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ABSTRACT 

 

UNLIMITED-WORKSPACE TELEOPERATION 

 

Teleoperation is, in its brief description, operating a vehicle or a manipulator 

from a distance. Teleoperation is used to reduce mission cost, protect humans from 

accidents that can be occurred during the mission, and perform complex missions for 

tasks that take place in areas which are difficult to reach or dangerous for humans. 

Teleoperation is divided into two main categories as unilateral and bilateral 

teleoperation according to information flow. This flow can be configured to be in either 

one direction (only from master to slave) or two directions (from master to slave and 

from slave to master). In unlimited-workspace teleoperation, one of the types of 

bilateral teleoperation, mobile robots are controlled by the operator and environmental 

information is transferred from the mobile robot to the operator. Teleoperated vehicles 

can be used in a variety of missions in air, on ground and in water. Therefore, different 

constructional types of robots can be designed for the different types of missions.  

This thesis aims to design and develop an unlimited-workspace teleoperation 

which includes an omnidirectional mobile robot as the slave system to be used in further 

researches. Initially, an omnidirectional mobile robot was manufactured and robot-

operator interaction and efficient data transfer was provided with the established 

communication line. Wheel velocities were measured in real-time by Hall-effect sensors 

mounted on robot chassis to be integrated in controllers. A dynamic obstacle detection 

system, which is suitable for omnidirectional mobility, was developed and two obstacle 

avoidance algorithms (semi-autonomous and force reflecting) were created and tested. 

Distance information between the robot and the obstacles was collected by an array of 

sensors mounted on the robot. In the semi-autonomous teleoperation scenario, distance 

information is used to avoid obstacles autonomously and in the force-reflecting 

teleoperation scenario obstacles are informed to the user by sending back the artificially 

created forces acting on the slave robot. The test results indicate that obstacle avoidance 

performance of the developed vehicle with two algorithms is acceptable in all test 

scenarios. In addition, two control models were developed (kinematic and dynamic 

control) for the local controller of the slave robot. Also, kinematic controller was 

supported by gyroscope.   
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ÖZET 
 

SINIRSIZ ÇALIŞMA ALANLI TELEOPERASYON 

 

En basit tabiriyle bir manipülatörü veya mobil robotu uzaktan kontrol etmek 

anlamına gelen teleoperasyon, görev maliyetini düşürmek veya görev sırasında açığa 

çıkabilecek kazalardan insanları korumak amacıyla ve otonom robotlarla 

gerçekleştirilmesi güç görevlerde ve insanların ulaşamayacağı kadar uzak ve tehlikeli 

alanlardaki görevleri gerçekleştirmek için kullanılır. Teleoperasyon bilgi akışının 

yönüne göre, tek yönlü ve iki yönlü teleoperasyon olmak üzere iki ana guruba ayrılır. 

İki yönlü teleoperasyon çeşidi olan sınırsız çalışma alanlı teleoperasyonda görev 

operatör kontrolündeki mobil robotlarla (telerobot) gerçekleştirilmektedir. Telerobotlar 

havadaki karadaki ve denizdeki birçok görevde kullanılabilirler. Bundan dolayı, farklı 

alanlardaki farklı görevler için geliştirilmiş birçok robot mevcuttur.  

Bu tezde, araştırmalarda kullanılabilecek limitsiz çalışma alanlı bir 

teleoperasyon sistemi geliştirilmesi amaçlanmaktadır. Ayrıca tasarlanan sistemde 

kullanılacak robotun her yöne bağımsız hareket edebilen bir mobil robot olması 

istenmiştir. Bundan dolayı teleoperasyon sistemini oluşturmadan önce bir mobil robot 

üretilmiş ve robot ile operatör arasındaki etkileşim karşılıklı olarak bir iletişim hattı 

üzerinden sağlanmıştır. Mobil robotun hareket kabiliyetine uygun bir dinamik engel 

algılama ve engellerden kaçınma sistemi geliştirilmiştir. Daha güvenli bir teleoperasyon 

için iki farklı engelden kaçınma algoritması oluşturulmuş ve test edilmiştir. 

Algoritmalar için gerekli olan robot ile engel arasındaki mesafe bilgisi robot üzerine 

yerleştirilen sensörlerden alınmış ve engel algılama testleri operatörün kullandığı güç 

geri bildirimi özellikli bir yönetme kolu ile gerçekleştirilmiştir ve engelden kaçınma 

testleri sonucunda geliştirilen mobil robotun engelden kaçınma potansiyeli uygun 

bulunmuştur. Ayrıca, dinamik ve kinematik olmak üzere iki farklı robot kontrolü 

tasarlanmıştır. Robotun kontrolü için gerekli olan tekerlek hız bilgisi robot şasisi 

üzerine yerleştirilmiş olan Hall sensörleri yardımıyla gerçek zamanlı olarak ölçülmüş ve 

kinematik kontrol jiroskop ile desteklenmiştir.  
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CHAPTER 1 

 
 

INTRODUCTION 

 

 
Teleoperation is operating vehicles or manipulators from a distance. The first 

modern teleoperated robot was developed by R. Goertz and a group of researchers at the 

Argonne National Laboratory in 1950’s and applied to the first nuclear reactor in the 

world. Since then, numerous teleoperated systems have been developed to achieve tasks 

in hazardous or unreachable environments such as nuclear reactor and space 

applications. Nowadays, teleoperated robots also are used in research, telesurgery, 

underwater applications and military. 

A teleoperation system includes two subsystems and a communication line 

(Figure 1.1). One of these subsystems, called master, is used by an operator and it 

acquires the operator’s demand. This demand can be in terms of motion and/or force. 

The other subsystem, called slave, is driven by operator’s demands. Communication 

line provides data transfer between the master and the slave subsystems. In many cases, 

communication lines performance directly affects task performance. Reliable 

communication is required for especially critical tasks such as telesurgery. 

 

 

                          (a)                                                  (b) 

 

Figure 1.1. A teleoperation system: (a) Master subsystem, (b) Slave subsystem  

(Source: Fong, et al. 2001) 
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Teleoperation systems are divided into two main categories as unilateral and 

bilateral teleoperation.  

 

1.1. Unilateral Teleoperation 

 

Unilateral teleoperation block diagram is shown in Figure 1.2. In unilateral 

teleoperation, slave subsystem is driven by the operator’s demands (position, velocity, 

or force) which are acquired through master subsystem. Information flow is only from 

master to slave over the communication line. In this setting, there is no feedback from 

the slave to inform the operator about the slave environment conditions. 

 

 

 

Figure 1.2. Unilateral teleoperation block diagram 

 

1.2. Bilateral Teleoperation 

 

In bilateral teleoperation, information flow is on two directions. Information 

flow is not only from master to slave but also it is from slave to master. Bilateral 

teleoperation system consists of slave and master subsystems and communication line 

which provides data transfer between two subsystems. In this system, the slave 

subsystem is the driven by operator’s commands and the necessary feedback (visual, 

force, sound, position, temperature and radiation) can be sent from the slave to the 

master to inform operator about the environment or assist the operator while in 

operation (Figure 1.3). Bilateral teleoperation increases the effectiveness of human 

skills for more dexterous manipulation, so a bilateral control system improves 

maneuverability of teleoperation systems. 

 

 

 

Figure 1.3. Bilateral teleoperation block diagram 
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According to workspace of the slave subsystem, bilateral teleoperation is divided 

into two categories: limited workspace teleoperation (telemanipulation) and unlimited-

workspace teleoperation (vehicle teleoperation) (Dede, 2007).  

 

1.2.1. Limited Workspace Teleoperation (Telemanipulation) 

 

In a slave subsystem, if parallel or serial manipulators are used, this system is 

called limited workspace teleoperation or telemanipulation since these types of 

manipulators have limited workspaces.  

Macro-micro manipulation in Kaneko, et al.’s work (1998) can be given as an 

example of the limited workspace teleoperation (Figure 1.4). Macro-micro teleoperation 

technology is an important part of constructing micro machines. In the macro-micro 

manipulation, the operator controls the slave robot in the micro world by operating the 

master robot in the macro world in order to assemble micro parts or perform any other 

works in the micro world by using operator’s skills.  

 

 

 

Figure 1.4. Macro-micro teleoperation  

(Source: Kaneko, et al. 1998) 

 

Telesurgery (Figure 1.5) can be given as another example of limited workspace 

teleoperation. Today, in the surgical area, telesurgery started to be used more and more. 

Telesurgery, also known as remote surgery, allows the surgeon to perform surgery on a 

human patient from remote operating room. One of the first surgical operations 

achieved by teleoperated robots is the Lindbergh operation (Butner, et al. 2003). In this 

operation, surgeon performed operation on patient, who was located in Strasburg 

France, from NY USA. Main advantages of the telesurgery are: 
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 Providing surgical care to patients who would otherwise go untreated 

 Improving the overall quality of care by enabling expert surgeons to proliferate 

their skills more effectively 

 Reducing the cost by eliminating unnecessary patient and surgeon travel. 

(Butner, et al. 2003) 

 

 

                               (a)                                                       (b)            

 

Figure 1.5. The Zeus robot: (a) Master Side (Surgeon’s console) (b) Slave Side (Patient-

Side Robot) (Source: Butner, et al. 2003) 

 

1.2.2. Unlimited-workspace Teleoperation (Vehicle Teleoperation) 

 

If mobile robots or any kind of mobile platforms, which have unlimited-

workspace, are used as the slave subsystem, this teleoperation system is defined as the 

unlimited-workspace teleoperation or vehicle teleoperation.  

Unlimited-workspace teleoperation firstly arose in the early 1900’s. However, it 

was not widely used until 1970’s. Nowadays, unlimited-workspace teleoperation 

systems are used in many different tasks on ground, in air and underwater. Vehicles 

used in different types of unlimited-workspace teleoperation applications are named as 

numerous terms such as unmanned air vehicle (UAV), remotely operated vehicle 

(ROV), unmanned ground vehicle (UGV).  
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1.2.2.1. Air Vehicles  

 

Drones, also called Remotely Piloted Vehicles (RPV), are the first teleoperated 

air vehicles. Today, Unmanned Air Vehicles (UAVs) are the most common teleoperated 

air vehicles. United States tilt-rotor unmanned air vehicle, the Bell Eagle Eye, can be 

seen in Figure 1.6. UAVs are pilotless aircrafts which are controlled by human operator 

on the ground or master plane. Compared with manned air vehicles, UAVs are small 

weight and low cost air vehicles and they are suitable for dull, dirty and dangerous tasks 

due to its well concealment ability.  In military, UAVs are used for reconnaissance and 

target identification tasks. Also, many UAVs have been used in combat (Fong, et al. 

2001).   

 

 

 

Figure 1.6. Bell Eagle Eye UAV  

(Source: Cheng, et al. 2007) 

 

1.2.2.2. Underwater Vehicles 

 

Today, remotely operated vehicles (ROVs) perform tasks that take place in 

deeper environment or in environments that are risky for manned submersibles or 

drivers. Majority of the ROVs are used in oil-gas industry and others are used in survey, 

inspection, oceanography and marine salvage tasks. The main reason for using ROVs in 

the underwater operations is decreasing the mission costs and risk for human health. 
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A human-sized ROV with dual arm and control station, which is shown in 

Figure 1.7 on bottom right, were developed by Sakagami, et al. (2010). It is built to 

perform biological and geological research, and archaeological explorations in Lake 

Biwa, a lake in Japan (Sakagami, et al. 2010). 

 

 

 

Figure 1.7. A human-sized ROV with a dual-manipulator system  

(Source: Sakagami, et al. 2010) 

 

1.2.2.3. Ground Vehicles 

 

Teleoperated ground vehicles can be classified into three categories as 

unmanned ground vehicles (UGVs), exploration rovers and hazardous duty vehicles. 

Exploration rovers are ground vehicles developed for scientific purposes such as sample 

collection. Space robots can be given as an example of exploration rovers. Launching 

astronauts in space may be extremely difficult and dangerous in many situations. 

Therefore, autonomous space robots are employed in dangerous tasks and unknown 

territory instead of astronauts. However, they cannot accomplish all missions although 

they include high technology. Therefore, teleoperated space robots, which are operated 

from earth or space station by human operator, are used instead of autonomous space 

robots.  

The first teleoperated space robots were Soviet Lunokhods (Figure 1.8). In the 

early 1970’s, Soviet Union sent these robots to explore moon surface. After its 

achievement, National Aeronautics and Space Administration (NASA) has developed 
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various space vehicles. Today, space robots are an important part of NASA’s Mars 

exploration duties (Fong, et al. 2001).  

 

 

                          (a)                                                               (b) 

 

Figure 1.8. (a) Lunokhod I (Exploration Rover), (b) Control Station  

(Source: Fong, et al. 2001) 

 

Unmanned ground vehicles (UGVs) are used in various applications in military 

or civil areas, such as surveillance or rescue. Moreover, in military, UGVs are utilized 

in target identification tasks to increase the soldier’s capabilities. UGVs can navigate in 

a wide variety of terrains. İZCİ, which is developed by ASELSAN, is an example of 

UGV (Figure 1.9).     

 

 

 

Figure 1.9. Unmanned ground vehicle developed by ASELSAN  

(Source: Aselsan 2012) 

 

Hazardous duty vehicles are designed for hazardous duties which are extremely 

dangerous for human such as bomb disposal, assessment of nuclear reactors and mine 

rescue. In Figure 1.10, a bomb disposal robot developed by German Army is illustrated. 
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Figure 1.10. Bomb disposal robot of German Army  

(Source: Wikipedia 2012) 

 

Researches are still being conducted to improve performances of these robots 

while on duty, and the interaction between robot and human operator. Robot 

performance is directly related to how well robot moves. Thus, special wheels, which 

provide omnidirectional mobility, have been designed to increase robot moving 

capability. 

 

1.3. Omnidirectional Mobility 

 

Omnidirectional means an ability of a body to move instantaneously in any 

direction from any configuration. Ground vehicles operate on planar spaces such as 

warehouse or factory floors, wide variety of terrains, or roads. In two dimensional 

space, a rigid body, robot, has three degrees of freedom (DoF). Omnidirectional 

vehicles can be translated in two directions and rotated about the vertical axis in an 

uncoupled way. In contrast, conventional vehicles cannot control every degree of 

freedom independently. 

Conventional wheels cannot move in a parallel direction to their axis. This non-

holonomic constraint of the wheel inhibits vehicles from moving perpendicular to its 

drive direction. In two dimensional space, non-holonomic vehicles with car-like 
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Ackerman steering or differential drive system can reach every location and orientation, 

but it needs complex path planning and complicated maneuvers. Omnidirectional 

vehicles are more advantages than conventional vehicles. They have great 

maneuverability so they can follow complex trajectories. Moreover, omnidirectional 

vehicles can perform tasks in narrow environments that have static and dynamic 

obstacles, such as hospitals, warehouses, or factories.   

Omnidirectional vehicles can be classified into two categories with respect to 

their special wheel design providing omnidirectional mobility: conventional wheel 

design and special wheel design. 

Conventional wheels used in omnidirectional mobile platforms are caster and 

steering wheels (Figure 1.11). These types of wheels have larger load capacity and 

higher tolerance for ground irregularities than other special wheels. On the other hand, 

these wheels cannot provide completely omnidirectional mobility. Therefore, vehicles 

using steering wheels are also called pseudo-omnidirectional (Connette, et al. 2008). If 

the platform is required to move in another direction than driving direction, it can move 

only after motors reorient wheels on the desired direction. 

 

  

                                           (a)                                         (b) 

 

Figure 1.11. Conventional wheels; (a) Castor wheel, (b) Steering wheel  

(Source: Condene Castor and Wheels 2012) 

 

Special wheels used in omnidirectional vehicles include universal wheels, 

mecanum (Swedish) wheels and ball wheels (Figure 1.12). All the three wheels are 

based on a concept that achieves traction in one direction and allow passive motion in 

another. Universal wheels have small passive rollers located around outer diameter of 

the wheel. These wheels allow parallel motion of the wheel with respect to its rotation 

axis because rollers are mounted perpendicular to this axis. Mecanum wheel design is 

similar to universal wheels. Mecanum wheel rollers are mounted on outer diameter of 
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the wheel with 45°. To provide omnidirectional mobility, universal wheels are mounted 

on vehicles with square or triangle configuration with four or three wheels. However, in 

vehicles with mecanum wheels, four mecanum wheels must be attached on the vehicle 

like car wheels. Ball wheels (Figure 1.13) consist of an active roller ring driven by a 

motor and a ball that is capable of rotating about any axis instantaneously. Power is 

transmitted via friction from roller ring to ball.  

 

  

(a)                                        (b)                                      (c) 

 

Figure 1.12. Special wheels;  (a) universal wheel, (b) double universal  wheel,              

(c) mecanum wheel (Source: Vexrobotics 2012) 

 

 

 

Figure 1.13. Omnidirectional vehicle with ball wheels  

(Source: Ishida, et al. 2010) 

 

1.4. Objective of the Thesis 

 

The aim of this thesis is to design an unlimited-workspace teleoperation system 

to be utilized in teleoperation related research. As mentioned above, a teleoperation 
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system consists of two subsystems; master and slave. Therefore, another aim of the 

thesis is to develop an omnidirectional indoor ground vehicle as the slave subsystem. 

 The main problem of the omnidirectional vehicles that are configured with off-

the-shelf omnidirectional wheels is that wheel slip occurs. Thus, omnidirectional 

vehicle unwillingly loses its orientation during motion due to the slip problem. In order 

to compensate for this, control of the vehicle is to be closed-loop control supported with 

gyro sensor attached on the mobile robot.  

Also, the vehicle should have a reliable obstacle avoidance system to carry out 

teleoperation in unknown environments. A dynamic obstacle detection system, which is 

suitable for omnidirectional vehicles with reduced number of the sensors, and two 

different obstacle avoidance algorithms are proposed to resolve this problem. One of the 

algorithms is the semi-autonomous obstacle avoidance algorithm which is capable of 

avoiding collusion without sending any information to the operator about the motion of 

the robot while avoiding the obstacle. The other algorithm is force reflecting obstacle 

avoidance which transmits obstacle information to the host side. This information 

involves where and how far the obstacle is and is displayed through force reflecting 

joystick that is used by the operator. 

 

1.5. Outline 

 

In the following Chapter, firstly, omnidirectional ground vehicles and their 

usage areas are investigated and discussed. Secondly, force reflecting bilateral 

teleoperation systems in literature are explained. Then, obstacle avoidance techniques 

are presented. Finally, components used in mobile platforms; locomotion components, 

sensors which are utilized in obstacle avoidance systems and gathering information 

about environment or inner states of the robots, batteries, and software and hardware 

systems are explained. 

In Chapter 3, firstly, design criteria of teleoperation system are listed. In this 

study, an omnidirectional indoor ground vehicle was designed as slave subsystem in 

order to execute an unlimited-workspace teleoperation system. Thus, possible designs 

for slave subsystem are discussed and compared. The selected parts for the slave 

subsystem are described. Also, provided communication line through Matlab xPC 

Target toolbox and master subsystem are described. 
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In the Chapter 4, Equations of motion of developed slave subsystem are 

deducted. After that, two control algorithms are created for developed system; 

kinematic control and dynamic control. Also, two obstacle avoidance algorithms are 

presented; semi-autonomous obstacle avoidance and force reflecting obstacle 

avoidance. 

In the Chapter 5, the control and obstacle avoidance algorithms test results are 

presented and discussed. Finally, in Chapter 6, conclusions of the thesis are made and 

possible future works which are related with developed unlimited workspace 

teleoperation system are addressed. 
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 
Unlimited-workspace teleoperation is divided into three categories with respect 

to the workspace of the vehicles; air vehicles, underwater vehicles and ground vehicles. 

In this thesis, the focus is on the teleoperation of ground vehicles, specifically 

omnidirectional indoor ground vehicles.  In the literature, most of the research has been 

conducted to improve the performance of the omnidirectional robot and interaction 

between robot and environment or robot and human operator. The survey on these is 

presented in this Chapter. 

Components of the system should be defined since one of the aims of this study 

is to develop an unlimited-workspace teleoperation system. Therefore, in this Chapter, 

necessary components of the slave subsystem to provide desired mobility and to acquire 

information about environment and inner states of the slave subsystem are explained. 

Literature survey is executed under four headlines: 

 Omnidirectional indoor ground vehicles  

 Force reflecting bilateral teleoperation 

 Obstacle avoidance 

 Parts of mobile robot systems 

 

2.1. Omnidirectional Indoor Ground Vehicles 

 

Many researchers have worked on wheeled or tracked mobile mechanisms to 

improve their teleoperated or autonomous robot mobility. Four wheeled car-like driving 

mechanisms or skid-steer mechanisms are the most common driving systems for the 

wheeled mobile robots. However, these types of robots cannot move efficiently in 

narrow environments, because their wheel mechanisms have non-holonomic constraints 

which prevents sideways movements. For better motion capability, omnidirectional 

wheel mechanisms have been developed. Omnidirectional mobile platforms can move 

any direction without changing wheel direction due to special architecture of 

omnidirectional wheels. Commercial omnidirectional wheels used in omnidirectional 
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vehicles can be classified into three categories; universal wheels, mecanum wheels and 

conventional wheels. In addition, many special wheel designs have been proposed to 

provide omnidirectional mobility. 

In a study, adaptive dynamic motion controller for position control and 

trajectory tracking of the omnidirectional mobile robot equipped with four independent 

omnidirectional wheels equally spaced at 90 degrees from one to another was developed 

(Tsai, et al. 2010). In this work, universal wheels were used to provide omnidirectional 

mobility (Figure 2.1). Omnidirectional vehicles using universal wheels can be three or 

four wheeled configuration. However three wheeled systems may have stabilization 

problems because of the triangular ground contact while climbing ramps. Thus, four 

wheeled configuration was chosen in the study, although it has one extra degree of 

freedom (DoF). Proposed algorithm can be adapted in autonomous mobile robots such 

as home-care robots, tour-guided robots, reception robots or nursing-care robots.  

       

 

(a) (b) 

 

Figure 2.1. (a) Omnidirectional four-wheeled mobile robot, (b) Four wheels 

configuration (Source: Tsai, et al. 2010) 

 

Another example of mobile robot with universal wheels is shown in Figure 2.2. 

In a similar research on this vehicle (Purwin, et al. 2005), an algorithm to calculate near-

optimal minimum time trajectories was created. Vehicle dynamics, limited friction, and 

weight transfer are taken into account in the proposed algorithm. To prove the 
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efficiency of the algorithm, the algorithm was adapted to a real vehicle of the Cornell 

RoboCup system.  

 

 

(a) (b) 

 

Figure 2.2. (a) Cornell RoboCup robot, (b) Robot wheelbase  

(Source: Purwin, et al. 2005) 

 

RoboCup is an international joint project to promote Artificial Intelligence (AI), 

robotics, and related fields. The main focus of the RoboCup competitions is the game of 

football/soccer, where the research goals concern cooperative multi-robot and multi-

agent systems in dynamic adversarial environments. All robots in this league are fully 

autonomous. The games also serve as a great opportunity to educate and entertain the 

public around science and technology issues. Improved robot by Hibikino-Musashi 

team which is one of the member of RoboCup is illustrated in Figure 2.3. This robot has 

a three universal wheeled omnidirectional movement mechanism, omni-vision system 

and ball-kicking mechanism. Because it has omnidirectional universal wheels, it has 

reliable mobility and maneuverability (Takemura, et al. 2008). 

In 1979, Bengt Ilon, who is a Swedish engineer, invented mecanum wheel which 

is also called Swedish wheel. The mecanum wheels have the freerolling sub-wheels 

positioned at an angle offset from the wheel rotation around its circumference. Due to 

its special characteristic, it can be moved forward and backward like traditional wheels. 

In addition, it enables sideway movements by small rollers attached outer diameter of 

the wheel. If two motions are combined, the mobile robot can move along any desired 

direction and orientation. (Han, et al. 2010)    
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Figure 2.3. Omnidirectional soccer robot developed by Hibikino-Musashi  

(Source: Takemura, et al. 2008) 

 

Mecanum wheels are very suitable for forklifts and wheelchairs. In the work of 

Han et al. (2009), mecanum wheels were used on a lifting system. Commercial 

mecanum wheels utilized in mobile robots consist of six rollers, so, new mecanum 

wheels were developed as suitable for lifting due to gap between rollers may cause 

instability of the control of the mobile robot. Mecanum wheels are shown in Figure 2.4.  

 

  

 

Figure 2.4. Mecanum wheel  

(Source: Han, et al. 2009) 

 

Developed lifting system with mecanum wheels is 552mm in width, 615mm in 

length and 935mm in height. Additionally, weight of the robot is about 90kg. The lifting 

robot and its six main parts are displayed in Figure 2.5. Mobile base has four suspension 

sets, 4 Mecanum wheels, 4 geared DC motors, and batteries. Driving control box has a 

DSP control board, 5 motor drivers, a laptop, a desktop 3 degrees of freedom haptic 

interface and a linear unit that has about 400mm stroke. 
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Figure 2.5. Lifting robot  

(Source: Han, et al. 2009) 

 

Wheelchairs provide action for elderly or handicapped people. Especially, the 

usage of electronic wheelchairs has been increased rapidly in order to support the 

mobility and activity without needing any people to thrust. On the other hand, 

commercial electronic wheelchairs used conventional wheels are not capable of moving 

efficiently in narrow and crowded environments. Therefore, wheelchairs should be 

improved and they must have effective maneuverability. To increase the movement 

performance of wheelchairs, omnidirectional wheels can be utilized to provide mobility. 

An omnidirectional wheelchair, also called 4WD (four wheel drive) 

omnidirectional wheelchair, can be seen in Figure 2.6. This wheelchair is equipped with 

two omnidirectional wheels in the front and two normal wheels in rear. All four wheels 

are mounted on same side of the chair. To provide omnidirectional mobility, three 

motors are used: two motors for traction and one motor mounted on 4WD mechanism 

for rotating chair. Additionally, two parallel wheels on the rear of the wheelchair are 

off-centered from the steering axis. Hence, holonomic motion of the wheelchair is 

provided by controlling the two parallel drive wheels in such a way that the center of the 

chair base to translate to arbitrary direction from arbitrary configuration of the drive 

unit. (Wada, et al. 2008) 
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Figure 2.6. 4WD omnidirectional wheelchair  

(Source: Wada, et al. 2008) 

 

Also, omnidirectional mobility can be provided with conventional wheels; castor 

wheels and steering wheels. These wheels may be more appropriate than the special 

wheels due to its larger load capabilities and higher tolerance for ground irregularities. 

As an example of pseudo-omnidirectional vehicle AZIMUT-3 can be seen in Figure 2.7. 

AZIMUT-3 consists of eight actuators which provide locomotion; four for propulsion 

and four for steering the wheels, which can rotate 180 degrees around their steering 

axis. (Chamberland, et al, 2010) 

Another example of vehicle with conventional wheels can be seen in Figure 2.8. 

Udengaard, et al. in 2007, from Massachusetts Institute of Technology, proposed an 

omnidirectional vehicle in rough terrains. Almost all vehicles used active split offset 

casters (ASOCs) are designed for flat or smooth terrains in indoor applications. In their 

work, they presented kinematic analysis of an omnidirectional mobile robot which is 

driven by ASOC integrated suspension system, along with an analysis of isotropy 

characteristics of the robot in rough terrain.  
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Figure 2.7. AZIMUT-3 pseudo-omnidirectional vehicle  

(Source: Chamberland, et al. 2010) 

 

 

 

Figure 2.8. ASOC-driven omnidirectional mobile robot  

(Source: Udengaard, et al. 2007) 

 

Many researchers have worked to investigate the new concept omnidirectional 

wheels, because commercial omnidirectional wheels based on small passive rollers have 

some weak points. These wheels cause some problems while operating environments 

which include gaps and steps. These kinds of environments can be found excessively in 

hospitals, offices and houses. To deal with this problem, designed spherical wheel 

(omni-ball) can be seen in Figure 2.9. Thanks to this concept, while wheel rotates about 

wheel rotation axis, hemispheres allow passive motion on an axis which has an angle 

among active rotation axis. (Tadakuma, et al. 2007) 
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Figure 2.9. Spherical wheel ‘‘Omni-ball’’  

(Source: Tadakuma, et al. 2007) 

 

2.2. Force Reflecting Bilateral Teleoperation 

 

Teleoperation systems provide human operator who uses master subsystem to 

perform successfully tasks with slave subsystem in remote environment. Teleoperated 

robots have been widely utilized to perform complex tasks in dirty and hazardous 

environments for humans such as military applications, mines, underwater and universe 

exploration tasks. To get information about environment such as temperature, humidity, 

or nearby objects, teleoperated robots have various kinds of cameras and sensors. In 

addition, teleoperation systems should have a reliable communication line to transfer 

information about the environment and control signals. 

Only vision system consisting of a camera and a monitor is not enough to 

perceive whole environment because cameras are restricted in viewing angles or depth 

information. Therefore, user interfaces including multimodal information have been 

developed for better teleoperation. One of these, haptic interfaces with force feedback 

can be used in order to improve the teleoperation performance.  

Aa mobile robot teleoperation was achieved through haptic interface by Diolaiti, et al.  

in 2002. In this research, authors considered several important aspects such as the non-

holonomic constraint of the mobile robot, the need to detect the presence of obstacles by 

means of low-cost sensors, the stability of the overall system and the possible presence 

of communication time delays. Overview of the system can be seen in Figure 2.10. The 

data is collected by the sonar sensors mounted on pioneer mobile robot in order to build 

local map and detect obstacles on the surrounding of the robot. Virtual interaction force 
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between mobile robot and obstacle is computed by spring and damper model and this 

interaction force is sent by User Datagram Protocol (UDP). In addition, perception of 

the obstacles by operator is provided by PHANTOM haptic interface. In a similar study 

performed by Park et al. in 2003, six ultrasonic sensors to detect obstacles and measure 

distances and Wingman force joystick to transmit interaction forces were utilized.  

 

 

Figure 2.10. Overview of force reflecting teleoperation system  

(Source: Diolaiti, et al. 2002) 

 

Rösch, et al. in 2002, a joystick, which has force feedback feature, was used to 

perceive interaction between robot and obstacle. To measure interaction force among 

robot and obstacle, the authors used a force sensor. In addition, they proposed a 

communication line over the internet. developed teleoperation system is displayed in 

Figure 2.11.  

 

 

 

Figure 2.11. Developed teleoperation system  

(Source: Rösch, et al. 2002) 
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In the study by Horan, et al. in 2007, a force reflecting teleoperation system with 

tracked outdoor mobile robot was developed.  The control architecture of this system is 

shown in Figure 2.12. The interaction information among robot and obstacle was 

collected by sonar range finders mounted on front side of the robot. Thanks to this 

information, operator’s feelings about environment were increased via a haptic 

interface. 

 

 

 

Figure 2.12. Left: Robot control architecture Right: Teleoperator control station system 

architecture (Source: Horan, et al. 2007) 

 

2.3. Obstacle Avoidance  

 

While developing a teleoperated or autonomous vehicle, one of the most 

important issues is to create a reliable obstacle avoidance algorithm. In many 

applications, robots get images from environment via camera and send these image data. 

According to the images, operator is informed about the location of the robot and 

objects near it. However, a camera mounted on one side of the robot is not enough to 

notice obstacles and unexpected situations. Therefore, mobile robots operating in 
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remote environments should have reliable obstacle avoidance algorithm. Therefore, 

many different types of sensors have been used. In addition, many researchers have 

investigated the different collision avoidance strategies.   

In the work by Kim et al. in 2006, hybrid autonomous/teleoperated strategy for 

reliable outdoor navigation was developed (Figure 2.13). In this work, they used laser 

range finder to measure the distance from the mobile robot to the surrounding objects. 

This sensor is appropriate for non-holonomic vehicles. According to their improved 

strategy, if the robot controlled by operator faces with an obstacle or unexpected 

situations, the robot changes the control mode in four steps:   

 The mobile robot sends a warning message to the teleoperator, 

 It changes from teleoperation mode to autonomous mode, 

 It automatically performs path planning and avoids the obstacles, and 

 After avoiding the obstacles or the collision situation, it returns to teleoperation 

mode and the teleoperator has the control again. 

 

 

 

Figure 2.13. Improved obstacle avoidance strategy  

(Source: Kim, et al. 2006) 

 

In another work by Cho et al. in 2010, the virtual impedance method was used to 

avoid from dynamic and static obstacles. This method modifies general impedance for 
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mobile robot navigation with generated virtual impedance from obstacles. (Cho, et al. 

2010) Figure 2.14 is shown relation among mobile robot goal position and obstacle 

which is modeled by spring and damper model. This calculated virtual impedance is 

used to reflect environmental situations via force feedback joystick. In addition, they 

used 16 ultrasonic sensors fixed on mobile robot with 22.5 degree to perceive obstacles.  

The virtual force (Fb) for both static and dynamic obstacles is calculated as; 

 

                                            ∑       
  
     ∑       

  
                                               (2.1) 

 

where ns and nd are the numbers of static and dynamic obstacles, respectively, and 

virtual force for static obstacles (Fos) and virtual force for dynamic obstacle (Fod) are 

computed with using the following virtual impedance model; 
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Figure 2.14. Virtual impedance model  

(Source: Cho, et al. 2010) 
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where p0 (85 cm) represents the threshold for collision avoidance and should be kept 

smaller than the sensible range of the ultrasonic sensors 3 m, the collision vector  ⃗i is 

defined as a normal vector from an obstacle to the mobile robot,  ⃗i,unit is its unit vector, 

and Δ ⃗i is defined as the difference between the current and previous collision vectors. 

Also, Ks,i is a spring coefficient and Ds,i is a damper coefficient of the virtual impedance 

model. The value of Fod can be obtained by replacing “s” with “d”. (Cho, et al. 2010) 

In Figure 2.14, Fm is the traction force created by the operator via joystick. 

When the sensors measure distance between the mobile robot and obstacle or obstacles 

that is smaller than threshold, virtual impedance algorithm gives a virtual force vector 

(Fb). Then, mobile robot faces the Fs direction which is the combination of the traction 

force and the virtual force, until it avoids from obstacle.  

In a similar work by Sohn, et al. in 2006, laser range finder (LRF) was used to 

measure the distance among the robot and the obstacle. In their algorithm, the robot 

changes its orientation according to the obstacle location.  (Sohn, et al. 2006) 

In another study by Chao et al. in 2009, an image processing approach for real-

time target tracking and obstacle avoidance for mobile robot navigation in an indoor 

environment was proposed. In this study, the two CCD cameras were used to measure 

the relative distance of the target and obstacles from the mobile robot. Figure 2.15 

shows triangulation method to measure distance with two cameras. (Chao, et al. 2009) 

 

 

 

Figure 2.15. Triangulation of two parallel cameras  

(Source: Chao, et al. 2009) 
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In the Figure 2.15 center of the two cameras are parallel, b is distance between 

cameras, XL and XR are the distances from the center of the cameras to target and xL and 

xR are projective length of the these distances on the image planes. The maximum visual 

angle of CDD is 2θ, f is the local length of the camera and W is the width that CCD 

projects on image plane. The distance between the normal axis of the cameras and the 

target (Z) can be calculated as: 

 

                                                           
  

               
                                              (2.3) 

 

After measuring the distance between the obstacle and the robot, a control 

strategy is utilized according to this distance information and robot changes its 

orientation until it passes from the other side of the obstacle. 

 

2.4. Mobile Robotic System Components 

 

In this section, the components of the mobile robotic system are investigated 

under three headlines: motors, sensors and batteries.   

 

2.4.1. Motors 

 

Electric motors are components of machines converting electrical energy to 

mechanical energy. There are two kinds of electric motors: direct current (DC) motors 

and alternating current (AC) motors. AC motors are especially utilized for large 

machinery such as washers, cranes, and they are powered from an AC power line. AC 

motors are particularly used in industrial robots. They are not suitable for mobile robots, 

because power supplies of the mobile robots are especially DC batteries. 

DC motors are commonly used in mobile robots because of their appropriate 

power need. Additionally, there are wide varieties of shapes and sizes such as brushed 

and brushless DC motors, stepper motors. 

Direct usage of DC motors is not suitable in many applications, because DC 

motors usually runs at very high speed and low torque. To change these characteristics, 

DC motors have to be geared down.  Many DC motors have their own gears in order to 
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reduce shaft rotation speed and increase motor torque. These compact motors, also 

called gearhead DC motors (Figure 2.16), are useful for small size robots. In addition, 

DC motors may have position encoders integrally connected. 

Most DC motors consist of two electrical terminals. Motor spin in one direction 

is caused by applying a voltage across these two terminals. Spin in other direction is 

provided by reverse polarity voltage. In DC motors, the polarity of the voltage 

determines motor rotation direction and amplitude of the voltage determines motor 

speed. 

 

 

 

Figure 2.16. Gearhead DC motor  

 

On the other hand, stepper motors have more than two electrical terminals, often 

more than six or eight. The timing of the signals, which are applied from wires, 

determines the motor speed. The phase among the signals determines motor direction 

and a number of commands determines motor position. 

Permanent magnet brushless motors (Figure 2.17) have permanent magnets 

which are mounted on the rotor and these magnets are encircled by electromagnets. 

Rotation of the armature is provided through current switch which is controlled by 

electronic controller. 
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Figure 2.17. Brushless DC motor  

(Source: Iheartrobotics 2012) 

 

Brushless motors are more powerful and efficient than the same sized brushed 

DC motors. Moreover, brushless DC motors are more reliable, silent and they have 

longer lifetime (no brush and commutator erosion) over brushed DC motors. These 

types of motors are suitable for many industrial applications, home electronics computer 

hardware and robotic and radio controlled vehicles. 

Servo motors are widely used in robotic applications. The integrated circuit and 

potentiometer are utilized to provide closed-loop position control system. Servo motors 

are driven by pulse-width modulated signal (PWM). These motors have three specific 

colored wires emanating from the servo; the red one for power, the black wire for 

ground and the white one for PWM. Command protocol of the servo motor to adjust to 

desired position is illustrated in Figure 2.18.   

 

 

 

Figure 2.18. Command protocol of the servo to bring to designated position  

(Source: Jones, et al.) 
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Servo motors are driven with pulses repeated at a specific period, notably set to 

20 milliseconds (ms). The shaft position is determined by the width of the pulse. 

Usually, center position of the servo motor is reached with 1.3 ms wide pulses. The 

pulse widths vary from 0.7 ms to 1.7 ms. While pulse comes from 0.7 ms to 1.7 ms 

motor shaft position comes respectively from all the way to the right and all the way to 

the left. These kinds of servos are very useful for legged robots (Figure 2.19) or robot 

parts such as grippers and fingers. However, it is not used for continuous motion, due to 

its restricted motion capabilities. 

 

 

 

Figure 2.19. Legged robot which locomotion provided with servos  

(Source: Techeblog 2012) 

 

2.4.2. Sensors 

 

In robotic applications, sensors are used to understand or be aware of robot 

environment. In fact, robots are limited by sensors and robot performance is directly 

related with the sensors on the robot. Sensors can perceive physical data and convert it 

into electrical signals. After that, these signals are read by microprocessors.  

Most sensors utilized in mobile robot applications can be divided into four categories: 

 Light sensors 

 Sound sensors 

 Odometry sensors 

 Proprioceptive sensors 
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2.4.2.1. Light Sensors 

 

In this section light sensors, which are used in mobile robotic applications, are 

investigated. 

  

2.4.2.1.1. Photoresistors 

 

Robot behaviors can be possible with light sensors such as detect obstacles and 

follow marks on the floor. Photoresistors are simple light sensors and easy to interface 

with a microprocessor. Photoresistors are simply variable resistors; the resistance is 

changed by a change in the light level.   

 

2.4.2.1.2. Near-infrared Proximity Detectors 

 

Many mobile robots are designed for following trajectories. These sensors are 

used to detect nearby objects of the robot. Unlike range finder, these sensors cannot 

provide actual distance to an object. They only sense whether there is something or not. 

The sensor perception ranges are smaller and the beam widths are narrower than sonar 

range finders.  

The near-infrared proximity sensors are suitable for wall following applications. 

Wall following can be achieved by using two sensors; one pointed directly at the wall 

and the other one pointed at 45 degree or more forward (Figure 2.20). If either sensor 

detects any object, the robot arcs to the right until sensor B detects the wall and then 

robot moves forward. When sensor A detects any object, robot faces left.   

 

 

 

Figure 2.20. Wall following strategy with near-infrared proximity sensors  

(Source: Jones, et al.) 



31 
 

2.4.2.1.3. Near-infrared Range Sensor 

 

Proximity sensors are very popular, inexpensive and easy to use for simple 

mobile robot applications but they cannot give range information for nearby objects.  

Infrared sensors made by Sharp are useful for applications that need distance 

information between the robot and the object.    

To calculate distance or perceive the objects in the sensors field of view, infrared 

range sensors use triangular and small linear Charge Coupled Device (CCD) array. 

Infrared sensors are capable of realizing this through emitting a pulse of infrared (IR) 

light with emitter. IR light travels out in the sensors field of view. If the IR light is not 

reflected from anywhere, this refers that there is no object. On the contrary, if IR light 

reflects from an object and returns to the detector, a triangle between point of reflection, 

the detector and the emitter is formed.  

If the distance of the objects changes, triangle shape will also changes. The 

distance between the object and the sensor can be determined by calculating the angle 

between the reflected light coming back from the object and the sensor (Figure 2.21). 

 

 

 

Figure 2.21. Different Angles with Different Distances  

(Source: Acroname 2012) 

 

2.4.2.2. Sound Sensors (Sonars) 

 

The most common near infrared detectors only give proximity information, on 

the other hand, sonar transducers are used for providing distance information. This can 
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be possible by calculating the time between the initiation of a ping (pulse of sound) and 

the return of its echo (Figure 2.22). Then, the distance is calculated by round-trip time 

of the ping and speed of sound in the air.   

 

 

 

Figure 2.22. Principle of sonar  

(Source: Wikipedia 2012) 

 

2.4.2.3. Odometry Sensors 

 

Making measurements of velocities of the wheels or other localization 

components are necessary to know about robot position and orientation in order to find 

where the robot is.  

 

2.4.2.3.1. Shaft Encoders 

 

Shaft encoder is a device which measures shaft speed of a motor (Figure 2.23). 

They are especially mounted on drive motor shaft from outside. There are two types of 

shaft encoders. One of these, called absolute encoders, deliver a signal which is a code 

form that corresponds to particular orientation of the shaft. The other type of encoder, 

called incremental encoder, produces a pulse train. The rate of pulse frequency indicates 

motor shaft velocity.  

Instead of absolute position encoders, potentiometers can be used. 

Potentiometers are composing of a resistance and the amount resistance is changed for 
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each position of the shaft. Especially, in robot arms, absolute encoders and 

potentiometers are utilized for defining the position of the links. 

 

 

Figure 2.23. Shaft encoder  

(Source: Bogan 2012) 

 

Incremental encoders can be either assembled with motor or apart units. 

Incremental encoders consist of a spinning disk that has slots in it, near-infrared LED 

and phototransistor. The disk is assembled with motor shaft and spins with it. The near 

infrared sensor is mounted on one side of the disk and the phototransistor is on the other 

side. While disk is rotating the light created by LED is interrupted by slots on the disk. 

This discontinuous light is collected by the phototransistor and then pulse train is 

produced as output of the phototransistor. These pulses are counted by using 

microprocessor and by this way, rotational speed of the robot wheel can be calculated. 

 

2.4.2.3.2. Gyroscope 

 

To monitor robot orientation, gyroscopes (gyros) are very useful devices (Figure 

2.24). Gyros can be mechanical or electronic. Mechanical gyros work with principle of 

conservation of angular momentum to keep one or more internal axes pointed in the 

same direction as the exterior of the gyroscope, the gyroscope case, translates and 

rotates. Therefore, by using a gyroscope, robot rotational speed and rotation angle with 

respect to a fixed coordinate system can be measured. Same as mechanical gyros, 

electronic gyros can create a signal related with the rate of rotation about a 

perpendicular axis with axis of the gyro. However, gyros cannot present absolute 



34 
 

orientation information. Electronic gyros can give an analog signal or pulse width 

modulated (PWM) signal based on the rate of rotation of the gyroscope case. 

 

 

 

Figure 2.24. Gyroscope  

(Source: Heliplane 2012) 

 

2.4.2.3.3. Accelerometer 

 

The basic accelerometer work can be explained with basic mass-spring-damper 

system (Figure 2.25). An spring suspend a proof mass and the damper controls ringing. 

Upon acceleration of the base frame, the spring must provide a force to make the proof 

mass keep up, and spring deflection is gotten as measure of acceleration. Therefore, 

these force-measuring instruments solve Newton’s Equation to deduce acceleration; 

 

                                                                                                                           (2.3) 

 

where ‘‘m’’ is the mass and ‘‘a’’ is acceleration of the sensor. 

 

 

 

Figure 2.25. Basic accelerometer  

(Source: Jones, et al.) 
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Although practical accelerometers vary in design and technology, they are all 

based on the Equation F = m · a in some way. They can be electromagnetic, vibrating 

string, gyro-pendulum, optical, piezoresistive, piezoelectric, capacitive. 

 

2.4.2.4. Proprioceptive Sensors 

 

Any sensors, which measure the internal state of the robot, are called 

proprioceptive sensor. These sensors give information about recharge of the batteries, 

motor temperature or overheating. Batteries are very important parts of the mobile 

robots because robot working time changes with changing of battery performance. 

Therefore, sensing robot battery voltage is a significant issue for the mobile robot 

applications.  

By monitoring motor currents, robot can determine whether it is in impasse or 

not. If the robot collides with an obstacle such a wall, monitoring currents can be useful 

while any other sensors used for obstacle and collision avoidance, such as near-infrared 

sensors and sonar, are not working. While robot crashes with an object, wheels will not 

turn and current will go to a maximum value. In this situation, monitoring current can 

be used as a collusion detector.  

Additionally, observing robot temperature keep robot parts from breakdown. 

Especially electronic parts may be damaged, if the temperature is high. Besides, electric 

motor performance and life dramatically decrease in high level of temperatures.  

 

2.4.3. Batteries 

 

Mobile robots need power source to perform the operation in the remote 

environment. The power source quantity must be enough to allow the robot to perform a 

useful amount of work. A constant voltage provided by power system is needed to 

ensure proper operation of the onboard electronic circuit.  

Batteries are the most common energy source for mobile robots. A battery changes 

chemical energy into electrical energy on demand. There are different types of batteries 

and all types have complex variety of properties due to their different chemical nature. 
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While selecting a battery for the task, the following properties of the batteries can be 

considered: 

 

 Rechargebility: Batteries can be rechargeable or not. While the battery selection, 

especially rechargeable batteries should be used as primary unit.  

 Energy density: The maximum amount of energy per unit mass is known as energy 

density. Energy density is usually measured in units of Watt-hours/kilogram 

(Wh/kg). Alternatively, energy density can be measured in units of energy per unit 

volume. 

 Capacity: The energy stored in a cell is known as battery capacity. Battery capacity 

unit can be shown as amp-hours or milliamp-hours. Energy density and the mass of 

the battery change the capacity.  

 Voltage: Characteristic of the particular chemical reaction occurring in the battery 

causes the voltage produced by a single cell. Additionally, voltage of the battery can 

be changed depending on the state of charge of the cell. 

 Internal resistance: Internal resistance of the battery limits the current. The internal 

resistance increases as the battery discharges. 

 Discharge rate: Discharge rate refers to discharge time in units of current. Internal 

resistance of the battery limits maximum discharge rate. 

 Shelf life: Batteries lose their charge even when there is no external load. Shelf life 

points out how quickly this occurs. 

 Temperature dependence: Temperature affects most battery properties, especially, 

battery capacity and shelf life. 

 

An ideal battery should have very high energy density, low internal resistance 

and maintain a constant voltage during discharge. Also, it should have maximum 

withstanding of the higher temperature, unlimited shelf life, rechargeable and low unit 

cost. However, there is no battery with all of these properties. Therefore, batteries 

should be selected by depending on the requirements of the task.  
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2.4.4. Microcontroller 

 

 Microcontrollers (Figure 2.26) are small computers which have processor core 

memory and programmable I/O peripherals and they are combined small size, low 

power consumption and computational abilities of a cheap microprocessor. Also, they 

comprise serial line for communicating with host computers or a terminal, A/D 

converters, timers for taking events or starting hardware and pulse counters. Therefore, 

microcontrollers simplify system design, and today, they are used for many embedded 

applications such as robotic systems, automobile engine control systems, implantable 

medical devices, remote controls, office machines, appliances, power tools and toys. 

 

 

 

Figure 2.26. A PIC 18F8720 microcontroller in an 80-pin TQFP package  

(Source: Wikipedia 2012) 

 

2.4.5. Wireless Communication Systems 

 

In this section wireless communication systems and their application areas are 

explained. 

 

2.4.5.1. Wireless Personal Area Network (WPAN) 

 

A wireless personal area network (WPAN) is a computer network designed for 

communication between electronic devices over wireless network technologies such as 

IrDA, Bluetooth, Wireless USB, Z-Wave, ZigBee, or even Body Area Network. 
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Containment distance of a WPAN differs from a few centimeters to a few meters. There 

are two types of wireless technologies executing for WPAN; Bluetooth and Infrared 

Data Association. 

Bluetooth is a wireless technology standard for sending and receiving data over 

short distances by using short-wavelength radio transmissions in the ISM band from 

2400–2480 MHz. Also, this technology is used for creating wireless personal area 

network with high level security. Devices, which have Bluetooth technology, can be 

fixed on other devices like mobile phones or mobile devices. A serial Bluetooth module 

used in robotic applications can be seen in Figure 2.27. 

 

 

Figure 2.27. Serial Bluetooth module  

(Source: Robotshop 2012) 

 

The other WPAN standard, which is widely used in robotic applications, is 

ZigBee. It is a small, low-cost and low power standard based on an IEEE 802. These 

specifications allow that longer communication life with small batteries and widely 

deployed wireless control and monitoring applications. In Figure 2.28, a device used 

ZigBee standard can be seen. 
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Figure 2.28. The XBee module (ZigBee Mesh) developed by Sparkfun Electronic 

(Source: Sparkfun 2012) 

 

2.4.5.2. Wireless Local Area Network (WLAN) 

 

A wireless local area network (WLAN) contacts two or more devices by using 

spread-spectrum or OFDM radio wireless distribution methods, and usually supplies a 

connection through an access point to the Internet. This provides great mobility to move 

around within a local containment area without disconnected to the network. WLANs 

are based on IEEE 802.11 standards. The notebook computer connected via radio waves 

to the wireless access point can be seen in Figure 2.29. 

 

 

 

Figure 2.29.  A wireless access point connected with a notebook computer through a 

wireless PC card (Source: Wikipedia 2012) 
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2.5. Conclusion 

 

Literature survey was conducted under four headlines. Firstly, omnidirectional 

indoor ground vehicles, their wheels providing omnidirectional mobility and usage 

areas were investigated. Secondly, force-reflecting bilateral teleoperation systems that 

use haptic device or force feedback joystick were investigated. Thirdly, obstacle 

avoidance algorithms and sensors used in these algorithms were presented. Finally, 

robotic parts for mobility and acquiring information about environment or inner states 

of the robot were investigated. The survey results are evaluated and necessary parts are 

selected to configure the omnidirectional mobile platform as the slave systems. The text 

chapter is reserved for the methodology to develop the unlimited-workspace 

teleoperation system by utilizing the results of this chapter.  
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CHAPTER 3 

 

 

METHODOLOGY 

 
 

Before designing and developing unlimited-workspace teleoperation system, 

requirements of the system should be defined. Therefore, first of all, the design criteria 

of unlimited-workspace teleoperation system are identified. Then, the conceptual 

designs are described and compared with each other in order to select the most 

appropriate design with respect to the determined design criteria. After selecting the 

best design among the conceptual designs, components are selected and the first 

prototype is manufactured.  

 

3.1. Design Criteria 

 

The aim of the study is to design an unlimited-workspace teleoperation system. 

Additionally, the system should be suitable for force reflecting bilateral teleoperation. 

To realize a force reflecting bilateral teleoperation system, it needs a master device, 

which is a conventional force feedback joystick or a haptic device, to transmit 

environmental effects to a human operator. As the slave subsystem, omnidirectional 

mobile platform is selected, because it has great mobility than other conventional 

wheeled platforms (e.g. car-like Ackerman steering or differential drive system). All the 

desired characteristics of the unlimited-workspace teleoperation system are listed 

below: 

 Developed mobile platform should be suitable for indoor applications 

 Mobile platform should have omnidirectional motion 

 Mobile platform should have fault tolerance in mechanism level 

 Mobile platform should perceive environmental phenomena and transmit it 

to the master side 

 Communication line should be a wireless communication system 
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 Information should be mutually provided among subsystems  

 

3.2. Slave Subsystem 

 

In this section, a conceptual design is selected to build the first prototype and the 

selected components of the slave subsystem are explained.  

 

3.2.1. Conceptual Design 

 

To provide omnidirectional mobility, two types of wheels can be used: 

conventional wheels (castor or steering) and special wheels (universal, mecanum or ball 

wheels). Comparisons of the omnidirectional wheels are listed in Table 3.1. 

 

Table 3.1. Comparison of omnidirectional wheels 

 

 Conventional 

Wheels 
Special Wheels 

Providing mobility medium high 

Load capacity high low 

Tolerance of ground irregularities high medium 

Flexibility in congested environments low high 

Traction performance high low 

     

When considering the characteristics of the omnidirectional wheels, special 

wheels have more flexible motion capability than the conventional ones. Thus, universal 

wheel, which is a type of special wheel, is chosen to provide locomotion. In the 

literature, there are mainly two designs to provide omnidirectional mobility with 

universal wheels; triangular (Figure 3.1) and square configuration (Figure 3.2). 
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Figure 3.1. Triangular configuration of omnidirectional platform with universal wheels 

 

 

 

Figure 3.2. Square configuration of omnidirectional platform with universal wheels 

 

Omnidirectional mobility can be provided with three universal wheels. This 

design is mainly used in soccer game robots in RoboCup. Its fault tolerance capability is 

limited, because if any wheel or motor is faulty during the task, it loses omnidirectional 

capability and it can carry out the task like a conventional two wheeled differential drive 

system. On the other hand, the four wheeled system has mechanism level redundancy 

(kinematically redundant), and it has greater fault tolerance capacity. If any motor or 

wheel is faulty, it performs the task with three wheels without losing omnidirectional 

mobility capability. Hence, square configuration is selected as it can increase the level 

of fault tolerance in the system. 

Another important issue that affects performance of the robot is the shape of the 

mobile platform. It is difficult to avoid obstacles and navigate through narrow aisles 

with square shaped robot. On the other hand, cylindrical shaped robot has inherent 

advantage for these considerations and it is possible to achieve this with a simpler 
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algorithm. Hence, it can be concluded that cylindrical shape is the most suitable robot 

shape with respect to the design criteria set in this study. In the thesis, another focus is 

on creating obstacle avoidance algorithm so robot shape is chosen octagonal shape to 

adduct cylindrical shape for ease of manufacturing process while the vehicle can still 

easily navigate through obstacles and narrow passages (Figure 3.3). 

 

 

Figure 3.3. Left: Square shaped platform Right: Modified octagonal shaped platform 

 

3.2.2. Locomotion Components 

 

Transwheels produced by Kornylak Corp. are used (Figure 3.4) for configuring 

the locomotion system in the mobile platform. It has a special design with eight free 

rollers mounted at 90 degrees to the axis of rotation of the wheel around the outer 

diameter of the wheel. Combination of rotation of the wheel body and rollers movement 

enables the ability to move in any direction. These wheels are mainly used in conveyors 

but, they are also used in many applications such as mobile robots, multidirectional turn 

tables, and skate-wheels due to their special movement ability. However, in robotic 

applications, it causes slip problem because of its hard plastic nature. This fact results in 

traction problems. Specifications of Transwheels are listed below: 

 

 Lightweight wheels 

 High impact plastic 

 Self-lubricating 

 Low friction coating 

 Stainless steel axles 
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 Washable even steam cleaning 

 Corrosion resistant  

 

 

 

Figure 3.4. Transwheel 

 

As the driving motors, Dunkermotoren 24V G 30.0 model brushed DC motors, 

which are integrated with planetary metal gearboxes (PLG32 model) whose reduction 

ratio are 20.5:1, are used. Specifications of the motor and gearbox are shown in Table 

3.2 and Table 3.3. 

 

Table 3.2. Specifications of the G 30.0 DC motor 

 

Rated voltage VDC 24 

Continuous rated speed rpm 3030 

Continuous rated torque Ncm 3 

Continuous current A 0,71 

Starting torque Ncm 12,1 

Starting current A 2.5 

No load speed rpm 4260 

No load current A 0.13 

Rotor inertia gcm 42.2 

Weight of motor g 240 
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Table 3.3. Specifications of PLG32 gearbox 

 

Reduction Ratio  1/20.5 

Efficiency  0.81 

Number of Stages  2 

Continuous Torque Ncm 150 

Weight of gearbox g 0.18 

Axial loads N 30/100 

 

The motor characteristic curves for 24V input voltage are displayed in the Figure 

3.5. In the figure, the change of torque versus the current supplied is shown with black 

line. Torque can be calculated trough Equation (3.1), which is deduced from the 

diagram; 

 

                                                                                                                          (3.1) 

 

where τ is torque, i is current and 4.96 is the motor torque constant. 

 

 

 

Figure 3.5. Characteristic diagram of G30.0 DC motor 

 

Maxon ADS 50/10 (Figure 3.6) model DC motor amplifiers were selected to 

drive DC motors. This amplifier has four control modes:  

 Speed control using tachometer signals  

 Speed control using encoder signals 
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 IxR compensated speed control   

 Torque or current control.  

 

Speed control mode with using tachometer or encoder can be used when the 

motor is equipped with these sensors. The typical use of this case is in odometry related 

applications. In this study, during the tests, motors were driven with current and IxR 

modes to accommodate the use of kinematic and dynamic control. Specifications of the 

motor driver are listed in Table 3.4. 

 

Table 3.4. Specifications of Maxon ADS 50/10 motor amplifier 

 

Electrical data: 

Nominal supply voltage +Vcc  12 to 50 VDC 

Absolute minimum supply voltage +Vcc min  11.4 VDC 

Absolute maximum supply voltage +Vcc max 52.5 VDC 

Max. output voltage 0.9 · VCC 

Max. output current Imax 20 A 

Continuous output current Icont  10 A 

Switching frequency  50 kHz 

Efficiency  95 % 

Band width current controller  2.5 kHz 

Built-in motor choke  75 μH / 10 A 

Inputs:   

Set value: -10 to +10 V (Ri = 20 kΩ)  -10 to +10 V (Ri = 20 kΩ) 

Enable: +4 to + 50 VDC (Ri = 15 kΩ)  +4 to + 50 VDC (Ri = 15 kΩ) 

Input voltage DC tacho “Tacho Input” 
min. 2 VDC, max. 50 VDC  

(Ri = 14 kΩ) 

Encoder signals “Channel A, A\, B, B\” max. 100 kHz, TTL level 

Output:  

Current monitor “Monitor I”, short-circuit protected  -10 ...+10 VDC (RO = 100 Ω) 

Speed monitor “Monitor n”, short-circuit protected -10 ...+10 VDC (RO = 100 Ω) 

(Cont. on next page) 
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Table 3.4. (Cont.) 

Status reading “READY”  

Open collector, short-circuit protected 
max. 30 VDC (IL ≤ 20 mA) 

Voltage outputs:  

Aux. voltage, short-circuit protected +12 VDC, -12 VDC, max. 12 

mA (RO = 1 kΩ)  

Encoder supply voltage +5 VDC, max. 80 mA 

 

 

 

Figure 3.6. Maxon ADS 50/10 motor amplifier 

 

Connectors on the motor driver are illustrated in Figure 3.7. Connectors on the 

driver from one to five are to supply power for the motor. Motor voltage or current are 

defined by the set value input. The input voltage should be supplied from differential 

amplifier and the voltage range must be among -10V to +10V. Motor rotation direction 

is determined by two set value states; 

 Positive set value:  ( + Set Value) > ( - Set Value) negative motor voltage or 

current motor shaft turns counter clockwise 

 Negative set value: ( + Set Value) < ( - Set Value) positive motor voltage or 

current motor shaft turns clockwise 
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If a voltage is given at “Enable”, the servo amplifier switches the motor voltage 

to the winding connections. If the “Enable” input is not switched on or is connected to 

the Ground (Gnd), the power stage will be highly resistant and will be disabled. 

 

 

 

Figure 3.7. Connectors on the motor driver 

 

3.2.3. Data Acquisition  

 

In this study, Prometheus embedded PC/104 CPU (Figure 3.8) developed by 

Diamond System Corporation is used as data acquisition device. It integrates 3 separate 

circuits onto a single compact board; CPU, Ethernet and Analog I/O.  
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Figure 3.8. Prometheus data acquisition device 

 

Prometheus conforms to the PC/104 standard which is an embedded standard 

based on the ISA and PCI buses and provides a compact, rugged mechanical design for 

embedded systems. PC/104 modules feature a pin and socket connection system in 

place of card edge connectors, as well as mounting holes in each corner. The result is an 

extremely rugged computer system fit for mobile and miniature applications. PC/104 

modules stack together with 0.6″ spacing between boards (0.662″ pitch including the 

thickness of the PCB). Specifications of the Prometheus are listed below: 

 

Processor Section: 

 486-DX2 processor running at 100MHz with co-processor 

 Pentium class platform including burst-mode SDRAM and PCI-based IDE 

controller and USB 

 32MB SDRAM system memory 

 50MHz memory bus for improved performance 

 2MB 16-bit wide integrated flash memory for BIOS and user programs 

 8KB unified level 1 cache 

 

I/O: 

 4 serial ports, 115.2kbaud max 

 2 ports 16550-compatible, 2 ports 16850-compatible with 128-byte FIFOs 
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 2 full-featured powered USB ports 

 1 ECP-compatible parallel port 

 Floppy drive connector 

 IDE drive connector (44-pin version for notebook drives) 

 Accepts solid-state flashdisk modules directly on board 

 100BaseT full-duplex PCI bus mastering Ethernet (100Mbps) 

 IrDA port (requires external transceiver) 

 PS/2 keyboard and mouse ports 

 Speaker, LEDs 

 

System Features: 

 Plug and play BIOS with IDE autodetection, 32-bit IDE access, and LBA 

support 

 Built-in fail-safe boot ROM for system recovery in case of BIOS corruption 

 User-selectable COM2 terminal mode 

 On-board lithium backup battery for real-time-clock and CMOS RAM 

 ATX power switching capability 

 Programmable watchdog timer 

 Power surge monitor for fail-safe operation 

 Zero wait-state capability for flash memory and PC/104 bus 

 +5V-only operation 

 Extended temperature range operation (-40 to +85oC) 

 Cable-free operation when used with Diamond Systems’ PNL-Z32 Panel I/O 

board 

 

Analog Input: 

 16 single-ended / 8 differential inputs, 16-bit resolution 

 100KHz maximum aggregate A/D sampling rate 

 Programmable input ranges/gains with maximum range of ±10V / 0-10V 

 Both bipolar and unipolar input ranges 

 5 ppm/oC drift accuracy 

 Internal and external A/D triggering 

 48-sample FIFO for reliable high-speed sampling and scan operation 
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Analog Output: 

 4 analog outputs, 12-bit resolution 

 ±10V and 0-10V output ranges 

 Simultaneous update 

 Adjustable output range (optional) 

 

Digital I/O: 

 24 programmable digital I/O, 3.3V and 5V logic compatible 

 Enhanced output current capability: –8/+12mA max 

 

Counter/Timers: 

 1 24-bit counter/timer for A/D sampling rate control 

 1 16-bit counter/timer for user counting and timing functions 

 Programmable gate and count enable 

 Internal and external clocking capability 

 

Prometheus uses the PCI bus internally to connect the Ethernet circuit to the 

processor. It uses the ISA bus internally to connect serial ports 3 and 4, as well as the 

data acquisition circuit, to the processor. Only the ISA bus is brought out to expansion 

connectors for the connection of add-on boards. Prometheus is a PC/104 add-on board 

for analog I/O, digital I/O, counter/timer functions, serial ports, and power supply. Data 

acquisition scheme of the mobile platform and used ports and I/O connectors of the 

Prometheus are illustrated in Figure 3.9. First four digital I/O connectors are used for 

Hall-effect sensors and four analog outputs are used motor amplifier to drive motors. 

Also, first five analog inputs are utilized for infrared range finders and sixth analog 

input is utilized for gyroscope.   
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Figure 3.9. Data acquisition scheme of the slave subsystem 

 

3.2.4. Obstacle Avoidance System 

 

For obstacle detection, fixed sensors are generally used on the mobile platforms. 

In the most applications, density of the sensors on the front side of the mobile robot is 

more than the other sides. As a result of this, a lot of sensors are used in these 

applications and density of the sensors in each side is not homogeneous. This condition 

may be not a problem for platforms with differential drive system. However, this way of 

sensor distribution is not suitable for the omnidirectional vehicles, because the 

omnidirectional mobility ability allows moving every direction independently. Thus, in 

this thesis, a dynamic obstacle detection system, which dynamically changes its sensing 
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direction according to movement direction of the platform, is developed. Developed 

dynamic obstacle detection system consists of three components; two servo motors (1), 

which are mounted on same rotation axis to cover 360 degrees of rotation range, a servo 

driver (2) and five infrared sensors (3). The servo motors re-orient the array of sensors 

with respect to the direction of motion (Figure 3.10). 

 

 

 

Figure 3.10. Dynamic obstacle detection system 

 

3.2.4.1. Servo Motors 

 

In the obstacle avoidance system, two hobby servo motors produced by Parallax, 

whose rotation range were 180°, were used. Other specifications of the servo motor are 

listed below; 

 Power requirements: 4 to 6 VDC; Maximum current draw is 140 +/- 50 mA at 6 

VDC when operating in no load conditions, 15 mA when in static state 

 Communication: PWM, 0.75–2.25 ms high pulse, 20 ms intervals 

 Dimensions approx. 2.2 x 0.8 x 1.6 in (5.58 x 1.9 x 40.6 cm) excluding servo 

horn 

 Operating temperature range: 14 to 122 °F (-10 to +50 °C) 

These servo motors are controlled through PWM and the position of the servo 

shaft is dependent on the duration of the pulse. In order to hold its position, the servo 

needs to receive a pulse every 20 ms. When pulse duration of duty cycle is 1ms, the 
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servo is positioned at left, when 1.5 ms, the servo is positioned at center and when 2 ms, 

the servo is positioned at right side.  In Figure 3.11, a sample timing diagram for the 

center position of the Parallax standard servo is illustrated. 

 

 

 

Figure 3.11. Sample timing diagram for the center position of the servo motor 

 

3.2.4.2. Servo Motor Driver 

 

Servo motors are driven through PWM signal, so in the obstacle avoidance 

system, a servo motor controller produced by Pololu (Figure 3.12) was utilized to 

control the position of the servos through generating PWM signals. 

The servo motor controller requires a logic-level (0-5 V) serial input connected 

to the logic-level serial input or an RS-232-level serial input at the DB9 connector. The 

servo controller echoes all serial data out of the serial output pin, and the reset line can 

be brought low to reset the servo controller. In most applications, the reset input and 

serial output is left disconnected. 

 

 

 

Figure 3.12. 8 servo driver produced by Pololu 
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Eight servos can be controlled with the servo controller through generating 8 

independent servo control signals. The controller can generate pulses from 0,25 ms to 

2,75 ms which is greater than the range of most servos. In addition, it allows for servo 

operating range of over 180 degrees.  

The servo controller uses two communication protocols; Pololu mode and Mini 

SCC II mode. These protocols can be chosen with changing state of mode selection 

jumper.   

 Pololu mode:  Pololu protocol used for controlling multiple devices is active 

when jumper is open (default mode). In this mode servo controller can be on the 

same serial line as other devices. Additionally, this mode allows access to all of 

the special features of the servo controller, such as setting speeds, ranges and 

neutral settings. 

 Mini SSC II Mode: This mode is set by placing the shorting block over the two 

jumper pins. This setting allows the servo controller to respond to the protocol 

used by the Mini SSC II servo controller. This is more simple protocol but it 

only allows the user to specify the desired servo positions in only one way.   

 

Mini SSC II Mode was chosen to control servos, because it is simpler control 

mode and suitable for Matlab Simulink serial communication blocks. 

 

3.2.4.2.1 Mini SSC II Mode 

 

Baud rate range is approximately 500-10k baud. However, this mode only 

supports at 2400 or 9600 bauds. Thus, to use Pololu 8-servo controller with Mini SSC II 

mode, one of two baud rates must be chosen.  

Servo controller needs a sequence of three bytes (Table 3.5) to set to servo 

position. The first byte is for active the controller and its value always must be 255. The 

second byte refers to the servo number and it can be 0-254. The third byte brings servo 

position at the desired position and its value is 0-254. 

 

Table 3.5. Three byte command to servo position 

Byte Number 1 2 3 

 Start Byte = 0xFF Servo number, 0x00-0xFE Servo Position, 0x00-0xFE 
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This mode allows two different motion ranges. Servo numbers can be from 1 to 

16. The numbers, which are from 1 to 8, restrict servo range within an approximately 90 

degree. Other eight numbers from 9 to 16 allows the 180 degree range. For example, if 

the sending command sequence is [255, 2, 254], servo 2 will move in range of 90 

degree. If the servo number is changed as 10, servo 2 works in 180 degree range. In the 

obstacle avoidance system, two servos mounted on same rotation axis in order to 

complete 360 degree rotation range were used. Thus, as the servo numbers are selected 

from 9 to 16, due to control servos in 180 degree range.  

 

3.2.4.3 Sensors 

 

In the study, to detect near the mobile platform, Sharp GP2Y0A02YK0F (Figure 

3.13) infrared sensor which is composed of an integrated combination of PSD (position 

sensitive detector), IRED (infrared emitting diode) and signal processing circuit was 

used. It is not affected by environmental temperature and the operating durations. 

Specifications of the sensor are listed below: 

 Distance measuring range : 20 to 150 cm 

 Analog output type 

 Size : 29.5×13×21.6 mm 

 Consumption current : 33 mA 

 Supply voltage : 4.5 to 5.5 V 

 

 

 

Figure 3.13. Sharp GP2Y0A02YK0F infrared sensor 
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These sensors use triangulation method to measure the distance among the 

object and the sensor. Detection distance is defined as the output voltage. The relation 

between output voltage and distance is shown in Figure 3.14.  

 

 

 

Figure 3.14. Output voltage related with the distance 

 

3.2.5. Energy Supply 

 

Energy supply is an important for mobile platforms since they perform the tasks 

in remote and mostly unreachable environments. Electrical energy supplies used in 

mobile applications can be classified into two main categories: rechargeable or non-

rechargeable. In the thesis, rechargeable batteries are selected to be used to avoid 

battery costs. While selecting a battery for the project, three main properties of the 

batteries are considered: 

 

 Voltage 

 Capacity 

 Dimensions  
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To estimate robots operation time, power consumptions of equipment on the 

mobile robot are required to know. Energy requirements of the components are listed in 

the Table 3.6.   

 

Table 3.6. Power consumptions of electronic components 

 

 Number Voltage (V) Current (A) Power (W) 

Motor 4  24 0.71 68 W 

DAQ 1  5 1 5 W 

Infrared Sensor 5 5 0.05 1,25 W 

Camera    10 W 

Modem    9 W 

Servo Motor 2  6 0.14 1,68 W 

Servo Driver 1 6 0.1 0,6 W 

 Total = 98,53 W 

 

Power supplies should be rated at 24V to drive motors while other electronic 

components should be supplied with 5V or 9V. Because of different voltage needs, 

power suppliers are separated for driving motors and for use of other electronic 

components. The two 12V-1,3Ah dry accumulators connected serial to provide 24V are 

used to drive motors (Figure 3.15) in spite of providing with one 24V accumulator, 

because, accumulator that mounted on one side of the platform can alter the center of 

mass of the platform. The two accumulators placed on each side provide balance in that 

respect. Estimation of operation time with these batteries is calculated as; 

 The entire specifications of battery pack are: 

 

 12V x 2 = 24 V 

 1,3 Ah 

 24V x 1,3 Ah = 31,2 Wh 

 

Estimated operation time = 31,2Wh / 68W = 0,46h or 28 min. 
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Figure 3.15. 12V 1,3Ah dry accumulator 

 

Other electronic components generally require 5V except the modem (9 V). 

Therefore, Ttec Plus MP3450 mobile battery which provides two different output 

voltage to be selected between 5-19V was used for supply power for electronic 

components. Specifications of this battery are listed below: 

 

 Total battery capacity: 13800mAh / 50W (2300mAh, 6s1p) 

 Battery type: Chargeable Lithium Polymer   

 USB output port: 5V/ 1A 

 Main output port: constant and selectable 8 section (5V, 6V, 7.5V, 9V, 12V, 

14V, 16V, 19V) 

 Output current:  5~9V/ 3A, 12~14V/ 3.5A, 16~19V/ 4A 

 

3.2.6. Measuring Wheel Velocities 

 

UGN 3113 Hall-effect sensors were mounted on chassis (Figure 3.16) to 

measure velocity of each wheel, because, there is no shaft encoder on the rear end of the 

motors. Eight Neodymium magnets (Figure 3.17) were attached on each wheel with an 

angle between them to be 45°. When Neodymium magnet passes across the Hall-effect 

sensor, the output signal is produced by the hall effect sensor raises. When the output is 

connected to a digital input, it produces digital ON signal at the instant when the magnet 

passes near the sensor. The time between two rises of the duty cycle gives 1/8 
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revolution time. Angular velocities of the wheels are calculated in real time with this 

revolution time information.     

 

 

 

Figure 3.16. UGN 3113 hall-effect sensor 

 

 

 

Figure 3.17. Neodymium magnets 

 

3.3. Communication Line 

 

In this thesis, communication line between the master and the slave subsystem is 

realized with Matlab/xPC target toolbox. Firstly, the connection between the host and 

target PC should be materialized to provide the communication line. Connection can be 

realized in two ways. The first is serial communication with RS232 cable, which is 

attached on serial ports on host and target PC. The second is network communication. 
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Network communication can be materialized with LAN, the Internet, or a direct 

connection using a crossover Ethernet cable. Both the host and target computers are 

connected to the network with Ethernet adapter cards using the TCP/IP protocol for 

communication. Network communication is more advantageous than the serial 

communication, because it has higher data transfer up to 100 Mbit/second and Longer 

containment area among host and target computer. 

Because of these advantages, the network communication method is chosen for 

transferring data and wireless communication is achieved with using wireless modem 

which has router property in slave side and wireless adaptor in master side. In the 

beginning of the study, to execute connection between the host and target PC and to 

build developed control models at target side from host pc, target pc was booted with 

xPC target kernel for selected communication configurations. However, this connection 

method causes that robot gives slow responses for operators demands since building 

process of the model and connection among subsystems are performed over same line. 

Thus, the developed control models are embedded at slave side with xPC target 

embedded option and connection between subsystems are achieved with using UDP 

data transfer blocks in target and host models developed in Simulink. Process of 

embedding model is explained in Appendix B.  

Figure 3.18 shows the UDP Send and Receive block parameters. Firstly, to 

provide communication among subsystems with UDP blocks, IP addresses should be 

adjusted correctly depending on chosen IP addresses. Then, port number is determined 

to match send and receive blocks mutually. After this, it will be ready to send and 

receive data between subsystems. 
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(a) (b) 

 

Figure 3.18. UDP Send and Receive block parameters; (a) UDP Send, (b) UDP Receive 

 

3.4. Master Subsystem 

 

Master subsystem acquires operator’s demands and transmits feedbacks sent 

from slave side through a device that is handled by operator. In this study user interface 

was developed by using Matlab Simulink. Master subsystem consists of three parts; host 

PC (1), software (2), and master device (3) (Figure 3.19). One of aims of the study is to 

develope a force-reflecting bilateral teleoperation system. Therefore, force-reflecting 

joystick was used as hand controller to transmit force feedback information to the 

operator and to acquire operator’s demands to drive the slave system. 

 

 

 

Figure 3.19. Master subsystem 
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As the force-reflecting joystick, Logitech Force 3D Pro force feedback was used 

(Figure 3.20). This joystick can acquire motion demand in three axes. This device is 

capable of providing force feedback in two axes. In addition, it has twelve buttons 

which can be utilized for controlling other components of the slave subsystem. 

   

 

 

Figure 3.20. Force 3D Pro Joystick 

 

3.5. Conclusion 

 

In this Chapter, the unlimited-workspace teleoperation system development was 

explained. The three-DOF omnidirectional mobile robot that has different types of 

sensors to avoid obstacles and measure inner states of the mobile platform was 

developed as the slave subsystem. Additionally, communication line was provided to 

send sensory information from the slave subsystem to master and send demands from 

master to slave. The communication line was realized as a wireless communication 

system.  In the master side, three-DOF force feedback joystick, which has force 

feedback property on two DOF, was used to acquire driving demands for slave 

subsystem and stimulate the operator for sensed obstacles on the path of the slave. On 

the other hand, conceptual design that has mechanism-level fault tolerance was selected 

as the mobile platform. In the next chapter information about the local controllers 

developed for the slave subsystem is introduced.  
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CHAPTER 4 

 

 

CONTROL AND OBSTACLE AVOIDANCE 

ALGORITHMS 

 

 
As described in Chapter 3, to realize unlimited-workspace teleoperation system, 

a prototype with four-wheeled square-configuration omnidirectional mobile platform 

was developed. Omnidirectional platforms allow motion in every direction at any 

orientation independently. They provide great mobility performance than the 

conventional mobile platforms. Additionally, it is easy to avoid obstacles and navigate 

through narrow aisles without getting trapped. A dynamic obstacle detection system 

appropriate for omnidirectional motion was developed to acquire information about the 

obstacles on the path of the robot. 

To create control algorithms or to design desired tasks such as obstacle 

avoidance system, firstly, mechanical behavior of the platform must be understood 

mathematically. In this Chapter, firstly, the Equations of motion were formed for the 

developed platform. Then, two control algorithms to control the navigation of the 

platform and two obstacle avoidance algorithms were developed and modeled in Matlab 

Simulik. These algorithms were integrated to the developed teleoperation system.  

 

4.1. Dynamic Equation of Motion 

 

Overall system of square configuration omnidirectional vehicle is illustrated in 

Figure 4.1. It has four independent universal omnidirectional wheels mounted at 90 

degrees with respect to each other around the vertical axis. 
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Figure 4.1. First prototype of four wheeled omnidirectional vehicle 

   

Figure 4.2 represents free-body diagram of the platform motion with respect to 

the global coordinate frame. The global coordinate frame unit vectors are denoted with 

xG and yG. The local coordinate frame unit vectors of the vehicle are shown with xm and 

ym. The angle θ is the vehicle orientation, which is positive in the counter-clockwise 

direction and also shows the rotation of the local coordinate frame with respect to the 

global coordinate frame. m is total mass of the vehicle and I is the moment of inertia 

with respect to the center of gravity which is assumed to be at the center of the platform. 

Ti is traction force of the wheels where i = 1 to 4. 

Some assumptions are made to simplify the Equation of motion. Firstly, the 

center of the vehicle is assumed to be at the same location with center of mass. The 

second assumption is that all link lengths, which are the distances between the center of 

mass and the center of wheels, are equal: 

 

                                                                                                               (4.1) 

 

The last assumption to derive Equation of motion, the most important one is that 

vehicle moves on the ground without any slip.  

Traction forces of the vehicle on the local coordinate frame are derived as: 

 

                                                                    –                                                       (4.2) 
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                                                                    –                                                           (4.3) 

 

where the fx is traction force along the local x axis, and fy is traction force along the local 

y axis. 

 

 

 

Figure 4.2. Geometry of square configuration platform 

 

In addition, traction forces on the local coordinate frame are found from 

Newton’s second law: 

 

                                                                                                                            (4.4) 

 

                                                                                                                         (4.5) 

 

where m is mass of the platform, ẍm is acceleration along local x axis and ӱm is 

acceleration along local y axis. 

Then Equations (4.2) and (4.3) are substituted into Equations (4.4) and (4.5) 

respectively: 

 

                                                                   –                                                  (4.6) 
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                                                                   –                                                  (4.7) 

 

Angular acceleration about local vertical axis is derived as: 

 

                                               ̈                                                          (4.8) 

 

where I is the moment of inertia calculated about the center of gravity and   ̈ is the 

angular acceleration about the vertical axis. Moment of inertia and mass properties of 

the vehicle is given in Appendix A. 

Equations (4.6), (4.7) and (4.8) are the Equations of motion in local coordinate 

frame. To transform these Equations from the local coordinate frame to the global 

coordinate frame, transformation matrix 
G
Rm is: 

 

                                                 
 

    [
          
         
   

]                                       (4.9) 

 

The dynamic Equations of motion in global coordinate frame are calculated as: 

 

                                                   [

       
       
   ̈ 

]     
 

  [

  
  
  

]                                          (4.10) 

 

Then, dynamic Equations of motion in global coordinate frame are: 

 

                                                     –     –           –                              (4.11) 

 

                                                    –                –                              (4.12) 

 

                                             ̈                                                          (4.13) 

 

4.2. Control of the Platform 

 

To control developed vehicle, desired velocity is generated via hand controller in 

the master side and sent slave side through communication line. Then, motors are driven 
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by control algorithm according to desired velocity in the slave side. To reach the desired 

velocity of the vehicle, the two control algorithms were designed to control the 

platform: kinematic control and dynamic control.   

 

4.2.1. Kinematic Control  

 

In this control algorithm, angular velocities of the each wheel are calculated in 

order to reach desired velocity of vehicle. Linear and angular velocities of four wheels 

are illustrated in Figure 4.3. Equations of the velocities of the robot according to global 

coordinate system are stated below: 

 

                                                      –                                       (4.14) 

 

                                                       –                                   (4.15) 

 

                                                                                                      (4.16) 

 

 

 

Figure 4.3. Angular and Linear velocities of the wheels 
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 In the Equations 4.14, 4.15, 4.16, velocity of the robot on local x direction is 

shown with Vx, velocity of the robot on local y direction is shown with Vy and angular 

velocity on center of mass is shown with ωv. Jacobian matrix from forward kinematic 

for velocity is: 

 

                                                        [

   
  

     
]    [

  
  
  
  

]                                              (4.17) 

 

                                          [
                  
                  

    
]                            (4.18) 

                               

The robot was created as kinematically redundant robot as a result of using four 

omnidirectional wheels whereas only three omni-directional wheels are enough to 

provide holonomic motion in plane. It is not possible to find a single solution for 

velocities of the wheels according to global coordinate frame, because, there are three 

kinematic Equations of the robot according to global coordinate frame and four 

unknown wheel velocities which result in infinite number of solutions. However, 

infinite number of solutions can be used for optimization purposes. One method 

commonly used by researchers is for minimizing the common norm of joint motion 

(Golub, et al., 1965). Therefore, global velocity of the platform is related to the joint 

velocities with pseudo-inverse as given in Equation 4.19.   

 

                                                      [

  
  
  
  

]      [

  
  

     
]                                            (4.19) 

 

In Equation 4.19          is the pseudo-inverse matrix. Right pseudo-inverse is 

used for this case because the rank of the Jacobian matrix is smaller than the column of 

the matrix (m<n). Pseudo-inverse of the Jacobian is calculated as shown in Equation 

4.20 for the mobile platform considered in this thesis. 
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                                              [

                     
                      
                      
                    

]                (4.20) 

 

                              [

  
  
  
  

] = [

                     
                      
                      
                    

] [

  
  

     
]                    (4.21)    

  

Then linear velocities of wheels are: 

                                                            

                                                                                              (4.22) 

 

                                                                                            (4.23) 

 

                                                                                            (4.24) 

 

                                                                                              (4.25) 

 

Angular velocities of each wheel are calculated as: 

 

                                                                                                                 (4.26) 

 

where, Vi is linear velocities of each wheel, and ωi is angular velocities of each wheel 

and r is radius of the wheel.  

After calculating angular velocities of each wheel, motors are driven through the 

motor amplifiers (drivers) with voltage demands. Since there is a linear relation between 

input voltage and angular velocity of the DC motors, necessary voltages of wheels are 

calculated as: 

 

                                                                                                                 (4.27) 

 

where, ѵi is necessary voltages of each wheel ( i = 1,…,4 ) and ωimax is maximum 

angular velocities of the motors running at 24V. 
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4.2.2. Dynamic Control 

 

In the dynamic control model, the robot motion is deduced by the combination 

of wheel traction forces. These forces are provided by electric motors. Therefore, in this 

control algorithm, motor currents to drive motors are calculated through desired traction 

forces for each wheel in order to reach desired velocity of the platform. The second 

control scheme of the vehicle is illustrated in Figure 4.4. 

 

 

 

Figure 4.4. Control scheme of developed vehicle 

 

In Figure 4.4, ẋd and ẏd indicates the desired velocities and ẋ and ẏ indicates the 

actual measured velocities on local coordinate frame. Errors, ex and ey, are calculated 

from the differences between these velocities.  ̇d is desired angular velocity and  ̇ is 

actual measured angular velocity. eθ is the error between desired and actual angular 

velocities of the vehicle.  Forces at local coordinate frame and torque at center of mass 

(τv) are calculated with Equations (4.28), (4.29) and (4.30) in order to follow the desired 

motion.  

 

                                                                                              (4.28) 

 

                                                                                              (4.29) 
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                                                                                              (4.30) 

 

Wheel 2 and wheel 4 traction forces are calculated as: 

 

                                                                                                               (4.31) 

 

                                                                                                             (4.32) 

 

Wheel 1 and wheel 3 traction forces are calculated as: 

 

                                                                                                               (4.33) 

 

                                                                                                             (4.34) 

 

Relation between torque provided by the actuator and the desired traction force 

is illustrated in Figure 4.5. Necessary torques for each wheel to reach desired traction 

forces is calculated as: 

 

                                                                                                                           (4.35) 

 

where τi is necessary torque for each wheel ( i = 1,…,4 ), Ti is desired traction forces 

and r is radius of wheel.  

 

 

 

Figure 4.5. Wheel traction force 
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From Equations (4.35) and (3.1) necessary motor currents (ii) are calculated as: 

 

                                                                                                                      (4.36)  

    

4.3. Fault Tolerance Capacity of the Developed Robot 

 

The omnidirectional mobile robot was designed by using four universal omni-

directional wheels. However, planar motion can be accomplished with only three 

universal omni-directional wheels. Therefore, if any wheel is faulty in task, the robot 

can perform the task with remaining three wheels without losing omnidirectional 

mobility. Figure 4.6 represents a case when fourth wheel is faulty. 

 

 

 

Figure 4.6. Developed robot when three wheels remain 

 

The kinematic Equations of motion according to global coordinate frame for this 

case are: 

 

                                                                –                                      (4.37) 

 

                                                                –                                    (4.38) 
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                                                                                                           (4.39) 

 

Jacobian matrix from forward kinematic for velocity is: 

 

                                                        [

   
  

     
]    [

  
  
  

]                                              (4.40) 

 

                                                [
              
              

   
]                                   (4.41) 

 

Inverse of the jacobian matrix is used to obtain the linear velocities produced by 

the wheels. 

 

                                                     [
  
  
  

]       [

  
  

     
]                                            (4.42) 

 

                               [
                               

           
                                

]                (4.43) 

 

Then linear velocities of wheels are: 

 

                                                                             (4.44) 

 

                                                                                                             (4.45) 

 

                                                                             (4.46) 

 

The system can still move if two wheels are faulty acting as a differential drive 

system. One possibility is that the two wheels have parallel rotation axes fail. In this 

case, the robot can move with two wheels like differential drive system as shown in 

Figure 4.7. 



76 
 

 

 

Figure 4.7. Two wheeled differential drive system 
 

The rotation about a point, which is on the common axis of the wheels, is 

changed by wheel velocities. This point is known as Instantaneous Center of Curvature 

(ICC). While the robot rotates about ICC, wheels have same angular rate (ω). 

 

                                                                                                                  (4.47) 

 

                                                                                                                    (4.48) 

 

where R is distance between the ICC and the center of the vehicle. From Equations 

(4.47) and (4.48), ω and R can be calculated as: 

 

                                                               ⁄                                          (4.49) 

                            

                                                                    ⁄                                           (4.50) 

                       

Linear velocity of the vehicle according to local coordinate frame is: 
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                                                                                                                    (4.51) 

 

If the velocities of wheels are not equal at same or different directions, robot 

follows a curved trajectory and it rotates about any ICC.  

The kinematic Equations of motion according to global coordinate frame for 

differential drive are: 

 

                                                                                                                         (4.52) 

 

                                                                                                                        (4.53) 

 

                                                                                                                (4.54) 

 

Because, the differential drive system has non-holonomic constraint (it cannot 

move sidewise), it is not possible to find wheel velocities for given holonomic velocity 

demands according to global coordinate frame. However, there are two special cases for 

differential drive robots. If velocities of wheels are same value at same direction    

         , rotation radius (R) is infinite and angular rate (ω) is zero. In this case the 

robot moves in a straight line. If velocities of wheels are same value at different 

directions        , the robot rotates about the center of the vehicle and the location of 

the robot is not changed. 

 

4.4. Implementation of Control Algorithm in Teleoperation System via  

       Matlab Simulink 

 

In this thesis, the control algorithms were modeled in Matlab Simulink 

environment. The teleoperation system developed in this study is illustrated in Figure 

4.8.  
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Figure 4.8. Teleoperation system scheme 

 

In the master side, the desired velocities of the mobile platform (ẋd , ẏd) are 

generated by hand controller according to operators demands. The hand controller with 

respect to its position provides a signal that ranges between -1 to +1 V. To match signal 

created by hand controller and desired velocity, firstly, maximum velocity of the vehicle 

should be known. In order to calculate maximum velocity of the vehicle along one 

direction, the following features are required: 

 

 Continuous rated speed of motor when 24V: 1804 rpm 

 Reduction ratio of gearbox: 1/20.5 

 Diameter of wheel: 10 cm 

 Max. velocity of vehicle = (1804/20.5) · π · 10 = 2763 cm/min = 0.461 m/s 

 

To reach 0.461 m/s, value of signal generated via the hand controller should be 

1. Therefore, desired velocities at the signal form are calculated as: 

 

                                                                                           (4.55) 

 

These desired velocity signals created by hand controller are double data type. 

However, the data transfer among subsystems is accomplished via UDP data transfer 

protocol and UDP blocks in Simulink allow sending and receiving only uint8 (unsigned 

integers of 8 bits) data. This data type contains all numbers from 0 to 255. The values 

must be non-negative. Therefore, before sending desired velocity signal, this must be 

converted the uint8 data type.  

The first model of master subsystem created in Matlab Simulink was designed to 

only provide desired velocity information through the acquired position of the joystick 
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and to change the orientation of the vehicle through receiving inputs from two 

pushbuttons (two pushbuttons are used to differentiate the motion direction). However, 

it is not possible to provide different angular velocity demands of the vehicle with 

pushbuttons. Therefore, in the further stages of the study, the model of the master 

subsystem was replaced with a new model by using property of twisting handle of the 

hand controller. The final model of the master subsystem is demonstrated in Figure 4.9.  

 

 

 

Figure 4.9. Master side of the teleoperation system 

 

Kinematic control algorithm implemented with Matlab blocks is represented in 

Figure 4.10. In this algorithm, motors are driven by the motor drivers as they receive 

motor supply voltage demands through the Set Value port on the motor driver which is 

sent by the analog output ports of the DAQ card. Therefore, the desired velocities taken 

from the master subsystem via UDP protocol are processed in control algorithm and 

they are transformed set values to drive motors. In addition, this control model is used 

to test obstacle avoidance algorithms as described in the next sections.  
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4.5. Obstacle Avoidance Algorithms 

 

In the dynamic obstacle avoidance system, described in Chapter 3, infrared 

range finders are utilized to perceive obstacles in the path of the mobile platform. 

Perceiving angle of these sensors is about 15 degrees. Therefore, to cover the critical 

area which is defined as the area between the maximum sensor range and maximum 

width of the robot minimum 5 sensors are required. Arrangement of the sensors (si ; i = 

1,…,4) is shown in Figure 4.11a. In the Figure 4.11b, coverage areas of the sensors, 

which are represented with Si ; i = 1,…,4 , are given.  

 

 

(a) 

 

 

(b) 

 

Figure 4.11. (a) Arrangement of infrared range finder, (b) Coverage areas of sensors 
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In this thesis two models are designed to avoid obstacles as: 

 Force reflecting obstacle avoidance  

 Semi-autonomous obstacle avoidance 

 

4.5.1. Force-reflecting Obstacle Avoidance 

 

In this model, if any object enters in one or more areas, virtual force, which is 

modeled as sprig model according to sensor information, is transferred from slave side 

to master side. Then this force is transmitted operator via force feedback joystick. By 

this way, the operator identifies the location and the distance of the obstacle. Force 

reflecting obstacle avoidance scheme is represented in Figure 4.12. 

 

 

 

Figure 4.12. Force reflecting obstacle avoidance scheme 

 

Virtual force (Fv) is calculated as: 

 

                                                                                                                   (4.56) 

 

                                               {
                    

           
                               (4.57) 

 

where k is spring coefficient, d is distance between robot and obstacle and tr represents 

the threshold for obstacle avoidance. The maximum measuring distance of the infrared 

range finder (150 cm) is chosen as threshold. 

 

4.5.2. Semi-autonomous Obstacle Avoidance 

  

In the second model, virtual impedance model was adapted for kinematic control 

model (Figure 4.13). If the robot meets any obstacle while mobile robot is controlled by 
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the operator, the virtual velocity vector is created by obstacle avoidance algorithm, and 

then robot will move in the direction of total velocity (VT) of desired (VD) and virtual 

(VV) velocities until avoiding the obstacle. After avoiding obstacle, virtual velocity will 

be zero and robot will keep moving in direction of desired velocity.  

 

 

 

Figure 4.13. Adapted virtual impedance model for kinematic control model  

 

Virtual velocity is calculated according to the relation between distance, which 

is between obstacle and robot, and desired velocity of the vehicle: 

 

                                                                                                                (4.58) 

 

                                             { 
                        

            
                           (4.59) 

 

where, VV is virtual velocity, VD is desired velocity of the vehicle, d is measured 

distance between vehicle and obstacle, and tr is threshold for obstacle avoidance. If the 
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measured distance is smaller than the threshold, obstacle avoidance algorithm gives a 

virtual velocity; otherwise this velocity will be zero. 

 

4.6. Conclusion 

 

In this Chapter, firstly, Equations of motion of mobile platform were derived. 

According to Equations of motion and kinematic analysis two control models were 

designed. In the first model (kinematic control), motors are driven with voltage to reach 

desired velocity of the vehicle. The other control model (dynamic control) was created 

to drive motors in the current control mode to reach desired velocity of the vehicle.  

Additionally, in this Chapter, two obstacle avoidance algorithms were 

developed: force-reflecting obstacle avoidance and semi-autonomous obstacle 

avoidance. When the robot is in the sensing range of any obstacles along its path, a 

virtual force is generated in the force-reflecting obstacle avoidance algorithm with 

respect to the distance between the obstacle and the robot. Then, this force is transmitted 

operator via force reflecting joystick. By this way, operator receives haptic information 

on where the obstacle is and how far the obstacle is. Operator, as he/she receives the 

information about the location of the obstacle, can avoid the obstacle by changing 

his/her input through the joystick. In the semi-autonomous obstacle avoidance 

algorithm, when there is an obstacle along the path of the robot, a virtual velocity vector 

is created depending on distance between robot to obstacle and desired velocity of the 

vehicle. Then, robot moves in the direction of total velocity vector of virtual and desired 

velocities until it avoids the obstacle. 

These algorithms are implemented and test procedures are set to conduct 

evaluation tests of the algorithms. The results of the tests are presented in the next 

chapter.       
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CHAPTER 5 

 
 

TEST RESULTS AND DISCUSSIONS 

 
 

Semi-autonomous obstacle avoidance and force reflecting obstacle avoidance 

test procedure are explained in Section 5.1 while test results are presented in Section 

5.1.1 and 5.1.2. In addition, the effect of using an external motion sensor, in this case, 

gyroscope, on the motion of the robot is also presented in Section 5.2. 

 

5.1. Obstacle Avoidance Tests 

 

In both obstacle avoidance algorithm tests, velocity demand to drive the robot on 

local +y direction was sent from master side and one or more obstacles were placed on 

the left or right side of the robot. In semi-autonomous obstacle avoidance tests, path of 

the mobile robot was estimated using the marks (marked with red circle in Figure 5.1), 

which was formed with a permanent marker pen mounted on the robot, by referencing 

floor marbles that have the same dimensions. A cylindrical shaped dustbin whose 

diameter is 30.5 cm was used as an obstacle in all obstacle avoidance tests. Obstacle 

used in tests and the path of the mobile robot while avoiding obstacle in semi-

autonomous tests can be seen in Figure 5.1. 

In the force-reflecting obstacle avoidance tests, magnitude and direction of the 

virtual force generated by force reflection obstacle avoidance algorithm according to the 

obstacle direction and distance were observed. 
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Figure 5.1. Semi-autonomous obstacle avoidance test 
 

The slave controller sample time was chosen to be 0.01 ms during all tests, since 

servo controller do not allow smaller sample time rates than 0.01 ms.    

   

5.1.1. Semi-Autonomous Obstacle Avoidance Tests 

 

In the semi-autonomous obstacle avoidance (Figure 5.2), desired velocity (VD) 

of the robot were generated in the master side according to the operator’s demands and 

this velocity demand was sent from the master side to the slave side. Then, slave 

subsystem was driven according to desired velocity. If the obstacle avoidance system 

perceives an obstacle on motion direction of the robot, obstacle avoidance algorithm 

creates a virtual velocity vector (VV). Then, the platform is driven with a total velocity 

(VT) vector.   
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Figure 5.2. Semi-autonomous obstacle avoidance scheme 

 

In the first test, an obstacle, which was placed on right side according to moving 

direction of the robot, was used. Path of the robot while robot avoids from obstacle can 

be seen in Figure 5.3. During the robot’s forward motion, firstly, obstacle was appeared 

in the coverage area of the sensor 4 (S4 represented in Figure 4.11), obstacle avoidance 

algorithm calculated a virtual velocity vector (VV) according to distance between robot 

and obstacle, and magnitude of desired velocity of the vehicle. Then, velocity of the 

robot was decreased and platform slid a little bit to the left side. After that, obstacle 

appeared in the coverage area of the sensor 5 (S5) and virtual velocity vector was 

adjusted according to the distance information collected from sensor 5. Then the robot 

slid left side again until the obstacle disappeared in the coverage range of any sensor.    

The second test was performed with two obstacles. The first obstacle was placed 

on the right side of the robot according to the direction of motion and the second 

obstacle was placed on the right side of the robot after avoiding the first obstacle. Figure 

5.4 shows tracked path of the robot while avoiding two obstacles. In this test, sensor 4 

and 5 perceive the first obstacle and robot slided to the left side until the obstacle was 

out of the range of the sensors and then the robot moved along the desired direction 

again. Then, sensor 4 and 5 perceived the second obstacle and the robot repeated the 

same motion autonomously as it did for the first obstacle case. After avoiding the 

second obstacle, the robot kept moving along the desired direction. 
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Figure 5.3. Tracked path of the robot during first test  
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Figure 5.4. Tracked path of the robot during second test  

 

In the third test (Figure 5.5), the first obstacle was placed on the right side of the 

robot with respect to the direction of motion of the robot and the second obstacle was 

placed on the left side of the robot after avoiding the first obstacle. While the robot was 
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moving forward, sensors 4 (S4) and 5 (S5) perceived the first obstacle and robot slid left 

side until avoiding first obstacle. Then, sensors 1 (S1) and 2 (S2) perceived the second 

obstacle and the robot slid right side until the obstacle was not in the sensing range of 

the sensors and the robot kept moving forward again. 

 

 

 

Figure 5.5. Tracking path of the robot during third test 
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5.1.2. Force-Reflecting Obstacle Avoidance Tests 

 

These tests were conducted with kinematic control active as the main controller. 

Desired velocities were sent from the master side to the slave side. Then, the slave 

subsystem was driven according to desired velocity. In the force reflecting obstacle 

avoidance algorithm (Figure 5.6), if the robot encounters any obstacles along the 

moving direction, a virtual force, which is generated by algorithm according to distance 

information gathered from infrared sensors, is sent from the slave side to the master 

side. Then, this force is transmitted to the operator via a force-reflecting joystick. By 

this way, operator receives the location information of the obstacle through haptic 

feedback and changes the motion direction of the robot.   

 

 

 

Figure 5.6. Force reflection obstacle avoidance scheme 

 

Four tests were executed to evaluate force-reflecting obstacle avoidance 

algorithm performance. In the first test, the obstacle was placed on the right side of the 

robot. It was perceived by only sensor 5 when the robot was moving forward and virtual 

force was created by this sensory information. x and y components of the created virtual 

force in the first test are represented in Figures 5.7 and 5.8. As seen in Figures 5.7 and 

5.8, virtual force is noisy since the signal, which is observed from the infrared range 

finder, is noisy. Therefore, 1 Hz low-pass filter was used due to filter noise of the 
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infrared range finder signal in the slave side so in the other force-reflecting obstacle 

avoidance test, more noiseless responses were observed for virtual force.    

 

 

 

Figure 5.7. Virtual force component on x axis during first test 

 

 

 

Figure 5.8. Virtual force component on y axis during first test 

 

In the second test, while the robot was moving forward, sensor 4 and 5 perceived 

the obstacle and the virtual force was generated by algorithm according to the sensor 

information. Figure 5.9 and 5.10 represent virtual force components on x and y axes 

during second test. As seen in the Figure 5.9, firstly, sensor 4 perceived the obstacle and 

gave a virtual force. Then at the time about 4.75 second, sensor 5 perceived the obstacle 

with sensor 4 and component of the virtual force on x axis dramatically increased.   

Time (sec) 
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Figure 5.9. Virtual force component on x axis during second test 

 

 

 

Figure 5.10. Virtual force component on y axis during second test 

 

The same tests were repeated when obstacle was on the left side of the robot 

according to the motion direction of the robot. In these tests, direction of the component 

of the virtual force on x axis was changed, since sensors 1 and 2 perceived obstacle 

instead of sensor 4 and 5. Test results of these tests are illustrated in Figures 5.11, 5.12, 

5.13, and 5.14. In the third test, only sensor 1 perceived the obstacle and the virtual 

force was created by this sensory information, while sensors 1 and 2 perceived obstacle 

together in fourth test. Therefore the component of virtual force on y axis in fourth test 

is higher than the third test.    
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Figure 5.11. Virtual force component on x axis during third test 

 

 

 

Figure 5.12. Virtual force component on y axis during third test 

 

 

 

Figure 5.13. Virtual force component on x axis during fourth test 
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Figure 5.14. Virtual force component on y axis during fourth test 

 

5.2. Gyroscope Test 

 

Kinematic controller was supported by gyroscope since orientation of the robot 

can change during motion as it is observed in semi-autonomous tests. The reason is the 

slip of the wheels and constructional failures. Therefore, a test procedure is configured 

in order to show effectiveness of closing the loop of kinematic control on orientation by 

an external sensor, gyroscope.  

Two tests were conducted that last for 20 seconds. In both tests, the linear 

velocity demand was set to 0.4 m/sec. In one of the tests, gyroscope was excluded from 

the control and the open-loop type of control algorithm was used. The result of this test 

is given in Figure 5.15 as marked in red. The test was repeated for the closed-loop 

control where the gyroscope was added in the loop as the external sensor. The result of 

the second test can also be observed in Figure 5.15 marked in blue. The green dotted 

line in Figure 5.15 is the given trajectory of the robot for this test.  

At the end of the test without the gyroscope in the loop, robot trajectory was 

deviated to the left side by 45.4 cm and resulted in an orientation change of 8° (Figure 

5.15). In the gyroscope enabled test, the deviation to the left side was limited to 5.5 cm 

and the orientation was modified with 0.6°. This clearly shows an improvement on the 

kinematic control when an external sensor is integrated to the control algorithm. 

Obviously, the result can be further improved by selecting more precise sensors or fine 

tuning the control gains. 
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Figure 5.15. Gyroscope test 
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CHAPTER 6 

 
 

CONCLUSIONS 

 
 

In this thesis, an unlimited-workspace teleoperation system was developed to be 

used in indoor mobile platform navigation and unlimited-workspace teleoperation 

research. Hence, an omnidirectional vehicle which can move in every direction 

independently was manufactured as the slave subsystem of the unlimited-workspace 

teleoperation. The two control algorithms; kinematic and dynamic control were 

developed and tested. Another goal of the thesis was that the system should be 

configured as a force-reflecting teleoperation system. Therefore, a force-reflecting 

obstacle avoidance algorithm was developed. Also a semi-autonomous obstacle 

avoidance algorithm was created and tested.  

First of all, literature survey was presented under four headlines in Chapter 2; 

omnidirectional vehicles, force reflecting teleoperation, obstacle avoidance and 

components of the mobile robots.  Omnidirectional vehicle examples and their usage 

areas, developed obstacle avoidance algorithms and environment perception techniques 

in literature were investigated. Additionally, force-reflecting teleoperation systems, and 

virtual impedance technique were explained. According to design criteria, hardware 

components to provide a wireless communication line, suitable sensors to perceive near 

objects and measure inner states of the vehicle were investigated. 

In Chapter 3, design criteria of the unlimited-workspace teleoperation system 

were identified. According to design criteria, possible omnidirectional slave subsystem 

concepts were developed and compared. Then, the most suitable one with respect to the 

design criteria was selected. Depending on the selected slave subsystem, locomotion 

components were determined. Because of the omnidirectional mobility of the slave 

system, a dynamic obstacle avoidance system was developed and components of the 

system were explained. In addition, communication line and master subsystem that were 

used to configure the unlimited-workspace teleoperation were described. The system 

was configured so that the vehicle control algorithms developed in Matlab Simulink 

environment could be deployed to the system. This provides an open architecture for 
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further studies with this test system by implementing new control algorithms via Matlab 

Simulink.  

Equation of motion of the developed vehicle was developed in Chapter 4, and 

then according to these Equations, two control algorithms are proposed; kinematic and 

dynamic control. Additionally, two obstacle avoidance systems were developed. One of 

them is the semi-autonomous obstacle avoidance algorithm in which the vehicle detects 

obstacles and avoids them autonomously. Since, desired unlimited-workspace 

teleoperation system is force-reflecting bilateral teleoperation system, second algorithm 

was designed as force-reflecting obstacle avoidance algorithm. In the second algorithm, 

operator feels the location of the near objects haptically through force feedback joystick 

and avoids them. 

 In Chapter 5, the proposed two obstacle avoidance algorithms were tested and 

test results were represented and discussed. As a result of semi-autonomous tests, the 

robot autonomously avoids the obstacles along motion direction of the robot, which is 

perceived by dynamic obstacle avoidance system. Also, force-reflecting obstacle 

avoidance algorithm gives accurate results according to distance between the robot and 

obstacle including the information on the direction of the obstacle which is according to 

local coordinate frame. In addition, kinematic and dynamic control algorithms were 

tested. However, dynamic control algorithm tests were not presented in this thesis since 

it produced unacceptable results due to the slip problem, manufacturing errors and the 

procedure in measuring the wheel speeds. Moreover, in Chapter 5, the addition of an 

external sensor on the kinematic control algorithm was tested. It is shown that closing 

the kinematic control loop with a gyroscope improved the performance of the vehicle in 

following orientation demands. 

In the future studies, velocities of the wheels can be measured with encoders 

which can be attached on the rear end of the motors for consistent wheel velocity 

signals instead of velocity measuring method with Hall-effect sensors. Making use of 

the accurate measurement of wheel velocities, dynamic control algorithm tests can be 

repeated by using velocity information integrated from the accelerometer 

measurements. Also, in force reflecting obstacle avoidance algorithm, virtual force is 

modeled to be created by a virtual spring between the obstacle and the vehicle. This 

would produce the same amount of force feedback for different velocities of the vehicle. 

This may be problematic in the cases when the vehicle approaches the obstacle with 

faster speeds. Hence, in the future work, force-reflecting obstacle avoidance algorithm 
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can be modified to create the force feedback information by a virtual spring and damper 

model. 
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APPENDIX A 

 

 

MASS PROPERTIES OF THE DEVELOPET ROBOT 

 

 
Developed slave subsystem in this study was modeled in Solidworks (Figure 

A.1). Also, all components of the system were modeled according to real dimentions 

and materials. Moment of inertia of the vehicle utilized in dynamic control model was 

taken from Solidworks Mass Properties window. It is represented in Figure A.2. 

 

 

 

Figure A.1. CAD model of developed mobile robot 
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Figure A.2. Mass properties of the developed slave subsystem 
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APPENDIX B 

 
 

SIMULINK EMBEDDED OPTION 

 

 
In this thesis, control and obstacle avoidance algorithms were modeled with 

Matlab Simulink and they were embedded on slave subsystem through xPC Target 

Embedded Option.  It allows deploying stand-alone applications on the target PC 

independent of the host PC. 

To embed control and obstacle avoidance algorithms, firstly, standalone mode 

must be enabled under node of target PC configuration in xPC Target Explorer 

hierarchy pane (Figure B.1). Target Explorer is called in Command Window by entering 

“xpcexplr”. 

 

 

 

Figure B.1. TargetPC Configuration 

 

After that, building process of the Simulink creates a directory whose name is 

same with model name in the current working folder on the host computer. It contains 

three files: 
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 *.rtb — This file contains the xPC Target kernel. It also contains, as applicable, 

options such as serial or TCP/IP communications and the IP address of the target PC. 

 xpcboot.com — This file executes loads and executes the *.rtb file. 

 autoexec.bat — xPC Target version of this file that calls the xpcboot.com executable 

to boot the xPC Target kernel. 

Then, in the xPC target explorer window, the target PC must be connected and 

these three files must be copied on the target PC hard drive. The target PC automatically 

runs created algorithms at its first startup. 


