
 
 
 

QUALITY ASSESSMENT OF DE NOVO 
SEQUENCE ASSEMBLY TOOLS 

 
 
 
 
 
 
 
 

A Thesis Submitted to 
the Graduate School of Engineering and Sciences of 

İzmir Institute of Technology 
in Partial Fulfillment of the Requirements for the Degree of 

 
MASTER OF SCIENCE 

 
 

in Molecular Biology and Genetics 
 
 
 
 

by 
Visam GÜLTEKİN 

 
 
 
 
 
 
 

December 2012 
İZMİR 



We approve the thesis of Visam GÜLTEKİN 

 

Examining Committee Members: 

 

 

________________________________ 

Assoc. Prof. Dr. Jens ALLMER 
Department of Molecular Biology and Genetics,  
İzmir Institute of Technology 
 

 

 

_________________________ 

Prof. Dr. Anne FRARY 
Department of Molecular Biology and Genetics 
İzmir Institute of Technology 
 

 

 

________________________ 

Assoc. Prof. Dr. Bilge KARAÇALI 
Department of Electrical - Electronics Engineering 
İzmir Institute of Technology 
 

 

 

       12 December 2012 
 

 

________________________ 

Supervisor, Assoc. Prof. Dr. Jens ALLMER 
Department of Molecular Biology and Genetics,  
İzmir Institute of Technology 
 

 

 

______________________________ 

Assoc. Prof. Dr. Ahmet KOÇ 
Head of the Department of 
Molecular Biology and Genetics 

  ______________________________ 

Prof. Dr. R. Tuğrul SENGER 
Dean of the Graduate School of 

Engineering and Sciences 

 



ACKNOWLEDGMENTS 

 

 I would like to acknowledge my supervisor, Assoc. Prof. Jens Allmer, for his 

understanding and tolerance, precise guidance and intense support from the very start of 

the thesis study to the end.  

 It was a great opportunity; that professors of The Laboratory of Plant 

Molecular Genetics, Prof. Dr. Anne Frary and Prof. Dr. Sami Doğanlar generously 

supplied the data that was needed for the thesis study. I would like to thank them and 

MSc. İbrahim Çelik from The Laboratory of Plant Molecular Genetics, not only for 

providing the data but also because they were always open for me. 

 It has been and will be an honor to be a member of jLab; IZTECH 

Bioinformatics Laboratory. I am greatly appreciative to all members of jLab, for their 

support and efforts, more importantly their delicate friendship.  

 Last but totally not the least, I would like to thank my beloved wife, and her 

ever ready smile, who always was encouraging and supporting me. 



iv 

 

ABSTRACT 
 

QUALITY ASSESSMENT OF DE NOVO 
SEQUENCE ASSEMBLY TOOLS 

 
 High-throughput next generation sequencing technologies progressed very 

rapidly; revolutionized genomics by providing a robust working field for new studies to 

be performed and promising the facilitation of the achievements that was extremely 

challenging before. Although the massive output of these instruments is getting more 

accurate, still delivers the projection of the real sequence in very short fragments; which 

necessitates another process of merging and ordering those fragments to reconstruct the 

larger sequences. This process is performed by sequence assemblers and in the absence 

of a reference genome; it becomes a de novo sequence assembly. Since assembling 

millions of fragments in biological aspects have many obvious challenges, there have 

been many studies specifically focused on developing tools that can adapt to newly 

announced sequencing technologies, take advantage of the computer science 

achievements and the technological advancement of computer hardware to the utmost. 

But these sequence assemblers also need to justify the gain they claim. We took 5 of the 

commonly used assemblers and assembled two genomic datasets, mined the never 

mentioned statistics before and commonly used statistics that thought to be the 

representative of the quality of the assembly. On top of that we also used experimentally 

validated data that is known to be a part of the organisms’ genome and trailed those in 

assemblies. 
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ÖZET 
 

DE NOVO SEKANS MONTAJ ARAÇLARININ 
KALİTE DEĞERLENDİRMESİ 

 
 Yeni nesil sekanslama teknolojileri inanılmaz bir hızla gelişti; yeni çalışma 

alanları için gerekli zemini hazırlayarak özellikle genomik biliminde çığır açtı ve 

önceleri fazlasıyla zor olarak görülen birçok gelişmenin gerçekleştirilmesine olanak 

tanıdı. Bu teknolojinin sunduğu muazzam veri sürekli daha da hassas ve hatasız olsa da, 

biyolojik diziyi halen çok küçük boyutlu parçalar halinde vermekte ve bu durum daha 

büyük dizilerin oluşturulması için küçük dizilerin sıralanıp birleştirilmesinden oluşan 

bir başka uygulamanın gerçekleştirilmesini gerekli kılmaktadır. Bu uygulama dizi 

montajlama araçları tarafından yerine getirilmektedir ve referans genomun eksikliği 

durumunda de novo sekans montajlama işlemi haline gelir. Milyonlarca küçük boyutlu 

diziden biyolojik kriterlere uygun şekilde daha büyük dizilerin oluşturulmasının önünde 

birçok zorluk yatmaktadır ve bu zorlukların aşılabilmesi için birçok bilimsel çalışma 

yapılmaktadır. Bilgisayar biliminin kazanımlarını, bilgisayar donanım teknolojilerinin 

eriştiği son noktayı kullanabilecek ve yeni duyurulmuş sekanslama teknolojileri ile 

uyumlu çalışacak araçlar tasarlanmaktadır. Bu araçların vadettiklerinin doğrulanması 

gereklidir. Bu bağlamda 5 adet yoğun kullanılan sekans montaj aracını incelemeye 

aldık; 2 bağımsız genomik veri ile dizi montajlaması yaptırdık. Dizi montaj kalitesinin 

dile getirilmesinde kullanılan genel istatiksel metriklerin yanı sıra daha önce 

bahsedilmemiş istatiksel yönden de inceledik. Bunun yanı sıra çalışmamızda 

kullandığım organizmanın genomunda var olduğu deneysel olarak ortaya konmuş 

verilerin elde ettiğimiz dizi montajlarında varlığı doğrulamak üzere çalışmalar 

gerçekleştirdik. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Sequencing 

 

  Sequencing is the definition for a number of processes that try and determine the 

primary structure of a biological polymer. As a result, the sequencing process yields a 

sequence -that can be stored as ordinary text- and that represents the order of chemical 

building blocks of the sequenced molecule. This symbolic depiction of the molecule 

brings the possibility of virtual analysis, and brings the necessity of many scientific 

disciplines to analyze the information it presents (Hartl 1996; P a Pevzner, Tang, and 

Waterman 2001;  a L. Delcher et al. 1999; Schuster 2008a; Enome and Equencing 

1999). The availability of sequencing revolutionized biological studies especially 

concerning genes and genomes, and opened many more point of visions to the 

researchers by offering greater understanding of biology ( a L. Delcher et al. 1999; W. 

MIN JOU, G. HAEGEMAN 1972, Ewing and Green 1998; Jaffe et al. 2003a).  

Given the complexity and heterogeneity of biopolymers, sequencing techniques 

differ within biological molecules. Since sequencing techniques is beyond this study, 

we will just mention DNA, RNA (commonly described as transcriptome) and protein 

sequencing briefly. 

 

1.1.1. Protein Sequencing 

 

The process of determination of amino acid sequence in a protein molecule is 

called protein sequencing. Whilst amino acid sequence is determined, non-peptide 

molecules are also identified (P. C. Ng 2003). There are a number of methods of 

performing protein sequencing; of which mass spectrometry is the commonly used 

technique (Bocker 2003). Some of the major techniques are; Edman degradation, 

Peptide mass fingerprinting and Mass spectrometry. 
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1.1.2. RNA- Transcriptome Sequencing 

 

RNA sequencing is commonly referred to as transcriptome (the set of all RNA 

molecules) sequencing, since RNA is generated from DNA in the cell with a process 

called transcription. RNA carries information which is readily present in the DNA, but 

especially in eukaryotes mRNA molecules will not include information of noncoding 

regions, such as introns, and that is among many reasons why RNA sequencing is 

performed (Barbazuk et al. 2007; Sugarbaker et al. 2008; Wu et al.; Malde, Coward, and 

Jonassen 2005). A commonly used technique for RNA sequencing is to reverse 

transcribe the RNA molecule, then apply vastly and commonly used DNA sequencing 

methods (Pauline C Ng and Henikoff 2003).  

Transcriptome sequencing is essential in some scenarios to better understand the 

genome, and is referred to as “the most definitive approach to the elucidation of 

transcripts” especially for organisms that show higher complexity, like mammals 

(Bastien Chevreux 2005). This explaining the RNA sequencing being one of the earliest 

sequencing techniques; with the publish of the complete genome of the Bacteriophage 

MS2 by Fiers et. al (W. MIN JOU, G. HAEGEMAN 1972; Fiers et al. 1976). 

 

1.1.3. DNA Sequencing 

 

  DNA sequencing consists of a number of processes that aim to result in a 

sequence of nucleotide bases in a DNA molecule. Although the structure of DNA was 

known since 1953 (Watson and Crick 1953), it took researchers more than 20 years to 

first come up with the techniques to retrieve the nucleotide bases of a DNA strand 

(Weigel et al. 1973; Sanger, Nicklen, and Coulson 1977; Petrov et al. 1981; Z. Zhang et 

al. 2000; Couronne et al. 2003b; Bastien Chevreux et al. 2004; Bastien Chevreux 2005; 

Bentley 2006; Shendure and Ji 2008a; Wheeler et al. 2008; Pop 2009a; Rodrigue et al. 

2010; Zerbino and Birney 2008a).  

 The very first advancements in DNA sequencing were announced almost at the 

same time period: Walter Gilbert and Allan Maxam’s “DNA sequencing by chemical 

degradation” in 1973 (Bentley 2006; Shendure and Ji 2008b) which revealed the 

nucleotide sequence of the lac Operator (Maxam 1973) and Frederick Sanger’s “DNA 
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sequencing with chain-terminating inhibitors” in 1975 (Sanger and Coulson 1975) 

which yielded the nucleotide sequence of bacteriophage φ X174 DNA (Sanger F 1977). 

 Although these two aforementioned techniques are categorized as the basic 

methods (Istrail et al. 2012; B Chevreux; Baker 2012; Narzisi and Mishra 2011; Sanger 

F 1977), Sanger’s method is still used more often (Bastien Chevreux 2005). With the 

development of technology, DNA sequencing techniques became much more advanced 

with the conjunction of computer science in time; reading longer fragments, parallelize 

the reading process, etc. Being able to produce thousands and even millions of 

sequences at one run, these high-throughput technologies are called next-generation 

sequencing technologies (Dear et al. 1998; X Huang and Madan 1999; Z. Zhang et al. 

2000; Steven 2002a; Pop et al. 2004).  

There are many next-generation sequencing technologies available today, since 

details of those are beyond the scope of this study only some of these techniques are 

given in Table1. 
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Table 1. A comparison of next generation sequencing technologies. (Source: (Narzisi 
and Mishra 2011; Dear et al. 1998; Zerbino and Birney 2008b; Z. Li et al. 
2012; Steven 2002b)). 

*Sanger sequencing method was included for comparison. 

 

1” Pacific Bio Ion Torrent 454 Illumina SOLiD Sanger* 

Read length (max) 2900 bp 200 bp 700 bp 250 bp 50+50 bp 900 bp 

Accuracy 99% 98% 99.9% 98% 99.9% 99.9% 

Reads per run 35-75K 5 million 1.3 million 3 billion 1.4 billion N/A 

Time per run 
(minutes) 

<120 <120 <630 <14.400 <20.200 <180 

Cost per 1 million 
raw bases (in US$) 

$2 $1 <$4 <$0.15 $0.13 $2400 

Advantages 
Longest read 
length. Fast. 

Fast. 
Long read 
size. Fast. 

High 
sequence 

yield. 

Low cost per 
base. 

Long 
individual 

reads. 

Disadvantages Low yield 
Homopolymer 

errors. 

Expensive. 
Homopolymer 

errors. 

Equipment 
can be very 
expensive. 

Slower than 
other techs. 

More 
expensive and 

impractical 
for larger 
projects. 

 

 

DNA sequencing can be performed for various studies; including SNP 

discovery-genotyping, DNA profiling etc. (Tucker, Marra, and Friedman 2009). Since 

this study has been performed on genomic DNA sequencing data gained from one of 

next generation sequencing technologies, we will mentioning genome sequencing 

briefly. 

 

 

 

 

 

 

 



5 

 

1.1.3.1. Genome Sequencing 

 

Genome sequencing is performed to cover the complete DNA sequence 

information of a given organism. This procedure may  span  different  types  of DNA 

for various organisms, like chromosomal, mitochondrial or chloroplast DNA. Any 

biological sample that contains full copy DNA can be taken into consideration in the 

wet lab preparation processes.  

Whole genome sequencing with next generation sequencing technologies goes 

back to 1994, when Fleischmann et al. published the complete genome of Haemophilus 

influenza,1.8 Mb (mega bases) (Scheibye-Alsing et al. 2009, Fleischmann et al. 1995). 

This is accepted as a landmark in the history of sequencing and especially whole 

genome sequencing, because while it was the first and only complete genome sequence 

of a free-living organism, it encouraged many other projects that revealed many 

organisms’ complete genomes in a short time period (Scheibye-Alsing et al. 2009; 

Baker 2012; Steven 2002a). 

High-throughput next generation sequencing technologies are one of the hottest 

topics of genomics studies by being labor and cost effective, as each runcan produce 

over 100 times more sequence data compared to the most sophisticated basic methods 

(Pareek, Smoczynski, and Tretyn 2011). Having much more information at lower costs 

and in short time periods provided concrete ground for research and gave rise to 

genome size studies. As of October 2012, there are 176 eukaryotic and 2106 prokaryotic 

organism genomes that have been completely sequenced and published (KEGG2, 

GOLD). Figure 1 represents genomic sequencing studies’ accumulation over time. 
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Figure 1. Completed prokaryotic genomes. 

(Source: http://www.genome.jp/kegg/catalog/org_list.html, 2013.). 

 

As already stated, recent improvements in sequencing technologies encourage 

researchers to perform studies that were dreams some time ago. One of the significant 

projects that deserves to be mentioned is the 1000 genomes 

(http://www.1000genomes.org) project (Executive and Ceu 2007). Aiming to find 

genetic variants that would have at least 1% frequencies, the project covers the 

sequencing of a large number of people’s DNA, in order to provide a comprehensive 

and valuable resource that will be accessible through public databases (Phase 2011).  

 

1.2. Sequence Assembly 

 

Sequence assembly refers to a number of processes including aligning and 

merging individual DNA fragments based on their sequence similarities gained from 

any sequencing technology into contiguous sequences called contigs for subsequent 

analysis (Sundquist et al. 2007; Walking 1998; Problem).  

As seen in Table 1, each run of the DNA sequencing process makes available 

massive  amounts  of  DNA  sequence  information, which need to be processed heavily  

and   swiftly.  This   massive  accumulation  of  data  brought  the  inevitable   need   of  

automated work, performed by sophisticated bioinformatics tools that reduce the need 

of human involvement. These tools are at the point of conversion of the storehouses of 

http://www.genome.jp/kegg/catalog/org_list.html
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information into knowledge and innovative solutions (Pareek, Smoczynski, and Tretyn 

2011). 

The amount of raw data generated from each run by next generation sequencing 

technologies is overwhelming. During the human genome project that was started in 

1990 and finished in 2003, more than 50 billion bases of raw sequencing data were 

produced (International Human Genome Sequencing Consortium 23 Bb, Celera Projects 

27 Bb) (Genomics 2004a; Venter et al. 2001). This massive raw data definitely demands 

high computational power that can result the analysis in reasonable time periods and 

more importantly accurately so that it can be further analyzed (Pavel a Pevzner et al. 

2004; Couronne et al. 2003b).  

 

Figure 2. Shotgun sequences are aligned and merged with respect to their overlapping 
regions.  
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Figure 2 illustrates a quick procedure of real sequence assembly. For better 

understanding, it might be good to explain some definitons. A contig as mentioned 

before, is a sequence that has been generated by several to many smaller sequences. 

Singlets or singlet sequences are those which were not used in the step generating the 

contigs, hence left out of the assembly. Most of them are simply the sequences that keep 

the same before and after an assembly process. Debris sequences are leftovers from 

assembly processes, be it at the stage of sequence cleaning, ordering sequences or 

discorded parts of a sequence. 

 

1.2.1. Sequence Assembly Tools 

 

Sequence assembly studies generally require two major computational kinds of 

effort: assembling the data that has been generated by any kind of sequencing 

technologies and a finishing step that consist of some error correction processes, contig 

editing and further annotation (Palmer et al. 2010). 

 

1.2.1.1. Assemblers 

 

As the sequencing technologies developed very rapidly in time, new sequence 

assembly programs to provide, maintain and grasp the new criteria have been 

developed, existing ones got updated and revised (Lin et al. 2011b; Pop 2009a; Walking 

1998; B Chevreux). One of the first assemblers was developed mainly to store and 

perform some limited manipulation, including clustering, for DNA gel fragments 

(Staden 1980). Starting from early 1990’s, when larger eukaryotic genome studies 

started to become more attractive to researchers, several other assemblers were 

presented (Scheibye-Alsing et al. 2009). Several special efforts also have been 

announced, enriching assembler features and making assemblers more compatible with 

the reads (Scheibye-Alsing et al. 2009; Malde, Coward, and Jonassen 2005). 

The very basic principle of assemblers’ work is: overlapping fragments (which 

will be referred as reads from now on) might presumably originate from the same 

region of the original DNA sequence hence can be assembled together (Couronne et al. 

2003a; X. Huang 1999; Narzisi and Mishra 2011; Steven L Salzberg and Yorke 2005; 

Steven 2002b). 
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 This assumption is accepted globally yet brings the ambiguities of recognition 

of repeat sequences that might be present in many distinct places in the genome (Narzisi 

and Mishra 2011; Steven 2002a; Xiaoqiu Huang et al. 2003). One of the very important 

challenges that assemblers face is the error rate occurring from the nature of sequencing 

processes; for the good parts it would not exceed 2% while for bad parts it can quickly 

jump to around 10%. In order to tackle those and unmentioned other problems (like 

increased automation by reducing involvement in correcting errors), assemblers became 

more capable in time and moved away from simply using base sequences and onwards, 

using additional information like coverage analysis, original signal trace information, 

sequence orientation, template identity, quality and probability values (Bastien 

Chevreux et al. 2004). 

Sequence assemblers can perform two different type of assembly: de-novo and 

mapping. De-novo assembly refers to the assembly type where there is no reference 

data of the organism that is studied; hence the assembly is performed with only read 

information. Mapping or reference-based assembly is aided by a previously known (by 

means of sequenced, studied earlier) backbone sequence, building contigs more or less 

identical to the reference (Kumar and Blaxter 2010a; Materials et al.; Z. Li et al. 2011; 

Chaisson, Pevzner, and Tang 2004). 

Not all assemblers can perform these two types of assembly, but rather 

specialize their internal functions and capabilities to satisfy the needs. Also, assemblers 

specialize with respect to sequencing technologies; while some assemblers can perform 

accurate performance on just one of the sequencing technologies, some can adapt to 

work with several sequencing technologies with internal parameters (Tucker, Marra, 

and Friedman 2009; Ramos et al. 2011; Lin et al. 2011b; Pop 2009b; Narzisi and Mishra 

2011; Istrail et al. 2012). Table 2 represents some of the assemblers with respect to their 

compatible technologies and type and size of assembly they can perform. 
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Table 2. Short list of sequence assemblers.( Source: (Narzisi and Mishra 2011; 
Shendure and Ji 2008a; W. Zhang et al. 2011)). 

 

Name Type- Size Technologies 

AMOS genomes Sanger, 454 

Celera (large) genomes Sanger, 454, Solexa 

CLC Genomics Workbench genomes Sanger, 454, Solexa, SOLiD 

Euler-sr genomes 454, Solexa 

Geneious genomes Sanger, 454, Solexa 

MIRA  genomes, EST Sanger, 454, Solexa 

NextGENe small genomes 454, Solexa, SOLiD 

Newbler  genomes, ESTs 454, Sanger 

Phrap genomes Sanger, 454, Solexa 

TIGR Assembler genomic Sanger 

SeqMan NGen genomes 
Illumina, SOLiD, 454, Ion 
Torrent 

SOAPdenovo genomes Solexa 

Staden gap4 BACs Sanger 

Velvet (small) genomes Sanger, 454, Solexa, SOLiD 
 

 

For several reasons like time and computational bottlenecks, this study covers 

only five of the sequence assemblers; -in alphabetical order- CAP3 (X Huang and 

Madan 1999), Celera (Genomics 2004a), MIRA (Cancer 2005), Newbler (454 Life 

Sciences) (Margulies et al. 2005) and Phrap (Green 1997). 

 

1.2.1.1.1. CAP3  

 

CAP3 (http://pbil.univ-lyon1.fr/CAP3.php) is the third generation of the CAP 

sequence assembly program that was developed in 1992 (X Huang and Madan 1999). 

Adding the capability of identifying and clipping low quality 5’ and 3’ regions and 

improving the repeat recognition algorithm played a very good role in the program’s 

trending. Back before CAP3 was announced, most assemblers were complaining after 

the difficulties of constraint usage in the assembling processes (X Huang and Madan 

1999; Walking 1998). Being able to use forward-reverse constraints eased the process 
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of assessment of DNA layout, hence results with consensus sequences that have fewer 

errors (X Huang and Madan 1999; Scheibye-Alsing et al. 2009; A. L. Delcher et al. 

2002; Cancer 2005).  

Like many assemblers CAP3 has a preparation step that removes 5’ and 3’ poor 

quality regions. After this step comes the overlap computing. Contig construction is 

performed via a greedy fashion; a read with the highest scored overlap is taken and rest 

of the reads with less overlapping regions in a descending order. Then a multiple 

sequence alignment step takes place to build end contig sequences and after this step, 

consensus sequences with their base quality values are presented to user separately (X 

Huang and Madan 1999). 

 

1.2.1.1.2. Celera 

 

Celera is known to be the first assembler to report a complete human genome 

(Schatz 2006; Venter et al. 2012; Genomics 2004a) Of many assemblers that have been 

available, Celera is the one that has been developed by many scientists and took more 

than 20 years of effort to be completed (Schatz 2006).  

Celera (http://wgs-assembler.sourceforge.net) as with most assemblers, starts 

the assembly processes by first identifying and tagging repeats (Genomics 2004b; 

Schatz 2006). Using signal traces and existing quality assessment of sequencing 

technology, Celera generates internal quality measures, especially to locate and trim the 

low quality regions that will be ignored till further steps (Genomics 2004a; A. L. 

Delcher et al. 2002). Being able to use additional information like trace signals, and 

aligning repeats to foreign contaminants like cloning-sequencing vectors and linkers, 

Celera aggressively removes, trims repeats, etc.(Myers et al. 2012). 

After this step starts the overlap finding process, which is iterated in cycles to 

locate the longest overlaps possible, using a seed-and-extend algorithm like BLAST 

(Notredame, Higgins, and Heringa 2000; A. L. Delcher et al. 2002). At the first step of 

merging reads, pseudocontigs (Celera calls them unitigs) are compared to each other to 

find if unitigs represent longer repeats; if so those unitigs are also removed from 

calculations. The remainders are examined again, to find whether they contain any 

repetitive overlaps, detect and extend repeat boundaries (S. Li et al. 2002; Schatz 2006).  

http://wgs-assembler.sourceforge.net/
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Having unitigs free of bad regions, starts the contig building step, and this is 

followed by a scaffolding step that is hoped to merge contigs and output longer end 

sequences (S. Li et al. 2002; Schatz 2006). 

 

1.2.1.1.3. MIRA  

 

MIRA’s development goes back to 1997, but the first publication was put 

forward in 1999 (Bastien Chevreux 2005). It is one of the assemblers that has been 

under development and adapted to newly announced sequencing technologies like 

IonTorrent in time. As of October 2012 MIRA 3.9.5. is distributed (http://MIRA-

assembler.sourceforge.net). 

Unlike many sequence assemblers available, MIRA starts processes by 

assigning high and low quality regions, in other words before processing each and every 

sequence like trimming 5’-3’ regions, it discerns and can totally ignore a sequence till 

later steps of contig building. When needed  these low quality sequences are called and 

used in assembly, but with a very low frequencies (Bastien Chevreux et al. 2004; 

Bastien Chevreux 2005). Having fewer but more reliable reads left, MIRAnext takes 

different clone template insert sizes and uses this information for a pre-assembly 

coverage analysis (Bastien Chevreux et al. 2004; Bastien Chevreux 2005) (Venter et al. 

2001). 

Employing a graph algorithm to locate potential overlaps, MIRA then uses 

dynamic programming to confirm the overlaps (Bastien Chevreux et al. 2004; Bastien 

Chevreux 2005). Having a pre-constructed graph and possible overlaps, MIRA searches 

the space and aligns read pairs, and starts contig construction processes, which are 

repeated many times (at default 3 times, but user defined) at any of the steps a low 

quality labeled read can be used to extend a contig’s length (Bastien Chevreux et al. 

2004; Bastien Chevreux 2005). Before outputting the contigs, MIRA internally corrects 

some errors by comparing the repeats, tagged at sight, to already assembled contigs 

(Bastien Chevreux et al. 2004; Bastien Chevreux 2005). 

 

 

 

 



13 

 

1.2.1.1.4. Newbler (GS de novo Assembler) 

 

Newbler has been developed by instrument manufacturer Roche Diagnostics 

itself, when they first announced the method for sequencing by synthesis using a 

pyrosequencing protocol (Margulies et al. 2005; Wheeler et al. 2008). The program’s 

design is specifically for data generated by 454 (Roche Life Sciences) type sequencers 

(Margulies et al. 2005). It is fully compatible with data generated by 454 sequencers, 

can capture all information supplied by the instrument, including flow-based signal 

trace, which are made available with 454 technology (Barbazuk et al. 2007; (Margulies 

et al. 2005). 

Newbler imitates the Celera-like process flow; starting with removing low 

quality regions. But having adapter sequences already tagged in 454 output data, it is 

much simpler than the same step in Celera (Genomics 2004b; Margulies et al. 2005). 

Having found high quality reads to process, this step is followed by an overlap finding 

step which performs complete all-against-all read comparison, which also 

simultaneously marks repeats (Margulies et al. 2005).. Having overlaps and repeats 

identified, Newbler starts assessment of read similarities by directly comparing 

flowgrams of each read (Margulies et al. 2005). Newbler introduces a specific choice at 

this stage; it takes the possibility of reverse complement reads into account. This feature 

gains Newbler the advantage of using more reads than many available assemblers 

(Barbazuk et al. 2007; Kumar and Blaxter 2010a; Liu et al. 2012), (Margulies et al. 

2005; Lin et al. 2011a; W. Zhang et al. 2011; Cancer 2005). 

 Merging of the reads, contig construction, starts and is optimized in cycles. 

Contigs can extend or shorten on both sides, if supporting information is available. Size 

differentiation can occur in the presence of a repeat on the merge point of two reads, or 

if a supporting read is present in the read space, etc. 

  

1.2.1.1.5. Phrap 

  

 Phrap (http://www.phrap.org/phredphrap/phrap.html) was originally developed 

for the assembly of cosmid sequencing within the Human Genome Project and made 

available in 1996 (Green 1997). It is the first assembler that on top of using quality 

scores generated by sequencing process, calculates base calling quality and uses this in 
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the assembly process (Narzisi and Mishra 2011; Kumar and Blaxter 2010a; Green 

1997). This feature helped the progress of identifying and assembly frequent imperfect 

repeats; bad random ambiguities-repeats occurring because of the sequencing processes’ 

nature and existing real repeats like different copies of the Alu sequences in human 

genome (A. L. Delcher et al. 2002; Green 1997).  In addition to its unique and effective 

solution to repeat finding, Phrap also is the first assembler to classify chimeras, 

sequencing and cloning vector sequences and low quality regions (Margulies et al. 

2005). 

 Employing a greedy algorithm, Phrap starts merging reads that have overlaps of 

higher score and ends up with the read that has lowest scored overlap (Green 1997; 

Gordon, Desmarais, and Green 2001). Since Phrap is bundled with a finishing tool 

consed, contig quality assessment and editing are not performed (Green 1997; Gordon, 

Desmarais, and Green 2001). 

 

1.2.1.2. Finishing Tools 

 

 Finishing tools are tools for further analysis preparation; performing processes 

like converting, filtering, viewing, editing, and finishing sequence assemblies by finding 

regions representing higher importance (higher coverage etc.) created with an 

assembler. Finishing capabilities allow the user to pick primers and templates, 

suggesting additional sequencing reactions to perform, and facilitating checking the 

accuracy of the assembly using digest and forward/reverse pair information (Bastien 

Chevreux 2005; Bastien Chevreux et al. 2004; Venter et al. 2001; Margulies et al. 

2005). 

 

1.2.2. Major Challenges of Assembly Processes 

 

The major challenges of the assembly process basically come from the structure 

of genetic material itself: DNA has repetitive properties. Repetitive sequences are 

individual sequences that are similar or identical to sequences elsewhere in the genome. 

Repeats might originate from a number of biological mechanisms, and may comprise 

from a few to millions of copies and vary in size ranging from a few to millions of bases 

(Treangen and Salzberg 2011).    
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Repetitive sequences are observed in many organisms, including single cell 

bacteria to higher eukaryotes (Treangen and Steven L. Salzberg 2011; J. Jurka et al. 

2007). It is claimed that this high level of repetitiveness is one of the major causes of 

bigger plant genomes in size: for instance, transposable elements cover more than 80% 

of the maize genome (Schnable et al. 2009). It also has been reported that half of the 

human genome is composed of these repetitive sequences (Treangen and Salzberg 

2011). 

These repeats are most probably the greatest challenge of assembly processes 

(Pop 2009a; Ramos et al. 2011; Paszkiewicz and Studholme 2010; Scheibye-Alsing et 

al. 2009; Schuster 2008b; Zerbino and Birney 2008a; Steven 2002a; W. Zhang et al. 

2011; Lin et al. 2011b; Palmer et al. 2010; Cancer 2005; Metzker 2010); since 

sequencing yields errors and the shotgun sequencing method, especially when high 

coverage rates are desired, suffers from high error rates especially in homopolymer 

repeats (Z. Li et al. 2012; Scheibye-Alsing et al. 2009; W. Zhang et al. 2011). Thus, 

individual raw reads can have errors because of sequencing errors, but when sequencing 

errors are eveneliminated, a read might include polymorphisms that cannot be identified 

by assemblers, and marking those two reads as chimera-repeats, hence changing the 

course of assembly by complicating recognition of overlaps and contig constructions 

(Baker 2012).  

Having repeat recognition and repeat treatment challenges overcome, comes 

another difficulty of assembly processes: the massive raw data that can be hundreds of 

millions of bases, 2.25 million in our study. Sequence assemblers must adapt to new 

technologies, must take advantage of whatever is offered by sequencing process and 

tolerate the faults, seek alternatives. But Wang and Jiang showed that (L and T. 1994), 

even when error  free representation –reads and quality information - of true sequence is 

available, the assembly problem is NP-Complete. Meaning there is no such solution to 

be delivered fast in a feasibile way. This also means that assemblers should and would 

use approximation strategies, employing heuristic algorithms. 
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1.2.3. A Short Comparison of Competitor Sequence Assemblers 

 

While overlap computing is definitely one of the very critical steps of an 

assembly, and each tool has its own solutions by means of employing powerful and 

accurate algorithms and setting a valid overlap threshold, competitor assemblers are 

using different definitions for a valid overlap (Table 3). Apparently every developer of 

the program has own explanation, but it really changes the outcome of an assembly 

(Pop 2009b; Narzisi and Mishra 2011; Bastien Chevreux 2005). 

These assemblers differ in the algorithms they employ but overall they all use an 

OLC (Overlap-Layout-Consensus) algorithm, with very varying inner steps (Bartels et 

al. 2005; Lin et al. 2011b; Kumar and Blaxter 2010b; Bastien Chevreux 2005; X Huang 

and Madan 1999; Genomics 2004a). These differences have huge effects on how they 

treat individual reads; while some of them ignore the read that has been marked to be 

low quality and do not use it in the merging step, some can split the read from desirable 

position and can ultimately merge with reads or place into different contigs (W. Zhang 

et al. 2011; Bartels et al. 2005; A. L. Delcher et al. 2002; Z. Li et al. 2011). 

There are many features for each assembler we took into consideration but Table 

3 summarizes some to have an insight.  
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Table 3. A short feature comparison of sequence assemblers in scope. (Source: (Bastien 
Chevreux; Schatz 2006; X. Huang 1999; Margulies et al. 2005; Green 1997; 
Lin et al. 2011b))  

 

 
 CAP3  Celera MIRA  Newbler  Phrap 

Valid overlap 40+/50 37+/40 24+/28 26+/30 N/A 

Take advantage 
of Trace Info 

No No Yes Yes Yes 

Overlap 
calculation 

SW SW-Iterative SKIM-Iterative SW-Iterative SW 

Contig 
rebuilding 

Yes Yes User defined User defined Phred* 

Min. Read # for 
each contig 

2+ 2+ 3+ 3+ 3+ 

Repeat 
recognition 

Consistency Consistency 
Consistency-

Template 
Consistency-

Template 
Consistency 

Recognition of 
uniform read 
dist. 

No Yes Yes Yes Yes 

Spoiler detection No No Yes No Yes 

Genomic 
pathfinder 

No No Yes No No 

Relative score N/A N/A 80+ 60+ 60+ 

Mark gap bases No N/A Yes Yes Yes 

 
          

  

1.2.4. Efforts Put Forth for Assessment 

 

 There have been many studies performed in order to find answers to the de novo 

assembly quality assessment problem. Assemblethon (http://www.assemblathon.org), 

dnGASP (http://cnag.bsc.es/), GAGE (http://gage.cbcb.umd.edu/) can be listed as the 

top collaborative efforts. 

The Assemblathon (Assembly Marathon) evaluated almost a hundred metrics of 

sophisticated statistics in terms of how complete and accurate the assemblies were, by 

taking advantage of 41 assemblies generated by 23 independent sequence assembly 

tools from 17 institutes around the world (Earl et al. 2011).  

http://gage.cbcb.umd.edu/
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Assemblathon was organized by experienced and well-known scientists in the 

area of sequence assembly and genomics. Rather than use an existing reference 

genome’s real data generated from next generation sequencing technologies, they took 

Human ch13, divided into 4 chromosomes, contaminated it (5%) with E.coli sequences, 

and simulated this data as if it has been evolved for ↨~200 million years. They repeated 

the evolving step by diverged into two independent lineages, both simulated to evolve 

for more ~50 million years, both having the same size genome. This way they aimed to 

have genome orientations randomly and prevent simple discovery of the un-biased data. 

These two lineages were sent to teams who were asked to perform de novo assembly 

(Earl et al. 2011). 

Analyzing the result they tried to come up with statistical metrics, that will 

unveil the right assessment criteria. Though N50 did correlate roughly with assembly 

quality, they concluded that no set of metrics was perfect. 

 The overall conclusion was that conservative assemblers which were adjusted 

for earlier sequencing technologies, require extensive overlaps and robust data in terms 

of quality and length, to join reads into contigs. Aggressive assemblers, that have been 

announced recently, can work with hundreds of millions of reads, produce longer 

contigs accurately, cover the entire genome, but are more likely to join regions in the 

wrong order or orientation (Baker 2012; Sahli and Shibuya 2012) 

 

1.3. Aim of the Study 

 

As mentioned many times in the introduction, demand for next generation 

sequencing is increasing and with a very promising proportion. Since the development 

of these revolutionary technologies that deliver fast, accurate and inexpensive massive 

genome information, most biological and biomedical applications fundamentally shifted 

away from conventional methods like Sanger sequencing to these technologies 

(Margulies et al. 2005; Metzker 2010; Pareek, Smoczynski, and Tretyn 2011). This 

obviously means the use of sequence assembly programs is also rising (Paszkiewicz and 

Studholme 2010; Jaffe et al. 2003b; Bastien Chevreux et al. 2004; Salzberg and Yorke 

2005; Margulies et al. 2005). The increase of usage  of these programs is also visible 

from the increasing number of announced sequence assemblers (Bastien Chevreux et al. 

2004; Lin et al. 2011b; W. Zhang et al. 2011).  
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While ease of acquisition of data is always desired, accumulation of data brings 

another problem; these new sequencing technologies also pose tremendous challenges 

to traditional de novo assembly tools designed for conventional sequencing techniques, 

as they are incapable of handling the millions to billions of short reads and incapable of 

taking full advantage of ancillary information that these new technologies provide (Z. Li 

et al. 2012; Liu et al. 2012; W. Zhang et al. 2011; Narzisi and Mishra 2011). 

When a genome study of a previously unsequenced organism  is revealed, the 

first question asked by all is: “is the outcome accurate-reliable?” (Salzberg and Yorke 

2005; Jaffe et al. 2003b; Huse et al. 2007; Myers et al. 2012). The genomicists claim the 

accuracy of the accomplishment with the experiments they perform but in the absence 

of a reference genome it is really difficult to be sure of the accuracy (Baker 2012; 

Kumar and Blaxter 2010b; Lin et al. 2011b). This outcome is definitive from the effort 

of the most commonly studied completed genomes such as human and mouse. For 

example, in 2011 Alkan and colleagues found that  a de novo assembly of the human 

genome was missing 420Mb repeated regions and over 2.000 protein-coding exons 

(Baker 2012; Narzisi and Mishra 2011, Alkan, Sajjadian, and Eichler 2011) 

Some studies (Istrail et al. 2004; W. Zhang et al. 2011; Z. Li et al. 2012; A. L. 

Delcher et al. 2002;  a L. Delcher et al. 1999; Liu et al. 2012; Kumar and Blaxter 2010b; 

Lin et al. 2011b) focused specifically to the performance of these tools under various 

conditions, and shed more light on the possible drawbacks and limitations of 

assemblers. However, the accuracy and efficiency of these tools, more precisely the 

criteria of better assembly is still frequently discussed (Baker 2012, Quail et al. 2012, 

W. Zhang et al. 2011) and yet has not been fully investigated. Sufficient information is 

not currently available for informed decisions to be made regarding the tool that would 

be most likely to produce the best performance under a specific set of conditions (W. 

Zhang et al. 2011; Z. Li et al. 2011). It is a non-negligible necessity to systematically 

analyze their relative performance under various conditions, not just the assembly 

statistics like broadly mentioned contig size, length etc. but comparison with 

experimentally validated data like EST-cDNA sequences, so that researchers can select 

a tool that would produce optimal results according to their specific requirements 

(Materials et al.; B Chevreux; Sahli and Shibuya 2012; Liu et al. 2012; Z. Li et al. 2012; 

Istrail et al. 2012; Baker 2012). Using transcriptomic data is crucial, for some (Baker 

2012) every genome project should have a parallel transcriptome project- to identify the 

intron-exon structure within genes and aid scaffolding and annotation processes (Morin 



20 

 

et al. 2008; Weber et al. 2007), (Baker 2012; Cancer 2005), (Salzberg and Yorke 2005; 

Pop et al. 2004). 

This study aims to compare the performance of the aforementioned sequence 

assembly tools by means of: 

 Accuracy and efficiency; not only with commonly addressed statistical 

metrics like contig length, size, and cumulative base length of assembly, but 

also investigating the possible left overlaps in the assembly, to determine if 

the unused reads are correctly adjusted 

 Validity and effectiveness in biological context; by the introduction of 

experimentally validated data like mRNA sequences and primer sequences, 

and understand at what proportion assemblies can compensate. 
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

2.1. Environment 

  

 All of the processing and calculations of this study were performed on a 

workstation that has 4 core- 8 thread CPU running at 3.8 GHz, 48 GB of RAM running 

at 1.6GHz and two SSD drives installed as an RAID-0 disk array for operating system 

and 3TB of HDD for data storage. As an operating system a Linux distribution Ubuntu 

was chosen, with kernel version 3.2.1. Multi threads and the RAM capacity of the 

workstation let us perform multi-task processing simultaneously. Observing the amount 

of the memory usage of the assembly tools, having this amount of memory is 

recommended, yet not an obligation. SSD drives warranted us a domain to work with 

hundreds to thousands of independent files without coming across a bottleneck. 

 

2.2. Raw Data  

 

There are 4 datasets used in this study: two are raw data originating from 454 

FLX sequencer that was made available from studies performed by Çelik (Çelik 2011) 

and Tekin (Tekin 2011). These two were the datasets that have been input to the 

sequence assemblers. The statistics of the genomic data are given in Table 4. 
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Table 4. Raw data sets (genomic) generated by 454 sequencers 
 

 Papaver somniferum L Sesamum indicum 

Read count 1.244.412 1.094.317 

Min read length (b) 40 40 

Max read length (b) 764 900 

Avg read length (b) 380,4 348 

SD (b) 142,5 125,6 

Total base count 474.398.321 380.862.690 

 

 

In order to have supplementary information on which assembly result will 

project more of the real sequence or the organism, we chose to use EST- cDNA dataset 

of the organism (Papaver somniferum L.), from publicly available databases (NCBI). In 

order to discriminate and bypass the clutter that can be caused by another species of the 

same genius, we filtered the data with the taxonomy ID of Papaver somniferum L 

(txid:3469).  

 

Table 5. Raw data set fetched from public databases 

 

 Papaver somniferum L 

Read count 21.330 

Min read length (b) 18 

Max read length (b) 216.086 

Avg read length (b) 848,6 

SD (b) 2300,3 

Total base count 180.994.437 

 

The second data for supporting the originality of the assemblies were a number 

of unique primer sets; ranging from 18-24 bases long, that wereexperimentally validated 

to belong to the same organism which its DNA has been sequenced (Morin et al. 2008). 
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2.3. Read Pre-processing 

 

Roche 454 instruments –GS, Titanium, FLX- outputs raw reads in Standard 

Flowgram Format (SFF) files that include base quality and clipping information, and 

additional information such as flow based signal traces, etc. (Margulies et al. 2005; 

Cancer 2005). In order to claim an objective comparison set forth, we ensured that each 

assembler got exactly the same input, so we removed 454 adapters that were used in the 

sequencing process from the raw reads ourselves prior to assembly process; rather than 

let assemblers use their own built-in adapter removal tools. This is essential since CAP3  

and Phrap do not remove adapters at all, but Celera, MIRA and Newbler pre-

processes reads slightly differently (W. Zhang et al. 2011; Kumar and Blaxter 2010b), 

the use of a dataset free of adapters will ensure a fair head-start for each assembler. 

SSAHA2 (http://biowulf.nih.gov/apps/ssaha2.html) was used to remove the 

contaminants; since it already has a built-in compatibility feature with next generation 

sequencing technologies –we used -454 switch. Because the adapters used for 

sequencing were known and provided with the raw data, contaminant removal was done 

swiftly. 

Having contaminants removed from the data, we used sff_extract 

(http://bioinf.comav.upv.es/sff_extract/) of COMAV to convert the default file format to 

a more common file format that every assembler can work on: FASTQ. FASTQ  

(FASTA and Quality) is a file format that can store both the biological sequence and its 

corresponding quality information at the same time. 

 

2.4. Assembly 

 

 Every assembler’s work was monitored with our own in-house pipelines; the 

runtime, CPU, memory and disk usage, etc. For the sake of fairness, only one assembler 

at a time was run(Table 6). 

 All assemblers were set to use default parameters, so to have the absolute 

indicator of each and every the assembler. 
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2.5. Mapping 

 

We used two different types of data, both in .FASTA format. The first data 

consisted of EST-cDNA sequences which tend to be in exonic regions of the genome. 

Since our genomic assemblies might cover intronic and exonic regions at the same time, 

a program that will tolerate and adapt to this situation was chosen: BLAT (BLAST Like 

Alignment Tool) (Kent 2002). Another important reason that directed us to choose 

BLAT is, unlike BLAST, it indexes the databases into the memory, since memory and 

hard drives have an incomparable speed difference (~80MB vs ~12.000MB per second), 

it gained us a lot of speed. 

 

2.5.1. Residual Overlap Calculation 

 

 BOWTIE (http://bowtie-bio.sourceforge.net/index.shtml) is an aligning 

tool which especially aligns short DNA sequences with high efficiency to the genomes 

(Langmead et al. 2009). We used BOWTIE in our residual overlap calculation analysis. 

 Residual overlap calculation is a method that consists of the analysis of the 

contigs within themselves; performing pairwise  alignments all-against-all, in order to 

understand if there are overlaps that could be a potential merging point of two contigs. 

All assemblers analyze all sequences and try to merge those with enough evidence to be 

consecutive, to a new sequence of a greater length. That merging process of course can 

be done by having the overlap point and sizes -the valid overlaps-.  

Residual overlap calculation might reveal information especially on why tools 

have different settings for a valid overlap, and more importantly what would be a safe 

threshold for a valid overlap. If valid overlap calculation is done with underset settings, 

that might end with the assembler performing aggressive joining of sequences, 

generating longer contigs.  

From each and every assembly we filtered sequences with the minimum length 

of 300 bp. This threshold was not selected arbitrarily. Of the assemblers under 

examination, CAP3 has the highest set threshold for default overlap calculation. It takes 

at least 50 bp of a sequence from left and the right regions, and seeks 40+bp to be 

similar to an independent sequence’s left/right regions.  

http://bowtie-bio.sourceforge.net/index.shtml
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From contigs longer than 300 bp, the first and last 100 bp were cut, marked as to 

know the origin sequence. Those fragments were then pairwise aligned all-against-all 

and a percentage of hits was calculated for each assembly.   

 

2.5.2. Mapping Singlets to the Contigs 

 

Assemblers among many difficulties have to try and identify the sequence list, 

that will be used in the assembly and beware of a number of sequences that might not be 

beneficial if used in the assembly. With next generation sequencing technologies 

providing millions of sequences, this step is really challenging for an assembler.  

If an assembler falsely selects not to use a sequence and keeps it as a singlet, this 

might very well be a critic piece of a great puzzle. This might result in not being able to 

construct a longer sequence that might represent a greater and more accurate projection 

of the real sequence, and so on. 

For the analysis, we started with removing the debris sequences from the outer 

contigs data, keeping only singlets. Since the shortest raw sequence length was 40 for 

both our genomic datasets, we filtered sequences based on this criterion. This step was 

necessary, because some tools output debris sequences falsely within the same pool of 

singlet sequences. This step in general dropped the total singlet sequence count by 4%. 

After this step, we mapped all singlets to contigs. Mapping results were deposited to a 

MySQL database, with about 15 million rows, for each assembly. In order to be precise 

about whether a singlet could really be used in the assembly we performed a second 

filtering with sequences that have 90% similarity to a contig. Satisfying this criterion 

left around 80 thousand singlets. This filter was not enough to reveal a singlets’ 

situation to be a “proper” sequence, which could be exploited. This is because 

assemblers tend to exclude a sequence if it is similar to many other sequences, making it 

a potential repeat. Assemblers also tend to ignore sequences which consist of many 

repeated regions within itself. So in order to overcome those difficulties and avoid the 

removal of accurately recognized singlets from the analysis, we filtered sequences that 

have many hits to a contig and 60+% repeated regions. This time we had around 35 

thousand of rows in our database.  
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2.5.3. Mapping Primer Pairs 

 We have used a set of primer pairs that were designed from the same sequencing 

data for an earlier study. Out of many primer pairs, 50 were selected and experimented 

in wet lab. Amplification test of those primers validated the primer pairs and product 

sizes were measured. 

Since a primer pair maps to DNA sequence as forward primer to 5’ and reverse 

primer to 3’, we opted to locate primer pairs relying on this criterion. Having the real 

product sizes of the mapped primer pairs in hand, a second analysis was performed. The 

part of the contig from the beginning point of the forward primer to the end point of the 

reverse primer was cut out and compared to experimental results. This step revealed 

information about the accuracy of an assembly, since a primer pair usually amplifies 

only one locus and product sizes are known. 

 

2.5.4. Mapping EST- cDNA Data 

 

 EST sequences are short subsequences of complementary DNA. This 

information is the sum answer to the analysis. The optimum assembly might cover more 

EST sequences; even the pieces of EST sequences. We mapped all ESTs to assemblies 

separately; keeping in mind some EST sequences might be longer than contigs.  

 Mapping resulted in at least 10 million hits for each assembly, which we again 

organized in a MySQL database. To get the brief knowledge we started processing the 

data by first summing all hits of a specific EST to the same contig, dropping row count 

in the database by a million on average. Then we filtered the contigs, assigning an EST 

each, with the longest EST hit, dropping database rows to about 50 thousands. Finally 

we filtered EST sequences to indicate only one contig with the longest hit, finalize the 

database with row count of around 9 thousand. 

 Having unique ESTs identified, we calculated the contigs’ EST hit coverage by 

first getting all EST hits to the same contig, which was paired with the unique EST. We 

referred to the largest unfiltered database with all hits included, fetching the hit size, hit 

start and end point of an EST sequence. We generated an array of length the contig, 

called contigArray. Starting from the pristine EST hit, we incremented the indices of 

the contigArray by one beginning with pristine EST’s start point to the end point. With 

the second EST hit, we started the same index incrementing procedure and this step was 
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performed as many times as there were EST hits present for the same contig. The 

coverage value for a contig was calculated as the sum of the greatest indices. The 

method is demonstrated in Figure 3. 

 Having a coverage value for each and all contigs calculated, we compared 

assemblies with respect to cumulative coverage counts, min-max and 1st-3rd quartile 

lengths and presented the total coverage results. 

 

 

Figure 3. The process of calculation of the coverage for contigs. 

 

2.5. Other 

  

 Since the amount of data and inner steps were many and to be repeated many 

times, we developed pipelines to speed the processes and avoid manual errors. All the 

tools were programmed with Java, and all the scripts were written with bash and Perl 

languages. 
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2.6. Quality Assessment Criteria 

 

The optimal assembly should project the following: 

 The examination of left overlaps of an assembly should reveal that no or 

very few overlaps are present in the assembly 

 The examination of locating unused reads in the assembly step should reveal 

the maximum values, representing that the assembler took advantage of 

reads that could be part of assembly optimally and ignored repeated regions 

accurately. 

 The examination of mapping cDNA sequences to the assembly step should 

reveal maximum results, that the optimal assembly covered more cDNA 

sequences than is believed to be present in the genome.  

 The examination of mapping primer sequences that weredesigned from the 

same organism’s genome and experimentally validated to be in the genome, 

should reveal maximum results, that more primer sequences could be 

covered with the optimal assembly. 
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CHAPTER 3 

 

RESULTS 

 

3.1. Statistical 

 

 Tools were run on an idle workstation once at a time, assuring all calculation 

power is available for each. Table 6 repsesents hard drive, memory and process 

consumptions of each assembler and  runtimes. 

 

Table 6. Real time process consumption of the assemblers (the poppy assembly only) 
 

 
 

CAP3  Celera MIRA  Newbler  Phrap 

Memory usage 
(peak) 

24 GB 33 GB 16 GB 11 GB 22 GB 

Runtime 1.274 minutes 1.543 minutes 822 minutes 734 minutes 1.457 minutes 

Threads used 1 1 2 2 1 

Disk usage 2 GB 5 GB 24 GB 4 GB 6 GB 

 

 
 
 

      
 

Although the most commonly used metrics to represent an assembly’s quality 

are contig length and contig count, contig length is not an exact indicator of accurate or 

inaccurate assembly (B Chevreux; Liu et al. 2012; Baker 2012), (Parra et al. 2009). 

Because during the assembly processes an assembler could simply mark a whole read as 

repeat, hence ignoring it fully. The optimal assembler should avoid building over-

assembly of reads into in silico chimaeras rather than expected contigs, and avoid the 

production of near-identical, largely overlapping contigs from allelic copies or error-

rich data in the contig building step (Istrail et al. 2012; Lin et al. 2011b; W. Zhang et al. 

2011; Parra et al. 2009; Z. Li et al. 2011; Margulies et al. 2005). 

Figure 4 demonstrates the contig length statistics. MIRA outputted the longest 

contigs for two organisms by showing a consistency that indicates MIRA’s aggressive 
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read merging step for the sake of longer contigs. In terms of consistency, Phrap also 

outputted the longest contig of size ~100Kb.  

CAP3 outputted the longest contig size compared to other assemblers, very 

short. In fact the expectation from  the CAP3 was to output much longer contigs than it 

did, and compared to other assemblers to hit the average (X Huang and Madan 1999). 

However taking into consideration that CAP3’s shortest outputted contig length was 

bigger than the other assemblers result, it raises suspicions to whether CAP3 can 

determine the low and high quality reads as it should. 

 

Figure 4. Minimum, maximum, first and third quartile length of the contigs from 5 
individual assembly of two plants’ genomes. Since the interval of min and 
max contig sizes is great to plot, even with the introduction of a log10 X axis, 
the chart was cut down and the peaks are not shown but the values are. Light 
blue represents Papaver assembly data, while dark blue represents Sesame 
assembly data. 
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 Another metric that is mentioned together with the contig length  is contig 

counts (Lin et al. 2011b; Z. Li et al. 2012; W. Zhang et al. 2011; Pop 2009a; Margulies 

et al. 2005).  

 MIRA outputted the highest contig count exceeding 73 thousand spanning ~62 

megabases, which is 13% of the raw reads. The least amount of contig count was 

outputted by Newbler  with 31 thousand, but spanning ~57 megabases that is 12% of 

the raw reads. Figure 5 represents contig sizes and contig counts. 

 

 

 

Figure 5. Contigs lengths clustered from 5 individual assemblies of Papaver 
somniferum L. genome. 

 

 Having contig lengths and counts might not clearly represent the assemblies 

overall size; in order to see that, a cumulative contig length comparison is given in 

Figure 6. For both of the organisms MIRA outputted the longest assembly where CAP3 

outputted the shortest. 

 Cumulative total assembled bases is not an exact indicator of accurate or 

inaccurate assembly, especially for de novo sequencing projects, in the absence of 

reference genome, longer assembled contigs could simply be overmerged reads 
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resulting because of a false set for determination of a valid overlap (Bastien Chevreux 

2005; Bastien Chevreux et al. 2004; Baker 2012; W. Zhang et al. 2011). 

 

 

 

Figure 6. Cumulative contig lengths clustered from 5 individual assemblies of Papaver 
somniferum L. genome. 

   

Figure 7 represent used reads of the raw reads in percentages. Used and unused 

read count percentages in an assembly while informative is not a valid metric itself, 

because of the heterogeneity of the raw data. Tagging a read as debris would result in an 

assembler not adding the read to the assembly pool, but this can simply be because there 

was not enough proof that the contig containing that read would represent real sequence 

(Istrail et al. 2004; Baker 2012; Margulies et al. 2005) 
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Figure 7. Used and unused read percents from 5 individual assemblies of two organism’ 
genomic data. 

 

To this point, basic statistics were displayed, but with the data presented thus far, 

it is still unclear why assemblers treat data so differently. For instance, while Newbler 

uses by far more reads in the assembly, it does not deliver the longest assembly in size. 

This simply can be explained by Newbler treatment of the reads; that it can divide reads 

and use those inner regions.  

Figures 9 and 10 represents overall coverage; meaning evidence that assemblers 

use to get the valid overlaps, and merge the reads. Those coverage statistics were 

generated by our own script; taking advantage of the .ACE formatted file that contains 

supporting information like reads used to construct that corresponding contig, every 

base’s quality scores, etc. We simply calculated the amount of read, read length that has 

been used to construct per contig and converted this into coverage information. Figure 8 

illustrates the coverage calculation. 
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Figure 8. Coverage calculation is performed as follows: the sequences that constitute a 
contig are put into order with respect to their start positions, without leaving 
out the overlapping regions. Incrementation of all indices by one of contig size 
array begin with the first sequences in a row. Incrementation continues till the 
end of smaller sequence, and with a new sequence starts new incremention of 
the array indices. The inner indices that were covered by many sequences will 
be incremented many times while an index will be incremented only once if it 
has only one sequence at that region. 

 

Figure 9. Coverage distribution of assembly results generated from 5 individual 

_______assemblies of Papaver’s genomic data.  

 

These represented results so far –excluding the coverage information- are 

supplied almost with every assembly study to provide quick information to the reader. 

But these statistics in reality do not reflect the whole. Since there is no reference 

genome available for de novo assembly statistics, researchers are pushed to rely on the 

reported data. 
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Figure 10. Coverage distribution of assembly results generated from 5 individual 

assemblies of Papaver’s genomic data.  
  

3.2. Mapping 

 

 In order to go beyond the knowledge the basic statistics provided, and more 

importantly to have an idea about the validness of the assemblies biologically, we opted 

to introduce a comparison step: assemblies vs. experimentally validated data that can 

assess the real outcome. 

 

3.2.1. Residual Overlap Calculation 

 

 Results showed that for 454 sequencing data, the safe threshold should be no 

more than 30 bp from both ends. Of all the assemblers under examination, CAP3 had 

the highest default set threshold with 50 bp, and results indicated that CAP3 assembly 

results still include potential overlaps, much more than the other assemblies.  
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Figure 11. Mapping results of all assemblers for Papaver data. 8% of the contigs had 
potential merging points, but was not taken into consideration, in the CAP3 
assembly. This might be the answer to why CAP3 could not output the 
longest contigs sizes, while other assemblers could. 

  

3.2.2. Mapping Singlets to Contigs 

 

 Mapping singlets to contigs analysis is another aspect of how overlap calculation 

might affect the total assembly. If an assembler cannot identify a valid overlap between 

two sequences, it might not take advantage of those. Of course, as stated before 

although an overlap was found that sequence might not be put into assembly for several 

reasons like unresolved layout problems, multi match points etc. (Cancer 2005). 
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Figure 12. Mapping singlets to contigs plotted into two axis; total match count and 
percentage of singlets matching contigs, of all singlets. 

 

 Results showed that CAP3 left more than 130 thousand singlets that could 

potentially change the course of the assembly drastically. From the statistical analysis it 

was shown that CAP3 left around 900 thousand of the raw sequences out of the 

assembly, and took advantage of only about 300 thousand raw sequences. This is by far 

the highest rate of sequences kept out of the assembly. 

 When it comes to lowest rate of singlet matching to contigs, Newbler performed 

as a prime tool. It was the tool which was able to take advantage of the most raw 

sequences, kept the lowest rate of the reads out of its assembly, around 300 thousand. 

Mapping singlets to contigs analysis showed that Newbler could identify the singlets 

most accurately among all tools.   

The percentage values in Figure 12 indicate the accuracy of each tool assigning a 

singlet as a real singlet. Newbler had the least amount of singlets after assembly, so the 

singlet-contig matches to all singlets ratio is the highest. 
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Figure 13. Overall 50% of the singlets in all assemblers were correctly identified. While 
MIRA seems to be the prime tool with identifying the true singlets, Newbler 
in fact performed much better by taking advantage of many more raw 
sequences into the assembly. 

 

 In order to truly reveal the information for each assembler, whether it could 

recognize the potential real singlets from the potential sequences which could be used in 

the assembly, the singlets with matches to contigs were further analyzed. Repeated 

inner regions, falsely called bases in the sequencing process (implanting Ns into bases 

where not enough evidence could be gathered) might be enough to tag a sequence as 

invaluable for assembly. 

 Of all assemblers, MIRA was the leading tool when it came to identify whether 

a sequence is a singlet. With more than 45 thousand accurately identified singlets, 

MIRA could correctly recognize more than 80% of the sequences in the pool of singlets 

matching contigs. Following MIRA, CAP3 recognized about 50% of the singlets 

correctly. This situation brings the question “Why CAP3 could identify singlets 

relatively well, but why it cannot take advantage of more raw sequences at the 

beginning of the assembly, and output this many unused sequences?”  Having observed 

the CAP3 outputs, it generally does not use parts of a sequence but tends to use it as a 

whole. This echoes the problem of setting a safe threshold for a valid overlap 

calculation. 
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3.2.3. Mapping Primer Pairs 

 

 Experimentally validated (amplified) primer pairs are good indicators of an 

assembly’s accuracy; since there is evidence that indicates the real sequence 

encapsulates the primers. Also wet lab experiments yield the product sizes for each 

primer pair, which can be expected to be satisfied by the optimum assembly. 

 

 

Figure 14. Primer mapping results plotted together;  the amount of primer pairs 
mapping to contigs and primer pairs that satisfied expected product sizes. 

  

 Results indicated that all assemblies could provide a circumstance where more 

than 80% of the primer pairs could be mapped. But with this analysis, the decisive 

comparison is the comparison of expected and present product sizes’. We tolerated 

±10% length deviance of expected product sizes before the calculation of the present 

product sizes. Phrap results showed less correspondence with expected product sizes, 

while Newbler showed the highest correspondence. 
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3.2.4. Mapping EST-cDNA Data 

 

 

 
 

 
Figure 15. EST- cDNA mapping results plotted altogether as minimum, 1st quartile, 3rd  
_________quartile and maximum lengths. 
  

 EST- cDNA mapping results indicated that while CAP3 assembly covered the 

least amount of EST- cDNA sequences, Newbler covered the most overall and it was 

50+% more than provided by CAP3. This result could be expected only if Newbler 

assembly was the longest assembly by means of cumulative contig length, or if it had 

the highest mean contig sizes. But for those two metrics Newbler outputted results were 

behind what MIRA outputted. So Newbler assembly covered more EST- cDNA 

sequences because it presented the largest assembly, but it might be because it took 

advantage by far of the vast amount of raw sequences at the stage of assembly. 
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Figure 16. Mapping results of EST- cDNA sequences to each assembly. 

 

 

3.3. Custom Assembly 

 

 After many analyses of the assemblies, we decided to fine tune the parameters 

with what we learned. For several reasons like; easier customization, rich features, 

being able to use the workstation resources to the end by means of taking advantage of 

all present calculation power and so on, we opted to proceed with MIRA.  

 Our workstation had 8 threads CPU, so we set MIRA to use all of the threads, 

hence speeding the processes. 

  First of all we set MIRA as not to clip the sequences, since we removed the 

adapter and linker sequences prior to assembly and also because the data we possess 

does not have enough coverage. MIRA has an option to run employed SKIM algorithm 

that will re-calculate overlaps for each pass, and we opted to redo the contig building 

steps 6 times. This is expected to overcome the misassemblies due to possible repeats. 

Having the mean size of our data, we set MIRA to take this value into consideration, 

saving some calculation time, especially at the stage of repeat recognition. 

 We set spoiler detection to run for each pass, which runs at the stage of repeat 

recognition and contig rebuilding. A spoiler can be either a chimeric read or a read that 

has unclipped long vector sequences still included, which in the end causes contigs not 
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to be merged, or not to take advantage of the entire sequence. We also set MIRA’s 

internal genomic pathfinder algorithm, which aids genome building processes.  

 We also forced MIRA to mask the repeats that are found more often than the 

median occurrence of common repeats thus aiding repeat recognition steps. MIRA has 

an embedded contig editing function, which we used, that is capable of recognizing the 

homopolymers, one of the deficiencies of 454 sequencing technology. 

 

 
Figure 17. Results that include the latest custom assembly of residual overlap 

calculation analysis. MIRA had proved its quality by means of the 
calculation overlaps efficiently, new setting made MIRA more sensitive and 
produced better results. 

 

 

 
 

Figure 18: Mapping results of primer pairs to the assemblies. 
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 Mapping primer pairs to the custom assembly resulted with the best results when 

compared to the results of the other assemblies. All primer pairs mapped to the new 

assembly and those mapping primer produced products that are almost as the same as 

what was achieved in wet lab experiments.  

 

 

 

 

Figure 19. Mapping results of EST- cDNA sequences to all assemblies. 
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Figure 20. EST- cDNA sequence coverage results of all assemblies. 

 

Mapping EST- cDNA sequences to assemblies analysis revealed that custom 

assembly settings were accurately defined, based on almost 410% higher cumulative 

coverage gained with respect to the earlier assembly with MIRA, indicating a 

verypromising coverage ratio.  
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CHAPTER 4 

 

CONCLUSIONS 

 

 Results showed that the very same data may become quiet different in various 

tools’ hand. Since calculation is done in silico, in the course of assembly processes the 

real outcome must be validated.  

 One of the obvious conclusions would be that defining an assembly’s quality 

with respect to contig length and count is not correct, and even might be deceiving. For 

higher accuracy, the load on the assembler should be lightened at the stage of 

sequencing, by running higher coverage processes, which will drastically give more 

instructions to the assembler to perform less defective assembly.  

 Especially instructing for 454 sequencing, it is not feasible to set the threshold 

for overlap calculation processes higher than 30 bp. Also it is because raw sequences 

might partially be used, or some sequences might have been fairly set and merged into 

contigs, contig rebuilding steps should be iterated more than once. This step greatly 

improves the quality of the assembly, yet costs more calculation time. 
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CHAPTER 5 

 

OUTLOOK 

 

Through the study we performed over 100 assemblies, for only one of the raw 

datasets, Papaver. Some of those assemblies were performed with the newer or older 

versions of the tools with default parameters, while most of them were performed with 

custom set parameters.  

We would like to analyze all those assemblies and have a table with the results 

of analysis proposed in this study. Mapping processes and especially mapping EST- 

cDNA sequences to the assemblies individually takes a good amount of time and 

calculation power. From the logs we have from earlier runs project that the completion 

of all those analysis will not be feasible  in less than a couple of months. Hence we 

would like to collect the data in time and when ready, we will run a covariance analysis 

in order to elaborate the results. This analysis will allow us to rate and order the current 

and proposed metrics together. Having the metrics ordered, a researcher without means 

and time for these calculations, might have a better understanding with which metrics 

an assembly should present.   

 After we finalize the first step, we would like to publish the best assembly of 

those two organisms as draft genomes, with partially annotations including functional 

annotations etc. 
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