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ABSTRACT 
 

CO GAS SENSOR APPLICATIONS OF Fe DOPED 

CALIXARENE MOLECULES 
 

Invisible and odourless carbon monoxide (CO) is one of the most toxic gas for 

respiratory systems. Therefore, the concentration level of carbon monoxide in the 

environment is extremely vital. In this thesis study, Calixarene molecules have been 

synthesized and the carbon monoxide selectivity and sensitivity of bare and iron doped 

calixarene molecules were measured by quartz crystal microbalance QCM technique 

and interdigitated electrodes with 3 m spacing. 

Calixarenes are promising compounds for sensing studies due to the well-

designed cyclic structure, easily derivatization at both p- position of phenolic ring 

(upper rim) and phenolic-O (lower rim) as well as having diversely cavities which are a 

straightforward platform to form complex with molecules and ions. Quartz Crystal 

Microbalance is a powerful technique for nano scale determining the sorption properties 

of materials. According to Sauerbrey relation, the mass change on quartz crystal 

electrode cause a certain shift in the resonant frequency of vibrating crystal oscillator. 

This shift can be monitored using QCM method. 

In this study, a computer controlled QCM measurement system was developed 

for toxic gas detection. Iron doped calixarene based sensors were fabricated using drop-

casting method on an AT-cut QCM gold electrode and interdigitated gold electrodes. 

The sensitivity and reproducible detection performances of prepared calixarene-iron 

doped calixarene thin films were measured under exposure of varying carbon monoxide 

for nitrogen and dry air used as desorption gas, respectively.  

 The analysis of carbon monoxide sensitivity of iron doped calixarene is a new study 

for literature. This thesis study will guide future studies on this topic. 
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ÖZET 

 
DEMİR KATKILI KALİKSAREN MOLEKÜLLERİNİN CO GAZ 

SENSÖR UYGULAMALARI 

 
Renksiz ve kokusuz karbon monoksit (CO) gazı bilindiği üzere canlılar için 

ölümcül gazlardan birisidir. Bu yüzden ortamdaki CO konsantrasyonunu ölçmek son 

derece hayati bir durumdur. Bu tez çalışmasında demir molekülleri ile katkılandırılmış 

kaliksaren moleküllerinin karbon monoksit gazına olan hassasiyeti ve seçiciliği, kuartz 

kristal mikrobalans tekniği ile araştırılmasının yanı sıra, iç içe geçmiş taraklı elektrotlar 

(İTE) üzerinde oluşturulan ince filmlerin elektriksel özelliklerindeki değişime bağlı 

olarak incelenmiştir.  

Kaliksarenler, halkalı yapıda olması, kolaylıkla hem fenolik halkaların p- 

pozisyonundan (upper rim) hem de fenolik-O kısımlarından (lower rim) 

türevlendirilebilmesinin yanında molekül ve iyonlarla kolay kompleks yapabilmelerini 

sağlayan farklı halka boşluklarının olması nedeniyle sensör çalışmaları için uygun 

bileşiklerdir.   

Kuartz kristal mikrobalans, nanogram mertebesinde, malzemelerin gaz tutma 

özelliklerini inceleyebileceğimiz bir tekniktir. Sauerbrey ilişkisine göre, kristal 

elektrotundaki kütle değişimi, titreşen kristal elektrotta belirli bir frekans kaymasına 

neden olur. Bu değişim QCM metodu ile ölçülebilir. 

Kuartz kristal mikrobalans metodunun kullanıldığı bu tez çalışmasında 

bilgisayar kontrollü gaz akış ve gaz karışım sistemi ile nanogram mertebesinde 

algılayıcı malzemelerin zehirli gaz tutma özelliklerinin incelenebileceği deneysel 

düzenek tasarlanmıştır. AT-kesim QCM altın elektrotlar ve iç içe geçmiş taraklı 

elektrotlar demir katkılı kaliksarenler ve normal kaliksarenler ile damlatma metodu 

kullanılarak kaplanmıştır. Hazırlanan kaliksaren-demir katkılı kaliksaren ince filmleri 

değişen karbon monoksit konsantrasyon oranlarına maruz bırakılarak hassasiyetleri ve 

tekrarlanabilir algılama performansları, desorpsiyon amacıyla kullanılan yüksek saflıkta 

azot ve kuru hava için ölçülmüştür.  

Farklı fonksiyonel gruplara sahip kaliksaren moleküllerinin demir ile katkılanıp 

karbon monoksit gazına karşı hassasiyetlerini incelemek literatürde rastlanmamış bir 

çalışmadır. Bu tez, bu anlamda ileriki çalışmalara temel teşkil ederek yön vereceği 

kesindir. 
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CHAPTER 1  

 

INTRODUCTION 

 

As a product of the incomplete combustion of hydrocarbons, carbon monoxide 

(CO) is one of the most dangerous gases for living things. Carbon monoxide exposure is 

still one of the leading causes of unintentional and suicidal poisonings, and it causes a 

large number of deaths annually in all over the world. In addition, carbon monoxide 

may be the cause of more than one-half of the fatal poisonings reported in many 

countries(Raub et al., 2000). The affinity of haemoglobin for carbon monoxide 

compared to oxygen is 200 to 250 times greater. Carbon monoxide forms 

carboxyhemoglobin (HbCO) in the blood when combining with haemoglobin. As a 

consequence of this, haemoglobin cannot release oxygen in tissues, effectively reducing 

the oxygen-carrying capacity of the blood, giving rise to hypoxia. When exposed to CO, 

the health effects may be the more subtle cardiovascular and neurobehavioral effects at 

low concentrations. However, it may even result in unconsciousness and death after 

acute or chronic exposure to high concentrations of CO(Rodkey et al., 1974). The 

symptoms during exposure of CO according to concentration level in parts per million 

are listed in Table 1.1(Goldstein, 2008; Struttmann et al., 1998). Therefore, it is vital to 

know the concentration level of carbon monoxide in the environment.  
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Table 1.1. Symptoms according to CO concentration level 

 

Concentrations Symptoms 

35 ppm (0.0035%) Headache and dizziness within six to eight hours of constant exposure 

100 ppm (0.01%) Slight headache in two to three hours 

200 ppm (0.02%) Slight headache within two to three hours; loss of judgment 

400 ppm (0.04%) Frontal headache within one to two hours 

800 ppm (0.08%) Dizziness, nausea, and convulsions within 45 min; insensible within 2 hours 

1,600 ppm (0.16%) Headache, tachycardia, dizziness, and nausea within 20 min; death in less than 2 

hours 

3,200 ppm (0.32%) Headache, dizziness and nausea in five to ten minutes. Death within 30 minutes. 

6,400 ppm (0.64%) Headache and dizziness in one to two minutes. Convulsions, respiratory arrest, 

and death in less than 20 minutes. 

12,800 ppm (1.28%) Unconsciousness after 2–3 breaths. Death in less than three minutes. 

 

 

In 1959, physicist Richard Feynman suggested that it should be possible, in 

principle, to make nanoscale machines that "arrange the atoms the way we want", and 

do chemical synthesis by mechanical manipulation. He opened a new era at his talk, 

entitled ‘There’s Plenty of Room at the Bottom”, on what later became known as 

“nanotechnology”. Today, however, research on producing more sensitive, cheaper and 

low-power gas sensors shows a great improvement in parallel with the rapid 

developments in the nanotechnology world. Nanomaterials, having very high surface-

to-volume ratio as well as porous structure, are ideal for gas sensing applications with 

adsorbing capabilities of gas molecules. Hence, nanomaterial based gas sensor 

applications such as carbon nanotubes (CNT), nanowires, nanoparticles and nanofibres 

are being conducted.  

Due to the excellent gas sorption capabilities, long time stable structure and 

suitable characteristics for technological applications, calixarene molecules, used in the 

thesis, are convenient compounds for sensor applications. Calixarenes, product of the 

condensation reaction of phenol with formaldehyde in the basic environment, are ring 

structured macro cyclic compounds. Unlimited ability of functionalization features and 

forming “host–guest” complexes enable these molecules to be used in selectivity and 

sensitivity applications. Varying the number of aryl fragments and functional groups it 

is easy to manage with sensitivity and selectivity of calixarene films. Chemical 

modification of calixarene represents an effective and versatile way of producing 
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receptors with highly selective binding properties(Kim and No, 2007). Calixarenes, 

known as macro cyclic compounds, are joined by methylene groups attached at 

positions ortho to the hydroxyl groups(Gutsche and Stoddart, 1989). 

 

 

 

 

Figure 1.1. Calixarenes with different ring number 

 

Calixarenes are considered to be convenient for CO gas sensor application in 

this thesis since they have cyclic structure and can easily be functionalized for any 

desired purpose as well as capable of forming annular gap in different size. Hence, 

various calixarene molecules having different functional groups, in particular those of 

which include amine, are synthesized so as to carry out this thesis study. In addition, gas 

sorption kinetics of the prepared composite compounds are investigated under exposure 

of different concentrations of CO gas. Composite thin film coated quartz crystal 

microbalance electrodes having piezoelectric nature and allowing to measure the 

frequency shift as a result of mass changes due to the adsorption and desorption of gas 

molecules were used as a research method in this study. Because QCM method has 

quite sensitive sensing capability of the order of nanograms, feasibility and stable 

operation in room conditions, it has been widely used in gas detection applications in 

recent years. QCM binding kinetics of specific calixarene molecules that have affinity 

towards CO gas molecules have not been investigated well. Fevzi Sumer studied 

adsorption and desorption kinetics of carbon nanotube modified with various calixarene 

molecules for CO gas sensor applications. However, the present study is the first study 

that investigates the sorption kinetics of iron doped calixarene molecules. The purpose 

of doping iron molecules into the calixarene molecules is to increase sensitivity of 
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prepared thin films towards CO gas molecules. Furthermore, the reason why calixarene 

molecules containing amine groups are preferred is that the acid-base reaction has been 

supposed to take place. The sensitivity and selectivity properties of both iron doped and 

undoped calixarene molecules to CO gas were investigated. Basically, different types of 

gas sensors and the main features of ideal gas sensors are discussed in the first part of 

this thesis work. In the second part, some information about quartz crystal 

microbalance, calixarenes used as sensing materials are given and in addition to this, 

theoretical calculations and gas sorption kinetics of these materials are discussed. In the 

third chapter, the equipment used to carry out experiments is introduced and fabrication 

of IDE electrodes, iron doping process of calixarene molecules, thin film preparation on 

QCM electrodes are explained in details. The experimental results and data are 

presented in the fourth chapter. 
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CHAPTER 2  

 

GAS SENSORS 

 

 A sensor is a device that measures physical or chemical changes and converts it 

into an electrical signal which can be read by an electronic instrument. Due to the 

sensors which are used in many areas of our daily lives and one of the products of the 

revolution in microprocessor ensuing the technology that has rapidly been developing 

from the beginning of 20
th

 century to the present day, machinery, equipment and other 

automation systems can be controlled smarter, more efficiently and more quickly. In 

addition, sensors have applications in many areas such as medical identification, 

environmental monitoring, automotive, industrial production and the defence industry. 

People mimic organisms living on the basis of sensors that can be defined as artificial 

sensory organs. To exemplify, when the smell receptors in the structure of the mucosa 

touch a smell in air environment, the receptor cells detect these odour molecules and 

transmit as electrical signals through neuronal cells. Neurons carry these odour signals 

to the brain and the mechanism of perception is completed after the brain responds to 

these signals. Even though live nose is superior to all other known odour and gas 

sensors in nature in terms of selectivity, it has some weak points such as detection 

capability and ability to learn, olfactory fatigue, detection ability of only water-or oil-

soluble molecules are weak points. Gas sensors can be used when taking critical 

measurements in the environments in which these weaknesses are available. Like a 

sensory organ, gas sensors detect the molecules in the environment with a detection 

material and it is converted into a signal which is then delivered to a microprocessor 

(brain) with the help of amplifier and carrier circuit (neuron). This signal is evaluated 

here and presented as information to the user as given in Figure 2.1. The development 

of sensors in recent years has become even more important because of developing 

technology and the needs of the physical, chemical and biological detection. 
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Figure 2.1. Signal processing in living organisms and intelligent machines 

 

A sensor should; 

 be directly in contact with the substance to be measured, 

 convert non-electrical information into an electrical signal, 

 be able to provide quick response, 

 be stable and sustainable, 

 be small, 

 be producible and cheap(Gründler, 2007). 
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Figure 2.2. Scheme of a typical chemical sensor 

 

Receptor systems in sensor systems are organic or inorganic sensitive materials 

obtained by various coating methods. Receptor materials, in contact with the external 

environment and interacting with the analyte molecules, are beginning parts of the 

sensing mechanism. Physical and chemical changes that result from the interaction of 

target analyte in environment with receptor material are transmitted to the transducer to 

be converted into electrical signal. A converter is a device that converts the energy to a 

different form of energy type. For example, the electrical energy in a fluorescent lamp is 

converted into light and heat energy. These energy types are based on chemical and 

physical based quantitative magnitudes. These magnitudes are classified as follows; 

 Mechanical 

 Thermal 

 Electrical 

 Magnetic 

 Optical 

 Chemical. 

Examples for these magnitudes are presented in Table 2.1 for each class.  
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Table 2.1. The basic physical and chemical principles used by the sensor devices 

 

 Quantity 

Mechanical 
Length, area, volume, velocity, acceleration, force, torque, pressure, sound 

wavelength, intensity etc. 

Thermal Temperature, heat, entropy, heat flow  etc. 

Electrical 
Voltage, current, resistance, charge, inductance, capacitance, dielectric 

constant, polarization, electric field, frequency, dipole moment etc. 

Magnetic Flux density, magnetic moment, the magnetic permeability etc. 

Optical Intensity, phase shift, wavelength, polarization, refraction index etc. 

Chemical Concentration, reaction rate, pH, oxidation / reduction potentials etc. 

 

 As biosensors use biochemical process that is the source of the analytical signal, 

they may be considered as a specific type of chemical sensors(Hulanicki et al., 1991).  

 

2.1. Characteristics for an Ideal Sensor 

 

 The performance of a sensor is associated with accuracy of the value according 

to true value. In order to characterize the validity of analytical results, the following 

units are prevalently used: 

 Accuracy: Accuracy is the relation between the measurement result and true 

value. It can be considered as the deviation from the true value. To exemplify, if 

an oxygen sensor in room conditions measures the oxygen concentration as 

21.01% and  the true value is 21%, which means this sensor has good accuracy.  

 Precision: It is the degree of the closeness of measurement results to each other. 

Standard deviation (STD) is the generally accepted way to express precision.  
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Figure 2.3. Examples of accuracy and precision 

 

 Resolution: It is the smallest change that a sensor can detect in the quantity to be 

measured. 

 Sensitivity: Sensitivity of a sensor shows how much the output of the sensor 

changes when the measured quantity changes. In other words, sensitivity is 

defined as the ratio between output signal and measured property.  

 Noise: It is defined as random change in measured signal varying in time. 

 Reproducibility: The closeness of agreement among repeated measurements of 

outputs for the same input where this input is approached from any direction and 

these measurements are made over a period of time. 

 Linearity: The relation between output signal and gas concentration. Usually the 

values for linearity are specified for a definite concentration range. 

 Saturation: There are certain limits of detection of each sensor. 

 

 Ideally, it is expected that the sensor's output should produce a linear behaviour. 

However, these values may not show linear response after certain concentrations due to 

nature of the receptor material. When a sensor, in particular, does not give linear 

response and shows constant value at high concentrations, that means the sensor 

reached the saturation value. (Figure 2.4) 
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Figure 2.4. Dependence of signal generated by sensor on concentration 

 

 Interference: If a gas sensor does not always detect the target gas molecules and 

other gas molecules in the environment affect the measurement results, this 

situation is called as interference. 

 

 

Figure 2.5. Example of interference in gas sensors 

 

 Reaction time: It is typically the period of time that is needed for a sensor to 

detect and read a certain gas concentration and the period of time needed for 

output signal to go to its initial value in a clean environment. 

 

 Zero and span shift: Zero calibration sets of output of a sensor to zero when the 

measured property is zero. Span calibration is the maximum output signal of 

sensor when there is full concentration of target gas. The maximum and 

minimum limits are determined using these values, the behaviour of sensor 
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response between these maximum and minimum values determines whether it is 

linear or should be expressed as mathematical function. 

 

 Hysteresis: It is the maximum difference in output when the value is approached 

with an increasing and a decreasing analyte concentration range(Bochenkov and 

SergeeV, 2010). Infrared sensors usually show no tendency of hysteresis, solid-

state sensors like electrochemical and catalytic do, though. It is a very 

significant parameter for a sensor to give actual value in the calibration phase. 

 

2.2. Types of Gas Sensors 

 

 Solid-state gas sensors generate signals depending on change in conductivity, 

capacitance, work function, mass, optical characteristic or energy in gas/solid reaction 

as a result of varying concentration of target gas molecules by using organic or 

inorganic compounds as sensing material. Basically, organic or inorganic (metal oxide 

semiconductor) materials are coated on the detection surface of a device in the form of 

thick or thin film in order to create a gas-sensitive active region. The process of reading 

signals occurs via electrodes, diode, transistor, surface-wave components, the thickness 

mode transducers or optical apparatus on the device. Despite measuring similar physical 

parameters, different type sensors have caused different types of technologies. Solid-

state gas sensors are basically used for commercial and research purposes in device 

types as listed in Table 2.2 which is prepared according to the physical changes used in 

design and gas detection(Capone et al., 2003).  
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Table 2.2. Types of solid state gas sensors with the corresponding physical change used 

as gas detection principle  

 

Type of devices Physical change 

Semiconductor gas sensor Electrical conductivity 

Field effect gas sensors: diodes, transistors, 

capacitors 
Work function (electrical polarisation) 

Piezoelectric sensors : Quartz crystal 

microbalances (QMB), surface acoustic wave 

(SAW), micro cantilevers 

Mass 

Optical sensors (fibre optic or thin film) 

Optical parameters: SPR, reflection, 

interferometry, absorption, fluorescence, 

refractive index or optical path length 

Catalytic gas sensors: 

Seebeck effect, pellistors, semistors 
Heat or temperature 

Electrochemical gas sensors (potentiometric or 

amperometric) 

Electromotive force or electrical current 

in a solid state electrochemical cell 

 

 

In this section, information about types of solid-state gas sensors, listed in Table 

2.2, will be presented.  

 

2.2.1. Semiconductor Gas Sensors 

 

 Semiconductor gas sensors are generally metal oxide based gas sensors. 

Absorption of gas molecules on the oxide layer result in the catalytic reduction reaction 

and as a result of this reaction, the electrical resistance of the oxide material changes. 

The amount of change depend on the speed of the reaction, in other words, it depends 

on the concentration of gas molecules. Sensor surface needs to access a specific 

temperature so that the chemical reaction can take place, depending on the material used 

in the metal oxide. The required temperature is usually between 200 and 250 
o
C. 
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Figure 2.6. Basic components of metal oxide based semiconductor gas sensor 

 

 

2.2.2. Field Effect Transistor (FET) Gas Sensors 

 

 In Field Effect Transistors (FETs), electric field is used to control the shape and 

hence the conductivity of a channel of one type of charge carrier in a semiconductor 

material. The FET devices, when used as a converter, convert varying physical and 

chemical signals into measurable electrical current. Although there are many different 

FET device developed for different purposes, MOSFET devices are widely used for gas 

sensor applications. 

 

 

 

Figure 2.7. Basic structure of FETs 

 

 The simplest structure of MOSFET device consists of drain, source and gate 

which are developed on silicon oxide insulator. The electrical conductivity of the sensor 
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material placed between source and drain and hence I-V characteristic of transistor 

depend on the gas concentration of the environment. 

 

2.2.3. Optical Gas Sensors 

 

 Optical sensors play an important role in sensitive measurement of chemical and 

biological quantities. The first optical chemical sensor used a method which measures 

changes in the absorbance spectrum. Today, a variety of optical methods like 

ellipsometry, spectroscopy, interferometry, surface plasmon resonance device (SPR) are 

used for chemical detection and biosensor applications. The values in these sensors are 

determined by measuring the refractive index, the absorbance and fluorescence 

properties of analyte molecules. In Figure 2.8, optical components of a system which 

was used for NO2 sensing application was displayed(Richardson et al., 2006a). 

 

 

Figure 2.8. Optical apparatus used for NO2 gas sensing application 
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2.2.4. Electrochemical Gas Sensors 

 

 Electrochemical gas sensors are based on measuring the electrical signal of 

electrodes which are the results of chemical reaction occurring between the target gas 

molecules. The gas molecules passing through hydrophobic membrane starts oxidation-

reduction mechanism by reacting with the active electrode. The electric signals 

depending on gas concentration are processed through a circuit connected to the 

electrodes. There are generally two electrodes in an electrochemical sensor cell one of 

which is referred to as the active electrode and wherein the chemical reaction takes 

place. In order to measure electrochemical potential energy of the electrolyte and the 

electrode, a third electrode can be found as a reference electrode. This reference 

electrode is used to correct errors caused by the active electrode. The active electrode is 

made of typically noble metal or materials which are coated with platinum, palladium, 

carbon. To obtain a measurable signal, electrodes must have a sufficiently large surface 

area in contact with the analyte. The electrode materials, specifically developed for the 

gas of interest, catalyses these reactions. A current that is proportional to the gas 

concentration flows between the anode and the cathode with the help of a resistor 

connected across the electrodes. In order to determine the gas concentration, the current 

can be used. Due to the fact that the power consumption of electrochemical sensors is 

the lowest among all sensor types available for gas monitoring, the sensors are widely 

used in portable instruments that contain multiple sensors. The cell can measure the 

electrical signals as current, potential, conductivity or capacitance. In Figure 2.9, 

schematic representation of a typical electrochemical sensor is given and it includes a 

sensing electrode and a counter that is used as electrode separated by a thin layer of 

electrolyte(Chou, 2000). 
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Figure 2.9. Basic electrochemical gas sensor (left) and typical electrochemical gas 

sensor with three electrodes design (right) 

 

Electrochemical gas sensors are widely used at homes and industries because they are 

simple, inexpensive and have high sensitivity to gas molecule. They are classified as 

potentiometric, amperemetric and conductivity according to their working principles. 

 

2.2.5. Catalytic Gas Sensors 

 

 Called as pellistors, catalytic gas sensors are known as the first chemical gas 

sensors and they have been in use for more than 50 years to detect the presence of 

combustible gases. They were also used to monitor gas in coal mines at first. Because of 

having simple structure, manufacturing of it is easy. In its simplest form, as used in the 

original design, it was comprised of a single platinum wire. Catalytic bead sensors have 

been produced in all over the world by a large number of different manufacturers, but 

the performance and reliability of these sensors varies widely among these various 

manufacturers. The working principle of a catalytic gas sensor is based on gas 

oxidation: the combustible gas coming in contact with the catalyst surface is oxidised. 

The reaction, releasing heat, gives rise to changing of the resistance of the wire. A 

catalytic gas sensor is a kind of calorimeter and the coils are typically made from 

platinum wire in order to provide stability with known temperature characteristics. This 

type of gas sensors is sensitive to hydrocarbon-based flammable gases.  
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2.2.6. Piezoelectric Gas Sensors 

 

 Piezoelectric crystals (quartz crystal microbalance (QCM)) and surface acoustic 

wave method (SAW) are implemented for sensor applications that use the piezoelectric 

nature. Discovered first by Lord Rayleigh, SAWs are also known as Rayleigh waves. 

There are numerous applications areas of surface acoustic wave technology including 

filters, oscillators, transformers, and sensors. A SAW is a type of mechanical wave 

motion travelling along the surface a solid material and its amplitude decays 

exponentially with depth into the substrate. A general property of all types of SAWs is 

that the energy is mostly localized near the surface, within a depth of about one 

wavelength. The energy spreads out in the two-dimensional interface region instead of 

propagating throughout the whole three-dimensional medium, meaning that the 

propagating wave is confined to the top surface of the substrate(Hess, 2002). On 

account of this, the SAW is quite sensitive probe to investigate mechanical and 

electrical properties on the surface of it. A basic structure of a SAW device is illustrated 

in Figure 2.10. 

 

 

 

Figure 2.10. Basic structure of a SAW device 

 

 Today, SAWs are generally used as chemical gas and biosensor. A basic SAW 

consists of two interdigital transducers (IDTs) on a piezoelectric substrate such as 

quartz to convert electrical energy into an acoustic wave. The input IDTs launches 

SAW whereas the output IDTs receives. Response of gas sensor to the analyte is 
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determined by calculating phase shifts of progressive acoustic waves moving along the 

surface of the material. Being one of the piezoelectric based gas sensing method, Quartz 

crystal microbalance (QCM) technique will be discussed in section 2.3 in detail. 

 

2.3. Theoretical Foundations 

 

2.3.1. Piezoelectric Effect and Principle of QCM 

 

 The piezoelectric effect is the property of a material to convert electrical signals 

into mechanical energy and mechanical energy into electrical signals. Piezo is a Greek 

word and its means “press”. Piezoelectric effect was first discovered by Pierre and Paul-

Jacques Curie in 1880-81. They realized that when an external force was exerted on 

single crystal of some specific materials, like quartz, they generated a surface charge on 

the crystals that is proportional to the mechanical pressure applied to the related 

material. Conversely, after one year, they also discovered applying voltage will give rise 

to the mechanical deformation of the crystal lattice(Kirschner). Since piezoelectric 

material converts electrical energy into mechanical energy, it is used in actuator 

technology. Piezoelectric materials can be classified as ceramic and crystal materials 

that are non-conductive materials. In addition, this effect is merely seen anisotropic 

crystalline materials. The polarization of the unit cell (net spontaneous charge 

distribution) will be zero, if the unit cell of a crystal is isotropic (symmetrical). Unit 

cells with asymmetric structure (anisotropic) show a net polarity, though(Madou, 2002).  

 BaTiO3, PbTiO3 - PbZrO3, synthesized from the oxides of lead, titanium and 

zirconium, are well known piezoceramics. In addition, special doping of leadzirconate-

titanate ceramics (PZT) with Ni, Bi, Sb, Nb ions make it possible to adjust individual 

piezoelectric and dielectric parameters as required. These materials are not ferroelectric 

above a characteristic temperature, known as the Curie temperature. The Curie 

temperature (Tc) is used to describe the temperature where a material's spontaneous 

electrical polarisation changes to induced electric polarisation, or vice versa. It is known 

that ferroelectric, dielectric (paraelectric) and piezoelectric all have electrical 

polarisation. There is a spontaneous electrical polarisation when no electric field is 

present in ferroelectric materials, whereas for dielectric materials there is electrical 

polarisation aligned only in the presence of an electrical field for them. However, 
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piezoelectric materials have electrical polarisation on account of deformation of 

structure from pressure(Guinier and Remi, 1989; Hook and Hall, 2000; Myers, 1997). 

Hence, the materials mentioned above are in a paraelectric state meaning that no dipole 

is present above Tc. However, below the Curie point of the material, the cubic, 

electrically neutral crystalline form gives way to lattice distortions, giving rise to the 

formation of dipoles and rhombohedral and tetragonal crystallite phases, which are of 

interest for piezo technology. 

 The idea to use piezoelectric effect as a mass sensor, which is still the basis for 

many sensor applications, comes from Sauerbrey. He discovered that resonant 

frequency shifts is caused by mass changes of the material deposited onto the crystal 

surface, and he also stated that these frequency shifts are independent of the physical 

properties of the coated material(Sauerbrey, 1959). His findings indicate that with a 

simple measurement of frequency shift, mass change on the crystal may be observed 

without having to know the physical properties of the material. Since quartz crystal 

microbalance method based on piezoelectric effect is an easy technique to implement, it 

is used in many sensing applications, as well as in thin-film coating systems and 

thickness monitors. 

 A quartz crystal microbalance (QCM) consists of a thin quartz disk sandwiched 

between two metal excitation electrodes. QCM method is based on the frequency shift 

caused by adsorption or desorption of molecules by material that is coated on surface of 

QCM analysis. QCMs gained importance for the purpose of monitoring thickness of the 

film in vacuum coating systems in 1960s and 70s. In a similar manner, the sensitive 

receptor on electrodes can be used as gas sensors on the basis of adsorption of 

molecules in the environment (Buck et al., 2004; Janshoff et al., 2000). 

 Quartz used in this method is one of the most abundant mineral in nature. Pure 

form of silicon dioxide crystals (SiO2) is called as quartz. The density of it is 2.65 

g/cm
3
, its melting temperature is 1650 

o
C. The crystal structure of silicon dioxide 

changes when it is heated to 573 
o
C. Quartz heated more than this transition temperature 

is called as the beta-quartz, and quartz at below this temperature is called the alpha-

quartz. Since alpha-quartzes are superior in terms of mechanical and piezoelectric 

properties, they are generally preferred in resonator applications. 

 



20 

 

 

 

Figure 2.11. Pure Quartz crystal and different quartz crystal cuts 

 

 Vibrational frequency of quartz crystal used as resonator depends on the shape 

or cutting angle of the crystal. Selection of this cutting angle according to the 

application requirements determines the vibration modes. The AT-cut BT-cut, SC-cut, 

IT-cut, FC-cut crystals, which are presented in Figure 2.11, are used for different 

application purposes. The AT-cut quartz crystal is commonly used in QCM 

experiments. Only if the quartz crystal plate is cut to a specific orientation with respect 

to the crystal axes, the acoustic wave can propagate in a direction perpendicular to the 

crystal surface due to the fact that a QCM is a shear mode device(Ebersole et al., 1990). 

These specific cuts, shown in Figure 2.12, are representative. 

 

 

 

Figure 2.12. AT-cut and BT-cut crystals 
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 Commercially, crystal oscillators having natural frequency of up to 100 MHz 

can be found. Vibrating crystals in the frequency range of 5-30 MHz are preferred in 

gas sensor applications. The AT-cut is widely used in QCM applications because of its 

low temperature coefficient at room temperature, meaning that small changes in 

temperature only result in small changes in frequency. In Figure 2.13, resonant 

frequency versus temperature for different cut angles of pure quartzes is given. AT-cut 

has quite good performance over a wide temperature range. The cut is made from a Y 

bar at 35°15` theta rotation because the temperature stemming from heat that is 

produced by electronic devices is between 50-70 
o
C. Between this temperature range, 

the AT-cut quartz crystal (cutting angle 35°15`) has the lowest temperature coefficient. 

 

 

 

Figure 2.13. AT-cut angle of quartz crystal and natural vibration frequency, temperature 

and cut angle dependence of quartz crystal 

 

 Due to these properties, AT- cut quartz crystals are the most suitable one for 

QCM applications(Bottom, 1982). In QCM technique, mostly disk shaped oscillators 

that have basic vibration frequency ranging from 5 to 30 MHz are used. This vibration 

frequency (fR) depends on the thickness of crystal, as well. In Figure 2.14, cross-

sectional and surface-view of a quartz crystal is seen.  

 Gold electrodes, which do not interact with the coated material and oxygen, is 

formed by lithographic techniques or vacuum deposition on both sides of the quartz 

crystal that is cut in a certain angle and size. The electrodes are used to stimulate the 

acoustic waves. As seen in figure, receptor chemical material to interact with the analyte 

gas is coated as a thin film via one of coating methods on these gold electrodes. 
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Figure 2.14. Cross-sectional and surface-view of a quartz crystal microbalance 

 

 In Figure 2.14, a schematic representation of the quartz crystal of thickness t and 

weight m are given. At resonance frequency, the wavelength λ is 

 

  
  

 
 

 

where n is the harmonic number. This equation holds true since the QCM is 

piezoelectric material and an oscillating electric field applied across the device induces 

an acoustic wave propagating through the crystal and meets the minimum impedance 

(corresponding resonance frequency) when the thickness of the device is a multiple of a 

half wavelength of the acoustic wave (Ebersole et al., 1990). In addition, for n=1, the 

frequency is F and for higher harmonics n should be more than 1. The acoustic shear 

wave velocity ν is defined as  

 

     

 

therefore, the frequency will be as follows 

 

  
 

  
 

 The shift stemming from the small change in thickness can be obtained by 

differentiating both side of last equation with respect to t. After differentiating it, the 

following equation is obtained; 

(2.1) 

(2.2) 

(2.3) 
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Dividing equation 2.4 by 2.3 gives the frequency stability, that is; 

 

  

 
  

  

 
 

 

Equation 2.5 can be written in terms of mass of the coated film per unit area M and 

change in the mass per unit area ΔM, namely; 

 

  

 
  

  

 
 

 

In this derivation, the net change in mass ΔM is assumed to be homogenously 

distributed over the surface of the crystal. Therefore, mass change in mass per unit area 

ΔM is proportional to total mass change on the surface of crystal ΔMkristal. This means 

acoustic shear wave velocity acts the same over the entire crystal surface. If M and ΔM 

in equation 2.6 are written in terms of the density of material deposited on unit area of 

thin film ρf and thickness of it tf, then the frequency stability or relative frequency 

change will be; 

 

  

 
  

    

  
 

 

In addition, the resonance frequency F in equation 2.3 is substituted in 2.7, then 

 

  

 
  

      

  
 

 

 

or 

    
  

   
  

  
 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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Here, F, ρ and ν are constants that are directly related to the production of crystal. 

According to this equation, QCM can be used as a thickness monitor if the density of 

the coated material is known. By using equation 2.8, a crystal constant can be defined, 

that is; 

 

   
 

  
 

 

In that case, the relationship between frequency shift and mass change will be; 

 

       
     

 

Therefore, the change in resonance frequency will be; 

 

   

 
         

 

This equation is known as Sauerbrey equation(Sauerbrey, 1959). Different derivation 

methods and forms of this equation are also available, however, in essence, the change 

in mass of the material deposited on the crystal can simply be obtained only with the 

help of measured resonance frequency shift. That is, the shift in frequency is directly 

related with the change in mass. 

 

    
   

 

 √  
 

  

 In equation 2.13, f0, A, µ and ρ are the resonance frequency of fundamental 

mode of the QCM crystal, the area of the gold disk coated onto the quartz crystal, shear 

modulus of quartz and density of the crystal, respectively. The QCM, used in this study, 

works with oscillation frequencies between 7.995 MHz and 7.950 MHz.  AT- cut quartz 

crystals with a fundamental frequency of 7.995 MHz were obtained from International 

Crystal Manufacturing Co. (ICM). The density (ρ) of the crystal is 2.684 g/cm
3
, and the 

shear modulus (μ) of quartz is 2.947 × 10
11

 g/cm s
2
. That is, around oscillation 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
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frequency of 7.995 MHz, a net change of 1 Hz corresponds to 1.34 ng of gas molecules 

adsorbed or desorbed onto the crystal surface of an area (A) of 0.196 cm
2
. Sauerbrey 

equation has been developed to investigate the vibration characteristics of solid 

materials coated on the electrode in air. 

 QCM was used only for gas phase applications until 1980. In 1985, QCM 

measurements were performed in the liquid phase and it was demonstrated that QCM 

could oscillate in a stable manner in liquid environment(Kanazawa and Gordon, 1985). 

It was seen that the change in resonant frequency is proportional to the multiple of 

density and viscosity of liquid. 

 

2.4. Calixarenes 

 

 In studies conducted within the area of supramolecular chemistry, new synthetic 

methods in research topics such as allosteric effect, signal transfer, catalysis, and guest-

host chemistry have been developed. In this field, various methods have been applied to 

synthesize macromolecules having appropriate functional groups. Examples to these 

materials are crown ethers, kryptans, cyclofans, and cyclodextrines(Bender and 

Komiyama, 1978; Izatt et al., 1992; Lehn, 1988; Pedersen, 1967; Szejtli, 1988). 

 Calix[n]arenes are ring-structured macrocyclic compounds, formed by 

connection of aromatic units via methylene bridges. Known as third generation 

supramolecular compounds alongside crown ethers and cyclodextrines, calixarenes are 

obtained by the condensation reaction of phenyl and formaldehyde in basic 

environments. Etymologically, the word calix[n]arene is from the Greek word “calix” or 

“chalice”, meaning “bowl” and “arene”, the name of aromatic hydrocarbon structures in 

chemical nomenclature. The number “n” in square brackets indicates number of rings in 

the calixarene molecule. Figure 2.15 shows the general structure of calix[4]arene for 

n=4. 
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Figure 2.15. General structure of calix[4]arene 

 

German organic chemist Adolph von Baeyer first obtained phenol formaldehyde 

resin in 1872 by reacting phenol and formaldehyde(von Baeyer, 1872). In the following 

years, Leo Hendrik Baekeland invented bakelite, which does not dissolve in any organic 

solvent, insulating and nonflammable, by cross linking the phenol formaldehyde resin 

which Baeyer had obtained, and patented it in 1908(Baekeland, 1909). This obtained 

resin was first known as “phenoplast” and besides being an instant commercial success, 

it raised the attention of industrial and academic researchers on phenol formaldehyde 

chemistry. Along these researchers Alois Zinke obtained a product with low solubility 

and high molecular weight during their studies on macro cyclic compounds by reacting 

p-ter-butyl phenol and aqueous formaldehyde in a basic environment, and speculated 

that this product was a cyclic tetramer(Zinke and Ziegler, 1944). Subsequent 

developments in the field of macro cyclic compounds revealed that the compound 

which Zinke had synthesized was not only in a single tetrameric structure but rather was 

a product mixture(Gutsche and Muthukrishnan, 1978). 

 Gutsche managed to efficiently synthesize p-ter-butylcalix[4]arene, p-ter-

butylcalix[6]arene and p-ter-butylcalix[8]arene separately and with high purity by 

optimizing the reaction conditions of p-ter-butyl phenol and formaldehyde in a basic 

medium(Gutsche and Iqbal, 1990). Today, various (9-20) aromatic ring constituent 

calixarenes have been synthesized. 

 NMR studies has shown that calix[4]arene exists in solution with four different 

conformations: cone, partial cone, 1,3-alternate and 1,2-alternate structures. 
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Figure 2.16. Different conformations of p-tert-butyl calixarene 

 

 Due to their excellent sorption capabilities and stable structures, calixarenes are 

valuable compounds for sensor applications. 

 The primary reason that calixarenes are preferred in favor of other 

supramolecules in synthesis is their ability to be extensively functionalized either via 

the p-site of the phenyl ring (upper rim) or the phenolic oxygen (lower rim) by various 

functional groups depending on the desired purpose(Sayin et al., 2011). Alongside this 

aspect, both the effect of bonding functional group and calixarenes’ ability to make 

guest-host type complexes drive the utilization of these compounds in many areas, 

especially sensors. 

 Hole diameters of phenolic O sites for calix[4]arene, calix[6]arene and 

calix[8]arene are 3 Å,  7.6 Å and 11.7 Å, respectively. In case designed with appropriate 

functional groups, calixarenes can selectively carry desired molecules. In this regard, 

calixarenes can be developed by functionalizing with functional groups such as 

amine(Ferguson et al., 1987), ester(Zheng et al., 2004), amide(AnthonyáMcKervey, 

1992), ether(Zheng and Zhang, 2004), alcohol(Chang et al., 1987), carboxylic 

acid(Bocchi et al., 1982)  and crown ethers(Arnaudneu et al., 1989). 

 With their excellent sorption capabilities, ability to retain stable structures and 

technologically viable properties, calixarene compounds used in this thesis are suitable 

for sensor applications. A variety of studies exist in literature about synthesis of 

calixarenes with various functional groups, but recently, application related research has 

increased by the growing interest stemming from utilization of calixarenes as gas and 

ion sensors based on their guest-host chemistry. In sensor applications; ISFET, ISE, 

optical transducer and QCM methods are widely used. 
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 Calixarenes, along with crown ethers and cyclodextrines, belong to the 

supramolecular host group. Supramolecular chemistry investigates intermolecular 

forces known as “weak forces” such as hydrogen bonding, ion-dipole, dipole-dipole 

interactions and Van der Waals forces. With respect to the sizes of interacting 

molecules, supramolecular chemistry is classified as guest-host chemistry, molecular 

topology and molecular combination. 

 In order to utilize as chemical sensors, calixarenes must exhibit selectivity and 

sensitivity to only a defined type of molecule. This peculiarity can be realized by 

molecular identification principles and guest-host interactions. Host molecules designed 

with these considerations in mind must bear the features below: 

1. Host molecules must be functionalized with structures of chemistry that will 

bond to detected species with weak electrostatic forces. 

2. Host molecule must have adequate molecular space compatible with the 

detected molecule or ion. 

3. Guest or host molecules must yield measurable physical or chemical quantities 

as they are bonded. 

 In simplest terms, guest-host chemistry can be explained by the settling of 

organic guest molecule or ion into the cavity of the bigger macrocyclic host molecule 

with non-covalent weak bonds. This mechanism is illustrated schematically in Figure 

2.17. 

 

 

 

Figure 2.17. Host-guest interactions in supramolecular systems 

 

 With their applicability as host molecules, calixarenes are frequently utilized in 

sensor applications. 
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 In a study, calixarenes, whose chemical structure is depicted in Figure 2.18, 

were used by alkylation in various conformations as NO2 sensors(Ohira et al., 2009). 

 

 

 

Figure 2.18. Calixarenes used as NO2 sensor 

 

 In another study, acoustic wave sensors which were coated with 4 calixarene 

compounds that had chemical structures depicted in Figure 2.19 were investigated with 

piezoelectric transducers. Characteristic frequency responses for 22 volatile organic 

gases were given. This mechanism was proposed to be formed by the C-H…..π 

interaction between the methyl groups of volatile organic gases and phenyl ring of the 

calixarene molecule. 

 

 

 

Figure 2.19. Acoustic wave sensor based on calixarenes 
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 In a different study, after functionalizing p-ter-butylcalix[4]arene and p-ter-

butylcalix[6]arene molecules with different groups, design and production of chemical 

gas sensor series depending on discontinuous gold films’ conductive modulations 

deposited over dielectric substrates were investigated(Filenko et al., 2005; Kalchenko et 

al., 2002). Reactions of these calixarene structures to alcohol derivatives such as H2O, 

MeOH, and EtOH were electrically measured. 

 In another work, sensitivity studies were conducted against NO2 gas 

concentrations varying between 0.13 and 4.6 ppm by forming Langmuir-Blodgett (LB) 

films with calix[8]arene molecules functionalized with C(CH3)3 and CH2CO2 groups 

and sensitivity of synthesized calixarenes under 1 ppm NO2 gas concentration was 

reported(Richardson et al., 2006b). 

 In a study which QCM method was involved, calixarene molecules, whose 

structures were depicted in Fig. 2.37, were covalently bonded onto gold QCM 

electrodes by SAM (self-assembled monolayer) technique and their sensitivity 

characteristics to various butylamine volatile gases were investigated(Yuan‐Yuan et al., 

2005). 

 

 

 

Figure 2.20. Calixarene molecules synthesized to detect volatile organic compounds 

 

 In other studies calixarene molecules were employed as sensor materials, quartz 

crystal sensor arrays were formed with calix[4, 6, 8]arene molecules bearing different 

functional groups by using vacuum thermal coating, thin/thick distillation, LB, and 

spray techniques and selectivity-sensitivity characteristics of these arrays to volatile 

organic compounds such as benzene, toluene, chloroform, dichloromethane, 

chlorobenzene were assessed in three different gas systems via QCM 
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technique(Kalchenko et al., 2002; Koshets et al., 2005). Humidity sensor studies 

conducted with calixarene molecules also exist in literature. Using p-

sulphonatecalixarene derivatives, Okur et al. investigated their responses under varying 

environmental humidity conditions by QCM method(Okur et al., 2010). 

 

 

 

Figure 2.21. Humidity sensing properties of a sulphonate calixarene derivative 

 

 In recent literature, sensor studies were conducted with calixarenes using 

converters such as ISFET and ISE to detect some metal anion and cations. Some of 

these studies can be referred as follows; Ag
+
(Chen et al., 2000), Hg

2+
(Talanova et al., 

1999), Ni
2+

 (Ma et al., 2001), Th
4+

(Demirel et al., 2003), Na
+
 (Kimura et al., 1990), 

K
+
(Katsu et al., 2005), Cd

2+
(Zhang and Huang, 2001), Pb

2+
(Buie et al., 2008), 

Mn
2+

(MALKHEDE et al., 1999), Co
2+

(Gupta and Khopkar, 1995) and Tl
+
(Talanova et 

al., 2005). 

In current literature, materials such as SnO2, ZnO, ZnO-CuO, In2O3, WO3-In2O3 

have been studied by various different methods to detect the carbon monoxide (Choi 

and Choi, 2000; Khatko et al., 2005; Yoon and Choi, 1997). However, no study has 

investigated carbon monoxide sensing applications with iron doped calixarene 

molecules. 
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CHAPTER 3  

 

EXPERIMENTAL DETAILS 

 

 In this study, the sensitivities of various iron doped and undoped calixarene 

molecules to CO gas were investigated by using QCM technique and measuring the 

change in electrical resistance. In this section, the gas flow system and measurement 

system designed to carry out this study, the photolithography technique used to fabricate 

interdigitated electrodes (IDE) and sensor design, iron doping process of functional 

calixarene molecules and preparation of thin films of these molecules are described in 

detail. 

 

3.1. Gas Flow Control and Measurement System 

 

 The designed system consists of three main parts. The first part sends the 

adsorption and desorption gas to the test cell by using the gas flow meters connected to 

the gas control unit. In the second part, there is a leakproof gas test cell. The undoped 

and doped calixarene films coated on QCM and IDE electrodes gave response as a 

signal to the sent gas. While the signals coming from QCM with a frequency counter 

connected to a computer, the electrical signals are measured with a computer-controlled 

Keithley 2636A with constant DC voltage between gold electrodes. 
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Figure 3.1. Schematic of gas flow system 

 

 A schematic of the experimental setup is shown in Figure 3.1. A time-resolved 

electrochemical quartz crystal microbalance (EQCM) with the model of CHI400B 

Series from CH Instruments (Austin, USA), shown in Figure 3.2, was used to measure 

the change in the resonance frequency of quartz crystals between gold electrodes via 

both serial and USB interface connected to a computer. The QCM works with 

oscillation frequencies between 7.995 MHz and 7.950 MHz. AT- cut quartz crystals 

with a fundamental frequency of 7.995 MHz were obtained from International Crystal 

Manufacturing Co. (ICM). The density (ρ) of the crystal is 2.684 g/cm
3
, and the shear 

modulus (μ) of quartz is 2.947 × 10
11

 g/cm s
2
. According to the Sauerbrey equation, 

around oscillation frequency of 7.995 MHz, a net change of 1 Hz corresponds to 1.34 

ng of gas molecules adsorbed or desorbed onto the crystal surface of an area of 0.196 

cm
2
. Gas flow into test cell are supplied by two CO and N2 calibrated mass flow meters 

(MKS,179A Mass-Flo®) and RS232 controlled gas flow control unit (MKS). 
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Figure 3.2. CHI400A EQCM 

 

 

 

 

 

Figure 3.3. Coated and uncoated QCM electrodes 
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Figure 3.4. MKS 179A Mass-Flo® flow meters 

 

 A multichannel controller providing both pressure and flow control with the 

model of 647C Four channel Mass Flow from MKS Instruments has been used to 

control the mass flow meters. MKS instrument is controlled via RS232 interface using 

labview program. With the gas flow rate, the desired interaction times can be controlled. 

MKS 647C and Keithley 2636A are displayed in Figure 3.5.  

 

 

 

Figure 3.5. MKS 647C and Keithley 2636A Sourcemeter 

 

 In this study, high purity nitrogen (N2) gas is used as desorption gas, while the 

tested CO gas with a concentration of 10000 ppm is used as active gas. The adsorption 

and desorption kinetics of coated films can be investigated by both QCM and IDE 
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electrodes fabricated by using lithography techniques, hence these are the methods used 

to study sorption kinetics of iron doped and undoped various calixarene molecules.  The 

gas test cell is put in a metal box so that it is not affected by environmental effects and 

this box is always pumped down in case of gas leakage. In addition, an industrial CO 

gas detector from Industrial Scientific with the model of M40, sensitive to even 1 ppm 

of CO, was used for gas leakage security purpose. The entire system was also remote 

controlled to carry out studies safely. In Figure 3.6, the experimental system, including 

gas test cell, is illustrated. 

 

 

 

 

Figure 3.6. The box including test cell and the whole experimental setup 
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3.2. Device Fabrication (IDE): Photolithography Technique  

 

 In order to fabricate interdigitated electrodes, photolithography technique was 

utilized. Fabrication of IDE requires  well cleaned substrate. Hence, the process was 

started with cleaning procedure. Ultrasonic cleaning was used for cleaning process to 

remove some defects stemming from dust or some other types of particles. Glass used 

as substrate was rinsed in acetone, ethanol, iso-propyl alcohol and water for fifteen 

minutes in ultrasonic cleaner, respectively. Then, nitrogen was used to dry substrate. 

Finally, plasma cleaning (with oxygen plasma) process was performed. Plasma cleaning 

with oxygen plasma removes neutral and technical oils and grease at nanoscale and 

reduces contamination as seen in Figure 3.7. 

 

 

 

 

 

Figure 3.7. Schematic of plasma cleaning procedure 
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Figure 3.8. (a) and (b) Evaporation system with plasma cleaning option (c) during  

plasma cleaning (d) schematic of evaporation 

 

 Figure 3.8 illustrates the evaporator system, equipped with plasma cleaning 

system. In this system, energetic oxygens are used to remove contaminants.  This 

cleaning procedure made substrate suitable for lithography process. 

 After the cleaning procedure, the vacuum thermal evaporation technique seen in 

Figure 3.8(d) was used to deposit metal layers on substrates. This technique includes 

evaporation of the material in filament boat heated by high current source and 

recondensation of the material with vapour state onto cooler substrate. Deposition and 

thickness of film on the substrate are controlled by a shutter and it also provides good 

quality thin films which does not have contamination coming from other materials in 

the boat at the starting of evaporation. For the good quality thin film, evaporation was 

done in vacuum around 10
-6

 Torr. First the glass substrates were coated with a few 

nanometer chromium layer. The Cr was used as interlayer between gold and substrate 

(d) 
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since Cr gives good mechanical adhesion. Then, a gold layer with a thickness of 60 nm 

was deposited on Cr layer by using thermal evaporator.  

 After coating substrate with Cr and gold, respectively, the process continued 

with the photolithography procedure including following steps; spin coating, soft (pre) 

baking, alignment and exposure, developing and etching. The photolithography steps 

were performed in class 1000 clean room as illustrated in Figure 3.9. 

 

 

 

Figure 3.9. Class 1000 clean room 

 

 There are two types of photoresist which are used in micro fabrication; positive 

and negative photoresist. Both of the resists consist of organic molecules. When a 

positive resist is exposed to UV, the polymers break up in smaller parts. Breaking of 

chains makes the exposed material more easily dissolvable. When the resist-coated 

substrate immersed into a special solvent, only the resist in exposed parts will be 

washed away. The process will be reversed for the negative photoresist. That is, when a 

negative photoresist is exposed, the monomers will cross link and forms polymer which 

is no longer dissolvable. Only the photo resist in exposed areas will remain on the 

surface after the development. In spin coating step, spin coat Ge-8 (from Speciality 

Coating System, Inc.) was used as a spin coater as depicted in Figure 3.11. AZ 1505 

was used as positive photoresist. Spin coating process was performed at 4600 rpm for 

50 s.  
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Figure 3.10. Photolithography steps. (1) cleaning, (2) Cr film deposition, (3) Au film 

deposition, (4) positive resist coating, (5) UV light exposure, 

(6)development, (7) Au etching, (8) Cr etching 

 

 After spin coating, soft baking was applied in order to improve photoresist-

sample surface adhesion and promote uniformity and drive off most of solvent in 

photoresist. In our experiments, baking temperature and time were respectively 

determined as 90
o
C and 50s on a hot plate (see Figure 3.11) by taking photoresist 

characteristics into account.  
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Figure 3.11. (a) Hot plate, (b) spin coater, (c) mask aligner and (d) mask 

 

 Transfer of mask image, illustrated in Figure 3.12, to the resist coated sample 

occurred in alignment and exposure step by activating photosensitive components of 

photoresist. (The width and separation of fingers are 3µm.) Hence, in this step, a mask 

aligner system from OAI was used, as seen in Figure 3.11. After several training, the 

appropriate exposure time was determined as 3s for our work. After exposure of 

photoresist, the sample was dipped into the developer (AZ 726 MIF) for 3s to remove 

the exposed area. Then, the sample was dipped into distilled water to stop the 

developing process. At the end of the step, visible patterns appeared on the sample and 

the sample was inspected to verify the quality of pattern via optical microscope. 
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Figure 3.12. Mask design used to expose positive photoresist 

 

 The photolithography process has determined up to now. After lithography, 

there would be regions without resist on the surface of sample. That is, the unexposed 

areas remained as protective layer. The next step was to remove Au layer on which 

there was no photoresist. Hence, a chemical solution called Aqua regia 

(nitrohydrochloric acid) which is a highly corrosive mixture of acids formed by freshly 

concentrated nitric acid and hydrochloric acid in a volume ratio of 1:3 was used to 

remove Au gold layer, as seen in Figure 3.13(a). This solution etches or dissolves gold 

layer. After dipping sample into aqua regia for approximately 5s, the sample was put 

into distilled water to stop etching process. The step after etching gold layer is to 

remove Cr layer. In order to get rid of Cr layer, Cr etchant which was bought from 

microchemicals was used. (see Figure 3.13(b)) 

 

 

 

Figure 3.13. Aqua regia (Au etchant), (b) Cr etchant 



43 

 

 

 After removing Cr layer, the photoresist used as protective layer was removed 

by dipping sample into acetone in ultrasonic bath for 10 minutes.  In order to clean 

sample, it was dipped in isopropanol in ultrasonic cleaner and finally nitrogen was used 

to dry the sample.  

 At the end of processes, desired pattern was created on substrate. Table 3.1 

summarizes all parameters used in photolithography process. 

 

 

Table 3.1. The parameter values used in photolithography process 

 

Photoresist Spin speed 
Softbake and 

temperature 
Exposure time 

Development 

time 

Positive 4600 rpm 50 sec, 90
0
C ~3 sec ~3 sec 

 

 

3.3. Iron Doping Procedure of Various Functional Calixarene 

Molecules and Preparation of QCM Electrodes 

 

 When doping calixarene molecules with iron, the calixarene molecules, which 

contain amine groups, were preferred so that the acid-base reaction could take place. 

The molecular structure and chemical name of calixarene molecules used in this thesis 

are given in Table 3.2.  The calixarene molecules used in this thesis have been 

synthesised by Prof. Dr Mustafa Yılmaz, Serkan Sayın and his group in Selçuk 

University. The synthesis procedures of two calixarene molecules are briefly given. 

Since this thesis is supported by Turkish Scientific Association (TUBITAK) under 

project number TBAG 109T240, the information about synthesis process of other 

calixarene molecules can be found in final report of that project.  
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Table 3.2. Molecular structures and chemical names of each calixarene molecule used 

in this thesis 

 

 

Molecules 

 

Chemical name Molecular Structure 

Calix   1 p-tert-butyl calix[4]arene 

 

Calix   6 
5,11,17,23tetra-4-(ethyl amino methyl) pyridyne-

25,26,27,28-tetra-hydroxy calix[4]arene 

 

Calix   8 
2-(2-Aminoethyl Amino)-5-nitro pyridyl containing 

calix[4]arene diamide derivative 

 

 

(cont. on next page) 
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Table 3.3 (cont.) 

 

Calix 17 

5,11,17,23-tetra-tert-butyl-25,27- 

di hydrazine amide carbonyl 

metoxy-26,28-dihydroxy-

calix[4]arene 

 

Calix 18 

5,17-bis[(N-

methylglucamine)methyl]-

25,26,27,28-

tetrahydroxycalix[4]arene 

 

Calix 19 

 

 

5,11,17,23-tetra-tert-butyl-25,27-

di(benzhydrazidylmetoxy)-

26,28-dihydroxy-calix[4]arene 

 

 

 

 

 The synthesis process of calix 18 and calix 19 are given below. 

 

Synthesis of Calix 18 (5,17-bis[(N-methylglucamine)methyl]-25,26,27,28-

tetrahydroxycalix[4]arene):(Sayin et al., 2010) 

 

  4 mL of glacial acetic acid, 26.085 mmol of N-methylglucamine, and 37% 

aqueous formaldehyde (1.25 mL) were added into a solution of 4.7 mmol of 

calix[4]arene ,synthesized according to previous procedure(Gutsche and Nam, 1988), in 

150 mL of THF. The resulting solution was stirred at room temperature for 20 days 

OHOH
OO

O O
NHHN

NH2 H2N

OHOH
OHOH

N N

OH
HO

OH HO

OH
HO

HOOH

OH HO

OHOH
OO

NH
HN

HN
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O
O
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while monitored by TLC. Before adding methanol, the solvent has been removed under 

vacuum. The remaining precipitate was filtered off and was evaporated. The received 

product was washed with water and dried under vacuum. 39% yield: mp: >350
o
C 

1
HNMR (400 MHz DMSO):  2.49 (s, 6H, –CH3), 3.16–3.63 (br, 34H, –CH2–N–, –

CH–, –CH2–, ArCH2 Ar, –OH, Ar–CH2–N–,), 4.23 (d, 4H, J= 19.6 Hz, ArCH2 Ar), 

6.33–6.86 (br, 10H, ArH). Anal. Calcd. For C44H58N2 O14; 62.99, C; 6.97, H; 3.34, N. 

Found: 63.02, C; 6.88, H; 3.32, N. 

 

Synthesis of Calix 19 (5,11,17,23-tetra-tert-butyl-25,27-di(benzhydrazidylmetoxy)-

26,28-dihydroxy-calix[4]arene): (Sayin and Yilmaz, 2011) 

 

 To a solution of dialkyl bromide of p-tert-butylcalix[4]arene (1.0 g, 1.12 mmol) 

in 40 mL of CH3CN were added 0.7 g of K2CO3, 0.67 g of NaI, and benzhydrazide 

(2.53 g, 18.57 mmol), and the reaction mixture was stirred and heated under reflux. The 

reaction was monitored by using a TLC. After 4 days, the reaction mixture was filtered 

off, and the solvent was removed under reduced pressure. The residue was dissolved in 

150 mL of CH2Cl2. The organic layer was extracted three times with water. The organic 

phase was dried (anhydrous MgSO4); the solvent was removed under reduced pressure. 

In order to remove impurities, the crude product was precipitated by the addition of 

CH3OH and filtered off. The solvent was evaporated and dried. A brown powder 

remained with 98 % yield, m.p.: (161 to 164)
o
C. The IR spectral data of 3 are (KBr 

disk) cm
-1

: 1638(-NCd=O). 
1
HNMR (400 MHz CDCl3): δ 1.18 (s, 18H, Bu

t
), 1.22 (s, 

18H, Bu
t
), 2.38-2.42 (m, 4H,-CH2-), 3.37 (d, 4H,J =12.8 Hz, Ar-CH2-Ar), 3.54-3.57 (m, 

2H, -NH-), 3.76 (t, 4H, J = 6.8 Hz,-CH2-), 4.18 (t, 4H,J = 4.8 Hz,-CH2-), 4.29 (d, 4H, J 

= 12.8 Hz, Ar-CH2-Ar), 7.01 (s, 4H, ArH), 7.06 (s, 4H, ArH), 7.39 (s, 2H,-OH), 7.47 (t, 

4H,J = 7.2 Hz, ArH), 7.54 (t, 2H, J = 7.2 Hz, ArH), 7.88 (d, 4H, J = 8.0 Hz, ArH), 9.10 

(s, 2H,-NH). Anal. Calcd for C64H80N4O6 (%): C, 76.77; H, 8.05; N, 5.60. Found (%); 

C, 76.94; H, 7.91; N, 5.77. 

 Since this research was supported by TUBITAK (Turkish Scientific 

Association) under project number TBAG 109T240, same name as in this project which 

are Calix 1, 4, 6, 8, 17, 18 and 19 were used for simplicity. Here, calix 1 was used as 

reference molecule due to the fact that it does not have any functional group and it was 

used to investigate the effect of functional groups on CO sensitivity. Two different 

compounds which contain iron molecules were used to dope calixarene molecules. 
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These compounds were iron (III) nitrate (Fe(NO3)3.9H2O) and iron (III) chloride 

(FeCl3.6H2O). For simplicity, these iron-containing compounds were named as Fe(1) 

and Fe(2), respectively. First, solution of each bare calixarene was prepared in order to 

dope each calixarene molecule with iron. To prepare these solutions, 2.054 mg of Calix 

6, 2.15 mg of Calix 8, 1.58 mg of Calix 17, 1.6 mg of Calix 18 and 1.66 mg of Calix 19 

were solved in 5 ml of chloroform, respectively. After preparation of bare calixarene 

solutions, iron compounds were prepared to dope each calixarene molecule. That is, 4.1 

mg of Fe(NO3)3.9H2O compound was solved in 5 ml of ethanol. In addition, iron (III) 

chloride was already in liquid form. These prepared iron-containing solutions and bare 

calixarene solutions were mixed together in equal amount (0.5 ml) separately. This 

procedure has been done for each calixarene molecule. The Figure 3.14 shows solutions 

of bare calixarene, Fe(1) doped calixarene and Fe(2) doped calixarene molecule. 

 

 

 

 

Figure 3.14. Bare calixarene, Fe(1) doped calixarene, Fe(2) doped calixarene 

 

 As to preparation of QCM electrodes, this process starts with cleaning 

procedure. To do this, the following procedure was performed. QCM electrodes were 

rinsed in acetone, ethanol, propanol and distilled water in ultrasonic cleaner for 15 

minutes, respectively. Finally, nitrogen was used to dry QCM electrodes as a final step 

of cleaning, as given in Figure 3.15.  
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Figure 3.15. Cleaning of QCM electrodes 

 

 After the cleaning procedure, the resonant frequency of QCM electrodes was 

obtained, using CHI400 instruments (Fo). Then, 5μl of each of previously prepared iron 

doped and bare calixarene solutions were dropped on cleaned QCM electrodes, using 

micropipette. Afterwards, the electrodes were kept at 60
o
C for one hour. 

 

 

 

Figure 3.16. Preparation of thin films on QCM using drop-casting technique 

 

 After preparation of thin films, the resonant frequency of each QCM electrodes 

was measured. (F1) The measured frequency values before and after dropping of each 

solution were used to determine the mass loaded on QCM electrodes so that the 

sensitivity of each film to CO gas could be investigated. The mass of each thin film 

loaded on QCM electrodes, resulted in a frequency shift, was used as normalization 

constant in investigation of sensitivity of doped and undoped calixarene molecules to 

CO gas. 
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CHAPTER 4  

 

RESULTS AND DISCUSSIONS 

 

 This chapter contains two parts including QCM results and electrical results of 

iron doped and undoped calixarene molecules. In the first part,, CO sensing properties 

of iron doped and undoped calixarene molecules under exposure of CO molecules with 

different concentration are presented by using QCM technique. In order to investigate 

the sorption kinetics of all molecules, Langmuir model has also been used and the 

results are given in this section. Furthermore, three dimensional structures and dipole 

moments of undoped calixarene molecules, calculated by Prof Dr. Mustafa Kurt from 

Ahi Evran University, have been given. Finally, electrical responses of CNT added and 

iron doped calixarene molecules are presented.  

 

4.1. Investigation of CO Gas Sorption Kinetics of Molecules by Using 

QCM Method 

 

 In this study, the CO gas adsorption and desorption kinetics of iron doped and 

undoped functional calixarene molecules is investigated using QCM technique for both 

dry air and nitrogen that are used as desorption gases. The aim of using dry air as 

desorption gas as well as high purity nitrogen is to investigate CO selectivity of all 

calixarene molecules in air environment. The gas flow rates for both desorption and 

adsorption gases were 500 sccm (standard cubic centimetre per minute). In this section, 

comparative results of CO gas adsorption and desorption kinetics of thin film of iron 

doped and undoped functional calixarene molecules are given. In the present study, CO 

gas will be considered as active gas for simplicity. Firstly, the maximum and minimum 

active gas was sent to the test cell for two periods of time. That is, the desorption gas 

(nitrogen or dry air) was first sent to the test cell for 200 s for cleaning process of both 

environment and surface of thin film and then the active gas (CO) was sent for 100 s for 

adsorption process. Afterwards, desorption gas was resent to the test cell to start 

desorption process. Then, the same process was done one more time to see if the results 
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were repeatable and the test was completed. This is called this as periodic measurement. 

The recipe of periodic measurement is given below and in Figure 4.1 

 The steps for periodic measurement are; 

 0-200s: N2 or dry air (500 sccm) 

 200-300s: active gas (500 sccm) 

 300-500s: N2 or dry air (500 sccm) 

 500-600s: active gas (500 sccm) 

 600-700s: N2 or dry air (500 sccm) 
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Figure 4.1. Steps of periodic measurement 

 

 The present study investigates the variations in frequency shift of iron doped and 

undoped calixarene coated QCM crystals with different concentrations in addition to 

periodic measurement. The CO level was increased by 10 sccm steps for equal time 

intervals of 5 s and then CO level was decreased by 10 sccm steps for equal time 

intervals of 10 s, in order to investigate the linear responses of all molecules, as seen in 

Figure 4.2. CO gas with a concentration of 10000 ppm (parts per million) was used in 

this study. 
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Figure 4.2. Steps of linear measurement 

 

 

 By analysing of the data obtained from periodic and linear measurements 

(frequency shift, F), the plots illustrating the sensitivities of all calixarene molecules to 

CO gas for both nitrogen and dry air, used as desorption gases separately, have been 

obtained. The sensitivity of each molecule to CO has been defined as ratio of the mass 

of gas molecules adsorbed on the surface of molecule coated on QCM (m) to the mass 

of coated film (mo) per thousand. As it was mentioned in Chapter 3, a net change of 1 

Hz corresponds to 1.34 ng of gas molecules adsorbed or desorbed onto the crystal 

surface. Hence, m can be found by multiplying F values, obtained during 

measurements, with 1.34. Likewise, mo can be found by multiplying the frequency 

shift before and after coating QCM electrode with 1.34. Therefore, the equation giving 

the sensitivity is calculated as following;  

 

            
  

  o

      

where m and mo are; 
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    (   )          

 

 

Substituting m andmo into sensitivity equation will be in the following form; 

 

            
  

   
      

 

4.1.1. Investigation of CO Gas Sorption Kinetics of all Calixarene 

Molecules by Using QCM Method 

 

 The adsorption and desorption kinetics of each molecule have been investigated 

according to the functional group of each of calixarene molecule. As it has been stated 

in Chapter 1, the functional groups at the upper and lower rims determine selectivity in 

host–guest interactions and physical properties of calixarene molecules(Kocabas et al., 

2006; Ohira et al., 2009). Physical properties of calixarene molecules are dependent on 

the lower rim functional groups. What is more, the apolar cup-shaped cavity adsorbs 

and desorbs guest molecule which determines the zeolite-like behaviour of calixarenes 

at the nano-scale(Filenko et al., 2005). Hence, each of the calixarene molecules having 

different functional group has shown different affinity to CO gas molecules. 

Furthermore, in this thesis study, calix 1 was taken as reference molecule which does 

not have any functional group compared to others. The functional groups in the other 

used calixarene molecules are slightly different from each other. Since these functional 

groups are polar, it is expected that they will interact with active gas due to unequal 

charge distribution.   

 On the other hand, conformation of calixarenes is one of the most important 

factors that affect the dipole moments of calixarene molecules(Demendoza et al., 1993; 

Kelderman et al., 1992). Variable conformations in calixarenes are caused by the 

rotations of the methylene groups between phenols. These molecules often exist in the 

cone, partial cone, 1,2-alternate, or 1,3-alternate conformation as stated before(Gutsche 

et al., 1983). In this study, it was clearly seen that functionalizing calixarene molecules 

with different functional group changed the dipole moments and structure of calixarene 
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molecules as given in Table 4.1 and Table 4.1. These dipole moments and three 

dimensional structures of calixarene molecules are calculated by Prof. Dr. Mustafa Kurt 

from Ahi Evran University by using density functional theory (DFT). The variations in 

dipole moments may stem from different functional groups that have different 

electronegativity and electropositivity. According to Table 4.3, calix 17 has highest 

dipole moment (7.97 D) while calix 6 has lowest (1.55 D). These variations in geometry 

of calixarenes affected experimental results, as well. 

 

Table 4.1. Molecular structure and three dimensional structure of calixarene molecules 

 

 

(cont. on next page) 

 

Molecule Chemical Structure 
Three Dimensional Structure and Direction of 

Dipole Moment 

Calix 1 

 

 

 
 

Calix 6 

 

  

Calix 8 
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Table 4.2 (cont.) 

 

Calix 17 

 
 

 

 
 

 

Calix 19 

 
 

 

 

 

Table 4.3. Dipole moments of calixarene molecules 

 

 

Molecule 

Dipole Moment Components 

(Debye) 

Total dipole moment (Debye) 

                 

Calix  1 1.44 6.50 1.03 6.74 

Calix  6 0.29 -1.45 -0.45 1.55 

Calix   8 -3.11 0.84 3.76 4.94 

Calix 17 0.63 -7.79 -1.57 7.97 

Calix 19 -2.26 -1.15 -0.23 2.55 
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 In this study, the responses of six different functional calixarene molecules 

coated on QCM electrodes to CO gas were investigated. First, sorption kinetics of bare 

calixarene molecules was investigated according to procedure explained in Chapter 3. 

That is, the thin films of undoped calixarene molecules on QCM electrodes were 

prepared using drop-casting method and response of each of them to CO were 

investigated. Figure 4.3 show the responses of all undoped calixarene molecules under 

exposure of CO gas for comparison. In addition, maximum response of each molecule is 

given in Table 4.4 in the order from the largest to the smallest. 

 

 

 

Figure 4.3. Periodic responses of all various functional calixarene molecules to CO 

 

 

 

 

 

 

 

 

 

 

-10

0

10

20

30

40

50

60

70

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700

Calix 6

Calix 8

Calix 17

Calix 18

Calix 19

Calix 1
Gas concentration rate

Time (sec)



56 

 

Table 4.4. Maximum response of each undoped calixarene molecules to CO 

 

Molecule 



Fmax (Hz) 

 

Calix 6 58.3 

Calix 17 7.36 

Calix 8 5.27 

Calix 19 4.58 

Calix 1   3.2 

Calix 18 0.83 

 

 

 As stated in Chapter 3, there are two different complexes which contain iron 

molecules used to dope each calixarene molecule. One of them is iron (III) nitrate 

(Fe(NO3)3.9H2O) and the other one is iron (III) chloride (FeCl3.6H2O). For simplicity, 

the first one (iron III nitrate) is named as Fe(1) while the latter one is Fe(2). 

Furthermore, iron doped calixarene molecules are named as in the form of Calix 

#_Fe(#).  

 After investigation of bare calixarene molecules, CO sorption kinetics of Fe(1) 

doped calixarene molecules were studied and QCM electrodes were prepared according 

to procedure explained in Chapter 3. Figure 4.4 shows the comparative responses of all 

Fe(1) doped calixarene molecules (Calix #_Fe(1)) under exposure of CO gas. 

Furthermore, Table 4.5 shows the maximum responses of them to CO in the order from 

the largest to the smallest. 
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Figure 4.4. Periodic responses of Fe(1) doped calixarene molecules to CO 

 

 

 

Table 4.5. Maximum responses of Fe(1) doped calixarene molecules to CO 

 

Molecule 



Fmax (Hz) 

 

Calix   6_Fe(1) 220.7 

Calix 18_Fe(1) 86.14 

Calix 19_Fe(1) 35.76 

Calix   8_Fe(1) 32.99 

Calix 17_Fe(1) 5.54 

 

 

 Finally, the CO gas sensing capabilities of Fe(2) doped calixarene molecules 

(Calix #_Fe(2)) coated on QCM electrodes have been investigated. The results of them 

are displayed in Figure 4.5 for comparison. In addition, maximum responses of them to 

CO are given in Table 4.6 in the order from largest to smallest. 
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Figure 4.5. Periodic responses of Fe(2) doped calixarene molecules to CO 

 

 

 

Table 4.6. Maximum responses of Fe(2) doped calixarene molecules to CO 

 

Molecule 



Fmax (Hz) 

 

Calix   6_Fe(2) 161.36 

Calix 19_Fe(2) 142.67 

Calix   8_Fe(2) 115.4 

Calix 17_Fe(2) 115.2 

Calix 18_Fe(2) 114.9 

 

 

 The bar graph, in Figure 4.6, illustrates the maximum response of all iron doped 

and undoped calixarene molecules. This plot has been given to be able to compare all of 

the results. 
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Figure 4.6. Bar graphs illustrating maximum responses of all molecules to CO 

 

 

 

 In addition to investigation of the frequency shift response of all iron doped and 

undoped molecules coated on QCM electrodes, the sensitivity of each prepared 

molecule to CO was investigated. To do this, sensitivity graphs of each calixarene 

molecule has been obtained according to the calculations given above. In other words, 

the QCM results given above was used to obtain sensitivity of all molecules to CO gas. 

The Fo and corresponding mo values, needed to convert frequency shift values into 

sensitivity, for each calixarene molecule are presented in Table 4.7. 
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Table 4.7. Fo and mo (g) values of all molecules 

 

Molecule Fo (Hz) 



mo (g) 



Calix 1   9085 12.2 

Calix 6 11295 15.1 

Calix 8 5662 7.58 

Calix 17 10727 14.3 

Calix 18 6106 8.2 

Calix 19 6807 9.1 

Calix 6_Fe(1) 5088 6.8 

Calix 8_Fe(1) 4999 6.7 

Calix 17_Fe(1) 453 0.6 

Calix 18_Fe(1) 3087 4.1 

Calix 19_Fe(1) 943 1.3 

Calix-6_Fe(2) 7701 10.3 

Calix-8_Fe(2) 2969 3.98 

Calix 17_Fe(2) 20005 26.8 

Calix 18_Fe(2) 13083 17.5 

Calix 19_Fe(2) 12640 16.9 

 

 

 In order to obtain sensitivity plots of all molecules, all frequency shift values 

were multiplied by 1000 and then divided by Fo and the results for all iron doped and 

undoped calixarene molecules were plotted. 

 After the calculation of the sensitivities of each bare calixarene molecule to CO 

gas, the following plot was obtained. (Figure 4.7). Added to this, maximum sensitivities 

of each undoped calixarene molecules are given in Table 4.8 in the order from the 

largest to the smallest. 
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Figure 4.7. Sensitivities of bare calixarenes to CO 

 

 

Table 4.8. Maximum sensitivities of each undoped calixarene molecules to CO 

 

Molecule 



CO sensitivity 

 

Calix 6 5.16 

Calix 8 0.93 

Calix 17 0.69 

Calix 19 0.66 

Calix 1   0.35 

Calix 18 0.12 

 

 

 As seen in Table 4.8, Calix 6, functionalized with four pyridine groups, shows 

highest affinity to CO molecules compared to other calixarene molecules. Looking at 

three dimensional picture of Calix 6, it is seen that two pyridine groups are quite near to 

each other, while the others look far from each other. Such a high sensitivity may stem 

from dipole-dipole interaction between CO and nitrogen atom in the pyridine groups. In 

addition, affinity of calix 18 to CO is less than others. According to the molecular 

structure of Calix 18, it is seen that it is functionalized with hydroxyl groups and methyl 
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glucamine groups. These groups will give rise to steric effect and do not let CO 

molecules to get into the active sites of calix 18. Furthermore, because hydroxyl groups 

have a potential to make hydrogen bond with each other, this will decrease the polar 

interactions between CO and functional groups. The same effect can also be seen for 

calix 1 because of hydroxyl groups from lower rims. In addition, it is seen that 

functionalization of calixarene increased the affinity to CO. 

 Similarly, Figure 4.8 illustrates the comparative sensitivities of Fe(1) doped 

calixarene molecules to CO gas and maximum sensitivities of them are given in Table 

4.9 in the order from largest to smallest. 

 

 

 

Figure 4.8. Sensitivities of Fe(1) doped calixarenes to CO 
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Table 4.9. Maximum sensitivities of each Fe(1) doped calixarene molecules to CO 

 

Molecule 



CO sensitivity 

 

Calix   6_Fe(1) 43.38 

Calix 19_Fe(1) 38.83 

Calix 18_Fe(1) 27.88 

Calix 17_Fe(1) 12.16 

Calix   8_Fe(1) 6.57 

 

 Table 4.9 shows that there is a remarkable increase in the affinity of calixarene 

to CO up to 200 times compared to bare calixarene molecules after Fe(1) doping. That 

is, while the maximum response of calix 18 to CO is 0.12, it becomes 27.88 when 

doped with Fe(1).    

 Finally, the sensitivities of Fe(2) doped calixarene molecules to CO have been 

investigated and the results are illustrated in Figure 4.9. In addition, maximum 

responses of them to CO are shown in Table 4.10 in the order from largest to smallest. 

 

 

 

Figure 4.9. Sensitivities of Fe(2) doped calixarenes to CO 
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Table 4.10. Maximum sensitivities of each Fe(2) doped calixarene molecules to CO 

 

Molecule 



CO sensitivity 

 

Calix   8_Fe(2) 38.89 

Calix   6_Fe(2) 20.94 

Calix 19_Fe(2) 11.27 

Calix 18_Fe(2) 8.78 

Calix 17_Fe(2) 5.76 

 

 

 According to the Table 4.10, doping of calixarene molecules with Fe(2) 

increased the sensitivities of them to CO compared to bare calixarene molecules. 

However, if the results of Fe(1) doped calixarenes with Fe(2) doped ones are compared, 

it is clearly seen that the order changed. For instance, while calix 8_Fe(1) shows least 

sensitivity to CO compared to other Fe(1) doped calixarenes, it becomes the most 

sensitive one when doped with Fe(2) compared to other Fe(2) doped calixarenes. If the 

responses of Fe(2) doped calixarenes with Fe(1) doped ones are compared, it is seen 

that doping calixarenes with  iron (III) nitrate made calixarene more sensitive to CO 

compared to iron (III) chloride doped calixarenes. This may be due to the fact that 

chloride ion (Cl
-
) is bigger than that of nitrate ion (NO3

-
) in terms of volume and this 

may cause steric effect. If we compare the molecular structure of calix 6,19 and 8 which 

are quite sensitive to CO, it is seen that they have similar molecular structure. 

Furthermore, since NH groups in alkyl chains, possibly bond to iron atoms, does not 

have a molecular geometry causing steric effect, CO atoms can easily interact with Fe 

atoms in the centre and increase the sensitivity. To be able to see comparison of the 

sensitivity results of all molecules, the bar graph has been plotted as seen in  

Figure 4.10. 
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Figure 4.10. Bar graph showing maximum sensitivities of all molecules 

 

 

 As stated above, the linear responses of all molecules to CO were investigated 

and the results are given in the following figures. 

 

 

 

Figure 4.11. Linear responses of bare calixarenes to CO 
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Figure 4.12. Linear responses of Fe(1) doped calixarenes to CO 

 

 

 

 

Figure 4.13. Linear responses of Fe(2) doped calixarenes to CO 
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 In addition to analysis of sensitivities of all molecules to CO in N2 environment, 

the CO sensitivities of all of them were investigated in air environment. The results are 

illustrated in following figures. 

 

 

 

Figure 4.14. CO sensitivities of bare calixarenes in air environment 

 

 

 

Figure 4.15. sensitivities of Fe(1) doped calixarenes in air environment 
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Figure 4.16. sensitivities of Fe(2) doped calixarenes in air environment 

 

 

Table 4.11. Maximum responses of all molecules in both air and N2 environment 

 

Molecules 
Max response in air 

environment 

Max response in N2 

 Environment 

Calix 6 5.10 5.16 

Calix 8 2.72 0.93 

Calix 17 0.46 0.69 

Calix 18 0.06 0.12 

Calix 19 2.21 0.66 

Calix 6_Fe(1) 53.20 43.38 

Calix 8_Fe(1) 7.280 6.57 

Calix 17_Fe(1) 11.86 12.16 

Calix 18_Fe(1) 14.86 27.88 

Calix 19_Fe(1) 51.50 38.83 

Calix 6_Fe(2) 15.45 20.94 

Calix 8_Fe(2) 29.86 38.89 

Calix 17_Fe(2) 10.20 5.76 

Calix 18_Fe(2) 7.410 8.78 

Calix 19_Fe(2) 11.25 11.27 
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 As seen in Table 4.11, there is no remarkable change in sensitivities of each 

molecule when the experiments were carried out in air environment. There has been 

small decrease in the sensitivity for each molecule to CO in air environment which may 

be due to the fact that air includes some other active gases like O2 and CO2 which may 

have occupied the active sites on the surface of molecules. 

 All in all, there are many factors affecting the sensitivity of all molecules to CO. 

One of them is conformational structure of molecules which are given in Table 4.1. 

(DFT; three dimensional structures of molecules) That is, if the molecular structure of 

calixarene is suitable to interact with iron molecules, then the sensitivity of the related 

molecule to CO will increase. More clearly, the more iron exist in molecule, the more 

sensitive it will be. For example, it is seen in Table 4.1 that calix 6 seems to have three 

baskets which will give rise to possibility of more place for iron molecule that will 

increase the affinity of calix 6_Fe(1) to CO. On the other hand, calix 17 seems to have 

only one basket which result in less amount of iron molecule in calix 17. Hence, the 

sensitivity of calix 17_Fe(1) is small compared to other Fe(1) doped calixarenes. The 

other factor is that Fe
+3 

has binding affinity to OH-carbonyl and amino groups.(Burke et 

al., 2000; Nawara et al., 2013; Ochiai et al., 2012) That is, existence of these functional 

groups will decrease the binding affinity to CO. More clearly, this interaction will 

decrease the CO binding capacity of Fe
+3

 which has a potential to bind to six CO 

molecules. For example, calix 8_Fe(1) showed less affinity to CO compared to others 

which may be because it has OH and carbonyl groups. Calix 18_Fe(2) also showed less 

affinity to CO compared to other molecules which may be due to the fact that it has 

hydroxyl, carbonyl and amino groups. 

 

4.1.2. Investigation of Adsorption and Desorption Kinetics of all 

Molecules with Langmuir Adsorption Model 

 

 In order to analyse the obtained frequency shift results and sensitivity results, 

Langmuir adsorption model has also been used. This model is frequently used to 

describe adsorption kinetics of CO gas molecules onto organic or inorganic 

films(Karpovich and Blanchard, 1994). According to Langmuir adsorption isotherm 

model, the rate of surface reaction to form a monolayer on the surface is given with the 

following equations: 
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                                               θkθ)C(1k
dt

dθ
da                                             (1) 

 

Here, θ  is a unitless quantity, which express the fraction of surface coverage, C  is the 

gas concentration, ak  and dk are the adsorption and desorption constants, respectively. 

Integration of Eq. (1) leads to: 

 

                                             )e(1K'θ(t)
tkads

                                                       (2) 

 

where adsk  is the inverse of the relaxation time and K'  is the association constant 

defined as following; 

                                   
da

a

kCk

Ck
K'


             and        daads kCkk                        (3) 

 

Here, QCM has been used to measure the fractional coverage   as a function of time 

during the adsorption of CO molecules by various functional bare and iron doped 

Calixarene molecules, and the increase in the frequency shift reflects the molecular 

mass uptake or loss. Thus the difference between the oscillation frequency shift (F) of 

coated and uncoated QCM is directly proportional to the adsorbed mass of CO 

molecules. The relationship between the surface adsorption kinetics and frequency shift 

(F ) of QCM can be expressed as following;    

 

                                              )e(1K'ΔfΔf(t)
tk

max
ads

                                           (4) 

 

Using Sauerbrey relation, ( f)Δ(1.34ng/HzΔm  ), the time dependent variation of 

mass of the adsorbed CO molecules on all iron doped and iron doped calixarene film 

surface mτ can be defined as:   

 

                                             )e(1ΔmΔm τt

t



                                            (5) 
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                                       da

1 kmoleculesCOkτ  C                                      (6) 



m∞ is the maximum amount of adsorbed CO molecules on the surface for τ→∞ and τ 

is the relaxation time. 

 With the help of Langmuir isotherm adsorption model, the details of which is 

given above, the CO adsorption and desorption kinetics of all iron doped and undoped 

calixarene molecules are analysed. In order to utilize this model, the frequency shift 

versus time (F-t) plots has been plotted again as mass adsorbed on thin film surface on 

QCM versus time by only multiplying frequency shift axis by 1.34 ng/Hz.      

 Figure 4.17-19 illustrate the adsorbed mass by surface of thin film of all 

calixarene molecules versus time. 

 

 

Figure 4.17. Adsorbed mass on the surface of bare calixarene molecules versus time 
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Figure 4.18. Adsorbed mass on the surface of Fe(1) doped calixarene molecules versus 

time 

 

 

 

Figure 4.19. Adsorbed mass on the surface of Fe(2) doped calixarene molecules versus 

time 
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 Figure 4.20, obtained by using Figure 4.17, illustrates the least square fits (solid 

lines) using Langmuir adsorption isotherm model given in equation (5) for adsorption 

parts of the data for 10000 ppm CO gas concentration for thin films of bare calixarene 

molecules coated on QCM. 
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Figure 4.20. QCM results of bare calixarenes: the least square fit (solid lines) using the 

Langmuir adsorption isotherm model given in Equation (5) for 10000 ppm 

CO concentration 

 

 

 Similarly, Figure 4.21, obtained by using Figure 4.18, shows the least square fits 

(solid lines) using Langmuir adsorption isotherm model for adsorption parts of the data 

for 10000 ppm CO gas concentration for thin films of Fe(1) doped calixarene 

molecules. 

 



74 

 

0

40

80

120

160

200

240

280

320

0

0,2

0,4

0,6

0,8

1

200 220 240 260 280 300

Calix 6_Fe(1)

Calix 8_Fe(1)

Calix 17_Fe(1)

Calix 18_Fe(1)

Calix 19_Fe(1)
Gas concentration rate


M

 (
n

g
)

G
a
s
 c

o
n

c
e

n
tra

tio
n

 ra
te

Time (sec)

y = m1 + m2*(1 - exp(-m3*(x-...

ErrorValue

1,44750,61538m1 

1,358301,66m2 

0,000526940,053876m3 

NA81061Chisq

NA0,99228R

y = m1 + m2*(1 - exp(-m3*(x-...

ErrorValue

0,067065-0,49657m1 

0,06275445,828m2 

0,000150670,049808m3 

NA196,59Chisq

NA0,99923R

y = m1 + m2*(1 - exp(-m3*(x-...

ErrorValue

0,12856-0,93186m1 

0,125647,5891m2 

0,00260570,09272m3 

NA432,21Chisq

NA0,92277R

y = m1 + m2*(1 - exp(-m3*(x-...

ErrorValue

0,122-0,90742m1 

0,11433117,99m2 

0,000105160,049675m3 

NA667,72Chisq

NA0,99961R

y = m1 + m2*(1 - exp(-m3*(x-...

ErrorValue

0,267040,84945m1 

0,2588348,455m2 

0,000730980,085297m3 

NA1554,9Chisq

NA0,99184R

 

 /1
t

t
emm





Fit: Langmuir Model

CO exposure: 10000 ppm 

 

 

Figure 4.21. QCM results of Fe(1) doped calixarenes: the least square fit (solid lines) 

using the Langmuir adsorption isotherm model given in Equation (5) for 

10000 ppm CO concentration 

 

 Finally, the least square fits (solid lines) obtained by using Langmuir adsorption 

isotherm model for adsorption parts of the data for 10000 ppm CO gas concentration for 

thin films of Fe(2) doped calixarene molecules are given in Figure 4.22, obtained by 

using Figure 4.19. 
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Figure 4.22. QCM results of Fe(2) doped calixarenes: the least square fit (solid lines) 

using the Langmuir adsorption isotherm model given in Equation (5) for 

10000 ppm CO concentration 

 

 From the least square fit to the Equation (5), the relaxation times of the each 

adsorption process were calculated and given in Table 4.12 for all bare calixarenes and 

iron doped calixarenes, respectively. In addition, the response time at %90 of the 

maximum absorbed mass in Figure 4.17-19 were obtained and given in Table 4.12 for 

all molecules. Furthermore, Δm is the maximum amount of adsorbed CO molecules 

on the surface for t and τ  is the relaxation time, given in Table 4.12. 

 

 

 

 

 

 

 

 

 

 

 



76 

 

Table 4.12. Langmuir fit results 

 

Molecules m∞ (ng) τ (s) Ka Kd 

Response 

Time (s) 

Recovery 

Time (s) 

Calix 1   5.4989 38.12 2.503 0.0012 37.21 154.0 

Calix 6 84.364 20.60 4.624 0.0023 49.31 91.70 

Calix 8 7.4735 32.14 2.971 0.0014 69.31 83.21 

Calix 17 10.63 22.80 4.185 0.0020 59.51 129.0 

Calix 19 6.498 27.64 3.448 0.0017 56.51 80.00 

Calix 6_Fe(1) 316.74 18.58 5.131 0.0025 45.50 101.4 

Calix 8_Fe(1) 48.119 20.07 4.743 0.0024 46.7 132.2 

Calix 17_Fe(1) 7.968 10.79 8.83 0.0044 30.4 14.7 

Calix 18_Fe(1) 123..889 20.11 4.731 0.0024 44.6 116.4 

Calix 19_Fe(1) 50.877 11.73 8.123 0.0040 23.7 132.02 

Calix-6_Fe(2) 220.26 15.03 6.34 0.0031 43.31 101.32 

Calix-8_Fe(2) 168.55 23.69 4.02 0.0020 48.21 117.4 

Calix 17_Fe(2) 164.43 15.94 5.98 0.0029 37.4 117.72 

Calix 18_Fe(2) 165.50 18.48 5.16 0.0025 42.71 125.52 

Calix 19_Fe(2) 218.46 14.14 6.74 0.0033 32.8 110.52 

 

 

4.2. Electrical Results 

 

 Electrical properties of all molecules under exposure of CO have been 

investigated by using interdigitated electrodes. The recipe of periodic measurement for 

investigation of electrical properties is given below and in Figure 4.23. 

 

 The steps are; 

 0-200s   : N2     (500 sccm) 

 200-400s: CO (500 sccm) 

 400-600s: N2  (500 sccm) 

 600-800s: CO (500 sccm) 

 800-1000s: N2 (500 sccm) 
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Figure 4.23. Steps of periodic measurement 

 

  

 According to measurements, it was seen that all molecules were insulator. 

Hence, the electrical properties of any molecules under exposure of CO could not be 

investigated. The obtained signals were quite noisy. Figure 4.24 shows the electrical 

signal of calix 8 under exposure of CO for periodic measurement. As seen in Figure 

4.24, the resistance was around 10
8
Ω and no change in resistance was seen when CO 

was sent to test cell.  
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Figure 4.24. Electrical response of Calix 8 under exposure of CO 

 

  

 The electrical properties of iron doped calixarene molecules were also 

investigated but same results were obtained. However, in order to investigate electrical 

properties of iron doped calixarene molecules, some carbon nanotube (CNT) were 

added into each iron doped solution. The aim of adding CNT into each solution was to 

increase the conductivity of each iron doped calixarene molecule. After adding CNT 

into calixarene molecule, thin film of each molecule was prepared by using drop-casting 

technique. Among all prepared thin films, electrical signal from only CNT added iron 

(III) chloride doped calix 6 could be obtained. The reason why other calixarene 

molecules showed no response may be due to the fact that CNTs having very small 

diameter (around 2 nm) are surrounded by non-conductive calixarene molecules giving 

rise to high resistance. By analysing data (resistance) obtained from measurements, the 

sensitivity of CNT added iron (III) chloride doped calix 6 was investigated. The 

sensitivity was given as  
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where Rg and Ro are the resistivity of the sensor in the gas/N2 mixture and in pure N2, 

respectively. 

 Electrical response and sensitivity of CNT added iron (III) chloride doped 

calixarene under exposure of CO were given in Figure 4.25 and Figure 4.26, 

respectively. The initial resistance (resistance of sensor in pure N2; R0) was measured as 

56.62Ω. Here, DC voltage (1V) was applied between electrodes. 

 

 

 

Figure 4.25. Electrical response of CNT added Calix 6_Fe(2) 
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Figure 4.26. Sensitivity of CNT added Calix 6_Fe(2) 

  

 The sensor response increases with increasing gas concentration in the gas/N2 

mixture. It is also seen from Figure 4.25 that the resistance increases during adsorption 

of CO. The conductivity decrease of the CNT containing film coated on IDEs may be 

resulting from the interaction between CNT's unpaired pz orbitals which is responsible 

for electrical conduction of the CNTs with CO's unpaired electrons that provides the 

interaction mechanism for adsorption. It can be speculated that the weak interaction 

forces due to CO adsorption on CNTs may decrease the number of available charge 

carrying electrons and thus yielding a conductivity decrease of the CNTs. 
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CHAPTER 5  

 

CONCLUSION 

 

 This thesis focused on investigation of CO gas adsorption kinetics of various 

functional calixarene molecules doped with Fe by using quartz crystal microbalance 

technique. The two different iron compounds, iron (III) nitrate (Fe(NO3)3.9H2O) and 

iron (III) chloride (FeCl3.6H2O), were used to dope calixarene molecules. Five different 

functional calixarene molecules doped with two different type iron- containing solutions 

have been used in this thesis study and Calix 1 has been used as reference molecule. 

Each solution of calixarene molecules has been doped with iron and then thin films of 

each doped and undoped calixarene molecules on QCM were prepared by utilising 

drop-casting technique. In order to carry out experiments, a gas measurement system 

controlling gas flow and concentration for a desired time via computer has been used. 

The CO gas adsorption kinetics of each QCM electrodes has been investigated.   

 In Chapter 1, gas sensor literature about CO and its interaction with 

haemoglobin molecule, with iron content, has been briefly given. 

 Chapter 2 begins with the introduction of characteristics for an ideal sensor. The 

different types of sensor with different working principle were explained. Afterwards, 

piezoelectricity and working principle of quartz crystal microbalance technique were 

given in details. Finally, the calixarene molecules, used as sensing material, were 

explained. 

 Chapter 3 consists of three subtitles with gas flow control and measurement 

system, and device fabrication procedure that explains fabrication of interdigitated 

electrode and the last one is iron doping procedure of various functional calixarene 

molecules. In the experimental setup, the gas flow control and measurement system 

used to carry out research activities was explained in details. Then, photolithography 

technique for fabrication of IDE electrodes was given in details. Mask shape and 

instruments employed in lithography were also presented. Finally, the steps of doping 

each calixarene molecules with iron molecules were introduced.  

 In Chapter 4, the experimental results were given in details. The dipole moments 

and three dimensional structures of calixarene molecules, calculated by Prof. Dr. 
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Mustafa Kurt from Ahi Evran University, were given. According to these results, calix 

17 has highest dipole moment (7.97 D) while calix 6 has lowest (1.55 D). The variations 

in dipole moments may be due to different functional groups that have different 

electronegativity. These variations in geometry of calixarenes have a big role in the 

experimental results. 

 QCM results used to investigate CO gas sorption capabilities of each doped and 

undoped calixarene molecule were given. The CO adsorption and desorption kinetics of 

all molecules have been discussed with different approaches. By using QCM data of all 

molecules, the sensitivities of bare and iron doped calixarene molecules to CO were 

investigated. Results showed that functionalising of calixarene molecules with different 

functional groups increased the affinity towards CO gas compared to calix 1 which does 

not have any functional group. According to experimental results, calix 6 showed 

maximum sensitivity to CO (5.16), while calix 18 showed lowest affinity (0.12). This 

may be because of that calix 6 seems to have three baskets which will give rise to more 

place for adsorption of CO. The reason why calix 18 showed lowest sensitivity may be 

because it has hydroxyl and carbonyl groups which have a potential to make hydrogen 

bond that may bring about unsuitable conformational structure for adsorption of CO.  

 It was also seen that there has been a remarkable increase in the sensitivity of 

each calixarene molecule after doping them with iron. That is,  there is a remarkable 

increase in the affinity of calixarene to CO up to 200 times compared to bare calixarene 

molecules after Fe(1) doping. This must be due to the fact that carbon monoxide has a 

remarkable affinity for transition metals and it acts as a ligand towards transition metal 

through the lone pair on the carbon atom. Among iron (III) nitrate (Fe(1)) doped 

calixarene molecules, calix 6_Fe(1) has highest affinity towards CO (43.38), while calix 

8_Fe(1) has lowest (6.57). This may be because calix 6 has more places for iron 

molecule. Similarly, among iron (III) chloride (Fe(2)) doped calixarene molecules, calix 

8_Fe(2) showed highest sensitivity (38.89), while calix 17_Fe(2) showed lowest with 

5.76. If the responses of Fe(2) doped calixarenes are compared with Fe(1) doped ones, it 

is seen that doping calixarenes with  Fe(1) made calixarene more sensitive to CO 

compared to Fe(2) doped calixarenes. This may be because chloride ion (Cl
-
) is bigger 

than that of nitrate ion (NO3
-
) in terms of volume and this may cause steric effect. 

Furthermore, according to experimental results, there has not been any chemical 

interaction between iron and CO because the results were repeatable which proves that 

the bound between iron and calixarene is physical (physisorption).  
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 According to experimental results, it has also been seen that the sensitivities of 

all calixarene molecules changes linearly with CO gas concentration and there is no 

remarkable difference between sensitivities in air and N2 environment. 

 The Langmuir model has also been given in chapter 4 and it was used to 

investigate adsorption and desorption parameters of all molecules. That is, adsorption 

and desorption constants (Ka and Kd), relaxation times, maximum mass loaded on thin 

films of all calixarenes have been found and given in this chapter.  

 According to electrical measurements, it is seen that both bare calixarene 

molecules and iron doped calixarene molecules are non-conductive materials and their 

resistances are around 10
8
Ω. Hence, the signals coming from thin films of these 

molecules coated on IDEs were quite noisy. After adding CNT into iron doped 

calixarene molecule to increase conductivity, we could obtain signal from iron (III) 

chloride doped calix 6. The increase in resistivity of the CNT containing film coated on 

IDEs may stem from the interaction between CNT's unpaired pz orbitals which is 

responsible for electrical conduction of the CNTs with CO's unpaired electrons that 

provides the interaction mechanism for adsorption. It may be thought that the weak 

interaction forces during adsorption of CO on CNTs may decrease the number of 

available charge carrying electrons and thus yielding a conductivity decrease of the 

CNTs. Electrical signals from other molecules were noisy which may because CNTs 

having very small diameter (around 2 nm) are surrounded by non-conductive calixarene 

molecules giving rise to high resistance.    

 To summarise, the effect of iron doping on the CO gas sensing properties of 

various functional calixarene molecules was investigated. According to experimental 

results, doping calixarene molecules with iron increased the affinity of each molecule to 

CO compared to bare calixarene molecules. Hence, these molecules doped with iron can 

be utilized as a suitable material in carbon monoxide gas sensor applications. 
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