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ABSTRACT 

 

THE EFFECTS OF OXIDIZERS ON THE DIAMETERS OF THE 

CARBON NANOTUBES GROWN BY CHEMICAL VAPOR 

DEPOSITION METHOD 

 

This thesis was focused on growing high quality and small-diameter carbon (C)           

nanotube (NT) on Fe/Al2O3/SiO2/Si thin film catalyst by ethylene decomposition 

thermal chemical vapor deposition (CVD) method in the presence of a weak oxidizer 

(CO2). Moreover, the importance and functional properties of the oxidizer in 

pretreatment and CNT growth were determined.  

At first, it was worked in different growth conditions to examine the effects of 

CO2 in CNT growth. The main parameters were pretreatment time, CO2 gas flow rates 

during pretreatment and growth, growth temperature. Pretreatment and growth times 

were kept at 15 min. each and CO2 introduced 5 and 10 min. during pretreatment stage 

prior to the CNT growth with the flow rates 8:2, 10:2, 10:8 and 10:10 sccm, 

respectively. Additionally, three different growth temperatures; 750 
o
C, 760 

o
C and    

770 
o
C were studied.  

Secondly, pretreatment time was kept at 15 min. The effects of CO2, which was 

sent in the system at 8:2, 10:2, 10:8 and 10:10 sccm ratios, on density and height of the 

catalyst particles were investigated.  

At last, all catalyst particles and CNTs obtained from the experiments were 

analyzed by several characterization techniques such as AFM, EDX, SEM, STEM and 

Raman Spectroscopy, respectively. The optimal values of amount and introduction time 

of CO2, the ratio of CO2 in growth to that in pretreatment were identified. Moreover, the 

relation between currently obtained catalyst particles and previously being grown CNTs 

on them were determined.  It was observed that using the appropriate amount of CO2 in 

pretreatment and growth process positively affected the catalyst sizes and CNT diameter 

distributions. 
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ÖZET 

 

KİMYASAL BUHAR BİRİKTİRME YÖNTEMİ İLE BÜYÜTÜLEN 

KARBON NANOTÜPLERİN ÇAPLARINA OKSİTLEYİCİLERİN 

ETKİLERİ 

 
Bu tez, Fe/Al2O3/SiO/Si ince film kataliz üzerine, zayıf oksitleyici (CO2) 

varlığında etilen dekompozisyonu termal kimyasal buhar biriktirme (CVD) tekniği ile 

kaliteli ve düşük çaplı karbon (C) nanotüp (NT) sentezlenmesine odaklandı. Ayrıca, 

oksitleyicinin önişlem ve CNT büyütmesi üzerindeki önemi ve işlevsel özellikleri 

belirlendi. 

İlk olarak, CNT büyümesinde CO2 gazının etkisinin araştırılması için farklı 

büyütme koşullarında çalışıldı. Önişlem süresi, önişlem ve büyütme süresi boyunca 

gönderilen CO2 gaz akış oranları ve büyütme sıcaklığı çalışılan ana parametrelerdir. 

Deneyler boyunca önişlem ve büyütme süresi 15 dakika olarak seçilmekle birlikte, CO2 

gazı bu süre içinde gaz akış oranları sırasıyla 8:2, 10:2, 10:8 ve 10:10 sccm olarak 

önişlem süresi boyunca 5 ve 10 dakikalık sürelerle sisteme gönderildi. Diğer bir 

parametre olan sıcaklık ise 750 
o
C, 760 

o
C ve 770 

o
C değerlerinde çalışıldı. 

İkinci olarak, 15 dakika seçilen önişlem süresince 8: 2, 10: 2, 10: 8 ve             

10: 10 sccm oranlarında gönderilen CO2 gazının kataliz parçacıklarının yoğunlukları ve 

yükseklikleri üzerindeki etkileri araştırıldı.  

Son olarak, bahsedilen parametreler kullanılarak yapılan deneyler sonucunda 

elde edilen kataliz ve CNT‟ler sırasıyla AFM, EDX, SEM, STEM ve Raman 

Spektroskopi gibi çeşitli karakterizasyon teknikleriyle analiz edildi. CO2 gazının 

optimal miktarı ve gönderme süresi ile önişlem ve büyütme evrelerindeki oranı 

belirlendi. Elde edilen kataliz parçacıkları ve daha önce bunlar üzerlerine büyütülen 

CNT‟ler arasındaki ilişki değerlendirildi. Önişlem ve büyütme işlemlerinde uygun 

miktarda kullanılan CO2 gazının kataliz büyüklüğü ve CNT çap dağılımlarını olumlu 

etkilediği gözlendi. 
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CHAPTER 1 

 

INTRODUCTION 

 

The synthesis of carbon nanotubes (CNTs) has been extensively investigated by 

a large number of research groups, since the current explosion of interest in CNTs 

began with the discovery by Iijima in 1991 (Iijima 1991). A great number of works 

performed on CNTs have shown that they offer tremendous opportunities for novel 

applications, and the development of new nanoscale devices. 

CNTs are extraordinary nano materials in terms of their excellent structural, 

mechanical and electronic properties: Their tensile strength is at least 10 times stronger 

than conventional graphite fibers. They have thermal conductivity better than all but the 

purest diamond and their electrical conductivity is much higher than copper (Schwartz 

2006). Additionally, CNTs have high Young modulus and low weight (Saito, et al. 

1992). Therefore, they can serve multifunctional roles in molecular electronics 

(Bachtold, et al. 2001, Frackowiak, et al. 2000, Martel, et al. 1998), field emission 

devices (Zhu, et al. 1999), flat panel display (Collins and Zettl 1997), scanning probes 

(Dai, et al. 1998), chemical force sensors (Kong, et al. 2000, Wong, et al. 1998), 

hydrogen storage (Darkrim, et al. 2002, Liu, et al. 1999) and composite materials 

(Paradise and Goswami 2007). 

CNTs can be considered as the result of rolling graphite layers onto themselves, 

which is also an allotrope of carbon, forming carbon cylinders and may be composed of 

a single shell which is called single-walled carbon nanotube (SWNT) or of several 

shells which is called multi-walled carbon nanotube (MWNT)                     

(Dresselhaus, et al. 2001). A SWNT can be classified into three types; chiral, zigzag or 

armchair. The most exciting CNT property is related to its electronic band structure 

which depends on the folding angle and the chiral vector  of the tube, 

so that a CNT can be semiconducting or metallic  (Dresselhaus and Dai, 2004). Though 

zigzag CNTs are to be either semiconducting or metallic, all armchair CNTs are 

metallic nanotubes  (Saito, et al. 1992, Schwartz 2006). 

Arc discharge, laser vaporization and chemical vapor deposition (CVD) methods 

(Baddour and Briens 2005) are the three main methods used for CNT synthesis. The 
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first two methods, arc discharge and laser vaporization, have some limitations, so they 

are not suitable for mass production. On the other hand, CVD is regarded as one of the 

most promising growth technique because of its advantages. As the process of CVD 

technique is considered, it depends on passing carbon-containing gas through a furnace 

where metal catalysts are present at the growth temperature to decompose the gas 

(Ando, et al. 2004, Merkoçi 2006, Nessim 2010). 

When growing CNTs are considered, catalyst materials are of vital importance. 

Among transition metals, Fe, Co, Ni are the most common catalysts used in CVD 

process (Baddour and Briens 2005) due to the fact that these metals have finite 

solubility of carbon at high temperatures (Ando, et al. 2004, Dai 2002). 

The aim of this study was to investigate the growth mechanism and the effects 

of the oxidizers on the diameter of CNTs grown by CVD method. Pretreatment time, 

growth temperature, time and flow rate of oxidizer (CO2) were the studied parameters in 

this work. This thesis includes six chapters. The first chapter is a general description of 

carbon nanotubes and content of this thesis. In Chapter 2, carbon nanotubes, their 

discovery, types, structure, synthesis methods and growth mechanism are focused on in 

detail. Chapter 3 is devoted to a brief literature survey on oxidizer use in CNT growth. 

In the experimental section, Chapter 4, the catalyst film deposition process by DC 

magnetron sputtering, the Thermal Chemical Vapor Deposition (TCVD) process with a 

detailed explanation and the characterization techniques of CNTs are given. Chapter 5 

presents the experimental results and discussions part. The final part Chapter 6 includes 

conclusions of this study. 
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CHAPTER 2 

 

CARBON NANOTUBES 

 

2.1. Carbon Structures 

 

Carbon is a fascinating element in the universe because of its two unique 

features:  a carbon atom is able to make bonding with another carbon atom in many 

configurations resulting in allotropic forms of carbon from 0-dimensions to                   

3-dimensions; fullerene is 0-dimensional, carbon nanotube is 1-dimensional, graphene 

is 2-dimensional, and diamond is 3-dimensional. The other feature of a carbon atom is 

that it can also bond with many elements such as hydrogen, oxygen, and nitrogen 

(Bonard 2006). 

Fullerene, the first nano structured crystalline form of carbon, can consist of 60, 

70 or 82 carbon atoms which are arranged in hexagon and pentagon configurations  

(Dai 2002). According to the arrangements of the carbon atoms, a fullerene can form a 

hollow sphere, cylinder, or similar figure. In the fullerene structure, each carbon atom 

takes part in one double bond and in two single bonds. The bonding is an admixture of 

sp
2
 and sp

3
. The structure of a C60 molecule is called Buckminsterfullerene and has the 

form of a soccer ball as shown in Figure 2.1.  

 

 

 

 

 

 

 

 

Figure 2.1. C60 Buckminsterfullerene 

(Source: Stahl, et al. 2000) 
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Graphite is the most stable allotrope of carbon at room temperature, and 

atmospheric pressure (Baddour and Briens 2005, Petrucci, et al. 1993), and is a zero 

band gap semiconductor. In graphite, carbon atoms are in fact only bonded to three 

other carbon atoms, not four. The remaining electron detaches from the carbon atom, 

and is free to move between sheets of the carbon rings. Each carbon atom possesses a 

sp
2
 orbital hybridization to form three in plane σ bonds with an out of plane π bond. 

Figure 2.2 shows the structure of graphite. 

 

 

 

 

 

 

 

Figure 2.2. The structure of graphite  

(Source: Stahl, et al. 2000) 

                                                                                                                               

Diamond is one of the best known allotropes of carbon. In diamond, all four 

electrons in the outer shell of the carbon atom are used in bonds with other carbon 

atoms in the four tetrahedral directions, therefore, diamond does not have a free 

electron. Hence, it is electrically insulating with a large band gap. This three 

dimensional sp
3
 (diamond) structure makes diamond the hardest material in nature. The 

unusual property of diamond is its high thermal conductivity (Meyyappan 2005). 

Diamond structure is shown in Figure 2.3.        

                            

                                        

 

Figure 2.3. Diamond in the cubic structure 

 (Source: Stahl, et al. 2000) 

http://en.wikipedia.org/wiki/Allotropy
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Carbon nanotube (CNT) is the last carbon structure to be dealt with in the 

following section in this thesis. 

 

2.2. Carbon Nanotubes  

 

2.2.1. Historical Background  

 

When electron microscopes became popular in the research fields, 

Radushkevich et al. discovered the first tubular form of carbon by using an electron 

microscope in 1952 (Radushkevich, et al. 1952). However, not much interest was 

shown to the early reports of carbon nanotubes by the scientists. In 1991, while the 

Japanese scientist Sumio Ijima was doing some experiments to observe fullerene, he 

observed another form of carbon (graphitic tubules). After the discovery, that structure 

of carbon has been given a name, „carbon nanotube‟(CNT) (Dupuis 2005).  

The first observed and described CNT was multi-walled carbon nanotube 

(MWNT) which was grown by using arc-discharge method. A few years later, the 

second type of CNT called single-walled carbon nanotube (SWNT) was discovered by 

using  two different growth methods (chemical vapor deposition (CVD) and laser 

ablation method) (Dupuis 2005, Iijima and Ichihashi 1993). 

 

2.2.2. Types of Carbon Nanotubes 

 

Depending on the number of a CNT‟s graphene cylinders, there are two types of 

CNT. When a CNT contains one graphene cylinder, it is called single-walled carbon 

nanotube. On the other hand, the second type of CNT, multi-walled carbon nanotube, 

has more than one concentric cylinder. 

 

2.2.2.1. Single-Walled Carbon Nanotube  

 

A single-walled carbon nanotube (SWNT) can be considered to be formed by 

the rolling of a single graphene cylinder with the diameter ranging from 0.4 to 5 nm, 

and also it can be classified as either metallic or semiconducting. SWNTs are mostly 
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preferred nanotube type because of their perfect electrical, mechanical and structural 

properties as well as their having less defects with compared to MWNT (Dai 2002). The 

shape of a SWNT is depicted in Figure 2.4. 

 

 

 

Figure 2.4. An illustration of a SWNT 

 (Source: Dresselhaus, et al. 2003) 

 

2.2.2.2. Multi-Walled Carbon Nanotube 

 

A multi-walled carbon nanotube (MWNT) consists of two or more concentric 

cylindrical shells with an interlayer spacing of 0.34 nm (Popov 2004) of graphene 

sheets coaxially arranged around a central hollow core. Each individual tube can have 

different chirality (Thostenson, et al. 2001). The diameter of this type of CNT ranges 

from 2 to 100 nm (Merkoçi 2006), depending on the method of synthesis, and their 

lengths up to µm or even cm (Dai 2002). The shape of a MWNT is shown in Figure 2.5. 

Although the atoms of SWNT are held with covalent bonding, the concentric 

tubes are held together by Van der Waals bonding in MWNT (Thostenson, et al. 2001). 

MWNT acts primarily like metallic conductors (some can be semiconducting with very 

small band gaps). MWNT is stronger than SWNT, but they have more defects than 

SWNT (Dai 2002). MWNT contains imperfections that can limit their properties 

because of having multiple walls with concentric cylinders around the inner tube 

(Schwartz 2006). 
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Figure 2.5. An illustration of a MWNT 

(Source: Dresselhaus, et al. 2003) 

 

2.2.3. Classification of Carbon Nanotubes 

 

When a graphene sheet is rolled into tubular form, the structure can be in three 

different configurations such as; armchair, zigzag, and finally chiral carbon nanotube. 

The formations of three different CNTs are shown in Figure 2.6. 

 

                 

 

Figure 2.6. Classification of CNTs a) Zigzag (n, 0) b) Armchair (n=m) c) Chiral (n≠m) 

CNTs (Source: Dresselhaus, et al. 1998) 

 

As shown in Figure 2.7, the orientation of chiral vector is   

where a1 and a2 are the unit base cell vectors of graphene honeycomb lattice and n and 

m are integers. The diameter of CNT is determined by the (n,m) or (m,n) indices called 

„chirality‟ (Dai 2002). „Chiral angle (θ)‟ is known as the angle between the chiral vector 

(Ch) and  the unit vector (a1), which determines the direction of the chiral vector and 

gives information about orientations of CNTs.  
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Figure 2.7. An illustration of unrolled grapheme 

 (Source: Thostenson, et al. 2001) 

 

The chiral angle for armchair tubes (n=m) is θ=0
o
, for zigzag tubes (m=0) θ=30

o
, 

and for all chiral tubes (n≠m) 0< θ<30
o 

(Belin and Epron 2005). Depending on the tube 

chirality, CNTs have different electrical properties, that‟s why they can be metallic or 

semiconducting. If n-m=3q, where q is an integer, CNTs are metallic; while n-m≠3q, 

CNTs are semiconducting (Ivchenko and Spivak 2002). However, armchair CNTs (no 

band gap because of symmetrical structures) always show metallic character, zig-zag 

CNT (large band gap) and chiral CNTs (small band gap) indicate either metallic or 

semiconducting behavior (Hornyak, et al. 2008, Kaufmann and Star 2008). In        

Figure 2.8, metallic and semiconducting CNTs are shown. The metallic CNTs are 

represented by encircled dots, the semiconducting CNTs are represented by dots.  
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Figure 2.8. Possible vector space specified by the pairs of integers (n, m) for general 

CNTs (Source: Dresselhaus, et al. 1998) 

 

2.3. Carbon Nanotube Synthesis Methods 

 

Since the discovery of CNTs, several different production methods, the most 

common of which are arc-discharge (Journet and Bernier 1998), the laser-ablation 

(Thess, et al. 1996) and chemical vapor deposition (CVD) (Niu and Fang 2006), have 

been used to synthesize them. These methods can be divided as physical and chemical 

processes according to the method applied to release carbon atoms from carbon-

containing precursor molecules (Moisala, et al. 2003). Arc-discharge and laser-ablation 

methods are the physical methods, CVD is the chemical method (Moisala, et al. 2003). 

 Each method has unique properties in terms of the results obtained, since they 

have advantages or disadvantages as shown in Table 2.1, which are focused in this 

section. 
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Table 2.1. Advantages and disadvantages of three main techniques used for CNT 

growth. 

 

Method Arc-discharge Laser-ablation CVD 

Pioneer 
Iijima 

(1991) 

Guo et al. 

(1995) 

Yacaman et al. 

(1993) 

Kind of CNT MWNT SWNT Both 

Yields High Low High 

Advantages 
-the high growth rate 

 

 

-the conditions easily 

optimized 

- narrow diameter 

range 

 

 

 

-simple 

mechanism 

-low cost 

-low 

temperature 

production 

-growth control 

-aligned growth 

 

Disadvantages 

-simple and 

inexpensive 

-expensive equipment 

-the large amount of 

energy consumed 

 

-expensive equipment 

-high temperature 

production 

-the large amount of 

energy consumed 

 

-impurity 

-high structural 

defects 

 

 

2.3.1. Arc-Discharge Method 

 

Arc-discharge method by which the CNTs have been produced by Iijima   

(Iijima 1991) is the most common and perhaps the easiest way (Journet and Bernier 

1998) to produce CNTs, fullerenes and amorphous carbon (Bonard 2006). A typical 

illustration of an arc-discharge apparatus is shown in Figure 2.9.  
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Figure 2.9. Schematic illustration of an arc-discharge apparatus 

 (Source: Harris 2007) 

 

The principle of this method depends on an electric discharge produced by 

applying direct current (DC) of ~200 A at a low voltage (20-40 V) (Iijima 1991) 

between anode and cathode under an inert atmosphere of helium or argon (Journet and 

Bernier 1998, Popov 2004) and also in methane (Ando, et al. 2004). 

Arc-discharge method can be utilized with or without catalyst (such as Fe, Co, 

Ni); catalyst is necessary for the production of SWNT while for the production of 

MWNT is not, (Journet and Bernier 1998). The temperature of the anode surface 

(~4000 
o
C) is higher than the cathode surface (~3500 

o
C) during the process, so that 

carbon atoms evaporate from the anode and accumulate on the cathode, and the length 

of the anode decreases with the nano particles forming. 

The voltage and current are the parameters of the arc-discharge method        

(Zhu, et al. 2002). Furthermore, the conditions and choice of catalyst are important 

(Baddour and Briens 2005) and the pressure of inert gas has a strong influence on the 

CNTs grown. 

Even though this technique is simple, inexpensive and the most widely used 

synthesis method, CNT yields can be limited. Moreover, the purification of CNTs is a 

problem due to their location among vaporized debris (Hornyak, et al. 2008,         

Merkoçi 2006), so it needs to be separated from the crude product containing various 

side products and catalytic metals (Baddour and Briens 2005). The other drawback of 

this method is that CNTs may be damaged during the process. 
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2.3.2.   The Laser-Ablation Method 

 

The first CNT synthesis by laser-ablation method was reported by Guo                    

(Guo, et al. 1995). This method, which is useful, more simple and powerful for 

producing CNT, has a similar principle with the arc-discharge method. It can be 

considered as a thermal and a high-energy method (Hornyak, et al. 2008). A typical 

illustration of a laser-ablation apparatus is depicted in Figure 2.10.  

 

 

 

 

Figure 2.10. Schematic illustration of a laser-ablation apparatus                                           

(Source: Ando, et al. 2004) 

 

Although MWNT growth is not possible by using the laser-ablation method 

(Baddour and Briens 2005), it can synthesize SWNT with the highest purity (up to 

about 90% purity) in comparison with other techniques (Makita, et al. 2005). 

The laser-ablation method is performed nearly at 1200 
o
C in an argon or helium 

gas environment kept at 500 Torr pressure (Baddour and Briens 2005) in a temperature 

controlled furnace in which a graphite target is placed in the middle of a quartz tube 

(Harris 2007). In comparison with the other vaporization devices, the energy density of 

the lasers used in this technique is much higher than those, so the laser has an 

appropriate usage for materials with a high melting temperature, such as graphite 

(Ando, et al. 2004). 
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The basic principle of this method is as follows: a powerful laser beam is 

introduced to the system through the window and focused onto the target located in the 

center of the furnace. The target consists of a mixture of graphite and metal catalysts, 

such as Co or Ni. After the target is vaporized by laser local heating, the vaporized 

carbon is carried to the copper collector and it deposits on the top surface of this 

collector (Harris 2007). When the system cools to low temperature by a water cooling 

system, this process finishes (Baddour and Briens 2005). 

As a conclusion, CNTs with high quality have been synthesized by the         

laser-ablation method. However, this method has some drawbacks. Firstly, it produces a 

small amount of clean CNTs, whereas arc-discharge methods produce large quantities 

of impure material, in general. Secondly, this method costs a lot because of the laser, 

therefore, scale-up is not possible with this method. Additionally, this is a slow and 

expensive process by its nature (Wolf 2006). 

 

 2.3.3. Chemical Vapor Deposition Method 

 

Chemical vapor deposition (CVD) technique has been used first for the 

production of carbon filaments more than 4 decades ago (Walker, et al. 1959), however, 

it was utilized to grow MWNTs till 1993 (Yacaman, et al. 1993). There are various 

CVD techniques for CNT growth such as plasma enhanced CVD, thermal CVD, alcohol 

catalytic CVD, laser assisted CVD and aero-gel supported CVD. Thermal CVD 

(TCVD) method used in this thesis study will be explained below in detail. 

CNT growth includes two main parts which are the catalyst preparation also 

known as pretreatment and the CNT growth. To synthesis catalyst nano particles, a thin 

film layer can be used by annealing. As the growth process, some steps are followed: 

Firstly, the prepared substrate with catalyst is placed inside the quartz tube and the 

temperature is fixed for a selective point in an inert gas environment. While the 

temperature is increasing, an inert gas (in general, Ar) flows through the tube to prevent 

the oxidation contamination of samples. When the furnace reaches the desired 

temperature, etching gas such as hydrogen, nitrogen, or ammonium is started to be sent 

through the tube in order to form catalyst nano particles. In the second step, 

hydrocarbon gas flows into the system and decomposes on the catalyst surface. 

Acetylene (C2H2), ethylene (C2H4), methane (CH4) are the most frequently used 
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hydrocarbons (Cui, et al. 2003) with the catalyst obtained over substrates           

(Moisala, et al. 2003), because of their high carbon content (Vesselényi, et al. 2001). 

Finally, CNTs grow over the catalyst and are collected upon cooling the system to room 

temperature (Merkoçi 2006). Figure 2.11 shows an illustration of the simplest set up 

used for CNT growth in CVD growth. 

 

 

 

Figure 2.11. A schematic illustration of a CVD system                                                  

(Source: Journet and Bernier 1998) 

 

This method is ideal to synthesize well-defined structures of CNT               

(Kong, et al. 1998). When it is compared with the other two methods, CVD has many 

advantages. The main advantage of this technique is that it exerts more control over the 

products with a large range and considering energy efficiency, less energy is required        

(Bonard 2006, Hornyak, et al. 2008). Second, it enables the use of various substrates 

(Ando, et al. 2004). The other superior property of this method is to provide directional 

growth of both SWNT and MWNTs. Moreover, this technique is a hot-wall system 

performing at relatively low temperature hence, does not require any cooling systems 

(Jung, et al. 2001, Meyyappan 2005). CVD is the best way to form CNT owing to its 

simplicity and most effectiveness for mass production (Hornyak, et al. 2008). 
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2.3.3.1. Key Parameters of Chemical Vapor Deposition Method 

 

CNT growth mechanism has remained somewhat controversial despite being 

heavily investigated for years. In this part, the effects of important key parameters 

including catalyst thin films, thin film support layer, consideration of gases 

(hydrocarbons and flow rates), temperatures for both annealing and growth  affecting 

the growth process of CNT are emphasized (Nessim 2010). In addition, the importance 

of oxidizers is mentioned in Chapter 3 in detail. 

 

2.3.3.1.1. Catalyst Thin Film 

 

One of the indispensible parameters affecting the CNT growth is catalyst 

material, whose size, density and also types have important effects on the CNT diameter            

(Bonard, et al. 2002, Chhowalla, et al. 2001), and  the growth rate (Lee, et al. 2002). 

Furthermore, it affects the morphology of both SWNT and MWNTs grown with the   

tip-growth or base-growth mechanisms. In addition, the areal density of particles 

determines the spacing between CNTs (Chhowalla, et al. 2001, Kind, et al. 1999). 

Ni, Co, Fe, Cr, Mn, Zn, Ti, Zr, Hf, Re, Sc, Y and Mo or a combination of them 

have been used to determine the most suitable metal catalyst in the growth of CNT. 

However, it has been observed that Co (Ivanov, et al. 1994), Fe (Hernadi, et al. 1996) 

and Ni (Yudasaka, et al. 1994) (transition metals) or alloys of them are the best catalyst 

choices among others due to having finite carbon solubility (0.5wt%-1.5wt%) at high 

temperatures (800-900 
o
C) (Ando, et al. 2004, Dai 2002, Deck and Vecchio 2006, 

Dresselhaus, et al. 2001) and catalytically decomposing gaseous carbon-containing 

molecules (Moisala, et al. 2003). Lee et al. showed that respective CNT growth rate and 

the best product are based on the catalyst type in the order of Fe>Co>Ni                   

(Lee, et al. 2002). It has also been stated that growing both MWNT and SWNTs is 

possible by means of these three metals (Dupuis 2005). On the other hand, other 

elements such as Cu, Cr and Mn are used for only a limited amount of CNT growth 

(Vesselényi, et al. 2001). 

The CNT diameter matches the catalyst size as observed by Cheung et al.            

(Cheung 2002). The catalyst does not necessarily need to be a nano particle, even a bulk 

metal can catalyze the CNT growth. 
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2.3.3.1.2. Thin Film Support Layer 

 

Thin film support layer type may lead to different chemical or physical 

interactions between the catalyst metal and the supporting material. Additionally, the 

support layer have an important effect on mobility of catalyst nano particles (Dai 2002). 

Figure 2.12 shows that the catalyst orientation depending on the support layer differs 

during the growth process. It has been proven that the choice of underlayer is of critical 

importance for CNT growth.   

 

 

 

Figure 2.12. Schematic illustration of catalyst nano particles orientation                     

(Source: Dupuis 2005) 

 

Quartz, silicon, silicon oxide (Zhang, et al. 2005), silica, alumina, alumina-silicate 

(zeolite), aluminium oxide (Hart and Slocum 2006, Hata, et al. 2004, Noda, et al. 2007), 

CaCO3, magnesium oxide (Xiong, et al. 2005, Xiong, et al. 2006) are used as substrates 

in CVD. The most common buffer layers are silica (SiO2) and alumina (Al2O3). 

Alumina materials are a better catalyst support layer than silica because of the fact that 

there is a stronger metal-support interaction in alumina materials. The thickness of the 

underlayer has been found to influence the CNT growth critically (Nessim 2010). Thin 

(thick) catalytic metal films break into smaller (larger) catalytic nano particles, which 

produce smaller (larger) CNTs, for this reason, thin catalytic metal films (~ 1 nm) are 

necessary to grow SWNTs, thicker metal films (for example 10 nm) are used for 

MWNT growth (Yamada, et al. 2006). CNTs have successfully been grown on 

insulating substrates by many scientific teams all over the world. In contrast to 
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insulating substrates, conductive layers have been used as an underlayer material by 

fewer teams in CNT growth (Nessim 2010).  

 

2.3.3.1.3. Carbon Precursors 

 

Most commonly used CNT precursors in CVD process are methane (CH4) 

(Cassell, et al. 1999; Xiong, et al. 2005), ethylene (C2H4) (Futaba, et al. 2005,      

Futaba, et al. 2006, Hart and Slocum 2006, Hata, et al. 2004, Nessim, et al. 2008,               

Yamada, et al. 2006), acetylene (C2H2) (Patole, et al. 2008; Pint, et al. 2009a,        

Zhong, et al. 2009), benzene (C6H6) (Yang, et al. 2003) and carbon monoxide (CO)             

(Huang, et al. 2004). Each of them has a particular decomposition temperature, thereby 

resulting in a different CNT growth temperature.   

There is a close relationship between the yield of CNTs and the injection time of 

the carbon source. The longer the injection time, the more molecules of hydrocarbon 

gases pass over the catalyst, with the result that the carbon yield of the deposits 

increases. Apart from the type of carbon precursor, its feed rate is also another 

important parameter for CNT growth. It is known that high feed rates can increase the 

growth rate. Cheung et al. explained that different carbon species can be produced with 

the same diameter catalyst nano particles using different flow rates of carbon precursor 

gas (Cheung 2002). When the flow rate of the carrier gas is higher, nano particles with 

larger diameter grow.  

The reason why MWNT growth is easier than SWNT growth is that MWNT is 

possible to grow from most of the hydrocarbons, whereas SWNT grows from only 

selected hydrocarbons.  

 

2.3.3.1.4. Temperature 

 

CNTs are typically grown in a temperature range from 550 °C to 1000 °C 

(Moisala, et al. 2003). However, the reaction temperature may vary in terms of the 

catalyst-support material pair. In order to accelerate the catalytic decomposition of 

hydrocarbon molecules and to increase the diffusion rate of carbon in the metal particle, 

experiments are carried out with increased temperatures (Moisala, et al. 2003). 

Moreover, the temperature is a crucial agent in the pre-growth treatment of the catalyst. 
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2.4. Growth Mechanism of Carbon Nanotube 

 

Two main growth models have been introduced for CNT growth whether the 

catalyst nano particles are at the tip of CNT or at the bottom side (Saito, et al. 1994). 

The former modelled by Hofmann et al. (Hofmann, et al. 2005) was called the            

tip-growth mechanism where the metal catalyst nano particle is lifted off from the 

support surface during the growth process owing to weak support-catalyst interaction     

(Moisala, et al. 2003, Nessim 2010). The latter is called base-growth mechanism which 

was modelled by Puretzky et al. (Puretzky, et al. 2005). In this growth, the catalyst 

particle stays in a pinned way at the support surface while the tube grows up, so that 

CNT nucleates and grows above the catalyst (Moisala, et al. 2003, Nessim 2010). For 

the base-growth mechanism, there is a strong interaction between the catalyst and 

substrate (Dresselhaus, et al. 2001). Figure 2.13 shows possible growth mechanisms of 

CNT explained by two groups. 

 

            

 

Figure 2.13. Schematic illustrations of CNT growth mechanisms a) Base-growth              

b) Tip-growth mechanism (Source: Ando, et al. 2004) 
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       CHAPTER 3 

 

       OXIDIZERS 

 

Although CNTs are of vital importance in terms of their unique properties in 

application areas today, their exact growth mechanism is not fully understood. It is 

commonly argued that mild oxidants (CO2, O2 and H2O) play a significant role in CVD 

process. In this chapter, an extensive literature search done in order to investigate the 

growth mechanism and the role of oxidizers during CNT growth is given. 

 

3.1. Importance of Oxidizers on Catalyst 

 

Oxidizers keep catalyst particle functioning in the growth process by removing 

amorphous carbon coverage on them. Moreover, they can etch away amorphous carbon 

on the outer walls of CNTs. Hence, they keep catalyst particle functioning for a longer 

time during the growth and consequently increase the length, yield and quality of CNTs. 

They can also be utilized to control the size of catalyst particle during pretreatment 

time. The purpose of this study was to understand the role played by oxidizers during 

both pretreatment and growth time in the control of catalyst size, which consequently 

lead to the control of CNT diameters. 

 

3.2. Literature Search  

 

The CVD concept was expanded by the addition of a growth enhancer into the 

growth ambient of normal hydrocarbon CVD. As a result of the second ingredient, the 

growth efficiency increased to unprecedented levels (Hata, et al. 2004).  

It is generally believed that water vapor cleans and reactivates the catalysts by 

removing amorphous carbon coverage, and as a result of this reactivation, it was seen 

that catalyst activity increased in a direct way (Yamada, et al. 2008, Hasegawa and 

Noda 2011a, Huang, et al. 2009), using water vapor can promote the synthesis of CNT 

forests, prolongs the catalyst particle lifetime, prevents the sintering of iron particles 
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(Amama, et al. 2009, Hata, et al. 2004, Yamada, et al. 2008), and also modulates both 

the morphology of the forest and the structure of the CNTs grown (Huang, et al. 2009). 

Consequently, the water-assisted method is called as „Super Growth CVD Process‟. 

SWNTs with good properties, such as high purity, long length and alignment can be 

grown by this process (Futaba, et al. 2009). 

To understand how water modifies the diameter distribution of SWNTs, two 

aspects may be considered; the interaction between water and the growing CNTs, and 

the interaction between water and catalyst particle (Hu, et al. 2010).   

There are two different views about the functional role of water for CNT 

growth. The first one proposed by Hata and co-workers (Hata, et al. 2004). In that 

opinion, CNT growth using CVD method can be dramatically enhanced by introducing 

small amount of water together with the carbon source. Moreover, there is a clear 

indication that water works as a protecting agent to extend the catalyst lifetime by 

etching the amorphous carbon deposit on the surface of the catalyst resulting in keeping 

the catalyst active during CNT growth. The other one was suggested by Amama et al. 

(Amama, et al. 2009). According to this view, CNT synthesis becoming more passive 

with Ostwald ripening can be reduced by surface hydroxylation of alumina support by 

means of water vapor. In Ostwald ripening, large particles are more preferred than small 

particles because of vertical fraction surface energy and in the end, more atoms are 

adsorbed from small particles (Wynblatt 1975), therefore, small catalyst particles 

disappears by atomic interdiffusion and the large ones get larger and less efficient 

(Hasegawa and Noda 2011b). Ultimately, if many more catalyst particles disappear, 

surface number density decreases, distribution range broadens and mean size shifts 

bigger values. If this event happens during CNT growth, it is very likely that it stops the 

growth. In parallel to this view, Hasegawa et al. showed that the number density of 

medium-sized particles decreased while that of both smaller and larger particles 

increased, thus the structural change was caused by Ostwald ripening (Hasegawa and 

Noda 2011b). Kim et al. also directly observed the Ostwald ripening behavior in two 

nearby Fe catalyst after the termination of MWNT growth and they found that a 

combination of both Ostwald ripening and subsequent subsurface diffusion caused loss 

of the Fe catalyst (Kim, et al. 2010). For a milimeter-tall SWNT forest, both Ostwald 

ripening of catalyst particles and growth termination of individual SWNTs through 

carbon byproduct formation on catalyst particles must be prevented and the rapid 

growth rate must be maintained (Hasegawa and Noda 2011b). In addition to these 
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different views, Futaba et al. put forward that highly efficient growth can be achieved 

not only using water but also other growth enhancers (alcohols, ethers, esters, ketones, 

aldehydes, and even CO2) (Futaba, et al. 2009). Their extensive investigations showed 

two essential ingredients in the growth ambient: i) a growth enhancer containing oxygen 

and ii) a carbon source that does not contain oxygen (Futaba, et al. 2009).  

Different levels of water had a significant effect on the catalyst lifetime: the 

reason of a drastic decrease in the catalyst lifetime is that even a small amount of water 

vapor in the reaction mixture can change the CNT growth kinetics (In, et al. 2011). 

When water is flown with the carbon source, during CVD growth process, the 

efficiency of the catalyst has been grown in a few minutes (Smajda, et al. 2009). 

However, the experiments of Hasegawa et al. showed that water addition stabilizes the 

growth of millimeter-tall SWNTs for various conditions. On the other hand, water 

addition disturbed SWNT growth using a thinner catalyst layer (Hasegawa and Noda 

2011a) . 

When compared to the SWNTs grown without water vapor, the intensities of 

large-diameter CNTs relative to small-diameter CNTs decrased by adding water from 

the beginning of CVD growth process in a few minutes (Hu, et al. 2010). 

Although the growth mechanism and the role of water in CVD growth are still 

under debate, it has been accepted that a small amount of water leads to an enhancement 

in both growth height and nucleation density (Pint, et al. 2009b). Nonetheless, sudden 

decreases may occur in the growth characteristics as the optimum water level is 

exceeded resulting in the fact that both catalysts and CNTs are oxidized               

(Futaba, et al. 2005), the defect of CNTs increases (Liu, et al. 2010), the walls of 

SWNTs are damaged (Hasegawa and Noda 2011a).  

No enhancing effects were observed when ammonia (NH3) was selected as a 

growth enhancer. This result demonstrated that the fundamental requirement of the 

growth enhancer is to contain oxygen (Futaba, et al. 2009). 

When compared with water; CO2, a good weak oxidant, can be more easily 

controlled, and also promotes the growth of CNTs (Wen, et al. 2007). By introducing 

large amounts of CO2 (to 30.4 mol %), clean and bare CNTs on the top surface of CNT 

forests can be formed, the wall numbers of CNTs can be decreased gradually, the 

diameter of CNTs can also be smaller, and the carbonaceous impurities can be 

eliminated (Huang, et al. 2009). In spite of large amounts of CO2, Pint et al. pointed out 
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that the small amounts of CO2 in the reaction gas mixture caused a significant 

enhancement of the CNT growth height (Pint, et al. 2009b). 

As it was explained by Huang et al., the morphological variation due to 

increasing amounts of CO2 is related to the change of CNT growth velocity and change 

of bonding force between CNT and support (Huang, et al. 2009). 

Futaba et al. obtained vertically aligned CNT forests by using both acetone and 

CO2 as growth enhancer with ethylene as a carbon source whereas forest growth from 

ethylene alone was very limited (Futaba, et al. 2009). 

Although it was a previous common belief which the CNTs grown with water 

vapor had less defects,  the Raman spectrum analysis has been shown that the SWNTs 

grown by adding water have the larger D-band intensity than those without water, as a 

result of which, the G/D peak ratio decreases (Hasegawa and Noda 2011a). Similarly, 

the decreasing of the G/D intensity ratio during the array growth has indicated the 

increasing concentration of amorphous carbon near the catalyst surface species 

(Stadermann, et al. 2009).                                   
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       CHAPTER 4 

 

          EXPERIMENTAL PROCESS 

 

This chapter involves experimental details about the thesis work and consists of 

three main parts. In the first part, the catalyst film deposition process by DC magnetron 

sputtering is discussed. The second part deals with the thermal CVD process in detail. 

The third part gives details of the characterization techniques of grown CNTs which are 

SEM, AFM and Raman Spectroscopy. 

 

4.1. Catalyst Film Deposition by DC Magnetron Sputtering Process 

 

In this work, deposition of very thin Fe catalyst film onto the Al2O3/SiO2/Si 

substrates was carried out by utilizing the DC magnetron sputtering method, which was 

the most popular technique used to fabricate the thin film materials from the point of 

good surface uniformity, growth on substrates, and its cost effectiveness. For this 

current work, AJA ATC Orion 5 UHV sputtering system was used (Figure 4.1). 

(100) Si wafers with 2-inch diameter and a typical resistivity of 1-20 ohm-cm 

purchased to be used as support layer were cleaned chemically in methanol for 15 min 

in an ultrasonic bath and rinsed with ultra-pure water for 15 min prior to growth. The 

commercial silicon films were first oxidized by dry thermal oxidation system. 10-15 nm 

thick alumina (Al2O3-barrier) and than 0.5-3 nm thick iron (Fe catalyst) layers were 

deposited on a silicon dioxide (SiO2) wafer by DC magnetron sputtering. At the end of 

this process, Fe/Al2O3/SiO2/Si substrates were ready for growing CNTs on them. 

The magnetron sputtering process depended on the movement of electrons and 

ions in a magnetic field and the generation of ion-induced secondary electrons at the 

target takes place in an evacuated chamber. The chamber pressure was evacuated to a 

pressure of 10
-6 

Torr by means of turbomolecular pump and depositions were performed 

at a rate of 0.1 A
o
/s and 20 W at a growth pressure of 0.5 mTorr under Ar ambient. This 

system was controlled by a computer.  
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Figure 4.1. The Magnetron Sputtering System in Physics Department, IYTE 

 

In the basic sputtering process, a target (or cathode) plate is bombarded by 

energetic ions, so that collisions of ions with the target material remove electrons from 

the target. At the same time, secondary electrons are also emitted from the target 

surface. Magnetrons are utilized in the sputtering process to control the path of the 

displaced atoms which fly randomly around the vacuum chamber. As a consequence of 

the increased ionization efficiency of a magnetron resulting in a dense plasma in the 

target region, ion bombardment of the target is increased and sputtering rates become 

higher (Kelly and Arnell 2000). 

 

4.2. Thermal Chemical Vapor Deposition Process 

 

Thermal chemical vapor deposition (TCVD) apparatus used in this work was 

composed of a horizontally mounted quartz tube with outer diameter of 2.54 cm and 

length of 60 cm, equipped with various gas lines and mass flow controllers and an oven 

(Lindberg/Blue TF55035C Split Mini tube Furnace) (Figure 4.2). Because of the fact 

that melting point of quartz was higher than the experiment temperature performed, 

both quartz tube and quartz boat were used. The quartz boat and some Si-substrates with 

thin films grown on them used in CNT growth are displayed in Figure 4.3.  
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Figure 4.2. The TCVD System at CNL Lab at Physics Department, IYTE 

 

 

 

Figure 4.3. Some thin films used for CNT growth in the quartz boat 

 

In the process, there is a matter not to be forgotten that the quartz boat and the 

samples placed are located in the middle of the furnace where a thermocouple is 

situated. Though the furnace temperature can reach to 1100
 o

C, the experiments were 

carried out at 750
 o

C, 760
 o

C and 770
 o

C in the work of the thesis. All CNT growth 

experiments were performed at atmospheric pressure. 

The CVD process consisted of the following sequential steps: As a first step, 

before the CNT growth, argon, whose purpose was to remove the contamination before 

and after the CNT growth process and to prevent the oxidation of samples, flew through 
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the tube as the carrier gas. Second, prepared catalyst films (supported on a Si wafer) 

were placed in the quartz boat, and placed is in the furnace. After heating the furnace to 

the desired growth temperature, both etching gas (H2) and oxidizer were started to be 

sent to do preannealing and form catalyst nano particles. Both H2 and the oxidizer 

provided the reduction from metal oxide catalyst to metal catalyst. CO2 was used as an 

oxidizer during all experiments. When the pretreatment time finished, CNT growth 

started with C2H4 flow through the tube for a predetermined time. When the growth 

time finished, firstly the hydrocarbon gas was turned off and then both the hydrogen gas 

and oxidizer were turned off. The temperature was set to 0
 o

C and the system was left 

for cooling in Ar gas environment.  

Different gas flow rates and amount of oxidizer were investigated in this work. 

The flow rates of Ar, H2, C2H4 (150 sccm, 140 sccm, 80 sccm) were constant during all 

experiments. In addition growth time was also another parameter for growing CNT, so 

the growth time was chosen as 15 minutes for all of the experiments in this study. 

 

4.2.1. Growth with Oxidizers 

 

The main parameters studied in the experiments carried out in presence of CO2 

were pretreatment time, oxidizer gas flows, sending moment and duration of oxidizer 

and rates of oxidizer in pretreatment and growth processes. As well as these main 

parameters, different growth temperatures were also tried to determine the optimum 

temperature value in presence of CO2 as shown in Table 4.1. 
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Table 4.1. Studied parameters in the CNT growth with the oxidizing gas CO2 during 

growth time; Pressure: 1 atm., Ar: 150 sccm, H2: 140 sccm 

                   (sccm= standart cm
3
/min.) 

 

Sample Name         
T 

(
o
C) 

Pretreatment CNT growth 

CO2 

(sccm) 

H2 

(min.) 

CO2 

(min.) 

Time 

(min.) 

C2H4 

(sccm) 

CO2 

(sccm) 

Time 

(min.) 

FeAlO9CNT762 760 10     15     10 15 80 2     15 

FeAlO12CNT764 760 10     15     10 15 80 2     15 

FeAlO15CNT766 760 10     15     10 15 80 2     15 

FeAlO5CNT767 760 10     15     5 15 80 2     15 

FeAlO9CNT768 760 10     15     5 15 80 2     15 

FeAlO10CNT769 760 10     15     5 15 80 2     15 

FeAlO12CNT770 760 10     15    5 15 80 2     15 

FeAlO12CNT771 760 10     15     5 15 80 2     15 

FeAlO14CNT772 760 10     15     5 15 80 2     15 

FeAlO15CNT773 760 10 15     5 15 80 2     15 

FeAlO12CNT777 760 8 15 10 15 80 2     15 

FeAlO15CNT779 760 8 15 10 15 80 2     15 

FeAlO9CNT780 760 8 15 5 15 80 2     15 

FeAlO12CNT781 760 8 15 5 15 80 2     15 

FeAlO14CNT782 760 8 15 5 15 80 2     15 

FeAlO15CNT783 760 8 15 5 15 80 2     15 

FeAlO12CNT785 750 8 15 5 15 80 2     15 

FeAlO15CNT787 750 8 15 5 15 80 2     15 

FeAlO12CNT789 770 8 15 5 15 80 2     15 

FeAlO14CNT790 770 8 15 5 15 80 2     15 

FeAlO15CNT791 770 8 15 5 15 80 2 15 

FeAlO9CNT792 770 10 15 5 15 80 2     15 

FeAlO12CNT793 770 10     15 5 15 80 2     15 

FeAlO15CNT795 770 10     15 5 15 80 2 15 

FeAlO12CNT799 760 10     15     10 15 80 2     15 

FeAlO14CNT800 760 10     15     10 15 80 2     15 

FeAlO15CNT801 760 10 15     10 15 80 2 15 

FeAlO12CNT832 760 10 15 5 15 80 4 15 

FeAlO15CNT834 760 10 15 5 15 80 4 15 

FeAlO12CNT835 760 8 15 5 15 80 4 15 

FeAlO14CNT836 760 8 15 5 15 80 4 15 

FeAlO15CNT837 760 8 15 5 15 80 4 15 

FeAlO12CNT838 750 10 15 5 15 80 2     15 

FeAlO14CNT839 750 10 15 5 15 80 2     15 
 (cont. on next page) 
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FeAlO15CNT840 750 10 15 5 15 80 2 15 

FeAlO12CNT844 750 8 15 10 15 80 2     15 

FeAlO14CNT845 750 8 15 10 15 80 2     15 

FeAlO15CNT846 750 8 15 10 15 80 2 15 

FeAlO12CNT850 760 8 15 5 15 80 6 15 

FeAlO14CNT851 760 8 15 5 15 80 6 15 

FeAlO15CNT852 760 8 15 5 15 80 6 15 

FeAlO12CNT853 750 10 15 5 15 80 8 15 

FeAlO14CNT854 750 10 15 5 15 80 8 15 

FeAlO15CNT855 750 10 15 5 15 80 8 15 

FeAlO12CNT856 760 10 15 5 15 80 8 15 

FeAlO14CNT857 760 10 15 5 15 80 8 15 

FeAlO15CNT858 760 10 15 5 15 80 8 15 

FeAlO12CNT859 770 10 15 5 15 80 8 15 

FeAlO14CNT860 770 10 15 5 15 80 8 15 

FeAlO15CNT861 770 10 15 5 15 80 8 15 

FeAlO16CNT862 760 8 15 5 15 80 6 15 

FeAlO16CNT863 760 8 15 5 15 80 6 15 

FeAlO12CNT864 760 10 15 10 15 80 8 15 

FeAlO16CNT865 760 10 15 10 15 80 8 15 

FeAlO16CNT866 760 8 15 10 15 80 8 15 

FeAlO17CNT867 760 8 15 10 15 80 8 15 

FeAlO17CNT868 760 8 15 10 15 80 8 15 

FeAlO16CNT869 760 10 15 5 15 80 10 15 

FeAlO17CNT870 760 10 15 5 15 80 10 15 

FeAlO16CNT871 750 10 15 5 15 80 10 15 

FeAlO17CNT872 750 10 15 5 15 80 10 15 

FeAlO16CNT873 760 10 15 10 15 80 10 15 

FeAlO17CNT874 760 10 15 10 15 80 10 15 

FeAlO16CNT899 770 8 15 10 15 80 2 15 

FeAlO17CNT900 770 8 15 10 15 80 2 15 

FeAlO18CNT901 770 8 15 10 15 80 2 15 

FeAlO16CNT911 750 10 15 10 15 80 2 15 

FeAlO17CNT912 750 10 15 10 15 80 2 15 

FeAlO18CNT913 750 10 15 10 15 80 2 15 

FeAlO16CNT918 770 10 15 10 15 80 2 15 

FeAlO17CNT919 770 10 15 10 15 80 2 15 

FeAlO16CNT921 750 10 15 10 15 80 8 15 

FeAlO17CNT922 750 10 15 10 15 80 8 15 

FeAlO14CNT923 770 10 15 10 15 80 8 15 
 

 

Table 4.1 (cont.) 

(cont. on next page) 
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FeAlO16CNT924 770 10 15 10 15 80 8 15 

FeAlO17CNT925 770 10 15 10 15 80 8 15 

FeAlO16CNT926 750 10 15 10 15 80 10 15 

FeAlO17CNT927 750 10 15 10 15 80 10 15 

FeAlO18CNT928 750 10 15 10 15 80 10 15 

FeAlO16CNT929 770 10 15 10 15 80 10 15 

FeAlO18CNT931 770 10 15 10 15 80 10 15 

FeAlO14CNT932 770 10 15 5 15 80 10 15 

FeAlO16CNT933 770 10 15 5 15 80 10 15 

FeAlO17CNT934 770 10 15 5 15 80 10 15 

FeAlO18CNT935 770 10 15 5 15 80 10 15 

FeAlO16CNT936 760 10 15 10 15 80 4 15 

FeAlO17CNT937 760 10 15 10 15 80 4 15 

FeAlO18CNT938 760 10 15 10 15 80 4 15 

FeAlO16CNT939 760 8 15 10 15 80 4 15 

FeAlO17CNT940 760 8 15 10 15 80 4 15 

FeAlO16CNT941 760 8 15 10 15 80 6 15 

FeAlO17CNT942 760 8 15 10 15 80 6 15 

FeAlO18CNT943 760 8 15 10 15 80 6 15 

  

4.3. Characterization Techniques 

 

Characterization of the chemical and physical properties of CNTs is crucial in 

terms of qualifying them. In this study, different characterization techniques were used 

to examine the samples after pretreatment and growth. For catalyst characterization, 

AFM and EDX were used. In addition, CNT samples were analyzed with SEM, STEM 

and Raman Spectroscopy. 

 

4.3.1. Scanning Electron Microscopy 

 

Scanning Electron Microscopy (SEM) is one of the main methods to 

characterize CNTs in that it is the simplest technique with wider availability. Both CNT 

powder samples and individual tubes on a bulk substrate, Si wafer, can be observed by 

SEM (Jorio, et al. 2008). Although SEM gives information about morphology, 

dimensions, densities and orientations of CNTs (Thess, et al. 1996), it can only measure 

Table 4.1 (cont.) 
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their diameter roughly. The walls of SWNT and MWNTs cannot be examined with 

SEM because of the fact that its resolution is restricted (Jorio, et al. 2008).  

As for its working principle, SEM images the sample morphology by scanning 

the surface with a high energy beam of electrons instead of light. When the beam of 

electrons strikes the surface of the specimen, the interaction occurs between the atoms 

of the sample and the electrons, then several signals in the form of secondary electrons 

(SE), back scattered electrons (BSE) and characteristic X-rays containing information 

about the surface topography and composition of the samples can be detected          

(Joshi 2008). Back scattered electrons coming from the flat and polished sample 

provides contrast, so that they give the elemental composition of the sample depending 

on the composition and orientation between  the electron beam and surface. 

  

SEM pictures were taken with Quanta FEG 250, at IYTE for this thesis work. In 

addition, energy dispersive X-ray (EDX) analyses were also used to analyze near 

surface (about 2 microns in depth) elements and estimate their proportion at different 

position by Oxford Aztec X-Act detector. Furthermore, scanning transmission 

electron microscopy detector (STEM) providing a complementary method for image 

acquisition of the transmitted electrons was utilized.  

 

4.3.2. Atomic Force Microscopy 

 

It is known that the diameters of CNTs are directly related to the diameters of 

catalyst nanoparticles. Because of the low resolution of SEM, AFM (Atomic Force 

Microscopy) was used to determine the catalyst particles and measure their diameters 

roughly. AFM is a relatively compact instrument providing a 3D profile with very high 

resolution of thin films (topography) on a nanoscale by measuring the forces between 

the probe and surface at very short distance (0.2-10 nm probe-sample separation). The 

AFM probe has a very sharp tip, often less than 100 Å diameter to obtain information 

about the surface of the sample. AFM consists of a sharp tip, a cantilever, piezoelectric 

scanner, photodiode, detector and feedback electronics.  

The basic operation mode is common to all the scanning probe techniques: a 

very sharp tip is attached to a cantilever spring moving over a sample surface. When the 



31 
 

tip is moved near the surface, Van der Waals, electrostatic, frictional or magnetic forces 

can occur among them.     

According to the applications, AFM can be performed in three modes: tapping 

mode, contact mode and non-contact mode. The tapping mode is generally preferable in 

that it does not touch the sample surface and not damage the surface. Additionally, it 

allows high resolution of samples that are easily damaged and/or loosely held to a 

surface. In the contact mode, the interaction between the tip and the surface atoms gives 

rise to removing the atoms from their places and scratch the surface of the material 

although it supplies fast scanning. In view of the fact that the non-contact mode 

generally gives lower resolution, it is not usually used. 

The AFM utilized for analyzing the catalyst particles in this work was Digital 

Instruments-MMSPM Nanoscope IV, IYTE. 

 

4.3.3. Raman Spectroscopy 

 

Raman Spectroscopy is a spectroscopic technique to study vibrational, 

rotational, and other low frequency modes in a system. Since CNTs have distinctive 

Raman spectra, Raman spectroscopy is used in qualitative and quantitative analysis of 

CNTs including their type and structure of them as well as the diameter distribution of 

CNT bundles (Zhao and Wagner 2004).  

For this work, Raman spectra of CNTs grown were collected with a Raman 

spectrometer at IYTE with a 488 nm wavelength laser (Figure 4.4). 

 

 

 

Figure 4.4. The Raman Spectroscopy in Physics Department, IYTE 

http://tureng.com/search/preferable
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The principle of Raman spectroscopy depends upon an inelastic scattering, or 

Raman scattering of monochromatic laser light. When the molecule under excitation 

radiation is excited from the ground state to a virtual state and followed by relaxation to 

a vibrational level by emitting a photon, a difference in energy between the original 

state and this new state which brings about a shift in the frequency of the emitted 

photon away from the excitation wavelength occurs. This is the Raman effect which is a 

form of light scattering. When the spontaneous Raman effect considered, if the 

molecule is already in an elevated vibrational energy state, the Raman scattering is 

called anti-stokes Raman scattering. However, in stokes Raman scattering, the molecule 

will be excited from the ground state to a virtual state. 

The characteristic Raman spectrum of SWNT includes three main zones   

(Figure 4.5). These zones are at low (100-250 cm
-1

), intermediate (300-1300 cm
-1

) and 

high (1500-1620 cm
-1

) frequencies (Journet and Bernier 1998).  

There are two main first order peaks for carbon-based materials. The first one, 

which is due to amorphous carbon, is the disorder-induced, which is called D peak. It is 

observed around 1300 cm
-1 

for excitation He-Ne laser, or at 1350 cm
-1

 for an Ar
+
 ion 

laser. The D band reveals the presence of defects. D line resonance is effected by the 

electronic nature of the tubes (Dresselhaus, et al. 2002). It has also been shown that the 

D line and its second harmonic, the G
 
line, vary both in value and amplitude with laser 

excitation frequency (Matthews, et al. 1999). The other one is the tangential G peak and 

observed at about 1580 cm
-1

, which originates from the C=C stretching mode in 

graphene, an optical phonon mode.  

There might be several reasons for the existence of the strong D band peak     

(Li, et al. 1997, Xiea, et al. 1999). The first one is a presence of highly compacted 

arrays. The other one is the relatively low crystallization degree of the CNT arrays 

along with turbostratic structures formed in some carbon sheets. The deposition rate and 

the growth time along with the carbon concentration of the carbon precursor are of vital 

importance for reducing the D band (Shanov, et al. 2006).   

For SWNTs, the G mode can be decomposed in one main peak with a shoulder 

(Dresselhaus, et al. 2002). As it is shown in Figure 4.5, the G peak is doubly split into 

higher and lower sides of the 1582 cm
-1

 line, G
+
 (frequency) and G

- 
(frequency). The 

differences between the G band spectra for metallic and semiconducting CNT give 

significant information about SWNT. G
-
 component at lower frequencies determines 

metallic character of the CNT, G
+
 component at higher frequencies determines their 

http://en.wikipedia.org/wiki/Light_scattering
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semiconductor behavior (Dresselhaus, et al. 2002). In semiconducting tube bundles the 

frequency of G
+
 line is determined by bundle size. For semiconducting SWNT in 

bundles, the linewidths are determined by the intertube interactions and the diameter 

distribution. In metallic tubes, the G
- 

line feature is broadened. This broadening is 

related to the presence of free electrons in nanotubes with metallic character. 

The ratio of the D-band to G-band intensity, ID/IG, is used as a measure of the 

defect density of a particular CNT and can provide information on the crystalline 

quality of the CNTs. A small ID/IG ratio suggests reasonable crystalline quality and a 

perfect graphite structure. In other words, if there is a high ratio between the G band and 

D band peak intensities, it shows that the CNTs are of high purity                  

(Dresselhaus, et al. 2002).  

In the lower frequency region, the spectrum is dominated by the in-phase mode 

known as the radial breathing mode (RBM) appearing between 120 cm
-1 

and 250 cm
-1

 

for SWNT. The RBM also provides information on chirality and thus the electronic 

properties of CNTs (Thess, et al. 1996). The RBM frequency is associated with the 

symmetric movement of carbon atoms in the radial direction (Figure 4.6). The RBM 

frequency is inversely proportional to the reciprocal diameter of the SWNT with the 

relationship below (Jorio, et al. 2003). 

 

   W(cm
-1

)=224(cm
-1

)/dt(nm)                 (4.1)  

 

 

 

Figure 4.5. Raman spectra showing the main peaks of SWNTs 

(Source: Dresselhaus, et al. 2002) 
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Figure 4.6. Schematic picture showing the atomic vibrations for a) the RBM and             

b) the G band modes (Source: Jorio, et al. 2003) 

 

 

G+ 

G
- 
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       CHAPTER 5 

 

         RESULTS AND DISCUSSION 

 

This chapter focuses on the results and discussions of the experiments. The first 

section of this chapter focuses on catalyst characterization by using the results of AFM 

and SEM. In the second section of the chapter, growth results are analyzed to determine 

for optimal parameters for CNT growth. Different parameters were studied for the 

purpose of the optimal growth conditions. In this section, the effects of temperature on 

the CNT growth, CNT formations at different CO2 flow rates and different pretreatment 

times are analyzed, respectively. For CNT characterization discussions, SEM, STEM 

and Raman Spectroscopy techniques were utilized. The third section of the chapter 

includes analyzing the dependence of mean diameters of all samples on pretreatment 

duration and CO2 flow rates. To draw conclusion, an extensive statistical analysis of all 

samples are given in the last section. 

 

5.1. Catalyst Characterization 

 

Catalyst material is an important parameter for CNT growth process. The 

diameter of a CNT is directly proportional to the size of nano particles. As explained 

before, only transition metals give better results for effective CNT growth as a catalytic 

material, and Fe, Co, Ni are the most common ones. In this thesis, Fe catalyst material 

was utilized. The following AFM and SEM analyses give information about the catalyst 

obtained and used for CNT growth in this study. 
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5.1.1. AFM Results 

 

There exists a positive correlation between the diameters of CNTs and the sizes 

of catalyst nano particles. To determine the sizes of catalyst particles, Fe catalyst thin 

films were deposited on Al2O3/SiO2/Si substrates. CNT growth was not performed onto 

these substrates since the purpose was to analyze the catalyst particles prior to growth. 

However, the growth gases (except C containing C2H4) were used since they would 

continually be exposed to them during growth. CO2 was also utilized in these 

pretreatments with various amounts and duration analyzed with the AFM. Table 5.1 

shows the growth parameters and the heights of catalyst nano particles. The morphology 

of catalysts revealed by AFM is given in Figure 5.1 and Figure 5.2. 

 

Table 5.1. Growth parameters of Fe catalyst nano particles;  

Pressure: 1 atm, Ar: 150 sccm 

 

Sample 

Name 

T 

(
o
C) 

Pretreatment Growth 

Height 

(nm) 
H2 CO2 C2H4 CO2 

(sccm) (min.) (sccm) (min.) (sccm) (sccm) (min.) 

FeAlO16 
750 140 15 8 5 - 2 15 2.2 

CNT891 

FeAlO16 
760 140 15 8 5 - 2 15 2.0 

CNT880 

FeAlO16 
770 140 15 8 5 - 2 15 4.8 

CNT888 

FeAlO17 
750 140 15 10 5 - 10 15 5.3 

CNT906 

FeAlO17 
760 140 15 10 5 - 10 15 2.6 

CNT915 

FeAlO17 
770 140 15 10 5 - 10 15 6.7 

CNT947 
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Figure 5.1. AFM micrographs of  a) FeAlO16 CNT891 at 750 ºC, b) FeAlO16 CNT880 

at 760 ºC, c) FeAlO16 CNT888 at 770 ºC 

 

AFM images in Figure 5.1 illustrate that Fe nano particles are not exactly 

occurred at 750 
o
C, the lighter parts on Fe surface show the catalyst nano particles and 

they do not have a smooth shape. Unlike the Fe particles at 750 
o
C, the orientation of 

the particles is clearly seen with the smooth shape at 760 
o
C and 770 

o
C. There are not 

any big particles for the nano particle at 760 
o
C although there are only a few particles 

for the Fe nano particles at 770 
o
C. The temperature increasing from 750 

o
C to 760 

o
C 

decreases the height of the catalyst nano particles. Further 10 
o
C raise in temperature 

from 760 
o
C to 770 

o
C results in increasing the height of them. 

a b 

c 
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Figure 5.2. AFM micrographs of  a) FeAlO17 CNT906 at 750 °C, b) FeAlO17 CNT915 

at 760 °C, c) FeAlO17 CNT947 at 770 °C 

 

For FeAlO17 substrate, the catalyst nano particles can be seen in AFM images 

in Figure 5.2. When the differences of three temperatures are compared, it can be seen 

that the size of the catalyst particles increases and the number of them decreases with 

the increased temperature. The height of the samples decreased from 5.3 nm at 750 
o
C 

to 2.6 nm at 760 
o
C and then increased to 6.7 nm at 770 

o
C. 

When Figure 5.1 and Figure 5.2 are analyzed, it can be concluded that 

temperature plays a significant role on the sizes of catalyst particles. The catalyst 

morphology changes with the temperature.  

 

 

a

) 

b

) 

c

) 
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5.1.2. EDX Results 

 

In this section, three SEM pictures of Fe catalyst thin films deposited on 

Al2O3/SiO2/Si taken with EDX detector in order to analyze near surface elements and 

their proportion at different position are given below (Figure 5.3). 

 

 

 

Element Wt % Atomic % 

C 2.9 2.77 

O 54.02 66.53 

Al 0.07 0.05 

Si 1.09 0.38 

Fe 43.12 30.25 

Total 100.00 100.00 

      

 

 

 

Element Wt % Atomic % 

C 7.76 13.49 

O 48.59 63.47 

Al 0.13 0.10 

Si 17.99 13.39 

Fe 25.53 9.55 

Total 100.00 100.00 
 

 

 

Figure 5.3. SEM micrographs of nano particles a) FeAlO16 CNT885 at 770 ºC, 

CO2(p)/CO2(g): 10/10, 5 min., b) FeAlO17 CNT915 at 760 ºC, 

CO2(p)/CO2(g): 10/10,  5 min., c) FeAlO17 CNT894 at 770 ºC, 

CO2(p)/CO2(g): 8/2, 10 min. 
 

 

 

 

(cont. on next page) 

a 
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Element Wt % Atomic % 

C 2.14 3.67 

O 50.79 65.40 

Al 0.43 0.33 

Si 36.76 26.96 

Fe 9.88 3.64 

Total 100.00 100.00 
 

 

 

Figure 5.3. (cont.) 

 

The signals are transmitted from substrate and environment during the EDX 

measurements intensively. Although the quantitative values are not considered, it is 

possible to see from the data analysis that the direct relation between the C amount and 

CNT surface density has been determined. The signals taken from the materials are     

Si: from Si substrate and SiO2 buffer; O2: from Al2O3 and SiO2 buffer; Al: from Al2O3 

buffer, C: from contamination either from growth chamber contamination from the 

previous CNT growth or from exposure to air, CO2, CO or oil from finger prints.  

 

5.2. CNT Characterization 

 

5.2.1. SEM Results 

 

Several parameters including growth temperature, pretreatment time, amount of 

oxidizers, the ratio of oxidizer in pretreatment to that of in growth were important for 

the effective CNT growth. In order to obtain the average diameters and related diameter 

distributions, the SEM images of CNTs grown with different growth parameters were 

evaluated.  

In this study, all parameters mentioned in previous paragraph, were tried in 

nearly one hundred experiments to obtain high quality of CNTs. For this work, ethylene 

(C2H4) showing a good harmony with Fe catalyst under proper conditions, was used as 

c 
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the carbon source. CO2 with different amounts was utilized as the catalyst enhancer and 

preserver. H2 used as the carrier gas provided reduction of Fe catalyst particles and 

preventing amorphous carbon formation at growth. In addition, growth conditions were 

Ar: 150 sccm, H2: 140 sccm, C2H4: 80sccm (sccm=standart cm
3
/min.). All CNTs were 

grown in both CO2 and H2 environment to transform the catalyst in the metal-oxide 

form to elemental form by removing the oxide with the help of H2. The mean diameters 

of each growth conditions are given in Table 5.2. 

 

Table 5.2. Growth conditions and the mean diameters of CNTs obtained as a result 

 

Sample Name         T(
o
C) 

Pretreatment(min.) 

H2/CO2 

CO2(p)/CO2(g) 

(sccm) 

Mean Diameter 

(nm) 

FeAlO12CNT785 750 15 5 8/2 8.8 

FeAlO15CNT787 750 15 5 8/2 8.2 

FeAlO12CNT844 750 15 10 8/2 8.3 

FeAlO14CNT845 750 15 10 8/2 8.9 

FeAlO15CNT846 750 15 10 8/2 10.4 

FeAlO9CNT780 760 15 5 8/2 9.8 

FeAlO12CNT781 760 15 5 8/2 8.2 

FeAlO14CNT782 760 15 5 8/2 8.5 

FeAlO15CNT783 760 15 5 8/2 9.3 

FeAlO12CNT777 760 15 10 8/2 8.3 

FeAlO15CNT779 760 15 10 8/2 8.3 

FeAlO12CNT789 770 15 5 8/2 8.9 

FeAlO14CNT790 770 15 5 8/2 12.0 

FeAlO15CNT791 770 15 5 8/2 10.1 

FeAlO16CNT899 770 15 10 8/2 8.9 

FeAlO17CNT900 770 15 10 8/2 8.8 

FeAlO18CNT901 770 15 10 8/2 9.3 

FeAlO12CNT838 750 15 5 10/2 9.6 

FeAlO14CNT839 750 15 5 10/2 11.1 

FeAlO15CNT840 750 15 5 10/2 9.7 

FeAlO16CNT911 750 15 10 10/2 9.5 

FeAlO17CNT912 750 15 10 10/2 9.0 

FeAlO18CNT913 750 15 10 10/2 10.0 

FeAlO5CNT767 760 15     5 10/2 9.1 

FeAlO9CNT768 760 15     5 10/2 8.7 

FeAlO10CNT769 760 15     5 10/2 8.7 

FeAlO12CNT770 760 15     5 10/2 8.5 

(cont. on next page) 
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Table 5.2. (cont.) 

FeAlO12CNT771 760 15     5 10/2 8.9 

FeAlO14CNT772 760 15     5 10/2 10.5 

FeAlO15CNT773 760 15     5 10/2 8.7 

FeAlO9CNT762 760 15 10 10/2 7.6 

FeAlO12CNT764 760 15 10 10/2 8.2 

FeAlO15CNT766 760 15 10 10/2 8.8 

FeAlO12CNT799 760 15 10 10/2 10.5 

FeAlO14CNT800 760 15 10 10/2 9.8 

FeAlO15CNT801 760 15 10 10/2 9.4 

FeAlO9CNT792 770 15 5 10/2 9.1 

FeAlO12CNT793 770 15 5 10/2 8.4 

FeAlO15CNT795 770 15 5 10/2 9.2 

FeAlO16CNT918 770 15 5 10/2 8.0 

FeAlO17CNT919 770 15 10 10/2 8.3 

FeAlO12CNT853 750 15 5 10/8 9.3 

FeAlO14CNT854 750 15 5 10/8 8.6 

FeAlO15CNT855 750 15 5 10/8 9.5 

FeAlO16CNT921 750 15 10 10/8 9.9 

FeAlO17CNT922 750 15 10 10/8 9.9 

FeAlO12CNT856 760 15 5 10/8 8.3 

FeAlO14CNT857 760 15 5 10/8 9.3 

FeAlO15CNT858 760 15 5 10/8 10.4 

FeAlO12CNT864 760 15 10 10/8 9.1 

FeAlO16CNT865 760 15 10 10/8 8.7 

FeAlO12CNT859 770 15 5 10/8 9.5 

FeAlO14CNT860 770 15 5 10/8 9.5 

FeAlO15CNT861 770 15 5 10/8 9.6 

FeAlO14CNT923 770 15 10 10/8 7.9 

FeAlO16CNT924 770 15 10 10/8 7.3 

FeAlO17CNT925 770 15 10 10/8 9.1 

FeAlO16CNT871 750 15 5 10/10 9.4 

FeAlO17CNT872 750 15 5 10/10 11.4 

FeAlO16CNT926 750 15 10 10/10 8.9 

FeAlO17CNT927 750 15 10 10/10 9.7 

FeAlO18CNT928 750 15 10 10/10 8.6 

FeAlO16CNT869 760 15 5 10/10 9.9 

FeAlO17CNT870 760 15 5 10/10 8.6 

FeAlO16CNT873 760 15 10 10/10 9.3 

FeAlO17CNT874 760 15 10 10/10 7.6 

FeAlO14CNT932 770 15 5 10/10 8.7 

(cont. on next page) 
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Table 5.2. (cont.) 

FeAlO16CNT933 770 15 5 10/10 8.7 

FeAlO17CNT934 770 15 5 10/10 8.5 

FeAlO18CNT935 770 15 5 10/10 8.4 

FeAlO16CNT929 770 15 10 10/10 7.9 

FeAlO18CNT931 770 15 10 10/10 9.1 

 

 

5.2.1.1. CNT Formation at Different Growth Temperatures 

 

In order to examine the temperature effects in CO2-assisted CVD, three different 

growth temperatures (750
 o

C, 760
 o

C and 770
 o

C) were studied on the thin Fe films 

sputtered on different Al2O3/SiO2/Si substrates (FeAlO12, FeAlO14, FeAlO15, 

FeAlO16, FeAlO17). 

Studied growth conditions and obtained the mean diameters of CNTs including 

all substrates are given in Table 5.3 – Table 5.7. SEM pictures of as grown samples 

grown using all growth parameters are shown in Figure 5.4, Figure 5.6, Figure 5.8, 

Figure 5.10 and Figure 5.12 and diameter distributions of them are depicted in      

Figure 5.5, Figure 5.7, Figure 5.9, Figure 5.11 and Figure 5.13. 

 

Table 5.3. Growth conditions and the mean diameters of CNTs used FeAlO12 substrate 

obtained as a result 

 

Sample Name         T(
o
C) 

Pretreatment(min.) 

H2/CO2 

CO2(p)/CO2(g) 

(sccm) 

Mean Diameter 

(nm) 

FeAlO12CNT785 750 15 5 8/2 8.8 

FeAlO12CNT781 760 15 5 8/2 8.2 

FeAlO12CNT789 770 15 5 8/2 8.9 

FeAlO12CNT838 750 15 5 10/2 9.6 

FeAlO12CNT770 760 15     5 10/2 8.5 

FeAlO12CNT793 770 15 5 10/2 8.4 

FeAlO12CNT853 750 15 5 10/8 9.3 

FeAlO12CNT856 760 15 5 10/8 8.3 

FeAlO12CNT859 770 15 5 10/8 9.5 
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Figure 5.4. The growths with CO2 (CO2(p)/CO2(g): 8/2) at 750 ºC, 760 ºC and 770 ºC: 

a), b) 750 ºC, FeAlO12 CNT785, 5 min. c), d) 760 ºC, FeAlO12 CNT781,   

5 min. e), f) 770 ºC, FeAlO12 CNT789, 5 min. 
 

 

 

 

a b 

c 

e 

d 
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Table 5.3 shows that the mean diameters of CNTs grown on FeAlO12 substrate 

obtained with 10/2 sccm CO2 decrease when the temperature increases. However, when 

8/2 and 10/2 sccm CO2 are sent to the system, at first the mean diameters of CNTs 

decrease, afterwards ascend with increasing temperature. By regarding the last two flow 

rates (8/2 and 10/2 sccm CO2), the same characteristics of diameters (decreasing and 

increasing successively) are shown, but the diameters coming from 8/2 sccm CO2 are 

smaller than 10/2 sccm as required. Additionally, the diameters coming from 8/2 sccm 

have the same properties with previous catalyst diameters results in Table 5.1. 

Since the diameters results at 8/2 sccm are chosen for best results in this 

experiment Sides and angled views of CNTs grown with 8/2 sccm CO2 are given in 

Figure 5.4. SEM images show those samples grown at 750 ºC and 770 ºC are less 

densely populated than those grown at 760 ºC. In addition, CNTs grown at 760 ºC are 

vertical aligned. According to Figure 5.5, the numbers of CNTs at the mean diameters 

(8.8, 8.2 and 8.9 nm) at 8/2 sccm and at 750 ºC, 760 ºC and 770 ºC are 26 out of 58, 31 

out of 61, 34 out of 69, respectively. 
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Figure 5.5. The diameter distributions of CNTs at different growth temperatures:        

750 ºC, 5 min. b) 760 ºC, 5 min. c) 770 ºC, 5 min. (CO2(p)/CO2(g): 8/2) 
 

 

(cont. on next page) 
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Figure 5.5. (cont.) 

 

Table 5.4. Growth conditions and the mean diameters of CNTs used FeAlO14 substrate 

obtained as a result 

 

 

Sample Name         T(
o
C) 

Pretreatment(min.) 

H2/CO2 

CO2(p)/CO2(g) 

(sccm) 

Mean Diameter 

(nm) 

FeAlO14CNT782 760 15 5 8/2 8.5 

FeAlO14CNT790 770 15 5 8/2 12.0 

FeAlO14CNT839 750 15 5 10/2 11.1 

FeAlO14CNT772 760 15     5 10/2 10.5 

FeAlO14CNT854 750 15 5 10/8 8.6 

FeAlO14CNT857 760 15 5 10/8 9.3 

FeAlO14CNT860 770 15 5 10/8 9.5 

 

 

c 
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Figure 5.6. The growths with CO2 (CO2(p)/CO2(g) 10/8) at 750 ºC, 760 ºC and 770 ºC: 

a), b) 750 ºC, FeAlO14 CNT854, 5 min. c), d) 760 ºC, FeAlO14 CNT857,   

5 min. e), f) 770 ºC, FeAlO14 CNT860, 5 min. 
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Due to the lack of FeAlO14 substrates at the studied parameters 8/2 and        

10/2 sccm CO2, all the three growth temperatures (750 ºC, 760 ºC and 770 ºC) have 

been studied at the same time only at the parameters of 10/8 sccm CO2 (Table 5.4). But 

the characteristics of these results (increasing diameters with rising temperatures) come 

from this experiment are not matched with the results (first decreasing and increasing 

diameters with rising temperatures) coming from FeAlO12 substrates 10/8 sccm. 

SEM results of CNTs grown with 10/8 sccm CO2 are given in Figure 5.6. SEM 

images show those samples grown at 760 ºC and 770 ºC are less densely populated than 

those grown at 750 ºC. As it is shown in Figure 5.7, the numbers of CNTs at the mean 

diameters (8.6, 9.3 and 9.5 nm) at 10/8 sccm and at 750 ºC, 760 ºC and 770 ºC are 20 

out of 40, 22 out of 65, 32 out of 63, respectively. 
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Figure 5.7. The diameter distributions of CNTs at different growth temperatures:          

a) 750 ºC, 5 min. b) 760 ºC, 5 min. c) 770 ºC, 5 min. (CO2(p)/CO2(g): 10/8) 

 

 

(cont. on next page) 
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Figure 5.7. (cont.) 

            

Table 5.5. Growth conditions and the mean diameters of CNTs used FeAlO15 substrate 

obtained as a result 

 

Sample Name         T(
o
C) 

Pretreatment(min.) 

H2/CO2 

CO2(p)/CO2(g) 

(sccm) 

Mean Diameter 

(nm) 

FeAlO15CNT787 750 15 5 8/2 8.2 

FeAlO15CNT783 760 15 5 8/2 9.3 

FeAlO15CNT791 770 15 5 8/2 10.1 

FeAlO15CNT840 750 15 5 10/2 9.7 

FeAlO15CNT773 760 15     5 10/2 8.7 

FeAlO15CNT795 770 15 5 10/2 9.2 

FeAlO15CNT855 750 15 5 10/8 9.5 

FeAlO15CNT858 760 15 5 10/8 10.4 

FeAlO15CNT861 770 15 5 10/8 9.6 

 

 

c 
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Figure 5.8. The growths with CO2 (CO2(p)/CO2(g):10/2)at 750 ºC, 760 ºC and 770 ºC : 

a), b) 750 ºC, FeAlO15 CNT840, 5 min. c), d) 760 ºC, FeAlO15 CNT773,   

5 min, e), f) 770 ºC, FeAlO15 CNT795, 5 min. 
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How the CNT mean diameters obtained using FeAlO15 substrate change with 

three different growth temperatures can be seen in Table 5.4. The diameters obtained 

from 8/2 and 10/8 sccm are not valuable by regarding the expected trend of diameter 

values. On the other hand, the diameter decreases from 9.7 nm at 750 ºC to  8.7 nm at 

760 ºC and then increases to 9.2 nm at 770 ºC for CO2 10/2 flow rate. SEM images of 

the CNTs for 10/2 sccm are depicted in Figure 5.8. According to Figure 5.9, the 

numbers of CNTs at the mean diameters (9.7, 8.7 and 8.2 nm) at 10/2 sccm and at     

750 ºC, 760 ºC and 770 ºC are 42 out of 81, 31 out of 69, 40 out of 56, respectively. 
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Figure 5.9. The diameter distributions of CNTs at different growth temperatures:          

a) 750 ºC, 5 min., b) 760 ºC, 5 min., c) 770 ºC, 5 min (CO2(p)/CO2(g):10/2) 

 

(cont. on next page) 
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Figure 5.9. (cont.) 

 

Table 5.6. Growth conditions and the mean diameters of CNTs used FeAlO16 substrate 

obtained as a result 
 

 

Sample Name         T(
o
C) 

Pretreatment(min.) 

H2/CO2 

CO2(p)/CO2(g) 

(sccm) 

Mean Diameter 

(nm) 

FeAlO16CNT921 750 15 10 10/8 9.9 

FeAlO16CNT865 760 15 10 10/8 8.7 

FeAlO16CNT924 770 15 10 10/8 7.3 

FeAlO16CNT926 750 15 10 10/10 8.9 

FeAlO16CNT873 760 15 10 10/10 9.3 

FeAlO16CNT929 770 15 10 10/10 7.9 
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Figure 5.10. The growths with CO2 (CO2(p)/CO2(g): 10/8) at 750 °C, 760 °C and        

770 ºC: a), b) 750 °C, FeAlO16 CNT921, 10 min. c), d) 760 °C, 

  FeAlO16 CNT865, 10 min. e), f) 770 °C, FeAlO16 CNT924, 10 min. 
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Table 5.6 shows that the shorter mean diameters come from 10/8 sccm, which is 

the reason why the mean diameters of 10/8 sccm are deeply analyzed on the following 

side and the angled views of SEM images for CNTs grown on FeAlO16 substrate 

(Figure 5.10). As the CO2 is sent to the system with 10/10 sccm, it is observed that the 

temperature that the diameters of CNTs increase first and then decrease. If the CO2 is 

sent with 10/8 sccm, the diameters decrease continuously with the temperature. This 

situation is different from the change of the characteristics of CNT diameters (first 

increasing and then decreasing) with the temperature in that the use of different 

substrates such as FeAlO12, FeAlO14, FeAlO15 chosen for CNT growth.  

SEM results of CNTs grown with 10/8 sccm CO2 are given in Figure 5.10. It can 

be easily seen that the diameters of CNTs at 750 ºC are bigger than those at 760 ºC and   

770 ºC. Additionally, the diameters of CNTs at 770 ºC are the smallest values. With this 

comparision, the truth that higher temperatures give smaller diameters can be proven. 

According to Figure 5.11, the numbers of CNTs at the mean diameters (9.9, 8.7 and   

7.3 nm) at 10/8 sccm and at 750 ºC, 760 ºC and 770 ºC are 17 out of 37, 56 out of 91, 31 

out of 57, respectively. 
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Figure 5.11. The diameter distributions of CNTs at different growth temperatures:         

a) 750 ºC, 10 min. b) 760 ºC, 10 min. c) 770 ºC, 10 min.     

(CO2(p)/CO2(g): 10/8) 

 

(cont. on next page) 
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Figure 5.11. (cont.) 

 

Table 5.7. Growth conditions and the mean diameters of CNTs used FeAlO17 substrate 

obtained as a result 

 

 

Sample Name         T(
o
C) 

Pretreatment(min.) 

H2/CO2 

CO2(p)/CO2(g) 

(sccm) 

Mean Diameter 

(nm) 

FeAlO17CNT872 750 15 5 10/10 11.4 

FeAlO17CNT870 760 15 5 10/10 8.6 

FeAlO17CNT934 770 15 5 10/10 8.5 
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Figure 5.12. The growths with CO2 (CO2(p)/CO2(g): 10/10) at 750 ºC, 760 ºC and       

770 ºC: a), b) 750 ºC, FeAlO17 CNT872, 5 min. c), d) 760 ºC,  

FeAlO17 CNT870, 5 min. e), f)770 ºC, FeAlO17 CNT934, 5 min.  
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Due to the lack of FeAlO17 substrates for studying other parameters, the three 

growth temperatures (750 ºC, 760 ºC and 770 ºC) have been studied at the same time 

only at the parameters of 10/10 sccm CO2. Table 5.7 displays when the temperature 

rises from 750 ºC to 760 ºC, approximately 3nm decrease in CNT diameters is seen 

clearly. Though, the decrease is lower (0.1 nm) when the temperature increases from    

760 ºC to 770 ºC. These results show that 750 is the critical temperature for this 

substrate. SEM results of CNTs grown with 10/10 sccm CO2 are given in Figure 5.12. 

SEM images obviously show that those samples grown at 750 ºC are less densely 

populated than those grown at 770 ºC. According to Figure 5.13, the numbers of CNTs 

at the mean diameters (11.4, 8.6 and 8.5 nm) at 10/10 sccm and at 750 ºC, 760 ºC and 

770 ºC are 25 out of 28, 22 out of 39, 44 out of 77, respectively. 
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Figure 5.13. The diameter distributions of CNTs at different growth temperatures:         

a) 750 ºC, 5 min. b) 760 ºC, 5 min. c) 770 ºC, 5 min.           

(CO2(p)/CO2(g): 10/10) 

 

 

 

 

(cont. on next page) 
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Figure 5.13. (cont.) 

 

5.2.1.2. CNT Formation at Different CO2 Flow Rates 

 

Weak oxidizers are widely used to remove amorphous carbon to prevent the 

poisoning of the catalyst particle and to obtain pure CNT during the growth period. 

Some studies also suggest that oxidizers functionalize the substrate surface which 

inhibits catalyst particle mobility and deter them from joining and forming larger 

particles. In the pretreatment process, they are used to control the size of catalyst 

particle and in the growth process to keep catalyst particle functioning throughout the 

growth time and to prevent amorphous carbon formation on the outer walls of CNTs. 

In order to investigate the influence of CO2 on effective CNT growth, it is 

focused on how diameters of CNTs varied with the amount of CO2 at a fixed growth 

temperature. CO2 gas flow ratios in pretreatment and growth stages were studied as 8:2, 

10:2, 10:8 and 10:10. SEM images of CNTs were characterized in order to see effects of 

CO2 under growth conditions. According to the results obtained, the mean diameters are 

given in Table 5.8 - Table 5.11. In addition, SEM images are given in Figure 5.14, 

Figure 5.16 and Figure 5.18 and diameter distributions of CNTs with CO2 are shown in 

Figure 5.15, Figure 5.17 and Figure 5.19. 
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Table 5.8. The amounts of CO2 used during pretreatment and growth processes and the 

mean diameters of CNTs used FeAlO12 substrate obtained as a result 

 

Sample Name         T(
o
C) 

Pretreatment(min.) 

H2/CO2 

CO2(p)/CO2(g) 

(sccm) 

Mean 

Diameter 

(nm) 

FeAlO12CNT838 750 15 5 10/2 9.6 

FeAlO12CNT853 750 15 5 10/8 9.3 

FeAlO12CNT770 760 15     5 10/2 8.5 

FeAlO12CNT856 760 15 5 10/8 8.3 

FeAlO12CNT793 770 15 5 10/2 8.4 

FeAlO12CNT859 770 15 5 10/8 9.5 

 

 

  

  

 

Figure 5.14. The growths with CO2 at 750 ºC: a), b) CO2(p)/CO2(g): 10/2, FeAlO12 

CNT838, 5 min. c), d) CO2(p)/CO2(g): 10/8, FeAlO12 CNT853, 5 min. 

 

c d 

b a 
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 In this part, for the first substrate, FeAlO12, two different CO2 flow rates     

(10/2 and 10/8) are studied at fixed growth temperatures (750 ºC, 760 ºC and 770 ºC). 

According to Table 5.8, when CO2 flow rate decreases, the CNT mean diameter 

decreases nearly 0.2-0.3 nm at 750 ºC and 760 ºC. On the other hand,  for 770 ºC, the 

CNT mean diameter increases nearly 1 nm while CO2 flow rate decreases. Figure 5.14 

illustrates that when CO2 is sent with 10/2 sccm into the system at 750 ºC, CNT 

diameters can be selected individually whereas they form groups when the the CO2 is 

sent with 10/8 sccm. According to Figure 5.15, the numbers of CNTs at the mean 

diameters (9.6 and 9.3 nm) at 10/2 sccm and 10/8 sccm at 750 ºC are 26 out of 49 and 

34 out of 72, respectively. 
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Figure 5.15. The diameter distributions of CNTs at different CO2 flow rates at 750 ºC: 

a) CO2(p)/CO2(g): 10/2, 5 min. b) CO2(p)/CO2(g): 10/8, 5 min.  
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Table 5.9. The amounts of CO2 used during pretreatment and growth processes and the 

mean diameters of CNTs used FeAlO15 substrate obtained as a result 

 

Sample Name         T(
o
C) 

Pretreatment(min.) 

H2/CO2 

CO2(p)/CO2(g) 

(sccm) 

Mean 

Diameter 

(nm) 

FeAlO15CNT840 750 15 5 10/2 9.7 

FeAlO15CNT855 750 15 5 10/8 9.5 

FeAlO15CNT773 760 15     5 10/2 8.7 

FeAlO15CNT858 760 15 5 10/8 10.4 

FeAlO15CNT795 770 15 5 10/2 9.2 

FeAlO15CNT861 770 15 5 10/8 9.6 

 

 

  

  

 

Figure 5.16. The growths with CO2 at 750 ºC: a), b) CO2(p)/CO2(g): 10/2, FeAlO15 

CNT840, 5 min. c), d) CO2(p)/CO2(g): 10/8, FeAlO15 CNT855, 5 min. 
 
 

a 

c 

b 

d 
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For FeAlO15 substrate, two different CO2 flow rates (10/2 and 10/8) are studied 

at fixed growth temperatures (750 ºC, 760 ºC and 770 ºC) again. Table 5.9 shows that 

when CO2 flow rate decreases, the CNT mean diameter increases at 760 ºC and   770 ºC. 

However,  the CNT mean diameter decreases 0.2 nm while CO2 flow rate decreases at 

750 ºC. Figure 5.16 illustrates that CNTs grown at 10/2 sccm are vertical aligned. 

According to Figure 5.17, the numbers of CNTs at the mean diameters (9.7 and 9.5 nm) 

at 10/2 sccm and 10/8 sccm at 750 ºC are 42 out of 81 and 46 out of 89, respectively. 
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Figure 5.17. The diameter distributions of CNTs at different CO2 flow rates at 750 ºC: 

a) CO2(p)/CO2(g): 10/2, 5 min. b) CO2(p)/CO2(g): 10/8, 5 min. 
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Table 5.10. The amounts of CO2 used during pretreatment and growth processes and the 

mean diameters of CNTs used FeAlO16 substrate obtained as a result 

 

Sample Name         T(
o
C) 

Pretreatment(min.) 

H2/CO2 

CO2(p)/CO2(g) 

(sccm) 

Mean 

Diameter 

(nm) 

FeAlO16CNT921 750 15 10 10/8 9.9 

FeAlO16CNT926 750 15 10 10/10 8.9 

FeAlO16CNT865 760 15 10 10/8 8.7 

FeAlO16CNT873 760 15 10 10/10 9.3 

FeAlO16CNT924 770 15 10 10/8 7.3 

FeAlO16CNT929 770 15 10 10/10 7.9 

 

 

  

  

 

Figure 5.18. The growths with CO2 at 750 ºC: a), b) CO2(p)/CO2(g): 10/8,  

FeAlO16 CNT921, 10 min. c), d) CO2(p)/CO2(g): 10/10,  

FeAlO16 CNT926, 10 min. 
 

b a 

c d 
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For FeAlO16 substrate, two different CO2 flow rates (10/8 and 10/10) are 

studied at fixed growth temperatures  (750 ºC, 760 ºC and 770 ºC) again. Table 5.10 

shows that when CO2 flow rate decreases (from 10/8 to 10/10), the CNT mean diameter 

increases at 760 ºC and 770 ºC. However,  the CNT mean diameter decreases nearly      

1 nm while CO2 flow rate decreases at 750 ºC. When Figure 5.18 is analyzed, it is 

clearly seen that the CNT diameters grown at 10/8 sccm are big. According to       

Figure 5.19, the numbers of CNTs at the mean diameters (9.9 and 8.9 nm) at 10/8 sccm 

and 10/10 sccm at 750 ºC are 18 out of 37 and 23 out of 39, respectively. 
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Figure 5.19. The diameter distributions of CNTs at different CO2 flow rates at 750 ºC: 

a) CO2(p)/CO2(g): 10/8, 10 min. b) CO2(p)/CO2(g): 10/10, 10 min. 
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Table 5.11. The amounts of CO2 used during pretreatment and growth processes and the 

mean diameters of CNTs used FeAlO17 substrate obtained as a result 

 

Sample Name         T(
o
C) 

Pretreatment(min.) 

H2/CO2 

CO2(p)/CO2(g) 

(sccm) 

Mean 

Diameter (nm) 

FeAlO17CNT912 750 15 10 10/2 9.0 

FeAlO17CNT922 750 15 10 10/8 9.9 

FeAlO17CNT927 750 15 10 10/10 9.7 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

  

  

 

Figure 5.20. The growths with CO2 at 750 ºC: a), b) CO2(p)/CO2(g): 10/2, FeAlO17 

CNT912, 10 min. c), d) CO2(p)/CO2(g): 10/8, FeAlO17 CNT922,  

10 min. e), f) CO2(p)/CO2(g): 10/10, FeAlO17 CNT927, 10 min. 
 

 

 
(cont. on next page) 
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Figure 5.20. (cont.) 

 

Due to the lack of FeAlO17 substrates for studying other parameters, only      

750 ºC has been studied at the same time at the parameters of 10/2, 10/8 and 10/10 sccm 

CO2. Table 5.11 shows that the diameters increase and then decrease with decreasing 

the ratio of CO2 in pretreatment to that of in growth. Sides and angled views of SEM 

images of CNTs are depicted in Figure 5.20. It can be clearly seen in SEM images that 

when CO2 is sent with 10/2 sccm into the system, CNT diameters reach the minimum 

value. Additionally, when CO2 is sent with 10/8 sccm, the maximum CNT diameter is 

observed. According to Figure 5.21, the numbers of CNTs at the mean diameters (9.0, 

9.9 and 9.7 nm) at 10/2 sccm, 10/8 sccm and 10/10 sccm at 750 ºC are 36 out of 78, 20 

out of 52 and 22 out of 40, respectively. 

 

e f 
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Figure 5.21. The diameter distributions of CNTs at different CO2 flow rates at 750 ºC: 

a) CO2(p)/CO2(g): 10/2, 5 min. b) CO2(p)/CO2(g): 10/8, 5 min.  

c) CO2(p)/CO2(g): 10/10, 5 min. 
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5.2.1.3. CNT Formation at Different Pretreatment Time of CO2 

 

The influence of CO2 on CNT growth was investigated by sending CO2 later or 

earlier than H2 in pretreatment process. During the experiments, CO2 flow rates were 

8:2, 10:2, 10:8 and 10:10 sccm and pretreatment time was kept at the constant value of 

15 min. and weak oxidizer, CO2, introduced 5 and 10 min. prior to the CNT growth.  

How mean diameters depended on pretreatment times are shown in             

Table 5.12 – Table 5.16. SEM images of the growths with during different pretreatment 

times of CO2 are illustrated in Figure 5.22, Figure 5.24, Figure 5.26, Figure 5.28 and 

Figure 5.30 and the diameter distributions of CNTs are illustrated in Figure 5.23,   

Figure 5.25, Figure 5.27, Figure 5.29 and Figure 5.31. 
 

 

Table 5.12. The amounts of CO2 used during various pretreatment and growth times and 

the mean diameters of CNTs used FeAlO12 substrate obtained as a result 

 

Sample Name         T(
o
C) 

Pretreatment(min.) 

H2/CO2 

CO2(p)/CO2(g) 

(sccm) 

Mean 

Diameter 

(nm) 

FeAlO12CNT785 750 15 5 8/2 8.8 

FeAlO12CNT844 750 15 10 8/2 8.3 

FeAlO12CNT781 760 15 5 8/2 8.2 

FeAlO12CNT777 760 15 10 8/2 8.3 

FeAlO12CNT771 760 15     5 10/2 8.9 

FeAlO12CNT764 760 15 10 10/2 8.2 
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Figure 5.22. The growths with CO2 (CO2(p)/CO2(g): 8/2) at 750 ºC: a), b) FeAlO12 

CNT785, 5min. c), d) FeAlO12 CNT844, 10 min.  

 

Due to the lack of FeAlO12 substrates for different pretreatment durations        

(5 and 10 min.) of CO2, the values of 8/2 sccm at 750 ºC and 760 ºC; single value of 

10/2 sccm at 760 ºC are examined. Table 5.13 shows that when CO2 is kept longer than 

that of H2 at 8/2 sccm at 750 ºC and 10/2 sccm at 760 ºC, CNT diameters decrease under 

these conditions. However, when CO2 is kept longer than that of H2 at 8/2 sccm at     

760 ºC, it can be seen that there is no effect of CO2 duration. According to Figure 5.23, 

the numbers of CNTs at the mean diameters (8.8 and 8.3 nm) at 8/2 at 750 ºC with the 

duration of 5 and 10 min. are 26 out of 58 and 15 out of 42, respectively. 

 

 

 

 

b a 

c d 
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Figure 5.23. The diameter distributions of CNTs at different pretreatment time of CO2 at 

750 ºC: a) CO2(p)/CO2(g): 8/2, 5 min. b) CO2(p)/CO2(g): 8/2, 10 min. 
 

        

Table 5.13. The amounts of CO2 used during various pretreatment and growth times and 

the mean diameters of CNTs used FeAlO14 substrate obtained as a result 
 

 

Sample Name         T(
o
C) 

Pretreatment(min.) 

H2/CO2 

CO2(p)/CO2(g) 

(sccm) 

Mean 

Diameter 

(nm) 

FeAlO14CNT772 760 15     5 10/2 10.5 

FeAlO14CNT800 760 15 10 10/2 9.8 

FeAlO14CNT860 770 15 5 10/8 9.5 

FeAlO14CNT923 770 15 10 10/8 7.9 
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Figure 5.24. The growths with CO2 (CO2(p)/CO2(g): 10/8) at 770 ºC: a), b) FeAlO14 

CNT860, 5min. c), d) FeAlO14 CNT923, 10 min.  

 

Due to the lack of FeAlO14 substrates for different pretreatment durations        

(5 and 10 min.) of CO2, single value of 10/2 sccm at 760 ºC and single value of         

10/8 sccm at 770 ºC are analyzed. Under these conditions, it can be seen that the mean 

diameter decreases while the duration increases (Table 5.13). For the related SEM 

results, the different durations at 770 ºC are chosen due to the smaller mean diameters. 

The SEM results in Figure 5.24 show that if CO2 is kept longer than that of H2, the 

sample becomes more densely populated. According to Figure 5.25, the numbers of 

CNTs at the mean diameters (9.5 and 7.9 nm) at 10/8 sccm at 770 ºC with the duration 

of 5 and 10 min. are 32 out of 63 and 24 out of 76, respectively. 

b a 

d c 
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Figure 5.25. The diameter distributions of CNTs at different pretreatment time of CO2 at 

770 ºC: a) CO2(p)/CO2(g): 10/8, 5 min. b) CO2(p)/CO2(g): 10/8, 10 min. 
 

 

Table 5.14. The amounts of CO2 used during various pretreatment and growth times and 

the mean diameters of CNTs used FeAlO15 substrate obtained as a result 

 

Sample Name         T(
o
C) 

Pretreatment(min.) 

H2/CO2 

CO2(p)/CO2(g) 

(sccm) 

Mean 

Diameter 

(nm) 

FeAlO15CNT787 750 15 5 8/2 8.2 

FeAlO15CNT846 750 15 10 8/2 10.4 

FeAlO15CNT783 760 15 5 8/2 9.3 

FeAlO15CNT779 760 15 10 8/2 8.3 

FeAlO15CNT773 760 15     5 10/2 8.7 

FeAlO15CNT801 760 15 10 10/2 9.4 

 

a b 
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Figure 5.26. The growths with CO2 (CO2(p)/CO2(g): 8/2) at 760 ºC: a), b) FeAlO15 

CNT783, 5min. c), d) FeAlO15 CNT779, 10 min.  

 

Due to the lack of FeAlO15 substrates for different pretreatment durations        

(5 and 10 min.) of CO2, single value of 8/2 sccm at 750 ºC; the values of 8/2 sccm and 

10/2 sccm at 760 ºC are examined. Under these conditions, the changes in diameters are 

given in Table 5.13. The SEM results in Figure 5.26 indicate that when CO2 is kept 

longer than that of H2 at 8/2 sccm at 760 ºC, CNTs become vertical aligned. According 

to Figure 5.27, the numbers of CNTs at the mean diameters (9.3 and 8.3 nm) at 8/2 

sccm at 760 ºC with the duration of 5 and 10 min. are 37 out of 59 and 39 out of 82, 

respectively. 

a b 

d a 
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Figure 5.27. The diameter distributions of CNTs at different pretreatment time of CO2 at 

760 ºC: a) CO2(p)/CO2(g):  8/2, 5 min. b) CO2(p)/CO2(g): 10/8, 10 min. 
  

 

Table 5.15. The amounts of CO2 used during various pretreatment and growth times and 

the mean diameters of CNTs used FeAlO16 substrate obtained as a result 

 

Sample Name         T(
o
C) 

Pretreatment(min.) 

H2/CO2 

CO2(p)/CO2(g) 

(sccm) 

Mean 

Diameter 

(nm) 

FeAlO16CNT871 750 15 5 10/10 9.4 

FeAlO16CNT926 750 15 10 10/10 8.9 

FeAlO16CNT869 760 15 5 10/10 9.9 

FeAlO16CNT873 760 15 10 10/10 9.3 

FeAlO16CNT933 770 15 5 10/10 8.7 

FeAlO16CNT929 770 15 10 10/10 7.9 

 

 

a b 
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Figure 5.28. The growths with CO2 (CO2(p)/CO2(g): 10/10) at 770 ºC: a), b) FeAlO16 

CNT933, 5min. c), d) FeAlO16 CNT929, 10 min.  

 

Table 5.15 displays that if the duration of CO2 is kept longer than that of H2 at 

the pretreatment stage for 10/10 sccm CO2, the mean diameters of CNTs using 

FeAlO16 substrate decrease at all the three growth temperatures.  For the related SEM 

results, the different durations at 770 ºC are chosen due to the smaller mean diameters. 

When the SEM results given in Figure 5.28 are analyzed, if CO2 is kept longer than that 

of H2, the CNTs become more densely populated.  According to Figure 5.29, the 

numbers of CNTs at the mean diameters (8.7 and 7.9 nm) at 10/10 sccm at 770 ºC with 

the duration of 5 and 10 min. are 40 out of 70 and 44 out of 86, respectively. 

d c 

a b 
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Figure 5.29. The diameter distributions of CNTs at different pretreatment time of CO2 at 

770 ºC: a) CO2(p)/CO2(g): 10/10, 5 min. b) CO2(p)/CO2(g): 10/10, 10 min.  

 

 

Table 5.16. The amounts of CO2 used during various pretreatment and growth times and 

the mean diameters of CNTs used FeAlO17 substrate obtained as a result 

 

Sample Name         T(
o
C) 

Pretreatment(min.) 

H2/CO2 

CO2(p)/CO2(g) 

(sccm) 

Mean Diameter 

(nm) 

FeAlO17CNT872 750 15 5 10/10 11.4 

FeAlO17CNT927 750 15 10 10/10 9.7 

FeAlO17CNT870 760 15 5 10/10 8.6 

FeAlO17CNT874 760 15 10 10/10 7.6 

 

a b 
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Figure 5.30. The growths with CO2 (CO2(p)/CO2(g): 10/10) at 760 °C: a), b) FeAlO17 

CNT870, 5min. c), d) FeAlO17 CNT874, 10 min.  

 

The results of experiments using FeAlO17 substrate indicate the decreasing of 

the mean diameter with the increasing of 10/10 sccm CO2 duration than that of H2 at the 

pretreatment process at 750 °C and 760 °C (Table 5.16). For the related SEM results, 

the different durations at 760 ºC are chosen due to the smaller mean diameters. SEM 

results are displayed in Figure 5.30. If CO2 is kept longer than that of H2, the CNTs 

become more densely populated. According to Figure 5.31, the numbers of CNTs at the 

mean diameters (8.6 and 7.6 nm) at 10/10 sccm at 760 ºC with the duration of      5 and 

10 min. are 22 out of 39 and 29 out of 73, respectively. 

 

b 

d 

a 
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Figure 5.31. The diameter distributions of CNTs at different pretreatment time of CO2 at 

760 °C: a) CO2(p)/CO2(g): 10/10, 5 min. b) CO2(p)/CO2(g): 10/10, 10 min.  

 

5.2.2. STEM Results 

 

STEM detector was used to measure outer and inner radius of the CNT grown 

and determine the diameter of SWNTs and MWNTs. 

The CNT shown in Figure 5.32 is MWNT. However, this is not a general result 

because there is only limited number of SEM results with the STEM detector. 

 

 

 

b a 
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Figure 5.32. SEM micrographs taken by STEM detector of FeAlO12 CNT771 produced 

at 760 °C, CO2(p)/CO2(g):10/2, 5 min. a) 1 µm scale, b) 400 nm scale,     

c) 200 nm scale 

 

The STEM images of the CNT in Figure 5.32.b show that the mean diameter 

was measured as 10.11 nm. For the same CNT evaluated from SEM image, the mean 

diameter was found as 8.9 nm (Table 5.2).  

 

5.2.3. Raman Spectroscopy Results 

 

Raman Spectroscopy with Ar
+ 

ion laser with the excitation wavelength of        

488 nm was used to examine the quality and type of the CNTs grown in the 

experiments.  

The disorder-induced D peak, which is a sign of the presence of defects, is at 

nearly 1350 cm
-1

. The other one, tangential G peak, is at nearly 1580 cm
-1

. Moreover, 

a b 

c 
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for SWNTs, there is a third mode, which is called RBM, is related to the diameter of 

them.   

The ratio of D line to G line intensity provides a good index for showing the 

presence of defects and also the quality of the CNTs. Figure 5.33 - Figure 5.36 

demonstrate Raman signals coming from the sample. When the Raman spectras of the 

samples are analyzed, the intensity of D peak is always smaller compared with that of   

G peak. This intensity ratio shows that CNTs have small amount of defects in their 

structure. Hence, to have similar intensity of the two peaks indicate that CNTs have 

high structural quality. 

The relationship between relative intensity ratio of the D band to G band and the 

growth conditions is given in Table 5.17. 

 

Table 5.17. The growth conditions and intensity ratio of the D band to the G band 
 

 

Sample 

Name 
T(

o
C) 

Pretreatment 

(min.)   

H2/CO2 

CO2(p)/

CO2(g)   

(sccm) 

Deconvolated 

Raman Peaks 
Quality 

of Fits 

(R
2
) 

Intensity

D/G 
Center Height 

FeAlO15                

CNT846 

750 

 

15/10 

 

8/2 

1347.2 2045 

0.996 0.817 1574.4 2500.2 

1618.3 630 

FeAlO16   

CNT911 

10/2 

 

1358.9 2057.6 

0.997 0.575 1582 3576.4 

1618.1 481 

FeAlO17   

CNT912 

1358 1492.4 

0.996 0.727 1582.3 2050.8 

1617.8 378 

FeAlO18   

CNT913 

1357.7 1302.9 

0.996 0.629 1581.1 2069.1 

1617.1 314.4 

FeAlO16   

CNT921 10/8 

 

1348.5 1108.3 

0.995 0.631 1573.2 1755.6 

1617.8 320.5 

FeAlO17   

CNT922 

1353 2682.2 

0.996 0.562 1575.6 4772.2 

1611.4 555.3 

 

(cont. on next page) 
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Table 5.17. (cont.) 

FeAlO18   

CNT928 

750 

15/10 

 
10/10 

1349.4 1561 

0.996 0.699 1576 2230.4 

1620.9 409.7 

FeAlO15  

CNT840 

15/5 

 

10/2 

1347.6 1697.6 

0.995 0.802 1573.3 2116 

1616.7 514.1 

FeAlO15   

CNT855 
10/8 

1348.5 1792.8 

0.996 0.514 1572.4 3481.5 

1616.1 678.9 

FeAlO16   

CNT871 
10/10 

 

1355.5 1905.8 

0.995 0.758 1580.6 2512 

1616.3 439.7 

FeAlO17   

CNT872 

1354.3 1627.4 

0.994 0.854 1579.9 1905.2 

1615.3 388.5 

FeAlO15   

CNT779 

760 

 

15/10 

 

8/2 

1348.6 2011.5 

0.998 0.849 1572 2366.9 

1609.2 398.5 

FeAlO16   

CNT865 
10/8 

1351.6 659.5 

0.99 0.894 1576.4 737.1 

1607.5 187.97 

FeAlO17   

CNT874 10/10 

 

1356.9 2487.6 

0.995 0.709 1580.7 3507.7 

1617.2 681.9 

FeAlO16   

CNT873 

1358 2263.9 

0.997 0.689 1581.9 3282.3 

1619.1 485.2 

FeAlO12   

CNT781 

15/5 

 

8/2 

 

1346.6 1252.7 

0.996 0.634 1570.6 1974.5 

1614.4 427.5 

FeAlO14   

CNT782 

1350.5 1494.7 

0.997 0.741 1573.8 2014.7 

1608.2 478.1 

FeAlO15   

CNT783 

1347.6 1390.8 

0.994 0.907 1572.6 1532.1 

1614.5 403.1 

 

(cont. on next page) 
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Table 5.17. (cont.) 
 

FeAlO15   

CNT773 

760 15/5 

10/2 

1347.5 2077 

0.996 0.63 1572.5 3296.4 

1616.1 811.4 

FeAlO12   

CNT771 

1355.3 341.6 

0,994 0.59 1577.3 578.9 

1606.2 122.9 

FeAlO15   

CNT858 

10/8 

1347.5 1485.6 

0.997 0.8 1571.2 1854.9 

1606.8 289.8 

FeAlO14   

CNT857 

1352.9 3390.9 

0.997 0.465 1575.8 7284.8 

1610 913.3 

FeAlO16   

CNT869 
10/10 

1353.39 1005.84 

0.994 0.751 1577.34 1338.38 

1610.49 241.936 

FeAlO18   

CNT901 

770 

15/10 

8/2 

1353.9 1392.8 

0.995 0.61 1577.3 2282.3 

1609.5 403,4 

FeAlO17   

CNT919 
10/2 

1355.61 1902.06 

0.993 0.794 1580.75 2393.77 

1614.12 450.745 

FeAlO16   

CNT924 
10/8 

1348.08 1132.19 

0.994 0.742 1573.22 1524.14 

1605.28 308.788 

FeAlO16   

CNT929 
10/10 

1352.5 1149 

0.994 0.591 1576.7 1942.6 

1619.7 388.4 

FeAlO14   

CNT860 

15/5 

10/8 

1357.9 1253.3 

0.996 0.93 1579.7 1347.5 

1609.8 445.4 

FeAlO15   

CNT861 

1355.8 1601.2 

0.996 0.674 1579.5 2374.9 

1614.6 373.8 

FeAlO16   

CNT933 
10/10 

1349.3 1496.9 

0.997 0.565 1571.7 2645.8 

1606.6 296.9 
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Figure 5.33. Raman spectra of CNTs grown at 760 °C: a) FeAlO14 CNT782, 

CO2(p)/CO2(g): 8/2, 5 min. b) FeAlO14 CNT857, CO2(p)/CO2(g): 10/8,    

5 min. 

 

For FeAlO14 substrate, Raman spectra of CNTs grown at 760 ºC with two 

different CO2 flow rates (8/2 and 10/8) during 5 min. are given in Figure 5.33. In 

Raman spectra of CNT782, the D peak and G peak are observed at 1350 cm
-1

 and    

1573 cm
-1

, respectively. However, in Raman spectra of CNT857, the D peak and G 

peak are observed at 1352 cm
-1

 and 1575 cm
-1

, respectively. When CO2 flow rate 

decreases from 8/2 to 10/8, intensity ratio of the D band to G band decreases from 0.7 to 

0.4. In addition, it can be said that D peak and G peak are shifted to right. 
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Figure 5.34. Raman spectra of CNTs grown at 750 °C: a) FeAlO15 CNT840, 

CO2(p)/CO2(g): 10/2, 5 min. b) FeAlO15 CNT855, CO2(p)/CO2(g): 10/8,   

5 min. 

 

For FeAlO15 substrate, Raman spectra of CNTs grown at 750 ºC with two 

different CO2 flow rates (10/2 and 10/8) during 5 min. are displayed in Figure 5.34. In 

Raman spectra of CNT840, the D peak and G peak are observed at 1347 cm
-1

 and    

1573 cm
-1

, respectively. However, in Raman spectra of CNT855, the D peak and G 

peak are observed at 1348 cm
-1

 and 1572 cm
-1

, respectively. When CO2 flow rate 

decreases from 10/2 to 8/2, intensity ratio of the D band to G band decreases from 0.8 to 

0.5. In addition, it can be said that D peak and G peak are not shifted, they are observed 

at the same point. 
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Figure 5.35. Raman spectra of CNTs grown at 760 °C: a) FeAlO16 CNT865, 

CO2(p)/CO2(g): 10/8, 10 min. b) FeAlO16 CNT873,             

CO2(p)/CO2(g): 10/10, 10 min. 

 

For FeAlO16 substrate, Raman spectra of CNTs grown at 760 ºC with two 

different CO2 flow rates (10/8 and 10/10) during 10 min. are given in Figure 5.35. In 

Raman spectra of CNT865, the D peak and G peak are observed at 1351 cm
-1

 and    

1576 cm
-1

, respectively. However, in Raman spectra of CNT873, the D peak and G 

peak are observed at 1358 cm
-1

 and 1581 cm
-1

, respectively. When CO2 flow rate 

decreases from 10/8 to 10/10, intensity ratio of the D band to G band decreases from 0.8 

to 0.6. In addition, it can be said D peak and G peak are shifted to right. 
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Figure 5.36. Raman spectra of CNTs grown at 750 °C: a) FeAlO17 CNT912, 

CO2(p)/CO2(g): 10/2, 10 min. b) FeAlO17 CNT922,  

CO2(p)/CO2(g): 10/8, 10 min. 

 

For FeAlO17 substrate, Raman spectra of CNT912 and CNT922 grown at      

750 ºC with two different CO2 flow rates (10/2 and 10/8) during 10 min. are given in 

Figure 5.36. In Raman spectra of CNT912, the D peak and G peak are observed at   

1358 cm
-1

 and 1582 cm
-1

, respectively. However, in Raman spectra of CNT922, the D 

peak and G peak are observed at 1353 cm
-1

 and 1576 cm
-1

, respectively. When CO2 

flow rate decreases from 10/2 to 10/8, intensity ratio of the D band to G band decreases 

from 0.7 to 0.5. In addition, it can be said D peak and G peak are shifted to left. 

All the Raman analysis of CNTs given above reveal that when CO2 flow rate 

decreases in growth, intensity of  D band and G band increase, as a result of which the 

D/G peak ratio decreases and the concentration of amorphous carbon near the catalyst 

surface increases. 
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Figure 5.37. The variation of CNT diameters as a function of ID/IG 

 

Figure 5.37 shows that the D/G peak ratio is proportional to the diameter of 

CNTs, roughly. 

 

5.3. Dependence of Diameters of CNTs on Growth Temperature,     

Pretreatment Time and CO2 Flow Rates  

 

The role of CO2 in the CNT growth with TCVD technique by ethylene 

decomposition has been investigated by changing growth temperature, pretreatment time, 

amount of CO2, the ratio of CO2 in pretreatment to that of in growth using the thin Fe film 

sputtered on SiO2/Si substrates (FeAlO12, FeAlO14, FeAlO15, FeAlO16, FeAlO17). 

Figure 5.38 – Figure 5.42 indicate the variation of mean diameters of CNTs of all 

substrates used in the experiments as a function of pretreatment time-growth 

temperature and CO2 amount-growth temperature.  

It is estimated that C reacts with O2 to form CO because of metal-oxide form of 

catalyst particle. If proper pretreatment and growth parameters are not used for metal 

catalyst particle, amorphous carbon forms instead of CNT growth on the catalyst 

surface. The catalyst particle loses its functionality due to the amorphous carbon 

coverage. It is expected that the catalyst film easily coalescences to form nano particles 

with the effect of temperature and H2 and these particles uniformly spread over the 
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whole face. The formed catalyst particles are mobile and can form larger clusters with 

the effect of high temperature when they are in the elemental form and they occur very 

fast especially on SiO2 layer. 

It is required that the catalyst particles have small size and narrower distribution 

for an effective CNT growth. Large nano particles are not very effective for CNT 

growth, and at the same time decrease the density of CNTs per unit area. The amounts 

of H2 and CO2 play significant roles in this process. 

The coalescence happens after metal-oxide film converts to metal film. The 

function of CO2 in pretreatment stage is to adjust the reduction rate of already oxidized 

Fe (due to exposure to the air) and reduce mobility of the reduced Fe nano particles on 

the surface to prevent larger particle formation. In addition, CO2 keeps catalyst particle 

functioning in the growth process by removing amorphous carbon coverage on them. 

If the duration of CO2 is kept longer than that of H2 at the pretreatment stage, the 

CNT mean diameter decreases and diameter distribution becomes narrower. This 

decreasing in the CNT density can be explained by catalyst particles‟ forming smaller 

particles. 
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Figure 5.38. The variation of mean diameters of CNTs used FeAlO12 substrate as a 

function of a) pretreatment time and growth temperature, b) CO2 amount 

and growth temperature  

 

According to Figure 5.38a, at 750 ºC and 770 ºC, the minimum diameters are 

obtained as 8.35 nm and 8.48 nm, respectively at the end of 5 min. pretreatment time 

while the minimum diameter is obtained as 8.2 nm at the end of 10 min. pretreatment 

time at 760 ºC. 

b
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According to Figure 5.38b, the minimum diameter is obtained as 8.35 nm at    

750 ºC at the rate of 8/2; while the minimum diameters are obtained as 8.2 nm at 760 ºC 

and 8.48 nm at 770 ºC at the rate of 10/2. 
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Figure 5.39. The variation of mean diameters of CNTs used FeAlO14 substrate as a 

function of a) pretreatment time and growth temperature, b) CO2 amount 

and growth temperature  

 

According to Figure 5.39a, at 750 ºC and 760 ºC, the minimum diameters are 

obtained as 8.65 nm and 8.56 nm, respectively at the end of 5 min. pretreatment time; 

while the minimum diameter is obtained as 7.97 nm at the end of 10 min. pretreatment 

time at 770 ºC. 

According to Figure 5.39b, the minimum diameters are obtained as 8.65 nm at 

750 ºC and 7.97 nm at 770 ºC at the rate of 10/8; while the minimum diameter is 

obtained as 8.56 nm at the rate of 8/2 at 760 ºC.  
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Figure 5.40. The variation of mean diameters of CNTs used FeAlO15 substrate as a 

function of a) pretreatment time and growth temperature, b) CO2 amount 

and growth temperature  

 

According to Figure 5.40a, at 750 ºC and 770 ºC, the minimum diameters are 

obtained as 8.27 nm and 9.24 nm, respectively at the end of 5 min. pretreatment time; 

while the minimum diameter is obtained as 8.39 nm at the end of 10 min. pretreatment 

time at 760 ºC. 

According to Figure 5.40b, the minimum diameters are obtained as 8.27 nm, 

8.39 nm and 10.14 nm at 750 ºC, 760 ºC and 770 ºC, respectively at the rate of 8/2. 

 

5
5

10

10

10

0

2

4

6

8

10

770

760

750

D
ia

m
e
te

r

Tem
pe

ra
tu

rePretreament time

8/2
10/2

10/8

10/10

10/10

0

2

4

6

8

10

770

T
e
m

p
e
ra

tu
re

760

750

D
ia

m
e
te

r

CO
2 /CO

2

 

 

Figure 5.41. The variation of mean diameters of CNTs used FeAlO16 substrate as a 

function of a) pretreatment time and growth temperature, b) CO2 amount 

and growth temperature  
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According to Figure 5.41a, at 750 ºC, 760 ºC and 770 ºC, the minimum 

diameters are obtained as 8.96 nm, 8.78 nm and 7.39 nm, respectively at the end of       

10 min. pretreatment time. 

According to Figure 5.41b, the minimum diameter is obtained as 8.96 nm 750 ºC 

at the rate of 10/10; while the minimum diameters are obtained as 8.78 nm and 7.39 nm 

at 760 ºC and 770 ºC, respectively at the rate of 10/8. 
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Figure 5.42. The variation of mean diameters of CNTs used FeAlO17 substrate as a 

function of a) pretreatment time and growth temperature, b) CO2 amount 

and growth temperature  

 

According to Figure 5.42a, at 750 ºC, 760 ºC and 770 ºC, the minimum 

diameters are obtained as 9.08 nm, 7.67 nm and 8.32 nm, respectively at the end of     

10 min. pretreatment time.  

According to Figure 5.42b, the minimum diameters are obtained as 9.08 nm at 

750 ºC and 8.32 nm at 770 ºC at the rate of 10/2; while the minimum diameter is 

obtained as 7.67 nm at 750 ºC at the rate of 10/10. 
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5.4. Statistical Analysis Results 

 

As a final step, all data have been analyzed through a statistical analysis, 

including standard deviation, standard error, kurtosis variations and skewness variations 

of the samples grown by utilizing CO2. The so-called analysis results are represented in 

Figure 5.43a, b and Figure 5.44a, b. 
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Figure 5.43. a) Standard deviation b) Standard error as CNT sequence of the samples 

grown by utilizing CO2 
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When standard deviations (Figure 5.43a) and standard errors (Figure 5.43b) of 

the mean diameters are examined in detail; the growth sequence (CNT number) of all 

samples grown by utilizing CO2 in this research is seen. It is shown that CNT diameters 

are span in a narrow interval. Standard deviations of all patterns are predominantly seen 

to be ranging from 1-1.6 nm. In addition to this narrow standard deviation interval, 

standard error of all the mean diameters is very small (~ 0.2 nm).  
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Figure 5.44. a) Kurtosis variations b) Skewness variations with CNT sequence of the 

samples grown by using CO2 
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Kurtosis value is a descriptor of the shape of a probability distribution such as 

optimal positive value and optimal negative value. Kurtosis value variation of CNT 

sequence (Figure 5.44a) results that values are generally seen to be between +1 and -1. 

There are few smaller values than -1, whereas there are more values with kurtosis value 

larger than +1 and, thus, explaining narrow distributions. While diameter distributions 

are necessary for Gauss distribution is normally expected, these high positive kurtosis 

values are indication that CNT diameters are within narrow range of mean diameters. 

In addition skewness values are generally seen to be between +0.5 and -0.5 

(Figure 5.44b). There are four smaller values than -0.5, whereas there are two values 

with kurtosis value larger than +1.  

As the correlation between these statistical data examined, no correlation 

between standard deviation and kurtosis (0.02) and a large positive correlation between 

standard deviation and standard error (0.87) are seen. In addition, a small positive 

correlation between skewness and kurtosis (0.32), standard deviation and skewness 

(0.14) are seen. 
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CHAPTER 6 

 

CONCLUSIONS 

 

In this work, the purpose was to investigate the effects of weak oxidizers (O2, 

H2O and CO2) on CNTs grown on Si/SiO2/Al2O3 substrates using different Fe thin film 

catalyst (FeAlO12, FeAlO14, FeAlO15, FeAlO16 and FeAlO17) by thermal CVD 

method during both pretreatment and growth duration. Due to the fact that CO2 gave 

better results than the other two oxidizers in terms of CNT characteristics in the 

previous studies, CO2 was used as oxidizer in the experiments. The reason for the use of 

CO2 in the pretreatment process was to control the size of catalyst particle and in the 

growth process was to keep catalyst particle functioning throughout the growth time and 

to prevent amorphous carbon formation on the outer walls of CNTs. With these 

intentions, pretreatment time with oxidizer, the ratio of oxidizer in pretreatment to that 

of in growth and growth temperature were examined. Then, AFM, SEM and EDX were 

used to analyze catalyst thin films‟ structural properties. Moreover, the CNTs grown 

with CO2 were evaluated with the help of SEM, STEM and Raman Spectroscopy to 

study their type, crystallinity and defect content. 

There were two main goals for the study. The first one was to reduce the 

diameter by using oxidizer in pretreatment and growth processes and the other one was 

to control CNT diameters within very narrow diameter ranges. Nearly one hundred 

experiments were performed for these motivations. Ethylene was utilized as the carbon 

precursor, and its flow rate was kept constant at, 80 sccm for all growths. Ar gas at flow 

rate of 150 sccm was used as the carrier gas during the whole process of growth and 

also the sample was cooled to room temperature under Ar gas flow after the growth 

termination. CO2 flow rates used during pretreatment and growth were 8:2, 10:2 10:8 

and 10:10 (in unit of sccm). In addition, three different growth temperatures; 750 
o
C, 

760 
o
C and 770 

o
C were studied. Different pretreatment times studied in the previous 

experiments showed that CNTs grown with 15 min. pretreatment time gave the best 

results. So pretreatment times were kept at 15 min. and CO2 introduced in during 

pretreatment, 5 to 10 min. prior to the CNT growth in this work. 
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Very thin Fe films were grown on SiO2/Si substrates with Al2O3 buffer layers. 

All Fe films intended to have similar thicknesses 1.5-2 nm. It is very well known that 

the film thickness have a major impact on the CNT diameters. Although there was a 

variation in CNT diameters for the growths carried on the different substrates, this 

change was not drastic and it could be said that the Fe film thickness was not an 

important factor in the observed diameter change. On the contrary, growth parameters 

are the main important parameters deciding diameters for the experiments. 

From extensive statistical data we observe that most of the CNT diameters were 

within narrow range in the experiments performed with CO2, which we believe due to 

positive oxidizer to keep metal catalyst sizes in a narrow range, therefore, resulted in an 

effective production of CNTs. However, CNTs with large diameters were obtained in 

some experiments indicating that, in some cases, positive effects of oxidizers were 

suppressed by growth parameters including the temperature. On the other hand, having 

larger diameters made the SEM analysis more trustworthy. 

The results of experiments were evaluated with the statistical analysis including 

standard deviation, standard error, skewness and kurtosis. Several conclusions could be 

drawn from this analysis. Firstly, when the ratio of oxidizer in pretreatment to that of in 

growth was kept small, standard deviation was very narrow. Secondly, the CNTs grown 

with 15/5 min. pretreatment time (pretreatment time: 15 min., introduction of            

CO2: 5 min., introduction of H2: 10 min.) were seen to have wider standard deviation. 

Thirdly, the correlation between these statistical data yielded important results. There 

was no correlation between standard deviation and kurtosis (0.02). In addition, there 

was a small positive correlation between skewness and kurtosis (0.32), standard 

deviation and skewness (0.14). Furthermore, there was a large positive correlation 

between standard deviation and standard error (0.87), as expected, which showed that 

the statistical analysis were reliable. As the other result of evaluation, quite narrow 

standard deviations obtained for the diameters in this work are very important, since the 

diameter directly control most of the CNT properties. Even though CNTs grown in this 

work were mainly MWNTs, standard deviations were comparable with that of SWNT 

reported in the literature. STEM results of CNT diameters also supported this situation. 

With the increasing temperature, skewnesses were seen to have larger positive 

values which mean that shifting to right. This shift indicated that the mobile catalyst 

particles formed larger clusters with the effect of high temperature when they were in 

the elemental form. Therefore, the optimum growth temperature was 760 °C.  
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It was shown that the importance of H2 and CO2 amounts and duration in the 

pretreatment and growth processes due to the fact that large nano particles are not very 

effective for CNT growth. Results indicated when CO2 duration was kept shorter than 

that of H2 at the pretreatment process of 15 min., CNTs grown had big diameters. This 

result further supported our initial hypothesis developed in this thesis work. According 

to the hypothesis, when CO2 duration was kept longer than that of H2 at the 

pretreatment process, CO2 was shown to have a function in decreasing the negative 

effects of H2. 
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