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ABSTRACT 
 

SCHEDULING THE TURKISH SOCCER LEAGUE USING 

MATHEMATICAL PROGRAMMING 
 

Generating a fair and feasible schedule is a difficult challenge for sports league 

organizers because of having various requirements from various involved parties. Some 

of these requirements are fairness requirements. Turkish Soccer League should be 

scheduled by according to these requirements especially because of the reduction of the 

confidence in Turkish Soccer League organizers and authorities due to the case of 

match fixing in recent years. As scheduling Turkish Soccer League, the prior 

requirements in our study are the minimization of the total number of break, carry over 

effect (COE) value of a schedule in addition to meeting the conflicting venue 

constraints. We decomposed scheduling process in phases to facilitate our solution. We 

used a different variation of first-break-then-schedule approach, proposed by 

Rasmussen and Trick (2008), to meet break conditions initially and solved each phase 

by applying different mathematical programming techniques including Integer 

Programming (IP) and Constraint Programming (CP). Our study generates a schedule 

having carry over effect (COE) value which is one of the lowest ones in European 

soccer competitions, in addition to minimizing total number of breaks.  
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ÖZET 
 

TÜRKİYE FUTBOL LİGİ FİKSTÜRÜNÜN MATEMATİKSEL 

PROGRAMLAMA İLE OLUŞTURULMASI 
 

Futbol ligi organizatörleri için adil ve makul bir fikstür hazırlamak, içerdiği 

gereksinimlerin çokluğu nedeniyle oldukça güçtür. Bu gereksinimlerden biri de 

tarafsızlık ilkesidir. Türkiye Futbol Lig’inde son yıllardaki şike davası süreci nedeniyle 

güven ortamı sarsılmıştır ve bu güven ortamının yeniden tesisi için her konuda 

tarafsızlık ile ilgili unsurların ön plana çıkartılmasına her zaman olduğundan daha fazla 

ihtiyaç duyulmaktadır. Bu çalışmamızda Türkiye Futbol Ligi’nin fikstürünü hazırlarken, 

fisktürün şu anki halinin bazı temel özelliklerini koruyarak, bir fikstürün tarafsızlık 

ölçütlerinden olan devreden etki değerini (Carry Over Effect - COE) ve toplam kırılım 

(break) değerini en aza indirmeyi amaçladık. Çözümümüzü hayata geçirmek için fikstür 

oluşturma sürecini bir kaç safhaya ayırdık. Öncelikle kırılım şartlarını karşılamak ve her 

safhayı, Tamsayı Programlama ve Kısıtlı Programlama gibi teknikleri içeren bir 

matematiksel programlama tekniği ile çözebilmek için 2008 yılında Rasmussen ve 

Trick’in de önermiş olduğu first-break-then-schedule (önce kırılımı hesapla – sonra 

fikstür oluştur) tekniğinin farklı bir varyasyonunu kullandık. Çalışmamız sonucunda 

minimum kırılım sayısına sahip bir fikstürü oluşturmamıza ek olarak, Avrupa’daki 

liglerin içerisinde düşük seviyede COE değerine sahip olan fikstürlerden birini elde 

ettik. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

Soccer is one of the most important sports without doubt and there is a huge 

market for different types of stakeholders in soccer games such as teams, broadcasting 

companies, fans, police etc. Turkish Soccer has an important role in the European 

Soccer. According to Deloitte Annual Review of Football Finance (Sports Business 

Group, 2012) Turkish Super League is the 7th biggest revenue generating league with 

the €515 million annually (RR). A major broadcasting company in Turkey (Digiturk) 

have been paying $321 million for the broadcast rights since 2010 and Turkish Soccer 

League has more broadcasting value than many other countries (%44 of total revenue) 

(RR). Before 2010, this value was $140 million. This significant increase in investment 

illustrates the rising interest in Turkish Soccer, so the scheduling of games in Turkish 

Soccer League becomes more important. Schedule is in a tight bond with game 

attendance, public interest, and profitability of events for sponsors, broadcasters and 

advertisers. Furthermore, schedules have an obvious impact on the results of the 

competition itself. Hence involved parties want to organize a schedule that maximizes 

their revenue by taking into account the circumstance that the organization is attractive, 

fair, practicable and safe for anyone involved. For meeting these requirements of 

competitions, organizers of soccer leagues should be wary about scheduling because 

good schedule is a crucial for an effective competition.   

Organization of a feasible schedule is not an easy task because of many 

constraints originating from various stakeholders. Some of these constraints may be 

conflicting. Although some of these constraints are common for majority of 

competitions, there may be additional requirements giving priority to special constraints 

desired by national federations. For example in Italy, multiple television companies 

have broadcasting rights and the schedule emphasized on the fair distribution of 

important matches over the rounds for each TV station (Della Croce and Oliveri, 2006). 

Although researchers from mathematics, computer science and operational research 

studied on this subject in last decade, there are quite a few papers that propose solution 

approaches on specific soccer leagues. Although there are many rumors about match 

fixing especially in Turkey where soccer industry possesses an important economic 
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power, there has not been any academic studies published on League Scheduling. 

This thesis is organized as follows; first, the general review of scheduling 

concept including its terminology has been introduced with its basic problems 

(constraints) and applications in other countries. Next, we present the current Turkish 

Super League scheduling system and algorithmic alternatives for a solution. After that, 

we present our solution strategy for Turkish Super League by focusing on mathematical 

programming. Then, we conclude by analyzing impact of our solution method and 

prospects for future work. 
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CHAPTER 2 
 

 

SPORT SCHEDULING TERMINOLOGY 
 

 

A league is a sports competition in which n teams play against each other 

according to a given timetable. Usually, n is an even number but sometimes it may be 

an uneven number. The league organizes games between teams. Games are scheduled 

in rounds. Each round is played on a given day. A schedule consists of games assigned 

to rounds. A schedule is called as compact schedule, if each team plays one game in 

each round. A schedule is relaxed schedule, if each team plays more than one game in 

any round. If a team has no game in a round, it is called as bye in that round (Nurmi et 

al., 2010).  

Teams have an associated venue (stadium). If a team plays match in its 

associated stadium, it is called as a home match for that team; otherwise it is called as 

an away match for that team. The sequence of home matches, away matches or byes 

for a team is defined as the home-away pattern (pattern) for that team. If a team plays 

two or more consecutive home matches or away matches rounds, team’s pattern is said 

to have a break in that rounds. Two patterns are called as complementary patterns, if 

the first pattern has an away game and the second pattern has a home game or if the first 

pattern has a home game and the second pattern has an away game for all rounds.  

 

 

 

1 0 1 0 1 

0 1 0 1 0 

   

                          

Rounds 1 2 3 4 5 

Team 1 1 0 1 0  1 

Team 2 0 1 0 1 0 

Team 3 1 0 1 1 0 

Team 4 0 1 0 0 1 

Team 5 1 0 0 1 0 

Team 6 0 1 1 0 1 
 

    (a)       (b) 

Table 2.1. (a) Two complementary patterns (b) Sample pattern set for a 6 teamed league  
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Table 2.1 (a) shows two complementary patterns for a compact single round 

robin tournament and 2.1 (b) shows a sample pattern set for 6 the league consisting of 6 

teams. In these tables home matches are illustrated as 1 and away matches are illustrated 

as 0.  

Round Robin is an algorithm for scheduling where all participant teams play 

each other team in turn. If all teams play each other once, it is called as Single Round 

Robin Schedule (1RR). If they play twice, it is named as Double Round Robin 

Schedule (2RR). Each couple of teams play one match at home stadium and one match 

at away stadium. Else if they play each other four times, it is said as Quadruple Round 

Robin Schedule (4RR). Each couple of teams plays 2 matches home and 2 matches 

away. Table 2.2 shows the sample 2RR tournament information about number of rounds 

and matches. 

 

# of Rounds :   

 

  2*(n-1)  

Ex: For Turkish Super League = 2*(18 -1) =34  

  

# of Games  :   (n /2)*(n-1)*2 

Ex: For Turkish Super League => (18/2) * (18-1)*2 = 306 

 

 

Table 2.2. Double Round Robin Tournament Calculations for n Teams 

 

There is a term which is called as Mirrored Double Round Robin (M2RR). In 

M2RR, teams play against all of their opponents in first n-1 rounds. After single round 

robin finished, they play them in a same row at reverse venues. Table 2.3 shows the 

sample M2RR schedule.  

There is a term which is called as Canonical Schedule. In canonical schedule 

(de Werra, 1980), teams play against same opponents in a same row. Table 2.4 shows 

sample fixture part of Turkish Super League 2012/2013 season. Sivasspor, Fenerbahçe 

and Trabzonspor have same opponents in a row (Eskişehirspor-Gençlerbirliği-

Kayserispor) which is presented in bold letters in Table 2.4.  
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R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

1-5 1-4 1-2 1-6 1-3 5-1 4-1 2-1 6-1 3-1 

2-3 2-5 3-4 2-4 2-6 3-2 5-2 4-3 4-2 6-2 

4-6 3-6 5-6 3-5 4-5 6-4 6-3 6-5 5-3 5-4 

   

Table 2.3. Sample Mirrored Double Round Robin Schedule (M2RR) 

 

 

 

 R28  R29 R30 R31 R32 

Sivasspor Eskişehirspor Gençlerbirliği Kayserispor İstanbul Bld. Galatasaray 

Fenerbahçe Orduspor Eskişehirspor Gençlerbirliği Kayserispor İstanbul Bld. 

Trabzonspor Akhisar Bld. Orduspor Eskişehirspor Gençlerbirliği Kayserispor 

 

Table 2.4. Sample of Real Canonical Schedule 
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CHAPTER 3 
 

 

SPORT SCHEDULING PROBLEMS (CONSTRAINTS) 
 

 

Sport Scheduling Problem consists of many constraints. Researchers who 

study on this subject aims to find an optimal schedule which meets particular constraints 

depending on requirements of associations which varies from one country to another. 

Global constraints are mandatory for every competition in which schedule is Round 

Robin. Typical constraints are constraints which can be different for different 

competitions according to their special requirements. We summarize the global and 

typical constraints of this problem in this chapter. Later, we focus on some of these 

constraints which are break and carry-over effect value minimization. We can briefly 

list the global constraints of round-robin schedule as below. 

Global Constraints (Guillermo Dur´an et al., 2007) 

 Each team play each of the others once over the course of the (n-1) rounds in the 

tournament for n teams, if n is not odd. 

 Each team play one match per round. 

 Each (n/2) games should be played, if n is not odd. 

Typical constraints consist of large number of constraints which are arising from 

teams, TV networks, sports associations, fans and local communities. Some of these 

constraints naturally conflict. Thus, associations classify some of them as hard 

constraints and the rest of them as soft constraints depending on their priorities. We can 

group of typical constraints in subtitles which are listed as below. 

Pattern Constraints ( Guillermo Dur´an et al., 2007) 

 Each team plays at most one sequence of n consecutive rounds at home or n 

consecutive round at away. This condition implies that no team plays more than 

n consecutive rounds at home or n consecutive rounds at away. 

 Let A be a set of rounds which cannot have break. If a team plays at home 

(away) in 

any round of A, it must play away (at home) in the following round. For example if 

A={1,16} for a league of 18 teams, none of patterns of any team can have any 

breaks in first or last rounds of the Round Robin. 
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Venue Constraints  

 Balanced proportion of home and away games in a season for all teams. The 

difference between the number of played home and away games for each team 

must not be larger than k in any stage of the tournament.  

Example: If k = 2 and round 20, any of team should be played at most 11 home 

matches or at most 11 away matches.  

 A team should play home or away in a certain round. This kind of constraint is 

normally imposed when a venue is unavailable due to other events. 

Example: Because of 19
th

 May celebrations at Atatürk 19 Mayıs Stadium, teams of 

Ankara should play away in this round.   

Complementary Constraints (Rasmussen, 2006) 

 If two teams share same venue, these teams should have complementary 

patterns. When one of these teams plays at home, the other team should play at 

away in same rounds. 

Example: Two teams should have patterns like Table 2.1 (a) 

 Dependency between the leagues. Lower-division teams may not wish to play at 

home at the same time as a neighboring higher-division team to attract more 

supporters and get higher revenue.   

Example: Gaziantep Büyükşehir Belediyespor, which play in PTT 1st League in 

Turkey may not wish to play at home, when Gaziantepspor, which play in Turkish 

Super League, plays at home in any round.  

Time and Distance Constraints (Anson and Lester, 2007) 

 Match days and their start time should be fair for all teams depending on their 

European schedule.  

Example: In 2012/2013 season Fenerbahçe plays in EURO Cup, thus it plays European 

matches on Thursdays and Galatasaray plays in Champions League, thus it plays 

European matches on Tuesdays or Wednesdays. For this reason, after European matches 

Galatasaray plays national league matches on Fridays or Saturdays and Fenerbahçe 

plays league matches on Sundays or Mondays. To provide fairness in these clubs 

challenge, association should balance match day differences. 

 Some teams may wish to play home games after European matches to reduce 

tiredness.  

 



 

8 
 

Game Constraints (Rasmussen, 2006) 

 These are constraints which are fixing or prohibiting games in a certain round 

because of reason such as TV broadcaster requirements, security etc. 

Example 1: Fenerbahçe-Galatasaray is a rival game and Digiturk (Broadcast Company 

of Turkey) this game to be scheduled in last rounds of the season. They expect more 

advertisement revenue to increase competency in championship.  

Example 2: Police requires rival matches not to be scheduled in May the 1
st
 for 

security.  

Strength Group of Teams Constraints  

 Teams should not play more than k consecutive matches against teams in same 

strength groups. 

 There should be at most m games between the teams in strength group s between 

rounds r1 and r2 for balanced spread of games against top teams over the 

season. 

Geographical Constraints  

 Teams wish to play consecutive away games against opponents in near cities to 

reduce expenses and minimize tiredness of team. 
 

 Teams do not wish to play consecutive away games which need long trip for 

them to prevent tiredness of team. 

In many applications the constraints are classified into hard constraints and soft 

constraints. All hard constraints must be satisfied in a feasible solution, while the soft 

constraints are penalized such that penalties are incurred if the constraints are violated. 

In addition to minimizing the number of violated soft constraints, the objective of a 

sports scheduling problem in our study is to minimize either the number of breaks and 

carry over effect value of a schedule. In the following two sections, we will give more 

detailed information about minimization of breaks and carry-over effect value than 

other constraints.  

 
 
 

3.1. Break Minimization Constraint 
 
 
 

If a team plays two consecutive home matches or two consecutive away 

matches, break emerges. It is one of the most important constraints of sport scheduling 

problem. League organizers demand schedules with minimum number of breaks of all 
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teams as total or balanced number of breaks for all teams. (i.e., schedules in which all 

teams have the same number of breaks) (Ribeiro, 2012). This problem can be presented 

in mathematical model like below. 

For each team and for each pair of consecutive round, a 0-1 variable Bij is defined. Bij = 

1 means that the team i has a break involving the games play at round j and at round j + 

1. These variables are called break variables. For each team there are n-2 break 

variables (Regin, 2001).  

Our objective function is: 

                                              Min ∑i=1..n∑j=1..n-2 Bij                                   (3.1) 

This function provides minimization of total number of breaks of all teams in schedule 

(Regin, 2001). 

 Sports scheduling problems are usually solved by following one of two 

decomposition approaches. 

 First - schedule, then break: Determine each round’s games in advance. After 

that define home-away patterns of teams according to pre-defined schedule. 

 First – break, then schedule: Firstly define all teams’ home-away patterns, 

next assign games to rounds according to these patterns. 

For different scheduling problem sets, these approaches have been studied by 

researchers but break minimization problems are usually taken into consideration by 

researchers who follow one of both of approaches. First study on this subject was by de 

Werra (1980; 1981; 1982; 1988). Later, this context has been discussed by Brouwer et 

al. (2008), Miyashiro et al. (2003), Miyashiro and Matsui (2003) and Post and 

Woeginger (2006). Optimization and constraint programming approaches for break 

minimization have been presented by Regin (2001) and Rasmussen and Trick (2007).   

 
 
 

3.2. Carry-Over Effect Value Minimization Constraint 
 
 
 

Carry-Over Effect generally refers to the possible effect on the performance of 

a team at some stage of a sports tournament due to a specific event that occurred during 

a previous stage in the tournament (MP Kidd, 2010).  We say that a team i gives a 

carry-over effect to a team j, if some other team t's game against team i is followed by 
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a game against team j. For example, if team i is a very strong team, we can easily say 

that team t will be in worse shape to play next round against team j. Because teams, 

which play against strong opponents, will be more tired or may be faced with injuries 

because of making big effort. Thus, team j will be advantageous. Moreover, the carry-

over effect could also be in a strong relationship with psychological form of team. 

When team t loses confidence and morale after a severe loss against the strong team i, 

again to the benefit of their next opponent, team j. The opposite may be true if team i is 

a weak team. The main purpose of the studies on this subject is balancing carry-over 

effect between teams.  

The carry-over effects value minimization problem aims to find a schedule of 

which carry-over effect (COE) value is minimum and this value is one of most 

important indices of quality of round-robin schedule. Definition of COE will be 

presented below. 

It is said that team i gives a carry-over effect to team j if a team plays i in round s then j 

in round s + 1 (s  {1, 2, . . . , n − 1}; regard round n as round 1) (Miyashiro and 

Matsui, 2006). Rounds are considered cyclically. The last round (n-1) is followed by the 

first round and first round may be considered as round n. 

For a given schedule, the carry-over effects matrix C (coe-matrix for short) is a non-

negative matrix whose element cij denotes the number of carry-over effects given by 

team i to team j in the schedule. By its definition, every coe-matrix satisfies the 

following (Miyashiro and Matsui, 2006):  

• The sum of each row is n − 1; 

• The sum of each column is n − 1; 

• Every diagonal element is 0.   

 

T/W 1 2 3 4 5 

1 2 3 5 4 6 

2 1 5 4 6 3 

3 4 1 6 5 2 

4 3 6 2 1 5 

5 6 2 1 3 4 

6 5 4 3 2 1 
 

j/i 1 2 3 4 5 6 

1 0 3 1 1 0 0 

2 0 0 1 0 1 3 

3 1 1 0 1 1 1 

4 0 1 1 0 3 0 

5 3 0 1 0 0 1 

6 1 0 1 3 0 0 
 

(a)                                                                           (b) 

 

Table 3.1. (a) Sample Schedule with 6 Teams          (b) COE Matrix (6x6) of Schedule  
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Our objective function is : 

    min ∑i,j (cij)
2   

(Russell, 1980)                                  (3.2) 

COE value of the schedule in table 3.1 (a) is calculated as below. 

 

∑i,j (cij)
2   

= 5*(3)
2
 + 15*(1)

2
 + 16*(0)

2
 = 60 

 

If all columns of COE matrix would be like 3rd column which is written in bold, 

minimum COE value of round robin tournaments with 6 teams can be calculated as 

n*(n-1)  which can is shown below. 

 

∑i,j (cij)
2   

=  30*(1)
2
 + 6*(0)

2
 = 30 equals to 

n*(n-1) = 6*5=30 

 

A schedule which achieves lowest carry-over effect value is called a “balanced 

schedule”. Russell (1980) proposed a construction algorithm which achieves balanced 

schedule, when the number of teams is power of 2. For other values of n (except n=12), 

Anderson (1999) method achieved the best known results. For 12 teams, best known 

results are by Guedes and Ribeiro (2009), who use heuristic for solving carry over 

effects minimization problem. Trick (2001) developed a constraint programming 

method to prove Russell’s method’s optimality for n=6. Miyashiro and Matsui (2006) 

developed a time-consuming heuristic based on random permutations of the rounds of 

fixtures created by the polygon method (Kirkman, 1847). They reported huge 

computation times as well.  
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CHAPTER 4 
 

 

SOCCER SCHEDULE APPLICATIONS 
 

 

In this chapter, we give an outline of European Soccer Leagues’ scheduling 

applications in real world in first section. Then we introduce current Turkish Super 

League’s scheduling method and problems related to this method in second section. In 

the end, we give brief information about academic studies that present solutions for 

specific soccer leagues. 

 
 

4.1. European Soccer Schedules 
 
 
 

In this section, we give the general information about schedules of top 10 

European Soccer Leagues according to UEFA country coefficients of 2012/2013 season 

(“Country Coefficients 2012/13”, 2013). This ranking assessment is derived from 

participating national clubs’ success in European Champions League and European 

League for the last 5 years.  When we look at these competitions for 2012/2013 season, 

the number of teams of schedules varies between 16 (Ukraine, Russia and Portugal) and 

20 (Spain, England, Italy and France). There is not an extra rule for larger or more 

populated countries have more teams in their leagues. For example, Russian League has 

fewer teams than Turkish League. No competition is played with an odd number of 

teams.  However, we can easily detect that top ranking leagues according to the UEFA 

country coefficients have more teams than other leagues.   

   These 10 leagues are organized in a double round robin schedule. In some 

competitions play-off stage follows the regular stage of the competition. No play-off 

schedule can be decided in the start of the season, because teams of play-off are 

determined in accordance with their regular stage ranking of the league. Play-offs can 

determine which team will be champion, which team will qualify for European 

Tournaments (Euro Cup or Champions League), which team will be relegated or which 

team will promote. If there is at least one team in play-off stage from lower league it is 

termed as Promotion Play-Off Stage, although there are teams from Premier Division 

to avoid relegation. If all teams in play-off stage are from Premier Division and play to 
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avoid relegation, we defined it as Relegation Play-Off Stage.  In the Table 4.1., it can 

be seen that 2 (Germany, Netherlands) of 10 leagues have play-off stage after regular 

one. In Germany, promotion play-off stage is played to promote Bundesliga. In 

Netherlands, the teams ranked between 6 and 9 take part in a play-off to deserve final 

Euro Cup ticket as well as teams ranked 16 and 17, which take part in promotion play-

off with the teams from lower division to avoid relegation. Thus, number of relegation 

teams changes in Germany and Netherlands according to results of play-off stage. 

 

Country N Format Play- Off Stage Rounds # of 

Rel. Title Europe Rel. Prom. 

Spain 20 2RR No No No No 38 3 

England 20 2RR No No No No 38 3 

Germany 18 2RR No  No No Yes 34 2-3 

Italy 20 2RR No No No No 34 3 

France 20 2RR No No No No 34 3 

Portugal 16 2RR No No No No 30 2 

Ukraine 16 2RR No No No No 30 2 

Russia 16 2RR No No No No 30 2 

Netherlands 18 2RR No Yes No Yes 34-40 1-3 

Turkey 18 2RR No No No No 34 3 

 

Table 4.1. UEFA Top Ranking 10 Leagues 

 

When we focus on the round-robin stages of these leagues, we can see many differences 

in their applications. Most of those leagues are divided into 2 single round-robin 

tournaments. However, we can see in the 3rd column of Table 4.3 that English Premier 

League doesn’t have 2 equal parts. It means that any team in the league, which has n 

teams, doesn’t play with every other team once in first (n-1) rounds of the season. 1st 

column in same table shows that most of the top leagues in Europe are not organized in 

canonical way which is mentioned in Chapter 2. In the recent past, most of the 

competitions’ organization was canonical but in last decade this situation has been 

changing, after mathematical methods have started to play an important role in 

scheduling. 4
th

 column of the Table 4.1 illustrates symmetrical way of leagues and we 
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can see that there are different symmetrical schemes applied in these top leagues which 

are shown in the Table 4.2 (Goossens and Spieksma, 2012). Table 4.3 show that 2 of 

these leagues (England and Netherlands) don’t apply any symmetrical scheme. Because 

of not having equal parts, it is impossible for England to apply any symmetrical scheme. 

Only Dutch League is not symmetrical, although having 2 equal parts.  

 

Mirroring 1 2 3 ... n-1 1 2 3 ... n-2 n-1 

French 1 2 3 ... n-1 2 3 4 ... n-1 1 

English 1 2 3 ... n-1 n-1 1 2 ... n-3 n-2 

Inverted 1 2 3 ... n-1 n-1 n-2 n-3 ... 2 1 

 

Table 4.2. Symmetry Schemes  

(Source: Goossens and Spieksma, 2012) 

 

Last column in Table 4.3 presents how many rounds league has at least between same 

opponents. These differences vary from one league to another league related to its 

symmetrical scheme. If any of these leagues would apply English or Inverted scheme, 

this value would be 1. However they don’t apply one of these 2 schemes. Thus, minimal 

round difference emerges in asymmetrical leagues (England, Netherlands). 

 

Country Canonical Equal Parts Symmetry Round Diff.  

Spain Yes Yes Mirror 19 

England No No None 6 

Germany No Yes Mirror 17 

Italy No Yes Mirror 19 

France No Yes French 18 

Portugal No Yes Mirror 15 

Ukraine Yes Yes Mirror 15 

Russia Yes Yes French 14 

Netherlands No Yes None 9 

Turkey Yes Yes Mirror 17 

 

Table 4.3. UEFA Top Ranking 10 Leagues 
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Note: Round differences of England and Netherlands are taken by Goossens and 

Spieksma (2012) 

Table 4.4. shows the values of our focus points of sports scheduling problem which are 

“break minimization” and “COE value minimization”. There is only one common point 

in these leagues that teams should play maximum 2 home or 2 away consecutive 

matches. Other attributes of these leagues vary in the Table 4.4. 3rd column is the 

number of breaks which teams of league have. Leagues (Spain, Ukraine, Russia and 

Turkey), which apply canonical schedules achieve break minimization. It is easier to 

schedule all teams which haven’t break at first round and at last round in fixtures which 

are organized in canonical way and have mirror scheme. The 4
th

 column and the 5
th

 

column show which leagues have teams having break at first and at the end. Most of the 

leagues prefer not to have breaks beginning and finishing rounds of season. Although 

leagues with canonical schedules achieve break minimization, it fails in carry-over 

effect value minimization and maximizes this value. Because of highness of this value, 

fairness of tournament cannot be achieved.  Therefore, 4 of 5 top league schedules are 

not organized in canonical way.  

 

Country Max. Series Per Team Begin End COE Value 

Spain 2 0-3 No No 5548 

England 2 5-8 No No 888 

Germany 2 0-3 No No 1100 

Italy 2 0-4 No No 884 

France 2   2 No Yes 1278 

Portugal 2 0-3 No No 650 

Ukraine 2 0-3 Yes No 2580 

Russia 2   2 Yes Yes 2580 

Netherlands 2 4-9 No No 668 

Turkey 2 0-3 No No 3876 

 

Table 4.4. UEFA Top Ranking 10 Leagues 

 

Note:  Most of the data above are taken from the article by Goossens and Spieksma 

(2012) including countries Spain, England, Germany, Italy, France, Russia, Netherlands 

and Turkey.  
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4.2. Scheduling in Turkish League 
 
 
 

In this section, we focus on Turkish Soccer League scheduling system and we 

will try to give its specifications in more detail. In previous section, general attributes of 

Turkish Soccer League have been depicted in tables while presenting European top 

league’s attributes. 

Turkish League has 18 teams. The scheduling of these teams is organized in 

2RR format without play-off stage. Only in 2011-2012 season, play-off stage is tried to 

increase enthusiasm which was minimized during the case of match-fixing attempts. 

However, Turkish Football Federation gave up this application after this trial season.    

2012 / 2013 season league organization was done as it was before 2011 / 2012 

season. There is a pre-defined match schedule with numbers (1...18). This is called as 

Basic Match Schedule (BMS).  This schedule determines the matches (home-away 

assignments and opponents) in each round. This schedule is a canonical schedule which 

meets minimization of break and mirroring requirements.  Table 4.5 shows the first 6 

rounds of the season.  

 

1 2 3 4 5 6 

1-2 8-5 13-18 8-1 5-14 18-7 

3-4 2-17 17-15 12-5 11-15 12-1 

5-6 18-15 9-14 14-7 9-18 8-4 

7-8 16-13 11-16 15-13 1-10 16-5 

9-10 4-1 5-10 6-2 17-13 15-9 

11-12 12-9 3-8 16-9 2-8 14-3 

13-14 6-3 2-4 4-17 3-12 6-17 

15-16 7-10 7-12 10-3 7-16 13-11 

17-18 14-11 1-6 18-11 4-6 10-2 

 

Table 4.5. BMS of Turkish League 

 

 Before the season kicks off, 1
st
 round of the season is determined by assigning 

teams to number according to draws. This draw is not purely random.  For example in 

2010/2011 season, top teams ( Fenerbahçe, Galatasaray and Beşiktaş) can only assign to 
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numbers (1,10 and 18) to meet some constraints such as preventing matches between 

these teams in first 4 rounds of the season (Uğur Meleke, 25th July 2010).    

 In 2012/2013 season, Turkish Football Federation gave up preventing to 

schedule matches between top teams in first 4 rounds. However, teams which play their 

home matches in the European part of Istanbul ( Beşiktaş, Galatasaray, Kasımpaşa and 

İstanbul Büyükşehir Belediyespor) can only assign to number set (7,8,9 and 10) which 

include complementary patterns to meet security and traffic constraints. 

In BMS, teams assigned to numbers (excluding number 17) follow same 

sequence of opponents.  This sequence can be seen easily, if we take one team (number 

13) as a reference.  When we look at 1st round matches of the season and follow the 

numbers clockwise, we can find team 13’s next rounds’ opponents sequentially. Team 

13’s opponent set is sequentially {14, 16, 18, 15, 17, 11, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10, 12, 

14}.  Number 17 has a free fixture which means it has not same sequence as other 

teams. Thus, while following the clockwise opponents’ of number 13, we pass the 

number 17 after 18. We put number 17 as opponent sequence, when the clockwise 

number list comes to referenced number. Uğur Meleke illustrated this sequence by 

showing Gençlerbirliği’s 2012/2013 season fixture in his article in Milliyet newspaper 

(Fikstür Çekimi Adil Miydi?, 19th July 2012). 

 
 

4.3. Real-Life Scheduling Applications by Researchers 
 
 
 

In this section, we give the general information about the academic studies, 

which are applied in specific leagues. In spite of large numbers of papers on league 

scheduling, there are only a few papers on specific leagues in Europe and South 

America. 

Bartsch et. al (2006) presented heuristics and branch and bound to solve the 

scheduling problems of German Football Federation and Austrian Football Federation. 

German Football Federation only once used this approach but Austrian Football 

Federation applied this paper’s solution for their league many times in practice.  Della 

Croce and Oliveri (2006) applied integer programming to schedule Italian league, which 

has requirements such as conditions on home-away matches and additional cable tv 

requirements. However, their contact with Italian Football Federation is not tight for 

application in real world. Kendall (2008) presented a study on minimization of the 
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travel distances by English clubs over Christmas and New Year Period. Goossens and 

Spieksma (2009) presented mixed integer programming model to schedule Belgian First 

Division 2006/2007 season and next season they applied Two-Phased Approach, which 

is a variant of  ‘first break and then schedule’ approach (Rasmussen and Trick, 2008). 

The schedules were used in practice for mentioned seasons.  Rasmussen (2008) 

presented an Integer Programming model which uses logic-based Benders 

decomposition and column generation to solve a triple round robin tournament for the 

Danish football league. 

Duran et al. (2007) proposed an Integer Programming method as well to meet 

specific constraints of Chilean Soccer League, such as television station based on 

geography or strength group of teams.  Since 2005, Chilean Soccer Association used 

this method with some improvements. Ribeiro and Urrutia (2007; 2009; 2010) 

presented an Integer Programming solution to schedule Brazilian league to meet break 

minimization and TV broadcasting revenue maximization constraints. Ribeiro and 

Urrutia (2011) reported that approach has been used in practice for 2009, 2010 and 2011 

seasons of the tournament. Lastly in Honduras, an Integer Programming solution was 

presented by Fiallos et al. (2010) to schedule Honduras League which is played by 10 

teams. 
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CHAPTER 5 
 

 

MATHEMATICAL PROGRAMMING TECHNIQUES 
 

 

Mathematical programming is an optimization model based on selecting the 

best alternative from a set of available options with the utilization of computer 

programs. It relies on probability theory and mathematical models make predictions 

about future events. In this chapter, we give an outline of mathematical techniques 

(Integer Programming and Constraint Programming) used in our study for scheduling 

the Turkish Soccer League.  

 
 

5.1. Integer Programming 
 
 
 

 Integer Programming is a mathematical optimization and feasibility approach 

which consists of integer variables. It is a kind of Linear Programming method thus it 

refers to the Integer Linear Programming (ILP) in many studies. 

Integer Programming (IP) is an efficient instrument to optimize and solve sports 

scheduling problems. Most of the Round Robin Tournaments problems are solved using 

applications of Integer Programming because formulation of Single Round Robin 

Tournament Problem is easier.  

If n and r sequentially denote the number of teams and number of rounds in a 

Round Robin Tournament, following variable definitions are used by the majority of 

models: 

xijt  = { 
1, If team i plays at home against team j in round t, 

0, otherwise  

For teams i,j = 1, ..., n ( i ≠ j )  and rounds t = 1,...,r. The Constraints for Double Round 

Robin tournament can be formulated as below. (Kendall et al., 2010) 

 

                                           R 

(5.1) ∑ xijt  = 1,  ∀1 ≤ i, j ≤ n, i ≠ j  , 
                                          t=1 
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                                          N 

(5.2) ∑ xijt  ≤ 1,  ∀1 ≤ i ≤ n, 1 ≤ t ≤ r 

                                          j=1 

 

The first constraint guarantees that every team must play every other team at home. The 

second ensures that every team plays once in each round. 

There is variety of Integer Programming methods applied to sports scheduling 

problems. These methods are used to solve real league scheduling applications likewise 

to solve some theoretical problems of scheduling such as break minimization or 

traveling distance minimization. In the next part, we will give brief information about 

these methods for better understanding what they are. 

 
 

5.1.1. Branch and Bound Algorithm 
 
 
 

Branch and Bound is a general algorithm, which is a useful tool for many kinds 

of optimization problems. Although this technique is not utilized only for integer 

programming, it is counted as the backbone of the integer programming. Majority of the 

effective solutions for integer programming are developed based on this framework. 

This method’s basic principle is divide and conquer which means firstly partitioning 

total set of feasible solutions into smaller solution subsets and then evaluating these 

smaller subsets until best solution is found.    

Typically we can view this algorithm as a tree search. Initially, the tree has a 

single node, called as root node. Other nodes must be derived by branching of the root 

node during search. Each of the nodes has an associated Linear Programming (LP) 

problem. After solution of each associated LP problem, one of the four following 

possible situations emerge (Rasmussen, 2006). 

i. The problem is infeasible 

ii. The problem is feasible with an integer solution 

iii. The problem is feasible with fractional solution and a solution value is 

worse than the current best integer solution 

iv.  The problem is feasible with fractional solution and a solution value is 

better than the current best integer solution 

 If the first or third situation emerges, we can omit the node without further 

evaluation.  
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 If the second situation emerges, new solution value and the current best solution 

value are compared. If the new solution value is better than the current best one, 

the new one is stored as the current best one; else this node can be omitted as 

first and third situations.   

 If the fourth situation emerges, suitable integer variable to fractional value is 

selected and branching continues on the value of this variable. 

The algorithm progresses from node to node. When all nodes are visited, we either find 

the optimal solution or show that the problem is infeasible. For clarifying the 

understanding of this method, an example is given below. 

Example: Consider the following problem (“Solving Integer Programming”, n.d.). 

  Maximize Z = 9x1 + 5x2 + 6x3 + 4x4 

Such that   

 6x1 + 3x2 + 5x3 + 2x4 ≤ 10 ,  

 x3 +x4 ≤ 1 ,    −x1 +x3 ≤ 0 , 

−x2 +x4 ≤ 0,     xi ≤ 1 for 1 ≤ i ≤ 4    and   xi ≥ 0 

The general application of this algorithm is depicted in Figure 5.1 step by step to show 

detailed calculations of every node’s Linear Programming problem itself. Finally we 

can see that the best value for Z is 14 with x1 = 1, x2 = 1 , x3 = 0 and x4 = 0. 

 

 

Figure 5.1. Sample Branch and Bound Solution 

(Source: Solving Integer Programming, n.d.) 
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5.1.2. Branch and Cut Algorithm 
 
 
 

Branch and Cut is an exact algorithm, which is a combination of branch and 

bound algorithm and cutting plane method. This algorithm facilitates the solution of 

the associated LP problems (see 5.1.1) of branch and bound algorithm in nodes by 

cutting off the infeasible solution area for IP problem. 

Cutting Plane is a mathematical technique to reduce the bounds of solution 

space. These bounds are held by adding cuts to the problem. A cut is a valid inequality 

that eliminates some of the LP feasible region. A valid inequality is a constraint that 

doesn’t eliminate any feasible solution for IP problems. Cutting Plane approach is not 

adequate to solve general IP problem. Thus, this method requires branching, which 

results in a branch and cut algorithm. The speed of branch and bound algorithm 

increases significantly with the addition of cutting plane approach. Because, cutting 

planes provide considerable reduction in the size of the search tree. In order to make 

things clear for this method, an example is given below. 

Example: Consider the following problem. 
 

  Maximize Z = 3x + 4y (“Cutting Plane Techniques”, n.d.) 

Such that   

5x + 8y ≤ 24,  x,y ≥  0 and integer 

Solution:  

Step 1 : 

      

 

Figure 5.2. A Graph of LP Solution of the Problem 

(Source: Cutting Plane Techniques, n.d.) 
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Figure 5.2 shows the feasible solution region for the problem in terms of given 

constraints. Consequently, the optimal LP solution set is for x, y, z is (4. 8, 0, 14.4). 

Step 2:  

  We add a valid inequality to improve the quality of bounds by making the LP 

feasible region closer to IP feasible region. 

New constraint:     x ≤ 4 

      

 

Figure 5.3. A Graph of LP Solution of the Problem 

(Source: Cutting Plane Techniques, n.d.) 

 

Figure 5.3 shows the feasible solution region for the problem in terms of given 

constraints and added constraint. The optimal LP solution set is for x, y, z is (4, 0.5, 14) 

sequentially. 

Step 3:  

  We add one more valid inequality to improve the quality of bounds by making 

the LP feasible region closer IP feasible region. 

New constraint:     x + y ≤ 4 

Figure 5.4 shows the feasible solution region for the problem in terms of given 

constraints and newly added constraint. The optimal LP solution set is for x, y, z is (8/3, 

4 /3, 13 1/3) sequentially. This bound is enough to establish that x = 3 and y = 1 is 

optimal for the IP. As a result, the solution set for x, y, z is (3, 1, 13). 
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Figure 5.4. A Graph of LP Solution of the Problem 

(Source: Cutting Plane Techniques, n.d.) 
 
 

5.1.3. Benders Decomposition Approach   
 
 
 

Benders Decomposition is an optimization model proposed by Benders (1962). 

This model works by decomposing the problem into two problems, namely the master 

problem and the sub problem. This decomposition is done by distinguishing primary 

variables from secondary variables. Primary variables consist of integer variables where 

secondary variables are the rest of the variables. Initially, the algorithm searches over 

the primary variables to solve the master problem. Next, it searches for a solution of sub 

problem over secondary variables for each trial value of master problem. If a possible 

solution is infeasible or suboptimal, the algorithm finds out why and adds a new 

constraint to eliminate possible violating variable values for the same reason. Added 

constraint is defined as Benders Cut. This cut enables learning from mistakes by 

generating a new row to the LP equation. After addition of Benders Cut, the master 

problem is resolved and this procedure is iterated until an optimum value is found 

(Rasmussen, 2006). 
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5.1.4. Branch and Price Algorithm 
 
 
 

Branch and Price is an optimization algorithm which is an integration of a 

branch and bound algorithm and column generation approach to solve large-scale 

integer programming problems. In this algorithm, additional columns are added to 

Linear Programming problems by adding new variables to the equations, in contrast to 

Benders and Branch and Cut approaches.  

 This algorithm also partitions the problem into sub problems, which are defined 

as Restricted Master Problem and Pricing Problem. At the root node of the 

branching tree, restricted master problem is solved and most of the columns are 

removed. Next, pricing problem is used to improve existing columns because restricted 

master problem solution may not be optimal. If there are improving columns, these 

columns are added to the restricted master problem which will be optimized again in the 

next iteration. This procedure iterates until no profitable columns are found in pricing 

problem. When all of optimized columns are found for a node, the algorithm proceeds 

to the new node as described in branch and bound algorithm and problem 

decomposition is iterated for each node (Rasmussen, 2006).  

 
 

5.2. Constraint Programming 
 
 
 

Constraint Programming (CP) is an efficient solution technique to solve hard 

combinatorial optimization problems such as planning and scheduling. This technique 

emerged as a result of the occurrence of constraints in other research areas including 

Artificial Intelligence, Programming Languages, Symbolic Computing and 

Computational Logic. Constraints have been used systematically since 1980s. In 

constraint programming, the working process of the computational system bases on 

constraints described in chapter 3 and the idea of this method is satisfying those 

constraints.  

Searching for a solution to meet the constraints is defined as Constraint 

Satisfaction Problem (CSP). It is the problem which is modeled by using  

 A finite set of variables, 

 A finite domain for each variable, 

 A finite set of constraints. 
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Each constraint adds restriction to the solution set for variables to take. A 

solution of CSP provides assignment to each variable without violating any of the 

constraints. It can be based on finding any solution or an optimum solution in terms of 

some criteria or exploiting all possible solutions by searching. This method is similar to 

IP approach but all of the constraints have to be solved using LP methodology in IP 

approach. CP problems can be formulated by intuitive models.  We will present basic 

components of CSP and some of the algorithms working in this manner in next section.  

 
 

5.2.1. Systematic Search Algorithm 
 
 
 
 Systematic Search means trying every possible candidate for a solution. There 

are many search algorithms to solve CSPs. Although these algorithms are not always 

efficient because of time complexity, they introduce basic algorithms which provide 

infrastructure for advanced algorithms.  

 

Generate and Test (GT) Algorithm  

Generate and Test Algorithm is the most straightforward constraint satisfaction 

algorithm which ensures to find a solution if there is any. It is an exhaustive search of 

the problem space by exploring all possible combination of variable assignments. The 

number of combinations is the size of the Cartesian product of all the variable domains. 

The workflow of this algorithm is given below. 

1) Generation of a possible solution set by assigning values for all variables 

2) Testing of constraints to check for violations. 

If testing is successful, it means that a solution is found; otherwise another solution set 

is generated. This approach is time consuming, because there can be many wrong 

assignments of values which can be detected in the testing phase. Late inconsistency 

detection significantly slows down the performance. Thus, this algorithm is 

theoretically useful in simple problem domains (Bartak, 1995). 

 

Backtracking (BT) Algorithm  

 Backtracking is a kind of systematic search algorithm which merges the 

generation and test phases of GT algorithm. It is the tree-search algorithm like Branch 

and Bound algorithm where variables are instantiated sequentially. Despite of this 

similarity, for each node, values are assigned to variables consistently with the other 
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variables assigned before and validity of constraints is checked in this method. The size 

of the partial solution extends after every node processed until any inconsistency occurs 

or any feasible solution is obtained. If an assignment for any node violates any of the 

constraints, backtracking is done to the previous node. Backtracking to previous node 

iterates until a node that has available alternatives is found. When a node is found, 

assignments of other variables are triggered again originating from that node. Whenever 

a violation occurs in partial assignment, elimination of subspace from the Cartesian 

product of all variable domains is provided by backtracking. This property of 

backtracking provides crucial time saving to find a feasible solution compared to GT 

algorithm. 

 Although this algorithm is more efficient than GT algorithm, it suffers several 

disadvantages which are discussed as follows: 

1. Thrashing: Thrashing means having no identification for conflicting values. 

This situation causes repeating failures due to same reasons. Clearly, it is 

instantiating variables to values which are infeasible for same reason. This 

failure can be avoided by backjumping method where backtracking is done 

directly to the variable that caused the failure. (Bartak, 1995) 

2. Redundant Work: Redundant Work means having no memory for conflicting 

instantiation for variables. Therefore, same conflicting values can be assigned to 

same variables in different branches of the tree. 

3. Late Conflict Detection: Inconsistency can be detected only after assigning 

values to variables. There is not intuition for conflicting values.  This drawback 

can be avoided by applying forward checking consistency techniques to 

check the possible conflicts. (Haralick and Elliott, 1980). 

 

Backjumping (BJ) Algorithm  

 Backjumping is a technique which eliminates infeasible search space. It is 

similar to BT algorithm but it allows going back more than one node.  When BJ 

algorithm detects violation, it analyzes that which variables’ assignments are conflicting 

for this violation. After the detection of those variables, BJ algorithm backtracks to the 

most recent conflicting variable (Gaschnig, 1979). Figure 5.5 shows the process 

difference of BT and BJ algorithms. 
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  Backtracking Algorithm           Backjumping Algorithm 

 

Figure 5.5. Graphs of Backtracking and Backjumping Algorithms  

(Source: Wikipedia) 

 

Backmarking (BM) Algorithm  

 Backmarking is also a variant of BT technique which is beneficial to reduce the 

number of checks. It remembers conflicting instantiation for variables. Thus, it avoids 

rechecking of same constraints with same conflicting variables (Haralick and Elliott, 

1980). 

 
 

5.2.2. Consistency 
 
 
 
 If all assignments of variables can compose a part of a feasible solution for all 

constraints, these set of constraints are named as consistent. Thus, none of assignment 

for any variable violates any constraint and the variables can be instantiated without 

backtracking. However, obtaining such a degree is very hard; however search space for 

a problem solution can be reduced using some techniques which are defined as 

Consistency Techniques.  

 Consistency Techniques provide sooner detection of inconsistency between 

constraints. The following example illustrates the basic idea of the consistency 

techniques. 

Example: Consider the following problem.  

  Find suitable solution sets for integer variables (x, y)  

Such that   

x < y,    6 ≤ x ≤ 10,   2 ≤ y ≤ 8  
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Solution: X’s domain ranges from 6 to 10 and y’s domain ranges from 2 to 8. We can 

prune search space by contracting domains of x and y which cannot be a part of 

consistent solutions for a constraint x < y. New domains are below.  

x = {6, 7}, y = {7, 8} => Many inconsistent values are removed. However, all of 

remaining combinations of variables are not consistent. (For example x = 7 and y = 7 is 

not consistent.)  

In next part, we present some of well-known consistency degrees which can be obtained 

using consistency techniques by removing the inconsistent values from the variables’ 

domains in the constraint network. Before presenting consistency degrees, let us give 

the definition of constraint graph. Constraint graph is used to show the links between 

constraints in a constraint satisfaction problem (CSP).   

Constraint graph for binary CSP problem have: 

 Nodes representing variables 

 Links representing the constraints 

 

Node Consistency 

 It is the simplest form of consistency level. A variable is node consistent if all 

values within its domain are consistent with the all unary constraints on the variable. A 

CSP is node consistent if and only if all variables are node consistent. 

Example: Consider the following variables if they are node consistent. DX and DY are 

domains of variables (x, y) and CX and CY are unary constraints on these variables. 

DX = {1, 2, 3, 4, 5},            DY= {-1, 1, 2}  

CX = x < 6,                  CY= y is a positive integer variable 

Answer:  x is node consistent because of all of values in its domain meets CX constraint, 

however y is not node consistent because -1 is not a positive integer value and violates 

CY constraint. 

 

Arc Consistency  

 If all values which are inconsistent with binary constraints are removed, these 

variables are arc-consistent. Clearly, the arc (Vi, Vj) is arc-consistent if and only if for 

each value x from the domain Di there exists a value y in the domain Dj such that the 

assignment Vi =x and Vj = y satisfies all the binary constraints on Vi, Vj. A CSP is arc-

consistent if and only if every arc in its constraint graph is arc-consistent (Bartak, 1995).  

 

http://en.wikipedia.org/wiki/Constraint_satisfaction_problem
http://glossary.computing.society.informs.org/ver2/mpgwiki/index.php?title=Node_consistency&1=Consistency
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Figure 5.6. Sample Arc-consistent Graph 

 

 Figure 5.6 depicts the arc-consistent CSP. Although, arc-consistency enables 

removing many inconsistencies from constraint graph, there may be no feasible solution 

for domains of variables which are already arc-consistent. Figure 5.7 shows the arc-

consistent CSP which does not have any solution meeting all constraints. 

 

          

 

                          Figure 5.7. Sample Arc-consistent Graph Having No Solution. 

 

K-Consistency  

 Figure 5.7 shows that although arc-consistency provides strong consistency, it is 

not sometimes enough to solve CSPs immediately without search. Thus, stronger 

consistency degree is needed to solve some problems.  

A CSP is K-Consistent if and only if given any consistent assignment of K-1 

variables; there exists an assignment of any K
th

 variable such that the K values taken 

together satisfy all of the constraints among the K variables. A CSP is strongly K-

consistent if it is J-consistent for all J<=K. Because of obtaining such a strong 

consistency degree generally requires huge exponential time, backtracking cannot be 

avoided to solve CSPs with great number of variables.    



 

31 
 

5.2.3. Constraint Propagation 
 
 
 
 In the previous parts of Constraint Programming section, systematic search 

algorithms and consistency techniques were introduced. Both of these techniques can be 

used to solve CSPs individually but combinations of them are preferred because of their 

own drawbacks in terms of efficiency. The technique using combinations of systematic 

search and consistency are defined as Constraint Propagation. In this technique, 

consistency checks are embedded in the search algorithm. 

At each node in search algorithm, domains of variables are reduced using 

consistency techniques. These consistency techniques can be applied after instantiating 

a variable to provide consistency for already instantiated variables or to prevent possible 

conflicts of variables which are not instantiated yet. In the following section, general 

working mechanisms of these algorithms will be presented.   

Backtracking (BT) 

 Backtracking algorithm was introduced in detail in section 5.2.1, thus we only 

give this algorithm’s contribution to the consistency check in this section briefly. BT 

provides consistency among already instantiated variables by checking validity of 

constraints considering the partial instantiation. Backmarking and Backjumping 

introduced in 5.2.1 are intelligent backtracking algorithms. 

Forward Checking (FC) 

 Forward Checking is an algorithm which detects possible future conflicts 

between variables before an inconsistent situation emerges. It is provided by re-

arranging future variables’ domains using consistency check between current variable 

and future variables, after a variable is instantiated. If any of the future variables’ 

domains becomes empty after instantiating, we can easily deduce that current branch of 

the search tree will lead to inconsistency and this branch can be pruned so earlier than 

emergency of any inconsistency in backtracking. Although this operation requires more 

work than backtracking after each assignment of variable, it is expected to reduce total 

amount of search time by discarding important amount of branches before failures 

(Haralick and Elliott, 1980). 
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Look Ahead (LA) 

In forward checking, restricted arc consistency is obtained because of checking 

consistencies between current instantiated variable and a future variable only. However, 

Look Ahead algorithm detects possible conflicts between future variables. Look Ahead 

prunes more amounts of search tree branches and reduces attempts but it can require 

much more time than forward checking to provide consistency between future variables. 

Thus, forward checking and backtracking are widely used to solve CSPs in applications 

(Haralick and Elliott, 1980). 

 
 

5.2.4. Variable and Value Orders 
 
 
 
 So far, we have presented some algorithms regarding determination of variables 

and their domains. In addition to these, efficiency of tree search algorithm is also 

directly related to the ordering of variables and values of their domains. If a right value 

is chosen for each node, the solution can be found without any backtracking. In this 

section, we introduce the importance of orderings (Bartak, 1995). 

Variable Ordering 

Variable ordering has an important impact on the complexity of backtracking 

search. It can be actualized in 2-different ways: 

1. Static Ordering: Order of the variables is determined before the search and it is 

not changed during the search. 

2. Dynamic Ordering: Order of variables change during the search depending on 

the recent state of search. 

Dynamic ordering is not useful for all search algorithms, because ordering after 

every instantiation of variable can be time consuming. Thus, dynamic ordering can be 

used in algorithms in which branches are reduced like the search algorithm using 

forward check.  The basic notion in variable ordering is Fail-First principle which 

selects the variable first whose instantiation will lead to a failure. Fail-First principle 

gives these points priorities for ordering the variables. 

 Prefers variables with smaller domain.  

 Prefers most constrained variables. 

 Prefers variables with more constraints than previous variables. 
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Value Ordering 

 When a variable is selected to be assigned a value from its domain, it is an 

important question that which particular value of domain will most likely lead to a 

solution. For decreasing the solution time, value ordering is used and basic notion of 

this ordering is Succeed-First principle which likely leads to a solution. Succeed-First 

principle gives these points priorities to order variables. 

 Prefers values resulting in less domain reduction. 

 Prefers values that can simplify the problem. 
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CHAPTER 6 
 

 

SCHEDULING APPROACH FOR THE TURKISH 

SOCCER LEAGUE 
 

 

 Sport scheduling problems are generally solved using decomposition approaches 

in other leagues. This approach is based on dividing main problem into sub-problems 

which are solved sequentially. Some studies provide solutions using first schedule and 

then break approach, however some of them use first break and then schedule 

approach. First schedule and then break approach follows the procedure in which 

games are initially assigned to rounds before home-away pattern regulations of teams, 

in contrast to first break and then schedule approach. (Kendall et. al, 2010)  

In Turkey, soccer league is scheduled using predefined match schedule which is 

organized in canonical 2RR league form. Although current schedule system provides 

break minimization and complementary pattern sets for teams sharing same stadiums, it 

fails in carry-over effect issue by having maximum COE value with 18 teams. The idea 

of this study is decreasing COE value of schedule in addition to minimizing breaks, and 

providing complementary pattern sets for teams sharing stadiums. Therefore, our 

schedule firstly should guarantee to meet the hard constraints which are already met in 

current schedule system. As a secondary goal, it should decrease COE value. We 

preferred to study on scheduling Turkish Soccer League using decomposition approach 

like the majority of other leagues, because we have constraints in which some of them 

are critical and some of them have less importance.   

Our solution procedure is based on a variant of first break and then schedule 

approach (Rasmussen and Trick 2008), because constraints related to patterns is more 

important in this approach. We also organized our solution procedure based on 1RR 

tournament for even number of teams because current 2RR schedule in Turkey is 

mirrored and we can easily deduce the 2
nd

 round robin schedule by reversing home-

away teams of the games. We divide solution procedure in 5 steps which are listed 

below, 

1. Generate patterns having minimum breaks, 

2. Find a feasible pattern set consisting of generated patterns, 

3. Find a suitable timetable for selected pattern set, 
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4. Calculate COE value of the timetable and compare it with the current best value, 

5. Assign teams to patterns. 

Our solution procedure consists of these steps and each of them is solved using 

different mathematical methods including integer programming and constraint 

programming. We now describe each step with an emphasis on how it is used for the 

Turkish Soccer League in our method. 

 
 

6.1. Pattern Generation with Minimum Breaks 
 
 
 

Break minimization is one of the crucial constraints which must not be violated 

in our method. 1
st
 column of the Table 4.4 shows that breaks have maximum 2 

consecutive home or away matches. Obviously, any team cannot play more than 2 

consecutive home or away matches. When we look at 1
st
 column the same table, current 

Turkish League Basic Match Schedule has patterns which have maximum 3 breaks for a 

34 round 2RR tournament. Thus, each pattern for 1RR should have maximum 1 break 

to prevent exceeding 3 breaks. Although we give chance to a user for determining 

maximum number of breaks for 1RR by using a variable for this purpose in our 

program, maximum number of consecutive home or away matches for break occurrence 

is assigned to 2 by default.  

To define the patterns for n teams (where n is an even number) and rounds                  

t = 1,...,n-1, the constraints for Single Round Robin tournament can be formulated by 

integer programming as below.  

Problem 1: Generating patterns consisting of binary variables (x1, x2.., xn-1) having 

less number of breaks than 2.  

Solution: Let yt be the binary variable for the break occurrence in round t and k be the 

variable for total number of breaks for a pattern and let z be the maximum number of 

breaks for a pattern.    

Such that   

∀ xt  {0, 1} ,  y  {0, 1},  z=1, 

xt  = { 
1, if pattern has home match at round t , 

0, if pattern has away match at round t  

yt  = { 
1, if pattern has consecutive home or away matches in rounds t and t+1 

0, Else 
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                                      n-1 

(6.1) 0 < ∑ xt  + xt+1  + xt+2 < 3,  ∀ t+2≤ n-1 
                                      t=1 

       
                                                          n-2 

(6.2) ∑ yt  < z+1 

                                                          t=1 

 

The first set of constraints ensures that a pattern has maximum 2 consecutive 

home or away matches and the second set ensures that a pattern has maximum 1 break, 

when z =1. We solved this IP problem using Branch and Bound approach. 

 

  

  

 

Figure 6.1.Pattern Generation Search Tree for 6-Team-League Using Branch and Bound 

 

Figure 6.1 shows two Branch and Bound search trees for league with 6 teams. 

First tree is the tree whose first round is away game, in contrast to the second one. We 

use depth-first search to generate all of the suitable patterns meeting constraints. As a 

nature of Branch and Bound technique, nodes are derived by branching of the root node 

as search proceeds. x1 is the root node for both trees. After branching, each node has a 

problem modeled with IP and consisting of the first and the second constraints. If node 

is feasible for these constraints, search proceeds until all nodes are visited and checked 

for constraints. In figure 6.1, numbers in red letter show the infeasible nodes to solve IP 

and numbers in green letter show the nodes which are the last nodes of the solution sets 

(desired patterns).  We enumerate these patterns, after generation of each desired one. 
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Table 6.1 shows all of the suitable patterns for 6 teams with at most one break below. 

The maximum count of suitable patterns for n team with at most one break can be 

calculated with the formulas in the following.  

   
# of Suitable Patterns without break    =           2 

 
# of Suitable Patterns With 1- Break    =   2  *   (n-2) 

    + 
# of Suitable Patterns With 1-Break At Most =      2 *    (n-1) 

 

Maximum n-2 different patterns can be generated with 1-break occurrence for 

away matches. The same situation is valid for 1-break occurrence for home matches as 

well. Intrinsically maximum 2 different patterns can be generated without any break. 

When we carefully look at table 6.1 below, we can easily notice that complementary 

patterns are lined up in inverted order.  For example, first and last generated patterns are 

complementary patterns.  

 

  

 

Table 6.1. All Feasible Patterns for a 6 Teamed League Having 1-Break at Most 

 
 

6.2. Feasible Pattern Set Generation  
 
 
 

Creating an appropriate schedule for a round-robin tournament with pattern 

assignment is a hard problem for sports scheduling. We need to select patterns, which 

can be completed into a schedule, for pattern set. Such a pattern set is named as feasible 

pattern set.  Feasible pattern set choice is the key phase of the sports scheduling. 

Although the fact is that, exact characterization of the feasible pattern set is not known 
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yet (Miyashiro et. al, 2003). The problem of considering the pattern set whether it is 

feasible or not is defined as pattern set feasibility problem. Current Turkish League 

schedule’s pattern set with n teams has some properties which are listed below. (n=18) 

1. It consists of n/2 complementary pattern pairs to make the schedule available for 

n/2 pair of teams sharing the same stadium.  

2. Total number of breaks of patterns is minimal including 2 patterns without 

breaks and n-2 patterns with 1-break. 

3. Patterns can have breaks in all rounds excluding the first and last round of the 

season.   

We divided this phase into 2 stages as well. The first one is generating a pattern set 

and the second one is feasibility check of the generated pattern set.   

 
 

6.2.1. Pattern Set Generation 
 
 
 
 We have mentioned that current Turkish League Pattern Set has 3 basic 

characteristics. For providing these characteristics, following methodology including 

these characteristics is followed sequentially.   

1
st
 Step 

We have 2n-2 generated candidate patterns to be chosen for a pattern set with n 

patterns. If we use Generate and Test algorithm to search for a feasible pattern set, we 

have different combinations of 2n-2 with n teams C (2n-2, n). When we look at the size 

of the search space, we can easily predict that this process will be exhaustive and will 

reduce performance. We illustrated before that generated complementary patterns are 

lined up in inverted order. The second half of the all patterns is the complementary 

patterns of the first half. Therefore, we can easily generate a pattern set including n/2 

complementary pattern pairings by selecting n/2 patterns from first n-1 patterns of all 

patterns initially before adding selected patterns’ complementary patterns, which is the 

second n-1 patterns of all patterns, to the initially selected patterns. Thus, we can reduce 

the search space to the C (n-1, n/2)      

2
nd

 Step 

2 patterns of the n patterns don’t have any breaks and n-2 patterns have 1 break 

to minimize total number of breaks for n teams. By fixing 2 patterns of the pattern set, 

n-2 patterns from 2n-4 candidate patterns having 1 break each. We provided this 
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characteristic by fixing one pattern to the pattern without break in the selection process 

of first n/2 pattern. Therefore, now we need to choose (n/2 -1) patterns from the first 

half of the candidate patterns excluding the fixed pattern. Thus, our search space is 

reduced to the C (n-2, n/2-1). 

3
rd

 Step 

 After pattern generation, we demand the rounds from the user in which patterns 

of pattern set are not allowed to have any breaks. Current Turkish League patterns don’t 

have any break in the first round and last round of the season.  2 patterns in the first half 

of the candidate patterns are also eliminated from candidate patterns to construct rest of 

the pattern set. Thus, our search space is reduced to the C (n-4, n/2-1). This combination 

can be valid for scheduling leagues with n teams, if n is even and equal or greater than 

6.  

Problem 2: Generating pattern set considering these 3 characteristics. 

Solution Methodology:  

1
st
   Step 

Let pk be the binary variable for the id of generated patterns ranging from p1 to p2n-2.  

pk = { 
1, if pattern t is in the generated pattern set, 

0 else  

 

 

 

Such that 

                                                            n-1 

(6.3) ∑ pk = n/2 
                                                            k=1 

                                                    n-1 

(6.4) ∑ pk + p2n-2+1-k = n 
                                                    k=1 

 

Third set of constraint ensures that n/2 patterns are selected for pattern set from 

the first half of the generated patterns and the fourth set ensures that complementary 

patterns of initial selected n/2 patterns are selected to fulfill pattern set from the second 

half of the generated patterns.  Table 6.2 shows all of the generated pattern sets that are 

not violating the constraints above, for a league with 6 teams. We can see that we have 

C (5, 3) number of pattern sets generated. 
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Table 6.2. Generated Pattern Sets for a League with 6 Teams after Step 1 

 

2
nd

  Step 

 We are adding a new constraint to our solution and we generate pattern sets 

which are guaranteed to include patterns which do not have any breaks. The (n/2)
th 

pattern of generated patterns is always the pattern without any break. Fifth constraint 

below provides this and the fourth constraint above ensures to include complementary 

pattern of the (n/2)
th  

pattern.  

 

                                                  p n/2 = 1                                                  (6.5) 

 

   

 

 Table 6.3. Generated Pattern Sets for a League with 6 Teams after Step 2 

 

All of the pattern sets must include 3
rd

 pattern. Size of the total generated pattern 

sets, which are not violating fifth constraint for a league with 6 teams, are decreased to 

C (4, 2) as shown in the Table 6.3. 
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3
rd

 Step 

We use yt variable, which was defined before in the first phase of the scheduling. 

R is a set of rounds and patterns in pattern set can’t have break in set R.  The sixth 

constraint below ensures that total break minimization of selected patterns in which 

breaks not occurring in the rounds of set R. 

 

                                      n-1  n-2 

(6.6) ∑   ∑  pk yt = 2n-2  for all t  R 
                                      k=1  t=1 

  

   

 

Table 6.4. Generated Pattern Sets for a League with 6 Teams after Step 3 

 

Table 6.4 shows all of the pattern sets having patterns in which breaks do not 

occur in the beginning and end of the season for a league with 6 teams.  Our set R = {1, 

4}.  Thus, size of the generated pattern sets is decreased to C (2, 2) as shown in the 

table above.  

 
 

6.2.2. Pattern Set Feasibility Check 
 
 
 
 In this stage of our program, we check the generated pattern set if it has a chance 

to be fit into a schedule.  Initially, we check for some basic necessary conditions of 

feasible pattern set. Later, we use a heuristic in integer programming to eliminate some 

of the pattern sets whose chance of being completed into a schedule is less. Every 

feasible pattern set must satisfy the following two conditions (Nemhauser and Trick, 

1998): 

i. In each round, total numbers of 0’s and 1’s must be equal. 

ii. All of the patterns of pattern set must be different. 
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Satisfaction of these two conditions may not be adequate. Miyashiro et. al (2003) 

proposed additional necessary conditions, which must be satisfied by every feasible 

pattern set, as listed below. 

iii. Overall possible matches during tournament must be equal to C (n, 2) for a 

league with n teams. 

iv. In a given pattern set, let T be an arbitrary subset of teams whose number is m. 

In each round, count the number of 1’s and that of 0’s in T, then take the 

minimum of the two. If the sum total of the minima is strictly less than C (m, 2), 

the pattern set is infeasible. 

Although 4
th

 condition is conjectured to be sufficient for a feasible pattern set, Briskorn 

(2008) stated that it was not proven yet and this condition’s control can take long time. 

Thus, we proposed a new condition which is introduced below.  

v. Our additional condition checks the each week’s total number of match chances 

by calculating sum of the assigned week probability of matches of all pattern 

pairs.      

Problem 3:  Check for pattern sets if they are possible. 

Solution Methodology:  

We use pk variable, which was defined before, to determine if pattern k is in the 

generated pattern set. Let T be the set of rounds. Let hkt is the variable to determine if 

pattern k plays home match in round t and akt is the variable to determine if pattern k 

plays home match in round t (Nemhauser and Trick, 1998).  

hkt = { 
1, if pattern k plays home match in round t, 

0 Else 

akt = { 
1, if pattern k plays away match in round t, 

0 Else 

 

Such that 

                           2n-2   

(6.7) ∑ pk ( hkt ) = n/2                 for all t  T 
                            k=1   

                           2n-2   

(6.8) ∑ pk ( akt ) = n/2                 for all t  T 
                            k=1   
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Seventh and eighth set of constraints ensures that total number of 0’s and 1’s of 

patterns in the pattern set are equal in each round. In our formula, we defined them as 

n/2 because league is organized with n, which is even in our program. 

                 n-1    

∑ | hkt – hrt  | < 0         for all (k, r),  k < r,  r < 2n-2 (6.9) 
                 t=1    

 Ninth set of constraints above shows that all of the generated patterns to 

generate pattern sets that are different.  

    

 

 

 

Table 6.5. Sample Generated Pattern Set and Summation of Patterns 

 

In the previous section, we construct our pattern set with 6 patterns using 

complementary patterns. Table 6.5 shows our checks for constraints 7, 8 and 9 using 

pattern set example including 6 patterns (2, 3, 5, 6, 8, 9) which was generated before.   

         | hkt – hrt  | 

 

                                           Xkrt =                  n-1   for all pk,pr  =1, k < r 
      pk  pr  ∑ | hks – hrs |     

                  s=1  

Let xkrt be the floating variable which shows the probability of match between 

pattern k and pattern r in round t and mt is the total number of match chances in round t 

by calculating sum of the assigned week probability of matches of all pattern pairs. We 

can find this probability with the use of linear programming.      

                        2n-3  2n-2 

         mt  = ∑    ∑    Xkrt                 for all t  T 

                       k=1   r=k+1 

             Max (mt) - Min (mt) < 1.96                                               (6.10) 
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 Tenth set of constraint ensures that the difference between weeks, whose total 

numbers of match chances are maximum and minimum, should be less than 1.96. This 

value is defined after the tests for leagues with 6, 8, 10, 12, 14, 16 and 18 teams. Pattern 

sets, which are checked by these constraints, are certainly being able to be completed 

into a schedule. 

 

   

 

Table 6.6. Possibility of Assignment of Matches to the Rounds 

 

Table 6.6 shows the match assignment possibilities to the week for some of the 

pattern pairs. For example, the match between patterns whose no is 5 and pattern whose 

no is 2 is restricted to be assigned to the round 3. So X253 is equal to 1 as shown in the 

3
rd

 column of the table. However X894 is equal to 0.5 because the match between pattern 

whose no is 9 and pattern whose no is 8 can be assigned to the round 4 and round 5.  

We have totally 45 assignment possibilities for the all of the pattern pairs in the pattern 

set. For example m3 is calculated as below.   

m3 =   X253 + X693 + X393 + ... + X293 = 1 + 1 + 0.33 + …+ 0.2 = 3.93 

m3 - m1 = 3.93 – 2.77 = 1.16 < 1.96 

Table 6.7 shows that maximum of these values is m3 and minimum of these 

values is one of the other values. m1 is chosen because of being first one. Calculation of 

the formula above proves that constraint 10 is not violated by this pattern set and this 

pattern set is feasible for other phases of our scheduling method.  
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m1 m2 m3 m4 m5 

2,77 2,77 3,93 2,77 2,77 

    

Table 6.7. mt Values of Sample Pattern Set 

 
 

6.3. Constructing Timetable for Feasible Pattern Set 
 
 
 

In this phase of our scheduling solution, we assign games to the rounds for a 

given pattern set. We use constraint programming method to construct a timetable. 

There are two objectives to be satisfied for the construction of 1RR tournament: 

1. Every pattern in the pattern set must play every other pattern of pattern set. 

2. Each pattern of pattern set must play one game in each round. 

Problem 4:  Construct a timetable for a given pattern set. 

Solution Methodology:  

Let set P be patterns of given pattern set and wij  is the variable for the assigned 

round of the game between pattern whose no is i and pattern whose no is j and i is not 

equal to j. Let Dik be the variable for the domain of wik. This problem can be formulated 

using the function which was introduced by Rasmussen (2006) below.    

all_different (w1, w2... wn):  As the name suggests the constraint is satisfied when all the 

variables w1. . . wn are instantiated to different values. 

We can adjust this function to our problem as the constraint 11 in addition to 

other constraints providing 1RR tournament for a given pattern set below.  

                       all_different (wi2, wi3, wi5, wi6, wi8, wi9)  for all i  P            (6.11) 

                    wik =0     for all i, k   P,  i= k                                   (6.12) 

                    wik < n    for all i, k   P               (6.13) 

 Firstly, we are using the variable ordering for wik, which was mentioned in 5.2.3. 

Due to high cost of dynamic ordering, we select static ordering to order variables. We 

sort the variables of pattern pairs in terms of their domain size.   
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Table 6.8. Sorted Pattern Pairs for Given Pattern Set 

We use branch and bound tree search technique in constraint programming with 

backjumping specification to assign rounds to games. For a given pattern set, games 

between pattern pairs will be assigned to rounds in order. This order is shown in Table 

6.8 for a pattern set having 6 patterns (2, 3, 5, 6, 8 and 9).  

 

D25 = {3} D36 = {1, 2} D59 = {1, 2, 4, 5} 

D69 = {3} D35 = {3, 4, 5} D26 = {1, 2, 4, 5} 

D89 = {4, 5} D28 = {1, 2, 3} D29 = {1, 2, 3, 4, 5} 

D58 = {1, 2} D39 = {1, 2, 3} D38 = {1, 2, 3, 4, 5} 

D23 = {4, 5} D68 = {3, 4, 5} D56 = {1, 2, 3, 4, 5} 

 

Table 6.9. Domains of Pattern Pairs for Given Pattern Set 

Table 6.9 shows the initial domains of games of pattern pairs. Our root node is 

the assignment of w25 and our search for constructing timetable will proceed until round 

assignment of last node is completed.          

      

 

 

Figure 6.2. Tree Search B & B for Constructing Timetable 
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 Figure 6.2 shows the branch and bound tree search method using the 

backjumping algorithm. After each node assignment, domains of rest of the variables 

are determined again related to the constraints (11 and 13).  Arc consistency feature of 

constraint programming reduces the domains of the variables, which are not assigned 

after each node assignment. Before the assignment of w25, domains of other games are 

shown in Table 6.9. After the assignment of w25, variables which have changes of their 

domains are shown below. 

 

D35 = {4, 5} D28 = {1, 2} D29 = {1, 2, 4, 5} D56 = {1, 2, 4, 5} 

 

After each node assignment, forward checking algorithm is used to detect 

possible future conflicts beforehand. In our program, our forward checking checks 

whether the domains of the unassigned variables are  empty or not. If there is an empty 

domain, the branch fails. In Figure 6.2, red coloured node, which is an assignment of 

w39 shows the failing branch, which detects future conflict.  After the assignment of w39, 

domain of w59 becomes empty. If we don’t use forward checking, we can’t detect the 

failure until the search proceeds to the w59.  However, in our program, this conflict can 

be detected just after the assignment of w39.  

After detecting failure in the that branch of the node, backjumping algorithm 

provides jump over the  nodes, whose assignment can’t be the reason of conflict. For a 

given pattern set in our example, our search jumps from w39 to w35 by passing the node 

w28. After the jumping to the w35, D35 is checked if it has any alternative value for 

assignment of w35.  We can see in Figure 6.2 that there isn’t any other option for the 

assignment of w35. Thus, our search jumps back to the w36. An alternative value, which 

is 2, for w36 is assigned. After the assignment of w36, the search can proceed to the 

assignment of last game. After the assignment of last game, the search is finished and 

the given pattern set is completed into a timetable.  Some pattern sets can be completed 

into more than one different timetables but in our algorithm, we didn’t search any 

alternative timetables for a given pattern set to reduce the total search time. Because 

there is not a gurantee to be completed into a more than one different timetables for 

given pattern sets and after finding first timetable, search for alternative timetables may 

be timewasting process. 2
nd

 half schedule of the season can be easily deduced by 

reversing home and away patterns as shown in Table 6.10. 
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1 2 3 4 5 

8-5 3-6 5-2 9-8 5-3 

9-3 2-8 9-6 3-2 8-6 

6-2 5-9 8-3 6-5 2-9 

 

6 7 8 9 10 

5-8 6-3 2-5 8-9 3-5 

3-9 8-2 6-9 2-3 6-8 

2-6 9-5 3-8 5-6 9-2 

 

Table 6.10. Timetable for Given Pattern Set 
 
 

6.4. Carry Over Effect Value Minimization 
 
 
 

Carry Over Effect value and its importance were before mentioned in chapter 3. 

Constraint 14 below adds COE value minimization requirement to our scheduling 

problem. After construction of timetable, we calculate the COE value of timetable in 

this phase and then check its value if it is the best one.  

Problem 5:  Search for schedule with the minimized COE value.  

 

Solution Methodology:   

Let cij denotes the number of carry-over effects given by pattern i to pattern j in 

the schedule and let set P be patterns of the pattern set of the given schedule. Our 

problem’s mathematical formula is shown as constraint 14. Our solution method solves 

this problem in 2 steps. 

                           Min ∑i, j (cij)
2 
  for all i, j  P

  
(Russell, 1980)                   (6.14) 

 

1
st
 Step 

Calculation of COE value for a timetable for a given pattern set. 
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T/W 1 2 3 4 5 

2 6 8 5 3 9 

3 9 6 8 2 5 

5 8 9 2 6 3 

6 2 3 9 5 8 

8 5 2 3 9 6 

9 3 5 6 8 2 
 

j/i 2 3 5 6 8 9 

2 0 0 1 0 3 1 

3 3 0 1 1 0 0 

5 1 1 0 1 1 1 

6 1 0 1 0 0 3 

8 0 1 1 3 0 0 

9 0 3 1 0 1 0 
 

(a)                                                         (b) 

 

Table 6.11. (a) Schedule for Given Pattern Set   (b) COE Matrix (6x6) of Schedule 

 

COE value of the schedule in Table 6.11 (a) is calculated as below using formula which 

was proposed by Russell (1980). 

∑i, j (cij)
2   

= 5*(3)
2
 + 15*(1)

2
 + 16*(0)

2
 = 60 

After each schedule generation, COE value of the new generated schedule is calculated. 

2
nd

 Step: 

  Check for the calculated COE value if it is minimum one. 

When the first schedule of the program is generated, COE value of this schedule 

is tagged as best-known value. In addition to this, generated schedule is tagged as best 

schedule and stored.  

After each schedule generation, calculated COE value for the new generated 

schedule is compared with best-known value. If the COE value of new generated 

schedule is lower than the best-known value, the new value is tagged as best-known 

value and new generated schedule is exchanged with current best schedule.    

We have only one feasible pattern set to be scheduled for 6 teams. Thus, Table 

6.12 shows the pattern sets which can be completed into a schedule. The second column 

shows the COE value of schedule for a pattern set having patterns ranging from pt1 to 

pt10 in the table. After whole over the feasible pattern sets, schedule of pattern set, 

whose COE value is 208 is selected as most suitable schedule for 10 teams meeting the 

constraints. Third column shows the consumed time for generating timetable for relative 

pattern set. 
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Table 6.12. Scheduled Pattern Sets with Relative COE Values 

 

Important Note: It is important to remind that a pattern set can be completed into more 

than one different schedule as we mentioned before in 6.3.  Consequently COE value of 

them can be different. For example, although schedule of current Turkish League is 

3876, our program can find a schedule whose COE value is 1232 for the same pattern 

set of current Turkish League and % 68 improvements is achieved in COE value of that 

pattern set. 

 
 

6.5. Assignment of Teams to the Patterns 
 
 
 

Once the schedule is generated, the final computational phase is assigning the 

teams to the given patterns. In this phase, individualized constraints of teams must be 

taken into account. These can include stadium scheduling conflicts, rivalry week 

requirements, police requirements etc. In our method, we take stadium conflicts into 

account and assignments are made by considering this constraint.    

Problem 6:  Assignments of teams to the patterns.  

 

Solution Methodology:   

 Let set P be patterns of the pattern set of the given schedule and let ti is a 

variable for the team i’s pattern ranging from 1 to n, which is the number of teams.   

                      all_different (t1, t2... ti)   for all ti  P,  i<n+1                       (6.15) 

 Let (i, j) be the pair of teams which should be assigned to complementary 

patterns and let Di is the domain for team i’s pattern assignment. 

                   t1 + tj  = 2n-1      for all ti, tj  P            (6.16) 
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15
th

 constraint above shows that each team must be assigned to different pattern 

of a given pattern set and 16
th

 constraint ensures that team i and team j have 

complementary patterns. We use constraint programming branch and bound method to 

solve this problem like the solution of the scheduling problem in 6.3.   

Firstly, we require from user the team pairs, which should have complementary 

patterns. Then, we are using the variable ordering for ti, which was mentioned in 5.2.3. 

Due to we select static ordering to order variables. We sorted teams in terms of their 

domain size. If domain sizes of teams are equal, they are sorted in terms of their team id 

ascending.  

All of the domains of the teams for a given pattern set are shown in the Table 

6.13 below.  

 

D1 = {2, 3, 5, 6, 8, 9} D4 = {2, 3, 5, 6, 8, 9} 

D2 = {2, 3, 5, 6, 8, 9} D5 = {2, 3, 5, 6, 8, 9} 

D3 = {2, 3, 5, 6, 8, 9} D6 = {2, 3, 5, 6, 8, 9} 

 

Table 6.13.  Initial Domains of the Teams  

 

Figure 6.3 shows the branch-bound algorithm in constraint programming for the 

assignment of teams to the patterns. For the schedule of this figure ( t3, t4 ) and  ( t5, t6 ).  

 

    

 

Figure 6.3.  Tree Search Solution Sample for the Pattern Assignment of Teams 

 

Teams are randomly assigned to the one of the patterns, which is in the domain 

of that team. Arc consistency feature of constraint programming reduce the domains of 

the variables, which are not assigned, after each node assignment. Before the 
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assignment of t3, domains of other games are shown in Table 6.13. For example t3 is 

randomly assigned to the pattern 5. After the assignment of t3, variables which have 

changes of their domains are shown below in the Table 6.14. 

 

D1 = {2, 3, 8, 9} D3 = assigned D5 = {2, 3, 8, 9} 

D2 = {2, 3,  8, 9} D4 = {6} D6 = {2, 3, 8, 9} 

 

Table 6.14. Domains of the Teams after First Assignment 

 

After each team’s assignment of the pattern, Table 6.15 (a) shows the assigned 

patterns of teams and Table 6.15 (b) shows the first half of the arranged fixture. 

 

 

(a) 

 

                                       (b) 

 

 

Table 6.15.  (a) Assigned Patterns to the Teams         (b) First Half Fixture of the Season
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CHAPTER 7 
 

 

COMPUTATIONAL RESULTS 
 

 

 In this chapter, results of our program are presented for the 2RR league with n 

teams, when n is even. We used C# programming language and MSSQL database 

language to code our project. Table 7.1 shows the results of the application. 1
st
 column 

shows the minimum COE value of schedules alternatives, which are generated by our 

program. 2
nd

 column shows the total number of breaks of the schedule which has 

minimum COE value. 3
rd

 column shows the total number of pattern sets generated by 

phase 1. 4
th

 column is the number of feasible pattern sets, which are defined in phase 2. 

5
th

 column is the number of the pattern sets which can be completed into a schedule in 

phase and last column shows total amount of time to finish our program’s search 

process.  Our tests are performed using the computer with Core I7 1.6 GHz.   

 

# of 

Teams 

COE 

Value 

    (Min) 

#of 

Breaks 

# of PSs # of Feasible 

PSs 

# of Scheduled 

PSs 

Total 

Time 

6 60 12 1 1 1 1 sec. 

8 104 18 4 2 2 7 sec. 

10 208 24 15 4 4 23 sec. 

12 316 30 56 6 6 1,5 min. 

14 498 36 210 9 9 6 min. 

16 816 42 792 14 14 10 min. 

18 948 48 3003 19 19 7,5 hours 

 

Table 7.1.  Computational Results 

 

The tests are performed with pattern sets having patterns which have no break in 

first and last weeks of the season. Total number of breaks is calculated for the whole 

season; however COE value is calculated for 1RR tournament. Figure 7.1 is the graph in 

which blue bars show the COE values of schedules for leagues of different number of 

teams using current Turkish League scheduling system which is in canonical way and 
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red bars show the COE values of schedules for leagues of different number of teams 

using our study and green line shows the improvement percentage of COE values for 

leagues of different number of teams.  

 

 

 

Figure 7.1.  COE Value Comparison of Canonical Method and Our Study   

 

Scheduling phase for a feasible pattern set is always achieved in the first branch 

of the tree for the league with 2
a 

teams (2, 8, 16).  Lasting time of scheduling phase for 

pattern sets having 18 patterns can vary from 1 minute to 70 minutes. Figure 7.2 shows 

the scheduling time performances of our program for leagues of different number of 

teams. Blue line in this figure is the total scheduling time of our program. During this 

time more than 1 schedule are generated as shown in the 5
th

 column of Table 7.1. Red 

line in this figure is the average time per schedule which increases as the number of 

teams increases. 
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Figure 7.2.  Scheduling Time Performances 

 

We can see in Table 7.1 that, all feasible pattern sets can be completed into a 

schedule (% 100 feasible pattern set selection success) for leagues with 6, 8, 10, 12, 14, 

16 and 18 teams. It can be succeeded by our new proposed feasible pattern set selection 

constraint which is detailed in section 6.2 as constraint 10 (equation 6.10). Although, 

there are more amount of pattern sets which may be completed into a schedule, it is a 

hard task to select feasible pattern set and our program can succeed this task thanks to 

constraint 10 (equation 6.10).  In this constraint, we found the common value as 1.96 

which provides %100 feasible pattern set selection success ratio for all leagues having 

different number of teams after many trials. When this value is increased, although 

more schedules may be generated for COE value selection, feasible pattern set selection 

ratio decreases and this decrease causes huge increase in lasting time of the program to 

be completed. Because lasting time of scheduling phase attempts for a pattern set which 

can’t be completed into a schedule may increase to 2 hours. 
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CHAPTER 8 
 

 

CONCLUSION 
 

 

 Turkish Soccer League is becoming one of the most important sport 

competitions by increasing its economical worth and effectiveness of its schedule to 

meet requirements from different stakeholders should be strengthened as well. Although 

many constraints may be taken into account primarily, we thought that fairness of 

schedule should be provided initially because of ongoing match-fixing case and rumors 

of it.  So, we conducted this study to meet two important fairness criterions of schedule 

which are minimizing total number of break and minimizing carry over effect value, in 

addition to must requirements such as prevention of conflicting stadiums.      

We discussed that there are many approaches and algorithms which can be 

applicable for the large-scale soccer scheduling problems. We chose the variant of first-

break-then-schedule approach, which was proposed by Rasmussen and Trick (2008), by 

decomposing our problem into sub problems. For Turkish Soccer League, this approach 

seems the most suitable one because consideration of break minimization and 

conflicting stadiums are the break-related constraints which are already met in the 

current application of Turkish Soccer League’s scheduling method which is canonical.   

Minimization of break and COE value are succeeded using integer 

programming, however phases, which are scheduling and assignment of patterns, are 

done using constraint programming. We proposed a new constraint (constraint 10 as 

equation 6.10) to improve feasible pattern set selection ratio. Total number of the 

defined constraints in our paper is 16 but our method is open to be improved to meet 

more constraints. Improving solution process of our method, finding a schedule with 

decreased COE value and addition of new constraints from various stakeholders is the 

issue which can be explored in future work. These include: 

1. If the solution process can be accelerated by using professional optimization 

libraries, 3
rd

 phase searching of a first schedule for a given pattern, can be 

changed and search can be extended to find more than 1 schedule for a given 

pattern set. 

2. If individual constraints increase and conflicts of these constraints are emerged, 

phase 5 assigning of patterns to the teams can be done using integer 
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programming by aiming the minimization of total violation of constraints, 

which have the weighted importance coefficient. 

As we have seen the points above, there can be many possible extensions to our solution 

method.    

 In conclusion sport scheduling becomes an important research area in other 

leagues and there is a trend to cancel canonical scheduling method in other countries 

where computer sciences present more advanced techniques. Since the amount of 

money in sports leagues increase, constraints from different stakeholders will increase 

and there will be always a lot to do for the optimality of sports scheduling.  
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