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ABSTRACT

CALCULATIONS OF ELECTRIC AND MAGNETIC PROPERTIES OF

TRIANGULAR GRAPHENE FRAGMENTS USING DENSITY

FUNCTIONAL THEORY: EFFECTS OF EDGE FUNCTIONALIZATION

AND ELECTRIC FIELD

The triangular graphene flakes (N-TGFs) we consider have equilateral triangular

shapes with zigzag edges, where N denotes the number of edge hexagonal cells in one

side of the triangle. Termination of these N-TGF structures with several elements (of the

first two rows of the periodic table) and application of electric field to these flakes alter

their electronic and magnetic properties.

In accordance with previous studies [1, 2], it is found that bare flakes have large

spin magnetic moment values of 4(N − 1) µB, whereas they reduce to (N − 1) µB for

full saturation of edges with Hydrogen, Lithium, Beryllium or Flour atoms. Moreover

we have studied possible termination of TGF with other elements like Boron, Carbon and

Nitrogen. Hydrogen and Flour atoms prefer to bind at the top of an edge Carbon atom.

Unlike Hydrogen and Flour, the other atoms prefer to bind at the bridge sites.

Recent studies [3, 4] have shown that the magnetic moments of triangular graphene

flakes can be controlled by applied electric field. We show that the value of total spin po-

larization of triangular graphene flakes can be changed by tuning an applied in-plane

external field. We demonstrate that, in these flakes total spin polarization can be reduced

stepwise with the applied field. The electric field control of ferromagnetism in TGFs

promises a new route for spintronic applications.
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ÖZET

ÜÇGEN GRAFEN PARÇALARININ ELEKTRİK VE MANYETİK

ÖZELLİKLERİNİN YOĞUNLUK FONKSİYONELİ KURAMI

HESAPLARI: KENAR FONKSİYONELLEŞTİRME VE ELEKTRİK

ALAN ETKİLERİ

İncelediğimiz üçgen grafen parçalar (N-ÜGP), zigzag kenarlı eşkanar üçgen şeklin-

dedir, N üçgenin bir kenarındaki altıgen hücre sayısını temsil etmektedir. Bu N-ÜGP

yapıların çeşitli elementler (periyodik tablonun ilk iki sırası) ile sonlandırılması ve bu

parçalara elektrik alan uygulanması, bu yapıların elektronik ve manyetik özelliklerini

değiştirmektedir.

Önceki çalışmalarla [1, 2] uyumlu bir şekilde, yalın parçaların sahip olduğu 4(N−
1) µB’ lik yüksek spin manyetik moment değerinin, kenarları Hidrojen, Flor, Lityum ve

Berilyum atomları ile tamamen doyurulduğunda (N − 1) µB değerine düştüğü bulundu.

Ayrıca, ÜGP’ların Boron, Karbon ve Nitrojen gibi diğer atomlar ile olası doyurulmalarını

da çalıştık. Hidrojen ve Flor atomları kenar karbon atomlarına tepe durumda bağlanmayı

tercih etmektedirler. Hidrojen ve Flor doyurulmasından farklı olarak, diğer atomlar köprü

durumunda bağlanmayı tercih ediyorlar.

Son yapılan çalışmalar [3, 4] göstermiştir ki elektrik alan uygulanarak üçgen

grafin parçalarının manyetik momentleri kontrol edilebilir. ÜGP’ların toplam spin polar-

izasyonlarının, düzlemi yönünde uygulanan elektrik alanı ile değiştirilebileceğini gösterdik.

Uygulanan alan ile bu grafin parçalarının toplam spin polazisyonlarının adım adım düşürü-

lebileceği gösterildi. ÜGP’lardaki ferromanyetizmanın elektrik alan ile kontrol edilmesi,

spintronik uygulamalarında umut verici yeni bir yol vaat etmektedir.
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values are in V/Å units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 5.9. Isosurfaces of spin dependent charge density for 6-TGF-H with and

without the application of in-plane electric field. Applied electric field

values are same for (b)-(d) and their values are 1.4 V/Å. . . . . . . . . . . . . . . . . . . 59
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CHAPTER 1

INTRODUCTION

Conventional electronic devices are based on the electrical transport of electrons,

through a semiconductor, typically slicon based. But existing charge based micro elec-

tronic have several disadvantages. First storing charges for a long time is very difficult

unless a voltage is continuously applied to keep capacitors charged. Thus, before a com-

puter is turned off, all the work is saved on the hard disc. On the other hand, convetional

circuit boards use a lot of energy and generate a lot of heat, limiting chip makers in how

closely they can pack circuits together to avoid overheating. Furthermore, as circuits are

rapidly miniaturized to squeeze more processing power into a smaller package, the rules

of quantum mechanics begin to take over; consideration of all relevant microcopic degrees

of freedom, including spin, becomes inevitable.

Spintronics, is one of the solutions to overcome these problems. This new genera-

tion of electronic is vastly smaller, faster and more power-efficient relative to conventional

one. In Orsay 1988, giant magnetoresistence (GMR) effect [5] in metallic magnetic mul-

tilayers, was discovered by Albert Fert and Peter Grünberg, which is considered to be the

beginning of spintronics. The discovery of the GMR effect has been awarded with the

Nobel Prize in 2007. GMR is the large change in the electrical resistance of a multilayer

composed of alternating ferromagnetic and nonmagnetic layers when strong magnetic

field applied. The GMR effect give a high resistance if the magnetizations in the ferro-

magnetic layers are oppositely aligned and low resisdence if they are alligned. The GMR

effect evidences that spin-polarized electrons can be transferred through a nonmagnetic

material with preserved spin coherence.

Like conventional electronics, spintronics uses the flow of electronics to represent

signals and logic states. But while conventional electronics depends on the electrical

charge of the electron, spintronics involves angular momentum of electrons, also better

known as spin. Placing an electron in a magnetic field results in a coupling of its magnetic

moment to the magnetic field. If now the spin is measured we obtain only two possible

states, the spin-up state and the spin-down state. This last spintronic property can be used

to perform Boolean logic operations, in a similar way as is already done in nowadays

computer chips. For this type of logic operations two states are needed, a zero and a one

state. This can be easily found in a spintronic device just by assigning the spin-down
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state to the zero and the spin-up state to the one state. However, to be able to create

a computer chip containing only spintronic devices it is necessary to build fundamental

spintronic devices in which the spin state can be manipulated. Carbon based nonmagnetic

nanostructures can be useful for spin state manipulation.

Reports of magnetism at room temperature in carbon based structures have stim-

ulated much experimental [6–8] and theoretical [9–11] research work on the magnetic

properties of all-carbon systems. Metal-free magnetism is the subject of intense research,

because of carbon may provide an easy way for coherent spin manipulation[12] and for

building moleculer-based electronic devices. The main advantage of these magnets is that

their magnetic and electronic properties can be tuned by moleculer design. Other advan-

tages include conductivity ranging from semi-conducting to insulating, low weight, low

temperature processing, low enviromental contamination etc.

Recently, a new kind of carbon materials named as graphene, has been fabricated

[13]. Graphene is a monolayer of carbon atoms packed into a dense honeycomb crys-

tal structure. Graphene has proved to have exceptional properties including very fast

electron transport [14, 15], room temperature quantum hall effect[16], the highest me-

chanical strenght[17], and greatest thermal conductivity [18]. Furthermore graphene is a

promising candidate for spintronics with very long spin relaxation time [19, 20]. While

ideal graphene is non-magnetic itself, many of its derivative materials and nanostruc-

tures show various scenarios of magnetism. These include graphene nanoribbons and

graphene nano flakes, which can be fabricating by cutting graphene sheets using elec-

tron beam irradiation and etching techniques [21, 22]. Magnetism in these nanostructures

is usually rather localized along the edge atoms. Although the edge carbon atoms of

zigzag edged graphene nanoribbons couple ferromagnetically within the edge, they cou-

ple antiferromagnetically across the edges, resulting in no magnetic moment in the system

[23, 24]. There are many types of graphene nano flakes like benzene, zigzag edged trian-

gular graphene flakes, armchair edged triangular graphene flakes, zigzag edged hexago-

nal graphene flakes, armchair edged triangular graphene flakes etc. Among them, zigzag

edged triangular graphene flakes, due to their special geometry configuration, they exhibit

challenging electronic and magnetic properties. In the zigzag edged triangular graphene

flakes magnetic coupling between the zigzag edges are ferromagnetic [25–27], and the

non-equivalent sublattices A and B lead to a size dependent magnetic moment [28]. It has

been predicted that the net magnetic moments in these nanostructures are usually satisfied

with Lieb’s theorem [29].

The control of magnetism in these nanostructures is extremely important for spin-
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tronic applications. Recent studies have shown that magnetism of triangular graphene

flakes can be alter with appliying in-plain or perpendicular electric fields, edge function-

alzition with hydrogen atom and defects. However the origin of magnetism in pure carbon

nanostructures has not been understood to high satisfaction.
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CHAPTER 2

MATERIAL

2.1. Carbon Atom

Carbon is a group IV element in the periodic table with the symbol C and its

atomic number is 6. It has six electrons, two of them fill the inner shell 1s which called

core electrons and four of them occupy the outer shell of 2s and 2p orbitals which called

valance electrons. Therefore carbon atoms ground state electron orbital configuration is

1s22s22p2. In the presence of other atoms, carbon atoms prefer excite one electron from

the 2s to third 2p orbital, in order to form covalent with the other atoms. Thus the excited

state electron configuration is 1s22s12p3. The ground and excited state configurations can

be seen from Figure 2.1.

Figure 2.1. Ground and excited state electron orbital configurations of C atom

Allotropes are different structural forms of the same element and can exhibit quite

different physical properties. Although diamond and graphite allotropes of carbon, di-

amond is highly transparent, while graphite is opaque and black. Diamond is among

the hardest materials known, while graphite is soft enough to form a streak on paper.

Recently, some of the carbon allotropes have attracted a large amount of research and

interest. This is partly driven by the promise of new technological applications, some of

which have been already demonstrated in the laboratories.
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2.1.1. Hybridization of Carbon Atom

Carbon has many allotropes because of the variety of hybridization. Carbon atoms

have the ability to bond atoms with sp, sp2, and sp3, hybrid orbitals.

• sp Hybridization: In the sp hybridization, s orbital and one of the p orbitals

are combined together to make two hybrid orbitals. Those hybrid orbitals form

a straight line. There is a 180 degree angle between one orbital and the other or-

bital. Because this type of sp hybridization only uses one of the p orbitals, there are

still two p orbitals left which the carbon can use. In the sp hybridization, sp orbitals

can be presented as;

Ψ1 =
1√
2

(

φ2s + φ2px

)

(2.1)

Ψ2 =
1√
2

(

φ2s − φ2px

)

(2.2)

• sp2 Hybridization: Another kind of hybridization uses the s orbital and two of the

p orbitals to form three hybrid orbitals. In this type of hybridization, the three bonds

lie on the same plane. The geometric arrangement of these three sp2 hybrid orbitals

is in a flat plane with 120 degree angles between them. The remaining p orbital

remains unchanged and is perpendicular to the plane of the three sp2 orbitals. This

hybridization type orbitals can be represented as;

Ψ1 =
1√
3
φ2s −

√

2

3
φ2px (2.3)

Ψ2 =
1√
3
φ2s +

√

2

3

(

√
3

2
φ2py +

1

2
φ2px

)

(2.4)

Ψ3 = − 1√
3
φ2s +

√

2

3

(

−
√
3

2
φ2py +

1

2
φ2px

)

(2.5)

• sp3 Hybridization: In sp3 hybridization, orbitals are formed by mixing together the

2s, 2px, 2py, and 2pz atomic orbitals. Diamond is the best example of the material

5



having this structure. These four sp3 hybrid orbitals, can be presented as;

Ψ1 =
1

2

(

φ2s + φ2px + φ2py + φ2pz

)

(2.6)

Ψ2 =
1

2

(

φ2s − φ2px − φ2py + φ2pz

)

(2.7)

Ψ3 =
1

2

(

φ2s − φ2px + φ2py − φ2pz

)

(2.8)

Ψ4 =
1

2

(

φ2s + φ2px − φ2py − φ2pz

)

(2.9)

2.2. Carbon Magnetism

Conventional magnetic materials are mostly based on elements with 3d and 4f

electrons. In the absence of an external magnetic field, among the periodic table ele-

ments only Fe, Co, and Ni exhibit spontaneous ferromagnetism at room temperature. The

magnetic properties of these elements originate from the partially filled orbitals.

On the other side, recent studies have shown that various materials which have

only s and p orbitals exhibit magnetic behavior. Due to low density, low production costs

and biocompatibility light elements based on magnetism, have attracted considerable at-

tention for possible applications in modern technology. Observations of magnetism in

various carbon systems [30–32] have stimulated much experimental and theoretical re-

search work but the origin of magnetism in pure carbon nanostructures has not been

understood to high satisfaction. In this thesis various carbon nanostructures have been

investigated to understand the nature of carbon magnetism.

2.3. Graphene

Graphene is a flat monolayer of carbon atoms tightly packed into a two dimen-

sional honeycomb lattice. It can be wrapped up into 0D fullerenes, rolled into 1D nan-

otubes or stacked into 3D graphite [33]. The tight binding calculation of the graphene

band structure at low energies, was first deduced by Wallace in 1947 [34]. For more

than 60 years, researchers have tried to find it since it has been predicted to have peculiar

electronic properties.

Finally in 2004, Andre Geim, Kostya Novoselov, and their co-workers at Uni-

versity of Manchester, managed to isolate a few-layer and monolayer of graphene from
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Figure 2.2. Graphene

graphite bulk with simple Scotch-tape method [13]. After its isolation as a single layer,

graphene has become a topic of great interest to the scientific community due to its pecu-

liar properties.

Figure 2.3. Honeycomb lattice and its Brillouin zone. a1, a2 are the lattice unit vec-

tors, b1, b2 corresponding reciprocal lattice vectors and δi, i=1,2,3 are the

nearest neighbour vectors. Adapted from Ref. [35].

2.3.1. Lattice Structure of Graphene

The honeycomb lattice of graphene, as shown in Figure 2.3, consists of two non-

equivalent sublattices denoted as A and B. In one unit cell, it has two identical carbon

atoms, one of them belongs to A sublattice and the other belongs to B sublattice. The two

lattice vectors can be expressed as;

a1 = a
(3

2
,

√
3

2

)

, a2 = a
(3

2
,−

√
3

2

)

. (2.10)
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The nearest neighbour distance (carbon-carbon distance) is represented by the let-

ter a in equation and is approximately 1.42 Å. The corresponding reciprocal lattice vectors

b1 and b2 are defined by the condition ai bj = 2πδij are then:

b1 =
2π

a

(1

3
,

√
3

3

)

, b2 =
2π

a

(1

3
,−

√
3

3

)

. (2.11)

The corresponding first Brillouin zone is shown in Figure 2.3. This first Brillouin

zone has the same form as the original hexagonal honeycomb lattice of graphene, but

rotated with respect to them by π/2. The six points at the corners of first Brillouin zone

can be divided into two groups of three which are equivalent. Thus, we only need to

consider the most important two points K and K’ at the corners of the graphene first

Brillouin zone. These two points are named Dirac points. Explicitly, their positions in

momentum space are given by:

K =
2π

a

(1

3
,

1

3
√
3

)

, K′ =
2π

a

(1

3
,− 1

3
√
3

)

. (2.12)

Then nearest neighbour vectors (in real space) are

δ1 =
a

2

(

1,
√
3
)

, δ2 =
a

2

(

1,−
√
3
)

, δ3 = −a
(

1, 0
)

. (2.13)

2.3.2. Band Structure of Graphene

The first calculation of the electronic properties of graphene dates back to 1947

when P. R. Wallace calculated the electronic dispersion of graphene [34]. The electrical

properties of graphene can be described by a tight-binding model. In this model the energy

of the electrons is;

E(k) = ±γ

√

1 + 4 cos2(
kxa

2
) + 4 cos(

kxa

2
) cos(

√
3kya

2
). (2.14)

The dispersion relation is plotted in Figure 2.4 . It can be seen from figure the

Fermi level at E(k) = 0 is reached by six corners of the first Brillouin zone, among which
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there are only two inequivalent points ( Dirac points ) due to the periodicity of the recip-

rocal lattice.

Figure 2.4. Energy dispersion in the honeycomb lattice. Energy is in the units of t

where t = 2.7 eV. Adapted from Ref. [35].

As shown in Figure 2.4, the dispersion relation close to the Dirac points can be

linearised. Let us take one of the Dirac points, say K, and make an expansion around it,

k = K+ q, for small q compared to K we find:

E(K+ q) = E(q) ≈ ±vF~|q|. (2.15)

2.3.3. Spin Order in Graphene

While ideal graphene is non-magnetic itself, many of its derivative materials and

nanostructures, show various scenarios of magnetism. Graphene shows magnetic proper-

ties when single layer of graphene cut properly [1, 2, 36] or removed carbon atoms from

lattice structure [37, 38].

To understand the magnetism in graphene we should examine the honeycomb

lattice structure of graphene which have been shown in Figure 2.5. Graphene can be

viewed as bipartite lattice composed of two interpenetrating triangular sublattices. Thus,

such lattice with a basis contains two identical carbon atoms per primitive unit cell. A

bipartite lattice can be partitioned into two mutually interconnected sublattices A and B.

Each atom belonging to sublattice A is connected to the atoms in sublattice B only, and

vice versa.
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Figure 2.5. Graphene’s lattice structure. Blue and red carbon atoms denotes different

sublattice atoms of graphene.

Orbital structures of carbon atoms in graphene is shown in Figure 2.6. All carbon

atoms make three σ bond with nearest neighbours, while leaving behind a pz-orbital elec-

tron contributing to the spin magnetic moment. These pz-orbital electrons in each sublat-

tice have opposite spin states and make spin paired π bonds. Due to there is a A sublattice

electron for every B sublattice electron, magnetic contribution vanish for graphene. Dif-

ference in the numbers of electrons of the A and B sublattices leads to magnetic moments

in the properly cuted graphene edge and vicinity of vacancy sites in graphene.

Figure 2.6. Orbital structures of carbon atoms in graphene.

To understand clearly magnetism in graphene we should look Lieb’s theorem.

Lieb derived stronger results for the exactly half-filled Hubbard model. Lieb’s theorem

[29] determines the total spin of a bipartite system described by the Hubbard model.

This theorem states that in the case of repulsive electron-electron interactions, a bipartite

system at half-filling has the ground state characterized by the total spin;

S =
1

2

∣

∣

∣
NA −NB

∣

∣

∣
, (2.16)

where NA and NB are the numbers of sites in sublattices A and B, respectively. The

ground state is unique and the theorem holds in all dimensions without the necessity of a

periodic lattice structure. For example, the total spin of the graphene fragment which is
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shown in Figure 2.5 is;

S =
1

2

∣

∣

∣
NA −NB

∣

∣

∣
=

1

2

∣

∣

∣
7− 4

∣

∣

∣
= 1.5. (2.17)

Using with the calculations which given in Figure 2.5 we find that total magnetic moment

of this fragment is 3 µB.

2.4. Graphene Based Magnetic Nanostructures

2.4.1. Graphene Nanoribbons (GNRs)

Graphene is a zero bandgap material. In order to use graphene in semiconductor

electronics, its very important to open a band gap. One of the methods to increase the

band gap of graphene is to form graphene nanoribbon (GNR).

Figure 2.7. Structure of armchair and zigzag nanoribbons. Adapted from Ref. [39]

GNRs, are strips of graphene with ultra-thin width (<50 nm). Their structures and

their electronic and magnetic properties have been subject of interest both experimentally

[40, 41] and theoritically [42–44]. There are two main shapes for graphene nanorib-

bon edges, namely armchair edges GNR (AGNR) and zigzag edges GNR (ZGNR) which

can be seen from Figure 2.7. Although the pristine infinite graphene sheet is nonmag-

netic ZGNR is theoretically predicted to be magnetic with two spin-polarized edge states,

which are ferromagnetically coupled in the same edge, but antiferromagnetically cou-
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pled between two opposite edges, while the armchair edge GNR (AGNR) is found to be

nonmagnetic [36]. The magnetic structure of ZGNR shown in Figure 2.8.

Figure 2.8. Isosurfaces of charge density difference of spin-up (↑) and spin-down (↓)

for ZGNR

2.4.2. Graphene Nano Flakes (GNFs)

Graphene nano flake (GNF) can be synthesized by cutting the graphene sheet

[45, 46]. Pristine graphene has continuous band structure with zero band gap whereas

GNFs have discrete, molecular energy levels with tunable band gap (see Figure 2.9).

GNFs are a nanometer-size fragment of graphene which has a closed edge. Understanding

the properties of GNFs is important because they are candidates of future carbon-based

nanoelectronics and spintronics alternative to silicon devices. Compared to graphene

and GNRs, GNFs have additional advantages in their electronic and magnetic proper-

ties. These additional advantages arise because GNFs not only have edge states, but also

corner states, and may also be cut into a much larger variety of different shapes. There

are many types of regular GNFs, as displayed in Figure 2.10.

Magnetic properties of GNFs are deeply depend on flakes shape. For example

while square and hexagonal shaped GNFs do not have net magnetic moment, zig-zag

edged triangular graphene flakes (TGFs) exhibit magnetic structure. In TGFs, the spin

alignments on their all edges couple ferromagnetically. The total magnetic moment obeys

Lieb’s theorem, and can be tuned by changing the size of TGF [28]. Due to these inter-

esting properties, in this thesis electronic and magnetic properties of TGFs examined.
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Figure 2.9. Molecular structures, energy diagrams, and electrochemical gate effects of

benzenedithiol, PTCDI, and a graphene sheet:(a) Benzenedithiol (contain-

ing a single benzene ring) has a large LUMO-HOMO gap (5.1 eV) and

is ’insulating’ with a weak gate effect (b). (c) The LUMO-HOMO gap

of PTCDI (containing seven rings) is ∼ 2.5eV, and the molecule is ’semi-

conducting’ with a large gate effect (d). (e) Graphene (containing a large

number of rings) has a zero energy gap between the conduction and va-

lence bands and shows semimetallic behavior with a weak gate effect (f).

Adapted from Ref. [47].

Figure 2.10. Basic geometric structures of typical GNFs. At the above armchair edged

GNFs, at the below zigzag edged GNFs. Adapted from Ref. [39].

13



CHAPTER 3

THEORETICAL BACKGROUND

3.1. Electronic Structure Calculations

Understanding the physical and chemical properties of matter is an advanced

many-body problem. In general, we examine collection of particles interacting through

electrostatic interactions. We can write the hamiltonian of such a system in the following

general form:

Ĥ = −~
2
∑

I=1

∇I
2

2MI

− ~
2
∑

i=1

∇i
2

2mi

−
∑

i,I

ZIe
2

|ri −RI|
+

1

2

∑

i 6=j

e2

|ri − rj|

+
1

2

∑

I 6=J

ZIZJe
2

|RI −RJ|
(3.1)

where lower case subscripts denote electrons, and upper case subscripts denote nuclei.

ZI is the atomic number of the nucleus. In principle all the properties can be derived by

solving the many-body Schrödinger equation:

Ĥψi(r,R) = Eiψi(r,R). (3.2)

In practise, this problem is almost impossible to solve exactly except for a few simple

cases. This requires simplifications to the hamiltonian which involves several approxima-

tions.

The first approximation is the pseudopotential approximation. In this approxima-

tion electrons can be divided in two categories: valence and core electrons, according to

their position in an atom. The core electrons are not directly responsible for determin-

ing the properties of the elements. Unlike the core electrons, most physical properties of

solids are dependent on the valence electrons. It is for this reason that the pseudopotential

approximation is introduced. This approximation uses this fact to remove the core elec-

trons and the strong nuclear potential and replace them with a weaker pseudopotential
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which acts on a set of pseudo wavefunctions rather than the true valence wavefunctions.

Figure 3.1 shows the electronic wave functions, and generated pseudo wavefunction and

corresponding potentials.

Figure 3.1. Sketch of the all-electron and pseudo potentials and their corresponding

wave functions. The radius at which all-electron and pseudo potentials

match is displayed as rc. Adapted from Ref. [48].

A pseudopotential is not unique, therefore several methods of generation also ex-

ist. However they must obey several criteria. These are:

1. The core charge produced by the pseudo wavefunctions must be the same as that

produced by the atomic wavefunctions.

2. The pseudo-electron eigenvalues and the valance eigenvalues must be same.

3. Pseudo wavefunctions must be continuous at the core radius as well as its first and

second derivative and also be non-oscillatory.

4. The pseudo wavefunctions and atomic wavefunctions must agree beyond the core

radius.
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Another approximation is the Born-Oppenheimer or adiabatic approximation. The

nuclei are much heavier than the electrons which results in the nuclei’s moving much

slower compared to the electrons. This makes kinetic energy term is negligible and the

first term dissappears in the hamiltonian. The last term reduces to a constant. We are

left with the kinetic energy of the electrons, the potential energy due to electron-electron

interactions and the potential energy of the electrons in the (external) potential of the

nuclei. We write this formally as;

Ĥ = T̂ + V̂ + V̂ext. (3.3)

3.2. The Electronic Problem

Many-body electronic Schrödinger equation is still a very difficult problem to han-

dle and exact solution is known only for some simple cases. Alot of approximations have

been improved for handle the solution. Fistly in 1920 Douglas Hartree developed an ap-

proach named after himself called the Hartree approximation [49]. In this approximation

the potential corresponding to electron-electron interactions could be

V (r) =

∫

dr′
e2n(r′)

|r− r′| (3.4)

where n is number density of electrons

n(r) =
∑

j

|ψj(r)|2. (3.5)

Then substitution the above potential to the Schrödinger equation we obtain the Hartree

equation ;

Elψl(r) = [Telec +Vion(r) +V(r)]ψl(r). (3.6)

In fact, Hartree approximation is wrong. It does not recognize the Pauli principle.

According to Pauli exclusion principle, two electrons, cannot occupy the state all of their

quantum numbers are the same. The true many-body wave function must vanish whenever

two electrons occupy the same position, but the Hartree wave function cannot have this
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property. If we want to hold Pauli exclusion principle total electron wave function should

be in an antisymmetric form;

Ψ =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(r1, σ1) ψ1(r2, σ2) ... ψ1(rN, σN)

ψ2(r1, σ1) ψ2(r2, σ2) ... ψ2(rN, σN)

ψ3(r1, σ1) ψ3(r2, σ2) ... ψ3(rN, σN)

. . ... .

. . ... .

ψN (r1, σ1) ψN (r2, σ2) ... ψN(rN, σN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

which is known as a slater determinant [50]. Where ψi(rj, σj) is the single-electron spin

orbital, and it is the product of position φi(ri) and spin αi(σi) component. This approxi-

mation is called as a Hartree-Fock (HF) [51].

The Slater determinant above is helpful in obtaining the exchange term. Appliying

exchange term to the Hartree equation leads to the Hartree-Fock equation:

Elψl(r) = [Telec+Vion(r)+V(r)]ψl(r)−
1

2

∑

j

∫

d3r′ψ∗
j (r

′)ψi(r
′)

1

|r− r′|ψj(r) (3.7)

The Hartree-Fock equations deal with exchange exactly; however, the equations

neglect more detailed correlations due to many-body interactions. The effects of elec-

tronic correlations are not negligible. This is first failure of HF approximation. On the

other hand since wave-function methods in general limited to molecules with a small

number of active electrons, this approximation is not usefull for many-body structures.

In the 1920’s Thomas-Fermi developed another approach to this electronic prob-

lem. They purposed that, the full electronic density was the fundamental variable of the

many-body problem, and derived a differential equation for the density without resorting

to one-electron orbitals. But Thomas-Fermi approximation did not include exchange and

correlation effects. Both Thomas and Fermi neglected exchange and correlation among

the electrons; however, this was extended by Dirac in 1930 [52], who formulated the lo-

cal approximation for exchange still in use today. This leads to the energy functional for
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electrons in an external potential Vext(r)

ETF [n] = C1

∫

d3rn(r)
5

3 +

∫

d3rVext(r)n(r) + C2

∫

d3rn(r)
4

3

+
1

2

∫

d3rd3r′
n(r)n(r′)

|r − r′| (3.8)

in here the first term is the local approximation to the kinetic energy, the third term is the

local exchange and the last term is the classical electrostatic Hartree energy.

However, the Thomas-Fermi approximation is too crude, missing essential physics

and chemistry, such as shell structures of atoms and binding of molecules. Although their

approximation is not accurate enough for present-day electronic structure calculations,

the approach illustrates the way density functional theory works.

3.3. Density Functional Theory

Density functional theory (DFT) is one of the most widely used methods for elec-

tronic structure calculations in condensed matter. The reasons of its popularity and suc-

cess are high computational efficiency and its accuracy. The general idea of DFT is that

any property of system which has many interacting particles can be viewed as a functional

of the ground state electron density n0(r) [53, 54]. Although DFT is significant, it under-

estimates the band gaps of semiconductors and some other electronic properties of highly

correlated systems. DFT is based on the famous theorem by Hohenberg and Kohn [53] .

3.3.1. Hohenberg-Kohn Theorems

DFT is based upon two theorems formulated by Hohenberg and Kohn.

• Theorem 1: There is a one-to-one correspondence between the ground-state den-

sity n0(r) of a many-electron system and the external potential Vext(r). Thus since

the density n0(r) determines the potential Vext(r), it will determine the ground state

energy and all other electronic properties of the system. The problem is now only

how to find this density. The second theorem is helpful in this matter.

• Theorem 2: The groundstate energy can be obtained variationally: the density that

minimises the total energy is the exact groundstate density.
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Therefore, the total energy of the systems is a functional of electron density and can be

written as:

EHK [n] = T [n] + Eint[n] +

∫

d3rVext(r)n(r) + EII

≡ FHK [n] +

∫

d3rVext(r)n(r) + EII , (3.9)

where EII is the interaction energy of the nuclei and FHK [n] is the internal energy func-

tional. It should be noted that Hohenberg-Kohn density functional FHK [n] is universal

for any many-electron system. So if we know FHK [n] then we can determine the electron

density of the ground state by simply minimizing the energy functional.

3.3.2. The Kohn-Sham Equations

The expression of the kinetic energy in terms of the electronic density is not

achieved yet. This problem solved by W.Kohn and L.Sham. In 1965, Kohn and Sham

[54] proposed that, the exact ground-state density can be represented by the ground-state

density of an auxiliary system of non-interacting particles. In this auxiliary system all

the interactions between electrons are classified into an exchange-correlation term. Using

with the Hartree atomic units ~ = me = e = 4π
ǫ0

= 1 the auxiliary hamiltonian of the

auxiliary independent-particle system is

Hσ
aux = −1

2
∇2 + V σ(r). (3.10)

here V σ(r) is a potential acting on an electron with spin σ at point r. And the density of

the auxiliary system is given by

n(r) =
∑

σ

n(r, σ) =
∑

σ

Nσ

∑

i=1

|ψσ
i (r)|2. (3.11)
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where ψσ
i is the i-th single particle orbital with spin component σ. The independent-

particle kinetic energy Ts is given by

Ts = −1

2

∑

σ

Nσ

∑

i=1

< ψσ
i |∇2|ψσ

i >=
1

2

∑

σ

Nσ

∑

i=1

∫

d3r|∇ψσ
i (r)|2, (3.12)

and we can define the classical Coulomb interaction term as

EHartree[n] =
1

2

∫

d3rd3r′
n(r)n(r’)

|r − r’| . (3.13)

Finally we can write the total energy functional as follows,

EKS = Ts[n] +

∫

drVext(r)n(r) + EHartree[n] + EII + Exc[n]. (3.14)

Exc[n] contains all many-body effects of exchange and correlation. To derive the Kohn-

Sham equations, we must minimise the energy with respect to the charge density n(r, σ).

Because of the independent-particle kinetic energy Ts is explicitly expressed as a func-

tional of the orbitals, one should calculate the gradient of the energy with respect to the

orbitals

δEKS

δψσ∗
i (r)

=
δTs

δψσ∗
i (r)

+

[

δEext

δn(r, σ)
+
δEHartree

δn(r, σ)
+

δExc

δn(r, σ)

]

δn(r, σ)

δψσ∗
i (r)

= 0, (3.15)

then orthonormalization condition requires

< ψσ
i |ψσ′

j >= δi,jδσ,σ′ . (3.16)

Using expressions 3.11 and 3.12 for nσ(r) and Ts, which give

δTs
δψσ∗

i (r)
= −1

2
∇2ψσ

i (r), (3.17)

δnσ(r)

δψσ∗
i (r)

= ψσ
i (r). (3.18)
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and the Lagrange multiplier method for handling the constraints, this leads to the Khon-

Sham Schrödinger-like equations:

(Hσ
KS − ǫσi )ψ

σ
i (r) = 0, (3.19)

where ǫσi are Khon-Sham eigen energies. And Hσ
KS is the effective hamiltonian

Hσ
KS(r) = −1

2
∇2 + V σ

KS(r), (3.20)

where V σ
KS(r) is Kohn-Sham potential and it is defined by

V σ
KS(r) = Vext(r) +

δEHartree

δn(r, σ)
+

δExc

δn(r, σ)
(3.21)

= Vext(r) + VHartree(r) + V σ
xc(r). (3.22)

Equations 3.19-3.22 are called the Kohn-Sham Equations. The solution of the

Khon-Sham equations can be achieved by applying the iterative procedure. Some starting

density n↑
0
(r), n↓

0
(r) are guessed, and a hamiltonian Hσ

KS1(r) is constructed with it. The

eigenvalue problem is solved, then the densities n↑
1
(r), n↓

1
(r) handled with it. Most prob-

ably n↑
1
(r), n↓

1
(r) will differ from n↑

0
(r), n↓

0
(r). Then n↑

1
(r), n↓

1
(r) are used to construct

Hσ
KS2(r), which will yield a n↑

2
(r), n↓

2
(r), etc. This procedure repeat until n↑(r), n↓(r)

is converged. Then using with converged values energy, Hellmann-Feynman forces [55],

[56], stresses [57], [58], eigenvalues can be calculated. After Hellmann-Feynmann forces

and stresses are calculated the system can be relaxed geometrically [48] and find local

minimum around given initial coordinates.

The Kohn-Sham wave functions must be represented as a linear combination of

a set of functions, e.g. basis set. Different basis sets maybe more or less convenient

for computational efficiency. There are three basic basis sets to be used in Khon-Sham

equations: linearized augmented plane waves (LAPWs), linear combinations of atomic

orbitals (LCAO), and plane waves. Each method has its advantages and pitfalls. In this

thesis LCAO basis set is used for the Khon-Sham wave functions.
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3.3.3. Approximations to the Exchange-Correlation Potential

Up to now, except the preceding Born-Oppenheimer approximation, no other ap-

proximations were made. But exchange correlation term hasnt explained yet. This term

includes all the remaining complicated electronic contributions. The exchange-correlation

term is very complex and can not handle simply. However there are several approxima-

tions to the exchange correlation, namely local density approximation (LDA), generalised

gradient approximation (GGA), Hybrid functionals, LDA+U and Exact Exchange Func-

tionals.

3.3.3.1. Local Spin Density Approximation (LSDA)

The most widely used approximation to handle exchange correlation energy is the

local spin density approximation (LSDA). This approximation first formulated by Kohn

and Sham [54] in 1965. LSDA approximation is to postulate that the density at each point

is the same as that of the homogeneous electron gas. In this approximation the exchange-

correlation functional is given by

ELSDA
xc [n↑, n↓] =

∫

d3rn(r)ǫxc(n
↑(r), n↓(r)), (3.23)

where ǫxc(n
↑(r), n↓(r)) is the exchange-correlation energy per particle of a homogeneous

electron gas. ǫxc(n
↑(r), n↓(r)) can be written as the sum of exchange and correlation

contributions

ǫxc(n
↑(r), n↓(r)) = ǫx(n

↑(r), n↓(r)) + ǫc(n
↑(r), n↓(r)), (3.24)

where the exchange part ǫx(n
↑(r), n↓(r)) can be expressed explicitly

ǫxc(n
↑(r), n↓(r)) = − 1

2
2

3

3

8
e2

(

3

π
n↑(r)

)
1

3

− 1

2
2

3

3

8
e2

(

3

π
n↓(r)

)
1

3

. (3.25)

For the correlation part ǫc(n
↑(r), n↓(r)), there is no such explicit expression. But
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there are highly accurate Quantum Monte Carlo calculations for the homogeneous elec-

tron gas [59]. The LSDA is very successful an approximation for many systems of in-

terest, it gives a very good results especially for transition metals due to the fact that

the electron density varies smoothly. But LSDA’s results become worse with increasing

inhomogeneity.

3.3.3.2. Generalized Gradient Approximation (GGA)

The Generalized Gradient Approximation (GGA) uses not only the density n(r) at

a particular point, but also its gradient ∇n(r) , in order to account for the non-homogeneity

of the true electron density. In GGA exchange-correlation energy can be written as fol-

lows,

ELSDA
xc [n↑, n↓] =

∫

d3rn(r)ǫxc(n
↑(r), n↓(r),∇n↑(r),∇n↓(r)). (3.26)

Widely used GGA’s can now provide the accuracy required for density functional

theory to be used in various type of analysis. Generally GGA approximation improves

atomic energies, binding energies, bond lengths and bond angles when compared the ones

obtained by LDA. In this thesis all of the calculations are carried out with GGA.

3.4. Method

Optimization of geometrical structures of triangular graphene flakes and calcula-

tions of their magnetic and electric properties are performed by using the software pack-

age SIESTA based on densiy functional theory (DFT). The exchange-correlation potential

has been approximated by generalized gradient approximation (GGA). For geometry opti-

mizations, the conjugate gradient algorithm and the convergence criteria of 0.04 eV/Åand

10−5 eV for the forces and total energies, respectively, were applied. The electrostatic

potentials were determined on a real-space grid with a mesh cutoff energy of 300 Ry. We

make use of norm-conserving Troullier Martins pseudopotentials and a double-zeta basis

set composed of numerical atomic orbitals of finite range. The Brillouin zone has been

sampled with (1, 1, 1) points within the Monkhorst-Pack k-point sampling scheme.
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CHAPTER 4

EDGE FUNCTIONALIZATION OF TGF

4.1. Introduction

While ideal graphene is non-magnetic itself and it has zero-band gap around the

fermi level, many of its derivative materials and nanostructures, show various scenarios

of magnetism and they have tunable band gap. These nanostructures which are a zero

dimensional dots, can be synthesized by cutting the graphene sheets [45, 46] are called

graphene nano flakes. Understanding the properties of graphene nano flakes is motivated

by the fact that the basic components of future electronics or spintronics devices need to

be at the nanometer scale.

The electronic and magnetic properties of graphene nano flakes depend strongly

on their shapes and edges [1, 60–62]. One of the most important and familiar graphene

nano flake is zigzag edged triangular graphene flakes (TGFs). In the TGFs the magnetic

ordering among the zigzag edges is ferromagnetic, and the presence of non-equivalent

sublattices A and B leads a magnetic moment [25, 27, 63]. It is predicted that the net

magnetic moments of these TGFs are usually compatible with Lieb’s theorem [29]. Un-

like conventional magnetic materials which magnetism is due to d or f electrons, mag-

netism in the TGFs orginates from the p electrons, display weak spin-orbit and hyperfine

couplings which are the main channels of relaxation and decoherence of electron spins

[24, 64, 65]. These interesting properties provides opportunities for designing spintronic

systems with TGFs as the building block.

However, to use these TGFs in spintronic devices it is necessary to be able to alter

their spin states. Earlier experimental observations [46, 66] and theoretical studies [60,

67–69] show that the electronic and magnetic properties of graphene based fragments can

be altered significantly upon the termination of their edges. Furthermore, recent studies

show that the electronic and magnetic properties of TGFs can be changed notably with

size, edge termination [28], and subsitutional doping [68]. With these motivations, the

main aim of this chapter is to clearly understand, the edge effect of functionalization on

the control and manipulation of magnetic and electronic properties of TGFs.

In this chapter edge functionalization of TGFs with Hydrogen, Flourine, Lithium,

Berillium, Boron, Carbon and Nitrogen are considered in order to observe the effect of
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different elements on the electronic and magnetic properties of TGFs. In accordance with

a previous study [28], the different magnetic moment values of 4 (N − 1), (N − 1) and

2 (N − 1) µB were found for bare, singly and doubly H-saturated TGFs, respectively,

where N denotes the number of hexagons along each edge of TGFs. This result implies

that magnetic moment of TGFs depends on both size and adatom concentration of TGF.

The findings indicate that while singly and doubly saturated forms of TGF are possible

for H and F atoms, only singly covered and half covered terminations are possible for

Li and Be atoms, respectively. On the other hand, stable edge saturated structures of

TGFs are not obtained for B, C and N which have larger radii and their interaction with

each other do not let them to be placed in a stable configuration. In addition, edge and

corner termination of TGFs by single adatom is investigated. Electronic and magnetic

properties of singly or doubly covered structures exhibit the same behaviour for several

adatom species but single atom termination of these flakes with several adatom species

exhibit fairly different properties. Moreover, even corner and edge termination of TGFs

by the same single adatom have different effect on the properties of TGFs.

Figure 4.1. TGF in a supercell geometry.

The first principles calculations on electronic structures and geometry optimazi-

tions were performed using the SIESTA package in the frame work of density func-

tion theory (DFT). In this chapter we study graphene flakes having equilateral triangular

shapes with zigzag edges (TGF). Although we are dealing with single graphene fragment

all calculations are performed for periodic systems due to the Bloch theorem can not be
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applied to a non-periodic systems. Figure 4.1, shows that in SIESTA calculations, a su-

percell model was employed such that TGF was put in a large computational box with at

least 12Å vacuum space surrounding the TGF that prevents interaction between periodic

images of the system.

4.2. Results

In this section, we explore edge functionalization of TGFs in three main subject

which they are, bare TGFs, single atom added TGFs and all edge-atom saturated TGFs.

All the three cases exhibit quite different geometric, electronic and magnetic properties.

This diversity in the properties of the TGFs is crucial for their possible use in future nano

electronics.

4.2.1. Bare and Single-Atom-Added TGF

We started edge functionalization investigations with bare flakes. All edge and

corner atoms of bare flakes had extra nonbonding electrons. Extra nonbonding electrons

of edge and corner atoms exhibited different spin polarizations. H, F, Li, Be, B, C and N

atoms were used to manipulate spin polarizations of these edge and corner atoms.

4.2.1.1. Geometric Structure

On the left of Figure 4.2, we present a relaxed geometric structure of the bare

zigzag edged triangular graphene flake (N-TGF), where N denotes the number of edge

hexagonal cells in one side of the triangle. On the right of Figure 4.2, red and blue

colored carbon atoms denote carbon atoms in A and B sublattice, respectively. As can be

seen from the given flake which is 5-TGF, there are 25 (NA) carbon atoms in A-site and

21 (NB) carbon atoms in B-site (NB). Thus there is a relation between the difference of

two different site carbon atom number (NA −NB) and the size of the flake (N), which is

NA −NB = N − 1. This equation will be used in further calculations.

Although, almost entire flake preserve its hexagonal structure, there are some dis-

tortions in the carbon-carbon atom bonds which are placed on edge and especially on

corner of flake, due to nonbonding electrons of edge and corner C atoms. The bond leghts
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1 2 . . . N

Figure 4.2. Left panel shows the geometric structure of bare N, where N is equal to 5

here. Right panel shows two different site of C atoms in 5-TGF. Red and

blue colored C atoms denote C atoms in A and B sublattice.

X

X

(b) (a)

(c) (d)

D
A

A B C
D

E

X X

Figure 4.3. Possible binding places for various adatoms (X). Adatoms bonded to (a)

edge of TGF and in top site, (b) corner of TGF and in top site, (c) edge of

TGF and in bridge site, (d) corner of TGF and in bridge site. Here A, B, C,

D and E denote most affected atoms of TGFs from the process of adatom

binding.
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are 1.42Å near the center of the flake which it reduce to 1.38Å and 1.29Å near the edge

and corner of the flake, respectively.

Then, the effect of edge and corner termination of TGFs with a single adatom

is investigated. Figure 4.3 shows possible edge and corner binding places for a single

adatom. In this section, H, F, Li, Be, B, C and N atoms are used as an adatom. In Figure

4.3, X atom denotes added atoms to the TGF. A, B, C, D, E atoms are the most affected

flake atoms from this process. There are two different site of adatoms for bind to the TGF:

top and bridge. As seen from Figure 4.3, in top site adatom bind with only one C atom

whereas in bridge site adatom bind with two C atoms.

Table 4.1 presents bond lenghts and binding energies of single-adatom-added

TGFs where these adatoms are placed in edge or corner of TGFs. Binding energies are

defined as;

EB = |Etot −EbareTGF − Eadatom|. (4.1)

Table 4.1 shows that H and F atoms prefer to bind in top site, while other atoms

prefer to bind in bridge site of the TGF. As can be seen from the table, when B and C atoms

bind to the edge or corner of TGFs, they have the highest binding energies whereas Li and

Be atoms have the least binding energies. On the other hand, the same table shows that

H atoms have the lowest bond lenghts whereas Li atoms have the longest bond lenghts.

Thus, it is hard to find a regular trend for these properties in the table.

Table 4.1. Bond lenghts and binding energies of single-atom-added TGFs.

Places Bond Lenghts (Å) Binding Energies (eV)

Edge Corner Edge Corner

H Top 1.09 1.10 5.23 3.96

F Top 1.33 1.33 6.55 5.08

Li Bridge 2.01 2.02 2.25 0.98

Be Bridge 1.71 1.66 3.80 1.65

B Bridge 1.59 1.46 7.69 6.90

C Bridge 1.47 1.38 7.64 7.73

N Bridge 1.48 1.39 5.93 5.52
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4.2.1.2. Electronic Structure

Pristine graphene has continuous band structure with zero band gap. When graphene

is reduced to graphene nano flake (GNF), this flakes have discrete, moleculer energy lev-

els, so the energy of the highest occupied molecular orbital takes the place of the Fermi

Energy (Ef ). The difference in the energies of the Highest Occupied Molecular Orbital

(HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) corresponds to the energy

gap (Eg). Figure 4.4 shows electronic energy diagrams of some GNFs. As seen in the

Figure, the electronic energy levels in these systems significantly depends on the shape.

Figure 4.4. Density of states for typical zigzag nanodisks, The horizontal axis is dege-

narcy and the vertical axis is the energy ε in units of t = 3eV. (a) Hexago-

nal zigzag nanodisks. (b) Parallelogrammic zigzag nanodisks. (c) Trigonal

armchair nanodisks. (d) Trigonal zigzag nanodisks. There are degenerated

zero-energy states in all trigonal nanodisks, and they are metallic. There

are no zero-energy states in all nanodisks, and they are semiconducting.

Adapted from Ref. [70].

Figure 4.5 shows the energy spectra of a bare 5-TGF. We determined the spin

polarized states for this bare flake in the vicinity of fermi level. Each inner C atom of bare
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Figure 4.5. Left of the figure illustrate the zigzag edged bare TGF and right of the

figure shows the energy values of electrons of that TGF which belong up

spin states and down spin states near the fermi energy. Fermi energy shifted

to 0.

TGF is connected with the three nearest neighbors while leaving behind a one pz orbital

electron. These electrons in each sublattice have opposite spin state and make spin paired

π bonds, thereby all inner C atoms of flake are spin non-polarized. Thus, spin polarized

states near the fermi level, which are shown in Figure 4.5, belong to edge C atoms and

there is no spin degeneracy for inner atom states. Edge C atoms of bare flakes that make

only two bonds contribute to the spin polarized states with two nonbonding electrons.

As a result, the Lieb’s theorem as applied to a bare N-TGF can be modified as such 3N

edge atoms of sublattice A, and 3 corner atoms of sublattice B should be counted twice.

Therefore the number of spin non-degenerate states (NS) in a N-TGF becomes:

NS = N − 1 + 3N − 3 = 4N − 4. (4.2)

NS related to its magnetic moment simply defined as µ = NS µB. The effect of single

adatom termination with several elements (H, F, Li, Be, B, C and N) on the electronic

properties of 5-TGF is investigated. Figures 4.6 and 4.7 show that energy spectrum of

these TGFs is closely dependent on the type and binding site of adatom. Addition of a

single atom to a TGF introduces additional states around the fermi level. The number of

these additional states depends on valance electron number of the adatom. As seen in
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Figure 4.6. Energy spectra of 5-TGF with a single-adatom. (a) H atom bonded to edge,

(b) H atom bonded to corner, (c) F atom bonded to edge, (d) F atom bonded

to corner, (e) Li atom bonded to edge, (f) Li atom bonded to corner, (g) Be

atom bonded to edge, (h) Be atom bonded to corner.
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Figure 4.7. Energy spectra of 5-TGF with a single-adatom. (a) B atom bonded to edge,

(b) B atom bonded to corner, (c) C atom bonded to edge, (d) C atom bonded

to corner, (e) N atom bonded to edge, (f) N atom bonded to corner.

Figures 4.6 and 4.7 this process removes the spin polarized states related to the dangling

bonds and change the value of NS .

H, F, Li, Be, B, C and N adatoms have 1, 7, 1, 2, 3, 4 and 5 valance electrons,

respectively. As expected, Figures 4.6 (a) and (b) show that, if H atoms binded to the

edge of TGF, one polarized majority spin state becomes spin un-polarized whereas the

same atom binded to corner of TGF one polarized minority spin state becomes spin un-

polarized. Thus, although the same atoms are added to flake, their contribution to the NS

is different and it deeply depends on the binding position of adatoms.

Single F atom added case is shown in Figures 4.6 (c) and (d). Even though F

atom has 7 valance electrons, it exhibits almost the same electronic structure with H atom

added case. Figure 4.6 (e) illustrates that the effect on the electronic properties of corner
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termination of TGFs with Li and H adatoms are almost the same. But edge termination

of TGF with Li atom is more complicated. Energy spectra of the edge terminated TGFs

with H and Li atoms (figures 4.6 (a) and (e) respectively), are fairly different although Li

and H atoms have the same valence. When Li atom binded to the edge atoms of TGF one

polarized majority spin state becomes spin un-polarized and another polarized majority

spin state turns into a minority spin state. As a result edge termination of TGF with Li

element reduce NS by three. On the other hand, there is no noticeable difference between

the energy spectra of edge and the corner termination of TGFs by Be, B and C atoms.

Addition of Be, B, C, and N atoms to the edge of TGF remove 2, 2, 3, and 4

polarized majority spin state, respectively, and B, C, N atoms contribute one new polarized

majority spin state. Thus edge termination with Be, B, C, and N atoms reduce NS by 2,

1, 2, 3. On the other hand, corner termination with Be, B, C, and N atoms remove 1, 2,

3, and 3 polarized majority spin state, respectively, and Be, B, C atoms contribute one

polarized majority spin state whereas N atom contribute two. As a result, when Be, B, C,

and N atoms bind to corner of TGF, Be addition does not affect NS whereas B, C, and N

addition reduce NS by 1, 2, 1, respectively.

4.2.1.3. Magnetic Structure

In this part, the effect of termination by single atom on the magnetization of bare

TGF is investigated. H, F, Li, Be, B, C and N atoms are used as adatoms in this part.

Figure 4.8 (a) displays the spin dependent charge densities of a bare TGF. It is clear that,

three corner atoms have minority spin component whereas all edge atoms have majority

spin component with ferromagnetic ordering. Single atom can be put in two different

binding sites on the sides of TGF, which are called as edge and corner termination. These

two different binding types, lead to different effects on the magnetic structure of the flake.

As shown in Figures 4.8 and 4.9, not only binding site but also adatom species have

significant effect on the net magnetic moment of TGF. In Figures 4.8 and 4.9, the given

symbols and numbers are symbols of adatom and net magnetic moments of single atom

added TGFs which are in given units of µB . On the other hand, binding geometries of

adatoms have also a significant effect on the magnetic properties of TGFs. As seen in

Figures 4.8 and 4.9, an adatom binding at a top site reduces magnetic moment of only

one edge-C atoms while an adatom bind at a bridge site reduces magnetic moment of two

edge-C atoms.

Total valance charges and net magnetic moments of some flake atoms, adatoms

33



(a) (b)

(c) (d)

(e) (f)

(g) (h)

16 15

15 13

14 15

12 13

Bare H

F Li

Be B

C N

Figure 4.8. Isosurfaces of charge density difference of spin-up (↑) and spin-down (↓)

states for 5-TGF; bare (a), and single adatom H, F, Li, Be, B, C, N (b)-(h)

terminated at edge of flakes respectively.
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Figure 4.9. Isosurfaces of charge density difference of spin-up (↑) and spin-down (↓)

states for 5-TGF; bare (a), and single adatom H, F, Li, Be, B, C, N (b)-(h)

terminated at corner of flakes respectively.
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and whole flake are given in Table 4.2. As seen in Figure 4.8 (a), due to imblance in

the atom number of different sublattices and presence of unsaturated edge atoms, there is

considerable moment accumulation on the edge carbon atoms of bare TGF. According to

the Mulliken population analysis, avarage magnetic moment of edge atoms of bare TGF is

1.22 µB, and it reduces to 0.90 µB for the nearest-neighbors of the corner atoms whereas

corner atoms’ avarage magnetic moment is −0.38 µB and the spins of these atoms are in

the opposite direction to the spins of edge carbon atoms (see Table 4.2). As a result, the

total net magnetic moment of bare 5-TGF is 16 µB , and this result is in accordance with

the Lieb’s theorem.

Figures 4.8 (b), (c) and 4.9 (b), (c) show that although H and F atoms have different

number of electrons, single H and F added TGFs exhibit similar magnetic properties. The

spin polarization of the edge and corner C atom of TGF considerably decreases as the H

or F atoms bind in a top site to these atoms. When H or F atoms bind to the edge C atom

of TGF, which these edge atoms have majority spin component, the net magnetic moment

of bare TGF decrease by 1 µB. If they bind to a corner C atom of TGF, which these corner

atoms have minority spin component, the net magnetic moment of bare TGF increase by

1µB. Thus, edge and corner saturated TGFs by single H or F atoms, have 15 and 17 µB

total net magnetic moments, respectively. As seen in Table 4.2, there are almost no net

induced magnetic moments on the H and F atoms. Furthermore, same Table shows that

when H atoms bind to edge or corner of TGF, they gain extra charge from TGF whereas

F atoms’ charge transfer is insignificant.

Due to preference of Li, Be, B, C and N atoms to bind at the bridge site of two

edge or corner C atoms, understanding the effect of functionalization on the TGF by these

atoms is quite complicated. Thus to find the ground state, several initial spin configura-

tions of flake and added atoms are tried and the lowest energy configurations are depicted

in Figures 4.8 and 4.9.

Table 4.2 shows that when a Li atom is placed at an edge of TGF, edge C atoms

become non-magnetic, however when Be, B, C or N atoms are placed at an edge of

TGF, edge C atoms lose approximately 75% of their magnetic moments. Figures 4.8

(d)-(h) illustrate that Li and Be atoms are almost non-magnetic, B atoms have same spin

polarization, C and N atoms have opposite spin polarization with the edge-C atoms, and

their net magnetic moment values are 0.86, -1.3 and -0.47 µB , respectively. Table 4.2

also shows that B atom gains extra approximately 17% charge from edge atoms of flake

whereas there is not noticeable charge transfer for other adatoms.

When single adatom bind to corner of TGF in bridge site, one adatom makes two
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Table 4.2. Charge and magnetic moment values of some flake atoms, added atom and

all flake. X denotes adatoms.

Total Charge Magnetic moment (µB)

Symbol of Flake atoms X Flake atoms X All flake
Flake atoms

Bare flake A, B, C 4.05, 4.05, 4.06 - 1.23, 1.21, 0.90 - 16

D, E 3.98, 4.06 -0.38, 0.90

H on edge A 3.78 1.25 0.32 0.0 15

H on corner C, D, E 4.02, 3.74, 4.03 1.24 1.20, -0.11, 1.21 0.04 17

F on edge A 4.08 6.90 0.29 0.04 15

F on corner C, D, E 4.04, 4.06, 4.04 6.90 1.20, -0.06, 1.20 0.0 17

Li on edge A, B 4.15, 4.15 0.92 0.01, 0.0 0.01 13

Li on corner C, D, E 4.10, 4.14, 4.04 0.71 0.74, 0.26, 1.13 0.17 17

Be on edge A, B 4.09, 4.09 1.93 0.32, 0.30 -0.03 14

Be on corner C, D, E 4.05, 4.07, 3.98 2.00 0.20, -0.18, 0.88 0.52 16

B on edge A, B 3.84, 3.84 3.50 0.36, 0.35 0.86 15

B on corner C, D, E 3.70, 3.73, 4.08 3.64 0.20, -0.04, 0.89 -0.63 15

C on edge A, B 4.03, 4.03 4.10 0.39, 0.38 -1.3 14

C on corner C, D, E 3.92, 3.99, 4.06 4.10 0.04, -0.03, 0.02 -0.09 14

N on edge A, B 4.10, 4.07 4.91 0.29, 0.33 -0.47 13

N on corner C, D, E 4.11, 4.08, 4.13 4.76 0.18, -0.05, 0.85 -0.15 15

bonds, one of them with an edge C atom and the other with a corner C atom of TGF.

Figure 4.9 (d) shows that when Li atom bind to corner of TGF, spin states of corner

atom of TGF is flip. When Be, B and N atoms are placed at corner of TGF, magnetic

moments of attached edge and corner atoms of flake decrease. Furthermore, in the corner

termination of TGF by a C atom, one corner and its two neighboring edge atoms become

non-magnetic. Table 4.2 shows that B, C and N atoms have minority spin component

whereas Be has majority spin component, with net magnetic values of -0.63, -0.09, -0.15

and 0.52, respectively.

As seen in Figures 4.8 and 4.9, while the nature of edge or corner saturation by H

or F is well understood, edge functionalization with other adatoms shows irregular trends.

For example, although Li atom has less valence charge, it reduces total magnetic moment

of flake, by 3 when bond to an edge of TGF, however when it is bond to a corner of TGF

it increases total magnetic moment by 1 µB. As a result, there is not a simple explanation

for edge or corner termination of TGF by Li, Be, B, C and N atoms. To have a deeper

insight about the edge functionalization of TGF we will examine the magnetic properties

of half, full and doubly saturated structures of TGFs.
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4.2.2. Saturating All Edge-Atoms of TGF

To conclude, edge functionalization of TGFs, saturation of all edge atoms of TGFs

are analyzed in this part. These structures are more stable than bare and single-atom-

added TGFs due to saturation of all dangling bonds of the flake.

4.2.2.1. Geometric Structure

Saturating all edge-atoms of TGFs are more stable relative to bare or single-atom-

added TGFs. Three different concentrations of adatoms for saturation of edges are con-

sidered which are, half-covarage (HC-X) where adatoms are bound to every other bridge

site only, full-covarage (FC-X) where there is one adatom for each edge atom, and double-

covarage (DC-X) where there are two adatoms for each edge atom. Here X denotes the

type of the adatoms. In our calculations we found that, HC, FC and DC structures ter-

minated with B, C and N atoms are not stable. When these atoms are placed around the

TGF, the interaction between them cause some distortions on the honeycomb structure of

TGF and geometry optimizations for these adatom types can not be handled.

Figures 4.10 (a) and (c) show geometric structures of FC-H and FC-F cases. In

these configurations all the edge atoms make sp2 hybridization like inner C atoms. Since

dangling bonds of all edge atoms are saturated with adatoms, these structures are consid-

erably more stable than bare and single-atom-added TGFs. In FC-H and FC-F cases with

size N=5, the avaraged C-C bond leghts are approximately 1.42, 1.40 and 1.39Å near the

center, edge and corner of the flakes, respectively. Table 4.3 shows that binding energies

of H and F atoms are fairly large, C-H and C-F bond lenghts are small relative to the other

atoms and H and F atoms bind to only one edge or corner atom of TGF in a top site. Thus

geometry optimizations of FC-H and FC-F cases are relatively easy. Moreover DC-H

and DC-F cases are also possible for H and F atoms. Figures 4.10 (b) and (d) present

optimized geometric structures of DC-H and DC-F cases, respectively. Apart from other

configurations, in these structures edge or corner atoms of flake have sp3 hybridized elec-

trons. Each edge and corner carbon atom is bonding with 2 adatoms. These adatoms

are located out of plane in opposite directions. Table 4.3 shows that binding energies of

DC-H and DC-F cases are half of the FC-H and FC-F cases, respectively. The Same table

shows that, in DC-F case, z-distances are larger relative to DC-H case, due to larger size

F atoms. In DC-H and DC-F cases with N=5, the avarage C-C bond leght is 1.42Å near
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10. Optimized geometric structures of all-edge-atoms-saturated TGFs: (a) 5-

FC-H, (b) 5-DC-H, (c) 5-FC-F, (d) 5-DC-F, (e) 5-FC-Li and (f) 5-HC-Be.
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the center of the flake, which increases to 1.47Å and 1.53Å near the edge and corner of

the flake, respectively. As a result, addition of H and F to TGF, make strain at the edge

and corner of TGF.

Table 4.3. Bond lenghts and binding energies of all-edge-atoms-saturated TGFs.

Places Bond Lenghts (Å) Z-Distances (Å) Binding Energies (eV)

5-FC-H Top 1.09 - 5.01

5-FC-F Top 1.33 - 6.27

5-FC-Li Bridge 1.99 0.51 1.53

5-HC-Be Bridge 1.69 - 2.92

5-DC-H Top 1.11 0.77 2.5

5-DC-F Top 1.37 1.02 3.14

The binding energy per adatom is calculated by;

EB = |Etot −EbareTGF − (n.Eadatom)|/n, (4.3)

where Etot is the energy of final structure, EbareTGF is the total energy of bare TGF and

Eadatom is the energy of single adatom.

We have mentioned before that, Li and Be atoms bind to two edge or corner atoms

of TGF in bridge site. Table 4.3 reveals that, C-Li and C-Be bond lenghts are quite large

compare to other bond lenghts. Relaxed geometric structure of FC-Li case is shown in

Figure 4.10 (e). As can be seen from this figure, because of long bond lenghts, two

neighbouring Li atoms move away from eachother and they placed in opposite directions

relative to the plane of TGF. Avarage C-Li bond lenghts and z-distances are given in Table

4.3. In this structure each edge and corner atom binds with two different Li atoms and

avarage C-C bond lenghts are 1.42Å near the center and edge of TGF whereas 1.40Å

near the corner of TGF. Figure 4.10 (f) shows the geometric structure of HC-Be case. In

HC-Be case, due to low concentration, Be atoms prefer to bind edge atoms in the plane

of TGF. Apart from FC-Li case, each edge or corner atoms of TGFs bind with only one

adatom (Be). Table 4.3 shows that, in HC-Be case, although concentration of Be atoms

is low, binding energies of this atoms are quite small. In HC-Be with size N=5, avaraged

C-C bond lenght is 1.42Å near the center of TGF. C-C bond lenght changes from 1.37 to

1.47Å in the vicinity of the edge and corner of TGF.
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4.2.2.2. Electronic Structure

In previous sections, it was shown that the electronic energy levels in TGFs cru-

cially depend on the type and the binding site of the single adatom. To understand more

clearly the effect of edge functionalization on the electronic properties of TGFs, all-edge-

atoms saturated TGFs were investigated. Energy spectra of bare, FC-H, FC-F, DC-H,

DC-F, FC-Li and HC-BE are shown in Figures 4.11 and 4.12 for N=5 and N=6. It was
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Figure 4.11. Energy spectra of (a) bare 5-TGF, (b) bare 6-TGF, (c) 5-FC-H, (d) 6-FC-H,

(e) 5-DC-H, (f) 6-DC-H.

found that in previous parts, in bare flake there was a relation between the size of flake

(N) and the number of spin non-degenerate states (NS) as Ns = 4N−4. This equality is

consistent with Figures 4.11 (a), (b). In FC case, where all the C atoms make sp2 hy-

bridization and dangling bonds contribution of edge atoms to the NS were vanishing. All
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Figure 4.12. Energy spectra of (c) 5-FC-F, (d) 6-FC-F, (e) 5-DC-F, (f) 6-DC-F, (e) 5-

FC-Li, (f) 6-FC-Li, (g) 5-HC-Be (h) 3-HC-Be.
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contribution to the NS comes from nonbonding Pz orbitals. Due to contribution of the

C atoms of different sublattices cancel each other, difference in the numbers of atoms of

different sublattice contribute to NS . As a result in FC cases NS = NA −NB = N−1 in ac-

cordance with Lieb’s theorem. This result is consistent with Figures 4.11 (c), (d). Lastly,

in DC cases (Figures 4.11 (e), (f)), all edge atoms make sp3 hybridization. Edge atoms’

contribution to the Ns disappears. Thus, in this case NS = |N − 1− 3N + 3| = 2(N − 1),

but here this contribution comes from the minority spin component.

Tunability of the Ns value of TGFs through degree of hydrogenation is an inter-

esting feature. Moreover the effect of edge termination of TGF by F, Li and Be atom, on

the electronic properties of TGFs are also discussed in this section. Figures 4.12 (a) and

(b) show energy spectra of FC-F and DC-F, respectively. Figures 4.11 (c)-(d) and 4.12

(a)-(d) illustrate that, in the vicinity of fermi level, energy spectra of FC-H and DC-H

cases exhibit similiar behaviour with FC-F and DC-F, respectively. Electronic properties

of the FC-Li cases with N = 5, 6 are investigated and energy spectra is shown in Figures

4.12 (e), (f). As seen in these figures, since Li atoms more metallic than other adatoms,

electron energy states of FC-Li case are quite close to the fermi level. On the other hand,

energy spectra of the HC-Be cases with N = 5, 3 are shown in Figures 4.12 (g), (h). These

Figures show that, despite adatom concentration of HC-Be case is halved compared to FC

structures, energy spectra of HC-Be case exhibit almost same behaivour with FC cases.

This phenomenon can be explained with the fact of valence electron number of Be is

two whereas Li and H atoms valance electron number just one. Thus, when Be atom

bind to edge of TGF, it removes two polarized majority spin states of the binded edge

atoms. Valance electron number of F atom also greater one, however it removes only one

polarized majority spin state, due to it binds to only one edge atom.

The change of HOMO-LUMO energy gap with respect to the size and edge termi-

nation is plotted in Figure 4.13. It is obvious that the HOMO-LUMO gap gets narrower

upon the termination with adatom except some sizes of DC-H and DC-F cases. Figure

4.13 shows that DC-H and DC-F cases are more effective than FC-H and FC-F in the tun-

ing the energy gap. Greater than N=3, for all structures except bare flake, HOMO-LUMO

gap reduces when the size increases. HOMO-LUMO gap disappear for large N values in

the limit of infinite graphene.
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Figure 4.13. Change of HOMO-LUMO gap with respect to size N of the N-TGF with

different adatom edge termination.

4.2.2.3. Magnetic Structure

Recent studies have shown that ground state of TGFs is ferromagnetic [25, 27, 63].

The aim of this section is to figure out how this magnetic ground state may be modified

by functionalization with adatoms. In this section magnetic properties of FC-H, FC-F,

DC-H, DC-F, FC-Li and HC-Be were analyzed. All edge atoms saturated TGFs with B,

C and N adatoms were also investigated, however their stable structures did not obtain.

In Figures 4.14 and 4.15, the optimized structures and spin charge density dif-

ference isosurface of possible HC, FC, DC cases are presented for two different sizes.

Figures 4.14 (a)-(f) and 4.15 (a),(b) show that, FC and DC structures of TGFs with H and

F atoms exhibit fairly similar spin localization structures. Thanks to short bond lenght,

when H and F atoms bind to edge of TGFs, there was no interaction between the ad-

jacent adatoms. In FC-H and FC-F, magnetic moment of all edge atoms were fairly low

compared to edge atoms of bare flakes and all the C atoms have sp2 hybridized electrons.

Table 4.4 gives that, when all edge atoms of bare flake saturated with single H (F) atom

avarage magnetic moment of edge atoms decrease from 0.74 to 0.20 (0.17) µB and the net
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(a)

(e) (f)

Figure 4.14. Isosurfaces of charge density difference of spin-up (↑) and spin-down (↓)

states for all-edge-atoms-saturated TGFs; (a) 5-FC-H, (b) 6-FC-H, (c) 5-

DC-H, (d) 6-DC-H, (e) 5-FC-F, (f) 6-FC-F.

45
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(a)

Figure 4.15. Isosurfaces of charge density difference of spin-up (↑) and spin-down (↓)

states for all-edge-atoms-saturated TGFs; (a) 5-DC-F, (b) 6-DC-F, (c) 5-

FC-Li, (d) 6-FC-Li, (e) 5-HC-Be, (f) 3-HC-Be.
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magnetic of FC case become µ = (N-1), where N denotes the number of hexagons along

each edge of TGF. As seen in Table 4.4, H atoms gain extra 25% of its valance charge

from flake whereas F atoms charge transfer can be ignored.

On the other hand, in DC-H and DC-F cases, all the edge carbon atoms have

sp3 hybridized electrons with vanishing contribution to spin magnetic moment (see Table

4.4). Thus, in DC case, the net magnetic moment of TGF is given by µ = 2(N − 1) µB,

where the direction of magnetic moment is reversed. Table 4.4 shows that, in DC-H case,

edge atoms of TGFs lose almost 10% of its valance charge while in DC-F charge transfer

rather low.

In previous part that was found that, when single Be atom was added edge of TGF,

the net magnetic moment of TGF reduce by 2. That result is deductive due to Be atom

has two valence electron and these electrons eliminate two majority spin contribution of

edge atoms. Thus, although adatom concentration of HC-Be is halve of FC-H and FC-F,

the magnetic moment contribution of edge atoms same for all three cases and Figure 4.15

(e),(f) shows that, HC-Be cases magnetic moment is also given by µ = (N − 1) µB .

Table 4.4. Calculated charge and magnetic moment values for all-edge-atoms-

saturated 5-TGFs

Total Charges Magnetic moments (µB)

Edge C Adatoms Bare Flake Edge C Adatoms All Flake

Bare flake 4.04 - 184.00 0.74 - 16

5-FC-H 3.77 1.26 179.38 0.20 0.00 4

5-DC-H 3.60 1.21 176.54 0.01 -0.03 -8

5-FC-F 4.09 6.90 185.85 0.17 0.02 4

5-DC-F 4.14 6.94 186.25 0.00 0.01 -8

5-FC-Li 4.20 0.84 186.82 0.18 0.00 4

5-HC-Be 4.06 1.99 184.10 0.18 -0.01 4

Up to now in this part, the net magnetic moment of HC-Be, FC-H, FC-F, DC-

H and DC-F cases are invesitigated and either verifies the result of Lieb’s Theorem or

can be understood by simple modifications of it. However Li termination process utterly

different. In the previous section it was mentioned that, although Li atom has only one

valence charge, the net magnetic moment of TGF reduce by 3, when single Li atom is

added edge of TGF. But, Figures 4.15 (c), (d) show that, FC-Li cases spin polarization

distribution is the same with other FC structures.

To figure out the edge functionalization of TGFs by Li atoms, we removed one

by one Li atoms from 5-FC-Li structure. Figure 4.16 shows the magnetic structures of Li

removed cases from FC case to bare flake in order. As it is seen in Figure 4.16, there is not

47



Edge Functionlization with Lithium

16 mB

13 mB

12 mB

13 mB12 mB

11 mB

10 mB

9 mB

8 mB

5 mB

6 mB

7 mB

8 mB

9 mB

6 mB

5 mB

4 mB

3 mB

4 mB

Figure 4.16. Isosurfaces of charge density difference of spin-up (↑) and spin-down (↓)

states for Li removed cases from FC case to bare flake in order.
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linear relation between adatom numbers and total magnetic moment of flake. When one

Li atom was removed from FC-Li structure, total magnetic moment of flake decreased

by one. If second Li atom was removed from TGF, the net magnetic moment of TGF

raised by one due to one of the edge atoms having an extra nonbonding electron and in

this situation TGF had the same net magnetic moment value with FC-Li case. After that,

if we carry on to remove a Li atom one after another, the edge atom which Li atom was

removed from it, became unsaturated in each time. If that unsaturated atom was an edge

atom of TGF, the net magnetic moment of TGF increased by one. If that unsaturated atom

was a corner atom of TGF, the net magnetic moment of TGF decreased by one. On the

other hand when the last Li atom was removed from TGF, the total magnetic moment of

TGF increased by three, and flake turns in to a bare TGF.

As a result, Figures 4.14, 4.15 and 4.16 shows that, the type of adatom does not

change the spin localization structures. The concentration of adatoms significantly effect

the spin localization structures of edge atoms. In FC case, contribution of the edge atoms

to the magnetic moment was considerably low compared to bare flake, whereas in DC

cases contribution of the edge atoms to the magnetic moment was vanishing. Furthermore

it was found that magnetic moment of TGFs scale with its size. The magnetic properties

of different covarage cases of TGF by H, F, Li, Be atoms, can be understood with Lieb’s

Theorem except two situations. The first one, when Li atom was removed from FC-Li

structure, the magnetic moment of TGF was reduced by one while it was expected to be

an increase. The second one, when last Li atom was removed from TGF, its magnetic

moment increased by three, which it was expected to be increase by one. Table 4.4 shows

that, when H atoms bind to TGF they got extra charge from flake, while other atoms

lose their charge. In addition, Table 4.4 gives that there were no net induced magnetic

moments on the H, F, Li and Be atoms in all cases.
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CHAPTER 5

ELECTRIC-FIELD CONTROL OF MAGNETISM IN TGF

5.1. Introduction

In the previous chapter, we have considered edge functionalization of TGFs with

various adatom types. We have found that electronic and magnetic properties of TGFs

can be altered by size modifications, saturated with different adatom types and num-

bers. Experimentally these methods are quite difficult. However there is another way

for manupulating of electric and magnetic properties of carbon nanostructures. Recent

studies [71–73] have shown that the application of an electric field to graphene based

nanostructures can alter their properties notably. The electrical manipulation of the mag-

netic properties of these nanostructures is quite important for the spintronic applications

partly because it is easier to generate the electric field through local gate electrodes than

the other methods such as chemical functionalization.

The aim of this chapter was to complete manipulation analysis of TGFs by consid-

ering the effect of electric field on these flakes. Earlier studies have shown that applica-

tion of an electric field may be used for manipulation of the spin states in diamond-shaped

graphene nanopatches [74], zigzag edged triangular graphene flakes [4] and bilayer zigzag

edged triangular graphene flakes [3]. In fact, electric field effect on the properties of TGFs

with density functional theory calculations has not yet been investigated. Motivated with

these arguments, in this chapter, structural, electronic and magnetic properties of triangu-

lar graphene flakes are investigated under perpendicular and in-plane electric fields.

The electric field values were considered in this study in the order of volts per

angstrom. Although such an electric field is large in a macrocopic scale, it is experi-

mentally achievable for this nanostructures only if small electrodes can be made. In this

chapter the first-principles density-functional calculations in the presence of an uniform

electric field are performed using the SIESTA method. A periodic saw-tooth-type poten-

tial is used to simulate the external electric field in a supercell. Other components of the

calculations are the same as those into previous chapter.

In this chapter we will study in detail the effect of an electric field on the geomet-

ric, electronic and magnetic structures of TGFs. Firstly we found that, large perpendicular

electric field can make dramatic effects on the geometric structures of these flakes. How-
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ever, our studies show that there is no significant effect of perpendicular electric field on

the electronic and magnetic properties of these flakes. On the other hand, in-plane elec-

tric field significantly modifies all the properties of TGFs. For example large values of

in-plane electric fields can remove corner atoms and make considerable distortions on the

geometric structures of TGFs. Moreover, calculations have shown that HOMO-LUMO

gaps of these TGFs may be tuned and total magnetic moments may be reduced by in-plane

electric field.

5.2. Results

We will consider in-plane and perpendicular electric field effects. We show that

external electric field can significantly change all the properties of TGFs and it is pretty

usefull for manipulation of spin moment in TGFs.

5.2.1. Effects of In-Plane Electric Field on TGF

In this section, the external electric field, parallel to the N-TGF-H, is applied along

X, Y and -Y directions. We found that in-plane electric field has notable effect on all the

properties of TGFs. To investigate the effect of electric field we should examine Figure

5.1. The researcher assumes that N-TGF-H was placed into an external electric field

of E and the size of N-TGF-H is d. Where E and d are in the units of V/Å and Å,

respectively. The magnitude of the potential difference between the atoms, which are

Figure 5.1. 6-TGF-H under the external electric field in the +Y -direction.
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placed in two opposite sides of the flake, is ∆V = E ∗ d. Some edge and corner atoms

will be exposured to large electric force, thus charge polarization occurs when an in-plane

electric field applied. Moreover some corner atoms may break away from the N-TGF-H

for large electric field values.

5.2.2. Geometric Structure

The geometric relaxation calculations under various values of electric field are

done for different flake sizes N-TGF-H (N = 5, 6). Relaxed geometric structures and

bond lenghts of 6-TGF-H for in the presence and absence of an electric field are shown in

Figure 5.2.
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Figure 5.2. Relaxed geometric structures for 6-TGF-H under electric field with differ-

ent directions: (a) 0 V/Å, (b) 1.4 V/Å in X direction, (c) 1.4 V/Å in Y

direction, (d) -1.4 V/Å in Y direction (Red arrows representing the direc-

tion of electric field).
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The change of geometric structure of 6-TGF-H in the electric field is similiar to

the case of 5-TGF-H, so they are not given here. Figure 5.2 (a) shows the bond lenghts

of 6-TGF-H under no electric field. Figure 5.2 (b)-(d) present the bond lenghts under

in-plane electric field in the direction of X, Y, -Y, respectively, which applied electric field

values are same for all the directions and their values are 1.4 V/Å. When greater electric

field values are applied to the 6-TGF-H, geometric relaxations become difficult, flakes

loose their geometric structures and some H atoms break away from the corner of 6-TGF-

H. As can be seen from Figure 5.2, although flakes conserve their triangular geometries,

bond lenghts between the atoms change with applied external electric field. The C-C bond

lenghts which belong to the edge or corner atoms are more affected by applied electric

field than those of center atoms of the flakes. The averaged C-C bond lenght is 1.4 Å near

the corner of 6-TGF-H while it grows up to 1.46 Å under applied large electric field. The

electrically induced failure is easier to occur at the corner of the 6-TGF-H since corner

atoms are more susceptible relative to edge or center atoms of flake. Studies show that,

when 6-TGF-H and 5-TGF-H are placed in the same electric field, 6-TGF-H has larger

deformation than 5-TGF-H and the structure of 5-TGF-H is even stable under the electric

field with value of 1.8 V/Å, which implies that small flakes are more stable than large

flakes under the external in-plane electric field.

In the previous chapter it was mentioned that there is a relation between size and

total magnetic moment of the flake as µ = (N − 1) µB . Thus, odd sized flakes have an

even magnetic moment values, whereas even sized flakes have an odd magnetic moment

values. Using this fact, for a fixed total magnetic moment value of flakes we calculated

total energy for various electric field values. Figure 5.3 presents the energies for different
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Figure 5.3. Energies of 5-TGF and 6-TGF with different total magnetic moment as a

function of applied electric field.
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magnetic moments of 5-TGF-H and 6-TGF-H as a function of an applied electric field. As

it seen from Figure 5.3, there is a competiton among the energy values of different fixed

magnetic moment values of flakes. Maximum spin polarized structure is favorable for

both the absence of an electric field or applied small amount electric field. However, min-

imum spin polarized or non-spin polarized structures are favorable under large amount of

applied electric field. Moreover, Figure 5.3 reveals that total energy of the flake decreases

as both the size of the flake and the external applied electrical field increases.

The energies of different magnetic orders are investigated with respect to the fer-

romagnetic orders and shown in Figure 5.4. As it is seen from the figure there are some

discontinuities in the energy values because of that flakes have maximum spin polariza-

tion in low electric field. Fixing the spin polarization at low values makes the calculations

difficult and correct ground state energy values can not be obtained. In Figure 5.4, max-
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Figure 5.4. Energies of 5-TGF-H and 6-TGF-H with different total magnetic moment

as a function of applied electric field, with respect to the configuration

which have maximum magnetic moment.

imum spin polarized structure energies are shifted to 0 and the figure clearly shows that

there are two critical electric field values for 5-TGF-H and 6-TGF-H seperately. In those

critical electric field values, ground state total spin polarizations of flakes change and

flakes prefer to have low spin polarization. These critical electric field values are 0.54

V/Å and 1.27 V/Å for 5-TGF-H and 0.41 V/Å and 0.91 V/Å for 6-TGF-H. These results

reveal that when electric field is applied, the change in the ground state of total spin po-

larizations occurs in the larger flakes easier that in smaller flakes. If the electric field is

increased more than the second critical electric field values, the total spin remains constant

until the values of 1.4 V/Å and 1.8 V/Å for 6-TGF-H and 5-TGF-H, respectively. If the

electric field is increased further, 5-TGF-H and 6-TGF-H loose their geometric structures
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and some corner atoms break away from the flakes.

5.2.3. Electronic Structure

The electronic charge density distribution of the 6-TGF-H is shown in Figure 5.5

(a), in which the charge densities are shown by blue regions and isosurface value is 0.25

electrons/Å3. As it is seen in the figure, the charges are localized between the C atoms and

charge distribution is distributed smoothly all over the flake. Figures 5.5 (b)-(d) illustrate

the change of the charge density distribution of 6-TGF-H with an external electric field

along the X, Y and -Y directions, respectively. In these figures, applied electric field

(a) (b)

(c) (d)

X

Figure 5.5. (a) Isosurfaces of charge density for 6-TGF-H in the absence of an electric

field. The charge densities are shown by blue regions with isosurface value

of 0.25 electrons/Å3. (b)-(d) illustrate the change of the charge density

distribution of 6-TGF-H with an external electric field along the X, Y and

-Y directions, respectively. External electric field values are same and their

values are 1.4 eV/Å. Purple regions denote increase, while green regions

denote decrease in the charge densities for given regions.
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values are the same and their magnitudes are 1.4 V/Å, purple regions denote an increase

while the green ones denote a decrease in the charge density of the given regions. The

application of an external electric field disrupt the symmetry of the charge density distri-

bution. Since the electrons are known to move in opposite direction to an applied electric

field, the charges of one side of flake decrease while the charges of the opposite side in-

crease under applied in-plane electric field to 6-TGF-H in X-direction. On the other hand,

when an electric field applied to 6-TGF-H in +Y-direction, the charges of the one side of

the flake increase, the charges of the opposite corner of the flake decrease and vice versa

for an applied electric field in -Y direction. This means that, under in-plane electric field

6-TGF-H is electrically polarized.
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Figure 5.6. The energy spectra of 5-TGF-H (left) and 6-TGF-H (right) for different

values of an electric field. The electric field values are in V/Å units. Blue

triangles represent the minority spin while red triangles represent the ma-

jority spin. Fermi level shifted to 0.
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We analyzed the electric field dependence of the energy spectra of 5-TGF-H and

6-TGF-H near the fermi level. Figures 5.6 (a) and (b) show the energy spectra near the

fermi level in the absence of an electric field of 5-TGF-H and 6-TGF-H, respectively. In

these figures, the valence states just below the fermi level are the majority of the spin

component whereas the conduction states just above the fermi level, the minority. These

uncoupled states belong to the edge C atoms of the N-TGF-H since the states of all the

inner atoms are coupled. As seen in figures, both of the systems are maximally spin

polarized if there is no external electric field. Figures 5.6 (c)-(f) show that application of

an electric field lifts the non-degeneracy of the edge states and modifies significantly the

energy spectra of these flakes. When the in-plane electric field is applied to these flakes

the most energitic majority state will be empty and the lowest energitic minority state will

be occupied. This means that as majority spin distribution of the edge C atoms decreases,

the net magnetic moment of the flake decreases. As the electric field is increased further,

the same process will continue until TGFs have a minimum magnetic moment which is 0

µB for odd N values and 1 µB for even N values.

The changes of the HOMO-LUMO gaps with respect to an external in-plane elec-

tric field are shown in Figure 5.7 for 5-TGF-H and 6-TGF-H. As seen from the figure,

the application of an in-plane electric field to these flakes is effective in tuning the energy

gap. The HOMO-LUMO gap values reduce significantly with an in-plane electric field

and energy gaps have the smallest values around the critical electric field, which have been

already given as 0.54 V/Å, 1.27 V/Å for 5-TGF-H and 0.41 V/Å, 0.91 V/Å for 6-TGF-H.

Figure 5.7. Change of HOMO-LUMO gap with respect to an applied electric field for

5-TGF-H and 6-TGF-H.
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5.2.4. Magnetic Structure

The spin dependent charge density differences (△ ρ = ρ↑ − ρ↓) of the optimized

structures of 5-TGF-H are given in Figure 5.8. We have discussed in the previous chapter

that in the absence of an electric field the total magnetic moment of 5-TGF-H is 4 µB.

However the application of an external electric field may have great influence on the spin-

up, spin-down distributions of the 5-TGF-H displayed in Figure 5.8 (a)-(c). When in-

plane electric field is applied to this flake, the total magnetic moment keeps constant until

the electric field is beyond some critical value (0.54 V/Å), after which the total magnetic

moment decreases to 2 µB (see figure 5.8(b)). If an in-plane electric field is applied to

Figure 5.8. Isosurfaces of spin dependent charge density differeces for 5-TGF-H with

and without the application of in-plane electric field. Electric field values

are in V/Å units.

the flake, the electrons are forced to move in the opposite direction to the external electric

field. Thus the spin-up and the spin-down densities on the edge and corner atoms of the

flake, where the large charge transfer occured in, decrease almost the zero. As an electric

field is increased further, the total magnetic moment remains constant until the electric

field has some critical value beyond 1.27 V/Å, then the total magnetic moment decreases

to 0 µB (see figure 5.8(c)), and all parts of the flake become non-magnetic.

Futhermore, the effect of direction of in-plane electric field on the spin dependent

charge density distribution of N-TGF-H, have also been examined. The spin dependent

charge density differences for 6-TGF-H in the absence of an electric field and under in-

plane electric field along the X, Y, -Y directions are shown in Figures 5.9 (a)-(d), re-

spectively. Applied electric field values are the same for the three figures (5.9 (b)-(d)),

and their values are 1.4 V/Å. When these electric fields are applied to 6-TGF-H’s, their
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magnetic moments decrease to 1 µB. Apart from 5-TGF-H, it is not possible to have

a completely vanishing of magnetic moment of 6-TGF-H. Applied electric field causes

charge transfer along opposite of its direction. The spin polarizations vanish in the the

place where the charge transfer is almost maximum. If electric field is applied along +X

direction, this time spin polarization vanishes on the cornes of the edge that parallel to the

applied electric field (Figure 5.9 (b)). If electric field is applied along ± Y direction, spin

polarization vanishes on the edge that perpendicular to the applied electric field and the

corner that on the opposite side of the edge (Figure 5.9 (c-d)). Thus, the distribution of

spin-up and spin-down states is closely relevant to the direction of applied electric field.

(a)

X

Figure 5.9. Isosurfaces of spin dependent charge density for 6-TGF-H with and with-

out the application of in-plane electric field. Applied electric field values

are same for (b)-(d) and their values are 1.4 V/Å.

Next we investigate the effect of an external electric field on the spin dependent

charge density difference distribution, up spin states distribution and down spin states

distribution, respectively. Figure 5.10 (a) displays the isosurface of the spin dependent

charge density differences of 6-TGF-H. As seen in Figure 5.10 (b), when the electric field
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is applied to flake, spin dependent charge density difference decreases significantly all

over the part of the flake. Figures 5.10 (c) and (d) illustrate that when electric field applied

to this flake, up-spin distribution decreases, while the down-spin distribution increases.

From the figure it is seen that these decrease and increase in the up spin and down spin

distributions mostly occur on the edge that perpendicular to the applied electric field and

to the corner on the opposite side of this edge. Thus, up spin and down spin distributions

are almost stationary on the two edges of TGF which are parallel to the applied in-plane

electric field. In Figure 5.10, the purple regions denote an increase, while the green one

denotes a decrease in the charge densities of the given regions and the applied electric

field values are the same with the magnitude 1.4 V/Å.

(a)

X

Figure 5.10. (a) Isosurfaces of the spin dependent charge density difference for 6-TGF-

H. (b) Evolution in the the spin dependent charge density difference dis-

tribution, up-spin states distribution and down-spin states distribution with

an applied electric field are shown in (b)-(d), respectively. While purple

regions denotes increase, green regions denotes decrease in the charge den-

sities for given regions. Applied electric field values are same for (b)-(d)

and their values are 1.4 V/Å.
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The variations in the total magnetic moment of 5-TGF-H and 6-TGF-H with re-

spect to applied in-plane electric field are given in Figure 5.11. This figure shows that the

total magnetic moment of the flakes reduces stepwise at the critical electric field values.

Figure 5.11 shows the that total magnetic moments of the flake reduce by 2 bohr magne-

ton when electric field is beyond some critical value. This means that one of the electrons
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Figure 5.11. The total magnetic moment (in units of µB) of 5-TGF-H (blue line) and

6-TGF-H (red line) as a function of the electric field strenght (in units of

V/Å).

of TGF which belongs to majority of the spin component, flips to minority spin compo-

nent at the critical electric field. The total magnetic moments of the flake can minimally

decrease to 0 µB for odd N values but complete spin depolarization cannot happen for

even N values, since the number of electrons in the TGF is an odd number. Thus for even

N values, the total magnetic moments of the flake can minimally be 1 µB with an applied

electric field.

5.2.5. TGF Under a Perpendicular Electric Field

In this part, the effect of perpendicular electric field on the properties of hydro-

genated TGFs is investigated. Relaxed geometric structures of 5-TGF-H in the absence

of an electric field and in the presence of an electric field which directed perpendicular

to the plane of 5-TGF-H, are both shown in Figure 5.12. Our calculations show that ge-
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ometric, electric and magnetic structures of TGF remain the same for small electric field

values. But as shown Figure 5.12, when electric field is increased, the geometric structure

of 5-TGF-H is distorted and the planar geometry of the flake breaks down. The value of

applied electric field is 2.1 V/Å for the given figure. For the values which are greater than

this value of electric field, geometric relaxations become more difficult, flakes loose their

geometric structures and some corner carbon and hydrogen atoms break away from the

flake. The electrically induced failure is easier to occur at the corner of the flake.

Figure 5.12. Relaxed geometric structures for 5-TGF-H: (a) In the absence of an electric

field, (b) Under the perpendicular electric field.

As it is seen in Figure 5.12, perpendicular electric field makes significant distor-

tions on the geometric structure of the 5-TGF-H. But, perpendicular electric field does not

change the NS value and the total magnetic moment of 5-TGF-H. Geometric distortions,

which occur at perpendicular electric field applied to the TGFs, are interesting. This

result indicate that by using the same procedure may be some suitable planar graphitic

fragments can turn into fulleren structures under the perpendicular external electric field.
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CHAPTER 6

CONCLUSIONS

Graphene based nano flakes are among the most promising materials for future

nanoelectronics and spintronics. Edge localized spin polarizations of these flakes intro-

duce magnetic properties that can be utilized for spintronic applications. To achive the

purpose of using these flakes in electronic devices, magnetic moments of these flakes

should be manipulated. Due to their special geometric structure, zigzag edged triangular

graphene flakes (TGFs) have large magnetic moment and this magnetic moment can be

manipulated by several means. With this motivation, the aim of this thesis was to study

the electronic and magnetic properties of TGFs and to explore their manipulation. In this

thesis two methods were considered for manipulation of electronic and magnetic prop-

erties of TGFs; which edge functionalization with adatoms and application of external

electric field.

In the first case, several atoms (H, F, Li, Be, B, C and N) were used for saturating

the dangling bonds of edge carbon atoms. The edge functionalization process is examined

in two parts: First, we studied electronic and magnetic properties of bare and single-atom-

added-TGFs. We found that, total magnetic moments of bare flakes are changing with µ=

4 (N−1) µB, where N denotes the number of benzene rings on one edge of TGF. When a

single atom bind to edge or corner of a TGF, total magnetic moment of the TGF changed.

It was found that, total magnetic moment of the TGF strongly dependent on the binding

site and the type of the adatom. While H, F, Li and Be atoms are nonmagnetic, B, C and N

atoms showed magnetic behaviour when they bind to edge or corner of TGF and magnetic

structures of all the cases can be explained with Lieb’s theorem except for the single Li

atom adding process. Although Li atom has one valence charge, when it binds to edge

of TGF, it reduces magnetic moment of TGF by 3 µB. Second, we studied saturation of

all edge atoms of TGF. Three different concentrations of adatoms for saturation of edges

are considered: 1) half-covarage (HC-X) where adatoms are bound to every other bridge

site only, 2) full-covarage (FC-X) where there is one adatom for each edge atom, and

3) double-covarage (DC-X) where there are two adatoms for each edge atom. Here X

denotes the type of the adatoms. FC-H, FC-F, FC-Li, DC-H, DC-F and HC-Be cases are

examined. We found that, the total magnetic moment of FC-H, FC-F, FC-Li and HC-Be

cases were µ = (N − 1) µB . On the other hand the total magnetic moment of DC-H,
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DC-F cases changed with µ = 2 (N − 1) µB and the directions of total magnetic moment

are reversed. Moreover, magnetic moments of all edge and corner atoms of TGF vanish

in DC-H and DC-F cases. It was an intereseting found that although single Li saturation

case did not obey Lieb’s theorem, FC-Li case gave the same results with other FC cases

and these results were in accordance with Lieb’s theorem. Altogether, these results show

that the net magnetic moment of TGF can be manipulated with edge or corner saturation

processes.

In the second case, the effects of an external electric field on the electronic and

magnetic properties of TGFs are investigated. It was found that geometric structures of

TGFs were significantly changing with applied in-plane or perpendicular external electric

fields. When perpendicular electric field applied total magnetic moment and number of

spin non-degenerate states (NS) of TGF did not change. But perpendicular electric field

causes considerable distortions on the geometric structure of TGF and it distorts planar

structure of TGF. Then we applied in-plane electric field in the X , Y and −Y directions

and observed how electronic and magnetic properties of TGFs changed. When in-plane

electric field was applied to TGF, it polarizes the charge distribution in the flake. We

saw that in the energy spectra, when the in-plane electric field applied to TGFs, the most

energetic majority state will be empty and the lowest energetic minority state will be

occupied. This means that, in these flakes total spin polarization can be reduced stepwise

with the applied in-plane electric field. If a sufficient electric field is applied to odd-

sized TGF all the polarized spins disappear. However, completely vanishing of polarized

spin states of TGFs is not possible for even sized flakes. These results opens a way to

electrically manupilating magnetic moments of small graphene flakes.
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