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ABSTRACT

IMPROVING COUPLING EFFICIENCY BY USING ADIABATIC TRANSITION IN
PHOTONIC CRYSTAL WAVEGUIDES

Photonic crystal waveguides (PhCWGs), designed by removing one or more slabs

from a perfectly periodic structures, are possibly future optoelectronic circuit elements

that promising a good ability to confine light in a direction and allowing it to propagate in

other direction. One of the problem in their application is the coupling from a PhCWG to

a completely different structure. This difficulty arrives from sudden change in structure’s

geometry. In this thesis, to over come this difficulty we used a transition region between

two photonic crystal structures that have completely different geometrical parameters.

According to our simulation results we find that by using transition region, coupling can

be achieved almost without any loss.
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ÖZET

FOTONİK KRİSTAL DALGA KILAVUZLARINDA ADYABATİK GEÇİŞ
KULLANARAK BAĞLANTI ETKİNLİĞİNİN ARTIRILMASI

Kusursuz bir periyodik yapıdan bir veya daha fazla plaka kaldırılarak tasarlanmış

Fotonik Kristal dalga Kılavuzları (FKDK), ışıgın belli yönlerde ilerlemesine engel olup

diğer yönlerde klavuzlanmasına olanak sağlayan özelliği sayesinde optoelektronik de-

vre elemanları olarak kullanılabilmeleri yönunde gelecek vaat eden bir uygulama olarak

ortaya çıkmıştır. Bu uygulamalar sırasında karşılaşılan problemlerden biri, bir fotonik

kristal (FK) yapıdan başka bir yapıya geçişte yaşanan kayıplardır. Bu problem, bir FK

yapıdan diğer yapıya geçişlarin ani bir şekilde olmasından kaynaklanmaktadır. Bu tezde

farklı yapılar arasındaki geçiler sırasında yaşanan bu kayıpları azaltmak için geçişlerin

daha yavaş olduğu bir geçiş geometrisi kullandık. Yaptığımız similasyon sonuçlarına

göre bu geçişler hemen hemen hiçbir kayıp olmadan gerçekleşmektedir.
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CHAPTER 1

INTRODUCTION

The energy gap for electrons in a periodic potential has been well-known and ex-

tensively studied. Since the first realization of the existence of a photonic band gap, peo-

ple started to design and fabricate optical devices using the ability of photonic crystals to

confine light. The working idea behind photon propagation in materials rely on the elec-

tron motion in conductor and semi-conductor theory. In conductors and semi-conductors,

electron motion is governed by the Coulomb potential. While in photonic crystals photon

propagation is governed by the dielectric function. Many researchers have contributed

to this field with their studies after the first publications on photonic bandgaps by (John

(1987)), (Yablonovitch (1987)), and (Ho et al. (1990)). After these three papers, people

in this area have been working on manipulating light propagation in materials. The main

goal in this area is to design and manufacture novel optical applications in addition to

design optical elements that will be used to complement and/or replace today’s electronic

components.

Confining light in a region in space or guiding light in a direction or even bending

light at a corner is possible with help of photonic crystals(PhCs). This property of PhCs

allows their use as circuit elements in optoelectronic applications.

In an optical circuit, components would be made of materials possibly with dif-

ferent dielectric properties and different geometry. As a result, their dispersion relation

will be different so the response of material to light will be different. For this reason,

transferring light from one circuit element to another one without loss is a potential prob-

lem. This difficulty ariseses from sudden changes in geometry and optical properties of

the structure. To be able to use photonic crystals (PhCs) as circuit elements, one needs

to devise efficient ways to transfer light between different optical components with little

loss.

Efficient coupling of electromagnetic energy between photonic crystal waveguides

(PhCWGs) that have different geometric parameters is a challenging problem. Because

of group velocity and mode profile mismatch between the input and output waveguides,

the coupling loss would be unacceptably high. Early work by (Xu et al., 2000) suggests

that by slowly changing the conventional dielectric waveguide geometry, called adiabatic

transformation, it is possible to achieve high coupling efficiency of light into and and out
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of waveguides with different discrete translational symmetry. To minimize coupling loss,

a slab waveguide was connected to a photonic crystal waveguide using an intermediate

taper. High transmission values over a wide frequency range was achieved using this ap-

proach. Another solution for efficient coupling between optical components is suggested

by (Baba and Ohsaki, 2001). In this work, an interface made by using small air holes and

another interface that is made by projecting air holes is used to achieve high transmis-

sion of light. In another work, optical power losses when a guided mode couples from

a conventional waveguide to a PhCWG is studied and it is shown that the losses are due

to mode mismatch, (Palamaru and Lalanne, 2001). A taper structure is used between the

conventional waveguide and the PhCWG to reduce the power loss. To improve coupling

efficiency between single-slab waveguide and PhCWG, an adiabatic transition region is

used in (Happ et al., 2001) who show that the insertion loss due to mode mismatch can

be minimized over a relatively short taper length. In another study, tapered waveguide

junction for coupling light from a dielectric slab waveguide to photonic crystal waveg-

uides is investigated by (Mekis and Joannopoulos, 2001). In this work it is shown that

using taper region between dielectric waveguide and photonic crystal waveguide can sig-

nificantly enhance coupling efficiency compared to direct coupling. Theoretical work on

adiabatic transition done by (Johnson et al., 2002) shows that an efficient transition is

possible provided that the transition region is chosen to be gradual enough. In another

work by (Bienstman et al., 2003) it is shown that to transform mode from a slab waveg-

uide to a line defect photonic crystal waveguide, a taper structure geometry can be used

to make transition from dielectric waveguide to coupled cavity, and in a second stage it

is shown that an index-guided mode can be transformed into a gap-guided mode by using

taper structure. Another work by (Witzens et al., 2004) suggests mode matching interface

for coupling efficiency of light into planar photonic crystals. In this work it is shown

that using a multilayered grating between slab and planar photonic crystal, the insertion

efficiency can be enhanced. Adiabatic matching stage for coupling of light between two

different PhCWG is studied in (Momeni and Adibi, 2005). Efficient coupling between

two different photonic crystal waveguides is studied and they showed that using adiabatic

coupling is wideband in frequency, results in a wide acceptance angle and is quite robust

against fabrication imperfections. Coupling from a strip waveguide into the flatband slow

mode of a photonic crystal waveguide with ring-shaped holes is studied in (Säynätjoki

et al., 2008). Highly efficient coupling from a strip waveguide to a slot waveguide is

studied by (Wang et al., 2009) theoretically and experimentally. It is shown that highly

efficient coupling is achieved and the proposed coupler has relatively high tolerance to
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fabrication errors. Group velocity independent coupling from a strip waveguide to a pho-

tonic crystal waveguide is studied experimentally by (Lin et al., 2010). A photonic crystal

taper structure is used to couple light efficiently. The effect of group index on coupling

efficiency between strip waveguide and photonic crystal waveguide is studied both numer-

ically and experimentally by (Hosseini et al., 2011). It is shown that using taper region

between strip waveguide and photonic crystal waveguide dramatically improves coupling

efficiency. Another experimental work on adiabatic transition of light is reported by (Lin

et al., 2012), in this work a continuous group index taper is used to achieve high coupling.

In this thesis, to improve coupling efficiency of optical power we have studied

adiabatic transitions between a variety of different dielectric waveguides. Direct coupling

transmission value of optical power and adiabatic transmission value of optical power cal-

culated by using the finite-different time-domain method. Comparison of direct coupling

transmission values and adiabatic transmission values shows that highly efficient coupling

can be achieved.

The thesis is structured as follows;

In Chapter 2 we begin by outlining the theoretical background of ordinary slab

waveguides. Starting from Maxwell’s equations, detailed solutions of second order dif-

ferential equations subject to boundary conditions for the electric and magnetic fields

are shown. Again, starting from Maxwell’s equations, theory of one-dimensional pho-

tonic crystals, two-dimensional photonic crystals, one-dimensional PhCWGs, and two-

dimensional PhCWGs using plane wave expansion is given. Also a short introduction

to adiabatic coupling is presented, while the reader can find detailed derivaitons in refer-

enced material. In the last section, a biref discussion of the finite-difference time-domain

method that is used to simulate the electromagnetic wave propagation is given.

In Chapter 3 we have focused on coupling process between single-slab waveg-

uides of different thickness. Coupling of modes with direct transition from single-slab to

single-slab waveguide is compared with adiabatic coupling case, which is done by grad-

ually changing the thickness of the waveguide. We show that, for adiabatically coupled

waveguides, besides converting the mode, it is possible to prevent the excitation of higher

order modes. In the last section, we calculate the transmission coefficient for excited

modes with and without taper region.

In Chapter 4 coupling efficiency from single-slab waveguide to single-slab waveg-

uide is studied. We have used finite-difference time-domain simulation to find transmis-

sion values for both direct coupling, also called butt-coupling, and adiabatic coupling.

The effect of transition region length on transmission values is investigated.
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In Chapter 5 coupling from single-slab waveguides to 1D photonic crystal waveg-

uides is investigated. Two types of transition are used to improve coupling efficiency

from slab WG to PhCWG. The first design used is gradually changing slab WG thickness

to the defect line thickness of PhCWG. In the second design we also gradually changed

cladding slab thickness of PhCWG. We also show a situation where using taper region,

rather than increasing transmission, results in a complete loss of all optical power. We

investigate the reasons behind this seemingly paradoxical behavior.

In Chapter 6 coupling between two 1D photonic crystal waveguides that have

different geometric parameters (different core thickness, cladding thickness and lattice

constant) are investigated. The effect of introducing taper region and the effect of the

length of taper on transmission is studied using finite-difference time-domain calculation.

In Chapter 7 coupling from single-slab waveguide to a 2D line defect photonic

crystal is studied. One stage coupling, coupling from single slab waveguide to 2D line

defect PhCWG, and two stage coupling, coupling from single slab waveguide to 2D line

defect PhCWG and coupling back to single slab waveguide, is investigated. Photonic

crystal taper and line defect taper transition type is used to convert optical mode. The

effect of taper length on transmission value is studied using finite-different time-domain

calculation.

And finally the last chapter, Chapter 8, we sum up our results and include a con-

clusion.
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CHAPTER 2

THEORY OF PHOTONIC CRYSTALS AND WAVEGUIDES

Photonic Crystals (PhCs) are periodically arranged materials in which index of

refraction changes in space periodically, in analogy with periodicity of potential in solid

state physics. PhCs are classified according to dielectric modulation in space: if this

modulation is in one dimension then they are called one-dimensional PhCs, and if this

modulation is in two- or three-dimensions, they are called two- or three-dimensional PhCs

respectively. This periodicity of the dielectric material governs the propagation of light.

The propagation of light of a given frequency depends on the propagation direction within

the photonic crystal. The change of dielectric in space will result in the inhibition of

propagation of light with certain ranges of frequencies and directions. The frequency

interval where the photonic crystal does not allow light to propagate in any direction is

called a photonic band gap.

2.1. Ordinary Slab Waveguide

The ray optic representation of electromagnetic field propagation is illustrated in

Figure 2.1. Reflection and refraction of light at a boundary between two media is defined

by Snell’s law, θi = θr, and nd sin θi = nb sin θt. When the angle θi is larger than a certain

angle called the critical angle θc, (θi > θc), then the light will reflect from upper and

lower boundary of slab which will result in a net flow of electromagnetic radiation in the

x-direction. This is called total internal reflection (TIR). The critical angle is found by

setting θt to π/2 in Snell’s law,

√
ϵd sin(θc) =

√
ϵb sin(π/2)

θc = sin−1

(√
ϵb
ϵd

)
(2.1)

where the refractive index is defined as n2 = µϵ. µ is close to 1 for most materials, so n

is approximately
√
ϵ.

Propagation of light in ordinary slab waveguides (WGs) can be studied in more
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Figure 2.1. Two media with dielectric constants ϵd and ϵ. The blue dashed lines repre-
sent wave fronts. The red dashed arrows represent the propagation vectors.
Dark gray region represents a dielectric material with thickness 2Rd and
with higher dielectric constant, ϵd. Light gray represents the background
dielectric material with a lower dielectric constant, ϵb.

detail by solving Maxwell’s equations for this geometry. 1 The slab waveguide structure

is shown in Figure 2.1. It consists of a dielectric medium with dielectric constant ϵd and

thickness 2Rd. The structure is symmetric about x-y plane. The slab extends to infinity

in x- and y-direction. The background material, or the cladding, has a lower dielectric

constant, ϵb and it extends to infinity in all three directions. The dielectric function of the

structure is defined as

ϵ(z) =

{
ϵd |z| < Rd

ϵb |z| > Rd

(2.2)

The equations that govern the propagation of light in a source-free medium are Maxwell’s

1The derivation in this chapter is based on the lecture notes ”Photonic structures” given in 2008 at Izmir
Institute of technology (Sözüer, 2008), Jackson (1998), Ashcroft and Mermin (1976), Taflove and Hagness
(2005), K. (EDT)/ Ohtaka (1980), and Griffiths (1999).
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equations, and two curl Equations are written as,

∇×B =
1

c2
∂D

∂t

∇× E = −∂B
∂t

(2.3)

to solve these curl equation, Equation 2.3, we assume the solution of the form E(r, t) =

E0(z)e
i(βx−ωt) and B(r, t) = B0(z)e

i(βx−ωt) now putting these assumed solution forms

into Maxwell’s equation, Equation 2.3, we will have,

(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
× (Bxx̂+Byŷ +Bzẑ) =

1

c2
∂

∂t

[
ϵE0(z)e

i(βx−ωt)
]

(2.4)

(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
× (Exx̂+ Eyŷ + Ezẑ) = − ∂

∂t

[
B0(z)e

i(βx−ωt)
]

(2.5)

We now differentiate right-hand side of Equation 2.4 and Equation 2.5 with respect to time

and do the vector product on the left-hand side of both Equation 2.4 and Equation 2.5, then

we will have,

∂By

∂x
(x̂× ŷ) +

∂Bz

∂x
(x̂× ẑ) +

∂Bx

∂y
(ŷ × x̂) +

∂Bz

∂y
(ŷ × ẑ)

+
∂Bx

∂z
(ẑ × x̂) +

∂By

∂z
(ẑ × ŷ) = −iωϵ

c2
E0(z)e

i(βx−ωt) (2.6)

∂Ey

∂x
(x̂× ŷ) +

∂Ez

∂x
(x̂× ẑ) +

∂Ex

∂y
(ŷ × x̂) +

∂Ez

∂y
(ŷ × ẑ)

+
∂Ex

∂z
(ẑ × x̂) +

∂Ey

∂z
(ẑ × ŷ) = iωB0(z)e

i(βx−ωt) (2.7)

After taking cross product of unit vectors in both Equation 2.6 and Equation 2.7, and
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collecting same component coefficient, we can rearrange these equations as follows,

x̂

(
∂Bz

∂y
− ∂By

∂z

)
+ ŷ

(
∂Bx

∂z
− ∂Bz

∂x

)
+ ẑ

(
∂By

∂x
− ∂Bx

∂y

)
= −iωϵ

c2
E0(z)e

i(βx−ωt)(2.8)

x̂

(
∂Ez

∂y
− ∂Ey

∂z

)
+ ŷ

(
∂Ex

∂z
− ∂Ez

∂x

)
+ ẑ

(
∂Ey

∂x
− ∂Ex

∂y

)
= iωB0(z)e

i(βx−ωt) (2.9)

where every component of magnetic and electric field are defined as,Bx = B0x(z)e
i(βx−ωt),

By = B0y(z)e
i(βx−ωt),Bz = B0z(z)e

i(βx−ωt),Ex = E0x(z)e
i(βx−ωt),Ey = E0y(z)e

i(βx−ωt),

and Ez = E0z(z)e
i(βx−ωt). Now putting these into Equation 2.8 and Equation 2.9 respec-

tively, we will have,

x̂

[
∂

∂y

(
B0z(z)e

i(βx−ωt)
)
− ∂

∂z

(
B0y(z)e

i(βx−ωt)
)]

+ŷ

[
∂

∂z

(
B0x(z)e

i(βx−ωt)
)
− ∂

∂x

(
B0z(z)e

i(βx−ωt)
)]

+ẑ

[
∂

∂x

(
B0y(z)e

i(βx−ωt)
)
− ∂

∂y

(
B0x(z)e

i(βx−ωt)
)]

= −iωϵ
c2

(E0xx̂+ E0yŷ + E0zẑ) e
i(βx−ωt) (2.10)

x̂

[
∂

∂y

(
E0z(z)e

i(βx−ωt)
)
− ∂

∂z

(
E0y(z)e

i(βx−ωt)
)]

+ŷ

[
∂

∂z

(
E0x(z)e

i(βx−ωt)
)
− ∂

∂x

(
E0z(z)e

i(βx−ωt)
)]

+ẑ

[
∂

∂x

(
E0y(z)e

i(βx−ωt)
)
− ∂

∂y

(
E0x(z)e

i(βx−ωt)
)]

= iω (B0xx̂+B0yŷ +B0zẑ) e
i(βx−ωt) (2.11)

8



after differentiating these are reduced to;

x̂

[
0− ∂B0y(z)

∂z
ei(βx−ωt)

]
+ ŷ

[
∂B0x(z)

∂z
ei(βx−ωt) −B0z(z)(iβ)e

i(βx−ωt)

]
+ẑ
[
B0y(z)(iβ)e

i(βx−ωt) − 0
]
= −iωϵ

c2
(E0xx̂+ E0yŷ + E0zẑ) e

i(βx−ωt) (2.12)

x̂

[
0− ∂E0y(z)

∂z
ei(βx−ωt)

]
+ ŷ

[
∂E0x(z)

∂z
ei(βx−ωt) − E0z(z)(iβ)e

i(βx−ωt)

]
+ẑ
[
E0y(z)(iβ)e

i(βx−ωt) − 0
]
= iω (B0xx̂+B0yŷ +B0zẑ) e

i(βx−ωt) (2.13)

Now we can cancel exponential terms from both sides, since they are common for both

sides, and equating the corresponding component in each equation we will have six scalar

equations in which three of them are from curl of magnetic field equation and the remain-

ing three of them are from the curl of electric field equation.

−∂B0y(z)

∂z
= − iωϵ

c2
E0x(z) (2.14)

∂B0x(z)

∂z
− iβB0z(z) = − iωϵ

c2
E0y(z) (2.15)

iβB0y(z) = − iωϵ
c2
E0z(z) (2.16)

−∂E0y(z)

∂z
= iωB0x(z) (2.17)

∂E0x(z)

∂z
− iβE0z(z) = iωB0y(z) (2.18)

iβE0y(z) = iωB0z(z) (2.19)

and rearranging this equations we will get, for y- and z- component of electric and mag-
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netic fields in terms of x-components,

E0y(z) =
−iω

β2 − ω2ϵ
c2

∂B0x(z)

∂z
(2.20)

E0z(z) =
−iβ

β2 − ω2ϵ
c2

∂E0x(z)

∂z
(2.21)

B0y(z) =
iωϵ
c2

β2 − ω2ϵ
c2

∂E0x(z)

∂z
(2.22)

B0z(z) =
−iβ

β2 − ω2ϵ
c2

∂B0x(z)

∂z
(2.23)

or alternatively we can rearrange Equation 2.14-2.19 to find x- and z- component of elec-

tric and magnetic fields in terms of y-components,

E0x(z) =
−ic2

ωϵ

∂B0y(z)

∂z
(2.24)

E0z(z) =
−c2β
ωϵ

B0y(z) (2.25)

B0x(z) =
i

ω

∂E0y(z)

∂z
(2.26)

B0z(z) =
β

ω
E0y(z) (2.27)

we can either use Equation 2.20-2.23 to write second order differential equation in terms

of x-component of electric and magnetic field or we can use Equation 2.24-2.27 to write

second order differential equation in terms of y-component of electric and magnetic filed.

We will use the second way since it is easier to deal with the coefficients. So the y-

component of electric field satisfying ordinary differential equation,

∂2E0y(z)

∂z2
−
(
β2 − ω2ϵ

c2

)
E0y(z) = 0 (2.28)

the y-component of magnetic field satisfying ordinary differential equation,

∂2B0y(z)

∂z2
−
(
β2 − ω2ϵ

c2

)
B0y(z) = 0 (2.29)

We have written x- and z-component of electric and magnetic fields in terms of y-component
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of the corresponding fields, Equation 2.24-2.27. The y-components of electric and mag-

netic fields are given by second order differential equations, Equation 2.28 and Equa-

tion 2.29. To solve the problem completely all we need to do is solve these two dif-

ferential equations and the other four components will be easier to calculate by using

Equation 2.24-2.27. To solve Equation 2.28 and Equation 2.29 we are free to choose

either E0y = 0 or B0y = 0, but not both, and still satisfy Maxwell’s equations. For trans-

verse electric solutions, we set E0x = 0 and from Equation 2.21 and Equation 2.22 we see

that B0y = 0 and E0z = 0. For transverse magnetic solutions, we ste B0x = 0 and from

Equation 2.20 and Equation 2.23 we see that E0y = 0 and B0z = 0. Thus the solution to

the problem split into two categories:

• Transverse Electric (TE) Modes, with E0x = B0y = E0z = 0

• Transverse Magnetic (TM) Modes, with B0x = E0y = B0z = 0

The boundary conditions in a source-free (ρf = 0, Jf = 0) dielectric medium

are,

∇ ·D = ρf , ρf = 0 =⇒ D⊥ = continuous

ϵd ̸= ϵb =⇒ E⊥ = discontinuous (2.30)

∇ ·B = 0 =⇒ B⊥ = continuous (2.31)

∇×H = Jf +
∂D

∂t
, Jf = 0 =⇒ H∥ = continuous

µd = µb =⇒ B∥ = continuous (2.32)

∇× E = −∂B
∂t

=⇒ E∥ = continuous (2.33)

so in our problem the boundary conditions for the component of electric and magnetic

fields at the interface between two media are,

E0x = continuous B0x = continuous

E0y = continuous B0y = continuous

E0z = discontinuous B0z = continuous
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2.1.1. Transverse Electric (TE) Modes

For TE mode solutions we set magnetic field component in the y-direction to zero,

B0y = 0. From Equation 2.24 and Equation 2.25 we see that E0x, and E0z are also zero.

So the only non-zero field components for TE solutions are B0x, E0y and B0z.

B0x(z) =
i

ω

∂E0y(z)

∂z
(2.34)

B0z(z) =
β

ω
E0y(z) (2.35)

and the field component that is transverse to the propagation direction, E0y, is given by

the second order differential equation found in the previous section,

∂2E0y(z)

∂z2
−
(
β2 − ω2ϵ

c2

)
E0y(z) = 0 (2.36)

The solutions to this equation are either sinusoidal or exponential depending on the

quantities β2 and ω2ϵ/c2. If ω2ϵ/c2 > β2 then the solutions are sinusoidal. If β2 > ω2ϵ/c2

then we have exponential solutions. To have mode localized around z = 0, solution for

region |z| < Rd must be sinusoidal, and solution for |z| > Rd must be exponential. In

addition as z goes to infinity the solutions must goes to zero. We now will solve the

differential equation for E0y(z) in two regions separately and call the solutions E0y,d(z)

and E0y,b(z),

E0y(z) =

{
E0y,d(z) |z| < Rd

E0y,b(z) |z| > Rd

(2.37)
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then the differential equation will be as follows,

[
∂2

∂z2
+

(
ϵd
ω2

c2
− β2

)]
E0y,d(z) = 0 |z| < Rd (2.38)

[
∂2

∂z2
−
(
β2 − ϵb

ω2

c2

)]
E0y,b(z) = 0 |z| > Rd (2.39)

defining γ2d = ϵd
ω2

c2
− β2 and γ2b = β2 − ϵb

ω2

c2
and plugging them into partial differential

equations then the equation now takes the form,

[
∂2

∂z2
+ γ2d

]
E0y,d(z) = 0 |z| < Rd (2.40)

[
∂2

∂z2
− γ2b

]
E0y,b(z) = 0 |z| > Rd (2.41)

finally the solutions are,

E0y(z) =


A cos(γdz) + B sin(γdz) |z| < Rd

Ce−γb|z|ei(βx−ωt) |z| > Rd

(2.42)

to find the constants A, B, and C, we will use boundary conditions at interface, z = Rd,

to match the solutions. And the solutions can be separated into even and odd solutions by

setting constant A or B to zero.

2.1.1.1. Even Transverse Electric (TE) Modes

The solution of the partial differential equation with dependence on x-coordinate

and on the time we have found in previous section is,

Ey,d(x, y, z, t) = A cos(γdz)e
i(βx−ωt) +B sin(γdz)e

i(βx−ωt) (2.43)

Ey,b(x, y, z, t) = Ce−γb|z|ei(βx−ωt) (2.44)
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for even TE solutions we set the constant B to zero, B = 0, then the solution will be as

follows,

Ey,d(x, y, z, t) = A cos(γdz)e
i(βx−ωt) (2.45)

Ey,b(x, y, z, t) = Ce−γb|z|ei(βx−ωt) (2.46)

since there is no free charge in the medium, the parallel component of electric field, Ey,

is continuous across the interface. This continuity of electric field at z = Rd gives,

Ey,d(z)|z=Rd
= Ey,b(z)|z=Rd

A cos(γdRd)e
i(βx−ωt) = Ce−γbRdei(βx−ωt)

A cos(γdRd) = Ce−γbRd (2.47)

The condition B0x be continuous at z = Rd gives, which is the Equation 2.34,

i

ω

∂Ey,d(z)

∂z
=

i

ω

∂Ey,b(z)

∂z
∂

∂z

[
A cos(γdz)e

i(βx−ωt)
]

=
∂

∂z

[
Ce−γb|z|ei(βx−ωt)

]
−Aγd sin(γdz)|z=Rd

= −Cγbe−γb|z||z=Rd

Aγd sin(γdRd) = Cγbe
−γbRd (2.48)

now dividing the Equation 2.48 with Equation 2.47 we will have,

γd tan(γdRd) = γb (2.49)

and defining new parameters γ̃d = Rdγd and γ̃b = Rdγb then we finally have,

tan γ̃d =
γ̃b
γ̃d

(2.50)

The solution to Equation 2.50 gives the allowed values of γ̃d for a given value of γ̃b.

Graphical solution of Equation 2.50 is plotted in Figure 2.2. The solution is intersection
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of function tan(γ̃d) and function γ̃b
γ̃d

. For a given γ̃b, Equation 2.50 gives several values

γ̃b
1

γ̃d

tan(γ̃d)

0 π/2 3π/2 5π/2 7π/2 γ̃d

Figure 2.2. Graph of tan(γ̃d) and γ̃b/γ̃d for even TE modes.

for γ̃d. To find the roots we use the iteration method defined as,

(γ̃d)n+1 = arctan

(
γ̃b

(γ̃d)n

)
n = 0, 1, 2, 3, ... (2.51)

and by using the initial guesses (γ̃d)0 = nπ, we can calculate ω̃ and β̃ from the the values

of γ̃d and γ̃b using,

ω̃2 =

(
ωRd

c

)2

=
γ̃2d + γ̃2b
ϵd − ϵb

(2.52)

β̃2 = (βRd)
2 =

ϵbγ̃
2
d + ϵdγ̃

2
b

ϵd − ϵb
(2.53)

The equation we defined for γ̃b, γ̃2b = β̃2 − ϵbω̃
2, defines hyperbolic curves. For every

given γ̃b, ϵb and ϵd we find γ̃d by using the iteration method, Equation 2.51. Once we have

found γ̃d then we use Equation 2.52 and Equation 2.53 to calculate ω̃ and β̃.
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In Figure 2.3 we plot β̃ versus ω̃ values for even TE modes. Each blue line cor-

responds to a mode starting from lower order (fundamental mode, TE0) to higher order

modes (TE2, TE4,...). These modes are even guided mode solutions of slab waveguide

structure and as can be seen from the figure the solutions are discrete.

 0
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ω
R

/2
πc

βR/2π
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Figure 2.3. ω̃ = ωR/2πc versus β̃ = βR/2π plotted for even TE modes for a slab
waveguide of thickness 2Rd. The slab waveguide and the background has
dielectric constant of ϵd = 13 and ϵb = 1 respectively.

Now we will find the mode profiles of each field component for even TE modes.

The solution for the component of electric field is found as, Ey,

Ey(x, y, z, t) =


A cos(γdz)e

i(βx−ωt) |z| < Rd

Ce−γb|z|ei(βx−ωt) |z| > Rd

(2.54)

where A and C are constants. To find the constant C in terms of the constant A we use
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the continuity of parallel component of electric field Ey at the interface, z = Rd,

Ey,d(x, y, z, t)|z=Rd
= Ey,b(x, y, z, t)|z=Rd

A cos(γdRd)e
i(βx−ωt) = Ce−γbRdei(βx−ωt)

A cos(γdRd) = Ce−γbRd (2.55)

solving this equation for C, then we will have C = A cos(γdRd)e
γbRd , and putting this

expression into the Equation 2.54 for C then we have,

Ey(x, y, z, t) =


A cos(γdz)e

i(βx−ωt) |z| < Rd

A cos(γdRd)e
γbRde−γb|z|ei(βx−ωt) |z| > Rd

(2.56)

Once we find Ey then it is easy to find the other field components, which are Bx and

Bz. This two field component are defined by Equation 2.34 and Equation 2.35. The

x-component of magnetic field is given by Bx = (i/ω)∂Ey/∂z,

Bx(x, y, z, t) =


− iγd

ω
A sin(γdz)e

i(βx−ωt) |z| < Rd

− iγb
ω
A cos(γdRd)e

γbRde−γb|z|ei(βx−ωt) |z| > Rd

(2.57)

The z-component of magnetic field is given by Bz = (β/ω)Ey,

Bz(x, y, z, t) =


β
ω
A cos(γdz)e

i(βx−ωt) |z| < Rd

β
ω
A cos(γdRd)e

γbRde−γb|z|ei(βx−ωt) |z| > Rd

(2.58)

We have found all three field components for even TE mode, Bx, Ey, and Bz. We now

will find energy density, and we also will find energy flow rate in each direction. Energy

density of electromagnetic field in linear media is defined as,

uem =
1

4
ℜe {E ·D∗ +H ·B∗} (2.59)
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where E is related to D as, D = ϵ0ϵ(r)E and B is related to H as, H = 1
µ0µ(r)

B. Putting

these back into Equation 2.59 then we will get,

uem =
1

4
ℜe
{
ϵ0ϵ(r)E · E∗ +

1

µ0µ(r)
B ·B∗

}
(2.60)

and taking the dot product in Equation 2.60,

uem =
1

4
ℜe
{
ϵ0ϵ(r)

(
|Ex|2 + |Ey|2 + |Ez|2

)
+

1

µ0µ(r)

(
|Bx|2 + |By|2 + |Bz|2

)}
(2.61)

for TE modes, Ex, Ez and By are zero. The dielectric function varies only in z-direction,

so we can write ϵ(r) = ϵ(z). For linear and non-magnetic medium µ(r) = 1, and using

c2 = 1/ϵ0µ0 for speed of light in free space, the energy density for TE modes can be

written as,

uem =
1

4µ0

ℜe
{

1

c2
ϵ(z)|Ey|2 + |Bx|2 + |Bz|2

}
(2.62)

putting field components into Equation 2.62, then the energy density for even TE modes

in both region, inside the slab and outside of the slab, will be,

uem =


A2

4µ0

[(
ϵd
c2
+ β2

ω2

)
cos2(γdz) +

γ2
d

ω2 sin
2(γdz)

]
|z| < Rd

A2

4µ0

[
ϵb
c2
+ β2

ω2 +
γ2
b

ω2

]
cos2(γdRd)e

2γbRde−2γb|z| |z| > Rd

(2.63)

The flow of electromagnetic energy is defined by Poynting vector. For even TE modes

three of the field components are zero, Ex = 0, Ez = 0, and By = 0,

S =
1

2
ℜe {E×H∗} =

1

2µ0

ℜe {E×B∗} =
1

2µ0

ℜe


∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

0 Ey 0

B∗
x 0 B∗

z

∣∣∣∣∣∣∣∣
 (2.64)
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after taking the determinant then we will have,

S =
1

2µ0

ℜe {EyB
∗
z x̂− EyB

∗
xẑ} (2.65)

as we see from Equation 2.65 Poynting vector has no component in the y-direction,

Sy = 0. The x-component of Poynting vector is Sx = 1/2µ0ℜe {EyB
∗
z}, using the

field components, Ey and Bz, then we will have,

Sx =


A2

2µ0

β
ω
cos2(γdz) |z| < Rd

A2

2µ0

β
ω
cos2(γdRd)e

2γbRde−2γb|z| |z| > Rd

(2.66)

The z- component of Poynting vector is Sz = −1/2µ0ℜe {EyB
∗
x}. Using Bx and Ey,

then we will have for z-direction,

Sz =


−i A2

2µ0

γd
ω
cos(γdz) sin(γdz) |z| < Rd

−i A2

2µ0

γb
ω
cos2(γdRd)e

2γbRde−2γb|z| |z| > Rd

(2.67)

the real part of z-component of Poynting vector is zero so the Poynting vector in the

z-direction is zero, Sz = 0. This means that in the z- direction there is no net energy flow.

To find the power that is propagating in the slab, |z| < Rd, and in the background,

|z| > Rd, in the x-direction we need to integrate Poynting vector along the z-direction.

Pin =

∫ Rd

−Rd

Sxdz =
A2

2µ0

β

ω

∫ Rd

−Rd

cos2(γdz)dz (2.68)

after taking the integral then we will have,

Pin =
A2

2µ0

β

ω

[
Rd +

1

2γd
sin(2γdRd)

]
(2.69)

where Pin is power passing through unit length in x-direction. And the power that propa-
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gates in background is,

Pout =

∫ −Rd

−∞
Sxdz +

∫ ∞

Rd

Sxdz

=
A2

2µ0

β

ω
cos2(γdRd)e

2γbRd

{∫ −Rd

−∞
e2γbzdz +

∫ ∞

Rd

e−2γbzdz

}
(2.70)

after taking the integrals then we will have,

Pout =
A2

2µ0

β

ω

1

γb
cos2(γdRd) (2.71)

the total power is P = Pin + Pout,

P =
A2

2µ0

β

ω

[
Rd +

1

2γd
sin(2γdRd) +

1

γb
cos2(γdRd)

]
(2.72)

2.1.1.2. Odd Transverse Electric (TE) Modes

For odd TE modes we set the coefficient A to zero in Equation 2.42 and then the

odd TE solutions are given by,

Ey,d(x, y, z, t) = B sin(γdz)e
i(βx−ωt) (2.73)

Ey,b(x, y, z, t) = Ce−γb|z|ei(βx−ωt) (2.74)

the condition that Ey be continuous across the interface at z = Rd gives,

Ey,d(z)|z=Rd
= Ey,b(z)|z=Rd

B sin(γdRd)e
i(βx−ωt) = Ce−γbRdei(βx−ωt)

B sin(γdRd) = Ce−γbRd (2.75)
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the second boundary condition must be imposes is that Bx be continuous at z = Rd,

which gives,

i

ω

∂Ey,d(z)

∂z
=

i

ω

∂Ey,b(z)

∂z
∂

∂z

[
B sin(γdz)e

i(βx−ωt)
]

=
∂

∂z

[
Ce−γb|z|ei(βx−ωt)

]
Bγd cos(γdz)|Rd

= −Cγbe−γb|z||Rd

Bγd cos(γdRd) = −Cγbe−γbRd (2.76)

dividing Equation 2.75 with Equation 2.76 will give,

1

γd
tan(γdRd) = − 1

γb
(2.77)

and defining γ̃d = γdRd, and γ̃bRd, then we will have

tan(γ̃d) = − γ̃d
γ̃b

(2.78)

21



The graphical solutions of this equation is shown in Figure 2.4 and the solutions

are the intersections of both function on the left hand side and right hand side.

(

−

1

γ̃b

)

γ̃d

tan(γ̃d)

−π/2 0

π/2 3π/2 5π/2 7π/2 γ̃d

Figure 2.4. Graph of the functions tan(γ̃d) and (−1/γ̃b) γ̃d for even TE modes.

For a given γ̃b, this equation yields several values for γ̃d. The roots can again be

found by using the iteration method.

(γ̃d)n+1 = arctan

(
γ̃b

(γ̃d)n

)
n = 1, 2, 3, ... (2.79)

by using the initial guess (γ̃d)0 = nπ. We can then calculate ω and β from the values of

γ̃d and γ̃b using,

ω̃2 =

(
ωRd

c

)2

=
γ̃2d + γ̃2d
ϵd − ϵb

(2.80)

β̃2 = (βRd)
2 =

ϵbγ̃
2
d + ϵdγ̃

2
b

ϵd − ϵb
(2.81)

as we have done of even TE modes, for every chosen γ̃b, ϵb and ϵd we use the Equation 2.79

to find γ̃d. Once we find γ̃d then we use Equation 2.80 and Equation 2.81 to find ω̃ and β̃.
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In Figure 2.5 we show β̃ versus ω̃ for odd TE modes. The lowest mode for odd

TE solution is indicated with TE1 and the higher modes are indicated with TE3, TE5,...
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Figure 2.5. ω̃ = ωRd/2πc versus β̃ = βRd/2π plotted for odd TE modes of a slab
waveguide with thickness of 2Rd. The slab waveguide and the background
materials have dielectric constant of ϵd and ϵb respectively.
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In Figure 2.6 we plot ω̃ versus β̃ for both even TE and odd TE modes on same

graph. These are guided solutions of waveguide. These solutions are obtained by solving

second order differential equation with boundary conditions imposed on field compo-

nents. The guided region in the Figure 2.6 is represented by ϵdω̃ > β̃ > ϵbω̃. In these

case solutions are sinusoidal in the region of higher dielectric, and in the lower dielectric

region we have exponential decay solutions. For ϵdω̃ > ϵbω̃ > β̃ the solutions are sinu-

soidal in both region. In this case we get radiation modes.
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Figure 2.6. ω̃ versus β̃ plotted for even TE (Blue lines) and odd TE modes (Red lines)
of a slab waveguide with thickness 2Rd.

For odd TE mode solutions, the electric field component that is in the y-direction,

Ey, is found as,

Ey(x, y, z, t) =


B sin(γdz)e

i(βx−ωt) |z| < Rd

Ce−γb|z|ei(βx−ωt) |z| > Rd

(2.82)
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where B and C are constants. By using the continuity of electric field, Ey, at z = Rd,

Ey,d(x, y, z, t)|z=Rd
= Ey,b(x, y, z, t)|z=Rd

B sin(γdRd)e
i(βx−ωt) = Ce−γbRdei(βx−ωt)

B sin(γdRd) = Ce−γbRd (2.83)

solving this equation for C, then we will have, C = B sin(γdRd)e
γbRd . Putting this

expression for C into the Equation 2.82 then we will have,

Ey(x, y, z, t) =


B sin(γdz)e

i(βx−ωt) |z| < Rd

B sin(γdRd)e
γbRde−γb|z|ei(βx−ωt) |z| > Rd

(2.84)

The x-component of magnetic field, Bx, is given by Bx = (i/ω) ∂Ey/∂z,

Bx(x, y, z, t) =


iγd
ω
B cos(γdz)e

i(βx−ωt) |z| < Rd

− iγb
ω
B sin(γdRd)e

γbRde−γb|z|ei(βx−ωt) |z| > Rd

(2.85)

the z component of magnetic field, Bz, is given by Bz = (β/ω)Ey.

Bz(x, y, z, t) =


β
ω
B sin(γdz)e

i(βx−ωt |z| < Rd

β
ω
B sin(γdRd)e

γbRde−γb|z|ei(βx−ωt) |z| > Rd

(2.86)

In Figure 2.7 we plotted first two even TE mode profiles, TE0 and TE2, and first

two odd TE mode profiles, TE1 and TE3 for β̃ = 0.6. The blue line is the electric field

component, Ey(z) that is transverse to propagation direction. The orange line indicates

the magnetic field component, Bz(z), that is perpendicular to propagation direction and

it is in the z-direction. The red line indicates the magnetic field component, Bx(z), in the

propagation direction, x-direction.
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Figure 2.7. First two even TE mode profiles, TE0 and TE2, and First two odd TE
mode profiles, TE1 and TE3. The propagation constant is β̃ = 0.6. The
dielectric constant of slab is ϵd = 13 and the dielectric constant of back-
ground is ϵb = 1. The thickness of slab is 2Rd.

The energy density of TE modes is given by Equation 2.62,

uem =
1

4µ0

ℜe
{

1

c2
ϵ(z)|Ey|2 + |Bx|2 + |Bz|2

}
(2.87)

putting the field components we have found for odd TE solutions into Equation 2.87, then

the energy density of odd TE modes will be,

uem =


B2

4µ0

[(
ϵd
c2
+ β2

ω2

)
sin2(γdz) +

γ2
d

ω2 cos
2(γdz)

]
|z| < Rd

B2

4µ0

[
ϵb
c2
+ β2

ω2 +
γ2
b

ω2

]
sin2(γdRd)e

2γbRde−2γb|z| |z| > Rd

(2.88)

In Figure 2.8 we plotted electromagnetic energy density for first two even TE and first

two odd TE modes for β̃ = 0.6.
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Figure 2.8. Energy density profiles for first two even TE modes, TE0 and TE2, and
first two odd TE modes, TE1 and TE3. The propagation constant is β̃ =
0.6. The dielectric constant of slab is ϵd = 13 and the dielectric constant
of background is ϵb = 1. The thickness of slab is 2Rd.

The flow of electromagnetic energy for odd TE modes is given by,

S =
1

2µ0

ℜe {EyB
∗
z x̂− EyB

∗
xẑ} (2.89)

As in the even TE mode solution the y-component is zero, Sy = 0. The x-component

of Poynting vector is Sx = 1/2µ0ℜe {EyB
∗
z}. Putting the field components, Ey, and Bz,

into this expression then we will have for x-direction,

Sx =


B2

2µ0

β
ω
sin2(γdz) |z| < Rd

B2

2µ0

β
ω
sin2(γdRd)e

2γbRde−2γb|z| |z| > Rd

(2.90)

for the z-direction Poynting vector is Sz = −1/2µ0ℜe {EyB
∗
x}. Putting the components
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of the fields, Ey and Bz, then we will have,

Sz =


−i B2

2µ0

γd
ω
sin(γdz) cos(γdz) |z| < Rd

i B
2

2µ0

γb
ω
sin2(γdRd)e

2γbRde−2γb|z| |z| > Rd

(2.91)

as we see the z-component is purely imaginary so the net energy flow in this direction is

zero.

The amount of power propagating in the region, |z| < Rd, and in the background,

|z| > Rd, along x-direction is given by integrating x-component of Poynting vector along

the z-direction,

Pin =

∫ Rd

−Rd

Sxdz =
A2

2µ0

β

ω

∫ Rd

−Rd

sin2(γdz)dz (2.92)

taking the integral will gives,

Pin =
A2

2µ0

β

ω

[
Rd −

1

2γd
sin(2γdRd)

]
(2.93)

where Pin is power passing through unit length in x-direction. And the power that propa-

gates in background is,

Pout =

∫ −Rd

−∞
Sxdz +

∫ ∞

Rd

Sxdz

=
A2

2µ0

β

ω
sin2(γdRd)e

2γbRd

{∫ −Rd

−∞
e2γbzdz +

∫ ∞

Rd

e−2γbzdz

}
(2.94)

which will give,

Pout =
A2

2µ0

β

ω

1

γb
sin2(γdRd) (2.95)
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the total power is P = Pin + Pout,

P =
A2

2µ0

β

ω

[
Rd −

1

2γd
sin(2γdRd) +

1

γb
sin2(γdRd)

]
(2.96)

Table. 2.1 shows confinement factor, Γin,i = Pin,i/P and Γout,i = Pout,i/P for TE modes

where i indicates the mode index. As can be seen from the table confinement factor de-

creases with increasing mode index .

Mode Confinement Factor, Γin,i (%) Confinement Factor, Γout,i (%)
TE0 0.97710935492732665 2.2890645072673337E-002
TE1 0.92661327275081484 7.3386727249185088E-002
TE2 0.87536185537805455 0.12463814462194547
TE3 0.83421130108392050 0.16578869891607964
TE4 0.79964427991633102 0.20035572008366903
TE5 0.76677251583164507 0.23322748416835493
TE6 0.72669642112467925 0.27330357887532075
TE7 0.66235543289114807 0.33764456710885193

Table 2.1. Confinement factors for even and odd TE modes for β̃ = 0.6.

29



In Figure 2.9 we see plot of Poynting vector of first two even TE, TE0 and TE2,

and first two odd TE, TE1 and TE3, modes for β̃ = 0.6. In the figure Sx,0, Sx,1, Sx,2, and

Sx,3 represent the Poynting vector of the modes TE0, TE1, TE2, and TE3 respectively.
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Figure 2.9. Poynting vector for both even and odd TE modes. The dielectric constant
of slab is ϵd and the dielectric constant of background is ϵb. The thickness
of slab is 2Rd. The propagation constant is β̃ = 0.6
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2.1.2. Transverse Magnetic (TM) Modes

To calculate TM modes, we solve the differential equation for E0y in two regions

separately and impose boundary conditions on the solutions. By settingE0y to zero we see

that B0x and B0z are also zero, and we have left with field component that are non-zero,

E0z, B0y, and E0x and which are defined as,

E0x = − ic
2

ωϵ

∂B0y

∂z
(2.97)

E0z = −c
2β

ωϵ
B0y (2.98)

and the second order differential equation for y-component of magnetic field, By, is,

∂2B0y(z)

∂z2
−
(
β2 − ω2ϵ

c2

)
B0y = 0 (2.99)

we solve the differential equation for B0y(z) in the two regions separately, and call the

solutions B0y,d(z) and B0y,b(z).

B0y(z) =

{
B0y,d(z) |z| < Rd

B0y,b(z) |z| > Rd

(2.100)

As we did for TE mode solutions, solutions for the region |z| < Rd must have the form

of sinusoidal function, and the solution for the region |z| > Rd must have the form of

exponential decay function. This will guaranty the field localization.

[
∂2

∂z2
+

(
ϵd
ω2

c2
− β2

)]
B0y,d(z) = 0 (2.101)

[
∂2

∂z2
−
(
β2 − ϵb

ω2

c2

)]
B0y,b(z) = 0 (2.102)
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Now we define γ2d = ϵd
ω2

c2
−β2 and γ2b = β2−ϵb ω

2

c2
. Plugging these into partial differential

equations, Equation 2.101 and Equation 2.102 then these equations now take the form of,

[
∂2

∂z2
+ γ2d

]
B0y,d(z) = 0 (2.103)

[
∂2

∂z2
− γ2b

]
B0y,b(z) = 0 (2.104)

and the solutions are, as required by the localization conditions around |z| < Rd and

being finite or going to zero as z goes to infinity,

B0y,d(x, y, z, t) = A cos(γdz) +B sin(γdz) (2.105)

B0y,b(x, y, z, t) = Ce−γb|z| (2.106)

where A, B, and C are the constants and they can be found by matching the boundary

conditions. Now we can separate the solutions in two categories, one is called even TM

and the other is called odd TM modes.

• Even Transverse Magnetic (TM) Modes, with the constant B = 0

• Odd Transverse Magnetic (TM) Modes, with the constant A = 0

2.1.2.1. Even Transverse Magnetic (TM) Modes

To find even TM solution, we will impose the boundary conditions to the solutions,

Equation 2.105 and Equation 2.106. The solutions we found are in the form of,

By,d(x, y, z, t) = A cos(γdz)e
i(βx−ωt) +B sin(γdz)e

i(βx−ωt) (2.107)

By,b(x, y, z, t) = Ce−γb|z|ei(βx−ωt) (2.108)
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for even TM solutions, we set the coefficient B to zero,

By,d(x, y, z, t) = A cos(γdz)e
i(βx−ωt) (2.109)

By,b(x, y, z, t) = Ce−γb|z|ei(βx−ωt) (2.110)

the boundary condition for the field component By be continuous across the interface at

z = Rd gives,

By,d(z)|z=Rd
= By,b(z)|z=Rd

A cos(γdRd)e
i(βx−ωt) = Ce−γbRdei(βx−ωt)

A cos(γdRd) = Ce−γbRd (2.111)

the condition Ex be continuous at z = Rd will give, which is the Equation 2.26,

− ic2

ωϵd

∂By,d(z)

∂z
= − ic2

ωϵb

∂By,b(z)

∂z
1

ϵd

∂

∂z

[
A cos(γdz)e

i(βx−ωt)
]

=
1

ϵb

∂

∂z

[
Ce−γb|z|ei(βx−ωt)

]
1

ϵd
(−Aγd sin(γdz)) |z=Rd

=
1

ϵb

(
−Cγbe−γb|z|

)
|z=Rd

γd
ϵd
A sin(γdRd) =

γb
ϵb
Ce−γbRd (2.112)

we now have two equations, Equation 2.111 and Equation 2.112, to solve them for γ̃d we

divide the Equation 2.112 with Equation 2.111 then we will have,

γd
ϵd

tan(γdRd) =
γb
ϵb

(2.113)

we can write the Equation 2.113 more simply by defining new parameters γ̃d = Rdγd and

γ̃b = Rdγb, then we finally will have,

tan γ̃d =
ϵdγ̃b
ϵbγ̃d

(2.114)
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at this point all we need to do is solve this equation for γ̃b. In order to solve Equa-

tion 2.114, we plot both tan(γ̃d) and
(

ϵdγ̃b
ϵb

)
1
γ̃d

on same graph, and their intersections are

shown. These intersections are the solutions we are looking for, Figure 2.10.

(

ǫdγ̃b
ǫb

)

1

γ̃d

tan(γ̃d)

0 π/2 3π/2 5π/2 7π/2 γ̃d

Figure 2.10. Graph of tan(γ̃d) and (ϵdγ̃b/ϵb)
1
γ̃d

for a chosen (ϵdγ̃b/ϵb) and their inter-
section.

For a given γ̃b, ϵb and ϵd Equation 2.114 gives several values for γ̃d. To find the

roots we use the iteration method,

(γ̃d)n+1 = arctan

(
ϵdγ̃b
ϵb(γ̃d)n

)
n = 0, 1, 2, 3, ... (2.115)

and by using the initial guesses (γ̃d)0 = nπ, we can calculate ω̃ and β̃ from the values of

γ̃d and γ̃b that we found by the iteration method by using,

ω̃2 =

(
ωRd

c

)2

=
γ̃2d + γ̃2b
ϵd − ϵb

(2.116)

β̃2 = (βRd)
2 =

ϵbγ̃
2
d + ϵdγ̃

2
b

ϵd − ϵb
(2.117)
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The expression for γ̃b we defined earlier, γ̃2b = β̃2 − ϵbω̃
2, expresses a hyperbola. For a

give values of γ̃b, ϵd and ϵb we first find γ̃d by using the iteration method that is defined as

in Equation 2.115 and then using those values we find ω̃ and β̃ from Equation 2.116 and

Equation 2.117. The plot of ω̃ versus β̃ is shown in Figure 2.11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ω
R

/2
πc

βR/2π

TM0

TM2

TM4

TM6

TM8

TM10

TM12

Figure 2.11. ω̃ versus β̃ plotted for even TM modes of a slab waveguide with thickness
2Rd.

Even TM modes solutions we have found for the magnetic field component is, By,

By(x, y, z, t) =


A cos(γdz)e

i(βx−ωt) |z| < Rd

Ce−γb|z|ei(βx−ωt) |z| > Rd

(2.118)
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we now use the continuity of By at the interface between two media to find the constant

C in terms of the constant A,

By,d(x, y, z, t)|z=Rd
= By,b(x, y, z, t)|z=Rd

A cos(γdRd)e
i(βx−ωt) = Ce−γbRdei(βx−ωt)

A cos(γdRd) = Ce−γbRd (2.119)

solving this equation for the constant C we will get, C = A cos(γdRd)e
γbRd . Putting this

expression into Equation 2.118 for C, then we will get,

By(x, y, z, t) =


A cos(γdz)e

i(βx−ωt) |z| < Rd

A cos(γdRd)e
γbRde−γb|z|ei(βx−ωt) |z| > Rd

(2.120)

The x-component of electric field, Ex, is given by Ex = (−ic2/ωϵ) ∂By/∂z

Ex(x, y, z, t) =


ic2γd
ωϵd

A sin(γdz)e
i(βx−ωt) |z| < Rd

ic2γb
ωϵb

A cos(γdRd)e
γbRde−γb|z|ei(βx−ωt |z| > Rd

(2.121)

The z-component of electric field, Ez, is given by Ez = (−c2β/ωϵ)By

Ez(x, y, z, t) =


− c2β

ωϵd
A cos(γdz)e

i(βx−ωt) |z| < Rd

− c2β
ωϵb
A cos(γdRd)e

γbRde−γb|z|ei(βx−ωt) |z| > Rd

(2.122)

Energy density of electromagnetic field is given by,

uem =
1

4
ℜe
{
ϵ0ϵ(r)E · E∗ +

1

µ0µ(r)
B ·B∗

}
(2.123)

for TM modes, Ex, By and Ez are the non-zero components. The other three field com-

ponents are zero, Bx, Ey, and Bz, so the energy density for TM modes can be written
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as,

uem =
1

4µ0

ℜe
{

1

c2
ϵ(z)

(
|Ex|2 + |Ez|2

)
+ |By|2

}
(2.124)

Using field components that we have found previously in Equation 2.124 then the energy

density will be,

uem =


A2

4µ0

[(
c2β2

ω2ϵd
+ 1
)
cos2(γdz) +

c2γ2
d

ω2ϵd
sin2(γdz)

]
|z| < Rd

A2

4µ0

[
c2γ2

b

ωϵb
+ c2β2

ω2ϵb
+ 1
]
cos2(γdRd)e

2γbRde−2γb|z| |z| > Rd

(2.125)

The flow of electromagnetic energy for even TM modes is, where three of the field com-

ponents are zero, Ey = 0, Bx = 0, and Bz = 0,

S =
1

2
ℜe {E×H∗} =

1

2µ0

ℜe {E×B∗} =
1

2µ0

ℜe


∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

Ex 0 Ez

0 B∗
y 0

∣∣∣∣∣∣∣∣
 (2.126)

after taking the determinant then we will have,

S =
1

2µ0

ℜe
{
−EzB

∗
y x̂+ ExB

∗
y ẑ
}

(2.127)

as we see from this equation Poynting vector has no component in the y-direction, Sy = 0.

Putting the field components, Ex, By, and Ez, into Equation 2.127 then we will have for

x-direction,

Sx =


A2

2µ0

c2β
ωϵd

cos2(γdz) |z| < Rd

A2

2µ0

c2β
ωϵb

cos2(γdRd)e
2γbRde−2γb|z| |z| > Rd

(2.128)
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for the z-direction we will have,

Sz =


i A

2

2µ0

c2γd
ωϵd

sin(γdz) cos(γdz) |z| < Rd

i A
2

2µ0

c2γb
ωϵb

cos2(γdRd)e
2γbRde−2γb|z| |z| > Rd

(2.129)

the real part of z-component of Poynting vector is zero so the Poynting vector in this

direction is zero, Sz = 0, there is no net energy flow in this direction.

The power that is propagating in the slab, |z| < Rd, is given by,

Pin =

∫ Rd

−Rd

Sxdz =
A2c2

2µ0

β

ωϵd

∫ Rd

−Rd

cos2(γdz)dz (2.130)

the integration gives,

Pin =
A2c2

2µ0

β

ωϵd

[
Rd +

1

2γd
sin(2γdRd)

]
(2.131)

the power that propagates in background, |z| > Rd, along the x-direction is,

Pout =

∫ −Rd

−∞
Sxdz +

∫ ∞

Rd

Sxdz

=
A2c2

2µ0

β

ωϵb
cos2(γdRd)e

2γbRd

{∫ −Rd

−∞
e2γbzdz +

∫ ∞

Rd

e−2γbzdz

}
(2.132)

after taking the integrals then we will have,

Pout =
A2c2

2µ0

β

ωϵb

1

γb
cos2(γdRd) (2.133)

the total power is P = Pin + Pout,

P =
A2c2

2µ0

β

ω

[
Rd

ϵd
+

1

2γdϵd
sin(2γdRd) +

1

γbϵb
cos2(γdRd)

]
(2.134)
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2.1.2.2. Odd Transverse Magnetic (TM) Modes

Odd TM modes are found by setting the coefficientA to zero in Equation 2.105.So

the odd TM solutions are,

By,d(x, y, z, t) = B sin(γdz)e
i(βx−ωt) (2.135)

By,b(x, y, z, t) = Ce−γb|z|ei(βx−ωt) (2.136)

the boundary condition requires that By be continuous across the interface at z = Rd.

Which will give,

By,d(z)|z=Rd
= By,b(z)|z=Rd

B sin(γdRd)e
i(βx−ωt) = Ce−γbRdei(βx−ωt)

B sin(γdRd) = Ce−γbRd (2.137)

the second boundary condition must be imposes is that Bx be continuous at z = Rd, the

interface between two media, which will give,

c2

iωϵd

∂By,d(z)

∂z
=

c2

iωϵb

∂By,b(z)

∂z
1

ϵd

∂

∂z

[
B sin(γdz)e

i(βx−ωt)
]

=
1

ϵb

∂

∂z

[
Ce−γb|z|ei(βx−ωt)

]
1

ϵd
(Bγd cos(γdz)) |z=Rd

=
1

ϵb

(
−Cγbe−γb|z|

)
|z=Rd

γd
ϵd
B cos(γdRd) = −γb

ϵb
CeγbRd (2.138)

again we have two equation, one from the continuity of By and the other is from the

continuity ofEx at the interface, z = Rd. By dividing Equation 2.137 with Equation 2.138

we will have,

ϵd
γd

tan(γdRd) = − ϵb
γb

(2.139)
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and defining γ̃d = γdRd, and γ̃b = γbRd, then we will have

tan(γ̃d) = −ϵbγ̃d
ϵdγ̃b

(2.140)

The graph of functions tan(γ̃d) and (− ϵb
ϵdγ̃b

)γ̃d is shown in Figure 2.12. The intersections

of two functions indicated are the solutions to the Equation 2.140.

(

−

ǫb
ǫdγ̃b

)

γ̃d

tan(γ̃d)

−π/2 0

π/2 3π/2 5π/2 7π/2 γ̃d

Figure 2.12. Graph of tan(γ̃d) and (−ϵb/(ϵdγ̃b)) γ̃d functions for a chosen −ϵb/(ϵdγ̃b)
value and their intersections.

For a given γ̃b, ϵb and ϵd Equation 2.140 gives several values for γ̃d. The roots can

again be found by using the iteration method.

(γ̃d)n+1 = arctan

(
−ϵb(γ̃d)n

ϵdγ̃b

)
n = 1, 2, 3, ... (2.141)

by using the initial guess (γ̃d)0 = nπ. We can then calculate ω and β from the values of

γ̃d and γ̃b using,

ω̃2 =

(
ωRd

c

)2

=
γ̃2d + γ̃2d
ϵd − ϵb

(2.142)
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β̃2 = (βRd)
2 =

ϵbγ̃
2
d + ϵdγ̃

2
b

ϵd − ϵb
(2.143)

again by looking back to the definition we defined earlier for γ̃b, γ̃2b = β̃2 − ϵbω̃
2, we see

that it defines hyperbolic curves. For every chosen γ̃b and ϵb values we have a different

curve defined by γ̃2b = β̃2 − ϵbω̃
2, and we can define infinite number of curves defined by

this expression, so for every values of chosen γ̃b and ϵb we have infinitely many values of

ω̃ and β̃. By solving this equation and plotting them on a graph we will have Figure 2.13.

This graphic gives us the band structure.
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Figure 2.13. β̃ versus ω̃ graph of odd TM modes of a single slab waveguide with dielec-
tric constant ϵd = 13 and thickness 2Rd. The dielectric constant of i the
background is ϵb = 1.
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In the Figure 2.14 we show β̃ versus ω̃ of slab waveguide for even and odd TM

solutions. Blue lines indicate even modes while red lines indicate odd modes. As it is

seen from the figure the fundamental mode, (lowest mode) is even.
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Figure 2.14. Graph of β̃ versus ω̃ plotted for both even TM (Blue lines), and odd TM
(Red lines) modes for single slab waveguide with thickness 2Rd and dielec-
tric constant of slab and background are ϵd = 13 and ϵb = 1 respectively.

For odd TM modes, the solution for the field component in the propagation direc-

tion of odd TM modes, By, are found as,

By(x, y, z, t) =


B sin(γdz)e

i(βx−ωt) |z| < Rd

Ce−γb|z|ei(βx−ωt) |z| > Rd

(2.144)

to find the constant C in terms of the constant B we use the continuity of By at the
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interface between two media, then we have,

By,d(x, y, z, t)|z=Rd
= By,b(x, y, z, t)|z=Rd

B sin(γdRd)e
i(βx−ωt) = Ce−γbRdei(βx−ωt)

B sin(γdRd) = Ce−γbRd (2.145)

solving this equation for the constant C we get C = B sin(γdRd)e
γbRd and putting this

back for the constant C, then we will get,

By(x, y, z, t) =


B sin(γdz)e

i(βx−ωt) |z| < Rd

B sin(γdRd)e
γbRde−γb|z|ei(βx−ωt) |z| > Rd

(2.146)

the x-component of electric field is, Ex = (−ic2/ωϵ)∂By/∂z,

Ex(x, y, z, t) =


− ic2γd

ωϵd
B cos(γdz)e

i(βx−ωt) |z| < Rd

ic2γb
ωϵb

B sin(γdRd)e
γbRde−γb|z|ei(βx−ωt) |z| > Rd

(2.147)

the electric field component that is perpendicular to the interface is,E0z = (−ic2β/ωϵ)By,

Ez(x, y, z, t) =


− c2β

ωϵd
B sin(γdz)e

i(βx−ωt) |z| < Rd

− c2β
ωϵb
B sin(γdRd)e

γbRde−γb|z|ei(βx−ωt) |z| > Rd

(2.148)

In Figure 2.15 We plotted first two odd TM mode profiles and their energy density

for β̃ = 0.6.The blue mode is the magnetic field component in the propagation direction,

Bx(z). The red line indicates the electric field component, Ey(z), that is perpendicular to

propagation direction and it is in the y-direction. The orange mode indicates the magnetic

field component, Bz(z), that is in the z-direction.
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Figure 2.15. First two even TM mode profiles (TM0 and TM2) and energy densities of
each modes of slab waveguide. The dielectric constant of slab is ϵd and the
dielectric constant of background is ϵb. The thickness of slab is 2Rd. The
propagation constant is

Energy density of electromagnetic field is given by,

uem =
1

4
ℜe
{
ϵ0ϵ(r)E · E∗ +

1

µ0µ(r)
B ·B∗

}
(2.149)

for TM modes, Ex, By and Ez are the non-zero component so the energy density for TM

modes can be written as,

uem =
1

4µ0

ℜe
{

1

c2
ϵ(z)

(
|Ex|2 + |Ez|2

)
+ |By|2

}
(2.150)

Using field components that we have found previously, then the energy density for two
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region, inside and the outside of the slab waveguide will be,

uem =


B2

4µ0

[(
c2β2

ω2ϵd
+ 1
)
sin2(γdz) +

c2γ2
d

ω2ϵd
cos2(γdz)

]
|z| < Rd

B2

4µ0

[
c2γ2

b

ω2ϵb
+ c2β2

ω2ϵb
+ 1
]
sin2(γdRd)e

2γbRde−2γb|z| |z| > Rd

(2.151)

In Figure 2.16 we see electromagnetic energy density distribution along z-direction.

The propagation constant for all four modes is taken as β̃ = 0.6. In this figure uem,0, uem,1,

uem,2, and uem,3 represent the electromagnetic energy densities of TM0, TM1, TM2, and

TM3 respectively.
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Figure 2.16. Electromagnetic energy density distribution of even TM modes, (uem,0 and
uem,2), and odd TM modes, (uem,1 and uem,2), along z-coordinate. The
dielectric constant of slab is ϵd = 13 and the dielectric constant of back-
ground is ϵb = 1. The thickness of slab is 2Rd.
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The Poynting vector, S, for TM mode solutions is given by,

S =
1

2µ0

ℜe
{
−EzB

∗
y x̂+ ExB

∗
y ẑ
}

(2.152)

as we see from Equation 2.152 Poynting vector has no component in the y-direction, Sy =

0. This means that there is no energy flow in y-direction. The flow of electromagnetic

energy is restricted in the x− z plane. Putting the field components, Bx, Ey, and Bz, into

Equation 2.152 then we will have for x-direction, Sx = (1/2µ0)ℜe
{
−EzB

∗
y

}

Sx =


B2

2µ0

c2β
ωϵd

sin2(γdz) |z| < Rd

B2

2µ0

c2β
ωϵb

sin2(γdRd)e
2γbRde−2γb|z| |z| > Rd

(2.153)

for z-direction the Poynting vector is Sz = (1/2µ0)ℜe
{
ExB

∗
y

}

Sz =


−i B2

2µ0

c2γd
ωϵd

cos(γdz) sin(γdz) |z| < Rd

i B
2

2µ0

c2γb
ωϵb

sin2(γdRd)e
2γbRde−2γb|z| |z| > Rd

(2.154)

as can be seen the real part of Sz is zero. This means that no net energy flow in this

direction. The electromagnetic energy oscillates between electric and magnetic field.

The amount of power propagating in the region, |z| < Rd, and in the background,

|z| > Rd, along x-direction is given by integrating x-component of Poynting vector along

the z-direction,

Pin =

∫ Rd

−Rd

Sxdz =
B2c2

2µ0

β

ωϵd

∫ Rd

−Rd

sin2(γdz)dz (2.155)

taking the integral will gives,

Pin =
B2c2

2µ0

β

ωϵd

[
Rd −

1

2γd
sin(2γdRd)

]
(2.156)
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where Pin is power passing through unit length in x-direction. And the power that propa-

gates in background is,

Pout =

∫ −Rd

−∞
Sxdz +

∫ ∞

Rd

Sxdz

=
B2c2

2µ0

β

ωϵb
sin2(γdRd)e

2γbRd

{∫ −Rd

−∞
e2γbzdz +

∫ ∞

Rd

e−2γbzdz

}
(2.157)

which will give,

Pout =
B2c2

2µ0

β

ωϵb

1

γb
sin2(γdRd) (2.158)

the total power is P = Pin + Pout,

P =
B2c2

2µ0

β

ω

[
Rd

ϵd
− 1

2γdϵd
sin(2γdRd) +

1

γbϵb
sin2(γdRd)

]
(2.159)

In Table. 2.2 we show confinement factor, Γin,i = Pin,i/P , Γout,i = Pout,i/P for TM

modes where i represents mode index. As we see confinement factor for the fundamental

mode, i = 0, has highest value and it decreases as mode index increases.

Mode Confinement Factor, Γin,i (%) Confinement Factor, Γout,i (%)
TM0 0.99620041870754428 3.7995812924557278E-003
TM1 0.98414634565626546 1.5853654343734556E-002
TM2 0.96101576805358679 3.8984231946413088E-002
TM3 0.92205481633522113 7.7945183664778844E-002
TM4 0.85733309547630632 0.14266690452369371
TM5 0.74820770690306504 0.25179229309693502
TM6 0.56203703788655657 0.43796296211344338
TM7 0.28310495087480991 0.71689504912519009

Table 2.2. Confinement factors for even and odd TM modes for β̃ = 0.6.
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In Figure 2.17 we plotted Poynting vector for first four TM modes for β̃ = 0.6.

Sx,0, Sx,1, Sx,2, and Sx,3 are the x-component of Poynting vector for TM0, TM1, TM2,

and TM3 modes respectively.
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Figure 2.17. Poynting vector profile along z-direction for even, (TM0 and TM2), and
odd, (TM1 and TM3) TM modes of slab waveguide. The dielectric con-
stant of slab is ϵd and the dielectric constant of background is ϵb. The
thickness of slab is 2Rd.
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2.2. Photonic Crystal Theory

To understand propagation of light in dielectric medium we start with microscopic

Maxwell’s equations,

∇ · E = ρ/ϵo (2.160)

∇ ·B = 0 (2.161)

∇×B = µ0J+ ϵo
∂E

∂t
(2.162)

∇× E = −∂B
∂t

(2.163)

where ρ and J represent charge density and current density. Permittivity of free space and

permeability of free space are defined by ϵ0 and µ0. In a material medium D and H are

defined as,

D ≡ ϵ0E+P (2.164)

H ≡ 1

µ0

B−M (2.165)

where P is the electric polarization of the medium and M is the magnetization of the

medium. Using this definitions, Maxwell’s equations for the microscopic fields takes the

form of,

∇ ·D = ρf (2.166)

∇ ·B = 0 (2.167)

∇×H = Jf +
∂D

∂t
(2.168)

∇× E = −∂B
∂t

(2.169)

which are called Maxwell’s equation for macroscopic fields and ρf and Jf are free charge

and current density. In a medium with no free charges and current, ρf = 0, Jf = 0,
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Maxwell’s equations takes the form of,

∇ ·D = 0 (2.170)

∇ ·B = 0 (2.171)

∇×H =
∂D

∂t
(2.172)

∇× E = −∂B
∂t

(2.173)

For non-dispersive and non-lossy materials D and B are defined as,

D = ϵ0ϵ(r)E (2.174)

B = µ0µ(r)H (2.175)

where ϵ(r) and µ(r) are permittivity and permeability of space that are functions of po-

sition. Now using Equation 2.174 in Equation 2.172 for D, and taking ϵ(r) to left-hand

side

∇×H =
∂D

∂t
=

∂

∂t
[ϵ0ϵ(r)E] = ϵ0ϵ(r)

∂E

∂t
(2.176)

1

ϵ(r)
∇×H = ϵ0

∂E

∂t
(2.177)

Now taking curl of both side of Equation 2.177 then we have,

∇×
[

1

ϵ(r)
∇×H

]
= ϵ0

∂

∂t
[∇× E] (2.178)

using Equation 2.173 for curl of E and Equation 2.175 for B then we will have,

∇×
[

1

ϵ(r)
∇×H

]
= −ϵ0µ0µ(r)

∂2H

∂t2
(2.179)
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and using µ0ϵ0 = 1/c2, where c is speed of light in free space, the we finally have

∇×
[

1

ϵ(r)
∇×H

]
+

1

c2
µ(r)

∂2H

∂t2
= 0 (2.180)

In the same way, we now use Equation 2.175 in Equation 2.173 for B and taking µ(r) to

left-hand side,

∇× E = −∂B
∂t

= − ∂

∂t
[µ0µ(r)H] = −µ0µ(r)

∂H

∂t
(2.181)

1

µ(r)
∇× E = −µ0

∂H

∂t
(2.182)

Now taking curl of both side of Equation 2.182 then we have,

∇×
[

1

µ(r)
∇× E

]
= −µ0

∂

∂t
[∇×H] (2.183)

using Equation 2.172 for curl of H and Equation 2.174 for D then we will have,

∇×
[

1

µ(r)
∇× E

]
= −ϵ0µ0ϵ(r)

∂2E

∂t2
(2.184)

and using µ0ϵ0 = 1/c2, where c is speed of light in free space, the we finally have,

∇×
[

1

µ(r)
∇× E

]
+

1

c2
ϵ(r)

∂2E

∂t2
= 0 (2.185)

Now we have written Maxwell’s equations for magnetic field, H, and electric field, H,

which are,

∇×
[

1

ϵ(r)
∇×H

]
+

1

c2
µ(r)

∂2H

∂t2
= 0 (2.186)

∇×
[

1

µ(r)
∇× E

]
+

1

c2
ϵ(r)

∂2E

∂t2
= 0 (2.187)
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Now we need to solve Equation 2.186 and Equation 2.186 for a give periodic dielectric

medium to find the magnetic field, H, and the electric field E and the corresponding

frequencies. A periodic function, f(r) is defined as,

f(r) = f(r+R) (2.188)

where R is lattice vector defined as R = n1a1 + n2a2 + n3a3 where a1, a2, and a3 are

real space basis vectors and n1, n2, and n3 are integers.

The Fourier transform of any periodic function, f(r) = f(r+R) is defined as,

f(r) =
∑
G

f(G)eiG·r) (2.189)

where G is reciprocal lattice vector defined as G = m1b1 +m2b2 +m3b3 where b1, b2,

and b3 are reciprocal space basis vectors and m1, m2, and m3 are integers. The relation

between real lattice vector and reciprocal lattice vector is given by G · R = 2πN . And

by using the relation bi · aj = 2πδij . The reciprocal basis vectors are found by,

b1 = 2π
a2 × a3

a1 · (a2 × a3)
(2.190)

b2 = 2π
a3 × a1

a2 · (a3 × a1)
(2.191)

b3 = 2π
a1 × a2

a3 · (a1 × a2)
(2.192)

since we have defined reciprocal basis vectors in terms of real space basis vector, we can

write reverse Fourier transform of any periodic function as,

f(G) =
1

Vcell

∫
cell

f(r)e−iG·r (2.193)
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2.2.1. 1D Photonic Crystals

In 1D photonic crystals, the dielectric function depends only one coordinate, and

we choose the dielectric function to alternate along z-direction, so ϵ(r) = ϵ(z). The

electric field is taken along x-axis, E(r, t) = Ex(z, t)i and magnetic field is taken along

y-axis, H(r, t) = Hy(z, t)j. The rest of the field components are taken to be zero, Ey =

Ez = Hx = Hz = 0, putting those in Equation 2.187 we will have,

∂2Ex

∂z2
= ϵ(z)

1

c2
∂2Ex

∂t2
(2.194)

to get rid of time dependence we write

Ex(z, t) =

∫ ∞

−∞
Ex(z, ω)e

−iωtdω (2.195)

substituting Equation 2.195 into Equation 2.194 the we have,

∫ ∞

−∞
e−iωt

{
∂2Ex

∂z2
+
ω2

c2
ϵ(z)Ex

}
dω = 0 (2.196)

the The Equation 2.196 is the Fourier transform of the term in curly braces, so this term

must be zero for all possible possible ω,

∂2Ex(z)

∂z2
+
ω2

c2
ϵ(z)Ex(z) = 0 (2.197)

Now we write electric field Ex(r) as,

Ex(r) =

∫
allq

Ex(q)e
iq·r (2.198)
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putting this equation into Equation 2.197 then we have,

∫
allq

dqEx(q)
∂2

∂z2
eiq·r +

ω2

c2

[∑
G

ϵ(G)eiG·r

]∫
allq

dqEx(q)e
iq·r = 0 (2.199)

The integral is over the entire reciprocal space. This space can be broken up into cells

defined by the basis vectors bi,

∫
allq

dqf(q) −→
∫
cell

dk
∑
G

f(k+G) (2.200)

where k spans only a unit cell in the reciprocal space, and G is the set of all reciprocal

lattice vectors. Using this in Equation 2.199 we will have,

∫
cell

dk
∑
G

Ex(k+G)(−|k+G|2)ei(k+G)·r

+
ω2

c2

∑
G

′′

ϵ(G
′′
)eiG

′′ ·r
∫
cell

dk
∑
G

′

Ex(k+G
′
)ei(k+G

′
)·r = 0 (2.201)

and letting G = G
′
+G

′′ in the second term we will have,

∫
cell

dk
∑
G

ei(k+G)·r

×

−|k+G|2Ex(k+G) +
ω2

c2

∑
G′

ϵ(G−G
′
)Ex(k+G

′
)

 = 0 (2.202)

and using Equation 2.200 in this, then we will get,

∫
allq

dqf(q)

−|k+G|2Ex(k+G) +
ω2

c2

∑
G

′

ϵ(G−G
′
)Ex(k+G

′
)

 = 0 (2.203)
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this is Fourier transform of function in curly braces. To vanish for all k and G the expres-

sion in curly braces must vanish it self,

|k+G|2Ex(k+G) =
ω2

c2

∑
G′

ϵ(G−G
′
)Ex(k+G

′
) (2.204)

which is an eigenvalue problem of the form,

Ax = λBx (2.205)

where A, B, x, and λ are defined as,

Anm = δnm|k +
2πn

a
|2

Bnm = ϵ(Gn −Gm) =
1

Vcell

∫
cell

ϵ(r)e−i(Gn−Gm)·r

xn = Ek(G)

λ =
ω2

c2

now we can solve this eigenvalue problem for a given value of k to find the eigenvalue

λ = ω2/c2.

2.2.2. 2D Photonic Crystals

In 2-Dimension, electric and magnetic properties of materials defined as ϵ(ρ) and

µ(ρ) where ρ = xi+ yj. The electric and magnetic fields are are defined as,

H(ρ, t) =

∫ ∞

−∞
H(ρ, ω)e−iωtdω (2.206)

E(ρ, t) =

∫ ∞

−∞
E(ρ, ω)e−iωtdω (2.207)
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Putting this two equation into Equation 2.186 and Equation 2.187 then we have,

∫ ∞

−∞
e−iωtdω

{
∇×

[
1

ϵ(ρ)
∇×H

]
− ω2

c2
µ(ρ)H

}
= 0 (2.208)

∫ ∞

−∞
e−iωtdω

{
∇×

[
1

µ(ρ)
∇× E

]
− ω2

c2
ϵ(ρ)E

}
= 0 (2.209)

These two equations are FT of the term in curly braces, to satisfy these this two equation

the terms in curly braces must vanish, then we have,

∇×
[

1

ϵ(ρ)
∇×H

]
− ω2

c2
µ(ρ)H = 0 (2.210)

∇×
[

1

µ(ρ)
∇× E

]
− ω2

c2
ϵ(ρ)E = 0 (2.211)

Now we write E(ρ) and H(ρ) as,

H(ρ) =

∫
allq

H(q)eiq·ρ (2.212)

E(ρ) =

∫
allq

E(q)eiq·ρ (2.213)

and we write periodic functions, ϵ(ρ), µ(ρ), η(ρ), and ζ(ρ) as,

ϵ(ρ) =
∑
G

ϵ(G)eiG·ρ

µ(ρ) =
∑
G

µ(G)eiG·ρ

η(ρ) =
∑
G

η(G)eiG·ρ

ζ(ρ) =
∑
G

ζ(G)eiG·ρ (2.214)
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where η(ρ) = 1/ϵ(ρ) and ζ(ρ) = 1/µ(ρ). Now we put Equation 2.212, Equation 2.213

and Equation 2.214 into Equation 2.210 and Equation 2.211 and using the equation,

∫
allq

dqf(q) −→
∫
cell

dk
∑
G

f(k+G) (2.215)

then we will finally have, for magnetic field solution and electric field solution,

∑
G′

η(G−G
′
)(k−G)×

[
(k−G

′
)×H(k+G

′
)
]

+
ω2

c2

∑
G′

µ(G−G
′
)H(k+G

′
) = 0 (2.216)

∑
G

′

ζ(G−G
′
)(k−G)×

[
(k−G

′
)× E(k+G

′
)
]

+
ω2

c2

∑
G

′

ϵ(G−G
′
)E(k+G

′
) = 0 (2.217)

These two equations are generalized eigenvalue problems, and we can solve these equa-

tions for a given value of k to get eigenvalue λ.
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2.3. Photonic Crystal Waveguides

Photonic crystal waveguides are formed by breaking symmetry of perfectly peri-

odic photonic crystals. To find band structure of photonic crystal waveguides we need

to modify the results that we have found for perfect structure to account for this broken

symmetry.

2.3.1. 1D Photonic Crystal Waveguides

We start with Equation 2.186 and Equation 2.187 and substituting,

H(r, t) =

∫ ∞

−∞
e−iωtdω

∫
eiβ·ρd2β

[∫
eiqzzH(β, qz, ω)dqz

]
(2.218)

E(r, t) =

∫ ∞

−∞
e−iωtdω

∫
eiβ·ρd2β

[∫
eiqzzE(β, qz, ω)dqz

]
(2.219)

where β(x, y) is the propagation constant, and q = qzẑ then we will have,

∑
G′

η(G−G
′
)(β + k+G)×

[
(β + k+G

′
)×H(β,k+G

′
)
]

+
ω2

c2

∑
G

′

µ(G−G
′
)H(β,k+G

′
) = 0 (2.220)

∑
G

′

ζ(G−G
′
)(β + k+G)×

[
(β + k+G

′
)× E(β,k+G

′
)
]

+
ω2

c2

∑
G′

ϵ(G−G
′
)E(β,k+G

′
) = 0 (2.221)

We finally get a generalized eigenvalue equation in the form of Ax = λBx for both

electric field and magnetic field. These two equation can be solved to find eigenvalue, λ

where we defined eigenvalue as λ = ω2/c2.
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2.3.2. 2D Photonic Crystal waveguides

Again we start with Equation 2.186 and Equation 2.187 and substituting the fol-

lowing two equation for the fields,

H(r, t) =

∫ ∞

−∞
e−iωtdω

∫
eiβzdβ

[∫
eiq·ρH(q, β, ω)d2q

]
(2.222)

E(r, t) =

∫ ∞

−∞
e−iωtdω

∫
eiβzdβ

[∫
eiq·ρE(q, β, ω)d2q

]
(2.223)

where ρ(x, y) = x̂i+ ŷj, and q = q+G = qx̂i+ qy ĵ. The structure is periodic in x- and

y-direction so the dielectric and magnetic property function are defined as,

ϵ(ρ) =
∑
G

ϵ(G)eiG·ρ

µ(ρ) =
∑
G

µ(G)eiG·ρ (2.224)

after substitution, we will have, for magnetic field and electric field,

∑
G

′

η(G−G
′
)(β + k+G)×

[
(β + k+G

′
)×H(β,k+G

′
)
]

+
ω2

c2

∑
G′

µ(G−G
′
)H(β,k+G

′
) = 0 (2.225)

∑
G

′

ζ(G−G
′
)(β + k+G)×

[
(β + k+G

′
)× E(β,k+G

′
)
]

+
ω2

c2

∑
G

′

ϵ(G−G
′
)E(β,k+G

′
) = 0 (2.226)

where k = kxx̂ + kyŷ, β = βẑ, and η = 1/η, ζ = 1/µ. This two equations are again

generalized eigenvalue problem in the form of Ax = λBx. For purely dielectric medium,

setting µ(r) = 1/ζ = 1, we can solve these two equation for a given value of β and k to

find eigenvalue, λ.
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2.4. Adiabatic Coupling

In this section we want to give a short explanation about adiabatic theorem that

will be the main idea used in this thesis. Suppose the Hamiltonian changes gradually from

an initial state Hi to a final state Hf . The adiabatic theorem states that if the particle was

initially in the nth eigenstate of Hi, it will be carried into the nth eigenstate of Hf . If the

Hamiltonian is independent of time, then a particle which starts in the nth eigenstate, ψn,

(Griffiths (2004))

Hψn = Enψ (2.227)

remains in the nth eigenstate with picking a phase factor,

Ψn(t) = ψne
(−Ent/ℏ) (2.228)

Now if the Hamiltonian changes with time, then the eigenfunctions and the eigen-

values will be time dependent,

H(t)ψn(t) = En(t)ψn(t) (2.229)

so the general solution to time-dependent Schrödinger equation

iℏ
∂

∂t
Ψ(t) = H(t)Ψ(t) (2.230)

can be expressed as a linear combination of them,

Ψ(t) =
∑
n

cn(t)ψn(t)e
iθn(t) (2.231)
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where θn(t) is,

θn(t) = −1

ℏ

∫ t

0

En(t
′)dt′ (2.232)

Using time-dependent perturbation theory, substituting time-dependent solutions

into Schrödinger equation, we finally will have,

ċm(t) = −cm⟨ψm|ψ̇m⟩ −
∑
nm

cn
⟨ψm|Ḣ|ψn⟩
En − Em

e−
i
ℏ
∫ t
0 [En(t′)−Em(t′)]dt′ (2.233)

t

H(t)

Hi

ti

Hf

tf z

ǫ(z)

ǫi

zi

ǫf

zf

Figure 2.18. A graphical representation of adiabatic transition of the Hamiltonian from
Hi to Hf . The graph on the left hand represents adiabatic transition of a
particle. The graph on the right-hand side represents the adiabatic tran-
sition of a electromagnetic mode coupling from an initial state to a final
state.

In the Figure 2.18 we have shown a model to represent the adiabatic transition of

state that is its Hamiltonian gradually changing from an initial state Hi to a final state Hf .

In quantum mechanic for the systems that the Hamiltonian is changing with time, H(t)

(left graph), rate of change of Hamiltonian is dH(t)
dt

=
Hf (tf )−Hi(ti)

tf−ti
. As the time interval

goes to zero, ∆t → 0, the rate of change of Hamiltonian will be infinite, the system will

be in a superposition of all possible eigenstate. As the time interval increases the rate

of change is decreasing. In the limit ∆t → ∞ the time derivative of Hamiltonian goes

to zero. In this way the eigenstate will remain same as the Hamiltonian changes. As an

example, suppose we have a particle trapped in infinite square well with well width a

and the particle start in the ground state wave function ψ0, if we suddenly increase the

well width to 2a then the new wave function will be the the superposition of all possible
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eigenstate. If the wall width is gradually changed from a to 2a then the particle will remain

in the same eigenstate. Now turning back to Equation 2.233, the adiabatic approximation

says if Ḣ is too small then we can drop the second term in Equation 2.233 and leaving

ċm(t) = −cm⟨ψm|ψ̇m⟩ (2.234)

and this equation has the solution

cm(t) = cm(0)e
iγm(t) (2.235)

where γm(t) is

γm(t) = i

∫ t

0

⟨ψm(t
′)| ∂
∂t′
ψm(t

′)⟩dt′ (2.236)

this equation states that if the particle starts in the nth eigenstate, then,

Ψn(t) = eiθn(t)eiγn(t)ψn(t) (2.237)

so it remains in the nth eigenstate, picking up only a couple of phase factors, (Griffiths,

2004).
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In electromagnetic, source free Maxwell’s equation can be written in the form of

Schrödinger equation used in quantum mechanics, (Johnson et al. (2002)),

Â|ψ⟩ = −i ∂
∂z
B̂|ψ⟩ (2.238)

where |ψ⟩ is the column vector,

|ψ⟩ =

(
Et(x, y, z)

Ht(x, y, z)

)
e−iωt (2.239)

where Â and B̂ are defined as,

Â =

(
ωϵ
c
− c

ω
∇t × 1

µ
∇t× 0

0 ωµ
c
− c

ω
∇t × 1

ϵ
∇t×

)
(2.240)

B̂ =

(
0 −ẑ×
ẑ× 0

)
(2.241)

If we compare Equation 2.238 with Schrödinger equation,

H(t)Ψ(t) = iℏ
∂

∂t
Ψ(t) (2.242)

we see that in quantum mechanic the wave function is a complex scalar function while

in electrodynamic the wave function is a vector field with a real part that is meaningful

physically and an imaginary part. In quantum and electrodynamics, both system are de-

termined by an eigenvalue equation. The Hamiltonian operator Ĥ in quantum mechanics

is a function of potential and the differential operator Â in electrodynamic is a function

of dielectric function. In electrodynamic, time derivative wave function is now taken with

respect to space.

As derived in (Johnson et al., 2002), suppose we have coupled linear differential
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equation in cn(z) describing the solution of a system that is changing with position, z,

dcn(z)

dz
=
∑
m̸=n

Cmn(z)

⟨
∂X̂

∂z

⟩
exp

(
i

∫ z

∆βmn(z
′)dz′

)
cm(z) (2.243)

where Cnm is coefficient matrix, X̂ is an operator, and ∆βnm is phase mismatch. To see

L dependence of this equation as the length of taper becomes too large, we introduce a

scaled coordinate s = z/L, in this case the equation becomes,

dcn(s)

ds
=
∑
m̸=n

Cmn(s)

⟨
∂X̂

∂s

⟩
exp

(
iL

∫ s

∆βmn(s
′)ds′

)
cm(s) (2.244)

As we have shown on the right-hand side of Figure 2.18, for electromagnetic case this

time the Hamiltonian of the system depends on the position. When a propagating mode

come across a medium that has different dielectric properties, the rate of change of di-

electric function is given by dϵ(z)
dz

=
ϵf (zf )−ϵi(zi)

zf−zi
. As can be seen from the right diagram of

Figure 2.18, in the direct transition case ∆z → 0 the rate of change of dielectric function

goes to infinity, in this case the electromagnetic state will not have enough time to respond

this sudden change, so the excited mode in the final state will be the superposition of all

possible modes. In the adiabatic transition case ∆z → ∞, the rate of change of dielectric

function goes to zero. So the system will remain in its initial eigenstate.

Now turning back to the Equation 2.244, as we see the only L dependence appears

in the exponent. Taking the L → ∞ limit, because in that limit the integration in expo-

nent goes to zero. As we move toward the adiabatic limit the solution to the generalized

differential equation is constant, cn(z) = cn(0).

So to keep the solution of generalized differential equation constant we need to

change the waveguide geometry slowly enough to keep mode profile constant to couple

light without loss.
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2.5. Finite Difference Time Domain Method

In this thesis we used finite-difference time-domain (FDTD) method (Taflove

and Hagness, 2005) to simulate the propagation of electromagnetic field in a dielectric

medium using a freely available software package MEEP (Oskooi et al., 2010). So we

will give a short introduction of FDTD method.Finite-difference time-domain method is

a numerical method that is used to solve Maxwell’s curl equations by dividing space and

time into small grid. The solution method introduced by (Yee, 1966) is based on discretiz-

ing Maxwell’s curl equation in time and space. And the discretized differential equations

are solved by evolving both time and space.

We start with two Maxwell’s curl equations for electric field and magnetic fields,

∂H

∂t
= − 1

µ0µ
∇× E (2.245)

∂E

∂t
=

1

ϵ0ϵ
{∇ ×H− Jsource} (2.246)

where Jsource is current source. After taking the curl of both field then we will have six

scalar equation for each component,

∂Hx

∂t
=

1

µ0µ

{
∂Ey

∂z
− ∂Ez

∂y

}
(2.247)

∂Hy

∂t
=

1

µ0µ

{
∂Ez

∂x
− ∂Ex

∂z

}
(2.248)

∂Hz

∂t
=

1

µ0µ

{
∂Ex

∂y
− ∂Ey

∂x

}
(2.249)

∂Ex

∂t
=

1

ϵ0ϵ

{
∂Hz

∂y
− ∂Hy

∂z
− Jx,source

}
(2.250)

∂Ey

∂t
=

1

ϵ0ϵ

{
∂Hx

∂z
− ∂Hz

∂x
− Jy,source

}
(2.251)

∂Ez

∂t
=

1

ϵ0ϵ

{
∂Hy

∂x
− ∂Hx

∂y
− Jz,source

}
(2.252)

and for one-dimension, lets consider the electromagnetic filed is travelling in the x-

direction and we set electric field in the z-direction and we set magnetic field in the

y-direction. So the partial derivative of field component with respect to y- and z-direction
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vanishes leaving only two equations,

∂Hy

∂t
=

1

µ0µ

∂Ez

∂x
(2.253)

∂Ez

∂t
=

1

ϵ0ϵ

{
∂Hy

∂x
− Jz,source

}
(2.254)

now we need to understand notation that is used by Yee. A point in discretized space

is represented by (i, j, k) = (i∆x, j∆y, k∆z) where i, j, k are integers, ∆x,∆y,∆z are

increments in coordinates x, y, z. Keeping time step constant, the finite-difference ex-

pression for space derivative in the x-direction of electric field and magnetic field can be

written as,

∂Ez

∂x
(i∆x, j∆y, k∆z, n∆t) =

Ez|ni+1/2,j,k − Ez|ni−1/2,j,k

∆x
(2.255)

∂Hy

∂x
(i∆x, j∆y, k∆z, n∆t) =

Hy|ni+1/2,j,k −Hy|ni−1/2,j,k

∆x
(2.256)

where n is integer and ∆t is increment in time t. This time keeping space constant, partial

derivative with respect to time of electric field and magnetic field are defined as,

∂Ez

∂t
(i∆x, j∆y, k∆z, n∆t) =

Ez|n+1/2
i,j,k − Ez|n−1/2

i,j,k

∆t
(2.257)

∂Hy

∂t
(i∆x, j∆y, k∆z, n∆t) =

Hy|n+1/2
i,j,k −Hy|n−1/2

i,j,k

∆t
(2.258)

now putting Equation 2.255 and Equation 2.258 into Equation 2.253 and putting Equa-

tion 2.256 and Equation 2.257 into Equation 2.254 then we will have,

Hy|n+1/2
i,j,k −Hy|n−1/2

i,j,k

∆t
=

1

µ0µi+1/2,j,k

Ez|ni+1/2,j,k − Ez|ni−1/2,j,k

∆x
(2.259)

Ez|n+1/2
i,j,k − Ez|n−1/2

i,j,k

∆t
=

1

ϵ0ϵi+1/2,j,k

{
Hy|ni+1/2,j,k −Hy|ni−1/2,j,k

∆x
− Jz|i+1/2,j,k

}
(2.260)
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or more clearly,

Hy|n+1/2
i,j,k = Hy|n−1/2

i,j,k +
∆t

µ0µi+1/2,j,k∆x

{
Ez|ni+1/2,j,k − Ez|ni−1/2,j,k

}
(2.261)

Ez|n+1/2
i,j,k = Ez|n−1/2

i,j,k +
∆t

ϵ0ϵi+1/2,j,k∆x

{
Hy|ni+1/2,j,k −Hy|ni−1/2,j,k − Jz|i+1/2,j,k

}
(2.262)

Where Jz is the current source in the z-direction. As can be seen from Equation 2.261 to

find magnetic field at time step n + 1/2 and space point i, j, k we need to know electric

field at space point i + 1/2, j, k and i − 1/2, j, k and time step n, in addition we need to

know magnetic field at time step n − 1/2 and space point i, j, k. In similar way, as can

be seen from Equation 2.262 to find the electric field at time step n+1/2 and space point

i, j, k we need to know magnetic field at space point i+1/2, j, k and i−1/2, j, k and time

step n, in addition we need to know electric field at time step n − 1/2 and space point

i, j, k.
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CHAPTER 3

IMPROVING COUPLING EFFICIENCY

In this chapter we are going to study coupling process between dielectric struc-

tures made by single-slab waveguides also called strip waveguides. The chapter is struc-

tured as follows: in the first section we will study coupling process from a thin single-slab

waveguide to a thick single-slab waveguide and coupling process from thick single-slab

waveguide to thin single-slab waveguide. For both transition type, we will couple mode

directly which is also called butt-coupling and we will couple mode by using a transition

region which is called adiabatic transition. In both cases the effect of introducing tran-

sition region on excited mode profile will be studied. In the second section the coupling

coefficient of excited modes will be calculated for both butt-coupling and adiabatic cou-

pling case with continuous source. The mode profiles generated by Gaussian source will

be given for both butt-coupling and adiabatic coupling cases.

3.1. Coupling Process

How does a guided mode behave when it comes to an interface of two different

waveguides that have different geometric parameters? Another question about the cou-

pling process is which parameters affect the coupling efficiency? Ideally one, of course,

would like to have completely lossless coupling between the two waveguides for opto-

electronic applications.

The transition from the input to the output waveguide can be made by two differ-

ent ways. The first one is an abrupt transition in which the two waveguides are simply

brought in contact with each other with their symmetry axes aligned. The second way

is a gradual transition in which the input waveguide profile gradually morphs into that

of the output waveguide. As the transition length becomes larger, this would approach

the so-called adiabatic transition, provided certain conditions are met in the intermediate

transition region. As the adiabatic theorem states (Griffiths, 2004), slowly changing a

physical system (the thickness of waveguide in this case) will transform the mode so that

the coupling without loss can be achieved.

To understand the guided mode behaviour when it comes across an interface, and
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to find out which parameters are responsible for coupling efficiency, we investigated the

simplest possible case: two simple waveguide structures with different core thickness.

We will use the finite-difference time-domain (FDTD) simulation and look at the mode

profiles along the input and output waveguides.

3.1.1. Coupling from Thin to Thick Waveguides

We start by exploring the coupling of electromagnetic (EM) modes between two

different single-slab waveguides. The waveguide structure is shown in the Figure 3.1

which is made by two single-slab waveguides that are butt-joined. The single slab on the

left hand side has thickness of din = 2 with dielectric constant ϵa = 13. The single-slab

on the right hand side has thickness of dout = 12 with dielectric constant ϵa = 13. Both

single-slabs are immersed in a background that has a dielectric constant of ϵb = 2.25. All

lengths are in units of a/2π, where a is the lattice constant, and all frequencies are in units

of 2πc/a.

perfectly matched layer (PML)

perfectly matched layer(PML)

input output

din = 2
dout = 12

x

y

z

source

Figure 3.1. The single-slab waveguide on the left-hand side has thickness of din = 2
with ϵa = 13, the single-slab waveguide on the right-hand side has thick-
ness of dout = 12 with ϵa = 13. Background has dielectric constant of
ϵb = 2.25. Two slabs are butt joined.

In Figure 3.2 we see the band structure of single-slab waveguide calculated for

transverse electric (TE) modes. Black solid lines represent the band structure of waveg-

uide with thickness dout = 12, and dielectric constant ϵa = 13. The background material

has dielectric constant of ϵb = 2.25.
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Figure 3.2. Single-slab waveguide band structure for transverse electric (TE) mode.
Red dashed lines represent the first three guided modes of single-slab of
thickness din = 2 and dielectric constant of ϵa = 13, black solid lines
represent the band structure of waveguide that has thickness of dout = 12
and dielectric constant ϵa = 13. The background for both waveguide has
dielectric constant of ϵb = 2.25.
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The red dashed lines represent the first three guided modes of the input single-

slab waveguide with thickness din = 2, and dielectric constant ϵa = 13. In the same

figure (Figure 3.2), the intersection of horizontal and vertical blue dashed lines indicate

our operating mode. The operating mode profile of input waveguide is shown on the right

lower corner of Figure 3.2. At the operating frequency, ω̃ = ωa
2πc

= 0.3565, we also

show first five guided mode profiles, (Ez), of the output waveguide. At the operating

frequency ω̃ = 0.3565 with wave vector k̃ = 1.000 in the input region, there are five

guided modes in the output region. Their wave vectors are, starting from the lowest order

mode, k̃0 = 1.264, k̃1 = 1.200, k̃2 = 1.088, k̃3 = 0.916, and k̃4 = 0.660. Three of

them are even, TE0, TE2, TE4, and two, TE1, TE3, are odd modes. If we send first

guided mode from input part (lowest red curve), which has frequency ω̃ = 0.3565 and

wave vector k̃ = 1.000, it will propagate along input part without any loss because its

propagation along other directions is forbidden. When it comes to interface this mode can

excite all guided modes below the light line. Coupling of those modes depends on the

spatial symmetry of the incident mode. If the incident mode is odd, it will couple to the

two odd modes supported by the output waveguide at that frequency, and if the incident

mode is even, then it will couple to three guided even modes TE0, TE2, TE4 supported

by the output waveguide.

Now we will send the first guided mode of input waveguide and find modes that

it excites in the output waveguide. The first simulation is done with an abrupt transition

between the two waveguides. Then we will introduce a taper region between two waveg-

uides and look at the effect of this intermediate region on modes excited in the output

waveguide. In the case of an abrupt transition, the sudden change in waveguide geome-

try results in the some reflection at the interface and some scattering to the background,

resulting in loss in the energy transmitted to the guided mode in the second waveguide.

When the intermediate region is introduced, this transition will be more smooth, thereby

preventing most of the energy loss at the interface. By linearly changing the waveguide

thickness from din to dout over a transition lengthL of a few wavelengths, the transmission

losses can be drastically reduced.

In Figure 3.3 we see z-component of electric field, Ez, distribution along waveg-

uide structure for TE mode. A continuous mode source is used to excite the the operation

mode. The mode profile is taken at a time step when the propagation of mode reaches

steady state. We first run simulation without taper region and find field distribution along

waveguide. As we see from mode profile, some of the mode is radiated to background of

the waveguide structure and some is reflected back at the interface. The excited propaga-
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tion mode profile in output waveguide is multi-mode, which is the superposition of three

guided even modes.

perfectly matched layer (PML)

perfectly matched layer(PML)

input output

din = 2
dout = 12

x

y

z

source

Figure 3.3. The single-slab waveguide on the left-hand side has thickness of din = 2
with ϵa = 13, the single-slab waveguide on the right-hand side has thick-
ness of dout = 12 with ϵa = 13. Background has dielectric constant of
ϵb = 2.25. FDTD simulation of z- component of electric field Ez of TE
mode profile along waveguide without taper region.

In Figure 3.4 we see the dielectric profile of waveguide shown in Figure 3.1. In

this figure, we introduced a transition region, a linear taper with L = 20a between input

and output wavegides. This time we want to demonstrate the effect of using taper region

whose thickness is gradually changing from din = 2, to dout = 12.

In Figure 3.4 we see the FDTD simulation of z-component of electric field (Ez) for

TE mode profile. As we clearly see, the propagating mode in output region is single mode.

By introducing the taper region, we force the incoming fundamental mode to couple to

the outgoing fundamental mode, which is the first guided mode of output waveguide. The

mode profile remain essentially the same as it propagates from input region to output

region. The mode size is also converted slowly. Coupling to a single mode is important

because it will prevent signal distortion as different modes will likely have different group

velocities, resulting in modal dispersion.
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perfectly matched layer (PML)

perfectly matched layer(PML)

input transition region output

din = 2
dout = 12

x

y

z

source

Figure 3.4. The slab on the left-hand side has thickness of din = 2 with dielectric con-
stant of ϵa = 13, the slab waveguide on the right-hand side has thickness of
dout = 12 with dielectric constant of ϵa = 13. Background has dielectric
constant of ϵb = 2.25. FDTD simulation of z-component of electric field
Ez of TE mode profile along waveguide with taper region introduced.
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3.1.2. Coupling from Thick to Thin Waveguides

Coupling from a thick single-slab waveguide to a thin single-slab waveguide can

give us a more clear explanation about the coupling process. In this waveguide structure at

the operating frequency, there is only one guided mode supported by output waveguide.

So we will use this waveguide structure to show how modes couple to each other, and

under what conditions this coupling process take place. To see how coupling of modes

work we will use the waveguide structure shown in Figure 3.5. This waveguide consist

of an input part with thickness of din = 12 and dielectric constant of ϵa = 13, and output

part with thickness of dout = 2 with dielectric constant of ϵa = 13. Both waveguides are

immersed in a background material with dielectric constant ϵb = 2.25.

perfectly matched layer (PML)

perfectly matched layer(PML)

input output

din
dout

x

y

z

source

Figure 3.5. Dielectric structure of butt joined single-slab waveguide, input part thick-
ness din = 12 with ϵa = 13, output part thickness is dout = 2 with ϵa = 13.
Background has dielectric constant of ϵb = 2.25.

The band structure of both single-slab waveguides is shown on the same graph

in Figure 3.6. In this figure, black solid lines represent the band structure of single-

slab waveguide with thickness of dout = 2 and dielectric constant of ϵa = 13. We also

show first guided mode (the operating mode) of single-slab waveguide with thickness of

din = 12 and dielectric constant of ϵa = 13, which is shown by red dashed lines. The

intersection of horizontal and vertical blue dashed lines represent our operating frequency

ω̃ = 0.3565 and wave vector k̃ = 1.264. At this frequency the output waveguide has

only one guided mode, and it is the fundamental mode (TE0) of output waveguide. On

the right lower corner of this graph we showed the operating mode profile. On the left

upper corner we showed the guided mode profile of output waveguide at the operating

frequency. Zoomed section around operating frequency and wave vector is also shown on

the upper right corner.
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As can be seen in Figure 3.6, the operating mode will excite the first guided mode

(TE0) of output waveguide which has frequency ω̃ = 0.3565 and wave vector k̃ = 1.000.

And the radiation modes will also be excited at the interface between two waveguides.

To illustrate this we will send input guided mode and look at the excited mode profile

that is propagating in output waveguide and the radiation mode that are propagating in

background and the modes that are reflected back at interface for both structure without

and with taper region introduced.

75



 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 0
 0

.2
 0

.4
 0

.6
 0

.8
 1

 1
.2

 1
.4

 1
.6

ωa/2πc

ka
/2

π

E
z

ka
/2

π=
1.

26
4

ω
a/

2π
c=

0.
35

65

-R
d

+
R

d

O
pe

ra
tin

g 
M

od
e

T
E

0

E
z

ka
/2

π=
1.

00
0

ω
a/

2π
c=

0.
35

65

-R
d

+
R

d

T
E

0

Figure 3.6. Band structure of single slab waveguide calculated for TE modes. Black
lines represent band structure of single-slab with thickness dout = 2 and
dielectric constant of ϵa = 13. Red line is the guided mode of single-slab
waveguide with thickness din = 12 and dielectric constant of ϵa = 13.
The background of both waveguide has the same dielectric constant of
ϵb = 2.25.
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In the Figure 3.7 we see dielectric profile of waveguide without transition region

introduced. This direct transition also called butt-coupling or abrupt coupling. In the

Figure 3.7 we see z-component of electric filed (Ez) of TE mode propagating in the x-

direction. The time snapshot of the field profile is taken when the field reached to steady

state. The guided operating mode is generated by a continuous source with operating

frequency, ω̃ = 0.3565 and wave vector k̃ = 1.264. At operating frequency the single-

slab (output) waveguide has only one guided mode with wave vector k̃ = 1.000.

perfectly matched layer (PML)

perfectly matched layer(PML)

input output

din
dout

x

y

z

source

Figure 3.7. Dielectric structure, input part thickness din = 12 with ϵa = 13, output
part thickness dout = 2 with ϵa = 13. Background has dielectric constant
of ϵb = 2.25. FDTD simulation of TE mode, operating mode is even with
frequency ω̃ = 0.3565 and wave vector k̃ = 1.264, and there is no taper
region introduced.

In this simulation transition from input waveguide to output waveguide is sudden.

As can be seen from the simulation this abrupt transition of waveguide geometry will

cause some of the mode to radiate to background and some of the mode to reflect back at

interface. The mode profile in the input part is the superposition of forward propagating

wave and those are reflected back from the interface. The excited mode profile that is

propagating in the output part is the first guided mode supported by this region. Both

mode profiles are same accept their width. Another difference is that their group velocity

are different for both modes. And their wave vector are also different. These parameters

are the reasons for the reflection and the radiation.
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In the adiabatic transition case, in which the geometry of waveguide is changed

slowly, the mode is carried from the input waveguide to the output waveguide in a se-

ries of intermediate single-slab waveguide. This can be visualized as transition region

consists of single-slab waveguide that is thickness of input waveguide gradually decreas-

ing and finally reaches the output waveguide thickness. To see how this mode trans-

ferred along the transition region, we need to look at the band structure of waveguides

with thickness between input and output waveguides. The Figure 3.8 is the same band

structure shown in the Figure: 3.6. The only difference here is that we also showed

first guided mode of intermediate thickness waveguides, which are ranged from dout =

12, 10, 8, 6, 5.8, ..., 4, 3.8, ..., 2.2, 2. The black lines are the band structure of output re-

gion, while the red line is the operating mode of input region. The green lines represents

the first guided mode of single-slab waveguide of the intermediate thickness. The struc-

ture is continuous along propagation direction but we only showed for some selected slab

thickness to illustrate how coupling between input region and output region takes place

along the taper.

As seen from the zoomed figure shown in the upper-right corner of Figure 3.8,

introducing taper region will transfer the operating mode from input region to output

region in such a way that it couples through intermediate states. In the abrupt transition

case mode is coupled directly. In the case of adiabatic transition the operating mode

transferred to output waveguide in a series of intermediate thickness. This slow change

in thickness shift the operating mode branch up until it reaches the output region’s mode.

This situation is shown on the Figure 3.8. The first guided modes of slabs with thickness

dout = 10, dout = 8, dout = 6, dout = 4, and dout = 2 are shown by green solid lines.
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Figure 3.8. Band structure of single slab waveguide calculated for TE modes. Black
lines represent band structure of single slab with thickness dout = 2 and
dielectric constant of ϵa = 13. Red line is the guided modes of single slab
waveguide with thickness din = 12 and dielectric constant of ϵa = 13.
The background of both waveguide has dielectric constant of ϵb = 2.25.
The green lines are the first guided modes of single-slab with intermediate
thickness of dout = 10, 8, 6, 5.8, ...2.2

79



Now we want to see what will happen to mode propagation along the structure

if we introduce taper region. In Figure 3.9 we see dielectric structure with taper region

introduced. Taper region thickness gradually changes from input thickness, din = 12 to

output thickness dout = 2. Time snapshot of electric field distribution is taken at a time

when the field propagation reaches a steady state. FDTD simulation of z-component of

electric field (Ez) of TE mode profile that is propagating in the x-direction is shown in

Figure 3.9. We used a continuous mode source to generate first even guided mode with

wave vector k̃ = 1.264 and frequency ω̃ = 0.3565.

perfectly matched layer (PML)

perfectly matched layer(PML)

input transition region output

din
dout

x

y

z

source

Figure 3.9. Dielectric profile of structure, the waveguide on the left hand side has
thickness of din = 12 and the waveguide on right hand side has thick-
ness of dout = 2 with taper region introduced. FDTD simulation of TE
mode, operating mode is odd, and in this simulation we introduce taper
region.

By gradually decreasing the input waveguide thickness, we transform the guided

mode profile of input waveguide to guided mode of output waveguide. Taper region

converts the incoming guided mode to the guided mode of output region. Taper region is

also serve as mode size converter. This chapter only covers the coupling process, so the

transmission values will be studied in the upcoming chapters.
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In Figure 3.10 we see band structure of single slab waveguide calculated for TE

modes. The thickness of single-slab waveguide (output) is dout = 2 and dielectric constant

is ϵa = 13 (black lines). The two dashed red lines are first (TE0) and second (TE1)

guided modes of single-slab waveguide with thickness of din = 12 and dielectric constant

of ϵa = 13. Background for both waveguide is made by same dielectric medium with

dielectric constant of ϵb = 2.25. We also showed the operating mode profile (lower

right corner) with frequency ω̃ = 0.3565 and wave vector k̃ = 1.200. At the operating

frequency the output waveguide has only one guided mode with wave vector k̃ = 1.000.

The guided mode profile of output waveguide is shown on the upper left corner. On the

upper right corner we see a zoomed picture taken around operating frequency and wave

vector. On the same graph we showed second guided modes of slab waveguides with

intermediate thickness (green solid lines). The intermediate thickness are ranged from

dout = 10, 8, ...1.8.

As can be seen from the band structure the output waveguide has only one guided

mode at operating frequency, and this mode is orthogonal with the operating mode. Be-

cause of orthogonality the coupling to guided mode of output waveguide is not possible.

In the case of butt coupling, when operating mode come to interface between input and

output waveguides it will couple to radiation mode. All electromagnetic wave will be lost.

In the case of adiabatic transition, operating mode will couple or excite the guided mode

of intermediate thickness keeping the mode profile same and slowly converting mode size.

Since there is no guided mode with same symmetry supported buy output part eventually

the mode will couple to radiation mode when the thickness of taper reaches to a certain

value.

81



 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 0
 0

.2
 0

.4
 0

.6
 0

.8
 1

 1
.2

 1
.4

 1
.6

ωa/2πc

ka
/2

π

E
z

ka
/2

π=
1.

20
0

ω
a/

2π
c=

0.
35

65

-R
d

+
R

d

T
E

1

O
pe

ra
tin

g 
M

od
e

E
z

ka
/2

π=
1.

00
0

ω
a/

2π
c=

0.
35

65

-R
d

+
R

d

T
E

0

Figure 3.10. Band structure of single slab waveguide with thickness of dout = 2, which
has dielectric constant of ϵa = 13 (black lines). The first two guided modes
of input waveguide which has thickness din = 12 and dielectric constant
ϵa = 13 (red dashed lines). Both waveguides are immersed in the same
region with dielectric constant ϵb = 2.25. The green lines represent the
second guided modes of waveguides with intermediate thickness dout =
10, 8, 6, 5.8, ...2.2.

82



Now we will send the second guided mode of input waveguide, which we labelled

as TE1, and we will look at the mode profile in output part. As seen form Figure 3.10

there is only one guided mode at operating frequency supported by output waveguide

which has even symmetry. The operating mode has odd symmetry about the center of

waveguide along x-direction. The orthogonality requirement imposes that the overlap

integral of this two mode vanishes. So this mode will couple to radiation mode and some

of the mode will be reflected back at the interface.

FDTD simulation z-component of electric field (Ez) of TE mode is shown in

Figure 3.11 for four different output waveguide thickness. The first odd operating mode

is generated by continuous mode source. The mode profiles are taken at a time when mode

propagation of wave reached a steady state flow rate along waveguide. In this simulation

we kept input slab waveguide constant while the output thickness is changed, (dout = 8,

dout = 6, dout =, and dout = 2). In the pictures labelled as (a), (b), and (c) we show mode

profiles of output slabs with input thickness dout = 8, dout = 6, and dout = 4. For these

three output thickness the slabs have odd guided mode. In the picture labelled as (d) we

see mode profile of slab with output thickness dout = 2. At the operating frequency the

output waveguide only one guided mode which is even so all incoming mode radiated to

background. It is clearly seen that there is no mode propagating in second medium (output

part). All incoming mode are coupled to background and some of the electromagnetic

radiation are reflected back at interface.
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perfectly matched layer (PML)

perfectly matched layer(PML)

input output

din
dout

x

y

z

source

(a)

din   =12 dout    =8

(b)

din   =12 dout    =6

(c9

din   =12 dout    =4

(d)

din   =12 dout    =2

Figure 3.11. Dielectric profile of waveguide structure without taper region introduced.
FDTD simulation of z-component of electric field (Ez) of TE mode taken
for four different output slab thickness, dout = 8, dout = 6, dout = 4, and
dout = 2, while keeping the input slab thickness constant din = 12. The
operating mode has odd symmetry with frequency ω̃ = 0.3565 and wave
vector k̃ = 1.200.
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Now we want to see what will happen to mode propagation along the structure

if we introduce taper region. In Figure 3.12 we see dielectric structure with taper region

introduced. Taper region thickness gradually changes from input thickness, din = 12 to

output thickness dout = 2.

FDTD simulation of z-component of electric field (Ez) profile of TE mode which

is propagating in the x-direction is shown in Figure 3.12. Again A continuous source

mode is used to generate the first odd guided mode is used as operating frequency ω̃ =

0.3565 and wave vector k̃ = 1.200. The time snapshots are taken when the field reaches

a steady state. In this simulation we kept input slab waveguide constant while the output

thickness is changed, (dout = 8, dout = 6, dout =, and dout = 2). And the connection

between input and output slabs are made by taper. In the pictures labelled as (a), (b),

and (c) we show mode profiles of output slabs with input thickness dout = 8, dout = 6,

and dout = 4. For these three output thickness smooth mode conversion is seen when we

use taper region. In the picture labelled as (d) we see mode profile of slab with output

thickness dout = 2. At the operating frequency the output waveguide dues not support

any odd guided mode so all incoming mode radiated to background.
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perfectly matched layer (PML)

perfectly matched layer(PML)

input transition region output

din
dout

x

y

z

source

(a)

din   =12 dout    =8

(b)

din   =12 dout    =6

(c)

din   =12 dout    =4

(d)

din   =12 dout    =2

Figure 3.12. Dielectric profile of structure with taper region introduced. FDTD simula-
tion of z-component of electric field for TE mode. Mode profiles are taken
for four different output slab thickness, dout = 8, dout = 6, dout = 4, and
dout = 2 while the input slab thickness is kept constant, din = 12
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Now we will use the third guided mode (TE2) of single-slab waveguide (input)

as our operating mode. To understand how the the operating mode couples to modes of

the output waveguide, we need to look the band structure shown in Figure 3.13. In this

figure we see the band structure of a single-slab waveguide (output) which has thickness

of dout = 2 and dielectric constant ϵa = 13, (black lines). On same figure we showed first

three guided mode (TE0, TE1, TE2) of single-slab waveguide (input) that has thickness

of din = 12 and dielectric constant ϵa = 13, (dashed red lines). The operating mode

profile which has frequency, ω̃ = 0.3565 and wave vector k̃ = 1.088 is shown on lower

right corner. The only supported guided mode profile of output waveguide is shown on

the left upper corner. The third guided modes of single-slab waveguides with intermediate

thickness between din = 12 and dout = 2, (dout = 10, 8, 6, 5.8, ..., 2.2) is shown by green

lines.
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Figure 3.13. Band structure of single-slab waveguide with thickness of dout = 2 and
dielectric constant of ϵa = 13,(black lines). First three guided mode of
single-slab waveguide with thickness of din = 12 with dielectric constant
of ϵa = 13. Both waveguides are immersed in a background with dielectric
constant ϵb = 2.25. The green lines are the third guided modes of single-
slab with core width dout = 10, 8, 6, 5.8, ...2.2.
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The waveguide structure without transition region introduced is shown in Fig-

ure 3.14. Both single-slab waveguide are butt joined to each other. The connection is

made directly in such a way that their symmetry axis along x-direction coincide.

FDTD simulation of z-component of electric field (Ez) of TE mode that is propa-

gating in the x-direction is shown in Figure 3.14. In this simulation we send second even

guided mode (TE2) generated by using continuous source with frequency ω̃ = 0.3565

and wave vector k̃ = 1.088. The mode profile for four different output waveguide thick-

ness, dout = 8, dout = 6 ,dout = 4, and dout = 2, while the input thickness is kept

constant, din = 12. As can be seen from figure labelled as (a) the output waveguide that

has thickness dout = 8 the excited mode is multi mode, which is superposition of first and

second even guided modes. In the figure labelled as (b) the output is a superposition of

the first an second even guided modes but as can be seen the second mode is too close to

continuum region. In the figures labelled as (d) and (c) the only excited mode is the first

even guided mode, the second guided mode is radiated to background and reflected back

at the interface between two waveguides.

In the case of butt-coupling (direct coupling), when there is no taper region used,

the guided modes of output region are excited directly depending on their symmetry

match. some of the incoming mode will excite or couple to the radiation modes.
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perfectly matched layer (PML)

perfectly matched layer(PML)

input output

din
dout

x

y

z

source

(a)
din   =12 dout    =8

(b)
din   =12 dout    =6

(c)
din   =12 dout    =4

(d)
din   =12 dout    =2

Figure 3.14. Dielectric profile of waveguide structure without taper region introduced.
FDTD simulation of z-component of electric field (Ez) of TE mode. The
operating mode has even symmetry with frequency ω̃ = 0.3565 and wave
vector k̃ = 1.088. The mode profiles are taken for four different output
slab thickness, dout = 8, dout = 6, dout = 4, and dout = 2. Input part
thickness is kept constant, din = 12.
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To see the effect of introducing taper region between two single-slab waveguide

on coupling of modes, we will use the waveguide structure shown in Figure 3.15. Taper

region thickness gradually changes from input single-slab waveguide thickness, din = 12

to four different output single-slab waveguide thickness of dout = 8, dout = 6, dout = 4,

and dout = 2.

FDTD simulation of z-component of electric field (Ez) of TE mode profile at a

steady state for four different output waveguide thickness, dout = 8, dout = 6, dout =

4, and dout = 2, while keeping the input waveguide thickness constant, din = 12, is

shown in the Figure 3.15. In adiabatic coupling case, the mode propagates along taper

structure without changing its profile. During this transition the frequency is a conserved

quantity, so the only changing parameter is the wave vector. As the operating mode

propagate along transition region the wave vector shifts of operating mode shifts toward

the radiation mode, and finally it enters the radiation region. As can be seen from the

field distribution at a certain value of taper region thickness the guided propagating mode

couples to radiation (continuum) modes. And as we also see from this simulation there is

no excited wave propagating in the output region.

In the case of adiabatic transition, the operating mode will couple to output waveg-

uides through intermediate thickness as it propagate along taper structure. Since the ge-

ometry of waveguide slowly changing the mode profile will be kept constant as it propa-

gate. At a certain thickness, the mode will no longer be guided. It will eventually couple

to radiation mode. As stated in the (Johnson et al., 2002), the operating mode must be

guided for every point along taper so that adiabatic transition can be achieved.
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perfectly matched layer (PML)

perfectly matched layer(PML)

input transition region output

din
dout

x

y

z

source

(a)

din   =12 dout    =8

(b)

din   =12 dout    =6

(c)

din   =12 dout    =4

(d)

din   =12 dout    =2

Figure 3.15. Dielectric profile of the waveguide structure with taper region introduced.
FDTD simulation of z-component of electric field (Ez) of TE mode, the
operating mode is even. The mode profiles are taken for four different
output thickness, (dout = 8, dout = 6, dout = 4, and dout = 2) while input
slab thickness kept constant, din = 12.
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3.2. Calculation of Coupling Coefficients

We will use the waveguide structure shown in Figure 3.3 to find the coupling

coefficients of excited modes in output part of the structure. As can be seen from band

structure shown in Figure 3.2 our operating mode is even. At the operating frequency, the

output region has only three guided even modes. When the operating mode comes to the

interface between to slab it will excite only these three guided modes. To be able to find

which mode is excited in what fraction (amount) we need to find transmission coupling

coefficient of these three modes. Since we know the operating mode is even and there is

only three even modes for output part, we represent even guided modes as follows,

ψ0(x, y) = f0(y)e
i(β0x+α0)

ψ2(x, y) = f2(y)e
i(β2x+α2)

ψ4(x, y) = f4(y)e
i(β4x+α4) (3.1)

using trigonometric identities to expend these equations and taking the real part the we

will have,

ψ0(x, y) = f0(y) cos(β0x+ α0)

ψ2(x, y) = f2(y) cos(β2x+ α2)

ψ4(x, y) = f4(y) cos(β4x+ α4) (3.2)

and again with the help of trigonometric identities,

ψ0(x, y) = f0(y) [cosα0 cos(β0x)− sinα0 sin(β0x)]

ψ2(x, y) = f2(y) [cosα2 cos(β2x)− sinα2 sin(β2x)]

ψ4(x, y) = f4(y) [cosα4 cos(β4x)− sinα4 sin(β4x)] (3.3)
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and summation of these three wave is equals to the measured wave that we found by using

FDTD method (meep) simulation,

ψmeasured(x, y) = C0ψ0(x, y) + C2ψ2(x, y) + C4ψ4(x, y) (3.4)

putting equation 3.3 in equation 3.4 we get,

ψmeasured(x, y) = (C0 cosα0) [f0(y) cos(β0x)] + (−C0 sinα0) [f0(y) sin(β0x)]

+ (C2 cosα2) [f2(y) cos(β2x)] + (−C2 sinα2) [f2(y) sin(β2x)]

+ (C4 cosα4) [f4(y) cos(β4x)] + (−C4 sinα4) [f4(y) sin(β4x)] (3.5)

We now introduce new coefficient, C̃j = Cj cosαj , where j = 0, 2, 4, and C̃j = −Cj sinαj ,

where j = 1, 3, 5, this equation becomes,

ψmeasured(x, y) = C̃0 [f0(y) cos(β0x)] + C̃1 [f0(y) sin(β0x)]

+C̃2 [f2(y) cos(β2x)] + C̃3 [f2(y) sin(β2x)]

+C̃4 [f4(y) cos(β4x)] + C̃5 [f4(y) sin(β4x)] (3.6)

Now collecting all terms to one side and calling this χ and taking square of both side we

get,

χ2 =
N∑
i=1

{
ψm(xi, yi)− C̃0f0(yi) cos(β0xi)− C̃1f0(yi) sin(β0xi)

−C̃2f2(yi) cos(β2xi)− C̃3f2(yi) sin(β2xi)

−C̃4f4(yi) cos(β4xi)− C̃5f4(yi) sin(β4xi)
}2

(3.7)
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using least square method to find coefficients we differentiate χ2 w.r.t coefficients C̃j ,

where j = 0, 1, ...5,

∂χ2

∂C̃j

=
∂

∂C̃j

N∑
i=1

{
ψm(xi, yi)− C̃0f0(yi) cos(β0xi)− C̃1f0(yi) sin(β0xi)

−C̃2f2(yi) cos(β2xi)− C̃3f2(yi) sin(β2xi)

−C̃4f4(yi) cos(β4xi)− C̃5f4(yi) sin(β4xi)
}2

(3.8)

taking the differentiation then we have,

∂χ2

∂C̃0

=
N∑
i=1

(−2)
{
ψm(xi, yi)− C̃0f0(yi) cos(β0xi)− C̃1f0(yi) sin(β0xi)

−C̃2f2(yi) cos(β2xi)− C̃3f2(yi) sin(β2xi)

−C̃4f4(yi) cos(β4xi)− C̃5f4(yi) sin(β4xi)
}
f0(yi) cos(β0xi) (3.9)

∂χ2

∂C̃1

=
N∑
i=1

(−2)
{
ψm(xi, yi)− C̃0f0(yi) cos(β0xi)− C̃1f0(yi) sin(β0xi)

−C̃2f2(yi) cos(β2xi)− C̃3f2(yi) sin(β2xi)

−C̃4f4(yi) cos(β4xi)− C̃5f4(yi) sin(β4xi)
}
f0(yi) sin(β0xi) (3.10)

∂χ2

∂C̃2

=
N∑
i=1

(−2)
{
ψm(xi, yi)− C̃0f0(yi) cos(β0xi)− C̃1f0(yi) sin(β0xi)

−C̃2f2(yi) cos(β2xi)− C̃3f2(yi) sin(β2xi)

−C̃4f4(yi) cos(β4xi)− C̃5f4(yi) sin(β4xi)
}
f2(yi) cos(β2xi) (3.11)
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∂χ2

∂C̃3

=
N∑
i=1

(−2)
{
ψm(xi, yi)− C̃0f0(yi) cos(β0xi)− C̃1f0(yi) sin(β0xi)

−C̃2f2(yi) cos(β2xi)− C̃3f2(yi) sin(β2xi)

−C̃4f4(yi) cos(β4xi)− C̃5f4(yi) sin(β4xi)
}
f2(yi) sin(β2xi) (3.12)

∂χ2

∂C̃4

=
N∑
i=1

(−2)
{
ψm(xi, yi)− C̃0f0(yi) cos(β0xi)− C̃1f0(yi) sin(β0xi)

−C̃2f2(yi) cos(β2xi)− C̃3f2(yi) sin(β2xi)

−C̃4f4(yi) cos(β4xi)− C̃5f4(yi) sin(β4xi)
}
f4(yi) cos(β4xi) (3.13)

∂χ2

∂C̃5

=
N∑
i=1

(−2)
{
ψm(xi, yi)− C̃0f0(yi) cos(β0xi)− C̃1f0(yi) sin(β0xi)

−C̃2f2(yi) cos(β2xi)− C̃3f2(yi) sin(β2xi)

−C̃4f4(yi) cos(β4xi)− C̃5f4(yi) sin(β4xi)
}
f4(yi) sin(β4xi) (3.14)

now we have six linear equation with six unknown. Solving this linear system for coef-

ficients, C̃j where j = 0, 1, ...5 we can find coupling coefficient of coupled modes. its

matrix form is as follows,



S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66





C̃0

C̃1

C̃2

C̃3

C̃4

C̃5


=



∑N
i=1 ψm(xi, yi)f0(yi) cos(β0xi)∑N
i=1 ψm(xi, yi)f0(yi) sin(β0xi)∑N
i=1 ψm(xi, yi)f2(yi) cos(β2xi)∑N
i=1 ψm(xi, yi)f2(yi) sin(β2xi)∑N
i=1 ψm(xi, yi)f4(yi) cos(β4xi)∑N
i=1 ψm(xi, yi)f4(yi) sin(β4xi)


(3.15)
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where Skl with k, l = 1, 2, ...6, are coefficients of C̃j with j = 0, 1, ...5. Once we solve

this linear system we can find the coupling coefficient of each excited mode by using,

P0 =
C̃0

2
+ C̃1

2∑5
j=0 C̃j

2 P2 =
C̃2

2
+ C̃3

2∑5
j=0 C̃j

2 P4 =
C̃4

2
+ C̃5

2∑5
j=0 C̃j

2 (3.16)
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3.2.1. Continuous source

Electric field distribution of TE mode for continuous source along the propagation

direction, x − axes, is shown in Figure 3.16. This profile is taken at a time when propa-

gating wave reached a steady state. In this figure there is no taper region introduced. In

this case, the sudden change in geometry cause the incoming mode to couple all guided

mode supported by the output region. The resultant propagating mode is superposition of

three guided modes supported by output waveguide.
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Figure 3.16. Transverse electric mode distribution viewed along x− axes taken at y =
0, and there is no taper region, incoming mode couple to three even modes
as seen. Drop in amplitude of EM wave is due to back reflection and
radiation to background at the interface.
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In Figure 3.17 we introduce taper region and as we see incoming mode smoothly

converted to single mode in output waveguide. To be able to completely couple to funda-

mental mode, the transition region need to be made gradual enough.
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Figure 3.17. TE mode profile viewed along x−axes taken at y = 0, we introduce taper
region in this structure, taper region force incoming mode to couple first
single mode of output part.

The coupling coefficient (coupling coefficient) can be found by using coefficients

found from the matrix Equation 3.15 and it is calculated as follows,

P0 =
C̃0

2
+ C̃1

2∑6
j=1 C̃j

2 P2 =
C̃2

2
+ C̃3

2∑6
j=1 C̃j

2 P4 =
C̃4

2
+ C̃5

2∑6
j=1 C̃j

2 (3.17)

where P0 is the coupling efficiency of first even guided mode, P2 is the coupling efficiency

of the second even guided mode, and P4 is the coupling efficiency of third even guided

mode.

In Table 3.1 we see the coupling coefficients of modes in the output waveguide

for two structure. In one structure, there is no taper region while in the second structure
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we introduced taper region. The coupling coefficients of first three even guided modes

without taper region are P0 = 0.1562, P2 = 0.0639, and P4 = 0.7799. The coupling

coefficient with taper region introduced are P0 = 0.9230, P2 = 0.0743, and P4 = 0.0027.

It is clearly seen from coupling coefficients by using such a region almost all operating

mode coupled to the fundamental (first guided) mode of output part.

Coupling coefficient without taper region with taper region
P0 0.156243272481348 0.923352346102108
P2 6.390326292546283E-002 7.437058370358268E-002
P4 0.779853464593189 2.277070194309248E-003

Table 3.1. Coupling coefficient of TE mode, in one structure there is no taper region,
and in the second structure we introduce taper region in which geometry
of waveguide gradually changes and finally reach the output parts dimen-
sions.

3.2.2. Gaussian source

In Figure 3.18 we see the propagation of a Gaussian pulse taken at waveguide

center four different time step along waveguide structure which is the x-axis,t = 25, t =

30,t = 35, and t = 40. The waveguide structure consists of two single-slab waveguide

that are butt joined to each other which is shown in the inset of first figure of Figure 3.18.

Zoomed pulse profile around the red rectangular area are also shown in the inset. In the

butt coupling case, when the guided mode comes to interface it couples to three guided

mode of output part. Propagating mode in output waveguide is superposition of three

guided mode supported by output part. As seen at time step t = 25, t = 30, and t = 35 the

excited mode in output region is multi mode. When we introduce taper region between

two waveguides, as we see from mode profile, the excited mode is the fundamental mode

(first guided even mode) supported by output part. The propagating mode is single mode

which is desired for signal transfer. In the case of multi mode, each mode has its own

group velocity and this will cause mixing data during transfer. TE mode profile is shown

in Figure 3.19. By introducing taper region, we slowly convert incoming mode to first

guided mode of output part. In the adiabatic coupling case the mode slowly converted

from operating mode to first guided mode of output waveguide.

100



F
ie

ld
 A

m
pl

itu
de

/E
z

Length/L

t=25

t=25

F
ie

ld
 A

m
pl

itu
de

/E
z

Length/L

t=30

t=30

F
ie

ld
 A

m
pl

itu
de

/E
z

Length/L

t=35

t=35

F
ie

ld
 A

m
pl

itu
de

/E
z

Lenght/L

t=40

Figure 3.18. z-component of electric field distribution along the center of waveguide
structure in the x-direction. Two waveguide are butt joined to each other.
The incoming mode couple to three even mode as seen from figure. Drop in
amplitude of TE mode is due to back reflection and radiation to background
at the interface.
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Figure 3.19. Electric field distribution along waveguide in the x-direction at the center
of waveguide taken at four different time step (t = 25, t = 30, t = 35, and
t = 40). Two single-slab waveguides are joined by a taper region
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CHAPTER 4

COUPLING SINGLE-SLAB WAVEGUIDES

In this chapter we will study coupling efficiency of electromagnetic mode between

single-slab waveguides. In first section we found transmission values for coupling from

a single-slab to another single-slab waveguide that have different geometric parameters.

This calculation will be performed with and without taper region. In the second section

we will study coupling of mode from single-slab (input part) to another single-slab (in-

termediate region) and again couple it back to a region called output part which has same

thickness with the input part.

4.1. Single Slab to Single Slab Waveguide

In order to understand how the taper region improves transmission values, sin-

gle slab waveguide will be studied in this section. At first we run simulation without

taper region. Then we introduce a taper region which gradually changes geometry of

waveguide from input region to output region and we will compare transmission values

of non-tapered structure with the case of tapered structure. The waveguide structure is

shown in Figure 4.1.

perfectly matched layer (PML)

perfectly matched layer(PML)

input output

din = 12
dout = 2

x

y

z

source flux-region

Figure 4.1. Dielectric profile of waveguide structure without taper region introduced.
The input waveguide has thickness of din = 12 and the output waveguide
has thickness of dout = 2. Both waveguide have the same dielectric con-
stant of ϵa = 13. The waveguide structure is immersed in a background
with dielectric constant of ϵb = 2.25.
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The slab on the left side of Figure 4.1 has thickness din = 12 with dielectric

constant of ϵa = 13, (input part). and the slab on the right side has thickness dout = 2

with dielectric constant of ϵa = 13, (output part). The background has dielectric constant

of ϵb = 2.25.

The dispersion relation (band structure) of single-slab waveguide calculated for

TE mode is shown in Figure 4.2. The red dashed line in the figure is the first guided mode

of single-slab waveguide (input) that has thickness of din = 12 with dielectric constant

ϵa = 13 and the black solid lines in the figure are the band structure of single-slab waveg-

uide that has thickness of dout = 2 with dielectric constant ϵa = 13. The background has

dielectric constant ϵb = 2.25. In the Figure 4.2, the intersection of blue lines indicates the

operating guided mode of input part. At this point the mode has frequency ω̃ = 0.2840

and the wave vector k̃ = 1. At the operating frequency, as we see from band diagram,

there is only one guided mode of output part with wave vector k̃ = 0.740.
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Figure 4.2. Band structures of single-slab waveguides of thickness dout = 2 and dielec-
tric ϵa = 13 (black solid lines). First guided mode of single-slab waveg-
uide of thickness din = 12 with dielectric ϵa = 13 (red dashed lines). The
background has dielectric constant of ϵb = 2.25.
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In Figure 4.3 we see dielectric waveguide structure consist of two single-slab

waveguide that are butt joined. Field distribution of z-component of electric field (Ez)

for TE mode found by FDTD simulation. The guided mode of input region is generated

by a Gaussian mode source. The field distribution is taken at four different time (t = 25,

t = 30, t = 35 and t = 40). At time step t = 25 and t = 30 the operating excites the

guided mode of output waveguide. At time step t = 35 the reflected wave from interface

of bot waveguide is clearly seen. And finally after those radiated and reflected wave ab-

sorbed by PML region, the guided propagating mode of output waveguide is seen at time

step t = 40.

The transmission value for that structure, (butt-coupled) is about 77%. This shows

that 23% of optical power is lost to background and reflected back at interface during

coupling. In the butt coupling case, the the operating (initial) mode with frequency and

wave vector (ω̃, k̃i) converted directly to the final mode with frequency and wave vector

(ω̃, k̃f ). The frequency is conserved so it is same for both states but the wave vector of

both mode are different.

In Figure 4.4 we see dielectric profile of waveguide structure. In this structure

the connection between two single-slab waveguide is made by a trapezoidal waveguide

called taper region which will serve as mode converter to improve transmission value.

Introducing taper region convert incoming guided TE mode to first guided mode of second

region (output part). The operating mode is generated with a gaussian mode source with

frequency ω̃ = 0.2840 and wave vector k̃ = 1. The distribution of z-component of electric

field is (Ez) found by FDTD simulation is shown. The propagation of mode is shown for

four different time (t = 26, t = 32, t = 38 and t = 44).

In adiabatic coupling case, the calculated transmission value for this waveguide

structure is about 98%. Only %2 of optical power is radiated to background or reflected

back at interface of two slabs. By introducing a taper geometry between two waveguides

the incoming mode converted gradually to guided mode of output waveguide.
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Figure 4.3. Dielectric profile of waveguide structure without taper region introduced.
The input waveguide has thickness of din = 12 and the output waveguide
has thickness of dout = 2. Both waveguide have the same dielectric con-
stant of ϵa = 13. The waveguide structure is immersed in a background
with dielectric constant of ϵb = 2.25. FDTD simulation of z-component of
electric field (Ez) profile for TE mode is shown.
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Figure 4.4. Dielectric profile of waveguide structure with taper region introduced.
The input and output single slab waveguides thickness are din = 12 and
dout = 2. The dielectric constant are same for both slab which is ϵa = 13.
The whole structure is immersed in a background with dielectric constant
ϵb = 2.25. FDTD simulation of z- component of electric field shown for
four different time step. The operating mode is generated by using a Gaus-
sian mode source with frequency and wave vector ω̃ = 0.2840, k̃ = 1
respectively.
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In Figure 4.5 we show the transmission values versus taper length. As seen from

transmission graph, transmission increases significantly with increasing taper length. The

transmission reaches its maximum value at about L = 10a. Further increase in taper

length has no significant improvement on transmission values. Date point on graph are

taken by increasing taper length by lattice constant a starting from L = 0 to L = 100.

The loss in transmission values depends on group velocity mismatch of guided

modes of both waveguides. In this structure, without taper region introduced, there is a

sudden change in geometry of waveguide. This sudden change cause optical power to

radiate to background or reflect back at interface of two slabs.

0.75

0.80

0.85

0.90

0.95

1.00

 0  5  10  15  20

tr
an

sm
is

si
on

taper length(in units of a)

din=04
din=06
din=08
din=10
din=12

Figure 4.5. Transmission values versus taper length found by FDTD simulation. Butt-
coupling case (L = 0a) and adiabatic coupling case (L > 0a) are shown
for five different input waveguide thickness (din = 4, 6, 8, 10, 12) while
keeping the output waveguide thickness constant (dout = 2).
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Besides improving coupling efficiency, adiabatic transition also prevent the oper-

ating mode to excite high order modes. To show this effect we will use the waveguide

structure shown in Figure 4.6. This structure consist of two single-slab waveguide that

are butt joined. Input slab has thickness of din = 2 with dielectric constant of ϵa = 13.

Output slab has thickness of dout = 12 with dielectric constant of ϵa = 13. The structure

is put in a medium that has dielectric constant ϵb = 2.25.

perfectly matched layer (PML)
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din = 2
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x

y

z
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Figure 4.6. Dielectric profile of waveguide structure consisting of two butt joined
single-slab. Input slab has thickness of din = 2 with dielectric constant
of ϵa = 13. Output slab has thickness of dout = 12 with dielectric constant
of ϵa = 13. The background medium has dielectric constant of ϵb = 2.25

In Figure 4.7 we showed band structure of single-slab waveguide with thickness

dout = 12 with dielectric constant ϵa = 13, (black solid lines). Dielectric constant of

background material is ϵb = 2.25. At the operating frequency ω̃ = 0.3565 the guided

modes of this single-slab waveguide is shown and they are labelled as TE0, TE1, TE2,

TE3 and TE4. The red dashed lines are first two guided mode of single-slab waveguide

with thickness din = 2 with dielectric constant ϵa = 13. The background has dielectric

constant of ϵb = 2.25.

In Figure 4.8 we see time snap-shot of z-component of electric field of TE mode

distribution. A Gaussian mode source is used to excite the operating frequency ω̃ =

0.3565 and k̃ = 1. The mode profiles are taken at four different time, (t = 35, t = 45,

t = 55, andt = 65). In the butt coupling case as seen from Figure 4.8, since the operating

mode is even then the incoming wave coupled to multi mode of output part and resultant

propagating mode is superposition of three guided mode supported by output part, (TE0,

TE2, and TE4). We have zoomed the mode profile to get a clear view. The loss in EM

radiation in this structure is not high but now propagating mode is multi-mode. Every

mode propagate with its own group velocity.
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Figure 4.7. Band structure of single-slab waveguide. Black lines represents single-slab
waveguide with thickness of dout = 12 with dielectric constant ϵa = 13
immersed in a background with dielectric constant ϵb = 2.25. The two
red dashed lines represent first two guided modes of single-slab waveguide
with thickness din = 2 and dielectric constant ϵa = 13. The background
has ϵb = 2.25. The intersection of blue dashed lines indicates our operating
mode with frequency ω̃ = 0.3565 and wave vector k̃ = 1

Now we will introduce a transition (taper) region between this two waveguides

and we will look to their mode profile after TE mode pass to output part. The structure

and taper region is shown in Figure 4.9. The effect of introducing taper region on mode

profile is clearly seen from zoomed portion of the figure that is taken at four different time

step. As seen from Figure 4.9 the excited mode is single mode, first mode supported by

output part. This shows us that by using proper transition region we can excite (couple)

the fundamental mode of output part. The excited mode is no longer multi-mode. So

introducing taper region, besides improving coupling efficiency, it can be used to couple

light to single mode.
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Figure 4.8. Dielectric profile of waveguide structure consisting of two butt joined
single-slab. Input slab has thickness of din = 2 with dielectric constant
of ϵa = 13. Output slab has thickness of dout = 12 with dielectric constant
of ϵa = 13. FDTD simulation of electric field distribution of waveguide
structure that is made by butt joined single-slabs.
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Figure 4.9. Dielectric profile of waveguide consist of input region with thickness of
din = 2, trapezoidal taper region and output region with thickness of
dout = 12. All waveguide region have same dielectric constant of ϵa = 13.
The waveguide structure immersed in a background with dielectric con-
stant of ϵb = 2.25. Electric field profile of TE mode taken at four different
time along waveguide that is adiabatically connected with a transition re-
gion.
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4.2. Two Stage Coupling of Single Slab Waveguide

Now we will find the transmission values for the structure shown in Figure 4.10.

This structure is made of three region which is constructed as follows, first part is the

input part with thickness of din = 8, second part which we call intermediate region with

thickness of dint = 2, and the output part which has same thickness with input part, dout.

All three region have same dielectric constant of ϵa = 13. The background has dielectric

constant of ϵb = 2.25.
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Figure 4.10. The waveguide structure consisting of three single-slab waveguides that
are butt joined. The input region thickness is din = 8 with dielectric con-
stant ϵa = 13. The intermediate region thickness is dint = 2 with dielectric
constant ϵ = 13. The output region thickness is dout = 8 with dielec-
tric constant ϵa = 13. The whole structure is immersed in a background
material with dielectric constant of ϵb = 2.25.

The band structure of single-slab waveguide, the intermediate region, with thick-

ness dint = 2 and dielectric constant ϵa = 13 immersed in a medium with dielectric

constant ϵb = 2.25 is shown in the Figure 4.11, black lines. First three guided mode

of single-slab waveguide, the input region, is also shown, red dashed curves. The in-

tersection of vertical and horizontal red dashed lines indicates our operating frequency,

ω̃ = 0.1027 and wave vector, k̃ = 0.3.

FDTD simulation of z-component of electric field found by using MEEP is shown

in Figure 4.12 for butt-coupling case. In this simulation we used a gaussian source with

frequency ω̃ = 0.1027 and wave vector k̃ = 0.3 to generate the operating mode. The z-

component of electric field (Ez) distribution is taken at four different time step, (t = 20,

t = 30, t = 35, and t = 50) is shown. Operating mode send form input region first

couples to intermediate region and then couple back to output region. At this frequency

and wave vector there is only one guided mode of intermediate region. Incoming mode
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Figure 4.11. Band structure of single-slab waveguide with thickness dint = 2 with di-
electric constant of ϵ = 13 immersed in a medium with dielectric constant
of ϵ = 2.25, black lines. Dashed red lines represents guided modes of
single slab waveguide with thickness din = 8 with dielectric constant of
ϵ = 13 immersed in a medium with dielectric constant of ϵ = 2.25.

will couple to this mode and this excited mode will propagate along intermediate region

and will excite modes of output part which has only one guided mode at this frequency.

Transmission value for this structure, without taper region introduced, is 65.7%. The rest

of optical power is radiated to background during the coupling at two interface. Radiation

to background at the interface between input and intermediate region and the radiation

between intermediate region and output region is clearly seen from time snapshots t = 30,

t = 35. At time step t = 50 we see the excited propagating mode out output region.

To increase coupling efficiency we now introduce taper region at interface between

single-slab waveguides, first taper region is between input part and intermediate region

and second taper introduced between intermediate region and output part. In Figure 4.13

we see the waveguide structure.

FDTD simulation of z-component of electric field of TE mode along waveguide

is shown in Figure 4.13 for adiabatic coupling case. Time snapshot of electric field dis-

tribution that is taken at four time step is shown, t = 40, t = 60, t = 70, and t = 90. As

seen from the simulation, radiation to background and reflection at interfaces are reduced
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by great amount when we use taper region. Transmission value for this simulation is

97.9%. In the adiabatic limit, it is predicted that when this transition gradually enough it

is possible to couple all optical power between two different dielectric medium. This sim-

ulation run for 20 resolution per period. The taper region length used in this simulation is

L = 50a, where a is lattice constant.
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Figure 4.12. Dielectric structure of waveguide without taper region introduced. The
waveguide consist of input region, intermediate region, and the output re-
gion. FDTD simulation of electric field component, (Ez), of TE mode
profile shown for four different time step. The operating frequency and
wave vector are ω̃ = 0.1027 and k̃ = 0.3 respectively.
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Figure 4.13. Dielectric profile of waveguide structure consisting of an input part, tran-
sition region, intermediate region and an output part.FDTD simulation of
electric field component (Ez)for TE mode profile for four different time
step for frequency ω̃ = 0.1027 and wave vector k̃ = 0.3
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The transmission values versus taper length is shown in Figure 4.14. Transmission

values are plotted for waveguide which made of an input part with thickness din = 12,

the intermediate region thickness is dint = 2 and the output part with thickness dout = 12.

All region made of same material with dielectric constant ϵa = 13. The background has

dielectric constant ϵa = 2.25. As it is seen from the transmission graph, after L = 10a

the transmission value reaches a steady state value. Further increasing taper length has no

effect on increasing the transmission value.
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Figure 4.14. Transmission values versus taper length found by using FDTD simulation.
Transmission value for butt-coupling (L = 0a) and adiabatic coupling
(L > 0a) is shown.

In the butt-coupling case, the transmission value is found as %65. Direct transi-

tion cause %35 of optical power loss during coupling from input waveguide to interme-

diate waveguide and coupling from intermediate waveguide to output waveguide. This

lost optical power either radiated to background fo reflected back at the interface where

waveguides with different thickness met. In the adiabatic coupling case, the calculated

transmission value is found as %97. This transition type only causes %3 of optical power

loss.
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CHAPTER 5

COUPLING SINGLE-SLAB TO 1D PHOTONIC CRYSTAL

WAVEGUIDES

In this chapter we will study coupling process between single-slab waveguide and

multi-slab waveguide. Transmission values for both butt-coupling and adiabatic coupling

will be calculated using FDTD method. In the first section we will use taper region

between single-slab waveguide and the defect line of multi-slab waveguide. In second

section, besides using use taper region between single-slab waveguide and the defect line

of multi-slab waveguide, we also will use taper geometry between background of single-

slab waveguide to cladding of multi-slab waveguide. In the last section we will study a

case when introducing taper region fails.

5.1. Tapering Only Defect Line

In this section we will study the waveguide structure shown in Figure 5.1. The

structure consists of a single-slab waveguide with thickness din = 8 with dielectric con-

stant ϵa = 13 (called input region). The output region of this structure is made of multi-

slab with thickness dclad = 1 with dielectric constant ϵa = 13, and the defect line is

made by removing one slab and replacing it with a slab with thickness dout,def = 2 with

dielectric constant ϵd = 13. The whole structure is placed in air background which has

dielectric constant of ϵb = 1.

In Figure 5.2 we see the band structure calculated for TE mode of multi-slab

waveguide, (Black lines). The geometric parameters for multi-slab waveguide are, cladding

thickness dclad = 1, defect line thickness dout,def = 2. The defect line and cladding di-

electric constant is ϵa = ϵd = 13. The background dielectric constant is ϵb = 1, air. We

also show first guided mode of single-slab waveguide on the same graph (red line). The

single-slab waveguide thickness is din = 8 with dielectric constant of ϵa = 13 and it is im-

mersed in a background with dielectric constant of ϵb = 1, air. Intersection of blue dashed

lines shows our operating frequency, first guided mode of single-slab waveguide, (input

part), ω̃ =
(

a
2πc

)
ω = 0.1521, and wave vector, k̃ =

(
a
2π

)
k = 0.5. At this frequency,

multi-slab waveguide has only one guided mode with wave vector k̃ = 0.30.
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Figure 5.1. Dielectric profile of a waveguide that is made by a single slab waveguide
with thickness of din = 8 and dielectric constant of ϵa = 13, and a multi-
slab waveguide with slab thickness of dclad = 1 and dielectric constant
ϵa = 13 and defect line thickness of dout,def = 2 with dielectric constant
ϵd = 13. The whole waveguide is immersed in air, ϵb = 1.

When we send the guided mode of input part it will propagate along input part

and when it comes to interface it will excite the first guided mode of output part. At

the operating frequency, the guided mode of output region has wave vector of k̃ = 0.30.

Comparing this value with the operating mode wave vector we see that the difference

in wave vectors is ∆k̃ = 0.20. The group velocities at the operating frequency and

wave vectors are defined as vg = dω̃/dk̃. Calculated group velocity, vg, for multi-slab

waveguide is 0.395 and calculated group velocity for single slab waveguide is vg = 0.270.

The mode profiles are same, (Both modes have the same even symmetry) except for the

mode widths. So the main reasons for the optical power loss is the wave vector mismatch

and group velocity mismatch. To be able to couple this two mode efficiently, we need to

find a way that match the operating mode profile, group velocity and wave vector with the

guided mode of output region.

In Figure 5.3 we see z-component of electric field (Ez) distribution for TE mode

found by FDTD simulation. A Gaussian source is used to excite the operating mode with

operating frequency and wave vector. An absorbing boundary layer is used to absorb the

reflection from the boundary of computational region.

Propagation of electric field (Ez) for TE mode along the structure for four different

time step is shown in the Figure 5.3. We send first guided mode of input part which has

frequency of ω̃ = 0.1521 at wave vector k̃ = 0.5. Transmitted power in the output region

is calculated and normalized with the calculated power of single slab waveguide without

the output region. The transmission value for this structure is 91.2%. The loss is clearly

seen from the FDTD simulation snapshot, the wave that is propagating in the cladding

and the wave that is propagating back in the input region.
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Figure 5.2. Band structure calculated for TE mode of multi-slab waveguide (Black
lines). The waveguide is made by slabs of thickness dclad = 1 with di-
electric constant ϵa = 13. The defect line has thickness of dout,def = 2
with same dielectric constant with cladding slabs. Red dashed line is first
guided mode of input part (single slab waveguide) which has thickness of
din = 8 with dielectric constant ϵa = 13. The background is air,(ϵb = 1).

In the case of butt coupling, when there is no transition region, the guided mode of

input region directly coupled from single-slab waveguide to multi-slab waveguide. Direct

transition from a dielectric medium to another dielectric medium that have different di-

electric properties, as can be seen from the simulation, causes some of the optical power to

refract and some of the optical power to reflect back at the interface. As shown in (Mekis

and Joannopoulos, 2001), butt-coupling efficiency can be found using, η = 4k̃ink̃out
(k̃in+k̃out)2

where k̃in and k̃out are the wave vector of the single-slab and multi-slab waveguides. As

can be seen from the this equation, unity transmission is possible only if the wave vectors

of both region are equal, k̃in = k̃out.

Now we introduce trapezoidal transition region between single-slab waveguide,the

input region, and defect line of multi-slab waveguide, the output region. The structure

is shown in Figure 5.4. The transition region thickness gradually decreased form input

waveguide thickness to thickness of defect line of output waveguide.

In Figure 5.4 we see electric field distribution,Ez, found by FDTD simulation for
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TE mode taken at four different time step. In the case of tapered structure, the incoming

mode transferred to output guided mode in a series of intermediate thickness. As wave

propagate in the taper, it sees dielectric structure that is slowly changing in electromag-

netic properties. This slow change in geometry of waveguide serve as a medium that

transform wave vectors, group velocity and mode profile as slowly as possible so that

the loss of optical power minimized. Transmission value when we introduce taper with

length of 20a unit cell long is 99.2%. By comparing this with the transmission value for

the structure without taper, we see transmission value is increased by 8%. Back reflection

and radiation to background are almost no longer exist. The incoming mode is smoothly

coupled to output waveguide with almost no loss.

122



perfectly matched layer(PML)

input

output

din = 8

dclad = 1

a

x

y

z

source flux-region

t=25

t=30

t=35

t=40

Figure 5.3. Dielectric profile of a single slab waveguide and a multi-slab waveguide.
Mode profile of electric field (Ez) found by FDTD simulation. The field
profiles are taken at four different time, in this structure there is no taper
region introduced.
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Figure 5.4. FDTD simulation of structure, consist of a single-slab waveguide, a taper
region, and multi-slab waveguide. The single-slab waveguide on left called
input part we introduce a taper region which gradually change from din =
8 to dout,def = 2.
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In Figure 5.5 we show transmission versus taper length for four different single

slap waveguide thickness (input part) while output part thicknesses are kept constant. The

cladding thickness of Multi-slab waveguide is dclad = 1 and the defect line thickness of

multi-slab waveguide is dout,def = 2.

When the thickness of single slab waveguide is taken as din = 4 the transmission

value without taper region introduced, L = 0, is around 99%. When the thickness of

single slab waveguide is taken as din = 10 this time the transmission value is, without

taper region, is around 87%. So in the case of butt coupling, L = 0, the transmission

value decreases with increasing ratio between single slab waveguide thickness to defect

line thickness of multi-slab waveguide. When we introduce taper region between two

waveguide, as can be seen from transmission graph the transmission values increases

with increasing taper length. The transmission values shown in this figure shows that

the coupling efficiency between single-slab waveguide and multi-slab waveguide can be

increased by using taper region.
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Figure 5.5. Transmission versus taper length. The output thickness are kept constant
while we increase the single slab waveguide thickness from din = 4 to
din = 10.
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5.2. Single slab to Multi Slab Coupling-A different Approach

In previous section we have used trapezoidal shaped taper structure to use as

an transition region to convert incoming mode to output mode of multi-slab waveguide.

These is one of the possible taper choice. Another possible transition region is that, be-

sides tapering the single-slab and defect line of multi-slab waveguide, we can change the

cladding thickness of output waveguide from zero to its final value.

In Figure 5.6 we see dielectric structure of waveguide we are going to work with

in this section. Single slab waveguide on the left hand side has thickness of din = 10, the

multi-slab waveguide on the right hand side is made of slabs with thickness dclad = 1, and

the defect line has thickness of dout,def = 2. Both single slab and multi slab waveguide

have same dielectric constant of ϵa = 13. The background has dielectric constant of

ϵb = 1.
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Figure 5.6. Dielectric profile of structure consist of a single-slab waveguide of thick-
ness din = 10 with dielectric constant ϵa = 13 (input) and multi-slab
waveguide consist of cladding slabs of thickness dclad = 1 with dielectric
constant ϵa = 13 and defect line thickness of dout,def = 2 with dielec-
tric constant ϵa = 13. The background has dielectric constant of ϵb = 1
(output).

In Figure 5.7 We see band structure of multi-slab waveguide calculated for TE

mode (black lines) and we also show first guided mode of single slab waveguide (red line).

The intersection of blue lines indicate our operating mode with the frequency ω̃ = 0.1516

and wave vector k̃ = 0.5. As we see from graph there is only one guided mode of multi-

slab waveguide at this frequency. Both modes have same spatial symmetry, but their group

velocities and wave vectors are different. These two difference is the main reason for the

coupling inefficiency.

The operating mode and the guided mode supported by output region has same

spatial symmetry, both modes are even. Another difference between these two mode
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Figure 5.7. Band Structure calculated for TE mode of multi-slab waveguide with
cladding and defect line thickness of dclad = 1, dout,def = 2 respectively.
The dielectric constants are ϵa = 13 and ϵd = 13, black lines. The red
dashed line is the first guided mode of input part (single slab waveguide)
which has thickness of din = 10 and dielectric constant ϵa = 13.

is their group velocity. As we see from the band structure, the operating mode group

velocity is smaller than the guided mode of output region. And both mode have different

wave vector at the operating frequency.

In Figure 5.8 we see electric field (Ez) distribution of TE mode found by FDTD

simulation. Transmission value for this structure is 81.8%. This simulation was run with-

out taper region with 30 resolution per period. As we see without taper region 18.2%

of optical power radiated to background and reflection back at the position where two

waveguides meet.
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Figure 5.8. Dielectric profile of structure consist of a single-slab waveguide of thick-
ness din = 10 with dielectric constant ϵa = 13 (input) and multi-slab
waveguide consist of slabs of thickness dclad = 1 with dielectric con-
stant ϵa = 13. The defect line of multi-slab waveguide has thickness of
dout,def = 2 with dielectric constant ϵa = 13 The background has dielec-
tric constant of ϵb = 1 (output).
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Besides tapering only defect line, there is an alternative taper design for the struc-

ture we have studied in previous section. Now we will taper the cladding too. The Fig-

ure 5.9 shows the structure we are going to work with. The cladding thickness of multi-

slab waveguide gradually changes form zero, dclad = 0, to its final thickness, dclad = 1.

And as it is done in the previous section, the thickness of single-slab waveguide is gradu-

ally changed to thickness of defect line of multi-slab waveguide.

In Figure 5.9 we see electric field distribution of TE mode calculated by FDTD

simulation. The simulation were done with taper region length of L = 50a. Simulations

are performed with 30 resolution per period. Transmission value for this structure is

98.3%. Comparing this with the transmission found when no taper region used we see

that transmission value increased by 16.5%.
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Figure 5.9. FDTD simulation of z-component of electric field of TE mode, in this
structure there we introduced taper region with 50 unit cell long. Dielectric
structure, which consist of a single- slab waveguide (input), a taper region
and multi-slab waveguide (output).
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In Figure 5.10 we show transmission versus taper length. In the butt coupling case

the transmission value is around 82%. As can be seen from the graph the transmission

value increases with increasing taper length, starting from L = 0a to L = 50a, and finally

it reaches above 98%. The transmission curve for this structure needs longer taper length

to reach a steady state value.
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Figure 5.10. Transmission values versus taper length calculated with FDTD method.
Butt coupling and adiabatic coupling situations are shown, L = 0a and
L = 50a.

Comparing this graph with the one we show in Figure 5.2 we can conclude that

the first kind of taper geometry is more suitable because of the required adiabatic condi-

tion, since the first transition type require shorter taper length to reach the steady state of

transmission values.
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5.3. Taper Fail

Now we will run our simulation and calculate transmission values without and

with taper region introduced to study a case when using taper region does not increase

transmission values. An important point that must be taken into account is, as it is stated

in (Johnson et al., 2002), besides requirement that the operating mode must not be evanes-

cent for any intermediate point of the taper, the mode must be guided for every intermedi-

ate thickness of taper. This is important because if operating mode is a part of continuum

then all mode will radiate to background.
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Figure 5.11. Band Structure calculated for TE mode of multi-slab waveguide, cladding
thickness is dclad = 3, cladding dielectric constant is ϵa = 13, defect line
thickness is ddef = 2, defect line dielectric constant is ϵd = 13. The
background dielectric constant is ϵb = 2.5. Red line is first guided mode
of input part (single slab waveguide) which has thickness of din = 8 and
dielectric constant is ϵa = 13 immersed in a background with dielectric
constant ϵb = 2.5. The intersection of blue lines indicate the operating
mode.

In Figure 5.11 we see band structure of multi-slab waveguide (output part), shown

by black lines, calculated for TE mode. The thickness of cladding is dclad = 3 and

the defect line has thickness of dout,def = 2. Both cladding and defect line have same
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dielectric constant of ϵa = ϵd = 13. The background material has dielectric constant of

ϵb = 2.5. We also show first guided mode of single-slab waveguide (input part), which is

indicated by red dashed line. Single slab waveguide thickness is din = 8 and the dielectric

constant is ϵa = 13. Single- slab waveguide is immersed in a background of dielectric

constant of ϵb = 2.5. The intersection of blue dashed lines indicate the operating mode

with frequency ω̃ = 0.2095, and wave vector, k̃ = 0.7. As can be seen from the band

graph there is no guided mode of multi-slab waveguide below continuum region. First

guided mode of multi slab waveguide is above the continuum region so if we want to

excite this mode with the operating mode, we first must move through the continuum

region and this will cause optical power to couple those continuum modes as well.

The dielectric structure of waveguide is shown in Figure 5.12. In Figure 5.12

we also see z-component of electric field, Ez, of TE mode found by FDTD simulation.

The snapshots are taken for four different time steps. In this simulation there is no taper

region introduced. The transmission value for this structure is 52.4%. Which shows that

without taper region introduced almost half of the optical power coupled to background

and reflected back at interface.

In Figure 5.13 we see dielectric profile of structure with taper region introduced.

All geometric parameters and dielectric constant are same with the structure shown in

Figure 5.12. The only difference here is the transition region connecting the Single slab

waveguide with the defect line of multi-slab waveguide and the transition region connect-

ing the background of single slab waveguide to the multi-slab waveguide cladding. The

cladding slab thickness are increased from zero to its final values.

In Figure 5.13 we see FDTD simulation of electric field, Ez, of TE mode. The

electric field distributions are taken at four time steps. In this simulation the taper region

length is L = 50a where a is lattice constant. The transmission value in this case is 3.1%

as seen from simulation, when we increases the taper length 96.9% of incoming mode

coupled to radiation modes. In this structure when taper region thickness is gradually

changing at intermediate point it forms a perfect structure. Since there is no propagation

mode for perfect structure, then all incoming mode radiates to background. This situation

is clearly seen from time snapshot taken at t = 38 of the Figure 5.13.
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t=30

t=35

t=40

t=45

Figure 5.12. Dielectric structure, which consist of a single-slab waveguide (input),
multi-slab waveguide (output). Electric field distribution, Ez, of TE mode
found by FDTD simulation. In this structure there is no taper region.
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t=26

t=32

t=38

t=50

Figure 5.13. FDTD simulation of TE mode, z-component of electric field, Ez, in this
structure we introduced taper region which gradually changing their thick-
ness. Dielectric structure, which consist of a single-slab waveguide (input),
a taper region and multi-slab waveguide (output).
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In Figure 5.14 we show transmission versus taper length. The transmission value

for the butt coupling is found as 52.4%. As can be seen from the graph transmission

values decreasing as we increase taper length. To be able to excite the first guided mode

of multi-slab, the operating mode need to go through continuum region as seen from band

structure. This decrease in transition value is explained by turn on bulk crystal. At a

certain point along transition region the multi-slab waveguide forms a perfect multi-slab

waveguide which has no propagating, guided, modes. At this point all incoming optical

power couples to radiation modes. In the adiabatic limit, which is in this case with an

infinitely long taper region the transmission value will be zero.
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Figure 5.14. Transmission values versus taper length of a waveguide structure that is
its guided mode is above continuum region. Taper length changed from
L = 0a (without transition region) to L = 100a (with transition region).
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CHAPTER 6

COUPLING MULTI-SLAB TO MULTI-SLAB WAVEGUIDE

In this chapter we will study coupling efficiency of light between two multi-slab

waveguide. In first section we will work with multi-slab waveguides that have different

lattice constant, cladding thickness, and defect line thickness. Simulation will be per-

formed for both untapered and tapered waveguides to find transmission values. In second

section the waveguides we will work with have the same lattice constant but different

thickness of slabs and line defects. Again the simulation will be performed for untapered

and tapered waveguides to calculate transmission values.

6.1. Coupling Between Two Different Waveguide

In Figure 6.1 we see the waveguide structure that is made by two different waveg-

uide. The waveguide on the left-hand side is made by slabs of thickness din,clad = 2 with

dielectric constant ϵa = 13, the defect line thickness is din,def = 6 with dielectric constant

ϵd = 13 (input part) and lattice constant a1. The waveguide on the right-hand side is

made by slabs of thickness dout,clad = 1 with dielectric constant ϵa = 13, the defect line

thickness is dout,def = 2 with dielectric constant ϵd = 13 (output part) and lattice constant

a2 = 0.5a1. The background of this structure is air (ϵb = 1).

In Figure 6.2 we see band structure of multi-slab waveguide calculated for TE

mode with lattice constant of 0.5a, the thickness of slabs are dout,clad = 1 and thickness

of defect line is dout,def = 2, both slabs and defect line have same dielectric constant of

ϵa = ϵd = 13. The waveguide is placed in air background, (ϵb = 1). We also show our

operating mode which is the first guided mode of, (red line), the waveguide with lattice

constant of a which is made by slabs of thickness din,clad = 2 and the defect line is made

by a slab of thickness din,def = 6. Both slabs and defect line has same dielectric constant

ϵa = ϵd = 13. The background again is air. Intersection of blue dashed lines indicate

our operating frequency which is ω̃ = 0.1351 and wave vector k̃ = 0.4. At the operating

frequency the output waveguide is single mode.
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perfectly matched layer(PML)

input output

source flux-region

Figure 6.1. The waveguide on the left-hand side has lattice constant a1 with cladding
and defect line thickness of din,clad = 2, din,def = 6 respectively. The
waveguide on the right-hand side has lattice constant a2 = 0.5a1 with
cladding and defect line thickness of dout,clad = 1, dout,def = 2 respec-
tively. Both waveguides are immersed in air background, ϵb = 1.
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Figure 6.2. Black lines represent the band structure calculated for TE mode of
multi-slab waveguide (the output waveguide) made by slabs of thickness
dout,clad = 1 with dielectric constant ϵa = 13. The defect line has thickness
of dout,def = 2 with same dielectric constant of cladding,ϵd = 13. The
background is air, (ϵb = 1). The red line represents the first guided mode
of multi-slab waveguide (the input waveguide) which has geometric pa-
rameters, din,clad = 2, din,def = 6, and the dielectric constants of cladding
and defect line are, ϵa = ϵd = 13. The background is air, ϵb = 1.
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In Figure 6.3 we see z-component of electric field of TE mode found by FDTD

simulation. In this simulation there is no taper region between two waveguides. Our

operating mode frequency is ω̃ = 0.1351 and the operating mode wave vector is k̃ = 0.4.

At the operating frequency the wave vector of output waveguide is k̃ =??. A Gaussian

mode source used to generate the operating mode.

As shown in Figure 6.3, we took time snapshot of the electric field propagation

(Ez) along the waveguide structure for four different time step. At t = 26 the operating

mode propagate along the input waveguide since it is the guided mode of this region. At

t = 32 we see the mode just has arrived to the interface between two waveguides and start

to excite some of guided mode of output region, and some of the radiation modes. At

t = 38 we see the excited mode of output part propagating along the waveguide. Finally,

at t = 45 we see the excited mode that is propagating along the output waveguide. At this

last snapshot we also see some of the wave are propagating in input waveguide which are

reflected from the interface.

In Figure 6.4 we see dielectric structure with taper region introduced. The geo-

metric parameters are same with the waveguide structure shown in Figure 6.3. The only

difference here is the transition region that is introduced between two waveguides. We

connect slabs of input part with slabs of output part in such a way that both cladding slab

thickness and lattice constants of input waveguide change slowly from the input waveg-

uide parameters to output waveguide parameters. The defect lines of both waveguides are

joined to each other by trapezoids as we did in the previous sections.

In Figure 6.4 we show FDTD simulation of electric field, Ez for TE mode with

taper region introduced. Again a Gaussian mode source is used to generate the operating

mode. This simulation performed with 30 resolution per period. The taper region length

in this structure is L = 50a where a is defined as lattice constant. Calculated transmission

value for this structure is 97.5%. Comparing this value with the transmission value we

found for the structure that when there is no taper region introduced, we see the coupling

efficiency increased by 10.6%.
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Figure 6.3. Dielectric structure of two multi-slab waveguide. The waveguide on the
left-hand side has lattice constant a with cladding and defect line thickness
of din,clad = 2, din,def = 6 respectively. The waveguide on the right-hand
side has lattice constant 0.5a with cladding and defect line thickness of
dout,clad = 1, dout,def = 2 respectively. Both waveguides are immersed
in air background, ϵb = 1. Both waveguide cladding and defect line have
the same dielectric constant of ϵa = ϵd = 13. FDTD simulation of z-
component of electric field (Ez) for TE mode with frequency ω̃ = 0.1351
and wave vector k̃ = 0.4.
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t=26

t=32

t=38

t=44

Figure 6.4. Dielectric profile of the waveguide structure with taper region intro-
duced. The waveguide on the left-hand side is made by slabs of thickness
din,clad = 2 with dielectric constant ϵa = 13 and the defect line of thickness
din,def = 6 with dielectric constant ϵd = 13. The waveguide on the right-
hand side is made by slabs of thickness dout,clad = 1 with ϵb = 13 and the
defect line is made by a slab of thickness dout,def = 2 with ϵa = 13. The
background is air, (ϵb = 1). FDTD simulation of z-component of electric
field for TE mode with frequency ω̃ = 0.1351 and wave vector k̃ = 0.4. In
this structure we introduced taper region of L = 50a long.
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In Figure 6.5 we see transmission values versus taper length. In the butt coupling

case ,L = 0a, the calculated transmission value 86.9%. As clearly seen from graph

transmission values increases with increasing taper length. The calculated transmission

value for the taper length L = 50a is found as 97.5%. For approximately L = 30a of the

taper length the transmission value increased to its final value. After this value increasing

the taper length has no effect on transmission of optical power.
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Figure 6.5. Transmission value change versus taper length of two waveguides with
different lattice constant and different cladding and core slab thickness.
L = 0a represents the direct coupling case where L > 0 represents the
adiabatic coupling case.
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6.2. Multi to Multi slab WG-Same lattice constant

In this section we will study coupling efficiency between two waveguides that

have different thickness, the cladding and the defect line thickness, but this time their

lattice constants are the same, a. In Figure 6.6 we see the dielectric profile of waveguide

structure we are going to work with. The waveguide on the left-hand side is made by slabs

of thickness din,clad = 2 with dielectric constant of ϵa = 13 and defect line has thickness

of din,def = 6 with dielectric constant of ϵd = 13. The waveguide on right-hand side is

made by slabs of thickness dout,clad = 1 and defect line has thickness of dout,def = 1.4

both slabs and defect line have the same dielectric constant ϵa = ϵd = 13. The waveguide

structure is immersed in air which has dielectric constant of ϵb = 1.

perfectly matched layer(PML)

input output

source flux-region

Figure 6.6. Dielectric structure of waveguide. The waveguide on the left-hand side
(input part) is made by slabs of thickness din,clad = 2 and the defect line
thickness is din,def = 6 with ϵa = 13. The waveguide on the right-hand
side (output part) is made by slabs of thickness dout,clad = 1 and the defect
line thickness is dout,def = 1.4 with ϵa = 13. The background is air,
(ϵb = 1).

In Figure 6.2 we see band structure of multi-slab waveguide (output part) calcu-

lated for TE mode. The cladding thickness is dout,clad = 1 and the defect line thickness

is dout,def = 1.4 (black lines). Both cladding and defect line have same dielectric con-

stant, ϵa = ϵd = 13. The waveguide is placed in a background with dielectric constant of

ϵb = 1, air. In this band structure we also show our operating mode, which is first guided

mode of input part (red line). The cladding thickness of input waveguide is din,clad = 2

and the defect line thickness is din,def = 6. Cladding and defect line have same dielectric

constant of ϵa = ϵd = 13. the background is air, ϵb = 1.

Intersection of blue lines indicates our operating frequency and the wave vector.

The operating frequency is ω̃ = 0.1630, and the wave vector is k̃ = 0.5. At this frequency
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Figure 6.7. Band Structure calculated for TE mode of multi-slab waveguide, Black
lines are modes of waveguide with slabs and defect line thickness
dout,clad = 1, dout,def = 1.4 respectively. Red dashed line is first guided
mode of waveguide with slabs and defect line thickness dout,clad = 2,
dout,def = 6 respectively. Intersection of the blue line represent our op-
erating mode with frequency and wave vector ω̃ = 0.1630, k̃ = 0.5.

there is one guided mode supported by output waveguide, which is first guided mode of

output waveguide.

In Figure 6.8 we see FDTD simulation of z-component of electric field (Ez). we

run this simulation with 30 resolution per period and 60 resolution per period with Gaus-

sian source. Two waveguide are butt joined to each other in this simulation. The trans-

mission value without taper region for the simulation with 30 resolution is 59.18%, and

the transmission value for the simulation with 60 resolution is 63.7%.

At time step t = 42 the radiation to background is clearly seen and at time step

t = 52 and t = 62 the wave that is reflected back at interface is propagating backward is

clearly seen. At last two time step we see the excited guided mode of the output waveg-

uide.

Now we introduce taper region between two waveguides. The geometric parame-

ters and dielectric constants are the same with the waveguide we used in previous simula-
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tion without taper region. The only difference here is the transition region. We gradually

change thickness of input waveguide cladding from din,clad = 2 to dout,clad = 1, and the

thickness of defect line from din,def = 6 to dout,def = 1.4. The dielectric constant of

transition region are also same with the dielectric constant of corresponding slabs. In

Figure 6.9 we see dielectric structure of waveguide with taper region introduced.

In Figure 6.9 we see FDTD simulation of electric field, Ez, for TE mode with

taper region. A Gaussian source is used to excite the operating mode. The simulation

performed with 30 resolution per period. Two waveguide are joined adiabatically by

using an intermediate region called taper. The taper length used for this simulation is

L = 100a, where a is lattice constant. Transmission value with taper region introduced

is 93.3%. By comparing this results with the results of the simulation run without taper

region, we found that the transmission value increased by 34.1%.

The taper region serves as a mode converter, which shifts the wave vector of in-

coming (operating) mode to wave vector of excited mode slowly. During the coupling

process the frequency is a conserved quantity and the changing parameter is the wave

vector. The initial frequency and wave vector is ω̃1, k̃1, and the final frequency and the

wave vector is ω̃1, k̃2. The closer values of wave vector values results in the lower loss of

optical power. In this way the loss in optical power is minimized depending on the rate of

taper change.
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Figure 6.8. Dielectric structure of waveguide without taper region introduced. The
waveguide on the left-hand side (input part) is made by slabs of thick-
ness din,clad = 2 with ϵa and the defect line thickness is din,def = 6 with
ϵd = 13. The waveguide on the right-hand side (output part) is made by
slabs of thickness dout,clad = 1 with ϵa = 13 and the defect line thickness is
dout,def = 1.4 with ϵd = 13. The background is air, (ϵb = 1). FDTD simu-
lation of electric field that is in the z-direction is shown for the waveguide
without taper region.
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Figure 6.9. Dielectric structure of waveguide with taper region of length L = 100a
introduced. FDTD simulation of z-component of electric field in the case
of taper region introduced. The waveguide on the left-hand side made by
slabs of thickness din,clad = 2, the line defect has thickness of din,def = 6
and the waveguide on the right-hand side is made by slabs of thickness
dout,clad = 1, the defect line thickness is dout,def = 1.4. All slabs have
same dielectric constant ϵa = ϵd = 13. The background is air, (ϵb = 1)
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In figure 6.10 we see transmission values versus taper region length. The red

line is transmission values obtained by running simulation with 30 resolution per period.

Comparing the butt coupling efficiency, where L = 0a, with adiabatic coupling efficiency

when taper length L = 100a, we found that 34.1% enhancement is achieved. The blue

line shows transmission value obtained by running the simulation with 60 resolution per

period. And the coupling efficiency is increased by 31.5%.
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Figure 6.10. Transmission values versus taper length calculate using FDTD method.
The red curve shows the transmission value calculated using 30 resolution
per period and the blue curve shows the transmission value calculated using
60 resolution per period.The butt-coupling case (L = 0a) and adiabatic
coupling case (L > 0a) is shown.

As seen from the transmission value versus taper length, Figure 6.10, introducing

taper region, slowly changing the cladding and the defect line thickness, increases the

coupling efficiency.
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CHAPTER 7

COUPLING SINGLE-SLAB TO 2D LINE DEFECT

PHOTONIC CRYSTAL WAVEGUIDES

In this chapter we will study the coupling process between single-slab waveguide

and 2-D line defect photonic crystal waveguide (PhCWG). Transmission values will be

calculated using FDTD method with and without taper region introduced. In the first

section we will study coupling of light from single slab- waveguide to 2D line defect

PhCWG (one-stage coupling). In the second section we will also couple light back from

2-D line defect PhCWG to single-slab waveguide (two-stage coupling). The effect of

taper length on transmission value will be studied.

7.1. One-Stage Coupling

Coupling efficiency of electromagnetic mode between single-slab waveguide and

2D line defect photonic crystal waveguide will be studied in this section. The waveguide

structure is shown in Figure 7.1. The structure consists of a single-slab waveguide (the

input region), and a 2D line defect PhCWG which is made by cylindrical rods arranged

in a square lattice (the output region). Two waveguides are butt joined to each other.

Photonic band structure of 2D line defect PhCWG calculated for TE modes using

plane wave expansion is shown in Figure 7.2. The photonic crystal waveguide is made

by cylindrical rods arranged in a square lattice with lattice constant a. The radius of

cylindrical rods is R = 1 with dielectric constant of ϵa = 13. The defect line is made by

removing one row of cylinders along the center of the photonic crystal and replaced by

a slab with thickness of dout,def = 2 with dielectric constant ϵd = 13. The background

material has dielectric constant of ϵb = 2.25, (black lines). We also showed first guided

mode of single-slab waveguide (red line) in Figure 7.2. The single-slab thickness is din =

12 with dielectric constant of ϵa = 13 and the background of single-slab has dielectric

constant of ϵb = 2.25. The intersection of blue dashed lines indicate our operating mode

with normalized frequency ω̃ =
(

ωa
2πc

)
= 0.1219, and the normalized wave vector k̃ =(

ka
2π

)
= 0.4.
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Figure 7.1. Dielectric structure of butt joined waveguide which is made of a single slab
waveguide of thickness din = 12 and 2-D line defect PhCWG made of
cylindrical rods of radius R = 1 and defect line with thickness dout,def =
2. All waveguide parts have same dielectric constant of ϵa = 13. The
background has dielectric constant ϵb = 2.25.

At the operating frequency, as can be seen from Figure 7.2 there is only one propa-

gating (guided) mode of 2-D line defect PhCWG. When we send the operating mode from

single-slab waveguide it will propagate along single-slab waveguide and when it comes

to interface it will excite all guided mode of 2-D line defect PhCWG, in this structure

there is only one guided mode of 2-D line defect PhCWG, and radiation mode will also

be excited. Some of the incoming mode will be reflected back from interface.

In Figure 7.3 we see time snapshot of electric field profile (Ez) of TE mode found

by using FDTD method. Gaussian source with normalized frequency of ω̃ = 0.1219 and

normalized wave vector of k̃ = 0.4 is used to excite the operating mode. The simulation

is performed with 30 resolution per period. These mode profiles are taken at four different

time step. The calculated transmission value when there is no taper region is 81.5%. The

loss of optical power is 18.5%. At the interface where both single-slab waveguide and 2-D

line defect PhCWG are met, the operating mode coupled directly to the output waveguide

At time step t = 25, t = 30 and t = 35 the incoming wave excited the guided

mode of output region, some of the optical power is radiated to background and some of

the optical power is reflected back at the interface. These power radiated to background

and reflected back at the interface are the loss of electromagnetic energy. At time step t =

40 we see the excited guided mode of output region. The coupling efficiency is effected

by the group velocity difference and the mode profile difference of both waveguide. The

mode profile difference can be seen from wave vector of operating mode and wave vector

of excited mode in the output region.

Now we will use taper region between single-slab WG and 2D line defect PhCWG

and we will look for transmission values, and compare the transmission values with the
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Figure 7.2. Band structure of a 2-D line defect PhCWG calculated for TE modes. The
photonic crystal is made by cylindrical rods arranged in a square lattice.
The defect line has thickness dout,def = 2 with dielectric constant ϵd = 13
and the cylindrical rods have radius R = 1 with same dielectric constant
of defect line. The background has dielectric constant of ϵb = 2.25. The
red line is the operating mode of single-slab with thickness din = 12 with
dielectric constant ϵa = 13 immersed in a background with dielectric con-
stant of ϵb = 2.25. The intersection of blue dashed lines is the operating
frequency and wave vector, ω̃ = 0.1219 and k̃ = 0.4 respectively.

case of butt coupling. The transition region for the background of single-slab waveguide

of this structure is made by cylindrical rods with an arbitrary small radius and gradually

increase their radius until it become same with radius of cylindrical rods of 2D line defect

PhCWG. The lattice spacing is kept constant during this gradual change. In this way we

gradually taper the structure from background to cylindrical region. The transition from

single slab waveguide to defect line of 2-D line defect PhCWG is made by a trapezoidal

geometry. The waveguide structure with transition region is shown in Figure 7.4. The

geometric parameters are the same with the waveguide shown in Figure 7.3. Single-

slab thickness is decreased form din = 12 to the thickness of defect line of PhCWG,

dout,def = 2. The cylindrical rods of radius are increased from the value of R = 0 to

R = 1. Taper length in this structure is L = 50a, where a is lattice constant.

In simulation shown in Figure 7.4 we used first guided mode of single-slab waveg-
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uide (input part). A Gaussian source is used to excite the operating mode with frequency

of ω̃ = 0.1219 with wave vector k̃ = 0.4. The simulation is performed with 30 resolution

per period. FDTD simulations of z-component of electric field for TE mode is shown in

Figure 7.4. In this figure we see electric field distribution taken at four different time. At

time step t = 28, the operating mode propagation along the input waveguide is shown.

The exited guided mode and the radiation mode are shown at time steps t = 35 and

t = 40. The transmission value for this simulation is 98.1%. Only 1.9% of optical power

is lost. At time step t = 46 the guided excited mode of 2-D line defect PhCWG is shown.
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perfectly matched layer(PML)

input

output

din = 12

2R = 2

a

source flux-region

t=25

t=30

t=35

t=40

Figure 7.3. Dielectric structure of butt joined waveguide and z-component of electric
field profile of TE mode along structure which is made of a single-slab
waveguide of thickness din = 12 and 2D line defect PhCWG made of
cylindrical rods of radius R = 1 and defect line with thickness dout,def =
2. All waveguide parts have same dielectric constant of ϵa = 13. The
background has dielectric constant ϵb = 2.25.
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t=28
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Figure 7.4. The dielectric structure of single-slab WG and 2-D line defect PhCWG
joined by a taper region. We introduced cylindrical transition region for
the background of single-slab WG. Trapezoidal transition geometry is used
between single-slab WG and the defect line of 2-D line defect PhCWG.
Electric field distribution, (Ez), found by FDTD simulation. Snapshot of
field taken for four different time step.
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The transmission values versus taper length is shown in Figure 7.5, as we see

from the graph transmission value is increasing with increasing taper length. In the case

of butt coupling, L = 0a, the transmission value is around 81.5%. When the taper region

length start to increase, the transmission value increases smoothly. The figure shows

transmission values for L = 0a to L = 50a. Transmission value for L = 50a is 98.1%.

Comparing this value with the simulation result of the structure without taper we see that

transmission value increased by 16.6%.

Using taper region, slowly converting a dielectric medium properties, slowly changes

the the response of a dielectric material to electromagnetic radiation.
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Figure 7.5. Transmission values for TE-polarized electric field, Ez, for the structure of
single slab and 2-D line defect PhCWG calculated using FDTD simulation,
one stage coupling. Transmission values versus taper length calculated for
every 5a starting from L = 0a,(butt coupling) to L = 50a is shown.
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7.2. Two-Stage Coupling

Two-stage coupling will be studied in this section. The waveguide structure is

shown in Figure 7.6. Geometric parameters are the same with the waveguide structure

we studied in the previous section but this time the output region is made by single-slab

waveguide.

perfectly matched layer(PML)

input

intermediate region output

din = 12 dout = 12

2R = 2

a

source flux-region

Figure 7.6. Waveguide structure consist of three region, the waveguide on left called
input part has thickness of din = 12, intermediate part is 2-D line defect
PhCWG has defect line of thickness dint,def = 2 and cylindrical rods of
radius R = 1, and the output part has same thickness with input part.
All three part has same dielectric constant ϵa = 13. The background has
dielectric constant of ϵb = 2.25.

The waveguide on left-hand side is called input part has thickness of din = 12,

the intermediate part is 2D line defect PhCWG has defect line thickness dint,def = 2

and cylindrical rods has radius of R = 1, and output part has same thickness with the

input part,dout = 12.All waveguide part have same dielectric constant of ϵa = 13. The

background has dielectric constant ϵb = 2.25. The guided operating mode of single-slab

waveguide will be coupled to 2D line defect PhCWG then the excited mode of 2D line

defect PhCWG will propagate along this region and finally it will be coupled back to

single- slab waveguide. The band structure of 2D line defect PhCWG and the operating

mode of single-slab waveguide is shown in Figure 7.2.

In Figure 7.7 we see FDTD simulation of z-component of electric field (Ez) for TE

mode taken for four different time step. A Gaussian source is used to excite the operating

mode with frequency ω̃ = 0.1219 and wave vector k̃ = 0.4. This mode propagate along

the single slab waveguide and when it comes to interface it will excited the guided mode

of 2-D line defect PhCWG and after propagating along this medium it excites the guided

modes of single slab waveguide in output region. At time step t = 25, the operating mode
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and the excited mode of both single slab and 2-D line defect PhCWG is clearly seen. At

time step t = 30 and t = 35 we see the electric field of both intermediate region. The

radiated and the reflected optical power are clearly seen. At the last time step t = 45, the

mode is entirely in the output region, single mode and well confined. Butt coupling in

this simulation take place twice in this simulation.

In Figure 7.8 we see the dielectric profile of the waveguide structure. The geo-

metric parameters are same with the waveguide structure used in the previous simulation.

The only difference here is the two taper region used to make smooth transition from

single slab waveguide to 2-D line defect PhCWG and from 2-D line defect PhCWG to

single slab waveguide. First taper region introduced between input waveguide and 2-D

line defect PhCWG is constructed as the radius of cylindrical rods increased from R = 0

to R = 1 while keeping the lattice constant same and the single-slab waveguide is con-

nected to defect line of 2-D line defect PhCWG by a trapezoidal slab which thickness is

decreased smoothly from din = 12 to dint,def = 2. The second taper region is introduced

between 2-D line defect PhCWG and the output waveguide which has the the mirror sym-

metry of the taper used between input waveguide and the 2-D line defect PhCWG.

In Figure 7.8 the z-component of electric field of TE mode profile found by FDTD

for four different time step is shown. The simulation were performed with 30 resolution

per period by using a Gaussian source to excite the operating mode with frequency ω̃ =

0.1219 and wave vector k̃ = 0.4. Taper length for this structure is L = 100a, where

a is lattice constant. Transmission value for this structure is 98.3%. By comparing this

value with the butt-coupling case we see that transmission value increased by 31.7%.

Comparing the mode profile at time step t = 35 with the mode profile at time step t = 50,

we see that the operating mode profile is converted smoothly to guided mode of 2-D line

defect PhCWG. The reverse smooth conversion is seen clearly at time step t = 65.
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perfectly matched layer(PML)

input

intermediate region output

din = 12 dout = 12

2R = 2
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source flux-region
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t=30

t=35

t=45

Figure 7.7. FDTD simulation of structure, which consist of three waveguides, the
waveguide on left called input part has thickness of din = 12, intermediate
part is 2-D line defect PhCWG has defect line of thickness dint,def = 2
and cylindrical rods of radius R = 1, and the output part has same thick-
ness with input part, dout = 12. All three part has same dielectric constant
ϵa = 13. The background has dielectric constant of ϵb = 2.25.
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perfectly matched layer(PML)
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trans-region int-region trans-region output
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t=45

t=50

t=65

Figure 7.8. Dielectric profile of waveguide with taper region length ofL = 100awhere
a is lattice constant. The structure is constructed with a single-slab waveg-
uide which is called input region, a taper region is introduced between
input waveguide and 2-D line defect PhCWG. Between 2-D line defect
PhCWG and output region we introduce another taper region. The z-
component of electric field (Ez) distribution for TE mode found by FDTD
simulation.
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The transmission values corresponding to taper length is shown in Figure 7.9, as

we see from the figure transmission value is increasing with increasing taper length. In

the butt coupling case, the optical mode send from single slab waveguide first couple to

2-D line defect PhCWG. This coupling results in optical power loss. After propagating

in 2-D line defect PhCWG for a while then the excited mode couples back to single slab

waveguide. This coupling also will cause some optical power loss. The main reason for

those loss are the group velocity and wave vector mismatch.

In the case of adiabatic transition, the mode we excite from single-slab waveg-

uide is coupled to 2-D line defect PhCWG by transition region called taper. After this

region, the mode transferred to 2-D line defect PhCWG and again tapered back to sin-

gle slab waveguide. As can be seen from Figure 7.9 using taper region has significant

improvement on transmission values.
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Figure 7.9. Transmission values for TE mode for the structure of single-slab waveg-
uide and 2-D line defect PhCWG calculated using FDTD simulation. In
this simulation, the operating mode first coupled form single slab waveg-
uide to 2-D line defect PhCWG and then coupled back to single slab
waveguide, two stage-coupling. Transmission values versus taper length
calculated for every 5a starting from L = 0a, (butt coupling) to L = 100a,
(adiabatic coupling) is shown.
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CHAPTER 8

CONCLUSION

In this thesis work we have presented taper region designs for four types of waveg-

uide structure. Coupling from single-slab waveguide to single-slab waveguide, coupling

from single-slab waveguide to multi-slab waveguide, coupling from multi slab waveguide

to multi slab waveguide, and coupling from single-slab waveguide to 2D line defect pho-

tonic crystal waveguide has been studied numerically using finite-different time-domain

method. A trapezoidal shaped transition region is used to connect single-slab waveguides.

Besides trapezoidal shaped transition region, to make gradual transition from background

of single-slab waveguide to 2D line defect photonic crystal we changed dielectric cylin-

ders radius from zero to its final value. Finite-different time- domain simulation has

shown that, the guided mode profile can be smoothly converted or transferred from an

input waveguide to an output waveguide that have different geometric parameters and dif-

ferent guiding mechanism. In adiabatic transition case, comparing to the butt-coupling

case, excitation of higher mode can be prevented. Coupling to multi-mode cause the sig-

nal to spread in space along waveguide which is due to mode’s group velocity difference.

FDTD calculation showed that EM radiation loss due to sudden change in geometry of

waveguide can be prevented by using a transition region that designed gradual enough.

According to transmission values that are found by using FDTD method, it is

showed that the coupling efficiency is increased by 21% for single-slab waveguide. We

also showed that the transmission value for single slab to multi slab waveguide is in-

creased by 8% when we only use taper region between single-slab waveguide and defect

line of multi-slab waveguide. The transmission value for the case where we used taper re-

gion between single-slab waveguide and defect line of multi-slab waveguide and between

background of single slab waveguide and cladding of multi-slab waveguide is increased

by 16.5%. Transmission value for coupling light between two multi-slab waveguide that

has different geometric parameter, different core, cladding and lattice constant, with taper

region introduced increased by 10.6%. In the case of waveguide structures that have same

lattice constant and different slab and core thickness, the transmission value is increased

by 34.1%. And finally we showed that coupling efficiency between single-slab waveguide

and 2D line defect PhCWG is increased for one-stage coupling by 16.6%. For two stage

coupling the increase of coupling efficiency is 31.7%.
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Our works show that, by properly matching two physically different waveguides

we have shown that it’s possible to transfer the optical power almost without loss in the

adiabatic limit.
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