑
k
′

∑
n

|〈ψ
k
′
,n
|〈1Q|He−ph|0Q〉|ψk,0〉|2

E0(k)− En(k
′
)

=
∑
Q

∑
k
′

∑
n

|〈ψ
k
′
,n
|〈1Q|

∑
Q VQ(aQe

iq.ρeiqzz +HC)|0Q〉|ψk,0〉|2

E0(k)− En(k
′
)

(1.19)

with the substitution of the energy expressions in the denominator and using shorthand

notation for the qz dependent term, it takes the following form

E
(2)
k = −

∑
Q

V 2
Q

∑
k
′

∑
n

|〈ψ
k
′ |e−iq.ρ|ψk〉|2

ωn+ 1 + k′2 − k2
|hn(qz)|2 (1.20)
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where the energies of ground state and intermediate states, respectively

E0(k) =
1

2
ω + k2 (1.21)

En(k
′
) = k2 − nω − k′2 − 1 (1.22)

we take the electron immersed in the lowest subband (n = 0) and because, the current

temperature is fairly lower than the LO phonons, there will be no effective phonon. There-

fore it is convenient that choosing φph as the phonon vacuum |0〉 for the ground state of

the polaron. In Eq.(1.20), the qz dependent term can be given as explicitly

hn(qz) = 〈ψk,n|e−iqzz|ψk,0〉

=
(−i)n√
n!

(
q2
z

ω

)n/2
exp

(
− q

2
z

2ω

)
(1.23)

Projecting out the k′ summation, we obtain

E
(2)
k = −

∑
Q

V 2
Q

∑
n

1

n!

1

ωn+ 1 + q2 − 2k.q

(
q2
z

ω

)n
exp

(
−q

2
z

ω

)
(1.24)

Before proceeding with calculations firstly, it is worth noting that when phonon energy is

considerably small compared to the term q2, a contribution does not make sense arising

from the virtual phonons because the Q summation fall of rather rapidly. It is required

that q is not extremely large to give remarkable contribution to the polaron energy. The

remarkable contribution coming from the virtual phonons is obtained in case q is not too

large. Secondly, in order to calculate the effective mass of the polaron, we assume that

an electron moves with virtual momentum k along the x-y axis. In this respect for small

electron momentum, k.q term will be extremely small. When we make a comparison

between the terms q2 and k.q in the denominator we can make an expansion up to second

order in k.q. Then we obtain the following form from power series expansion

E
(2)
k = −

∑
Q

V 2
Q

(
−q

2
z

ω

)∑
n

1

n!

(
q2
z

ω

)n(
1

ωn+ 1 + q2
+

(2k.q)2

(ωn+ 1 + q2)3

)
(1.25)
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using the identity

∞∑
n=0

1

n!

βn

(an+ b)m+1
=

1

m!

∫ ∞
0

dηηme−bη exp (βe−aη) m = 0, 1, 2, ... (1.26)

second order correction takes the form

E
(2)
k = −

∑
Q

V 2
Q

∫ ∞
0

dηe−η exp

[
−η
(
q2 +

q2
z

σ

)]
−

∑
Q

V 2
Q

∫ ∞
0

dηη2e−η exp

[
−η
(
q2 +

q2
z

σ

)]
(1.27)

where

σ =
ωη

1− e−ωη
(1.28)

We have managed to calculate the second order correction by solving the integrations

analytically

E2
k = −

∑
Q

V 2
Q

∫ ∞
0

dηe−ηρ2
Q − k2

∑
Q

V 2
Qq

2

∫ ∞
0

dηe−ηη2ρ2
Q

= −εp − k2µ (1.29)

where the binding energy and the phonon-related correction are given as

εp = −
∑
Q

V 2
Q

∫ ∞
0

dηe−ηρ2
Q, µ =

∑
Q

V 2
Qq

2

∫ ∞
0

dηe−ηη2ρ2
Q (1.30)

We can obtain compact form of the effective mass by admitting the correction is rather

small

mp/m
∗ = (1− µ)−1 ' 1 + µ (1.31)
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For the wire-like (quasi-1D) geometry one can make a modification by replacing the q2
z

with q2 Finally arrive at bulk polaron results which demands ω = 0 and corresponding

term σ = 1

ε3D
p =

∑
Q

V 2
Q

∫ ∞
0

dηe1+Q2η =
∑
Q

V 2
Q

1

1 +Q2
= α (1.32)

µ3D =
∑
Q

V 2
Qq

2

∫ ∞
0

dηη2e1+Q2η =
α

6
(1.33)

For the slab geometry (strict 2D limit) as required ω →∞ and σ−1 → 0

ε2D
p =

∑
Q

V 2
Q

1 + q2
=
π

2
α (1.34)

µ3D =
∑
Q

V 2
Qq

2 2

(1 + q2)3
=
π

8
α (1.35)

Fig.1.1 depicts the binding energy and the phononic contribution to the effective mass as
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Figure 1.1. Perturbation theory results for quasi-2-dimensional polaron . The binding
energy εp and the phonon correction to the effective mass µ as functons of
the degree of confinement Ω.

a function of the degree of confinement. Dashed lines indicate that limit values of the bulk

and strictly 2D geometries. It is clearly seen that, with the increasing value of the degree

of confinement, both binding energy and the effective mass of the polaron are increasing.

11



As well as Ω and ε converges smoothly to their strict 2D values.

1.3. Strong Coupling Formalism

In strongly interacting regime where electron-phonon coupling constant is larger

enough, there is a phonon field effect encloses the electron with generating a deep de-

formation potential. It is clear that strong coupling theory being reasonable for large α

values. Looking at the earlier works were done diligently by Pekar (and others) the state

of the system is denoted by product of the electronic wave function and a phonon part.

The Pekar ansatz states that in the presence of large coupling, the phonons can not reach

the fast-moving electrons, therefore they interact only with mean-field owing to the elec-

tronic density which is also called adiabatic approximation.

By using variational method strongly coupled confined polaron self-energy and effective

mass are reviewed briefly which are considered in [12]and for Q-1D system in [13] previ-

ously. This will further give us a key insights to understand the behaviour of strongly

coupled polaron in NID space. The Hamiltonian of the system is Fröhlich Hamilto-

nian as usual. It has been shown in Eq.(1.1) and trapping potential is in the form of

V (q, z) = 1
4

(β2ρ2 + µ2z2). Ground state wave function of the polaron is written in the

form of non-entangled product state by imposing product ansatz

Ψg = Φe(ρ, z)|Φph〉 (1.36)

product states of an electron states is defined as oscillator particle wavefunction as given

Φe(ρ, z) = N exp

{
1

2
(βρ2 + µz2)

}
exp{ik.r} (1.37)

where k is a variational parameter sets the system in motion at the direction in which we

want to calculate effective mass of the polaron will be determined later.

Here, N is the normalization constant N = 〈φe|φe〉 = (β
π
)1/2

(
µ
π

)1/4 and β, µ are varia-

tional parameters.
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Phonon ground state to be chosen as

|Φph〉 = U |0〉 = exp
∑
Q

uQ(aQ − a†Q)|0〉 (1.38)

rather than the bare phonon vacuum |0〉. The well known canonical transformation of the

Hamiltonian is performed by the unitary operator as following

H̃ = U−1HU = e−SHeS (1.39)

Modified hamiltonian through canonical transformation is obtained as

H̃ = ∇2 +
∑
Q

a†QaQ −
∑
Q

uQ(a†Q + aQ) +
∑
Q

uQ
2 (1.40)

+
∑
Q

VQ[aQe
iQ.r + aQ

†e−iQ.r] (1.41)

The interaction amplitude is related to the electron-phonon coupling constant is defined

by following expression

VQ =

(
4πα

ϑ3

)1/2
1√

q2 + q2
z

(1.42)

(1.43)

Since the Hamiltonian is invariant to translations of the electron together with accompa-

nying phonon cloud arises from lattice deformation, the total momentum operator along

the direction which is allowed free motion of polaron

Πz = −i∇ +
∑
qz

qza
†
qzaqz (1.44)
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commutes with the Hamiltonian if electron is moving freely along the z-direction. Πz is

a conserved quantity, [Π̂z, Ĥ] = 0

Πµ = −i∇ +
∑
q

qa†qaq (1.45)

commutes with the Hamiltonian if electron is moving freely along the transverse direction

perpendicular to the z-axis.

Under unitary transformation new form of the total momentum operator is generated as

given

Π̃→ −i∇ +
∑
Q

Qa†QaQ +
∑
Q

Qu2
Q(φe)−

∑
Q

QuQ(φe)(aQ + a†Q) (1.46)

After the canonical transformation, functional can be written as following form

∂F (σ, υ;k, uQ) = 〈Ψg|(H − υ.Π)|Ψg〉 (1.47)

= 〈Φe(ρ, z)|〈0|U−1(H − υ.Π)U |0〉|Φe(ρ, z)〉

= 〈Φe|〈0| − ∇2 +
∑
Q

a†QaQ +
∑
Q

uQ(aQ + a†Q)

+
∑
Q

u2
Q +

∑
Q

VQ[aQe
iQ.r + a†Qe

−iQ.r]

−
∑
Q

uQVQ(eiQ.r + e−iQ.r)− υ.p−
∑
Q

υ.Qa†QaQ

+
∑
Q

υ.QuQ(aQ + a†Q)−
∑
Q

υ.Qu2
Q|0〉|Φe〉 (1.48)

Variational procedure requires an optimization of the polaron state Ψg which minimizes

〈Ψg|H|Ψg〉 subject to the constraint that 〈Ψg|Π|Ψg〉 is a constant of motion. Complete

form of the Hamiltonian is determined by minimizing Eq.(1.47) by setting

∂F (σ, υ;k, uQ)

uQ
= 0,

∂F (σ, υ;k, uQ)

k
= 0 (1.49)
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with the minimization conditions we obtain the following optimal fits for k and uQ,

k =
υ√
σ
, uQ(Φe) = VQsQρQ (1.50)

where shorthand notations are introduced as

ρQ = (1− υ.Q)−1, sQ = 〈φe| exp±(iq.ρ+ iqzz)|φe〉 (1.51)

explicit form of the sQ is given as

sQ = e−q
2/2βe−q

2
z/2µ (1.52)

substituting the optimal fits k and uQ back into (1.47) leads to arrive at final form of the

Hamiltonian H̃ and total momentum Π

H̃ = ∇2 +
∑
Q

a†QaQ +
∑
Q

V 2
Qs

2
Qρ

2
Q −

∑
Q

V 2
QsQρQ(eiQ.r + e−iQ.r)

+
∑
Q

VQ(ηQaQ + η∗Qa
†
Q) (1.53)

in which

ηQ = eiQ.r − sQρQ (1.54)

modified total momentum takes the form

Π̃ = i∇ +
∑
Q

Qa†QaQ +
∑
Q

QV 2
Qs

2
Qρ

2
Q

−
∑
Q

QVQsQρQ(aQ + a†Q) (1.55)
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Eg = εk −
∑
Q

V 2
Qs

2
Q (1.56)

A simple calculation gives kinetic energy of the electron

εk =
1

2

(
ω1

β

)2

+
1

4

(
ω2

µ

)2

+
β2

2
+
µ2

4
(1.57)

and the second term in eq (1.56) gives

∑
Q

V 2
Qs

2
Q

=
ϑ3

(2π)3

∫ ∞
0

∫ ∞
−∞

∫ 2π

0

qdqdqzdφV
2
Qs

2
Q

=
α√
π

√
βµ

µ− β
arctan

√
µ

β
− 1 (1.58)

as a result we obtain the ground state energy of polaron

Eg =
1

2

(
ω1

β

)2

+
1

4

(
ω2

µ

)2

+
β2

2
+
µ2

4

− α√
π

√
βµ

µ− β
arctan

√
µ

β
− 1 (1.59)

and the binding energy

εp = ω1 +
1

2
ω2 − Eg (1.60)

As mentioned before if there is no confinement namely ω1 = ω2 = 0, we will reach

the bulk value (3D) of the binding energy. It should be noted that, bulk value limit brings

about equalityE3D
g = ε3D

p = α2/3π. Starting to adjust ω1 and ω2 leads to draw a character

of the polaron in low dimensional systems. Fixing the ω1 = 0 which represents the

confinement along z-axis and increasing the ω2, allows us to find out binding energy

of quasi-2D (Q2D) slab-like system. When ω2 goes to infinity strictly 2D structure is

obtained. The value for the binding energy of Q2D polaron is ε(2D)
p = α2/8π. Applying
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reverse of the condition that we mentioned, binding energy of the quasi one dimensional

(Q1D) systems is obtained. Seting the ω2 = 0 means that there is no confinement in the x-

y axis and varying the ω1 from zero to infinity embeds the polaron into the Q1D systems.

We are not talking about the strictly 1D system because when ω1 goes to the infinity the

binding energy diverges.

• Effective Mass of Polaron (m(3D)
p ,m(ρ)

p ,m(z)
p )

Here, we show the expression of the polaron effective mass for different geometries.

For spherical or bulk geometry value of the effective mass is given as

1 + χ0 = 1 +
2α

3
√
π
σ3/2 ' 16

81π2
α4 (1.61)

where we take the dimensionality D=3 for the 3D mass and the quantity χ0 =

4
D

∑
QQ

2V 2
Qs

2
Q.

4

D

∑
Q

V 2
Qs

2
Qq

2
z =

4α

π

∫ ∞
0

qexp

(
−q2

β

)
dq

∫ ∞
−∞

q2
z

q2 + q2
z

exp

(
−q2

z

µ

)
dqz

= 2α

(
β2µ3

π

)1/2

× 1

µ− β

[
1−

(
µ

β
− 1

)1/2

arctan

(
µ

β
− 1

)1/2
]

(1.62)

Assuming that polaron moves freely through the z-axis, we can evaluate them(z)
p /m

m(z)
p /m = 1 + 2α

(
β2µ3

π

)1/2

× 1

µ− β

[
1−

(
µ

β
− 1

)1/2

arctan

(
µ

β
− 1

)1/2
]

(1.63)
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Since, polaron acts freely in one dimension we take D=1. For the polaron moving

in along perpendicular axes to the z-coordinate mxy
p

2
∑
Q

V 2
Qs

2
Qq

2 =
2α

π

∫ ∞
0

q3exp

(
−q

2

β

)
dq

∫ ∞
−∞

1

q2 + q2
z

exp

(
−q

2
z

µ

)
dqz

= α

(
β2µ3

π

)1/2

× 1

µ− β

[(
β

µ
− β

)−1/2

arctan

(
µ

β
− 1

)−1/2

− β

µ

]
(1.64)

for the polaron moves freely along the xy-axis, we obtain the values of m(xy)
p /m as

given below

m(xy)
p /m = 1 + α

(
β2µ3

π

)1/2

× 1

µ− β

[(
β

µ
− β

)−1/2

arctan

(
µ

β
− 1

)−1/2

− β

µ

]
(1.65)

Figure 1.2. The ground energy against the degree of confinement for the slab-like
(Ω1 = 0) and the wire-like (Ω2 = 0) configurations.

In fig.1.2 we show the results of the ground energy as a function of the degree of con-

finement taking into account both wire and slab-like configurations respectively. We find

that with increase of the anisotropy, binding energy shows a sharp increase in wire ge-
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ometry compared to the slab-like geometry. The reason of the difference in strength of

the electron phonon coupling stems from the fact that in the wire geometry the polaron

cloud is confined along the wire axis in all transverse directions. Confinement applied

to the polaron cloud in wire geometry leads to not only much stronger electron phonon

interaction but also much larger value of the binding energy than in the 2D geometry.

1.4. Arbitrary Coupling Formalism

Ground state properties of weak and strongly coupled polaron in confined geom-

etry, have been summarized briefly in the last two sections. Strong coupling polaron

theory is inadequate to describe the behaviour of the confined polaron at small α values.

Likewise a pure perturbation treatment is not found to be suitable for reflecting character-

ization of the confined polaron at large α values. Therefore we need to a well-developed

approach to solve the bulk polaron problem as taking consideration of its weak and strong

coupling counterparts simultaneously. From now on one can follow a different method to

get polaronic properties.

In this part we are tempted to formulate an all-coupling variational calculation

based on Lee-Low-Pines (LLP) transformation [14] is performed to study the ground

state in an anisotropic harmonic oscillator-type confining potential that is valid for the

whole range of the electron phonon coupling constant. In order to achieve extended for-

malism, variational method should be used in conjunction with perturbation theory called

perturbative variational approach used previously by Devreese et al.[15]. Variational per-

turbative method has been applied to in modelling 3D and 2D free polarons [16], quasi-1D

polarons[17], 2D model of a magnetopolaron[18] and 3D and 2D bipolarons[19]. This

methodology which interrelates the strong and weak coupling approaches, is based on

extension of the adiabatic polaron state includes modified variational wavefunction by

approximate first order perturbative correction. Taking into account simplifications that

as mentioned before we focus on the derivation of analytical expressions for ground state

energy and effective mass where electron completely confined within a quasi one dimen-

sional(Q1D) and quasi two dimensional (Q2D) geometries.

If we are only dealing with strong coupling case, it is capable for going to do

optimization (1.47) with respect to σ. But we want to get a generalized expression that

covering all α values. Therefore, there will be a contribution to the energy and mass of the

ground state which arises from small α domain. In order to make required calculations,
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we are inspired by the studies [17, 20, 21]. Here, we focus on how to obtain the definition

of an altered adiabatic polaron trial state related to variational scheme so as to cover the

overall range of the coupling strength. Perturbative variational approach allows us to

reconstruct shape of the trial state

|Ψ̃g〉 = c|Ψg〉+
∑
Q

VQ
∑
i

|i〉
〈i|(exp(−iQ.r)− sQ)a†Q|0〉

∆εi−g

= c|0〉+
∑
Q

VQgQ(exp(−iQ.r)− sQ)a†Q|Ψg〉 (1.66)

where variational quantity gQ =
〈

1
∆εi−g

〉
i
. It is rather difficult to calculate all the contri-

butions coming from the intermediate states. Here we avoid such difficulty by replacing

the denominator with average quantity. The new wave function which is determined by

using perturbation theory, requires normalization. Normalized wave function corresponds

to another constraint, interconnecting the parameters c and gQ over the following normal-

ization procedure

〈Ψ̃g|Ψ̃g〉 = 〈Ψg|c+ 〈Ψg|
∑
Q

VQgQ(eiQ.raQ − sQ)
∑
Q

VQgQ(e−iQ.r − sQ)a†Q|0〉+ c|Ψg〉

= c2〈Ψg|Ψg〉+
∑
Q

VQgQ
∑
Q′

VQ′gQ′ 〈Ψg|(eiQ.r − sQ)(e−iQ
′
.r − sQ′ )aQa

†
Q′
|Ψg〉

= c2 +
∑
Q

V 2
Qg

2
QhQ = 1 (1.67)

where hQ denotes

hQ = 〈0|(eiQ.r − sQ)(e−iQ.r − sQ)|0〉 (1.68)

= 1− s2
Q (1.69)

Note that phonon operators obey the usual commutation relation [aQ, a
†
Q′

] = δQQ′ . The

result of the normalization displays the dependence on the terms gQ and c accordingly we
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may utilize the constraint as

f(c, gQ) = c2 +
∑
Q

V 2
Qg

2
QhQ − 1 = 0 (1.70)

The expectation value

〈Ψ̃g|H̃ − υ.Π̃|Ψ̃g〉 = 〈Ψ̃g|H̃|Ψ̃g〉 − 〈Ψ̃g|υ.Π̃|Ψ̃g〉 (1.71)

in the trial state Eq.(1.66). The first term in the equation is nothing more than bind-

ing energy energy and second term is the additional kinetic contribution, helps us to

derive the expression of the effective mass. Let’s calculate the expectation value of

the〈Ψ̃g|H̃|Ψ̃g〉step by step.

First determine the kinetic energy of the bare electron in in the new trial state 〈Ψ̃g|H̃|Ψ̃g〉
by using Eq.(1.53)

〈Ψ̃g|p2|Ψ̃g〉 = c2〈0|p2|0〉+
∑
Q

V 2
Qg

2
QeQ (1.72)

where the momentum is given as ~p = ~∇+ 1
2
~υ and the expectation values of p2 in extended

variational wavefunction is obtained as the following

〈Ψ̃g|p2|Ψ̃g〉 = c2
(
e0 +

υ2

4

)
+ c2〈Ψg|~υ.~∇|Ψg〉+

∑
Q

V 2
Qg

2
QeQ (1.73)

Furthermore, the expectation value of the phononic term in the Ψ̃g gives

〈Ψ̃g|
∑
Q

a†QaQ|Ψ̃g〉 =
∑
Q

V 2
Qg

2
QhQ (1.74)
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Expectation values of the remaining terms are calculated in the same way

〈Ψ̃g|
∑
Q

VQ[(eiQ.r − sQρQ)aQ + (e−iQ.r − sQρQ)a†Q]|Ψ̃g〉 = 2c
∑
Q

V 2
QgQhQ (1.75)

and the next term is calculated as the following

〈Ψ̃g|
∑
Q

V 2
Qs

2
Qρ

2
Q|Ψ̃g〉 = c2

∑
Q

V 2
Qs

2
Qρ

2
Q +

∑
Q

V 2
Qg

2
QhQ

∑
Q′

V 2
Q
′s2
Q
′ρ2
Q
′ (1.76)

finally, the last term is obtained as follows

〈Ψ̃g|
∑
Q

V 2
Qs

2
QρQ(eiQ.r + e−iQ.r)|Ψ̃g〉

= 2c2
∑
Q

V 2
Qs

2
QρQ +

∑
Q

V 2
Qg

2
Q

∑
Q′

V 2
Q′
sQ′ρQ′∆QQ′

= 2c2
∑
Q

V 2
Qs

2
QρQ +

∑
Q

V 2
Qg

2
QδQQ′ (1.77)

Remaining terms displays corrections brought about by the extended formalism to the

effective mass of the polaron. Additional kinetic contribution is calculated step by step as

making for binding energy. The explicit form of 〈Ψ̃g|υ.Π̃|Ψ̃g〉 can be written

〈Ψ̃g|υ.Π̃|Ψ̃g〉

= 〈Ψ̃g|υ.p|Ψ̃g〉

+ 〈Ψ̃g|
∑
Q

υ.Qa†QaQ|Ψ̃g〉

+ 〈Ψ̃g|
∑
Q

υ.QV 2
Qs

2
Qρ

2
Q|Ψ̃g〉

− 〈Ψ̃g|
∑
Q

υ.QVQsQρQ(aQ + a†Q)|Ψ̃g〉 (1.78)
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First term of the Eq.(1.78) gives

〈Ψ̃g|υ.p|Ψ̃g〉

= c2〈Ψg|υ.∇|Ψg〉+
1

2
c2υ2

+
∑
Q

V 2
Qg

2
Q〈0|(eiQ.r − sQ)υ.∇(e−iQ.r − sQ)|0〉

+
1

2
υ2
∑
Q

V 2
Qg

2
QhQ (1.79)

and the second term

〈Ψ̃g|
∑
Q

υ.Qa†QaQ|Ψ̃g〉 =
∑
Q

υ.QV 2
Qg

2
QhQ (1.80)

the third term

〈Ψ̃g|
∑
Q

υ.QV 2
Qs

2
Qρ

2
Q|Ψ̃g〉

= c2
∑
Q

υ.QV 2
Qs

2
Qρ

2
Q

+
∑
Q

V 2
Q(D)g2

QhQ
∑
Q′

υ.Q
′
V 2
Q′
s2
Q′
ρ2
Q′

(1.81)

The last term in Eq.(1.82) gives no contribution to the functional

〈Ψ̃g|
∑
Q

υ.QVQsQρQ(aQ + a†Q)|Ψ̃g〉 = 0 (1.82)

By combining the results of these equations expectation value of 〈Ψ̃g|H̃ − υ.Π̃|Ψ̃g〉 in

modified trial state called functional, takes the complete form as a result of our calcula-

tions, is given below
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Φ(σ, υ; c, gQ) = c2(e0 +
1

4
υ2)− 1

2
υ2 +

∑
Q

V 2
Qg

2
Q(eQ − δQQ′ + hQ)

+ χ(1− 2c2) + 2c
∑
Q

V 2
QgQhQ (1.83)

where

eQ = 〈φe|(eiQ.r − sQ)(−∇2)(e−iQ.r − sQ)|φe〉

=
1

2
Q2 + (e0 +

1

2
Q2)hQ (1.84)

with

e0 = 〈Φe| − ∇2 + V (ρ, z)|Φe〉 (1.85)

e0 =
1

2

(
ω1

β

)2

+
1

4

(
ω2

µ

)2

+
β2

2
+
µ2

4

and furthermore,

χ =
∑
Q

V 2
Qs

2
QρQ (1.86)

δQ =
∑
Q′

V 2
Q′
sQ′∆QQ′ρQ′ (1.87)

wherein

∆QQ′ = 〈0|(eiQ.r − sQ)(eiQ
′
.r + e−iQ

′
.r)(e−iQ.r − sQ)|0〉 (1.88)

By following the variational procedure, minimization of the expectation value 〈Ψ̃g|H̃ −
υ.Π̃|Ψ̃g〉 in the trial state is required to find optimal fit to gQ and to the normalization

constant c subject to the constraint (1.70) .

The variational fit to gQ and to the normalization constant c actualized by providing the
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condition below

∂

∂gQ
{Φ(σ, υ; c, gQ)− Λf(c, gQ)} = 0

∂

∂c
{Φ(σ, υ; c, gQ)− Λf(c, gQ)} = 0 (1.89)

where we use Lagrange multiplier method.

We obtain

gQ =
chQ

ΛhQ − (eQ − δQ + hQ)
(1.90)

c =

∑
Q V

2
QgQhQ

Λ− e0 − 1
4
υ2 + 2χ

(1.91)

Lagrange multiplier Λ is derived through the transcendental equation

Λ =
∑
Q

V 2
Q

(gQ
c

)
hQ

= −
∑
Q

V 2
QhQ

2

(1− Λ + 2χ− e0 − 1
4
υ2)hQ + eQ − δQ

= −
∑
Q

V 2
QhQ

2

DQ

(1.92)

in which

gQ
c

= − hQ
DQ

(1.93)

and the term DQ is given as below

DQ = (1− Λ + 2χ− e0 −
1

4
υ2)hQ + eQ − δQ (1.94)

further the functional form of quantities e0, sQ and χ(0) are given in (1.94) which are
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identical with the expressions of quantities obtained from strong coupling theory

Furthermore, we obtain

Φ(σ, υ) = Eg(σ)− 1

4
υ2mp (1.95)

where

Eg = e0 − χ(0) + Λ (1.96)

refers to the ground state energy which is derived before via strong coupling theory with

only one difference is lambda. We are going to get more approximate value is valid for

whole alpha values with contribution comes from lambda. Ground state energy is written

by substituting the explicit form of the Λ is derived through the transcendental equation.

Eg =
1

2

(
ω1

β

)2

+
1

4

(
ω2

µ

)2

+
β2

2
+
µ2

4

− α√
π

√
βµ

µ− β
arctan

√
µ

β
− 1− α

π

∫ ∞
0

∫ ∞
−∞

1

q2 + q2
z

h2
Q

D
(0)
Q

qdqdqz (1.97)

In here, the functional form of the quantity χ(0) is

χ(0) =
α√
π

√
βµ

µ− β
arctan

√
µ

β
− 1 (1.98)

same with the strong coupling result. The velocity independent terms are collected in

Eq.(1.94) as follows

D
(0)
Q = e

(0)
Q − δ

(0)
Q + (1− e0 + 2χ(0) − Λ)hQ (1.99)
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with the explicit form of the δ(0)
Q

δ
(0)
Q = 2χ0(1 + s2

Q)− 2sQ
∑
Q′

V 2
Q′
sQ′ (sQ±Q′ )

= 2χ0(1 + s2
Q)− 2sQ

2α

π
sQ

∫ ∞
0

exp

(
−q′2

β

)
I0

(
qq
′

β2

)
q
′
dq
′

×
∫ ∞
−∞

exp

(
−q′z

2

ν

)
exp

(
qzq

′
z

ν

)
1

q′2 + q′z
dq
′

z

= 2χ0(1 + s2
Q)− s2

Q

4α

π

∫ ∞
0

exp

(
−q′2

β

)
I0

(
qq
′

β2

)
q
′
dq
′

×
∫ ∞
−∞

exp

(
−q′z

2

ν

)
exp

(
qzq

′
z

ν

)
1

q′2 + q′z
dq
′

z (1.100)

• Effective Mass of Polaron (m(z)
p ,m(ρ)

p )

General formulation of the effective mass

mp = 1 + χ(1) +
∑
Q

V 2
Qh

2
Q

D
(0)
Q

 4

D
Q2

(
hQ

D
(0)
Q

)2

+
δ

(1)
Q − 2χ(1)hQ

D
(0)
Q

 (1.101)

effective mass equation for the polaron moves along the z-axis

m(z)
p = 1 + χ(1)

z +
∑
Q

V 2
Qh

2
Q

D
(0)
qz

 4

D
q2
z

(
hQ

D
(0)
qz

)2

+
δ

(1)
qz − 2χ

(1)
z hQ

D
(0)
qz

 (1.102)

where

δ(1)
qz = 2χ(1)

z (1 + s2
Q)

− 8α

π
s2
Q

∫ ∞
0

exp

(
−q′2

β

)
I0

(
qq
′

β2

)
q
′
dq
′

×
∫ ∞
−∞

exp

(
−q′z

2

µ

)
exp

(
qzq

′
z

µ

)
q
′
z

2

q′2 + q′z
2 (1.103)
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and effective mass equation for the polaron lies through the xy-axis

m(xy)
p = 1 + χ(1)

xy +
∑
Q

V 2
Qh

2
Q

D
(0)
q

 4

D
q2

(
hQ

D
(0)
q

)2

+
δ

(1)
q − 2χ

(1)
xy hQ

D
(0)
q

 (1.104)

where

δ(1)
q = 2χ(1)

xy (1 + s2
Q)

− 8α

π
s2
Q

∫ ∞
0

exp

(
−q′2

β

)
I0

(
qq
′

β

)
q
′3
dq
′

×
∫ ∞
−∞

exp

(
−q′z

2

µ

)
exp

(
qzq

′
z

µ

)
1

q′2 + q′z
2 (1.105)
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CHAPTER 2

NON-INTEGER DIMENSIONAL SPACE (NIDS)

In this chapter, we will analyse algebra of non-integer dimensional space.

2.1. Calculus in NIDS

In principle it is possible to construct different mathematical formalisms for non-

integer dimensional (NID) spaces, all of which behaving like a conventional Euclidean

vector space when D is a positive integer. There are no other criteria to distinguish be-

tween the validity of alternative approaches except for the ability to combine simplicity

and utility in a self-compatible formalism. Such a mathematically concrete realization of

NID spaces is presented by Stillenger [22]. Several studies about confinement effects on

electron-phonon interaction [23], excitonic polarons [24], polaronic exciton [25], polaron

effects [5, 26] and magnetic polarons [27] have used the formulation of Stillenger for

NIDS. We will stand on a structure of NID space a little bit and then give a short review

of which is required to the notation and for the sake of completeness.

S indicates the space of interest and contains points x,y,... where the distance between x

and y is written as r(x,y). Particularly

r(x) ≡ r(x, 0) (2.1)

denotes the distance of x to some origin 0. SD being a metric space, r(x,y) ensures the

conventional criteria required of metrics. It is shown that SD normally is not a vector

space. Vector addition is allowed in ordinary Euclidean spaces as

u = x+ by (2.2)

and the resultant vector takes place in Euclidean space. Since any vector space must have

a finite integer, or infinite number of basis vectors, it has to be rejected for non-integer D.
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Therefore it not possible to define vectors and vector algebra on SD. But however, still it

is possible to introduce the angle θ between two line segments, by the use of ’cosine law’

cosθ(x, y) =
r2(x) + r2(y)− r2(x, y)

2r(x)r(y)
(2.3)

Then the projection of x along (y, 0), p(x,y) and the orthogonal component l(x,y)are

defined through

p(x,y) = r(x)cosθ(x,y) (2.4)

l(x,y) =
√
r2(x)− p2(x,y) = r(x)sinθ(x,y) (2.5)

At this point, the way dealing with the vectorial terms which are contained in Fröhlich

Hamiltonian namely Q.r in SD arises naturally. Dot product operation simply meaning

the projection of a vector on another, we will let;

~Q.~r = Q.r.cosθ → qr = p(q, r)r(r) = r(q)r(r)cosθ(q, r) (2.6)

and the representation of the Hamiltonian be modified correspondingly, where now both

q and r are D-dimensional.

It is necessary for us to define integration in SD. For radially symmetric functions it turns

out to be

∫
dDxf [r(x)] =

∫ ∞
0

drWD(r)f(r) (2.7)
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where WD(r) is the D-dimensional weight function given by

WD(r) = σ(D)rD−1σ(D) =
2πD/2

Γ(D/2)
(2.8)

Γ being the gamma function. For coherent modeling it is necessary to define derivatives

and integrals of fractional order. Besides it is straightforward using fractional integration

to comprehend features of the fractal medium.

In our calculations we also require integrals of the kind

I(k) =

∫
dDx exp(−αr2(x) + ikr) (2.9)

which is the Fourier transform of a Gaussian function in SD. The result is also barrowed

from [22]

I(k) =

(
Π

a

)D/2
exp

(
−k2

4a

)

with k standing for r(k)as from now on we will denote r(x) simply by x.

Finally we will conclude this section by stating the Laplacian operator in SD .

∇2
Df(r, θ) =

[
∂2

∂r2
+
D − 1

r

∂

∂r
+

1

r2 sinD−2 θ

∂

∂θ
sinD−2 θ

∂

∂θ

]
f(r, θ) (2.10)

2.2. Fröhlich Hamiltonian in Non-Integer Dimensional Space

When the electron is artificially restricted to move in an abstract D-dimensional

space (D ≤ 3), the interaction with the phonons occurs in a subspace of 3-dimensions

which is also D-dimensional. The reduction in the effective dimensionality of phonons is

due to the exp(±iQ.r) terms in the interaction Hamiltonian Eq.(1.5), through which the

electron couples to LO phonon modes.

To clarify the modification procedure, we will follow the complete analogy with deriva-
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tive of the Hamiltonian for 2-dimensional polaron from the one for the bulk.

Consider the bulk polaron Hamiltonian Eq.(1.1) with Ω(w) = 0, and electron being con-

fined to x-y plane. The electron position is then represented by ρ. Since Q.r = q.r, the

effective Hamiltonian can be written in terms of 2-dimensional phonon wave vector q,

H = −∇2
2 +

∑
q

a†qaq +
∑
q

Vq(D)(aqe
iq.ρ + hc) (2.11)

where the effective 2-dimensional interaction amplitude Vq is obtained by integrating out

the remaining component qz. With Q2 = q2 + q2
z ;

|Vq|2 =
∑
qz

|VQ|2 =
υ

2π

∫ ∞
−∞

dqz
4πα

υ3

1

q2 + q2
z

=
2πα

υ2

1

q
(2.12)

where υ2 = υ3
υ1

is the 2-dimensional normalization volume.

Similarly, when the configuration space of electron is D-dimensional, adopting the fore

mentioned convention, the effective Hamiltonian conforms to;

H = −∇2
D +

∑
q

a†qaq +
∑
q

Vq(aqe
iq.r + a†qe

−iq.r) (2.13)

where now the space of phonon wave vector is divided into two complimentary subspaces

represented by q and q′ which are D- and (3-D)-dimensional respectively. Preserving the

relationQ2 = q2 + q
′2 , the interaction amplitude is obtained by integrating VQ over q′ in

(3-D)-dimensions

|Vq|2 =
∑
q′

|VQ|2 =
υ3−D

(2π)3−D

∫ ∞
0

dq
′
W3−D(q

′
)
4πα

υ3

1

q2 + q′
2

=

Γ

(
D−1

2

)
(4π)

D−1
2 α

υD

1

qD−1
(2.14)

describes the electron-phonon interaction amplitude in non-integer dimensional space

with D-dimensional normalization volume of the crystal with periodic boundary condi-

tions.
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The above analysis makes it clear that we have generalized structure of the electron-

phonon interaction amplitude with corresponding integration Eq.(2.7) for various geome-

tries. This form of Vq reproduces the well known results Eq.(2.12) and Eq.(1.6) when D

is 2 and 3, while it diverges D→ 1 as it is expected. Although the domain of validity for

Eq.(2.14) is 1 < D ≤ 3 within the presented ”deduction from 3-dimensions” approach

, it is interesting to note that Peeters et al [4] has obtained exactly the same form for the

interaction amplitude, which is valid for any integer n-dimensions, aside from the nota-

tional mismatch of dimensionless units. Therefore it is possible to claim that Eq.(2.14) is

valid for any real value of D. Nevertheless, any confinement effect in our 3-dimensional

universe should naturally be modelled in a lower dimensional space, if it can ever be pos-

sible. So in our present context, we are concerned with D in the range 1 to 3.

We can also derive the expressions of interaction amplitude for slab and wire geometries

by following the same procedure. When the configuration space of electron is divided

into two complementary subspaces represented by q and q′ which are D- and (3-D)-

dimensional respectively. Expressions within the calculations reproduces the well known

results obtained previously when D is 2 and 3, while it diverges when D → 1. Besides

we proposed a model which contains confinement effect in NID space as distinct from

our three dimensional universe.

As well as we need to mention that for the slab and wire geometry, we shall divide the non-

integer dimensional space into two subspace. Slab geometry is required that 2+D effective

dimensional space which consists of 2-dimensional subspace where the charge carriers are

free to move and D-dimensional subspace where the charge carriers confined. Likewise

wire geometry supposed to be 1+2D dimensional space which contains 1-Dimensional

subspace where the charge carriers move as unconfined way and 2-dimensional subspace

where the motion of the charge carriers are restricted. We can make a transition from wire

or slab geometry to bulk structure by changing the tunable dimensionality parameter (D)

in the range from 0 to 1 denotes dimensionality. Let’s space of phonon wave vector is

divided into two complimentary subspaces represented by

Q = (q2+D, q1−D) (2.15)
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the (2+D)-dimensional interaction amplitude is obtained by integrating VQ over q′ in (1-

D)-dimensions;

|Vq(2 +D)|2 =
∑
q′

|VQ|2

=
υ1−D

(2π)1−D

∫ ∞
0

dq1−D
4πα

υ3

W1−D
1

q2
2 + q2

D + q2
1−D

=
Γ
(

1+D
2

)
(4π)

1+D
2

υD+2

α
1

(q2
2 + q2

D)1+D
2

(2.16)

Above result is compatible with preceding expressions of 2 and 3 dimensional interaction

amplitude with determining the dimensionality parameter as 0 and 1. It is worth noting

that when parameter D is changed between 0 and 1 continuously, one determines interac-

tion amplitude for quasi two dimensional geometry (Q2D).

Space of phonon wavevector is divided into two complimentary subspaces represented by

Q = (q1+2D, q2−2D)

the (1+2D)-dimensional electron phonon interaction amplitude is derived by integrating

VQ over q′ in (1+2D)-dimensions

|Vq(1 + 2D)|2 =
∑
q2−2D

|VQ|2

=
4πα

υ3

υ2−2D

(2π)2−2D

∫ ∞
0

dq2−DW2−2D
1

q2
2 + q2

2−2D + q2
2D

=
Γ(D)(4π)D

υ1+2D

α
1

q2
z + q2

2D

(2.17)

Above result is compatible with preceding expressions of 1 and 3 dimensional interaction

amplitude with determining the dimensionality parameter as 0 and 1. It is worth noting

that when parameter D is changed between 0 and 1 continuously, one determines inter-

action amplitude for quasi two dimensional geometry (Q1D). We have demonstrated that

electron-phonon interaction amplitude related to geometry of the system as given below
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respectively,

|VQ(D)|2 =


Γ(D−1

2
)(4π)

D−1
2

υD
α 1
qD−1 for the spherical geometry

Γ(D+1
2

)(4π)
D+1
2

υD+2
α 1

(q22+q2D)
1+D
2

for the slab geometry

Γ(D)(4π)D

υ1+2D
α 1

(q2z+q2D)D
for the wire geometry
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CHAPTER 3

APPROXIMATION METHODS IN NIDS

In this chapter we will give our study based on approximation methods in NIDS

to derive generalized forms of polaronic ground state energy and the effective mass. It

should be pointed out that Fröhlich polaron will be treated as an unconfined effective non-

integer dimensional polaron. Polarons behave as if they are free particles. This isotropic

geometry provides us obtaining simplified and generalized expressions for the properties

of the NID polaron. In [2] scaling relations which connects the 2D and 3D results in

actual space, are formally generalized to the n-dimensional optical polaron problem. Fur-

thermore, n-dimensional ground state energy is obtained in [4]. Based on these studies,

first for the small electron-phonon coupling constant limit, second order perturbation the-

ory is the highly applicable approximation method to calculate more accurate corrections

to the ground state energy and the effective mass. After studying the perturbation theory,

we continue with the variational method which is valid in strong coupling limit for the

large α values . However these two approximation methods that we mentioned before,

are not enough for describing the intermediate electron-phonon coupling strength. There-

fore we need to introduce an another approach that capable interpolating between the

variational method and perturbation theory called as variational perturbative approach.

Focusing on this approach in the last section, we will get expressions for non-integer

dimensional polaronic properties with a much more accuracy.

3.1. Perturbation in NIDS

We now discuss a generalization of the previous calculations to the non-integer

dimensional space using relevant algebra. Of particular interest to this section is the

studies performed to until now. The original approach proposed by He [28, 29]. In the

past few years, the non-integer dimensional space approach has been successfully used

in modelling polaron [5, 26, 30, 31], exciton [32–40], and impurity states [41] in semi-

conductor systems. Considering the α values are small, we limit our calculations to the
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weak-coupling case. The energy of a D-dimensional polaron in the ground state

E = E
(0)
k + E

(1)
k + E

(2)
k (3.1)

where

E
(0)
k = 〈φ0|H0|φ0〉 (3.2)

E
(1)
k = 〈φ0|He−ph|φ0〉 (3.3)

E
(2)
k =

∑
i

〈φi|He−ph|φ0〉
E0 − Ei

(3.4)

Initial |φ0〉 and intermediate states |φi〉 are determined by the following form respectively,

|φ0〉 = |0
k
′ , 1k, 0q〉 (3.5)

|φi〉 = |1
k
′ , 0k, 1q〉 (3.6)

in the initial state there is an electron with pseudo-wave vector k, there is no electron with

pseudo-wave vector k′ and there is no phonon with the pseudo-wave vector q. On the

other hand in the intermediate state there is no electron with pseudo-wave vector k, there

is an electron with pseudo-wave vector k′ and there is a one phonon with the pseudo-wave

vector q.

Zeroth order correction to the ground state energy

〈0
k
′ , 1k, 0q|H0|0k′ , 1k, 0q〉 (3.7)

where unperturbed hamiltonian H0 = −∇2
D +

∑
q a
†
qaq noting that aq|0q〉

E
(0)
k = 〈0

k
′ , 1k, 0q|(−∇2

D +
∑
q

a†qaq)|0k′ , 1k, 0q〉 (3.8)

= 〈0
k
′ , 1k, 0q| − ∇2

D|0k′ , 1k, 0q〉

= −k2 (3.9)
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only related to electron pseudo-wavevector. Inserting the interaction Hamiltonian into the

Eq.(3.3), first order term is calculated as the following,

E
(1)
k = 〈φ0|He−ph|φ0〉

= 〈0
k
′ , 1k, 0q|

∑
q

Vq(D)(aqe
iq.r + a†qe

−iq.r)|0
k
′ , 1k, 0q〉

= 0 (3.10)

According to the result, there is no contribution to the ground state energy coming from

the first order term. by using the form of the fractional dimensional fröhlich interaction,

the above equation can be written as

E
(2)
k =

∑
q

|Vq(D)|2
∑
k′

|δ
k
′−k+q

|2

Ēk − Ēk′
(3.11)

where

Ēk = 〈0
k
′ , 1k, 0q|H0|0q, 1k, 0k′ 〉 = E

(0)
k (3.12)

Ēk′ = 〈1
k
′ , 0k, 1q|H0|1q, 0k, 1k′ 〉 (3.13)

= 〈1
k
′ , 0k, 1q| − ∇2

D +
∑
q

a†qaq|1q, 0k, 1k′ 〉

=
∑
q

(k
′
)2 + 1

when unperturbed energy values are substituted in the denominator, alternatively, second

order term can be referred to as

E
(2)
k =

∑
q

|Vq(D)|2
∑
k′

|δ
k
′−k+q

|2

1 + k
′2 − k2

=
∑
q

|Vq(D)|2

1 + q2 − 2k.q
(3.14)
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δij denotes the Kronecker-Delta function

δij =

{
1, if i = j

0, if i 6= j

If the psuedovector q is quite large compared to phonon energy the q summation fall

of rapidly. So the virtual phonons just contribute to the phonon energy in the case of a

psuedovector q has not a huge values. The term k.q will be less than q2 in the denominator

due to the small value of q. Expansion of the q summand in a power series up to second

order in k.q gives following form which only depends on pseudo-vector q

E
(2)
k = −

∑
q

|Vq(D)|2
(

1

1 + q2
+

4k2q2

(1 + q2)3

)

=
υD

(2π)D

∫ ∞
0

WD(q)|V(D)|2
(

1

1 + q2
+

4k2q2

(1 + q2)3

)
=

√
π

2

Γ(D−1
2

)

Γ(D
2

)
α + k2

√
π

4

(D−1
2

)

(D
2

)
α (3.15)

the result can be divided into two parts in a physical sense. The first part that the term dos

not contain electron pseudo wave-vector k , will contribute to the ground state energy of

the polaron. And the second part which depends on electron pseudo wave-vector k will

contribute to the effective mass of the polaron. Briefly we obtain the following expression

for ground state energy and the effective mass of the polaron

E = E
(0)
k + E

(1)
k + E

(2)
k

= k2 − β1(D)α− k2β2(D)

= −β1(D)α + k2(1− β2(D)α) (3.16)

In equation (3.16) the D-dependent functions β1(D) and β2(D) are given respectively, by

β1(D) =

√
π

2

Γ(D−1
2

)

Γ(D
2

)
β2(D) =

1

D

√
π

4

(D−1
2

)

(D
2

)
(3.17)
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The set of equations indicate contribution from the electron-phonon interaction. The re-

sults can be used to directly obtain Eg and mp of the Fröhlich polaron in NIDS.

mD
p /m

∗ = (1− β2(D)α)−1 ' 1 + β2(D)α (3.18)

Fig.3.1 clearly shows that, with decreasing dimensionality parameter D the polaron bind-
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Figure 3.1. Perturbation theory results of the confined polaron in NIDS. (a) The bind-
ing energy E(D)

p , and (b) effective mass m(D)
p of confined polaron as func-

tion of the effective dimensionality (D = 3 → 2)for the slab-like geome-
tries
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Figure 3.2. Perturbation theory results of the confined polaron in NIDS. (a) The bind-
ing energy E(D)

p , and (b) effective mass m(D)
p of confined polaron as func-

tion of the effective dimensionality (D = 3 → 1)for the wire-like geome-
tries

40



ing energy and the effective mass become reasonably deepened for the slab-like geome-

try. When dimensionality parameter goes from 3 to 2, with continuous transition, polaron

cloud starts to be squezzed starting from 0 to 1. For wire-like geometry the behaviour

is rather different. Beginning from the bulk case (D=3) and approaching the wire-like

geometry, the enhancement in the binding energy and effective mass is particularly ap-

parent. As can be seen from Fig.3.2, as the dimensionality parameter approaches the 1D

limit, strength of the electron phonon coupling becomes much stronger and the results for

the contributions to the polaron in the ground state diverge at D=1. In view of the results

we have obtained, we see that the compact forms of the binding energy, mass shift and

effective mass can be reduced to well known results in Eq.(1.32)for bulk polaron (D=3)

and Eq.(1.34) for the strictly-2D polaron (D=2) at the limit values. In this way, we can

obtain confined polaron results in real 3D space avoiding complex calculations. Another

key advantage of NID polaron results is that when we give a non-integer value to the ef-

fective dimensionality, we obtain the energy and the mass for the slab-like or wire-like

geometries.

3.2. Variational Method in NIDS

In this section, we report on a detailed analysis for not only ground state energy but

also effective mass of Fröhlich polarons in NID space. In general, for strong interaction

strength, variational method can be used to described polarons. The results of the previous

strongly coupled polaron calculations are generalized to non-integer or D-dimensional

space by using variational method within adiabatic approximation. Before starting the

calculation that is modified according to NIDS algebra, we need to recall the effective

Fröhlich Hamiltonian in Eq.(2.13).

H = −∇2
D +

∑
q

a†qaq +
∑
q

Vq(D)(aqe
iq.r + a†qe

−iq.r) (3.19)

We first construct a wave function which is the adiabatic polaron ground state.

Ψg = Φe(r)|0〉 (3.20)
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Adiabatic polaron ground state obtained from product ansatz consisting of the electron

and phonon parts. And the normalized electronic wave function is given as

Φe(r) =

(
λ

2π

)D/4
exp

(
− 1

4
λr2
)

(3.21)

Under displaced oscillator transformation effective Hamiltonian conforms to

H̃ = ∇2
D +

∑
Q

a†QaQ −
∑
Q

fQ(a†Q + aQ) +
∑
Q

fQ
2 (3.22)

+
∑
Q

VQ[aQe
iQ.r + aQ

†e−iQ.r] (3.23)

where

U =
∑
q

uq(Φe)[aq − aq†] (3.24)

Here,uq(Φe) is the lattice variational parameter via which an interrelation is established

between the potential well set up by the lattice polarization and the electron which,in turn,

becomes trapped in this well. The minimization of the energy functional 〈Ψg|H̃|Ψg〉 =

〈0|〈Φe|H̃|Φe〉|0〉 with respect to uq yields

uq(Φe) = Vqsq, sq = 〈Φe| exp(±iq.r)|Φe〉 (3.25)

With the optimal fit for substituted in, the Hamiltonian becomes

H̃ = 〈Φe|H|Φe〉 (3.26)

= −∇2
D +

∑
q

aq
†aq +

∑
q

Vq
2(D)sq

2

−
∑
q

Vq(D)2sq(e
iq.r + e−iq.r)

+
∑
q

Vq(D)[(eiq.r − sq)aq + (e−iq.r − sq)aq†] (3.27)
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〈0|H̃|0〉 = 〈0| − ∇2
D +

∑
q

Vq
2(D)sq

2

−
∑
q

Vq
2(D)sq〈0|(eiq.r + e−iq.r)|0〉 (3.28)

remaining terms gives the ground state energy in a simple form

Eg = εk −
∑
q

Vq
2(D)sq

2 (3.29)

where εk = 〈Φe| − ∇2
D|Φe〉

we need to turn q summation into the integration by using weight function

∑
q

→ υD(2π)-D

∫ ∞
0

dqWD(q) (3.30)

where weight function and D-dimensional interaction amplitude

WD(q) =
2πD/2

Γ(D/2)
qD−1 (3.31)

|Vq(D)|2 =
Γ(D−1

2
)(4π)

D−1
2

υD
α

1

qD−1
(3.32)

The summation in Eq.(3.29) can be calculated exactly. The term

s2
q = e−q

2/λ (3.33)∑
q

V 2
q s

2
q =

√
λ

2

Γ(D−1
2

)

Γ(D
2

)
α (3.34)

kinetic part of the Eg will be given as follows

εk = 〈Φe| − ∇2
D|Φe〉

=

∫ ∞
0

Φ∗e(r)(−∇2
D)Φe(r)WD(r)dr

= λ
D

4
(3.35)
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Then Eg being a function of λ, the optimal value of the variational parameter λ0, is found

by the variation of Eg with respect to λ i.e. dEg

dλ
= 0;

Eg = λ
D

4
−
√
λ

2

Γ(D−1
2

)

Γ(D
2

)
α (3.36)

dEg
dλ

= 0 (3.37)

λ0 =
1

D2

[
Γ(D−1

2
)

Γ(D/2)

]2

α2 (3.38)

Substituting λ0 into the λ in Eq.(3.36), finally we obtain the ground state energy of

Fröhlich polaron in NIDS

Eg = − 1

4D

[
Γ(D−1

2
)

Γ(D/2)

]2

α2 (3.39)

Effective mass of the D-dimensional polaron

m(D)
p /m∗ = 1 +

4

D

∑
Q

Q2V 2
Q(D)σ2

Q (3.40)

The second term in Eq.(3.40) is the phononic contribution to the mass.

µ(D) =
4

D

ωD
(2π)D

∫ ∞
0

Q2V 2
Q(D)σ2

QWD(Q)dQ

=
λ3/2

D

Γ(D−1
2

)

Γ(D
2

)
α (3.41)

substitute λ0 into the λ above equation which minimizes the ground state energy

mD
p /m

∗ = 1 +
1

D4

[
Γ(D−1

2
)

Γ(D
2

)

]4

α4 (3.42)

The curves of the ground state energy and the effective mass corresponding to

variational method results shown in Fig.3.3. These curves reveal that, variation of the
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E
(D)
g and mD

p of confined polaron as a function of the effective dimensionality parameter

during a continuous transition from the bulk geometry to the slab geometry (D = 3→ 2)

in NIDS. It is important to know that the curves are plotted for the value of α = 1. In the

strongly interacting regime with decreasing the mobility of the polaron namely,reducing

the effective dimensionality, the ground state energy and the effective mass are increasing

as expected for the slab-like geometry (D = 3 → 2). Alternatively stating that, the

enhancement in the polaron ground state energy and the effective mass are are valid for

the wire-like geometry as shown in fig.3.4
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Figure 3.3. (a) The binding energy E(D)
p , and (b) effective mass m(D)

p of confined po-
laron as function of the effective dimensionality for the slab-like geome-
tries. The solid lines refer to the results of the strong coupling theory.
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Most important of all, we have also determine the relation of the effective dimen-

sionality parameter and degree of confinement corresponds to same ground state energy

in large α limit. The dependency of these parameters maps the dynamical space into the

conventional Euclidean space where physical interactions occur. As fitting the our re-

sults which are found from the strongly interacting system, we have derived simple and

handy model which relates the effective dimensionality and degree of confinement. The

structure of the relation is given below

D = 3− exp

[
− 1√

Ω

]
(3.43)

Alternatively stating that this relation can be represented by the following form

Figure 3.5. Effective dimensionality D as a function of the parabolic confinement Ω
for slab-like geometry in strong coupling limit.

D = 3− exp

[
−Lz
Rp

]
(3.44)

where the Lz refers well-width for the slab-like geometry and Rp denotes polaron size.

Both of these parameters are unitless in our notation. Examine that in the limiting cases,
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as the first case when the well-width goes to infinity (Lz →∞) we obtain the bulk value

(D=3) for the polaron. In the second case when well-width goes to zero (Lz → 0) we

reach the slab geometry (D=2). The structure of the effective dimensionality for tunable

slab-like confinement is displaced in Fig.3.5. It seems clear that at the rather large or small

values of confinement parameter, effective dimensionality does not change nearly. In

contrast, for the intermediate values of Ω rather large change is seen in the dimensionality

parameter.

Consequently without making complicated calculations, we can obtain results of polaron

energy and the mass for any confining potential through dimensionality.

3.3. Variational Perturbative Method in NIDS

The implementation of extended formalism to the polaron problem embedded in

low dimensional system with parabolic confinement has been interpreted in the previous

section. Now we mostly concentrate the modification is required in order to display a

broader insight into the ground state properties of polaron in NID space. We propose

a theoretical model re-characterizing the integer space to the case of non-integer space

with in the framework of extended formalism. This theoretical model that we mentioned

has a crucial advantage based on the fact that all the corrections come from perturba-

tion collected on a single value dimensionality. In other words dimensionality in an NID

space can be matched with an effective physical description of confinement in a real low

dimensional system. Here we deal with obtaining the E(D)
g and m(D)

p of the polaron by

revealing more valid and powerful approach that takes into account intermediate values in

NID space. We construct a well-coordinated formalism is inspired by the original study

proposed by [28, 29] During the generalization of mathematical structure of the problem,

we follow the steps usual in extended formalism which covers all over α values. In this

study

Ground state energy and effective mass of the polaron will be calculated by means of a ar-

bitrary coupling approach. We use the Fröhlich Hamiltonian of the entire system in a NID

space as stated in Eq.(2.13) and instead of working with the explicit wavefunction which

belongs to electron, we set momentum and position in terms of operators. Momentum of

the electron moving in non-integer dimensional bulk geometry in terms of operators

pD =

√
σ

2
(bD + b†D + p

(0)
D ) (3.45)
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where index D denotes D-dimensional coordinates. Our aim is adding to variational quan-

tity p(0)
D in order to set the system in motion.

p2
D =

σ

4

∑
D

b2
D + b†2D + bDb

†
D + b†DbD + 2(p

(0)
D bD + p

(0)
D b†D) + p

(0)
D

2
(3.46)

fermionic operators satisfy the commutation relation [bD, b
†
D′

] = δDD′ . Square of the

momentum operator is given

p2
D =

σ

4

∑
D

b2
D + b†2D + δDD + 2b†DbD + 2(p

(0)
D bD + p

(0)
D b†D) + p2(0)

D (3.47)

by using lagrange multiplier method the functional is given

F (σ,υ) = 〈0|H̃ − υ.Π̃|0〉

=
Dσ

4
+
Dσ

4
p(0) −D

√
σ

2
υ.p(0)

+
∑
Q

u2
Q − 2

∑
Q

uQVQ(D)sQ −
∑
Q

υ.Qu2
Q (3.48)

is the expression of functional depends on dimensionality parameter in NID space. Mini-

mizing the functional gives explicit form of the p(0) which serves our purpose and lattice

variational parameter .

p(0) =
υ√
σ

uQ = VQ(D)sQρQ (3.49)

where

ρQ = (1− υ.Q)−1 (3.50)

in which the Lagrange multiplier υ is to be identified as the polaron velocity along the

D-dimensional bulk geometry. We will follow same procedure as in intermediate cou-

pling theory for real space with one difference. As we mentioned before we use operator

formalism instead of explicit variational wavefunction method. Therefore, modified trial
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state will be defined in terms of phonon vacuum states as given in the following.

|0′〉 = c|0〉+
∑
Q

VQ
∑
i

|i〉
〈i|(exp(−iQ.r)− sQ)a†Q|0〉

∆εi−0

= c|0〉+
∑
Q

VQgQ(exp(−iQ.r)− sQ)a†Q|0〉 (3.51)

From the normalization condition we obtain following expression as a constraint

f(c, gQ) = 〈0′|0′〉 = c2 +
∑
Q

V 2
Qg

2
QhQ − 1 = 0 (3.52)

One has to minimize the expectation values H̃ − υ.Π̃ in the extended trial state in order

to find the parameter gQ as we discussed before

〈0′|H̃ − υ.Π̃|0′〉 = 〈0′|H̃|0′〉 − 〈0′ |υ.Π̃|0′〉 (3.53)

and finally, the functional takes the following form without any explicit term

Φ(σ, υ; c, gQ) = c2(e0 +
1

4
υ2)− 1

2
υ2

+
∑
Q

V 2
Q(D)g2

Q(eQ − δQQ′ + hQ)

+ χ(1− 2c2) + 2c
∑
Q

V 2
Q(D)gQhQ (3.54)

Here, c is normalization constant and Q is the pseudo-wavevector. Remarkable point in

here, all quantities in functional depend on dimensionality parameter.

λ =
∑
Q

V 2
Q(D)

(gQ
c

)
hQ

= −
∑
Q

V 2
Q(D)h2

Q

(1− λ+ 2χ− e0 − 1
4
υ2)hQ + eQ − δQ

= −
∑
Q

V 2
Q(D)h2

Q

DQ

(3.55)
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• Effective Mass of Non-Integer Dimensional Polaron (m(D)
p )

We can get the effective mass of polaron in NID space via virtual velocity. To

do this it is necessary isolating the velocity dependent terms from the functional.

Hence,we will succeeded to split Φ(σ, υ) into its parts consisting of the binding

energy and of the polaron alone and the additional kinetic contribution which shows

up having imposed a virtual momentum to the polaron. We are thus tempted to

expand quantities in Eq.(3.54) and the summand in Eq.(3.55) in a power series up to

second order in υ χ and δQ are transformed into the following form after expansion

χ = χ(0) +
1

4
υ2χ(1) and δQ = δ

(0)
Q +

1

4
υ2δ

(1)
Q (3.56)

where χ(n) and δ(n)
Q (n=0,1) are given by

χ(n) =
∑
Q

V 2
Q(D)s2

Q[2Q]2n, (3.57)

δ
(n)
Q =

∑
Q′

V 2
Q′

(D)sQ′∆QQ′ [2Q
′
]2n

= 2χ(n)(1 + s2
Q)

− 2sQ
∑
Q′

V 2
Q′
sQ′ × (sQ+Q′ + sQ−Q′ )[2Q

′
]2n (3.58)

DQ takes this form with substitution expanded terms

DQ = e
(0)
Q − υ.QhQ +

1

4
υ2hQ − δ(0)

Q −
1

4
υ2δ

(1)
Q

+ hQ − hQe0 −
1

4
υ2hQ + 2χ(0)hQ +

1

2
υ2χ(1)hQ − ΛhQ (3.59)

We will be calculated contribution to the E(D)
g and m(D)

p comes from DQ by distin-

guishing velocity dependent and independent terms.

Hence, setting

D
(0)
Q = e

(0)
Q − δ

(0)
Q + (1− e0 + 2χ(0) − Λ)hQ (3.60)
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Furthermore, we obtain

Φ(σ, υ) = Eg(σ)− 1

4
υ2mp (3.61)

where

Eg(σ) = e0 − χ(0) + Λ (3.62)

shows up the ground state energy and the factor mp multiplying 1
4
υ2 is specified as

the polaron mass given by

mp = 1 + χ(1) +
∑
Q

V 2
Q(D)h2

Q

D
(0)
Q

 4

D
Q2

(
hQ

D
(0)
Q

)2

+
δ

(1)
Q − 2χ(1)hQ

D
(0)
Q

 (3.63)

Now, we need to derive explicit analytic forms for the quantities e0, sQ, χ
(n), and

δ
(n)
Q to obtain explicit expressions of Eg and mp. These analytical forms is derived

using properties of NID space as we mentioned in Chapter 2. We aim to obtain

results consistent with both 2D and 3D free polaron are found before in Chapter 1.

We have calculated the set of quantities χ(0), χ(1), δ
(0)
Q and δ(1)

Q in a explicit form

χ(0) =
∑
Q

V 2
Q(D)s2

Q = α
ϑD

(2πD)

∫ ∞
0

dQWD(Q)V 2
Q(D)s2

Q

= α

√
σ

2

Γ(D−1
2

)

Γ(D
2

)
(3.64)

χ(1) =
4

D

∑
Q

V 2
Q(D)s2

QQ
2 = α

4

D

ϑD
(2πD)

∫ ∞
0

dQWD(Q)V 2
Q(D)s2

QQ
2

= ασ3/2 1

D

Γ(D−1
2

)

Γ(D
2

)
(3.65)
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δ0
Q = 2(1 + s2

Q)χ(0) − 2sQ[
∑
Q′

V 2
Q′

(D)sQ′sQ±Q′ ] (3.66)

We need to first calculate the summation

∑
Q′

V 2
Q′

(D)sQ′sQ±Q′

= α
ϑD−1

(2π)D−1

∫ ∞
0

∫ π

0

dQ
′
WD−1(Q

′
)V 2

Q′
(D)sQ′sQ±Q′

= 2sQα
√
σΓ

(
D − 1

2

)
1F1

[
1

2
,
D

2
,
Q2

4σ

]
(3.67)

Here, the function in this form 1F1[a, b, z] is the regularized hypergeometric func-

tion.

Final form of the δ(0)
Q is obtained as

δ
(0)
Q = 2(1 + s2

Q)χ(0) − 4s2
Q

√
λΓ

(
D − 1

2

)
α1F1

[
1

2
,
D

2
,
Q2

4σ

]
(3.68)

δ
(1)
Q =

4

D

∑
Q′

V 2
Q′

(D)sQ′∆QQ′Q
′2

=
4

D

∑
Q′

V 2
Q′

(D)sQ′Q
′2 [

2sQ′ (1 + s2
Q)− 2sQsQ±Q′

]
(3.69)

As in the δ(0)
Q the summation is calculated as

∑
Q′

V 2
Q′

(D)sQ′sQ±Q′Q
′2

= α
ϑD−1

(2π)D−1
σ(D − 1)

∫ ∞
0

∫ π

0

dQ
′
dθ(Q

′
)(D−1)(sinθ)(D−2)V 2

Q′
(D)sQ′sQ±Q′Q

′2

=
α

2
σ3/2sQΓ

(
D − 1

2

)
1F1

[
3

2
,
D

2
,
Q2

4σ

]
(3.70)
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Final type of the equation is given as

δ
(1)
Q =

4

D

[
2(1 + s2

Q)χ(1) − ασ3/2s2
QΓ

(
D − 1

2

)
1F1

[
3

2
,
D

2
,
Q2

4σ

]]
(3.71)

If we return to the Eq.(3.62) we will obtain the following expression clearly for the

ground state energy of polaron in NID space via utilization the extended formalism

Eg(σ) = e0 − χ(0) + λ (3.72)

Eg(σ) =
σD

4
− α
√
σ

2

Γ(D−1
2

)

Γ(D
2

)
−
∑
Q

V 2
Q(D)h2

Q

D
(0)
Q

(3.73)

The polaron ground state energy as a function of the dimensionality parameter is shown

in Fig.3.6 with the comparison of the strong, weak and intermediate coupling results for

the value α = 0.1. It is expected that, the results obtained from extended formalism and

the results obtained from perturbation theory should be consistent with each other. In
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Figure 3.6. The ground state energy E
(D)
g versus effective dimensionality D at

electron-phonon coupling constant α = 0.1 for slab-like and wire-like ge-
ometry respectively. Black solid line refers to the results of the strong
coupling theory. Green solid line displays the results of the weak coupling
theory. Red solid line refers to the results of the generalized extended for-
malism.

addition to alpha being small, the bulk limit for the polaron leads to rather weak electron

phonon interaction. Therefore for the bulk limit (D=3), there is clearly a good agreement

between the curves obtained from variational perturbative approach and the perturbation
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theory. Moreover the detailed analysis shows that the going from the bulk geometry to

the wire-like geometry, by comparing the green,red and black curves we can find that the

overlapping to each other because of the strong electron phonon interaction. With the

increasing in confinement strong coupling effects begin appear. For not too weak α = 1,
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Figure 3.7. The ground state energy E
(D)
g versus effective dimensionality D at

electron-phonon coupling constant α = 1 for slab-like and wire-like ge-
ometry, respectively. Black solid line refers to the results of the strong
coupling theory. Green solid line displays the results of the weak coupling
theory. Red solid line refers to the results of the generalized extended for-
malism.

weak and intermediate coupling theory results shown in Fig.3.7 may be considered as

compatible with each other up to certain value of dimensionality parameter. With reduced

dimensionality strong coupling results begin playing an essential role. Around the 1D

limit, it is obvious that perturbation theory fails to reflect the features of the polaron.

Fig.3.8 shows that comparison of the strong, weak and intermediate coupling re-

sults for the value α = 10. For strong α the pure weak coupling treatment is totally

inadequate to give accurate results for the ground state energy of the polaron. On the

other side, one can easily observe that strong coupling and weak coupling results ing

good agreement to each other. We now proceed to discuss the effective mass results

derived through the perturbation theory, variational method and variational perturbative

method for various α values. In Fig.3.9 we select α = 0.1, and compare to the results

starting from the bulk limit to the wire-like limit. There is an apparent discrepancy be-

tween the black dashed line and the others in the bulk and slab-like geometry regions.

This result meets our expectations. On one hand, with reducing dimensionality electron

phonon interaction becomes much stronger and it leads to overlap the black dashed line

and black solid line corresponds to strong and intermediate coupling results respectively.
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Figure 3.8. The ground state energy E
(D)
g versus effective dimensionality D at

electron-phonon coupling constant α = 10 for slab-like and wire-like ge-
ometry, respectively. Black solid line refers to the results of the strong
coupling theory. Green solid line displays the results of the weak coupling
theory. Red solid line refers to the results of the generalized extended for-
malism.
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Figure 3.9. The ground state energy m
(D)
p versus effective dimensionality D at

electron-phonon coupling constant α = 0.1 for slab-like and wire-like ge-
ometry, respectively. Green solid line refers to the results of the strong
coupling theory. Red dashed line displays the results of the weak coupling
theory. Black dashed line refers to the results of the generalized extended
formalism.
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p versus effective dimensionality D at

electron-phonon coupling constant α = 5 for slab-like and wire-like ge-
ometry, respectively. Green solid line refers to the results of the variational
perturbative method. Red solid line displays the results of the weak cou-
pling theory. Black dashed line refers to the results of the strong coupling
formalism.
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Figure 3.11. The ground state energy m
(D)
p versus effective dimensionality D at

electron-phonon coupling constant α = 10 for slab-like and wire-like ge-
ometry, respectively. Black dashed line refers to the results of the strong
coupling theory. Green solid line displays the results of the weak coupling
theory. Red solid line refers to the results of the variational perturbative
method.
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Effective mass dependence on the dimensionality parameter for the value of α = 5

is addressed in Fig.3.10, showing a drastic increase of the strong and intermediate cou-

pling results. It is seen that, weak coupling theory fails to display the ground state proper-

ties of the polaron. However, order of alpha value , in the 3D limit since electron-phonon

interaction weaker than the 1D limit, weak coupling theory does not seem to inconsistent

with intermediate coupling theory.

Fig.3.11 displays the dependence of effective mass on the dimensionality param-

eter for the value of α = 10. There is an excellent agreement between strong and inter-

mediate coupling theory.

In summary, we have studied the confinement and the corresponding effective

dimensionality effect on Fröhlich polaron ground state energy and effective mass in the

weak, strong and arbitrary coupling regimes. We see that, for all the coupling constants,

with the increasing confinement ground state energy and effective mass of the polaron

are enhanced. In contrast, with the reduction of the effective dimensionality, ground state

energy is deepened and there is an enhancement in the effective mass of the polaron. It is

quite reasonable that more confined geometry leads to more reduced dimensional systems

or vice versa.
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CHAPTER 4

RESULTS AND DISCUSSIONS

In this work we have examined the problem of Fröhlich polaron in Non-Integer

Dimensional Space (NIDS) where the effective dimensionality parameter is continuous

in the range from 1 to 3, within the framework of weak, strong and intermediate coupling

theory as a model of 3-dimensional polaron with a parabolic confinement. The electron

is considered in a NIDS interacting isotropically with the bulk phonons, in order to ac-

count for the anisotropic interactions brought about by the spatially confining parabolic

potential.

In this regard we have derived expressions for the ground state energy and the

effective mass of polaron depend on the effective dimensionality parameter which is the

identity of the confinement degree in NIDS. It should be noted that these expressions

are obtained straightforwardly in a simple and compact form which recovers the well

known results at the limit values . We have also shown that the relation between effective

dimensionality and the degree of confinement (anisotropy) in the strong coupling domain.

Through this useful relation, we can obtain the energy and the effective mass in the ground

state of the strongly coupled polaron, preventing the complex calculations due to the

confining potential.

Our results indicate that any confinement effect in our 3-dimensional universe

should naturally be modelled in a lower dimensional space, if it can ever be possible.

Since essential features of the polaron diverge when D → 1, we are concerned with in

the range 1 to 3.
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APPENDIX A

SUPPLEMENTARY INFORMATION

A.1. Perturbation Theory

H = H(0) +H(1) (A.1)

It is clear that for the polaron problem we have,

H(0) = He +Hph (A.2)

H(1) = He−ph (A.3)

The solution of the time independent Schrödinger equation

H|Ψn〉 = En|Ψn〉 (A.4)

can be expanded in a perturbation series of the form,

|Ψn〉 = |Ψ(0)
n 〉+ |Ψ(1)

n 〉+ |Ψ(2)
n 〉+ ... (A.5)

En = E(0)
n + E(1)

n + E(2)
n + ... (A.6)

where n stands for all the quantum numbers characterizing the system. Substituting these

series in Eq.(...), one can consider the terms with the same order independently. The

zeroth-order terms give simply the equation for the unperturbed Hamiltonian,

H(0)|Ψ(0)
n 〉 = E(0)

n |Ψ(0)
n 〉 (A.7)
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which can be assumed to be solved exactly. The first order correction to the energies can

be found to be expectation value of H(1) in the unperturbed states,

E(1)
n = 〈Ψ(0)

n |H(1)|Ψ(0)
n 〉 (A.8)

For some systems, the first order correction E(1)
n vanishes exactly like polaron, so one

should consider higher order for the energy,

E(2)
n =

∑
m

∣∣∣〈Ψ(0)
n |H(1)|Ψ(0)

m 〉
∣∣∣2

E
(0)
n − E(0)

m

(A.9)

Finally, for the eigenstates we have

|Ψ(1)
n 〉 =

∑
m

〈Ψ(0)
m |H(1)|Ψ(0)

n 〉
E

(0)
n − E(0)

m

|Ψ(0)
m 〉 (A.10)

as the leading order term in the perturbation series.

A.2. Transformations

Variational and variational perturbative method that we concentrate, in this study,

based on using the standard canonical and displaced oscillator transformations in the

framework strong coupling and arbitrary coupling formalisms. That is why, we give a

brief knowledge concerning transformations. In addition, for the calculation in weak cou-

pling regime, we summarized the usual perturbation theory.

A.2.1. Canonical Transformations

When applying the approximation methods to the polaron problem, instead of

writing the wavefunction explicitly, momentum and position operators can be defined in
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terms of electron operators as given below

pν =

√
σ

2
(bν + b†ν) (A.11)

xν =
i√
σ

(bν − b†ν) (A.12)

where b(b†) annihilation(creation) operators of electron and ν denotes cartesian coordi-

nates.

Canonical transformation of the Hamiltonian is performed by

U1 = exp(−i
∑
Q

a†QaQQ.r) (A.13)

H
′
= U−1

1 HU1 (A.14)

Substituting the position operator into the equation (...)

U1 = exp(
1√
σ

∑
Q

Qa†QaQ(bν − b†ν)) (A.15)

It is convenient to use shorthand notation for U1 = expS By using Baker Hausdorff

Formula the new Hamiltonian is obtained as given

H
′

= U−1HU = e−SHeS

= (P −
∑
Q

Qa†QaQ)2 +
∑
Q

a†QaQ +
∑
Q

ΓQ(aQe
iQ.r + a†Qe

−iQ.r) (A.16)

where P is the total momentum of the system. This result displays that the momentum

changes under canonical transformation. In contrast to momentum, phonon term and the

interaction term remains invariant.

P = p+
∑
Q

Qa†QaQ (A.17)
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A.2.2. Displaced Oscillator Transformation

Trial wavefunction can be formed as product of the electronic wavefunction and a

phonon coherent state consistent with Pekar’s product ansatz

Ψg = U2|0〉 (A.18)

where |0〉 represents the states with no phonon.

U2 = exp
∑
Q

fQ(Φe)[aQ − a†Q] (A.19)

is regarded as a unitary operator which acts simply to remove the phonon coordinates aQ
and a†Q.

Applying the same procedure in Eq.(A.16)

H̃ = U−1
2 HU2

= p2 +
∑
Q

a†QaQ −
∑
Q

fQ(a†Q + aQ)

+
∑
Q

fQ
2 +

∑
Q

VQ[aQe
iQ.r + aQ

†e−iQ.r] (A.20)
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