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ABSTRACT 

 

AN EXPERIMENTAL STUDY ON ENHANCEMENT OF HEAT 

TRANSFER IN A SOLAR AIR HEATER COLLECTOR BY USING 

POROUS MEDIUM 

 

The aim of this thesis is to enhance the heat transfer of a solar air heater by using 

porous material. A comprehensive literature survey has been carried out to learn the 

previous researches. Depending on this literature survey, some design parameters were 

determined and a solar air heater was constructed to the Solar & Wind Energies 

Laboratory according to this parameters.  

In order to obtain the optimum design parameters and maximum efficiency of 

solar air heater, several studies have been carried out including clear and porous 

material assisted channels. For this purpose different configurations and designs were 

investigated and tested. Temperature data along the collector, average velocity of air 

inside the channel, pressure drop due to the porous material, power that fan and 

electrical heater consumes were measured and tabulated regularly. Related graphs were 

drawn according to the experimental results. The effect of porous material on the heat 

transfer and collector efficiency was discussed based on these graphs. 
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    ÖZET       
 

GÖZENEKLİ ORTAM KULLANILARAK HAVA ISITICILI 

GÜNEŞ KOLLEKTÖRLERİNDE ISI GEÇİŞİNİN ARTTIRILMASI 

ÜZERİNE DENEYSEL BİR ÇALIŞMA 

 
Bu tezin amacı bir güneşli hava ısıtıcısnda gözenekli yapı kullanarak ısı 

transferinin arttırılmasıdır. Daha önceki araştırmaları öğrenmek için kapsamlı bir 

literatür taraması yapılmıştır. Bu literature taramasına dayanarak bazı tasarım 

parametreleri belirlenmiş ve bu parametrelere gore Güneş & Rüzgar Enerjileri 

Laboratuvarına bir Güneşli Hava Istıcısı kurulmuştur.  

Güneşli hava ısıtıcısın, optimum tasarım parametrelerini ve maksimum verimini 

elde edebilmek için, içi boş ve içinde gözenekli yapı bulunan kanalların deneylerini 

içeren bir çok çalışma yapılmıştır. Bu amaç için değişik konfigürasyon ve tasarımlar 

incelenmiş ve test edilmiştir. Kollektör boyunca sıcaklık değişimi, kanal içindeki 

havanın ortalama hızı, yüzey sıcaklıklarının gözenekli yapıya gore değişimi, gözenekli 

yapıdan kaynaklanan basınç düşümü, fan ve elektrikli ısıtıcının harcadıgı güç değerleri 

düzenli olarak ölçülmüş ve tablolanmıştır. Deneysel sonuçlara göre ilgili grafikler 

çizilmiştir. Gözenekli yapının ısı transferine ve kollektör verimin olan etkisi bu grafikler 

üzerinden tartışılmıştır. 
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CHAPTER 1 

 

INTRODUCTION 

 

As the population around the world and the demand for energy increases, the 

consumption of conventional fuels also increases. The limited sources of conventional 

fuels have directed researchers’ attention to renewable energies in recent years. The 

total solar energy absorbed by the Earth's atmosphere, oceans and land masses is 

approximately 3,850,000 exajoules (EJ) per year (Smil, 2006). In 2002, this represented 

greater energy consumption in one hour than the world used in one year (Morton, 2006). 

The amount of solar energy reaching the surface of the planet is so vast that in one year 

it is about twice as much as will ever be obtained from all of the Earth's non-renewable 

resources of coal, oil, natural gas, and mined uranium combined (Hermann, 2006). This 

is a huge source of energy and many applications that use solar energy, which is an 

abundant, clean and safe source, have been investigated. 

Solar technologies can be classified into two groups; passive and active heating. 

Passive solar techniques include designing spaces according to natural circulation, 

locating buildings with reference to the Sun or selecting high thermal conductive 

materials.  On the other hand, active solar techniques include using solar panels, pumps 

or fans to convert solar energy into useful outputs.   

Solar air heaters are devices that utilize solar radiation for a variety of purposes. 

These devices are simple and can be constructed inexpensively. Mainly, solar air heaters 

consist of a transparent cover, an absorber plate and insulation material. The air flow 

enters through the channel that is formed by the absorber plate and the transparent 

cover.  Solar radiation absorbed by the absorber plate. The absorbed heat transferred to 

the air as it flows along the channel increases its temperature. This heated air can be 

used in several applications such as drying agricultural products, space heating and air 

conditioning, water heating and industrial process heating. 

There are many advantages of solar air heater systems. Firstly, they are simple  

to maintain and design. After the set-up cost, a solar air heater system has no fuel 

expenditure. There is less leakage and corrosion when compared to the systems that use 

liquid. It is also an eco-friendly system which has zero greenhouse gas emissions.  

http://en.wikipedia.org/wiki/Joule#Multiples
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The primary disadvantage of these systems is the low heat transfer coefficient 

compared to systems that use liquid as the working fluid. This is the result of low heat 

transfer coefficient between the absorber plate and the air. Low heat transfer 

coefficients lead to low thermal efficiency of solar air heaters. For many years 

researchers have studied the enhancement of heat transfer coefficients of solar air 

heaters. To increase the efficiency of such a system, various configurations and designs 

have been proposed.   

 The efficiency of solar air heaters can be affected by various parameters such as 

collector length, number of channels, depth of channels, type of absorber plate, number 

and material of glass covers, air inlet temperature and air velocity. All of these 

parameters and their effects on the efficiency of solar air heaters will be discussed 

below.  

 In this thesis, porous material was placed in a solar air heater which was 

constructed for this study and the effect of this material on the collector efficiency and 

heat transfer was investigated. A literature survey was conducted to specify the design 

parameters of solar air heaters and based on this survey a collector was designed 

specially in order to obtain maximum efficiency and minimum heat loss from the 

collector and its channels. Air passing through the channel was supplied by a radial fan.  

 In Chapter 2 of this thesis brief information is given about solar air heaters. A 

total of 45 published papers were reviewed for this study.  The literature classifies solar 

air heaters into two main groups and each group classified into four subtitles depending 

on their design and flow configurations. The general designs parameters and the 

working principles for every design are explained in this chapter. The schematic figures 

of each type of solar air heater are also illustrated.   

 The studies conducted on solar air heaters were reviewed in literature and are 

presented in Chapter 3. The 45 papers reviewed were classified according to the groups 

explained in Chapter 2. Each paper was summarized with its conclusions under the 

related title. A table prepared for an easy comparison of research conclusions is also 

given in Chapter 3.  

 In Chapter 4, the experimental setup and its components are explained in detail. 

The components of the experimental setup and measurements devices with their 

working principles are presented in this chapter.          

 The experimental procedure and the procedure of heat transfer calculations of 

this study are given in Chapter 5. The methodology of experiments is explained step by 
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step. The data collected with this explained methodology during the experimental 

period. Based on this data, all the calculations are performed and graphs plotted such as; 

 The velocity profile in 3D 

 Change of  temperature longitudinally and transversely inside the collector  

 Change of air inlet and outlet temperature for each experiment. 

 Change of absorber plate temperature according to the porous layer number. 

With the help of this graphs, the effect of porous layers are discussed better. 

 Many problems occurred during the experimental period. Because of the 

problems which occurred during the experiments some changes were necessary on the 

constructed setup. The improved setup, the problems that have been faced are explained 

in Chapter 6.   

  Chapter 7 includes results and discussions for the experiments performed during 

the study. The effect of porous material identified in the experimental results is 

discussed. The plotted graphs are also discussed in this chapter.  

In Chapter 8 the conclusions of the studies performed. The evaluations and 

comments are also given in this chapter.     
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CHAPTER 2 

 

SOLAR AIR HEATERS 

 

Solar air heaters are simple devices that utilize incident solar radiation to obtain 

clean energy for a wide usage. The solar air heater device intercepts solar radiation, 

converts this radiation to the heat in air and delivers the air for use.  

The main components of a solar air heater is an absorber plate, one or more 

channels for the flowing air, insulation for the bottom and lateral sides of the solar 

collector and one or more transparent covers. The use of a blower is optional for the air 

supply. Detailed information is given below.  

 

2.1. Types of Solar Air Heaters 

 

Solar air heaters may be divided into two main categories. The first category is 

related to the air channel flow configuration. To increase the system efficiency various 

air channel flow configurations will be constructed. The various configurations may be 

expressed in four sub-titles under this category. The sub-categories are; single flow 

single pass, double flow single pass, single flow double pass and single flow recycled 

double pass  

The second category is related to the air channel design. The air channel design 

affects the system efficiency significantly. For that reason different design 

configurations can be used in solar collectors. The second category can also be 

expressed in three sub-categories such as; flat plate, extended surface assisted, porous 

media assisted. All main and sub categories are explained below.  

Other studies exist that cannot be explained under any of these categories. These 

studies are categorized as special designs. 
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2.1.1. Classification According to Air Channel Flow Configuration 

 

The first category in solar air heater studies is “Classification according to air 

channel flow configuration”. This category is classified into four different 

configurations. Since air flow channel configuration is an important parameter that 

affects the efficiency and outlet temperature of the solar air heater, researchers studied 

many different kinds of air flow channel configurations. In this part of this thesis, the 

purpose and methods of achieving different air channel flow configurations are 

explained. 

 

2.1.1.1. Single Flow Single Pass 

 

Single flow single pass is the most common and simplest type of solar air heater. 

This type of solar air heater mainly consists of an air flow channel, a transparent cover, 

an absorber, and insulation material in the bottom of the absorber as shown in Figure 1. 

Ann absorber plate is placed at the bottom of the air flow channel, and the top of the 

channel is covered by a transparent sheet with one or more layers, such as glass. The 

absorber is made from a high conductive material such as aluminum with high solar 

absorptivity values. Generally, a black plate is used for a high rate of solar absorption 

and as a selective absorber plate. The air flow channel is insulated on the bottom and 

lateral sides to prevent heat loss to the surroundings. The insulation materials can be 

glass wool, rock wool or polyurethane. The solar radiation passes through the 

transparent cover and is absorbed by the absorber plate. The temperature of the absorber 

plate increases since its bottom is insulated. Heat is transferred from the heated absorber 

plate to the air flowing through the channel. In the single flow single pass solar 

collector, there is an inlet and outlet for the air to enter and leaved the channel directly. 

That is why this kind of solar air heater is named as “single flow single pass” in this 

study.   
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Figure 2.1. A schematic view of single flow single pass 

 

2.1.1.2. Double Flow Single Pass 

 

The double flow single pass solar air heater is very similar to the single flow 

single pass heater. The main difference between them is the number of air flow 

channels. In a double flow single pass solar air heater, there are two air channels as 

illustrated in Figure 2. The top channel consists of a solar absorber and a cover glass. 

The second channel which is located on the bottom of the first channel consists of the 

same absorber plate (on top) and insulated plate (on bottom). The air entering the 

collector is divided; half passes through the upper channel while the remainder flows 

through the bottom channel. For both channels, the airflow enters the channel and 

directly leaves it. That is why this kind of solar air hearer is called a “double flow single 

pass”. Using a double flow single pass solar air heater increases the heat transfer area 

and the thermal performance of the system may be higher than a single flow single pass 

model for the same mass flow rate. 

 

 
Figure 2.2. A schematic view of double flow single pass 
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2.1.1.3. Single Flow Double Pass   

 

There are two overlapping air flow channels in a single flow double pass solar 

air heater. Air flows from the upper channel, changes direction at the channel end and 

enters the lower channel. It flows straight through the bottom channel. That is why this 

type of solar air heater is named a “single flow double pass”. Two different 

constructions of a single flow double pass solar air heater are reported in literature. 

Figure 3(a) illustrates one of them.  As can be seen, there are two overlapping air flow 

channels.  These channels are separated from each other by a glass (or transparent sheet) 

and an absorber is placed at the bottom side of the lower channel. Air flows from the 

first and the second transparent sheet and is received by the absorber. The bottom side 

of the absorber is insulated. In the second design, the absorber plate is placed as a 

separator between the upper and lower channels as illustrated in Figure 4. The upper air 

flow channel is formed by the glass cover and the absorber plate where the lower air 

flow channel is located between the same absorber plate and the insulated lower plate. 

   

 

 
Figure 2.3. A schematic view of a single flow double pass with absorber plate, a) solar 

air heater with glass separator b) solar air heater with absorber separator 

b 

a 
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2.1.1.4. Single Flow Recycled Double Pass 

 

Using recycled heated air in the design of a solar air heater may improve its 

efficiency and adjust the air outlet temperature. The partial circulation of heated air can 

provide the desired air temperature at the air flow exit if the outlet temperature is 

different than the desired temperature. As illustrated in Figure 4, the solar air heater 

consists of two channels. The upper channel is formed by the glass cover (on top) and 

the absorber plate (underneath). The walls of the other channel are insulated. A portion 

of heated air is transferred to the bottom channel and then it flows into the main air flow 

channel. There is a single inlet and outlet in the system and that is why this type of solar 

air heater is called a “Single flow recycled double pass solar air heater.    

 

 
 

Figure 2.4. A schematic view of a single flow recycled double pass. 

 

2.1.2. Classification According to Air Channel Design 

 

The solar air heaters in the study can also be classified according to air channel 

design. The channel design of the solar air heater can be classified into four different 

configurations. By changing the air channel design, the efficiency of a solar air heater 

can be enhanced significantly. In this part of this review, different air channel designs 

are briefly explained. 
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2.1.2.1. Flat Plate  

 

Flat plate type is the simplest form of solar air heater. This type of solar air 

heater includes one or more glass covers and an absorber plate (Figure 5). All sides of 

the solar air heater except the glass cover should be well insulated to prevent heat loss. 

Air can flow either over or under the absorber plate. Flat plate solar air heaters can be 

designed as single pass, double pass, double flow or recycled. The absorber plate is 

generally a smooth plate and it does not contain a fin, obstacle or roughness element.  

That is why this type of solar air heater is called a “Flat Air Channel”. The construction 

of a Flat Air Channel solar air heater is simple; hence it has a low cost. Since no 

mechanism or method is used to enhance heat transfer in the channel, the efficiency of 

this kind of solar air heater is lower than other types.  

 

 
 

Figure 2.5. A schematic view of a flat plate solar air heater 

 

2.1.2.2. Extended Surface Assisted 

 

Several designs have investigated how to increase the low thermal efficiency of 

flat air channel solar air heaters. Since the type of absorber plate is one of the most 

important parameter that affects the thermal efficiency of solar air heaters, many 

absorber modifications were studied. The extension of the surface area of the absorber 

plate can be an efficient way to improve the performance of solar air heaters.  Attaching 

fins, ribs, obstacles or any other roughness element (any element that causes roughness 

on the absorber plate) on the absorber plate could extend the surface area of the solar air 
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heater. A solar air heater assisted by an extended surface of air channel has a transparent 

cover, insulation material and a roughened absorber plate that absorbs the solar 

radiation. The roughness element or fins mounted on the absorber plate not only extend 

the area of absorption but also provides the mixing of air flowing in the channel and 

consequently increases the heat transfer coefficient. A solar air heater collector whose 

channel is assisted by an extended surface can be designed as a single pass, double pass, 

double flow or recycled model. Although the use of roughness elements or fins 

increases the surface area and heat transfer coefficient, the pressure drop through the 

channel will be increased at the same time. An increase in the pressure drop of the 

channel will result, as an increase in the required power of the fan or blower that 

supplies the air to the heater is also required. That is why a lot of research has involved 

designing the roughness element or fin geometries. 

 

 
Figure 2.6. A schematic view of a fin assisted absorber plate 

 

2.1.2.3. Porous Media Assisted 

 

Assisting the air channel of a solar air heater with a porous medium might be a 

useful way to increase the air outlet temperature and thermal efficiency. The use of 

porous media in the flow channel of a solar air heater increases both the mixing of the 

air stream and the heat transfer area. These solar heaters consist of a transparent cover, 
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insulating material, an absorber plate and porous media (Figure 7). The porous media is 

inserted in the flow channel of the solar air heater. The air flows in the channel in 

contact with the porous media which is in contact with the absorber. Porous media 

assisted heaters can be designed as single pass, double pass or recycled but they are 

generally  single flow double pass systems The porous media can be chosen from high 

conductive materials to accelerate heat transfer between the porous media and the air 

flows through the channel.  The porosity of the porous media is a very important 

parameter for indicating pressure drop through the channel. Although the decrease of 

porosity increases the effective heat transfer coefficient, it also increases the pressure 

drop in the channel. That is why studies have been performed on the characteristics of 

porous media required for designing a system with high heat transfer rate but low 

pressure drop.  There is no doubt that with the optimum porosity, thickness and 

position, the heat transfer between absorber and air flow in the channel can be enhanced 

considerably.   

 

 
Figure 2.7. A schematic view of a porous assisted solar air heater 
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CHAPTER 3 

 

LITERATURE SURVEY 

 

A comprehensive literature survey on solar air heaters has been in accordance 

with the main categories and their classifications referred to in previous sections. A 

summary of the findings is presented in this chapter.   

 

3.1. Studies According to Air channel Flow Configuration 

 

3.1.1.  Single Flow Single Pass Studies 

 

Varshney et al. (1998) investigated the heat transfer and fluid characteristics of a 

solar air heater whose duct is packed with wire mesh screen matrices. The experiments 

were conducted using a wide range of geometrical parameters of wire mesh screen 

matrices such as wire diameter, pitch and number of layers (Fig. 3.1). The solar air 

heater collector dimensions were 2390 x 25 mm. Double glasses with a distance of 20 

mm were used as glazing and the wire mesh packing was placed between the second 

glass cover and the back plate. In the study, the heat transfer was represented by 

employing Colburn-j factor. Generalized correlations were developed based on the 

data,. It was concluded that the heat transfer coefficient and friction factor were 

depending on wire mesh geometry such as wire diameter, pitch and number of layers of 

the matrix. 

 
 

Figure 3.1. Details of packed bed collector  

(Source: Varshney et al.1998) 
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Pakdaman et al. (2011) evaluated the performance of a natural convection solar 

air heater with a rectangular finned absorber plate. It aimed to achieve an empirical 

model which predicts various significant parameters for natural convection solar air 

heaters. The Nusselt number correlations for such finned devices were also obtained in 

the study. The exergy analysis and the conditions that give the maximum efficiency for 

the system were also determined. The collector frame dimensions were 2000 x 1000 x 

150 mm (Figure 3.2). A black painted galvanized-iron plate was used as an absorber 

plate with a thickness of 1 mm. A total of 46 rectangular fins were attached to the 

absorber plate which was 20 mm apart from each other. The attached fins were 

2000x10mm with a thickness of 1 mm.  A single glass cover with a thickness of 4 mm 

was used as glazing. It was concluded that a longitudinal rectangular fin arrangement 

enhanced the heat transfer of solar air heaters. In this study the heat transfer area was 

increased by 66% whereas heat transfer was increased by 20% approximately.       

  

 
 

Figure 3.2. Experimental setup and location of thermocouples on the absorber  

plate.(Source: Pakdaman et al. 2011) 

 

Karmare et al. (2009) experimentally investigated the effect of roughness of rib 

grits on the thermohydraulic performance of solar air heaters. The metal rib grits were 

placed on the absorber plate with a 60° angle of attack to the air flow direction. On the 

basis of thermohydraulic considerations, the optimum design and operating conditions 

were determined and an experimental setup was constructed (Fig. 3.3). The setup 

consisted of two identical collectors, each with dimensions of 1500 x 250 x 25 mm. 

Three different absorber plates with different roughness parameters and a smooth 
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absorber plate were tested (Table 1). The experimental data obtained from these four 

absorber plates under optimum operating conditions were compared. It was concluded 

that the thermal efficiency could be increased between a range of 10–35% by using 

metal rib roughness on the absorber plate in place  of a smooth absorber plate. As the 

thermal efficiency was enhanced the power required for the blower increased due to 

increase in the friction factor. It was also found that the Reynolds number range must be 

specified to obtain better thermohydraulic performance and that this depended upon the 

insulation.  To achieve optimum performance for a solar air heater, an empirical relation 

was developed which included the system and operating parameters.   

 

 

 
 

Figure 3.3. a.Schematic layout of the experimental setup, b.Layout of roughness 

surface.(Source : Karmare et al. 2009) 

 

Moheseni-Languri et al. (2009) investigated the energy and exergy analysis of a 

solar air heater. A solar air heater was designed, manufactured and connected to a room 

to investigate the applicability and feasibility of such a system (Fig. 3.4). The absorber 

plate was made of carbon steel and painted black with dimensions of 1800 x 1000 x 4 

mm. Single glazing was used with a thickness of 3 mm. A small fan with the power of 

a 

b 
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40 W was used to circulate the air through the collector and room. To protect the 

collector from the shadow of neighboring buildings, it was installed 2500 mm vertically 

above the ground. Two aluminum ducts with an insulation of 20 mm thick glass wool 

were used to connect the collector inlet and exit to the testing room. The testing room’s 

dimensions were 4 x 3 x 3 m. In order to find the optimum mass flow rate which  

produces the maximum energy, the experimental data obtained by the measurements 

during winter were analyzed using energy and exergy analysis. This study  concluded 

that the optimum mass flow rate which leads to the highest second law efficiency was 

0.0011 kg/s. 

.  

 

Figure 3.4. A schematic of the designed collector 

 (Source: Moheseni-Languri et al. 2009) 

 

Moummi et al. (2004) theoretically and experimentally analyzed the energy of a 

solar air collector with rows of rectangular plate fins inserted perpendicular to the flow. 

The aim of the study was to improve the thermal performance of the solar air collector 

by generating turbulent flow between the absorber and the back wooden plate via 

obstacles. In order to achieve this goal, a solar collector 1.6 m in length and 0.8m in 

width was constructed (Fig 3.5). The transparent cover was alveolar polycarbonate 

sheets with 10 mm thickness and the gap between the cover and the absorber plate was 

25 mm. Two types of absorber plates were used in the collector; black-painted 

aluminum sheets (nonselective absorber plate) and coopersun plates (selective absorber 

plate). The results achieved were compared with experimental results of a solar air 

collector without fins. It was concluded that the rectangular fins increased the 

temperature of the absorber plate and enhanced the heat transfer.   
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.  

 

Figure 3.5. Schematic view of the collector with fins 

 (Source: Moummi et al. 2004) 

 

Ozturk et al. (2004) experimentally investigated the thermal performance of a 

solar air heater with a packed flow channel. The Raschig rings made of black polyvinyl 

chloride (PVC). were used as the packing material. The heater was of 1900 x 900 mm in 

dimension. The absorber plate was an aluminum plate with black paint coating. Single 

glass of 4 mm thickness was used as glazing, and the distance between the absorber 

plate and glazing was 50 mm (Figure 3.6). The depth of the packed bed in the flow 

channel was 60mm. The Raschig rings type of packing was used to improve heat 

transfer from the plates to the airflow underneath the absorber plate. In addition to  the 

experiments, the heaters energy and exergy analysis  were performed to evaluate the 

efficiencies of the packed bed solar air heater. The ratio of the recovered energy 

delivered by the solar air heater to the total solar energy passing through the heater was 

defined as the energy efficiency. It was concluded that selecting, sizing and optimizing 

the components of solar air heating systems should be performed using exergy analysis 

for the highest possible efficiencies. 

 

 
Figure 3.6. Section view of experimental the packed-bed solar air heaters.  

                  (Source: Ozturk et al. 2004) 

 

Peng et al. (2010) theoretically and experimentally analyzed the performance of 

a solar air heater with fins attached to  the absorber plate both.  They aimed to enhance 
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the thermal performance of the solar air heater with a cheap and accessible collector 

design that has a long durability.  For this purpose an experimental setup was installed 

(Figure 3.7). In this study 25 pin-finned collectors and a flat plate clear collector were 

discussed. The pin-fins were 10, 20, 30, 40, 45 mm in length and 12, 16, 20, 24, 28 mm 

in width. 4 mm thick single glazing with dimensions of 1100 x 580 mm was used above 

the finned absorbers. The absorber plate used was black painted stainless steel. A 

mathematical model was developed to evaluate the performance of pin-finned collector 

in theory. Thus with theoretical calculations, the mathematical formulations of thermal 

efficiencies of a total of 26 collectors were obtained. It was concluded that, with 19 

m3/h air flow rate, the pin-fin arrangement in a solar air collector could increase the 

heat transfer coefficient up to three times when compared with flat-plate collector. 

 

 
 

Figure 3.7. Configuration of pin-fin arrays solar air collector. 

(Source: Peng et al. 2010) 

 

Sahu et al. (2005) experimentally investigated the heat transfer coefficient of a 

solar air heater with 90° broken transverse ribs on the absorber plate. The study aimed 

to discuss the effect of various flow and roughness parameters on heat transfer 

characteristics for flow of air in rectangular ducts of different pitch. The experimental 

setup was constructed with a length of 1500 mm and an aspect ratio (aspect ratio, W/H, 

is the proportional relationship between the collector’s width and length) of 8.0. The 

absorber plate was made of galvanized iron with 1.5 mm diameter wires in different 

pitch dimensions pasted over one side of the plate (Figure 3.8). For comparison of the 

results, four types of absorber plates were used; one smooth and three artificially 

roughened with roughness pitch of 10, 20 and 30mm. During the experiments, the 

roughened wall was heated while the other three walls were insulated. The pressure 

drop, Reynolds and Nusselt numbers, heat transfer coefficients and the efficiencies were 
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calculated based on the experimental results obtained. The comparison of the smooth 

and roughened three collectors revealed that the plate having a roughness pitch of 20 

mm provided the highest efficiency of 83.5% and the roughened absorber plates 

increased the heat transfer coefficient 1.25 - 1.4 times under similar operating 

conditions. The maximum enhancement of heat transfer coefficient occurred at a pitch 

approximately 20 mm. 

 

 

 

 

 

 

 

 

Figure 3.8. Schematic view of the experimental setup 

 (Source: Sahu et al. 2005) 

 

Hachemi (1999) compared the thermal performances of solar air heater 

collectors with selective and nonselective absorber plates. The use of selective absorber 

plates in a solar air heater reduces the heat losses to the environment. The aim of the 

study was to show that using selective absorber plates was not the only way to increase 

the thermal performance of a solar air heater as this method is very expensive. The heat 

loss by radiation from the absorber to the environment was lowered by reducing the 

temperature of the absorber plate. The fins created a turbulent flow and a high thermal 

heat transfer coefficient resulted in lowering the absorber temperature while at the same 

time to reducing the thermal heat loss. For the experiments a single glazed flat plate fin 

consolidated solar air collector was constructed which could be dismantled (Figure 3.9). 

Two types of absorber plates were used in the experiments; a black painted aluminum 

sheet as a nonselective absorber plate and a copper-sun plate as a selective absorber 

plate.  Fins created a turbulent air flow and the thermal heat transfer coefficient 

increased while the absorber plate temperature decreased. The thermal heat losses were 

reduced and high thermal performance was achieved.  It was observed that the 

efficiency had reached the value of 38.53% and 45.87% for the flat plate collector using 

a nonselective and a selective absorber, respectively, for a mass flow rate fixed at 50 
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kg/hm2. For the same mass flow rate, values of 69.72% and 76.15% thermal 

performances were attained when the finned system collector was used with the 

nonselective absorber and with the selective absorber, respectively.  

 

 
 

            Figure 3.9. Dismantled collector with finned system on the back side. 

                                             (Source: Hachemi 1999). 

 

Akpinar et al. (2010) experimentally investigated the performance of a new flat 

plate solar air heater with different obstacles on the absorber plate,. Four types of 

absorber plates which had dimensions of 1200 x 700 mm with a thickness of 120 mm 

were tested in this study (Figure 3.10). All types of absorbers had different type of 

obstacles at different angles. Type I had triangular shaped obstacles with 50 x 50 mm 

dimensions, Type II had leaf shaped obstacles with same dimensions. Type III had 

rectangular shaped obstacles with dimensions of 100 x 100 mm. and Type IV absorber 

had no obstacles in its design.  Each absorber plate was made of stainless steel with 

black chrome selective coating. Normal window glass of 5 mm thickness was used as 

glazing. The energy and exergy analysis of the solar air collectors were also evaluated 

in the study. Solar air collectors were compared  on the basis  of  energy and exergy 

efficiencies. It was concluded that the highest efficiencies were observed for the Type II 

solar air heater while the lowest values were obtained for the solar air heater without 

obstacles. It was also shown that the efficiency of the solar air collectors significantly 

depended on the inlet solar radiation, surface geometry of the collectors and extension 

of the air flow line 

 



 
 

20 

 

.    

 

Figure 3.10. Photograph of the experimental set-up  

 (Source: Akpinar et al. 2010) 

 

Alta et al. (2010) investigated and compared three different types of designed 

flat plate solar air heaters at different mass flow rates of 25, 50 and 100 m3/m2h and 

different tilt angles of 0, 15 and 30°. A Type I solar air heater was designed without fins 

and had double glass covers. A Type II solar air heater was designed with fins and had 

double glass covers. Finally, a Type III solar air heater was designed with fins and had a 

single glass cover. Three solar air heaters were constructed with dimensions of 

630x315x150 mm and an absorber plate made of dull black painted sinusoidal 

corrugated iron sheet with a thickness of 0.5 mm. The experiments found that the air 

was much more heated at lower flow rates, as more air was needed to raise the 

temperature inside the collector. Also it seemed that glass covers decreased the heat 

losses and fins resulted in more heat due to an increase in the heating time required by 

the air circulating inside the channel. However, it was also found that the circulation 

time of air inside the heater played a more important role than the number of transparent 

sheets. The efficiencies of the finned collectors were higher than that of the collector 

without fin. Thus, it was concluded that attaching fins to absorber surfaces increases the 

efficiency of the solar collector. In this study, energy and exergy analysis of the solar air 

heaters was performed. . It was found that the air heater with double glass covers and 

fins was more effective and the difference between the input and output air temperatures 

was higher than the others.                        

Hans et al. (2010) investigated the effect of multiple v-ribs on the heat transfer 

coefficient and friction factor in an artificially roughened solar air heater duct. The 

artificial roughness was obtained by pasting the v-ribs along the width of heat 

exchanging surface. The experimental setup consisted of a wooden rectangular duct of 

2400 x 300 x 25 mm dimensions (Figure 3.11). The absorber plate was black painted 

galvanized iron sheet with dimensions of 1925 x 300 mm. Simulation of solar radiation 

was achieved with an electrical heating element which supplied a uniform heat flux of 
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1000 W/m2. The electrical heating element made of six loops of nichrome wires with 

dimensions of 1525 x 300 mm which were connected in series and parallel. The wires 

were fixed on 4 mm thick asbestos sheet covered with strips of mica to keep the uniform 

distance between the wires. 38 roughened absorber plates with different roughness 

parameters were used in this experiment. To compare the results, a smooth absorber 

plate was also tested under same conditions. Each roughened absorber plate 

experimented with ten different flows rate values with Reynolds Number values ranging 

from 2000 to 20000. It was concluded that by changing the roughness and flow 

parameters of such a system, considerable enhancement in heat transfer could be 

obtained. Nusselt number and friction factor correlations in terms of roughness 

geometry and flow parameters were developed using experimental data. It was seen that 

such an artificial roughness could enhance the Nusselt number and friction factor by a 

maximum 6 and 5 times, respectively, when compared to the smooth channel. 

 

 
                    Figure 3.11.  Experimental set-up of the solar air collector.  

                                               (Source: Hans et al. 2010) 

 

Prasad et al. (2009) presented details of heat transfer and friction characteristics 

of a packed bed solar air heater as a function of bed geometry and operating parameters. 

The packing material was wire mesh and the tests were conducted for a low porosity 

range from 0.599 to 0.816. The air flow rate varied between 0.0159 to 0.0347 kg/m
2
s 

with eight different wire mesh designs. A conventional solar air heater also 

experimented under similar operating conditions to compare the performance of the 
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packed bed solar air heater. For this purpose the set-up consisted of two identical solar 

air heaters; the first designed with a clear channel and the second with a packed bed 

channel (Figure 3.12). The channels were made from 20 mm thick plywood with 

identical dimensions of 1650 x 400 x 25 mm. An aluminum plate with 2 mm thickness 

was used as the absorber plate. In the design of the packed bed solar air heater two glass 

covers placed 20 mm apart from each other were used. The wire screen matrices were 

placed between the absorber plate and the lower glass cover for this type. A single glass 

cover was used in the design of the conventional solar air heater which was placed 25 

mm apart from the absorber. It was concluded that the mass flow rate and the porosity 

of the bed influences the efficiency. It was found that the heat transfer coefficient 

increases with a decrease in porosity and with an increase of mass flow rate. The best 

efficiency results which varied between 53.3 - 68.5 % could be obtained with the lowest 

porosity value of 0.599. At the maximum flow rate with this porosity value, the range of 

efficiency enhancement could be 89.5 to 76.9 %. In this study the Colburn Jh factor and 

the friction factor was developed as a function of geometrical ad operating parameters. 

These correlations and the experimental results were found to be in agreement with each 

other. 

 

  
 

Figure. 3.12. a.Schematic diagram of the experimental set-up b.Details of wire-mesh 

packing of the packed bed solar air heater.(Source : Prasad et al.2009)   

(cont. on next page) 
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. 

Figure. 3.12. (cont.) 

 

Kumar et al. (2009) experimentally investigated the heat transfer and friction 

characteristics of a solar air heater which was artificially roughened with W-shaped ribs. 

The test section of the setup was in dimensions of 1500 x 200 x 25 mm (Figure 3.13). 

An amount of 900 W/m
2
 constant heat flux was supplied to the absorber with an 

electrical heater. The electrical heater was constructed by combining serial and parallel 

loops of heating wire on asbestos sheets. The absorber plate was galvanized iron with 1 

mm thickness. The maximum height of the W-shaped ribs was 1.5 mm. Twenty W-

shaped ribs with varying geometries were tested for the study. During the testing 

procedure, only the roughened wall was heated. Additionally, a smooth duct was tested 

under similar conditions for the comparison purposes. The Nusselt number and friction 

correlations were derived based on roughness and flow parameters for both the 

roughened and smooth ducts. It was concluded that, with an increase in the Reynolds 

and the Nusselt numbers were also increased while the friction factor was decreased. 

The roughened solar air heaters were produced better results when compared with 

smooth ducted types. With the use of artificial roughness the Nusselt number and 

friction factor could be enhanced a maximum of 2.16 and 2.75 times according to the 

smooth duct.  

 

b 
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Figure 3.13. a.Roughness geometry b.Schematic diagram of experimental setup 

c.Enlarged wiev of the test cross section.(Source Kumar et al. 2009) 

 

Bopche et al. (2009) investigated the heat transfer and flow characteristics of an 

artificially roughened solar air heater. The roughness was obtained by using u-shaped 

turbulators on the absorber plate of the solar air heater. During the experiments the 

roughened wall was heated while the remainder was insulated. The collector was of 

1850 x 130 x 22 mm in dimensions and made from acrylic sheet of 10 mm in thickness 

(Figure 3.14). The solar radiation was simulated with an electrical heater. The heater 

was made from stainless steel (Grade 304) with a thickness of 0.05 mm of 1000 x 136 

mm in dimensions and provided uniform heat flux to the system. In order to minimize 

the heat loss, the top of the collector was made of bakelite plate with a thickness of 16 

mm. A mica sheet was fixed between the bakelite plate and the electrical heater to 

improve the accuracy of the temperature measurement. The tests were conducted under 

same operating conditions with a heat flux of six different flow rate values. The 

researchers studied the effect of the Reynolds number, relative roughness pitch and 

relative roughness height on the heat transfer coefficient and friction factor using the 

experimental setup. The results of the experiments were compared with the results of 

the smooth duct. It was concluded that the u-shaped turbulator roughness enhanced the 

heat transfer and friction factor by a factor of 2.82 and 3.72 times, respectively. This 

roughness geometry was also effective at low Reynolds number.   

b 
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  Figure 3.14. a.Schematic diagram of experimental set-up with test duct cross-section 

 b.Photograph of turbulator roughened absorber plate. 

 (Source: Bopche et al. 2009) 

 

Al-Kamil et al. (1996) theoretically and experimentally studied the performance 

of a flat plate solar air heater. The researchers investigated the effect of thermal 

radiation inside the heaters and the blackening of the collector rear plate. The 

constructed solar air heater was of 1690 x 1030 x 60 mm in dimensions and made of 

galvanized steel with 1.1 mm thickness  The absorber was a dull, matt and blackened 

plate. A single glass cover with a thickness of 4 mm was used as glazing. The 

temperature distribution inside the solar air heater was also evaluated numerically. It 

was concluded that blackening the rear plate could enhance the heat transfer up to 10%. 

It was also found that the sectioning method was suitable for solving solar air heater 

problems and could be used for future studies.  

a 
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Bhagoria et al. (2002) investigated the heat transfer and friction factor 

correlations for the flow of air in a rectangular shaped duct with one roughened wall and 

three insulated walls. The roughness was obtained by using transverse shaped wedge 

ribs inside the duct. The roughened wall was subjected to a uniform heat flux during the 

experiments. The experimental setup was of 2600 ×150 x 30 mm in dimension (Figure 

3.15). The setup was examined in laboratory conditions so the solar radiation was 

simulated by an electrical heater. The electrical heater was of 1650 ×150 mm in 

dimensions and constructed by combining the heating wire in serial  and parallel loops 

on a 5 mm thick asbestos sheet. A variac was used to adjust the heat flux between 0 and 

1000 W/m2. The absorber plate was 6 mm thick aluminum. Between the electrical 

heater and the absorber plate, a 1 mm thick mica sheet was placed which acted as an 

insulator. The experiments were conducted under quasi-steady state conditions with 

eight different flow rate values at a fixed heat flux. During the experiments heat transfer 

and friction factor data were collected. The results were compared with the results of 

smooth duct to investigate the effect of roughness on heat transfer and the friction 

factor. It was concluded that the presence of roughness enhanced the heat transfer and 

friction factor 2.4 and 5.3 times in comparison to the smooth duct. The maximum heat 

transfer occurred with a relative roughness pitch (p/e which is the ratio of pitch to the 

roughness height in meters) of about 7.57 and with a wedge angle about 10°C. Also, 

Nusselt number and friction factor correlations performed well in terms of roughness 

parameters such as rib spacing, rib height, rib wedge angle and Reynolds number.  

 
 

Figure 3.15.  a. Schematic diagram of experimental set-up. b. Enlarged view of the duct. 

(Source: Bhagoria et al.2002) 
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Layek et al. (2009) investigated the flow in a rectangular shaped solar air heater 

with a chamfered rib-groove roughened absorber plate. The researchers studied the 

effects of integral transverse chamfered rib-groove roughness and the angle of 

roughness on heat transfer and friction characteristics of solar air heaters. The 

experimental setup was of 2600 x 150 x 30 mm in dimension with a collector length of 

1200 mm (Figure 3.16). A heating wire was combined in series and parallel to construct 

the electrical heater part of the solar air heating system. The absorber was an aluminum 

plate with a thickness of 6 mm. The integral rib-groove roughness was performed on the 

bottom of the absorber plate which was the upper side of the duct.The tests were 

conducted using six roughened plates with a 60° V groove placed at the center between 

two consecutive chamfered ribs. For each plate, eight different flow rate values were 

examined. To investigate the increase in the heat transfer, the results were compared 

with the square rib grooved and smooth duct results. It was concluded that the Nusselt 

number and friction factor was enhanced approximately 2.6 and 3.35 times when 

compared to the smooth duct. The maximum increase in the Nusselt number could be 

obtained with a chamfer angle of 18°.  On the other hand as the chamfer angle increases 

the friction factor increases. It was also found that, when the performance parameter 

value (a parameter that facilitates the simultaneous consideration of thermal and 

hydraulic performance) was between the range of 1.4 and 1.76, the thermo-hydraulic 

performance was substantially improved. (Performance parameter value:   

            

 

  
 

Figure 3.16. a.Experimental set-up and duct section.b.Roughness geometry.  

                                     (Source: Layek. et al.2009)                         (cont.on next page) 
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                                               Figure 3.16 (cont.) 

 

Jaurker et al.(2006) investigated the heat transfer and friction characteristics of a 

rectangular shaped duct with a roughened absorber plate. The roughness was achieved 

by repeated rib-grooves. The roughened wall of the solar air heater was heated 

constantly while the other three walls were insulated. The experimental setup was of 

2420 x 156 x 22 mm in dimensions and consisted of a test section of 1200 mm (Figure 

3.17). The absorber was a 3 mm thick aluminum plate. The bottom of the absorber was 

the rough surface at the top side of the air flow channel. An electrical heater was used to 

supply a constant heat flux to the system. The electrical heater was constructed by 

combining a heating wire in series and parallel on an asbestos sheet. The intensity of the 

heat flux between 0 and 1200 W/m2 was adjusted with the help of a variac. Based on 

the roughness parameters, the Nusselt number and friction factor correlations were 

developed. It was concluded that the existence of roughness increased the Nusselt 

number and friction factor up to 2.7 and 3.6 times, respectively. To obtain the maximum 

heat transfer, the relative roughness pitch value should be about 6.0. The Nusselt 

number and friction factor correlations developed were found to predict the 

experimental values with a deviation of 2.73 and 3.16% respectively. 

 

 
 

Figure 3.17. a.Experimental set-up, b.Enlarged view of the test cross section, c. Rib  

roughness geometry. (Source: Jaurker et al.2006)  

(cont.on next page) 

b 

a 

a 



 
 

29 

 

 

 
                                                  Figure 3.17 (cont.) 

 

Karwa et al. (2001) investigated the performance of a solar air heater with 

chamfered rib roughness on an absorber plate. Two identical rectangular ducts were 

constructed for the study. Each duct was of 2640 x 150 mm in dimensions with a 

variable depth from 16.5 to 21.8 mm (Figure 3.18). One of the ducts has its absorber 

roughened and the other three walls of it were smooth, while the other duct was 

completely smooth. Three roughened absorber plates and for comparison the smooth 

absorber plate. were experimented during the study. The roughness of the absorber 

plates was obtained by machining. The transverse grooves were machined on the plates. 

which were prepared in three or two pieces. A single glass cover with a thickness of 

3.25 mm was used in both ducts and the airflow rates were varied between 0.024 to 

0.102 kg/sm
2
. It was concluded that, compared to the smooth duct the thermal efficiency 

and Nusselt number of roughened absorber plates increased about 10 to 40% and 50 to 

120%, respectively. The friction factor was also increased about 1.8 to 3.9 times with 

the roughness element. As it was found that enhancement in the efficiency was a 

function of the relative roughness height (e/Dh which is rib height over hydraulic 

diameter), the maximum increase occurred with the highest relative roughness height. 

The mathematical model for chamfered rib roughened solar air heaters was also 

investigated in the study. It was shown that the theoretical and experimental studies 

agreed within a deviation of ±5.8% 

c 

b 
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Figure 3.18. Schematic diagram of experimental setup.  

(Source: Karwa et al. 2001) 

 

Momin. et al. (2002) investigated the effects of V-shaped roughness elements on 

the heat transfer and flow characteristic of a solar air heater. Their setup had a 

rectangular shaped duct with v-shaped ribs on its absorber plate. The experimental duct 

was of 2800 x 200 m in dimensions and was made of aluminum (Figure 3.19). The 

absorber plate was also an aluminum sheet of 22 ASWG with dimensions of 1500 x 200 

m2. The artificial roughness was achieved with V-shaped copper wires on the lower 

side of the absorber plate. Seventeen plates were tested in this study. The roughened 

plates had different roughness geometries. The ribs were at different gauges with angles 

of 30° and 60°. Uniform heat flux up to 1500 W/m2 was supplied to the absorber plate 

with an electrical heater. A variac was used to control the intensity of the flux. Fourteen 

runs with different mass flow rates corresponding to the Reynolds number range 2500–

18000 were examined. The experiments were repeated with smooth absorber plates 

under similar flow conditions to compare the results. Nusselt number and friction factor 

correlations were performed and the results were discussed with the results of 

experimented setup. It was concluded that, when the Reynolds number increased, the 

Nusselt number was also increased with a decrease in the friction factor.  The roughness 
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elements increased the Nusselt number and the friction factor. The Nusselt number and 

friction factor enhanced about 2.30 and 2.83 times compared to the smooth absorber 

duct for an angle of attack of 60°. As the relative roughness and the angle of attack 

increased, thermo-hydraulic performance was improved. It was also found that the 

experimental results and the predicted results from the correlations agreed with each 

other with a maximum deviation of ±10%.     

 

 
 

Figure 3.19. (a) Schematic diagram of experimental set-up. (b) Roughness elements on 

absorber plate. (c) Schematic diagram of 30° V shaped ribs. (d) Schematic 

diagram of 60° V-shaped ribs. (Source: Momin et al. 2002) 

 

Aharwal et al. (2008) investigated the heat transfer and friction characteristics of 

a solar air heater duct with an absorber plate having integral inclined square rib 

roughness. An experimental setup was constructed with dimensions of 2600 x 181 x 31 

mm and a test section of 1200 mm (Figure 3.20). An aluminum plate with a thickness of 

6 mm was used as the absorber of the system and located at the top wall of the test 

section. Constant heat flux was supplied to the absorber plate from its top with the help 

of an electrical heater. The artificial roughness was achieved by machining the absorber 

plate. To investigate the effects of the rib parameters (rib gap, rib position. etc.) on the 

heat transfer and friction factors, the rib height was varied between 1 to 2 mm while the 
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rib width was held constant at 2 mm. It was concluded that the Nusselt number and the 

friction factor increased approximately 2.83 and 3.60 times respectively according to 

the smooth absorber. To obtain maximum enhancement in solar air heaters, the relative 

gap position, the relative gap width, the relative roughness pitch and the relative 

roughness height of the ribs should be 0.25, 1.0, 8.0 and 0.037, respectively. The 

maximum friction factor was observed for the transverse ribs with a relative roughness 

pitch of 8.0,. The Nusselt number and friction factor correlations were calculated based 

on the experimental results and found to predict them with a small deviation              

 

 
 

Figure 3.20. Schematic diagram of experimental set-up. 

(Source: Aharwal et al. 2008) 

 

Aharwal et al. (2009) investigated the heat transfer and friction factor 

characteristics of a rectangular duct solar air heater with a roughened absorber plate. 

The roughness was obtained by square inclined repeated ribs. It aimed to determine the 

optimum location, width and gap size of ribs in a solar air heater duct. The rectangular 

duct was in dimensions of 2600 x 182 x 31 mm with a test section of 1200 mm (Figure 

3.21). Following test, three baffles were added to the system for mixing the air. The 
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absorber was an aluminum plate with a thickness of 6 mm. The experiments were 

performed on the range of Reynolds numbers between 3000 and18000. In order to 

observe the variations in heat transfer and friction characteristics, the results were 

compared with the smooth duct under similar conditions. It was concluded that the 60° 

inclined square ribs enhanced the heat transfer and friction factor by approximately 

1.48-2.59 times and 2.26-2.9, respectively. For the maximum values of heat transfer and 

thermohydraulic performance, the relative gap position and relative gap width should be 

0.25 and 1.0, respectively.   

 

 
 

Figure 3.21. a.Schematic diagram of experimental set-up. b. Flow pattern of secondary 

flow for inclined continuous rib c.Flow pattern of secondary flow for 

inclined discrete rib.(Source: Aharwal et al.2009)          (cont.on next page) 
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                                                    Figure 3.21 (cont.) 

 

 

3.1.2. Double Flow Single Pass Studies 

 

Madhlopa et al. (2002) designed a single glazed solar air heater with an 

integrated flat-plate collector which had composite–absorber systems (a removable mild 

steel screen absorber and a fixed wooden plate) in one collector frame. Several 

removable absorber plates, made from materials (such as metals and plastics) with 

different thermal and other characteristics could be used interchangeably in the same 

collector system to achieve the desired temperature and rate of air heating under the 

prevailing meteorological conditions. The collector could convert solar radiation to 

thermal power in the absence of the removable absorber plates. The solar collector 

heater was combined with a drying chamber for food dehydration (Figure 3.22). The 

aim of this study was to preserve fruit spoilage using a simple solar dryer which utilizes 

solar radiation. The collector was in dimensions of 810 x 625 mm.  The performance of 

the dryer was determined based on the moisture content, pH and ascorbic acid of fresh 

and dried mango samples. It was found that the air heater raised the temperature of the 

drying air from approximately 31.7 to 40°C around noon, and reduced the moisture 

content of sliced fresh mangoes from about 85 to 13% on wet basis, while the ascorbic 

acid percent was retained at 74%. The designed air heater had achieved efficient drying 

of fresh mangoes slices and relatively high retention of ascorbic acid.  

 

b 

c 
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Figure 3.22. Cross-section of solar dryer showing collector, drying chamber and 

chimney.(Source: Madhlopa et al. 2002) 

 

Potdukhe et al. (2007) developed and tested a solar dryer including a drying 

chamber and a solar air heater with thermal storage. It is aimed to reduce the drying 

period and enhance the quality of dried agro products. The dimensions of the solar air 

heater were 850 x 790 x 135 mm (Figure 3.23). A box shaped blackened, corrugated, 

galvanized iron sheet was used as the absorber plate and this box shaped absorber was 

filled with storage material. The storage material used was thermic oil. Single glass 

cover was used as glazing. The experiments were performed with chilies and fenugreek 

leaves and their drying periods were observed. The mathematical modeling of such a 

solar drying system was also performed in this study. It was concluded that, by using a 

solar air heater which was connected to a drying chamber, the desired air temperature 

(65±3°C) for drying the agro products could be achieved. The efficiency of the dryer 

and the quality of the products in terms of color enhanced with this method when 

compared with open sun drying.  The use of thermic oil increased the cost of setup 10% 

but reduced the drying period by 40 % approximately. 

 

 
 

Figure 3.23. Schematic of experimental set-up.  

(Source: Potdukhe et al. 2007) 
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Yeh et al. (2002) developed a design to investigate the collector efficiency of a 

double flow solar air heater with fins attached over and under the absorbing plate. The 

investigation was evaluated both experimentally and analytically. The artificial 

simulation including an indoor solar simulator was used to carry out the experiments for 

steady operations. The collector was of 300 x 300 x 27.5 mm in dimension (Figure 

3.24). Double normal glass was used to cover the air channel. The equations for the 

theoretical prediction of collector efficiency in double-flow solar air heaters with fins 

attached on both surfaces of the absorbing plate were derived from energy balances with 

the ratio of airflow rate as the parameter. The theoretical predictions were confirmed by 

the experimental results. It was found that the collector efficiency could be improved by 

attaching fins to the collector. It was concluded that fins attached on the absorber would 

increase the fan power while it might not increase operating cost. Consequently, the 

application of a double-flow in the design of a solar air heater with fins attached was 

technically and economically feasible 

 

  
 

           Figure 3.24. Schematic view of the experimental setup.  

                              (Source: Yeh et al. 2002) 

 

Esen (2008) experimentally investigated the energy and exergy analysis for a 

double-flow flat plate solar air heater with and without obstacles. Four types of absorber 

plates made of stainless steel with black chrome selective coatings were used (Figure 

3.25). The dimensions and plate thickness for all four collectors were 1250 x 800 mm 

and 1mm, respectively. Single glazing with 5 mm thickness was used. It was observed 

that the obstacles created the turbulence and reduced the dead zones. The shapes of 

tested obstacles were presented in the study. Following analysis of the results, the 
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optimal value of efficiency was found to be when the absorbing plate was in the middle 

level of flow channel for all operating conditions. It was also found that the double-flow 

collector equipped with obstacles appeared significantly better than that without 

obstacles. It was shown that the Type III (the one which was staggered with leaf shaped 

obstacles) absorber plate always yielded higher efficiency than the Type I (flat plate) 

(Figure 8). An exergy analysis for the experimented collector was also performed. The 

results showed that the largest irreversibility occurred at the flat plate (without 

obstacles) collector in which collector efficiency is the smallest. 

 

 
  

Figure 3.25. Types of absorber plates  

(Source: Esen 2008) 

 

Ozgen et al. (2009) experimentally evaluated the energy efficiencies of three 

types of double flow solar air heaters with aluminum cans. Three types of absorber 

plates were used which were made of stainless steel with black chrome selective coating 

(Figure 3.26). The dimensions and plate thickness for three collectors were 2140 m x 

840 m and 1 mm, respectively. Normal window glass of 5 mm thickness was used as 

glazing. Single cover glass was used in all three collectors. The cans were staggered as 

zigzag on the absorber plate in the first type (Type I), while they were arranged in order 

in Type II. Type III was a flat plate without cans. It was observed that the heat transfer 

area was enhanced for the collector with cans, and consequently, the efficiency of the 

solar collector was increased. At the end of the experiments, the highest efficiency was 
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obtained for Type I (Fig 10) at 0.05 kg/s mass flow rate. The testing results always 

yielded higher efficiency values for the Type I (non-arranged cans) model than that for 

the Type III (without cans) flat-plate collector. 

 

 
 

Figure 3.26. Photograph of Type I absorber plate  

(Source: Ozgen et al.2009) 

 

Midilli et al. (1999) investigated the drying periods for mushrooms and pollens 

of honey. The drying experiments were carried out both in the laboratory and in outdoor 

atmospheric conditions. An experimental drying set-up connected to a solar air collector 

(Figure 3.27) was established to dry mushrooms and pollen under laboratory conditions. 

Double glass covers were used as glazing.  The pipe of the heater in the system was 

directly connected to the inlet of the drying cupboard. The temperature of the drying 

cupboard was set at 45°C during the drying experiment by an auxiliary heater. The mass 

of the samples were measured before and after the experiments to obtain the mass loss 

due to the drying process. Based on the results obtained, drying curves, variation of the 

mass change ratio, moisture ratio and temperatures of the shelves with respect to drying 

time were presented in the study.  It was concluded that mushrooms could be dried in 

the cupboards by using hot air at 50°C in a time period of 5-6 hours, and that pollen also 

must be dried at temperatures between 40 and 45°C in a time period of 2.5-3 hours 

without losing their color, flavor, smell and structure. 

 

 
 

Figure 3.27. Solar assisted drying cupboard  

(Source: Midilli et al.1999) 
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Forson et al. (2003) experimentally studied the single pass double duct solar air 

heater,. A mathematical model was investigated and described to predict the 

performance and the design properties of a solar air heater. The validation of the model 

was performed by comparing its results with the results of a small scale laboratory 

model and a full scale conventional type (Figure 3.28). Two sets of experiments were 

conducted; one of them with a small scale laboratory model and the other one with a full 

scale conventional model.  The small scale model was 400 x 740 x 75 mm in dimension. 

Solar radiation for the laboratory model was provided by ten infrared laps, each rated 

100 W.  The full scale model was of 6750 x 1260 x 280 mm in dimension and 

connected to a commercial size drying chamber. The absorber plate was placed at the 

centerline and divided the collector into two rectangular flow channels for both scales. 

Air could flow both over and under the absorber plate. The two hot air streams were 

mixed in the plenum. The collectors were made of plywood and a single glass cover 

which was used at the top.  It was concluded that the developed mathematical model’s 

results were in good agreement with the experimental results and could be used as a 

design tool for future works. The collector performance could be enhanced if the 

number of parameters were chosen correctly and carefully.  The air mass flow rate 

significantly affected the efficiency of the collector  

 

 
        

      Figure 3.28. Schematic diagram of a single pass double duct solar air heater. 

                                            (Source: Forson et al. 2003) 

 

Alvarez et al. (2004) studied the performance of a solar air collector with an 

absorber plate that was made of recyclable aluminum cans (RAC). A simulation model 

was examined to achieve the design parameters of the experimental setup. Also, 

numerical studies were conducted for the flow characteristics. The solar air collector 
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was of 2000 x 700 x 180 mm in dimension and made of a steel frame (Figure 3.29). A 

total of 128 recyclable aluminum cans were used in the experimental setup. The 

recycled aluminum cans were sanded and then glued to the absorber surface before 

being painted black. The cans formed eight circular cross sectional flow channels in the 

solar collector and for each channel 16 blackened recyclable aluminum cans were used. 

Single glass with a thickness of 4 mm was used to cover the system. It was concluded 

that enhancement in the efficiency of a solar collector by using recyclable aluminum 

cans was achievable. The maximum efficiency that was obtained by using RAC ‘s was 

74 %.   

 

 
 

Figure 3.29. a.Schematic diagram of the air solar collector b.Test facility of the air solar 

collector. (Source: Alvarez et al.2004) 

 

a 

b 
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3.1.3. Single Flow Double Pass Studies  

 

Ramani et al. (2010) theoretically and experimentally investigated the 

performance of a double pass solar air collector with and without porous material. The 

effects of parameters on the efficiency and on the pressure drop of solar air heater were 

also discussed. Two glass covers were used with a thickness of 4 mm in the collector. 

There were two air flow passages in the collector (Figure 3.30). The first one was 

formed by the gap between the first and second glass covers while the second air 

passage was formed by the second glass cover and the absorber plate. Two solar air 

collectors were constructed in order to compare the results. One of them had two clear 

air flow channels while collector’s second air flow channel of the other was filled with 

porous material. Black painted wire mesh was used as porous material. The two 

passages were of 2100 x 540 x 21 mm in dimension. A black painted aluminum sheet 

with a thickness of 1mm was used as the absorber plate in both collectors. In addition to 

the experiments a mathematical model was developed on the basis of volumetric heat 

transfer coefficient in order to describe the heat transfer characteristics of such a solar 

air heater. It was concluded that using a double pass solar air heater with porous 

material improved the thermal performance significantly. The thermal efficiency of a 

double pass solar air collector with porous media was 20-25% higher than a double pass 

solar air collector without porous media and also 30-35% higher than single pass 

collector.       

 

 
 

Figure 3.30. The schematic diagram of experimental set up. 

(Source: Ramani et al. 2010) 
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Sopian et al. (2009) theoretically and experimentally evaluated the thermal 

efficiency of a double pass solar collector with porous and nonporous media. The 

testing facility consisted of a solar collector and a solar simulator (Figure 3.31). The 

simulator used 45 halogen lamps, each with a rated power of 300W.  A maximum 

average radiation of 642 W/m2 could be reached with this simulator. The collector was 

of 2400 x 1200 mm in dimension. In the design of the collector, a single glass cover and 

a black painted aluminum plate were used. The solar collector was operated at varying 

inlet temperature and radiation conditions. The airflow rate was between 0.03 - 

0.07kg/s, the upper channel depth was between 35-105 mm, and the lower channel 

depth was between 70-140 mm. The results of theoretical and experimental studies were 

compared based on the outlet temperatures and the thermal efficiencies of the solar 

collector. The study concluded that the presence of porous media in the second channel 

increased the outlet temperature. This also caused the thermal efficiency of the system 

to be increased. 

 

 
 

Figure 3.31. a.Schematic of double pass solar collector with porous media. b. Schematic 

of exp. set-up with solar simulator. (Source: Sopian et al. 2009) 

 

Omojaro et al. (2010) investigated the thermal performance of single and double 

pass solar air heaters with fins attached (Figure 3.32). The lower channel of the double 

pass solar air heater filled with porous media acted as the absorber plate. The porous 

media was created by seven black painted steel wire mesh layers, each placed at 1 cm 

distance from the bottom to the top. The frame of the collector was made from 2 mm 

thick black painted plywood with dimensions of 1500 x 1000 mm. Double glass was 

used to cover the collector. The distance between the lower and upper glass was 30 mm. 

The distance between the lower glass and the bottom of the collector was 70 mm. By 

removing the upper glass cover, the system tested as a single pass solar air heater.  

Black painted metallic fins were used to increase the heat transfer area and were 
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installed longitudinally along the lower and upper channels. The fins were 1500 mm in 

length for both channels with heights of 70 and 30 mm for lower and upper channels, 

respectively. In this arrangement, both channels were divided into five equal sections 

for air passage. The mass flow rate varied between 0.012 and 0.038 kg/s. It was 

concluded that the flow rate of air affects the efficiency significantly. The efficiency of 

the system was enhanced with the increased flow rate of air. For the same flow rate, the 

efficiency of the double pass was found to be higher than the single pass. When the flow 

rate was 0.038kg/s, the efficiency of a single and double pass solar air heater was 59.62 

and 63.74%, respectively. As a result, fin consolidated single or double pass air heater 

using steel wire mesh layers as absorber was found to be much more efficient when 

compared with conventional type heaters. It was found that a double pass solar air 

heater was about 7-19.4% more efficient than single pass solar air heater depending on 

the air mass flow rate. Furthermore, for a double pass solar air heater, increasing the 

height of the first pass decreased the thermal efficiency of the system.   

 

 
 

Figure 3.32. Single and double pass solar air heater showing: a. Schematic diagram of 

the experimental setup, b. lower pass channel, and c. upper pass channel. 

(Source: Omojaro et al. 2010) 
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Aldabbagh et al. (2010) experimentally investigated the performance of single 

and double pass solar air heaters with steel wire mesh layers. The set-up was 

constructed from 20 mm thick, black painted plywood with dimensions of 1500 x 1000 

mm (Figure 3.33). Two normal window glasses with 4 mm thickness were used in the 

design of solar air heater. The distance between the upper and lower glass covers was 50 

mm and the distance between the lower glass and the wire mesh layers was 100 mm. By 

removing the upper glass cover, the setup could be used as a single pass solar air heater. 

Ten black painted steel wire meshes were placed in the second channel of the collector. 

The wires were 2 x 2 mm in cross section and placed with a distance of 10 mm from 

each other. With this arrangement, the layers acted like an absorber so it was not 

necessary to install hence no another absorber plate in the solar air heater. During the 

experiments mass flow rate of the air was varied between 0.012 to 0.038 kg/s in order to 

observe the effect of mass flow rate on the efficiency of the system. It was concluded 

that by using steel wire mesh layers as the absorber plate, the efficiency of the collector 

could be enhanced when compared to the conventional type. Also, for both cases the 

efficiency of the system was enhanced with the increasing flow rate. For the mass flow 

rate of 0.038 kg/s, the maximum efficiencies for the single and double pass solar air 

heaters were 45.93 and 83.65% respectively  

 

 
 

Figure 3.33. Schematic assembly of the a. double pass SAH, b. side view of the double 

pass SAH and c. side view of the single pass SAH.(Source: Aldabbagh et 

al.2010) 
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3.1.4. Single Flow Recycled Double Pass Studies 

 

Ho et al. (2005) theoretically and experimentally investigated the performance of 

a double pass recycled solar air heater. The velocity of air was increased to enhance the 

efficiency of the solar air heater. They aimed to investigate the effect of recycling on 

collector efficiency based on the recycle ratio and to perform mathematical formulation 

of the recycled double pass solar air heater. In addition, the effect of the height of 

absorbing plates in the channel was investigated. An experimental set-up with two glass 

covers was used (Figure 3.34). It was of 300 x 300 x 50 mm in dimension. The 

blackened absorbing plate was inserted at the center of the collector, resulting in equal 

heights (50 mm) for each channel.  It was found that the added recycle unit improved 

the efficiency of the double pass solar air heater. The performance of the double pass 

solar collector was enhanced as a result of the increased air velocity and the heat 

transfer coefficient by the recycling operation or by decreasing the equivalent diameter 

of the channel. The external recycling enhanced the efficiency of the collector by 

approximately 28-95% compared with the arrangements of sub-collectors connected in 

series. Although the recycle operation enhanced the convective heat transfer it reduced 

log mean temperature difference between the absorbing plate and the air stream. 

 

 
 

Figure 3.34. Double pass flat solar air heater with recycle. 

 (Source: Ho et al. 2005) 

 

Ho. et al. (2009) theoretically and experimentally investigated the effect of 

recycling  on baffled double pass solar air heaters with attached internal fins. The study 

was carried out with artificial simulation.  An experimental setup was constructed from 

stainless steel with a thickness of 0.07 mm (Figure 3.35). The system was insulated with 

60 mm thick Styrofoam. The system was of 300 x 300 x 50 mm in dimensions. Two 
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glass covers were used as glazing. The absorber plate was blackened and finned on both 

sides.  At the same time, the system included baffles which were welded on fins.  The 

air inlet temperature was controlled by a preheater and fixed at 30°C.  Three different 

mass flow rates were used in the experiment; 38.52, 57.96 and 77.04 kg/h. The results 

were compared with the results of a single pass solar air heater without a recycle.  It was 

concluded that the collector efficiency was significantly enhanced with baffled double 

pass solar air heaters with recycle. The collector efficiency increased with the increased 

mass flow rate and the recycle flow.   

 

 

 
 

Figure 3.35. a.The baffled solar air heater with internal fins attached and external 

recycle b.Schematic diagram of a solar air heater with artificial simulation. 

(Source: Ho et al. 2009) 

 

3.2. Studies According to Air Channel Design 

 

There are two classifications performed in this study. The 45 reviewed papers 

are classified according to the two titles explained above. Some of the papers referred to 

above can also be classified under this title. For simplicity, their reference numbers and 

author names only are given. 

 

b 

a 
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3.2.1. Flat Plate Studies  

 

The publications of Mohseni-Languri et al.(2009) and Al-Kamil et al.(1996) that 

were reviewed above are also examples of flat plate solar air heaters.  

 

3.2.2. Extended Surface Assisted Studies 

 

The publications of Peng et al.(2010), Pakdaman et al.(2011), Sahu et al.(2005), 

Yeh et al.(2002), Hachemi (1999), Akpınar et al.(2010), Esen (2008), Hans et al.(2010), 

Karmare et al.(2009), Moummi et al.(2004), Kumar et al.(2009), Bopche et al.(2009), 

Bhagoria et al. (2002), Layek et al. (2009), Jaurker et al.(2006), Karwa et al.(2001), 

Momin et al. (2002), Aharwal et al.(2009), Aharwal et al. (2008) that were reviewed 

above are also examples of extended surface assisted solar air heaters. 

 

3.2.3. Porous Media Assisted Studies Studies 

 

The publications of Sopian et al. (20099, Varshney et al.(1998), Ramani et 

al.(2010), Prasad et al.(2009), Omojaro et al.(2010), Aldabbagh et al.(2010) that were 

reviewed above are also examples of porous assisted solar air heaters. 

 

3.3. Studies on Special Designs 

 

Kiatsiriroat et al. (2007) experimentally studied the heat transfer enhancement of 

a flat plate solar air heater using an electric field. The aim of the study was to 

investigate the effect of electrode spacing and Reynolds number on the performance of 

the solar air heater. The experiments were conducted with and without electric field 

under steady state conditions with a solar radiation range between 840-1100 W/m2. An 

experimental setup was designed and constructed as shown in Figure 3.36. The 

dimensions of the flat plate solar air heater were 1200 x 1800 x 50 mm with a collector 

area of 2.16 m2. The flow channel was positioned at the back of the absorbing plate. 

Nine electrodes with diameters of 0.5 mm were installed and used in the experimental 

setup. The electrodes were tested with three different spacing arrangements; 50, 100 and 
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150 mm.  The electric field was generated by a high-voltage generator so each electrode 

wire operated with 0–25 kV voltage. The enhanced ratio of the solar air heater to the use 

of electric field was calculated using the Equation 3 below where QEHD is the heat 

transfer rate of solar air heater under the electric field, while QNON-EHD is the heat 

transfer rate of solar air heater without the electric field and P is the energy consumption 

of the high voltage supply. It was concluded that the electric field enhanced the heat 

transfer rate significantly at low Reynolds numbers  

 

  
 

Figure 3.36. The schematic sketch of the solar air heater operating under an electric 

field (Source: Kiatsiriroat et al. 2007) 

 
Othman et al. (2006) theoretically and experimentally studied a hybrid 

photovoltaic-thermal (PV/T) solar air heater. The solar air heater was a double pass 

system with monocrystalline silicon cells pasted on the absorber plate with fins attached 

on the other side of the absorber plate in the second channel (Figure 3.37). The collector 

was 850 mm in width and 1220 mm in length. The upper channel was 165 mm in height 

and the lower channel height varied between 30 to 120 mm. The installed solar cells 

were 110 mm in both width and length. The absorber plate was a black painted 

aluminum sheet with an emissivity of 0.9. The experiments were conducted under a 

solar simulator which included 23 tungsten halogen lamps each rated at 500 W. The air 

flow rate varied from 0.027 to 0.181 kg/ s which were in the turbulent flow region. The 

system generated electricity and heat energy simultaneously. It was concluded that 

using fins in the design of the hybrid PV/T collector improved both thermal and 

electrical efficiencies. A steady-state solution was obtained to determine the outlet and 

mean photovoltaic temperature. The comparisons between theoretical and experimental 

studies were in a good agreement with each other 
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Figure. 3.37. Schematic model of a finned double-pass photovoltaic-thermal solar air 

heater. (Source: Othman et al. 2006) 

 

Gao et al. (2007) experimentally analyzed the thermal performance of cross-

corrugated and flat-plate solar air heaters. Both absorbing and bottom plates of the 

analyzed solar air heaters were cross-corrugated to enhance the turbulence and 

consequently the heat transfer rate inside the air flow channel. Three solar air heaters 

with different designs were investigated in their study. In the first type of collector, the 

wavelike absorber was fixed along the air flow direction while the wavelike bottom 

plate was fixed perpendicular to the flow direction (Figure 3.38). In the second type of 

collector, both plates were fixed in opposite directions to the first collector. The third 

type of collector had flat absorbing lower plates. The comparison of these three 

collectors was considered necessary in order to achieve improved efficiencies. In all 

collectors, single normal glass cover was used. The collector dimensions were 2000 x 

1000 x 80 mm. The efficiencies of the first and second corrugated solar air heaters and 

the flat plate-type heater were obtained as 58.9%, 60.3% and 48.6%, respectively. The 

efficiency calculations were performed using Equation 4 below. The study indicated 

that use of the cross-corrugated wavelike absorption and bottom plates improves the 

efficiency of solar air-heaters. The convective heat-transfer coefficients on the 

absorbing plates were found to be 28.6 W/m2K for corrugated type collectors, and 8.8 

W/m2K for flat plate type collectors. In addition, the effects of selective coatings on the 

solar air heaters were investigated and it was found that the selective coatings increase 

thermal performance of the heaters and its use was strongly recommended for practical 

applications. 

 
Figure 3.38. Schematic description of the cross-corrugated absorbing plate and bottom 

plate (Source: Gao et al. 2007) 
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Enibe (2002) produced a single pass flat plate solar air heater integrated with 

phase change material (PCM) heat storage system. He used paraffin type prepared in 

modules. The solar collector heater was single-glazed with dimensions of 1635 x 945 

mm.  The absorber plate was made of steel with a non-selective coating. The modules 

were placed through the collector as shown in Figure 3.39. The modules behaved like 

fins and the spaces between them behaved like air heating channels. The experiments 

were conducted over the ambient temperature range of 19-41°C and a daily global 

irradiation range of 4.9-19.9 MJ/m
2
 for 14 different days in May and June usually 

between the hours of 6:30 and 18:30. The efficiency of the collector was calculated 

using Equation 5 below. It was found that for solar collectors with storage, when the 

cumulative efficiency includes the time integral of energy it was a more useful measure 

of performance than the instantaneous efficiency. Peak temperature rise of the heated air 

was about 15K, while peak cumulative useful efficiency was about 50%. 

                
 

Figure 3.39. Cross-sectional view of the collector assembly. 

(Source: Enibe 2002) 

 

Koyuncu (2006) experimentally and theoretically studied the performance of 

various design of solar air heaters for crop drying applications, (Figure 3.40). He aimed 

to determine a cheap an easily manufactured and a high efficiency solar air collector for 

low temperature crop drying applications. The first model was a single plastic glazing, 

black painted hardboard absorber and front-pass (i.e., air flows between absorber and 

glazing plates). The second model was a single plastic glazing, black painted flat plate 

absorber on hardboard and front-pass. The third model was a single plastic glazing and 

front-pass, but with a black painted zigzag plate absorber. The fourth model was 

identical to the second model (single plastic glazing and black painted flat plate 

absorber) however air is allowed to flow in the channel between the back side of the 

absorber and the hardboard insulator (i.e. back pass). Similarly, the fifth model had the 

same structure as the third model collector except for the back pass flow arrangement. 
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Finally, the sixth model mainly consisted of double plastic glazing, a black painted flat 

plate absorber and a back-pass flow arrangement. The absorber plates were made of 

black coated aluminum sheet. A clear plastic glazing made of polyethylene with a 

thickness of 0.15mm was also used. The experimental results indicated that the most 

efficient collector was the second model whose efficiency was approximately 9% 

greater than the least efficient one which was the sixth model. Additionally, it was 

concluded that the effect of the shape of absorbing surface on performance was 

considerably less than the number of glazing sheets and the air pass arrangement. 

                                

            
 

           
   

Figure 3.40. a.Schematic presentation of Model 1 b.Schematic presentation of Model 2 

c.Schematic presentation of Model 3 d.Schematic presentation of Model 4. 

e.Schematic presentation of Model 5  f.Schematic presentation of Model 6. 

(Source: Koyuncu 2006) 

 

Karim et al. (2004) conducted an experimental study to evaluate the thermal 

performances of three types of solar air heaters; a simple flat plate, finned and V-

a b 

c d 

e f 
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corrugated solar air heaters. The aim of their study was to achieve the most efficient 

design of solar air collector suitable for solar drying. Three types of collectors were 

designed, constructed and tested (Figure 3.41). In order to avoid construction of several 

solar air collectors for different absorber plate configurations, a collector frame with 

interchangeable absorber plates was designed. The absorber plate of each collector was 

1800 m in length and 700 m in width, and made of stainless steel with black chrome 

coating. The flat plate and finned collectors had 25 mm channel height and the V-

corrugated collector had 50 mm V-height. The flow passage area was 0.0175 m2 for all 

three collectors. Single window glass was used as the glazing for all the collectors. The 

results showed that the V -corrugated collector was the most efficient collector and the 

flat plate collector had the least efficiency. The efficiency of the V -corrugated collector 

was 7-12% higher than that of the flat plate collectors. The constructed collectors were 

also tested in double pass mode to investigate the improvement in efficiency. As 

expected, a significant improvement of efficiency was achieved in the collectors with 

double pass operation when compared to the single pass operation. Consequently, the V 

-corrugated collector showed better efficiency in both single and double passes 

operations. It was also structurally stable and predominantly useful for drying 

applications.  

 

 
 

Figure 3.41. Collector frame and three types of absorbers. 

(Source: Karim et al. 2004) 



 
 

53 

 

Kurtbas et al. (2004) analyzed the efficiency and exergy of a solar air heater. In 

order to investigate the effect of flow line dimensions of a solar collector on its 

performance, an absorber was designed with four different plates. The absorber of 900 x 

400 mm was in dimension and the plates were in different flow line dimensions 

(narrowed-extended) and surface geometries (Figure 3.42). The absorber material was a 

black painted galvanized sheet with 0.8 mm thickness. In the Type I plate, the fluid 

passed through a narrowed-extended gap. The dimension of the gap was between 25 to 

180 mm.  The upper surface of the Type II plate had a wavely profile while the bottom 

surface had a flat profile. The Type III plate had a wavely profile plate with a gap of 25 

mm between the plates.  Finally, the Type IV had a flat absorber with a gap of 25 mm 

between the plates. During the experiments five slices were placed perpendicular to the 

flow direction in dimensions of 1000 x 2000 mm inside the collector. Single glass was 

used as glazing and air flow was supplied with a radial fan up to 0,31 m3/s. It was 

concluded that, with an increase in the mass flow rate the efficiency of the collector 

increased.  The efficiency of the collector significantly depends on the surface geometry 

of the collector. The pressure loss and the heat transfer increased as the roughness of the 

absorber surface increases.     

 
 

Figure 3.42. Experimental set-up. 

(Source: Kurtbas et al. 2004) 

 

Togrul et al. (2004) , studied the performance of a solar air heater with a 

cylindrical absorber which is fixed to the center of a conical concentrator. They aimed 
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to enhance the air outlet temperature of solar air heater when compared to a flat plate 

collector. The solar air heater system they examined included a conical concentrator, a 

cylindrical absorber, a movable main air tube, a 1-D sun-tracking system, an electronic 

control device and a temperature-recording unit (Figure 3.43). The conical concentrator 

was made from stainless steel and painted black on the outer side. The absorber was a 

copper tube mounted at the center of the conical concentrator. The absorber was a two 

pass heat exchanger rounded with a glass tube. The copper absorber tube was tested 

with both a selective and a nonselective paint. The experiments were conducted with a 

mass flow rate of 7.5 kg/s. In order to ensure sunshine for the entire duration of the 

experiment two motors rotated the system according to the sun.  The movements of the 

motors were achieved with two photocells which were fixed on top of absorber. These 

two motors worked alternatively. It was concluded that, with a conical concentrator, the 

efficiency and air temperature were increased to 12% and 150°C respectively.  

 
 

Figure. 3.43. Solar air heater with conical concentrator. 1, Photocells; 2, absorber; 3, 

conical concentrator; 4, conical concentrator supporting frame; 5, 

tracking unit; 6, temperature measurement unit; 7, the ars for setting 

tilting; 8, main air flow tube; 9, moving arm and driving system for 

tracking; 10, collector table; 11, wheel.(Source: Togrul et al.(2004) 
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 As a result of this literature survey, the researches’ that are investigated in recent 

years, studied carefully in a detail way. The construction choices, the purposes of other 

researches’, the results of such approaches are determined. Some items about the 

experimental setups like the dimensions, the materials, the testing procedures are 

investigated clearly. Based on this data from all these searched papers, the experimental 

setup that will be constructed and tested for this thesis is took its shape of configuration.  
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CHAPTER 4 

 

EXPERIMENTAL SETUP 

 

A “Solar Air Heater” was constructed to determine and compare the efficiencies 

of solar air heater systems with or without porous material. The experimental setup was 

located at Solar & Wind Laboratory in the Mechanical Engineering department of İzmir 

Institute of Technology. The experiments were conducted between November 2011 and 

August 2012. The experiments were carried between the hours of 08:30 and 17:00 or 

20:00 each day.     

All parts of this experimental setup are made from galvanized steel. The system 

is insulated from all sides to prevent heat losses through the surroundings. Air is 

supplied to the system with the help of a radial fan with forced convection. The flow 

rate of the fan is controlled and manipulated by a control panel. Solar radiation is 

simulated by a jacket type electrical heater placed under the solar air collector. The 

temperature profile of the air across the channel is observed by k-type thermocouples. 

The data taken by the thermocouples is transferred to a computer with the help of a data 

logger. Each part will be discussed separately and in detail in the next section. 

 

 
 

Figure 4.1. Photograph of the Experimental Setup 
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Figure 4.2. Side and Top View of Experimental Setup Schematically. 

 

4.1. Components of Experimental Setup 

 

All parts of this experimental solar air heater are made from steel. The system is 

insulated from all of its sides to prevent heat losses through the surroundings.  Each part 

is explained below.  

 

4.1.1. Radial Fan  

 

 Air is supplied by a radial fan to the experimental setup. The volumetric flow 

rate and the pressure drop of the fan are 600 m^3/h and 1.5 kPa(150 mmSS), 

respectively. Two silencers are fixed at both sucking and exhaust sides of the fan to 

reduce the noise. The technical dimensions and a photograph of the radial fan are given 

in Figure 4.3. The flow rate is varied between 0-600 m^3/h with the help of a control 

box during the experiments in order to observe the effect of mass flow rate on the 

efficiency of a solar air heater.    
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Figure 4.3. a. Technical dimensions of the radial fan, b. Photograph of the radial fan 

 

 
Figure 4.4. Characteristic Trend line of the Radial Fan 

 

4.1.2. Preheater 

 

If it is possible experiments should be done under same operating conditions for 

an accurate measurement and comparison of the experimental results. By adding this 

equipment to the system, it was aimed to feed the air to the collector at the same 

temperature for each experiment. In this system a preheater is located after the radial 

fan. As air flows through the duct which the preheater was fixed, its temperature could 

be maintained to a fixed temperature before it enters the collector. But unfortunately, 

this part of the system cannot be used during the experiments. Because, controlling this 

part manually cannot be possible; the temperature change cannot be controlled 

efficiently.   

a b 
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Figure 4.5. Photograph of the preheater. 

 

4.1.3. Flow Straightening & Exhaust Type Duct 

 

 The flow straightening duct is a clear channel which enables a fully developed 

flow for air for  dimensions of 1500 x 500 x 50 mm (Figure 4.6.a) Until air reaches the 

solar collector it passes from various dimensioned ducts. This makes the flow turbulent. 

As the velocity data are collected from this part of the solar air heater, the flow must be 

fully developed in every part of the duct. For this purpose the flow straightening duct 

could be considered as the distance that is left for air to become laminar for the accuracy 

of measurements.  

The exhaust type duct was constructed just before the flow straightening duct 

and used to provide the dimensional changeover between the flow straightening duct 

and the duct that includes the preheater. The preheater was fixed after to the fan outlet 

side so the duct that includes the preheater was in the same dimensions of the fan’s 

outlet. The flow straightening duct was placed just before the main solar collector so 

this duct is of the same dimensions as the collector. Here, the exhaust type ducts 

provides this pass (Figure 4.6.b).   

       
 

Figure 4.6 a. Flow straightening duct, b. Exhaust type duct 
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Flow straightener equipment was added to the inlet section of this duct as seen in 

Figure 4.7.  The aim was to balance the forces between the front and back of this 

material and obtain a uniform air flow. The velocity profile is be similar in all domains 

of collector.   

 

 
 

Figure 4.7. The flow straightener 

 

4.1.4. Solar Collector 

 

 The solar collector is of 1500 x 500 x 50 mm in dimension (Figure 4.8). It is a 

laboratory simulation model so the upper side is made from steel, not from a transparent 

cover. Basically, the collector is a rectangular duct where the temperature of air 

increases as it flows through. The underside of the collector is the absorber plate. It can 

be made from different materials, but in this case it was made from the same material as 

the collector itself. Since the system was constructed in a laboratory, the solar radiation 

is simulated by an electrical heater. The electrical heater could supply a maximum 

power of 15 kW and is fixed to the bottom of the absorber plate of the collector. The 

flux of the electrical heater could be manipulated from the control panel according to 

experimental conditions. The temperature of air is measured along the length and width 

of the collector during the experiments.      
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Figure 4.8. The schematic view of the collector 

 

 
 

Figure 4.9. Photograph of the Solar Collector 

 

4.1.5. Porous Material 

 

The porous material, which is like a wire mesh with 50 x 50 mm square 

dimensions, is illustrated in Figure 4.10 below. The porous material was placed in the 

collector after the reference experiments were completed with a clear solar air collector 

channel to enable comparison of results with and without porous material.  When air 

enters the collector, it encounters the porous material and flows over and under it. This 

method increases the heat transfer area and forms a turbulent flow. The collector was 

tested with different porosities to reach the optimum heat transfer and collector 

efficiency. 
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Figure 4.10. Photograph of porous material 

 

4.1.6. Exit Duct 

 

The dimensions of this part are 1000 x 500 x 50 mm (Figure 4.11). This is the 

last part of the solar air heater system. Air enters the solar collector and exits with a 

significant increase in its temperature. Then air enters the exit duct and is released 

outside. At the beginning of the exit duct there were 5 thermocouples to control the 

temperature change of the air as it exits the electrical heater. Because of the accuracy of 

these measurements, the duct’s length is kept at 1000 mm to prevent probes from the 

conditions of the outlet.   

 

 
 

Figure 4.11. Photograph of the Exit Duct 
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4.2. Measurement Equipment 

 

4.2.1. Data Logger 

 

In this study, an ELİMKO E-380 model data logger is used. This data logger has 

32 channels which are used to measure temperature data.  With the help of this device 

the temperature values along the collector are saved during the experiments. The data 

logger is connected to a computer and a software program was installed to store the 

temperature values for each part of the experiment separately. For each experiment the 

data was initially taken during time intervals of 30 minutes then, in order to collect more 

data, this was shortened to 5 minutes intervals. 

 

         
 

Figure 4.12. Photographs of the data logger 

 

4.2.2. Temperature Sensors / Thermocouples  

 

The temperature profile during the experiments is achieved by the 

thermocouples which are located along the length and width of the collector. K type 

thermocouples are used in the setup. The k-type thermocouples are composed of a 

positive portion, which is approximately 90% nickel and 10 chromium and a negative 

portion, which is approximately 95% nickel, 2% aluminum, 2% manganese and 1% 

silicon. The negative portion is colored red and the positive portion is colored yellow.  

The k-type thermocouple wire used is a 1000 ft long roll. The roll is shortened to 

obtain 32 thermocouples according to the needs of the experimental setup. The 

thermocouples can read values between -200 to 1350 °C with an error of ±2. One side 
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of each thermocouple is plunged into the duct while the other side is connected to the 

data logger.  A total of 29 thermocouples are used to measure the air temperature while 

the other 3 are used to measure the absorber plate temperature. The data taken with the 

help of k-type thermocouples are transmitted to the computer by means of a data logger. 

 

 
 

Figure 4.13. Location of Thermocouples which were used to measure the air temp. 

 

            
 

Figure 4.14. Photograph of the thermocouples (original and welded tip) 

 

4.2.3. Velocity Calculator 

 

 The velocity measurement is performed using a TSI 8386-M Velocity Calc Plus 

device as illustrated in Figure 4.15 below. For an accurate measurement, 5 velocity 

measurement holes are opened on the top side of the flow straightening duct of the solar 

air heater system (Figure 58.a). The probe of the velocity calculator device is plunged 

into the flow duct from each of these holes sequentially. The velocity data are taken 

vertically from 6 different heights for each five holes. By this method, 30 velocity 

values are obtained along the duct, horizontally and vertically. Each velocity value is 

multiplied by the differential area that it measured in the collector. These 

multiplications were added to each other and then divided by the total cross sectional 
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area of the collector to find an average velocity value for the flowing air. The average 

velocity was then used in the power and efficiency calculations.  

 

                
 

Figure 4.15. a.The measurement holes b. Velocity Calculator 

 

4.2.4. Control Panel and Network Analyzer 

 

The control panel of the solar air heater system is constructed to manipulate the 

flow rate of the fan, the power of the preheater and the panel electrical heater which 

simulates solar radiation. There is an on-off switch on the control panel box that 

provides the main electricity supply to the system and the control panel. There are three 

buttons that help to manipulate the working efficiencies of these three parts between 

zero and a hundred percent efficiency (Figure 4.16.a).  

The network analyzer device is used to measure the power that the panel 

electrical heater consumes during the experiments. But, because of the discontinuous 

working of the electrical heaters which was caused by the P.I.D control, the 

consumption cannot be measured accurately. The network analyzer shown in Figure 

4.16.b was found to be suitable for this purpose and was connected to the system. This 

device measures the electricity consumed during the experiment hours in kWh unit. 

Then by multiplying the value which was taken from this device at the end of the each 

experiment by the total experiment hours, the heat value in kW can be obtained.     

                   
Figure 4.16. a. Control Panel b. Network analyzer 

a b 

a b 
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4.2.5. Thermocouple Calibrator 

 

 The heat consumed by the electrical heater and the heat gained by the hot air is 

compared for each experiment. The results are expected to be similar. But for every 

experiment there are significant difference between the two values. The heat losses to 

the surroundings from the system surfaces causes this difference. For every experiment, 

the temperature of each surface are measured by the network analyzer device and then 

the losses were calculated. 

 

 
 

Figure 4.17. The Temperature Calibrator 
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CHAPTER 5 

 

EXPERIMENTAL PROCEDURE AND HEAT TRANSFER 

CALCULATIONS 

 

In this thesis, enhancement of heat transfer in a solar air heater by using porous 

medium is experimentally investigated. A laboratory simulation model is constructed 

and tested in different conditions and configurations to achieve a significant 

enhancement in heat transfer.  

 

5.1. Experimental Procedure 

 

All the experiments begin at 09:00 a.m. and end at 05:00 p.m. or 08:00 p.m. The 

computer and the assistant program of the data logger are kept open during the 

experiments to collect and save the data. Firstly, the on-off switch located on the control 

panel, is set to the “on” position to give the system energy. Than to start the air flow, the 

switch of the fan is switched to “1-on” position (Figure 5.1). With this action the fan is 

ready to blow and the final task is to manipulate the capacity of the fan between 0 to 

100 % with the capacity button.       

 

  
 

Figure 5.1. The capacity and energy buttons of a. the fan b. the electrical heater 

Capacity  
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Capacity  
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Fan energy 
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The same procedure is followed for the panel electrical heater. The energy is 

provided by adjusting the energy switch and then the capacities are again adjusted by 

capacity button.  

The electrical heater works with the same capacity for all experiments. It is 

adjusted to a position where the air outlet temperature is close to 55°C and this was not 

changed until the end of experimental period. The energy provided to the electrical 

heater to achieve the desired flux is measured by a network analyzer device.  

 

5.2. Heat Transfer Calculations 

 

The heat gained from the hot air, heat consumed by the electrical heater, heat 

losses to the surroundings, mean velocity and temperature values calculated for each 

experiment. The equations and the method of calculations are described briefly in this 

section. 

 

5.2.1. Calculation of Heat Transfer Rate and Heat Losses 

 

The heat gained by the hot air is calculated for every experiment. It is expected 

that the heat consumed by the heater and the heat gained from the hot air will have 

almost similar values. The differences between these two values occur because of the 

heat losses from the sides of the system to the surroundings. 

 

     (From the hot air)                  (5.1) 

 

To calculate the heat loss, the temperatures of each side of the collector are 

measured and heat loss for each side is calculated individually. The Qloss calculations 

were performed for the lateral sides, the top side and the underside separately.  

 For the lateral side calculations, the Churchill and Chu correlations were used; 

                     (5.2) 

 

                    (5.3) 

For laminar flow 

 

 

 

 

 For turbulent flow 
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 For the top and bottom side calculations; 

 

                                                              (5.4)      

                                                                           (5.5)     

                                                   (5.6)        

 

 

 For all of these calculations Rayleigh number is necessary;  

 

 

 

By using each Nusselt number, the heat transfer coefficient for each surface is 

calculated.  The heat loss from each surface calculated using the equation. 

 

    

 

 

5.2.2. Calculation of Mean Velocity 

 

 During the experiments the velocity values are taken from the ten holes that 

were opened above the flow straightening duct. Five of the holes are opened at the inlet 

section while as the rest of are opened at the exit section of the system. An average 

velocity value is calculated for each experiment according to the formulas below: 

 

 

 

where   is the area that the velocity measurement was taken for each value. 

The mass flow rate value for each experiment is calculated using the equation 

below; 
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As a general look; at the beginning of this study, reference experiments were 

conducted with a clear channel. When the reference data were recorded and the 

necessary graphs were drawn, experiments with porous media were carried out. The 

porous material was located in the collector at different porosities. One porous material 

is at a thickness of 7 mm. So 7 layer of porous material fills the collector. Initially, 1 

layer of porous material was located and tested in the collector. This was increased in 

stages, by one, up to 7 layers, all stages were tested. The results are shown and 

discussed in the results section. 

 

5.2.3. Calculation of Mean Temperature 

 

The inlet and exit temperature data are collected from the ten holes which the 

velocity data are also taken. A total number of 30 temperature values are collected from 

each five holes for inlet and exit temperatures. By using the equation given below an 

average temperature values is calculated for inlet and exit sides. The calculated average 

temperature values are used in other calculations.  

 

 

 

A example view of points that; which data is collected from where; 

 

 

  … …  
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… … … … … 

… … … … … 

… … … … … 

 … … …  

   (5.12)  

 

(5.13) 
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CHAPTER 6 

 

PROBLEMS OF EXPERIMENTAL SETUP 

 

Many problems occurred during the experimental period. Most of them were 

solved by trying other methods. A brief explanation of each problem faced is given 

below.  

First of all, the temperature profile was not uniform as expected and there were 

oscillations in the graphs that were drawn. To understand the reason for the oscillations 

the some methods were tried such as; 

In the first trials the capacity of the heater was adjusted. Firstly, the capacity of 

the electrical heater was increased step by step to the 50 % range. While the fan was 

working at 20% capacity (the capacity button of the fan was at a position illustrated in  

Figure 6.1.c), the electrical heater worked to 1/8 of it capacity at first and this is 

increased in  intervals of 1/8, as seen from Figure 71.       

 

     
  

Figure 6.1. The capacity ratio values are; a.0%, b.12.5%, c.25%, d.37.5%, e.50% 

 

The adjustment of the capacity button was not changed until the temperature 

values became steady in every thermocouple. The variation of the temperatures in each 

thermocouple is controlled by the software of the data logger which was installed on the 

computer. It was seen that this method has no significant effect on the temperature 

results. 

 Secondly, the locations of thermocouples were changed to ensure that they have 

not broken down. The location of each thermocouple was changed and it was shown 

that none of them had broken down.  

 Then, the air velocity was decreased because at high velocity values the flow 

could be turbulent and this affects the temperature results. Also a flow laminarizator 

a b c d e 
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was added to the duct that was located just before the solar collector. These two 

approaches made the results much better.  

 As a last revision, the software of the electrical heater that supplies heat to the 

solar collector was changed. The electrical heater consists of two resistances each 7, 5 

kW with a total value of 15 kW. These two resistances work with P.I.D control 

(proportional-integral-derivative-controller-a PID is a feedback controller which 

calculates an "error" value as the difference between a measured process variable and 

a desired set point. The controller attempts to minimize the error by adjusting the 

process control inputs.) and generates a discontinuous voltage. The system was 

intermittent with a time interval of 120 seconds. After the modification this time interval 

was reduced to 1 second. This modification improved the results significantly and the 

data taken became more stable. 

The second problem involved the collection of data relating to the electrical 

heaters energy consumption. 3 different data measurement devices were tried for this 

task. The brief explanation of each device is given below; 

  A multimeter (multimeter is a rectangular box shaped device that shows the 

voltage, ampere and the power of the electrical heater) and a powermeter (powermeter 

helps to measure the consumed power manually. The device has two probes and by 

connecting these probes to the cables that connects the electrical heater with the line 

that supports electricity to the system, the power could be seen on the screen) were used 

for the same purpose. They both measure the power that the panel electrical heater 

consumes during the experiments. But because of the discontinuous working of the 

electrical heaters which was caused by the P.I.D control, these devices were unable to 

measure the heat value correctly.  

As explained in Section 4.2.4 above, this problem was solved by using a network 

analyzer device to measure the data in kWh units. 

 

                            
Figure 6.2. a. The multimeter, b.The powermeter 

b a 

http://en.wikipedia.org/wiki/Process_variable
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The system’s last problem occurred while trying to measure the pressure drop 

due to various porosities. 4 Different devices were used to measure the pressure drop 

data but none of them worked 

        

 

 

 

 

 

 

 

 

 

Figure 6.3. a. Digital Manometer, b.Digital Manometer c.Velocity Calc.   

 d. Microtector 

 

None of these devices gave any value because the drop in pressure is very small 

and out of their measurement ranges. The clear channel pressure drop was calculated 

according to the friction losses. The result for the clear channel was 0,027 Pa (0, 00275 

mmWC). Because of this, this thesis does not include the pressure drop value. 

a b c d 

Digital Manometer: 

This  is a sensitive 

digital manometer. 

But it failed to 

register any results. 

The min. value that 

this device can 

measure is 0, 25 Pa.  

 

Digital Manometer: 

This shows the 

differential pressure 

between two points 

in inch W.C. and in 

Pa. The min. value 

that this device can 

measure is 0, 1 Pa.  

.  

Velocity Calculator: 

This device also 

takes pressure data. 

Butit also failed to 

regşster results. The 

min. value that this 

device can measure 

is 0, 1 Pa.  

 

Microtector: 

This is the most 

sensitive device of 

the 4 but it also failed 

to register any results. 

The min. value that 

this device can 

measure is 0, 06 Pa. 
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CHAPTER 7 

 

RESULTS AND DISCUSSION 

 

The heat transfer enhancement of a solar air heater using porous material was 

investigated in this study. The reference experiments were performed with the 

constructed experimental setup described in previous chapters. The temperature data 

along the length and width of the collector was plotted and is given below.  

8 experimental results will be discussed in this section. The collector was tested 

while it was clear and assisted with 1,2,3,4,5,6,7 layers of porous material. The graphs 

for each experiment were drawn for each five thermocouples which were located on the 

same line. For clarity, each five thermocouples were named as shown in Figure 7.1 

below: 

 

 
 

Figure 7.1. Location of Thermocouples along the collector 

  

Depending on the data collected all necessary plots are drawn to compare the 

results accurately. All the collected data are given separately in the Appendices section 

of the thesis. 

 

7.1. Heat Balance for Performed Experiments  

 

The heat balances for each experiment performed with the equations that are 

given in Chapter 5. The heat gained by the heated air that flows inside the channel is 

y 

x 



 
 

75 

 

calculated. And then, the heat consumed to obtain this heated air is measured with the 

network analyzer device. There are significant heat losses to the surrounding from the 

top, bottom and lateral sides of the collector. These losses are calculated for each 

experiment too.  

 

 

 

Because, these calculations based on an experimental setup, an error value 

occurs for every experiment between 21-36%.  

 

7.2. Change of Velocity Profile  

 

The velocity data is collected for each 8 experiments (clear, 1 layer assisted, 2 

layer assisted….7 layer assisted). The mean velocity and mass flow rate for each 8 

experiment are 0.189 m/s and 0.0055 kg, respectively. Based on the collected data, each 

velocity profile is plotted. The effect of porous layer on the velocity distribution in the 

channel is observed and the plots for clear channel, 4 layer porous assisted (semi-filled) 

and 7 layers porous assisted (fulfilled) are given below.   

 

 
 

Figure 7.2. The velocity profile for clear channel  

(7.1)       
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Figure 7.3. The velocity profile for 4 layers porous assisted (semi-filled) channel 

 

  
 

Figure 7.4. The velocity profile for 7 layers porous assisted (fulfilled) channel 

 

As it can be seen from the plots clearly, the porous layers ruin the velocity 

distribution in the channel. In the first plot; air flows freely in the clear channel. It has 

the minimum velocity values at the top and at the bottom of the collector while as 

reaches its maximum velocity value at the centerline of the collector as expected. In the 

second plot, the channel is semi-filled with porous material. As a result of those porous 
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layers which fill the half of the channel, the flow is turbulent and its values are 

decreased. On the other hand, the second half of the channel which is not filled with 

porous layers has a similar velocity profile with the clear channel. And finally, in the 

third plot, the channel is fully filled with porous layers. These porous layers composed a 

resistance to the flow of air in the channel. So the velocity of air is decreased a lot 

totally.  

 

7.3. Changes of Inlet and Outlet Temperatures  

 

The temperature data is collected longitudinally and transversely for each 8 

experiments (clear, 1 layer assisted, 2 layer assisted….7 layer assisted). The inlet and 

outlet temperature values are plotted and given for clear channel, 4 layers porous 

assisted (semi-filled) channel and 7 layers porous assisted (fulfilled) channel. In the 

graphs the inlet temperatures are represented with the blue dots while as the outlet 

temperatures are represented with the red dots. The average inlet temperatures for these 

3 cases are 28, 5°, 28, 6° and 28, 5°C while as the average outlet temperatures are 

55,34°, 56,5° and 56,67°C respectively. The outlet temperatures were increased for each 

case about 27-28°C. But adding porous layers in the flow channel of air have no 

significant effect on the outlet temperature of air. 

 

 
 

Figure 7.5. The change of Inlet and Outlet Temperatures of Air for Clear Channel 
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Figure 7.6. The change of Inlet and Outlet Temperatures of Air for 4 Layers Porous 

Assisted (semi-filled) Channel 

 

 

 
 

Figure 7.7. The change of Inlet and Outlet Temperatures of Air for 7 Layers Porous 

Assisted (fulfilled) Channel 
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7.4. Change of Temperature Profiles in the Collector  

 

7.4.1. Transverse Temperature Profiles  

 

Based on the collected data during all experiments, the temperature profiles of 

air along the collector are plotted. Air enters the collector and as it flows through the 

channel its temperature rises due to the constant heat flux from the bottom side. The 

plots for the clear channel, for 4 layers porous assisted (semi-filled) and for 7 layers 

porous assisted (full-filled) channels are given below. The values which are taken 

transversely from the collector are plotted verses to the location of thermocouples. In all 

these three cases the temperature values are increased as air flows through the exit of 

channel. As the porous layer number increase inside the collector, these layers create a 

resistance to air flow. Because of this resistance the velocity of air decreases. Due to the 

decreasing velocity the temperature values increases a little bit in high porous channels.  

 

 
 

Figure 7.8. The change of Temperature Profile of Air for Clear Channel 
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Figure 7.9. The change of Temperature Profile of Air for 4 Layers Porous Assisted 

(semi-filled) Channel 

 

 
 

Figure 7.10. The change of Temperature Profile of Air for 7 Layers Porous Assisted 

(fulfilled) Channel 

 

7.4.2. Longitudinal Temperature Profile 

 

The longitudinal temperature profiles are plotted for these set of experiments, 

too. The temperature change of air between the inlet and the exit of the collector is 

observed with these plots. Air enters the collector at similar temperatures for each 
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experiment and its temperature rises as it get closer to the exit. But after the 4th layer of 

porous material, the temperature difference decreases for every thermocouple and the 

slope of the trend line decreases.  

 

 
 

Figure 7.11. The Longitudinal Temperature Profile  

 

7.5. Change of Absorber Surface Temperature   

 

The absorber temperature data measured from five different points on plate. For 

each 8 experiments (clear and 1 to 7 porous layers assisted) the temperature values 

verses location of thermocouples graph is drawn over and over and given below. The 

blue dots at the upper side of the plot represents the clear channels’ plate temperatures, 

while as the red triangle shaped dots at the bottom side of the graph represents the plate 

temperatures for the fulfilled channel. So it can be seen clearly from these dots that, the 

absorber plate temperature values decreases as the porous layer number increases. The 

maximum absorber plate temperature value for clear channel is 116, 8°C. This 

thermocouple value decreased to 82, 3°C by adding 7 layers of porous material inside 

the collector. All values for these five thermocouples are decreased from clear channel 

to full filled channel.  
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When the flow channel is clear, the absorber plate temperature is at very high values. 

While air flows inside the channel, its bottom side contacts with this high temperature 

absorber plate. But at the upper sides of the channel depth; the temperature values 

decreases suddenly. As a result of this non-uniform temperature distribution inside the 

channel, the temperature distribution of the air becomes non-uniform, too.    The porous 

layers which are added to the flow channel prevent this non-uniform temperature 

distribution inside. The temperature of the absorber plate, transferred to the porous 

layers by conduction. So the temperature values decreases uniformly along the depth of 

the channel. Finally, the porous layers which are located on the way of air flow make 

the temperature distribution uniform. 

 

 
 

Figure 7.12. The Change of Absorber Plate Temperature According to Porous Layer 

Number 
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CHAPTER 8 

 

CONCLUSIONS 

 

The enhancement of heat transfer in a solar air heater collector by using porous 

medium is investigated in this thesis. A solar air heater is designed and constructed for 

this thesis. A set of experiments are conducted and the results are discussed in Chapter 

7. At the end of this thesis, according to the results of 1 clear and 7 porous layer assisted 

channel (a total of 8 experiments) experiment; it was concluded that; 

 The porous layers made no significant temperature enhancement on the exit 

temperature of air. Air enters the collector at similar temperatures for each 8 

experiments and at the end of each experiment the exit temperatures are similar, 

too. The clear channel and fulfilled channel exit temperatures are 55, 34 °and 55, 

67°C, respectively. 

 The most important result is that the absorber surface temperature decreased as 

the porous layers added inside the flow channel. Firstly, the setup was 

experimented while it is clear. In this condition, the absorber temperature is at 

very high values and the temperature distributed non-uniformly along the depth 

of the channel. By adding porous layers the absorber temperature is decreased 

significantly. This makes the temperature distribution inside the channel more 

uniform.   

 Another benefit of reduced surface temperature is it decreases the heat loss 

between the surface and surroundings. High absorber surface temperature losses 

much heat to the surroundings from the bottom of constructed setup. But when 

the temperature distributed uniformly inside the channel, the absorber 

temperature decreases therefore the heat loss decreases. 

 The porous layers ruin the velocity profile inside the collector. The porous layers 

created a resistance to air flow. So, from the location of the first porous layer to 

the seventh layer inside the channel, the velocity decreases and its profile 

damaged as it strikes to the porous layers. As the velocity decreases due to the 

increasing porous layers, the temperature values should be increased in these 

conditions. But the temperature values that are used in the heat transfer 
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calculations are estimated with the mean temperature equations. So the exit 

temperatures did not increase according to the increasing porous layers.  

 In spite of the insulation material that wrapped out the whole system, there are 

remarkable heat losses from the sides of the system to the surroundings. The 

heat transfer calculations are made for every 8 experiment. The heat gain and the 

heat consumed are expected to be same. But between these values there is a 

significant difference. This difference occurs because of the heat losses from the 

system to the surroundings. The system is insulated from all sides but the losses 

could not reduce to zero, though. But with the increasing porous layers, the 

losses decreased when compared to the losses with clear channel. 

After all results examined, it is obvious that the use of porous material inside a solar 

air heater has a positive effect on the system. 
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APPENDIX A 

 

TEMPERATURE DATA OF ALL EXPERIMENTS 

 

 The velocity and temperature distributions inside the channel are collected from 

five holes which are opened on the top side of the system. For clarity, a 

schematic view of the data measurement holes is given first.  

 

 The absorber plate temperatures are measured with the five thermocouples 

which are located on the absorber plate. 

 

 The measured temperature (°C) data for each clear channel; 

56,2 55,9 55,1 55,6 56,1 

55,8 55,3 54,6 55,4 55,8 

55,5 54,7 54,2 54,8 55,3 

54,2 53,3 53,1 54 53,1 

55,6 54,6 54,5 55,3 55,7 

56 56 55,2 55,6 56,4 

 

 The measured temperatuee (°C) data for each 1 layer porous assisted channel; 

57 56,3 56,1 56,3 56 

56,9 56,2 55,9 56,1 54,7 

56,2 55 54,6 55,6 55,2 

56,1 54,9 54,1 55,3 55 

56,7 55,6 54,7 55,9 54,7 

First hole Second hole Third hole Fourth hole Five hole 

1. Data 1. data … … … 

1. Data 2. data … … … 

3. Data … … … … 

4. Data … … … … 

5. data … … … … 

6. data … … … … 
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57,1 56,2 56,2 56,2 55,4 

 The measured temperature (°C) data for each 2 layer porous assisted channel; 

58,6 56,5 56,1 56,8 56,4 

57,7 56,1 55,9 56,2 56,2 

57,2 55,5 55,2 56 56,1 

57,3 55 54,8 55,1 56 

57,4 55,8 55,4 55,9 56,4 

58,2 56,3 56 56,8 57,1 

 

 

 The measured temperature (°C) data for each 3 layer porous assisted channel; 

61,1 56,2 56,2 56,9 56,6 

60,5 55,9 55,8 55,9 56,3 

58,9 56,9 56,5 56,6 56 

58,5 54,9 55,2 55,7 56,2 

59,7 55,9 55,8 55,2 56 

   61,7 57,4 56,2 57,7 60,3 

 

 

 The measured temperature (°C) data for each 4 layer porous assisted channel; 

63,2 56,6 56,2 57,2 58,2 

61,3 55,6 55,8 55,9 57,3 

61 56,9 56,6 56,5 57,1 

61,8 57,1 56,4 56,8 57 

62,4 56,8 56,2 56,4 57,6 

   63,1 57,4 57,1 57,5 58,1 

 

 

 The measured temperature (°C) data for each 5 layer porous assisted channel; 

64,1 57,3 56,3 61,3 61,7 

62,6 56,6 55,3 55 58,4 

61,2 57,3 55,8 54,8 57,5 

59,7 57,5 56,2 55,9 57,1 

61,1 57,8 56 56,4 56,9 

  63,9 59,1 56,3 61,8 62,1 
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 The measured temperature (°C) data for each 6 layer porous assisted channel; 

64,6 57,6 56,85 60 62,2 

63,8 56,5 56,5 58,3 60,9 

62,1 57,3 56,7 56,5 58,6 

59,1 57,6 55,8 57,3 57,9 

61,8 57 56,2 57,5 57,8 

   64,4 57,6 57,4 61,1 62,6 

 

 

 The temperature (°C) .data for each 7 layer porous assisted channel; 

64,2 58,5 59,4 60,3 63,9 

63,9 56,9 56,8 57,4 61,5 

63,1 56,6 56,2 56,3 58,9 

59,4 56,7 56,1 56 58,3 

63,8 56,6 55,9 55,8 58,2 

   64,7 58,2 59,6 60,8 62,4 
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APPENDIX B 

 

VELOCITY DATA OF ALL EXPERIMENTS 

 

 The measured velocity (m/s) data for each clear channel; 

0.01 0,03 0,05 0,03 0,01 

0,12 0,23 0,27 0,24 0,18 

0,15 0,33 0,36 0,31 0,24 

0,16 0,38 0,42 0,37 0,25 

0,14 0,33 0,40 0,32 0,21 

   0,01 0,03 0,05 0,03 0,01 

 

 

 

 The measured velocity (m/s) data for each 1 layer porous assisted channel; 

0,01 0,03 0,05 0,03 0,01 

0,12 0,24 0,26 0,25 0,19 

0,15 0,32 0,40 0,35 0,26 

0,16 0,36 0,43 0,39 0,24 

0,12 0,31 0,40 0,31 0,19 

   0,01 0,03 0,05 0,03 0,01 

 

 

 

 The measured velocity (m/s) data for each 2 layer porous assisted channel; 

0,01 0,03 0,05 0,03 0,01 

0,13 0,20 0,24 0,20 0,19 

0,17 0,32 0,35 0,21 0,23 

0,15 0,35 0,42 0,36 0,24 

0,11 0,30 0,36 0,29 0,18 

0,01 0,03 0,05 0,03 0,01 
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 The measured velocity (m/s) data for each 3 layer porous assisted channel; 

0,01 0,04 0,07 0,03 0,01 

0,12 0,17 0,25 0,26 0,23 

0,16 0,25 0,40 0,39 0,30 

0,13 0,28  0,37 0,35 0,25 

0,09 0,27 0,28 0,33 0,21 

   0,01 0,04 0,07 0,03 0,01 

 

 

 The measured velocity (m/s) data for each 4 layer porous assisted channel; 

0,02 0,06 0,08 0,04 0,01 

0,11 0,29 0,32 0,30 0,19 

0,12 0,22 0,26 0,27 0,21 

0,10 0,18 0,23 0,22 0,21 

0,08 0,20 0,25 0,21 0,19 

  0,02 0,06 0,08 0,04 0,01 

 

 

 The measured velocity (m/s) data for each 5 layer porous assisted channel; 

0,05 0,13 0,16 0,12 0,04 

0,08 0,24 0,26 0,23 0,19 

0,09 0,20 0,24 0,25 0,20 

0,10 0,19 0,22 0,22 0,18 

0,08 0,18 0,23 0,21 0,18 

  0,05 0,03 0,16 0,22 0,04 

 

 The measured velocity (m/s) data for each 6 layer porous assisted channel; 

0,04 0,10 0,15 0,13 0,03 

0,06 0,21 0,22 0,20 0,16 

0,08 0,18 0,21 0,23 0,19 

0,10 0,17 0,23 0,22 0,18 

0,09 0,18 0,23 0,21 0,18 

   0,04 0,10 0,15 0,13 0,03 
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 The measured velocity (m/s) data for each 7 layer porous assisted channel; 

0,02 0,04 0,06 0,03 0,01 

0,05 0,19 0,20 0,18 0,15 

0,07 0,19 0,21 0,22 0,18 

0,09 0,17 0,22 0,23 0,19 

0,06 0,18 0,22 0,21 0,18 

0,02 0,04 0,06 0,03 0,01 
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APPENDIX C 

 

ABSORBER PLATE TEMPERATURE DATA OF ALL 

EXPERIMENTS 

 

 The absorber plate temperatures (°C) for each eight experiments. 

 1.point 2. point 3. point 4. point 5. point 

clear 79,8 106,8 110,2 116,8 102,9 

1 layer 76,3 93,5 97,4 102,5 89,5 

2 layer 72,5 92,9 93,8 99,3 84,9 

3 layer 67,1 87,5 89,5 90,1 81,3 

4 layer 62,4 83,3 85,8 86,3 76,3 

5 layer 61,3 82,3 82,8 83,6 73,8 

6 layer 60,7 81 81,3 82,8 72,1 

7 layer 60,5 81,1 81,2 82,3 71,8 

 

 


