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his help, guidance, understanding and encouragement during the study and preparation of

this thesis.

I would like to thank to the members of my Thesis Committee, Dr.BernaÖzbek
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ABSTRACT

A STUDY ON WIRELESS CHANNEL MODELS: SIMULATION OF

FADING, SHADOWING AND FURTHER APPLICATIONS

In this thesis, we simulate multipath fading which is assumed to have Rayleigh or

Rician distribution under the non-line-of sight or line-of-sight condition respectively; as

well as spatial shadowing process, assumed to be log-normally distributed. We propose

a low-complexity high performance Rayleigh fading simulator, an autoregressive moving

average (ARMA)(3,3) model. This proposed method is a variantof the method of filtering

of the white Gaussian noise where the filter design is accomplished in the analog domain

and transferred into the digital domain. The proposed modelis compared with improved

Jakes’ model, autoregressive (AR) filtering and inverse discrete Fourier transform (IDFT)

techniques, in performance and computational complexity.The proposed method out-

performs AR(20) filter and modified Jakes’ generators in performance. Although IDFT

method achieves the best performance, it brings a significant cost in storage which is un-

desirable. The proposed method achieves high performance with the lowest complexity.

Additionally, we apply the quantized filter extension of ourproposed filter design, since

quantized filters are generally used in hardware implementations due to their minimum

power consumption, minimum heat generation and their computational efficiency. We

simulate spatial shadowing process, via the simulation method proposed by P̈atzold and

Nguyen. This method is derived from a reference model by using the sum of sinusoids

principle. There are two methods enabling the fitting of the simulation model to the ref-

erence model with respect to the probability density function (pdf) of the received signal

strength as well as to a given autocorrelation function witha decaying exponential shape.

Furthermore we use our predicted autocorrelation functionobtained via the site-specific

radio propagation prediction software named Wireless InSite in order to determine the

model parameters.
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ÖZET

KABLOSUZ KANAL MODELLER İ ÜZEṘINE BİR ÇALIŞMA:

SÖNÜMLEMENİN, GÖLGELEMEṄIN VE DAHA İLERİ

UYGULAMALARIN BENZET İMİ

Bu tezde, dŏgrudan g̈orüş bulunmayan durumlarda ve doğrudan g̈orüş bulunan

durumlarda, sırasıyla Rayleigh ya da Rician dağılıma sahip çok yollu s̈onümlemenin,

log-normal dăgılıma sahip oldŭgu varsayılan uzamsal gölgeleme s̈ureciyle birlikte

benzetimini yaptık. D̈uş̈uk karmaşıklı̆ga ve ÿuksek performansa sahip bir Rayleigh

sönümleme benzeticisi,̈ozbăglanımlı hareketli ortalama (ARMA)(3,3) modeli sunduk.

Sunulan bu ÿontem bir çeşit beyaz Gauss gürültüs̈u s̈uzgeçleme ÿontemidir. Burada

süzgeç tasarımı analog bölgede yapılır ve sayısal bölgeye transfer edilir. Sunduğumuz

yöntemi, iyileştirilmiş Jakes modeliyle,̈ozbăglanımlı (AR) s̈uzgeçlemeyle ve ters ayrık

Fourier d̈onüş̈umü (IDFT) teknikleriyle performans ve işlemsel karmaşıklık açısından

karşılaştırdık. Sundŭgumuz ÿontem, AR(20) s̈uzgecinden ve iyileştirilmiş Jakes modelin-

den daha iyi performans sağladı. IDFT ÿontemi en iyi performansı sağlamasına răgmen

depolama açısından belirgin bir yük getirdi. Sundŭgumuz ÿontem en iyi performansı en

düş̈uk karmaşıklıkla săgladı. Nicemlenmiş s̈uzgeçler genellikle, d̈uş̈uk güç tüketiminden,

düş̈uk ısı üretiminden ve işlemsel etkinliğinden dolayı donanım uygulamalarında kul-

lanılmaktadır. Bu ÿuzden, sundŭgumuz ÿontemin nicemlenmiş s̈uzgeç uygulamasını

da yaptık. Uzamsal g̈olgeleme s̈urecinin benzetimini ise P̈atzold ve Nguyen tarafından

sunulan benzetim ÿontemiyle yaptık. Bu ÿontem referans modelden sinuzoidlerin toplamı

prensibi kullanılarak çıkarılmıştır. Benzetim modelinireferans modele uydurmak için,

kullanılan iki yöntem vardır. Bu ÿontemler alınan sinyalin olasılık yoğunluk fonksiy-

onuyla birlikte teoriköz ilinti fonksiyonuna g̈ore belirlenir. Biz bu yaptıklarımıza ek

olarak, ayrıca Wireless InSite yazılımıyla kestirdiğimiz öz ilinti fonksiyonunu kullanarak

model parametrelerini belirledik.
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CHAPTER 1

INTRODUCTION

1.1. Background and Motivation

The performance of any communication system is eventually determined by the

medium which the message signal passes through. This medium, may be an optical fiber,

a hard disk drive of a computer or a wireless link, is referredto as communication channel.

There exists a large variety of channels, which may be divided into two groups. If a solid

connection exists between transmitter and receiver, the channel is called a wired channel.

If this solid connection is missing, this connection is called a wireless channel. Wireless

channels differ from wired channels, due to their unreliable behavior compared to wired

channels. In wireless channels the state of the channel may change within a very short

time span. This random and severe behavior of wireless channels turns communication

over such channels into a difficult task.

There are several different classifications regarding the wireless channels. Wire-

less channels may be distinguished by the propagation environment encountered. Many

different propagation environments have been identified, such as urban, suburban, indoor,

underwater or orbital propagation environments, which differ in various ways.

The wireless channel puts fundamental limitations on the performance of wireless

communication systems. The transmission path between the receiver and the transmitter

can be altered from simple line-of-sight to one that is drastically obstructed by buildings,

foliage and mountains. Even the speed of the mobile impacts how rapidly the signal level

fades. Modeling the wireless channel has historically beenone of the most difficult parts

of the communication system design and is typically done in astatistical manner, based

on measurements made specifically for a designated communication system or spectrum

allocation.

There are a lot of mechanisms behind the electromagnetic wave propagation, but

they can be generally attributed to reflection, diffractionand scattering as shown in Fig-

ure 1.1. Reflections arise when the plane waves are incident upon a surface with dimen-

sions that are very large compared to the wavelength. Diffraction occurs according to
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Huygen’s principle when there is an obstruction between thetransmitter and the receiver

antennas and as a result of this, there are secondary waves generated behind the obstruct-

ing body. Scattering arises when the incident wavelength isin the order of or larger than

the dimension of the blocking object with non-regular shape, and causes the transmit-

ting energy to be redirected in many directions. The relative importance of these three

propagation mechanisms depends on the particular propagation scenario.

Figure 1.1. Mechanisms behind the electromagnetic wave propagation

Due to the three aforementioned different propagation mechanisms, radio prop-

agation can be roughly described by three nearly independent phenomenon;path loss

variation with distance,shadowingand multipath fading. Each of these phenomenon is

caused by a different underlying physical principle and must be considered when design-

ing and evaluating the performance of a wireless communication system.

Among three independent phenomenon, only path loss is a deterministic effect

which depends only on the distance between the transmitter and the receiver. It plays

an important role on larger time scales like seconds or minutes, since the distance be-

tween the transmitter and the receiver in most situations does not change significantly on

smaller time scales. On the other hand, shadowing and fadingare not deterministic. They

both have stochastic nature. Shadowing occurs due to the varying terrain conditions in

suburban area and due to the obstacles such as buildings etc.in urban area causing partic-

ular obstructions between the base station and mobile station. Fading leads to significant

attenuation changes within smaller time scales such as milliseconds or even microsec-
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onds. Fading is always caused by a multipath propagation environment, therefore by an

environment reflecting the transmitted electromagnetic waves such that multiple copies

of this wave interfere at the receiving antenna. All three attenuating phenomenon com-

bined result in the actual experienced attenuation of the wireless channel. Therefore this

attenuation might be decomposed as given in Equation (1.1).

a(t) = aPL(t) · aSH(t) · aFA(t) (1.1)

In this thesis we will focus on modeling and simulation of fading and also model-

ing and analysis of shadowing. We will investigate a new simulator design for multipath

fading and also we will model and analyze the correlations that exist in shadowing.

The fading caused by multipath propagation in wireless communication systems is

commonly modeled by the Rayleigh distribution. It is well known that a Rayleigh fading

process is characterized by its power spectral density and its auto-correlation function.

The autocorrelation function depends on the Doppler frequency which corresponds to the

relative motion of the receiver and transmitter.

In the communications literature, a number of different methods have been pro-

posed and used for the simulation of Rayleigh fading (Clarke 1968, Jakes 1974, Smith

1975, P̈atzold, et al. 1996, Omidi, et al. 1999, Young and Beaulieu 2000, Özen

and Zoltowski 2001, Zheng and Xiao 2002, Baddour and Beaulieu 2005). Jakes’

model (Jakes 1974) has been of great interest which is based on sum of sinusoids ap-

proach. Simulators based on white noise filtering methods (Omidi, et al. 1999,Özen

and Zoltowski 2001, Baddour and Beaulieu 2005), and on the Inverse Discrete Fourier

Transform (IDFT) (Smith 1975, Young and Beaulieu 2000) method have also become

popular. It was shown in (Young and Beaulieu 2001) that the fading signals which are

produced by classical Jakes’ simulator are not wide-sense stationary (WSS). On the other

hand simulators based on the IDFT method are high-quality and efficient. Unfortunately,

a disadvantage of the IDFT method is that all samples are generated with a single fast

Fourier transform (FFT), hence the storage requirements make it useless for the genera-

tion of very large number of samples and for sample-by-sample simulations.

In this thesis, we consider using a fading filter to filter white Gaussian noise that

was first proposed in (̈Ozen and Zoltowski 2001). Unlike the other filter structures

(Omidi, et al. 1999, Baddour and Beaulieu 2005), a different optimization and de-

3



sign criterion is used to set the filter parameters in the analog domain as would yield the

transfer function of the fading filter, denoted byGγ(s), whereγ is the filter order. Bi-

linear transform is then used to get the desired filter structure as an ARMA(γ, γ) filter.

Comparisons to other methods are then made by using quantitative measures introduced

in (Young and Beaulieu 2003).

Experimental results have shown that the signal strength variations caused by

shadowing can adequately be modeled by a log-normal process(Okumura, et al. 1968,

Reudink 1972, Black and Reudink 1972, Ibrahim and Parsons 1983,Gudmundson

1991). Measurements also show that the shadowing exhibits spatial correlation (Gud-

mundson 1991, Marsan and Hess 1990, Giancristofaro 1996, Perahia and Cox 2001)

in other words, shadowing is correlated over short distances. A simple exponential cor-

relation model has been suggested in (Gudmundson 1991), based upon an approximate

fitting of empirical data. This model was improved then laterin (Giancristofaro 1996) to

avoid the inconsistencies caused by the exponential shape of the spatial autocorrelation

function. In this thesis, we simulate spatial shadowing process via the simulation model

proposed in (P̈atzold and Nguyen 2004). Also, we predict an autocorrelation function

and this function is used to determine the model parameters.

1.2. Outline

After the introduction, which contains a brief summary of some useful terms that

will be used in this thesis, a detailed overview offadingphenomenon is provided in Chap-

ter 2. In Chapter 3, different simulation techniques commonly employed to simulate fad-

ing channels are discussed. The first part of Chapter 3 concerns with the sum of sinusoids

models and in the second part, different kind of filtered Gaussian noise models including

our proposed filter design are discussed. Also in Chapter 3, quantized filter application of

our proposed design is given. In Chapter 4, large-scale fading study is undertaken with

shadowing prediction experiment made by Wireless InSite. In Chapter 5, simulation of

spatial shadowing process is done by using the simulation model proposed in (P̈atzold and

Nguyen 2004). Also in this chapter, prediction of shadowingautocorrelation in an urban

area is made by using Wireless InSite. We use this autocorrelation in order to determine

the simulation model parameters of the spatial shadowing process. The last chapter is

entirely dedicated to the discussion and interpretation ofthe presented results.

4



CHAPTER 2

AN OVERVIEW OF WIRELESS CHANNEL MODELS

2.1. Introduction

In digital communication theory the most frequently assumed model for a trans-

mission channel is the additive white Gaussian noise (AWGN) channel. However, for

many communication systems the AWGN channel is a poor model, hence the need to

resort to more precise and complicated channel models. One basic type of non-Gaussian

channel, which frequently occurs in practice, is the fadingchannel. A typical example of

such a fading channel is the mobile radio channel, where the small antennas of portable

units pick up several multipath reflections. As a result, themobile channel exhibits a time

varying behavior in the received signal energy, which is called fading. In the communi-

cations literature, most often we encounter two types of fading definitions for the mobile

radio channel, and they are calledlarge-scale fadingandsmall scale fading. Large-scale

fading usually is defined as the average signal power attenuation or path loss due to mo-

tion over large areas. This depends on the presence of obstacles in the signal path, on

the position of the mobile unit and its distance from the transmitter. The statistics of

large-scale fading provide a way of computing an estimate ofpath loss as a function of

distance. This is normally described in terms of a mean-pathloss (nth-power law) and a

log-normally distributed variation about the mean which isknown as shadowing. Hence

the term large-scale fading correspond to the combined effects of path-loss and shadowing

loss that we have indicated in Chapter one in Equation 1.1, where the path loss has been

denoted byaPL(t) and the shadowing process has been denoted byaSH(t). The emphasis

of this chapter and the following chapter is on the small-scale fading. The large scale

fading study, also known asshadowing and path-losshas been undertaken in Chapters 4

and 5.

Small-scale fading refers to dramatic changes in signal amplitude and phase that

can be experienced as a result of small changes in the spatialseparation between a re-

ceiver and transmitter. Small-scale fading is referred to as Rayleigh fading if the multiple

reflective paths are large in number and there is no line of sight signal component, hence

5



the envelope of the received signal is statistically described by a Rayleigh probability den-

sity function (pdf). However, if there is a dominant non-fading signal component present,

such as a line-of sight propagation path, the small scale fading envelope is described by

a Rician pdf. A number of different models have been proposed for the simulation of

Rayleigh fading channels in the past years. Generally, thesemodels can be classified as

either being statistical or deterministic. The statistical models are based on the shaping of

the power spectral densities of white Gaussian random processes by either time-domain

or frequency-domain filtering, whereas the deterministic models approximate the Gaus-

sian processes by the superposition of finite properly selected sinusoids. Details of these

are presented herein.

2.2. Small Scale Fading

In a wireless mobile communication system, a signal can travel from transmitter

to receiver over multiple reflective paths. The effect can cause fluctuations in the received

signals amplitude, phase, and angle of arrival, giving riseto the terminology multipath

fading. These signal variations are experienced on a small time scale, mostly a fraction

of a second or shorter, depending on the velocity of the receiver. In this section we

will discuss the physical reasons of fading, present a mathematical model for fading and

characterize it as a stochastic process. Fading might have atime varying or frequency

varying attenuating impact on the transmitted signal. Due to the frequency varying and

time varying (complex valued) nature of fading, we will denote the attenuating impact in

this Section byH(t, f). The relationship to the notation used in Equation 1.1 is given by

aFA(t) = |H(t, f)| for the observed carrier frequency. In some cases the fadingmight be

only time varying or frequency varying, we denote the fadingby h(t) = H(t, 0) in the

case of time varying fading only, and byH(f) = H(0, f) in the case of frequency varying

fading only.The relationship to the notation used in Equation 1.1 is in these cases still

given byaFA(t) = |H(t, f)| for the observed carrier frequency. The subjects discussed

in this section is following the chapter about fading in (Cavers 2000).

6



2.2.1. Physical Basis

The physical basis of fading is given by the reception of multiple copies of the

transmitted signal, each having followed a different path.Depending on the environment

of transmitter and receiver, there can be many or only few objects reflecting the transmit-

ted radio signal. In general these objects are known asscatterersand the transmission of a

signal leads to a situation which is called amultipath signal propagationand an example

of this scenario is given in Figure 2.1.

Figure 2.1. Multipath propagation scenario

In a typical environment each pathi has a different lengthli. Because of this

difference in length, each signal travelling along a path arrives with a differentdelay

τi = li
c
, where c is the speed of the light. Some signal copies travelling along short paths

will arrive quite fast, while other copies travelling alonglonger paths will arrive later.

Physically this equals an echo, encountered in a canyon. Thechannel is said to have

memory, since it is able to store signal copies for a certain time span.

Beside this multipath propagation, each signal copy is attenuated differently, since

the signal paths have to pass different obstacles like windows, building walls of different

materials, trees of different sizes and so on. The attenuation factor of pathi is denoted by

ai.

7



Taking all this into account, the multipath propagation of atransmitted radio wave

results in an interference pattern, where at certain pointsthe wave interfere constructively

while at other points they interfere destructively. If eachelement within the propagation

environment (transmitter, scatterer, receiver) do not move, the receiving signal will only

suffer from thedelay spreadand the different attenuation. In this case, the interference

situation of the channel stays constant and therefore the channel is said to be time invari-

ant. In contrast, if any kind of movement is encountered in the propagation environment,

all paths or some paths change in time, such that allai andτi change in time. As a conse-

quence the wireless channel become time variant. Here, along with a constant changing

delay spread, the receiver also experiences a varying signal strength due to its movement

through the interference pattern, therefore the received signal fades.

2.2.2. Mathematical Model of Fading

Consider the transmission of a bandpass signal at carrier frequencyfc with com-

plex envelopes(t). This transmitted bandpass signal is given by Equation 2.1

s(t) = Re
(

s(t) · e2πj·fct
)

(2.1)

The received bandpass signal is given by Equation 2.2

r(t) = Re
(

r(t) · e2πj·fct
)

(2.2)

We look for a mathematical model of the received bandpass signal taking into

account the effect of multipath propagation. At first we consider the case where we do

not encounter motion in the environment. As described in previous section, each path is

associated with a different lengthli and a different attenuationai. Therefore the received

signalr(t) is the superposition of all copies, given in Equation 2.3

r(t) =
∑

i

ai · s
(

t − li
c

)

= Re

(

∑

i

ai · s
(

t − li
c

)

· e2πj·fc(t− li
c )

)

(2.3)

Considering the relationship between wavelength and frequency λ = c
fc

, we obtain a

complex envelope representation in Equation 2.4. If we denote the phase shift of the

carrier frequency caused by the different length of each path by ϕi = 2π fcli
c

= 2π li
λ

and

path delay byτi =
li
c

we have Equation 2.4.

r(t) =
∑

i

ai · e−j2π
li
λ · s

(

t − li
c

)

=
∑

i

ai · e−jϕi · s(t − τi) (2.4)
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Now let us consider the effect of the motion in this model. Thechange of the

path length ,as a function of speedv and timet, is given by∆li = −v cos(γi)t, whereγi

denotes the angle of arrival of pathi with respect to the direction of motion of the receiver.

From this we obtain a different function for the complex envelope, which depends now

on the time t, as given in Equation 2.5.

r(t) =
∑

i

ai · e−j2π
li+∆li

λ · s
(

t − li + ∆li
c

)

=
∑

i

ai · e−jϕi · e−j2π·cos(γi)·t v
λ · s

(

t − τi +
v · cos(γi) · t

c

)

(2.5)

We can simplify Equation 2.5. First we indicate the termai · e−jϕi by writing Ai

instead. Second if we compare the delay caused by the termv · cos(γi)t/c with the overall

signal length of the complex envelopes(t), this delay is so short that can be ignored.

Another simplification is done through introducing theDoppler frequencydenoted by

fd = fc

c
· v = v

λ
and theDoppler shiftdenoted byνi = cos(γi) · fd. By doing these

simplifications we obtain Equation 2.6.

r(t) =
∑

i

Ai · ej2π·cos(γi)·t·fd · s(t − τi) =
∑

i

Ai · ej2π·νi·t · s(t − τi) (2.6)

The motion of the receiver in combination with thei-th scatterer affects the re-

ceived signal in amplitude and in the phase by the termAi, in the carrier frequency by

the termνi and in the delay of the envelope by the termτi. The delay change of the en-

velopev · cos(γi)t/c is too small that it can be ignored. Therefore motion of the receiver

or a scatterer in the model introduces a frequency offset of the carrier in addition to the

changes when no motion is involved.

When the number of the scatterers is very high, the discrete scatterer model has to

be turned into a continuous scatterer model, where each specific scenario is represented

by a gain density, given by thedelay-Doppler spread functionin Equation 2.7.

̺(ν, τ)dνdτ =
∑

î

Aî (2.7)

Here index̂i refers to all scatterers with delay indτ and Doppler shift indν. With

this we obtain the received signaly(t) given in Equation 2.8.
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r(t) =

∫ ∞

0

∫ fd

−fd

̺(ν, τ) · ej2π·νi·t · s(t − τi) · dνdτ (2.8)

2.2.3. Characterization in Time and Frequency

The most harmful effects on the received signal in a multipath environment includ-

ing motion are the frequency offset (Doppler shift) of the carrier and the time delay of the

envelope. This is because these shifted and delayed waves might interfere destructively

so that they cause severe attenuation. In practice a wireless transmission in a certain

environment including a certain velocity of objects is described by theDoppler spread

∆fd and thedelay spread∆τ . Each path can be characterized by a different Doppler

shift(due to a different receive angle) and time delay in both spreads result from multipath

reception and also in the case of the Doppler spread caused from the mobility. While

the Doppler spread is caused by the motion of objects within the environment (which

might be the transmitter, the receiver or scatterers), the delay spread is caused only the

topology of the environment itself. Although the Doppler spread is a phenomenon in fre-

quency(generating Doppler shift, a shift in frequency), the overall result on the received

signal, which is the result of interfering multiple Dopplershifted signal copies, is a time

selective behavior. The situation is exactly opposite for the delay spread. While the delay

spread is a phenomenon in time, the resulting effect on the received signal indicates a fre-

quency selective behavior. This can be derived from the mathematical model introduced

in the previous section. We first start with the discussion ofthe effect of the Doppler

spread, then we discuss the impact of the delay spread.

Consider a receiver, moving through a multipath environmentwith a certain fixed

velocity. All path delays in this environment are too small that can be ignored, therefore

s(t−τi) ≈ s(t). Then the received complex envelope, given by Equation 2.6,is simplified

and turns into Equation 2.9.

r(t) = s(t) ·
∑

i

Ai · ej2π·cos(γi)·t·fd = s(t) · h(t) (2.9)

Hereh(t) is called thecomplex gainof the channel. In this case, the inputs(t)

and the outputr(t) of the channel are connected by a simple multiplicative relationship.

Since the phase anglesj2π ·cos(γi) · t ·fd change in time, the complex gain of the channel

is time varying. If a pure tone(s(t) = U ) is transmitted through this channel, then the
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received signal would be spread out in frequency, thus it is the shifted version of the

transmitted signal within the interval[−fd, fd]. Due to this spreading, the received signal

r(t), consists several tones at different frequencies interfering at the receiver, vary in time.

Therefore the wireless channel is calledtime selectiveaccording to symbol time. At some

instances the received signal is not attenuated and could appear even enhanced, while at

other time instances the signal is severely attenuated. As aconsequence,h(t) varies in

time.

The time span which the receiver needs to process the incoming envelope indicates

the severity of the time selective behavior of the channel. In general, the processing time

span is represented byN · Ts whereTs denotes the symbol length. If the fade rate of

the time selective process given by the Doppler frequencyfd is larger than the processing

rate given by 1
N ·Ts

, then the fading process is calledtime selective. In contrast, if the fade

rate is much lower than the processing rate,fd · N · Ts ≪ 1, then the fading process

is callednot time selective. These two conditions are also namedfast fadingandslow

fading, respectively.

Now let us consider the impact of delay spread, without the presence of Doppler

spread. For a stationary receiver, the phases of the reflected copies can be assumed con-

stant. So we can consider Equation 2.10 as a mathematical model.

r(t) =
∑

i

Ai · s(t − τi) = h(t) ∗ s(t) (2.10)

In this case the input is related to the output by convolutionwith the complex gain

h(t). Since the phases are constant(but still random), the channel can be modelled in this

case as linear time invariant filter with an impulse responsegiven in Equation 2.11.

h(t) =
∑

i

ai · e−jϕi · δ(t − τi) =
∑

i

Ai · δ(t − τi) (2.11)

The relationship between the inputS(f) and the outputR(f) in the frequency

domain is given by multiplication of the input with the frequency response of the filter,

thecomplex transfer functionH(f). The transfer function is given in Equation 2.12.

H(f) =
∑

i

Ai · e−j2π·f ·τi (2.12)

Since the delaysτi are different for several paths, some frequencies are attenuated
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while the others not. If the delay difference between the paths is very small or even not

existing, then there is no frequency attenuation caused by the delay spread. The severity

of the delay spread can be indicated by the product of the required baseband bandwidth

of the signal (denoted by W, and related to the symbol timeTs) and the delay spread. If

the delay spread is very small compared to the symbol timeTs, then there is no impact on

the received signal(if∆τ · W ≪ 1). In this case the transfer function of the channel does

not attenuates the signal significantly within the bandwidth of the signalW . This time the

fading is calledflat or frequency non selectivebecause there is no signal attenuation for the

utilized frequencies of the channel due to the delay spread.On the other hand if the delay

spread is significant compared to the symbol timeTs, then the channel has a frequency

selective behavior. That is, at some frequencies the received signal is attenuated while

at other frequencies the signal might be enhanced. In this case the phenomenon called

intersymbol interference occurs at the receiver. For instance, if the delay spread is half of

the symbol time, then the signal copies of two consecutivelytransmitted symbols interfere

at the receiver, such that the ’fast’ signal copy of the latter transmitted symbol interferes

with the ’slow’ signal copy of the previous transmitted symbol. In Table 2.1 categories in

order to characterize the fading of a wireless channel depending on the Doppler and delay

spread are provided.

Table 2.2 gives typical ranges for the standard deviation ofthe delay spread. Note

that mean values of the mentioned environments are negligible, because the variation of

delays damage the signal, not a longer or shorter delay.

In practical situations both Doppler and delay spread are present most of the time.

As a consequence a channel can be categorized into four different types, always depending

on the ratios mentioned.

If both kinds of spread are present, then the channel has to bemodelled aslinear

time variant filter(the filter model is necessary due to the delay spread, the time variant

behavior is due to the Doppler spread). In this case input output relationship of the channel

is given by Equation 2.13.

y(t) =
∑

i

Ai · ej2π·νi·t · s(t − τi) = h(t, τ) ∗ s(t) =

∫ ∆τ

0

h(t, τ) · s(t − τ)dτ (2.13)

The impulse response of the channel is given by Equation 2.14.
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Table 2.1. Categories in order to characterize the fading of awireless channel depending

on the Doppler and delay spread

Criteria Category

∆τ
Ts

≪ 1, fd · Ts ≪ 1 not frequency selective (flat), not time selective (slow)

∆τ
Ts

≫ 1, fd · Ts ≪ 1 frequency selective, not time selective (slow)

∆τ
Ts

≪ 1, fd · Ts ≫ 1 not frequency selective (flat), time selective (fast)

∆τ
Ts

≫ 1, fd · Ts ≫ 1 frequency selective, time selective

Table 2.2. Standard deviation of delay spread values for three often referred transmission

environments

Environment τrms

Urban 1 - 25µs

Suburban 0.2 - 2µs

Indoor 25 - 250 ns

h(t, τ) =
∑

i

Ai · ej2π·νi·t · δ(t − τi) (2.14)

In the frequency domain input output relationship is given by Equation 2.15.

Y (f) = H(t, f) · S(f) =

(

∑

i

Ai · ej2π·νi·t · e−j2π·f ·τi

)

· S(f) (2.15)

HereH(t, f) denotes the time variant transfer function and determines the gain

experienced at timet to a frequency component at frequencyf .

2.2.4. First Order Statistics of Fading

In general a received signal consists of a large number of signal copies which

interfere at receive antenna. If all channel coefficients were known at each time instance,

the wireless channel could be seen as a deterministic channel in principle. Due to the

large number of reflection paths this is not possible in practice. Therefore a statistical

description is the only way to characterize at least some properties of the channel.
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Since there is high number of signal paths existing in a usualpropagation environ-

ment, thecentral limit theoremmay be applied to the statistical behavior of the interfering

signal copies at the receiver. If the number of paths tends toinfinity, then the fading can

be modeled by complex white Gaussian process. As a consequence, if Doppler spread is

present and there is high number of signal copies interfering, then the complex gainh(t)

can be modelled as Gaussian random process in time. If delay spread is present, the com-

plex transfer functionH(f) can be modelled as Gaussian random process in frequency. If

both kinds of spread are present, the time variant transfer functionH(t, f) in other words,

the Fourier transform of the time variant impulse response can be modelled as Gaussian

random process in both time and frequency.

Let us consider the complex gain is Gaussian (in the case of flat fading and the

absence of a line of sight component), the probability density function of the complex

gainh(t) is given by Equation 2.16.

p(|h|) =
1

2πσ2
h

· e
− (|h|)2

σ2
h (2.16)

The varianceσ2
h is given by Equation 2.17 wherehr(t) andhi(t) denotes real and

imaginary parts of the complex Gaussian random processh(t) respectively. Also this

process has zero mean.

σ2
h =

1

2
· E(|h(t)|2) =

1

2
· E(hr(t)

2) +
1

2
· E(hi(t)

2) (2.17)

If we change Cartesian coordinates to polar coordinates (h = hr +hi = r · ejθ) by

standard transformation then we obtain the following jointprobability density function in

Equation 2.18.

p(r, θ) =
r

2π · σ2
h

· e
−r2

2σ2
h (2.18)

Sincer andθ are independent, whereθ has a uniform distribution, then the distri-

bution of r is called Rayleigh distribution and probability density function of this distri-

bution is given by Equation 2.19.

p(|h(t)|) = p(r) =
r

σ2
h

· e
−r2

2σ2
h (2.19)

This form of fading is characterized by the absence of a line of sight component,
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which is a very strong and ’fast’ path compared to all other paths. The pdf of this function

is plotted in Figure 2.2. The instantaneous power has to be obtained for determining the
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Figure 2.2. Probability Density Function of the Rayleigh Distribution

actual SNR at the receiver rather than the instantaneous amplitude. This is given by the

squared amplitudez = r2 = |h|2 and the distribution of z is actuallyχ2 distribution with

two degrees of freedom. This is due to the two independent jointly Gaussian random

process of the real and imaginary parts of the signal combining. The probability density

function ofz is determined by Equation 2.20.

p(|h(t)|2) = p(z) =
1

2σ2
h

· e
−z

2σ2
h (2.20)

In the case of existing line of sight component, the distribution of r is no longer

Rayleigh butRician, since one distinct path dominates. In other words it is received much

stronger (in terms of power) than the remaining paths. In such a situation, random multi-

path components arriving at different angles are superimposed on a stationary dominant

signal. At the output of an envelope detector, this has the effect of adding dc component

to the random multipath.

The Rician distribution depends on the ratio between the power of the strong path
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and the power of the remaining paths. Therefore this distribution can characterize many

different line of sight scenarios while the Rayleigh distribution only characterize the non-

line of sight situation.

The probability density function of the Rician distributionis given by the Equa-

tion 2.21.

p(r) =











r
σ2

h

· e
− (r2+A2)

2σ2
h · I0(

Ar
σ2

h

) A ≥ 0, r ≥ 0

0 r < 0
(2.21)

The parameterA denotes the peak amplitude of the dominant signal andI0(·)
is the zero-order modified Bessel function of the first kind. The Rician distribution is

often described in terms of a parameterK which is defined as the ratio between the

deterministic signal power and the variance of the multipath. This parameter is given

by K = A2/(2σ2
h), or in terms of dB

K(dB) = 10 log(
A2

2σ2
h

)dB (2.22)

The parameterK is known as the Rician factor and completely specifies the Ri-

cian distribution. AsA −→ 0, K −→ −∞ dB, and as the dominant path decreases in

amplitude, the Rician distribution degenerates to a Rayleighdistribution.

For small number of paths (< 5), the central limit theorem does not hold any

more, so Gaussian process assumption does not fit adequately(Cavers 2000). In this case

the amplitude ofr of the received signal can be modelled byNakagamidistribution. The

instantaneous powerz of the signal has aΓ distribution. Addition to this by varying a

variablem the Nakagami distribution can take into account the absenceor presence of a

line of sight. Also the Nakagami distribution is more convenient for analytical work. For

detailed derivation and discussion refer to (Cavers 2000).

As already mentioned, the Rayleigh distribution occurs in most non-line of sight

settings, which are encountered mostly with indoor scenarios as well as with microcells

in urban areas. Rician distribution are seen on the opposite environments where Rayleigh

fading occurs (refer to (Cavers 2000)). However, by considering Rayleigh fading, one is

working with the worst possible scenario, since the Rician fading is less destructive and

the performance of the communication system is better.
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2.2.5. Second Order Statistics of Fading

In order to describe a Gaussian random process it is sufficient to know its mean

and its autocorrelation function, orpower spectrumwhich is the Fourier transform of

autocorrelation function. We have already shown the mean implicitly in the previous

Section. In this Section we desire to obtain the second orderdescription of the process in

case of the Doppler spread as well as in the case of delay spread.

In the case of Doppler spread only, wheres(t − τi) ≈ s(t), the received signal

r(t) is determined by the product of the transmitted signals(t) and the complex gain of

the channelh(t) where the complex gain of the channel is time variant. If a pure tone

is transmitted through the channel then the received signalconsists of multiple tones at

frequencies in the vicinity of the carrier with a maximum shift of the Doppler frequency

fd.

Let us consider a mobile receiver moving with the velocityv in a multipath envi-

ronment. Each Doppler frequencyν is given by Equation 5.7.

ν = fd · cos(γ) (2.23)

Generallyν varies from+fd, resulting from reflected paths in front of the receiver,

to−fd, resulting from reflected paths behind the receiver (behindand in front relate to the

direction of movement of the receiver). Sincecos(·) is an even function, the Doppler shift

frequency varies from a scattering angle of−γ or γ. If we differentiate Equation 5.7 then

we obtain the relationship between (small) ranges ofν and of the angleγ in Equation 2.24

dν

dγ
= fd · sin(γ) = fd ·

√

1 − cos(γ)2 = fd ·

√

1 −
(

ν

fd

)2

(2.24)

Assume that there is high number of scatterers, therefore the power received from

differential angledγ is given by the product of power densityP (γ) and differential angle

dγ. Thus we can relate the received powerSh to the Doppler shift frequencyν and with

this we obtain the receivedpower spectrumSh(ν).

Sh(ν) =
P (γ) + P (−γ)

fd ·
√

1 −
(

ν
fd

)2
(2.25)

If we consider the special case ofisotropic scattering, implying that the power
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received from different angles is equivalent (P (γ) =
σ2

h

2π
). In this case the Equation 2.25

turns into Equation 2.26.

Sh(ν) =
(σh)

2

π · fd

· 1
√

1 −
(

ν
fd

)2
(2.26)

This is well known U shaped spectrum shown in Figure 2.3 , and it is often referred

to asJakes’ spectrum.
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Figure 2.3. Power spectrum for the isotropic scattering case

We can easily derive the autocorrelation function of the complex channel gain by

taking inverse Fourier transform of the power spectrum given in Equation 2.27

rh(τ) =

∫ fd

−fd

Sh(ν) · ej2π·ν·τdτ =
σ2

h

2π
·
∫ π

−π

ej2π·fd·cos(γ)τdγ

= σ
h
2J0(2πfdτ) = σ

h
2J0(2π

x

λ
) (2.27)

The functionJ0(·) denotes the zeroth-order Bessel function of the first kind. Equa-

tion 2.27 relates the autocorrelation function which depends on time differenceτ with a

space differencex.
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Table 2.3. Coherence time values for different carrier frequencies at various speeds

Carrier Frequency Tc@1 m/s Tc@10 m/s Tc@20 m/s Tc@100 m/s

1 MHz 68.2 s 6.82 s 3.41 s 0.68 s

100 MHz 0.68 s 68.2 ms 34.1 ms 6.82 ms

1 GHz 68.2 ms 6.82 ms 3.41 ms 0.68 ms

2.4 GHz 28.1 ms 2.81 ms 1.4 ms 0.28 ms

5.4 GHz 12.5 ms 1.25 ms 0.62 ms 0.12 ms

10 Ghz 6.82 ms 0.68 ms 0.34 ms 68.2µs

60 Ghz 1.12 ms 0.11 ms 56.2µs 11.2µs

If we assume that the scatterers at different Doppler shiftsν are uncorrelated, then

h(t) is in fact uncorrelated. This assumption is called thewide sense stationary (WSS)

assumption and given in Equation 2.28.

E[h(t)h
∗
(t − τ)] = rh(τ) (2.28)

From the autocorrelation function, one can derive a measurein time characterizing

the channel encountered. This is called thecoherence timeand indicates the time span

that channel roughly stays constant. One mathematical definition of the coherence time

is determined by Equation 2.29 which equals an autocorrelation value of 0.98 (Cavers

2000). But this definition is somewhat subjective and other definitions can be found in

literature (Proakis 2001), (Rappaport 1999), (Steele 1992).

Tc =
1

2π · νrms

=
1√
2πfd

(2.29)

In (2.29)νrms denotes the standard deviation of the power spectrumSh(ν) given

by Equation 2.26. For the case of isotropic scattering the variance isνrms = fd√
2
. Typical

values for the coherence time are given in Table 2.3. As long as the required bandwidth

is much smaller than the carrier frequency, it has no effect.If the required bandwidth

is not significantly smaller compared to the carrier frequency, the expected coherence

time equals the coherence time of the highest frequency involved in the communication

scheme.
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In the presence of only delay spread the wireless channel canbe modeled as linear

time invariant filter. Thus the received signaly(t) is determined by the convolution of the

transmitted signals(t) and the channel impulse responseh(t). Accordingly, the received

signal in the frequency domain is given by the product of the Fourier transform of the

transmitted signal and the transfer functionH(f) of the channel. We desire to obtain a

spaced frequency correlation function ofH(f), that is a function giving us the correlation

between the transfer function at different frequencies. Ingeneral this function is given by:

rH(f, f − ∆f) =
1

2
· E[H(f) · H∗

(f − ∆f)] (2.30)

If we substitute Equation 2.12 into Equation 2.30 then we have

rH(f, f − ∆f) =
1

2
· E
[

∑

i

∑

k

AiA
∗
k · e−2πjf(τi−τk) · e−2πj∆fτk

]

. (2.31)

If scatterers at different delays are uncorrelated, this autocorrelation function de-

pends only on the frequency difference∆f . This assumption is called theuncorrelated

scatterers (US) assumptionof wireless channels.

1

2
· E
[

∑

i

∑

k

AiA
∗
k

]

=
1

2
· E
[

∑

ki

AiA
∗
k

]

= σi (2.32)

Hereki indicates the scatterers with the same delayτi. Using this identity Equa-

tion 2.31 turns into

rH(∆f) =
∑

k

(σk)
2 · e−2πj∆fτk (2.33)

If there are a lot of scatterers then this summation becomes adensity depending

on the delayτ . This density is called thepower delay profilegiven by

rH(∆f) =

∫ ∞

0

P (τ) · e−2πj∆fτ · dτ. (2.34)

Exponential profile, which is one idealized but often used function for the power delay

profile is given by

P (τ) =
(σh)

2

τrms

· e− τ
τrms (2.35)

(τrms)
2 is the delay variance and the square root of this, the standard deviation of

the delay, is an often used measure for the delay spread of a propagation environment.

The delay variance is obtained by
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Table 2.4. Coherence Bandwidth ranges for three typical environments

Environment Wc

Urban 6.4 kHz - 160 kHz

Suburban 80 kHz - 800 kHz

Indoor 0.64 MHz -6.4 MHz

τ 2
rms =

1

σ
h
2

·
∫ ∞

0

(τ − τm)2 · P (τ)dτ. (2.36)

τm denotes the mean delay and is given by

τm =
1

σ2
h

·
∫ ∞

0

τ · P (τ)dτ. (2.37)

For the exponential power delay profileτrms equalsτm.

From the autocorrelation function of the transfer functionof the wireless chan-

nel with uncorrelated scatterers a measure in frequency canbe derived characterizing the

channel encountered. The meaning of this measure is relatedto the coherence time and

is called thecoherence bandwidth. The coherence bandwidth measures the frequency

spacing roughly for which the channel does not change significantly. Again the exact

mathematical definition is somewhat subjective. One definition of the coherence band-

width is given in (Cavers 2000)

Wc =
1

2πτrms

. (2.38)

Other definitions can be found in (Proakis 2001), (Rappaport 1999), (Steele 1992).

In Table 2.4 ranges of the coherence bandwidth are given for different environ-

ments. Note that the carrier frequency does not affect the coherence bandwidth. If the

coherence bandwidth is much smaller than the required bandwidth for transmission, the

system will suffer from intersymbol interference (ISI), nomatter at which carrier fre-

quency the system is working. Therefore, it is much easier tocommunicate at high data

rates in indoor scenarios due to the large coherence bandwidth than in urban environ-

ments, here ISI degradates the performance severely. Now let us consider the case where

both effects present at the same time. First recall the inputoutput relationship in the case
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of many scatterers given by Equation 2.8.

r(t) =

∫ ∞

0

∫ fd

−fd

̺(ν, τ) · ej2π·νi·t · s(t − τi) · dνdτ

If we observe the output in the case of a single carrier input at frequencyf , where

s(t) = e2πj·f ·t, we obtain the output given by:

r(t) =

∫ ∞

0

∫ fd

−fd

̺(ν, τ) · ej2π·νi·te−2πjft · e−2πjfτ · dνdτ = e2pijft · H(t, f) (2.39)

HereH(t, f) is the time variant transfer function and determines the complex gain

at frequencyf at timet. Since both delay and Doppler spread are now present, we want

to obtain a time-frequency correlation function ofH(t, f). That is a function representing

the correlation between the complex gain at timet and at frequencyf , compared to the

complex gain at timet + ∆t and at frequencyf + ∆f .

Considering the WSS assumption (scatterers at different Doppler shifts are un-

correlated) and the US assumption (scatterers at differentdelays are uncorrelated), this

desired function only depends on the delay and the frequencydifferences present.

rH(∆t, ∆f) =

∫ ∞

−∞

∫ ∞

−∞
S̺(ν,τ) · e2πjν∆t · e2πj∆fτdνdτ. (2.40)

In this equationS̺(ν,τ) is called thedelay-Doppler power density functionor also

the scattering function. It represents the power density of the environment at Doppler

shift ν and delayτ . This function is related to the power delay profile by

P (τ) =

∫ ∞

−∞
S̺(ν, τ)dν. (2.41)

It is related to the Doppler spectrum by integrating the scattering function in the delay

domain.

In order to determine the functional behavior of the scattering function assume

that the Doppler spectrum is not linked to the delay profile. Then the scattering function

is called to beseparable.

S̺(ν, τ) =
S̺(ν, τ) · P (τ)

σ2
h

(2.42)

With this assumption, the Equation 2.40 becomes simpler andturns into

rH(∆t, ∆f) =
rh(∆t) · rH(∆f)

σ2
h

. (2.43)
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CHAPTER 3

SIMULATION MODELS FOR FADING CHANNELS

It is important to simulate communication systems in software for system design

and verification. Simulation offers cost effective and timesaving alternative to real time

testing in the field. The prime requirement of the simulationset-up is to capture the fading

effects created by a radio channel. As a result, efforts havebeen made to develop efficient

models to simulate the actual radio propagation environment in software and test various

communications algorithms. There are several methods in the communications literature

to simulate Rayleigh fading. This methods can be based on either sum of sinusoids prin-

ciple or filtering of the white Gaussian noise. Our proposed simulation model is also

based on filtering of the white Gaussian noise. Before we discuss our contributions in this

area, it is necessary to understand different simulation philosophies commonly employed

to simulate fading channels. Therefore, we provide an overview of different simulation

techniques in this chapter. Specifically, we discuss the sumof sinusoids models and dif-

ferent kinds of filtered noise models along with their pros and cons.

3.1. Sum of Sinusoids Models

Complex channel envelope of multipath fading channel can be represented as a

sum of homogeneous wave components. Each homogenous component is represented by

a complex sinusoid with certain amplitude, frequency, and phase. The overall channel

waveform is the sum of several sinusoids. Therefore, this channel description is often

called a ”sum-of-sinusoids” model. Being a natural representation of the channel wave-

form, several sum of sinusoids models have been presented inthe past to simulate wireless

channels. Rather than simulating the channel by directly applying the Clarke’s reference

model (Clarke 1968), specialized sum of sinusoids models areproposed to efficiently

simulate the channel by using a finite number of sinusoids. The philosophy of sum of si-

nusoids modeling has been made popular by the pioneering work of Jakes (Jakes 1974),

which is discussed below.

For convenience, first we discuss the Clarke’s reference model. Clarke’s model
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defines the complex channel gain under non-line of sight, frequency flat fading, and 2-D

isotropic scattering assumptions as (Clarke 1968)

h(t) =

√

2

N

N
∑

n=1

ej[2πfdt cos(αn)+φn] (3.1)

where N denotes the number of propagation paths,φn ∼ U [−π, π) andαn ∼ U [−π, π)

are the random phase and angle of arrival of thenth multipath component respectively,

andfd is the maximum Doppler frequency due to the mobility of the receiver. To simulate

the wireless channel, this sum of sinusoids model can be applied directly by generating

the random variables involved in the model. However, this high degree of randomness

is not desirable for efficient simulation. Therefore Jakes proposed the following sum of

sinusoids model:

hI(t) =
√

2 cos(2πfdt) · 2
M
∑

n=1

cos

(

2πn

M

)

cos

(

2πfd cos

[

2πn

4M + 2

]

t

)

(3.2)

hQ(t) = 2
M
∑

n=1

sin

(

2πn

M

)

cos

(

2πfd cos

[

2πn

4M + 2

]

t

)

(3.3)

wherehI(t) andhQ(t) denotes the in-phase and quadrature phase components of thecom-

plex channel gain and M denotes the number of sinusoids. A detailed discussion about

derivation of the model parameters can be found in (Jakes 1974), (Sẗuber 2001). The

intuition behind this model is the fact that under 2-D isotropic scattering, the symmetry in

the environment can be exploited to reduce the number of sinusoids. For instance, while

the Clarke’s model distributes the angles of arrival over[−π, π) resulting in negative as

well as positive Doppler frequencies in the model, the Jakes’ model simulates only the

positive Doppler frequencies to reduce the number of sinusoids M. The amplitudes of

these sinusoids, i.e.,cos(αn) and sin(αn) are chosen to produce zero cross-correlation

between the in-phase and quadrature components, a constraint imposed by the Clarke’s

model to generate Rayleigh faded envelope.

The Jakes’ model has been the de-facto simulation model for along time. How-

ever, recent studies have highlighted several drawbacks (Young and Beaulieu 2001),

(Zheng and Xiao 2002) of this model. It was shown in (Young andBeaulieu 2001)

that the fading signals which are produced by classical Jakes simulator are not wide-sense

stationary (WSS). Also, since all the parameters in the modelare fixed (deterministic),
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the channel gains simulated in each simulation run is identical. Therefore, statistical av-

eraging or Monte Carlo simulation results cannot be obtainedwhile computing metrics

such as bit error rate (BER).

Several statistical methods have been proposed by Zheng andXiao (Xiao and

Zheng 2002), (Zheng and Xiao 2002), (Zheng and Xiao 2003), (Zheng, et al. 2003)

for wireless channels to remove this drawback. These methods differ from one another in

terms of the model parameters and therefore they have different time-average properties.

In this thesis we simulate and make performance and complexity analysis of one of the

method’s proposed in (Zheng and Xiao 2002). With this methodthe normalized low-pass

discrete Rayleigh fading process is generated by

h[n] = hI [n] + jhQ[n], (3.4a)

hI [n] =
1√
Ns

Ns
∑

k=1

cos(2πfmn cos αk + φk) (3.4b)

hQ[n] =
1√
Ns

Ns
∑

k=1

cos(2πfmn sin αk + ϕk) (3.4c)

with

αk =
2πk − π + θ

4Ns

, k = 1, 2, · · · , Ns (3.5)

whereφk, ϕk andθ are statistically independent and uniformly distributed on [−π, π) for

all k andNS denotes the number of sinusoids.

3.2. Filtered Gaussian Noise Models

Ultimately, the goal of any simulation model is to reproducethe channel proper-

ties. Therefore, in contrast to sum of sinusoids models, filtered Gaussian noise models

are adapted to simulate the channel properties by means of signal processing techniques

without considering the underlying propagation mechanism. Instead of adding sinusoids

to generate fading, these models filter Gaussian noise to generate the complex channel

gains. The underlying principle is that on filtering Gaussian noise through appropriately

designed filters, the channel power spectral density (psd orthe Doppler spectrum) can be

simulated, thereby capturing the important first and secondorder fading statistics.

To understand the working of filtered noise models, first we discuss an important

result obtained from the linear time invariant filtering theory. Given a filter with frequency
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responseH(f), if a signalx(n) with psdPxx(f) is filtered through this filter, the output

y(n) has psd given by

Pyy(f) = Pxx(f)|H(f)|2. (3.6)

To generate the Gaussian in-phase or quadrature componentsof the complex chan-

nel coefficients, each having a Doppler spectrumPyy(f) = S(f), one can filter a white

Gaussian random process with psd ofN0/2 through a filterH(f) whose frequency re-

sponse is chosen to be

H(f) =

√

2

N0

S(f). (3.7)

Then, the output random process will also be Gaussian with a psd ofS(f), thereby

reproducing the properties of the complex Gaussian channel. The next goal in the sim-

ulation model is to implement the filterH(f). We describe three such implementation

schemes below - the Inverse Discrete Fourier Transform (IDFT) filter model (Young and

Beaulieu 2000), the Autoregressive (AR) filter model (Baddour and Beaulieu 2005) and

our proposed fading filter design. The IDFT filter method is designed in the frequency

domain while our proposed filter design and the Autoregressive model are designed in

time domain to provide an approximation of the Doppler spectrum that we desire.

3.2.1. IDFT Filter Design Method

Since it is easy to discuss the IDFT operation in discrete time, and our ulti-

mate goal is to simulate discrete time waveforms, we deal with discrete time-domain

sequences in this section. A block diagram of this method is shown in Figure 3.1. In

Figure 3.1. Block Diagram of the IDFT Method

this method, the IDFT operation is applied to complex sequences of independent, nor-
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mally distributed random numbers, each sequence multiplied by suitable filter coeffi-

cients. To generate a discrete time sequencey[n] of N complex Gaussian variables with a

given Doppler spectrum, the Doppler spectrum is sampled at Nequi-spaced frequencies

fk = (kfs)/(N), k = 0, 1, . . . , N − 1 wherefs is the sampling frequency. The filter

coefficients can be determined by Equation (3.8):

F [k] =


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









0 k = 0,

√

1

2
√

1−( k
Nfm

)2
k = 1, 2, ..., km − 1,

√

km

2
[π
2
− arctan( km−1√

2km−1
)] k = km,

0, k = km + 1, ..., N − km − 1,

√

km

2
[π
2
− arctan( km−1√

2km−1
)] k = N − km,

√

1

2
√

1−( N−k
Nfm

)2
k = N − km + 1, ..., N − 1.

(3.8)

where N denotes the number of symbols andkm = ⌊(fmN)⌋. In addition, two sequences

A[k] andB[k], each having N independent and identically distributed (iid) real Gaussian

random variables with zero mean and varianceσ2 are generated. Then, the desired signal

y[n] is obtained as

y[n] = IDFT{A[k]F [k] − jB[k]F [k]}. (3.9)

3.2.2. Autoregressive Filter Model

The AR model imposes an all-pole structure on the filterH(f) and determines

the AR filter coefficients in the time-domain by using the knowledge of channel auto-

correlation function. However, it must be noted that the underlying principle of filtering

Gaussian noise to produce an output with the desired psd remains the same.

Autoregressive models are generally used to approximate discrete-time random

processes. This is due to the simplicity of computing of their parameters and due to

their correlation matching property. Letx[n] be a white Gaussian random process filtered
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through apth order (p poles) AR filterH(z) = 1/Ak(z) = 1/(1 +
∑p

k=1 akz
−1). Then,

the outputy[n] is given by the difference equation

y[n] = −
p
∑

k=1

akx[n − k] + x[n]. (3.10)

The AR model parameters are the filter coefficients{a1, a2, . . . , ap} and the vari-

anceσ2
p of the driving noise processx[n]. The corresponding power spectral density of

the AR(p) process is given by (Baddour and Beaulieu 2005)

Syy(f) =
σ2

p

|1 +
∑p

k=1 ake−j2πfk|2 (3.11)

Although the Doppler spectrum models proposed for mobile radio channel are not

rational, an arbitrary spectrum can be closely approximated by a sufficiently large AR

model order. The basic relationship between the desired model autocorrelation function

Ryy[k] and the AR(p) parameters is given by:

Ryy[k] =







−
∑p

m=1 amRyy[k − m], k ≥ 1

−∑p
m=1 amRyy[k − m] + σ2

p, k = 0.
(3.12)

In the matrix form this becomes fork = 1, 2, · · · , p

Ryya = −v, (3.13)

where

Ryy =

















Ryy[0] Ryy[−1] · · · Ryy[−p + 1]

Ryy[1] Ryy[0] · · · Ryy[−p + 2]
...

...
. . .

...

Ryy[p − 1] Ryy[p − 2] · · · Ryy[0]

















,

a = [a1, a2, · · · , ap]
T ,v = [Ryy[1], Ryy[2], · · · , Ryy[p]]T , and

σ2
p = Ryy[0] +

p
∑

k=1

akRyy[k]. (3.14)

Given the desired autocorrelation sequence, the AR filter coefficients can be determined

by solving the set ofp Yule-Walker equations. These equations can in principle besolved

by the Levinson-Durbin recursion. However, an exact solution to the Yule-Walker equa-

tion does not exist if the autocorrelation matrixRyy is non-singular and therefore non-

invertible. In such cases, a solution is obtained by using a technique called diagonal
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loading or matrix stabilization, where we artificially introduce some noise variance into

Ryy to make it stable, non-singular and thus invertible matrix.Then AR fading filter

coefficients can be obtained by:

ak = −(Ryy + ǫI)−1
v, (3.15)

whereI is ap × p identity matrix andǫ 6= 0 is a suitable diagonal loading parameter that

renders(Ryy + ǫI) non singular and invertible.

3.2.3. Our Proposed Fading Filter Design

A straightforward method to simulate a faded signal is to amplitude modulate the

carrier signal with a low-pass filtered Gaussian noise source as shown in Figure 3.2. If the

Figure 3.2. Faded signal generator that uses low-pass filtered white complex Gaussian

noise

Gaussian noise sources have zero-mean then this method produces a Rayleigh faded en-

velope (Sẗuber 2001). In order to obtain time varying frequency selective fading channel

we must have a bank of these fading filters where each filter generates the corresponding

fading channel tap. A fading filter with impulse responseg(k) can be designed so that

its output spectral density is an approximation to theoretical spectral density of the com-

plex envelope of the faded signalS(f). Consider the elementary first order filter transfer

functionG1(s), and the second order filter transfer functionG2(s) where

G1(s) =
wx

s + wx

, (3.16)

and

G2(s) =
w2

x

s2 + wxs
Q

+ w2
x

. (3.17)
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Then we can have fading filter continuous time transfer functions with higher orders (of

orderγ), Gγ(s), that are given by

Gγ(s) =







G
γ/2
2 (s), if γ even,

G1(s)G
(γ−1)/2
2 (s), if γ odd,

(3.18)

whereG1(s) andG2(s) are as given by (3.16) and (3.17) respectively, and the selection

of Q is such that there is a pre-specified frequency response level at w = wx rad/sec; for

example for the third-order filter ifQ =
√

10 then the magnitude ofG(·) will have a gain

of 7dB atw = wx (10dB gain from the second order filter and -3dB from the first order

part making the overall gain of 7dB). In order to find the parameters of the fading filter

transfer function,Gγ(s), we will first set the filter orderγ andQ. Then definingS(f ; ǫ),

as an approximation to the theoretical spectral density of (Jakes 1974), by

S(f ; ǫ) =







σ2

2πfd

√
1−(f/fd)2

|f | ≤ fd − ǫ

0 else
(3.19)

whereǫ ∈ R
+ is a small positive real number, which can be taken as multiples of the

smallest positive number the computing platform that can handle. Then we solved the

numerical optimization problem, for fixedγ, fd andQ,

wx = arg min ‖S(f ; ǫ) − |Gγ(j2πf)|2‖. (3.20)

The result of this numerical optimization (3.20) gives the minimizer of the norm of the

distance between the modified theoretical spectral densityand the theoretical fading fil-

ter spectrum. In Table 3.1 ratio ofwx/wd with respect to various filter orders and desired

peak atwx = wd is tabulated. Theoretical and approximate spectral density, where the ap-

proximate spectral density is for the output of the filterG3(s), are provided in Figure 3.3.

For the transfer functions provided in thes-domain, we can use thebilinear trans-

form to getGγ(z) with an ARMA(γ,γ) model, orimpulse invariance methodto get a

Gγ(z) with an AR(γ) model (all pole filter), where

Gγ(z) =

∑γ
k=0 gM

k z−k

1 −
∑γ

k=1 gA
k z−k

(3.21)

with {gA
k }γ

k=1, {gM
k }γ

k=0 are the auto-regressive and moving-average filter taps, of the

ARMA(γ,γ) model, respectively. The generated Rayleigh fading process has an auto-
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Figure 3.3. Theoretical and approximate spectral density (for the filterG3(s))

Table 3.1. Ratio ofwx/wd tabulated with respect to various filter orders and desired peak

(dB) atwx = wd

Filter Order Desired Peak (dB) atw = wx

γ 10 15 20

2 1.0200 1.0055 1.0025

3 1.0152 1.0060 1.0017

4 1.0668 1.0401 1.0247

5 1.0668 1.0413 1.0228
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correlation function,Rxx[n], which can be found by directly using Wiener-Khinchine

theorem (Proakis and Manolakis 2007). That is,

Rxx[n] = σ2g[n] ∗ g[−n] (3.22)

whereσ2 is the variance of the complex zero-mean white Gaussian noise, andg[n] =

Z−1(Gγ(z)) is the discrete time filter impulse response and as given as the inverseZ-

transform of the transfer functionGγ(z).

3.2.4. Quantized Filter Application of Proposed Filter Design

Hardware implementations can require filters to use minimumpower, generate

minimum heat, and avoid computational overload in their processors. Meeting these con-

straints often requires the use of quantized filters.

Because of finite signal lengths and the finite memory of computer processors,

only a finite set of quantized sequences is possible. Sampling and quantization round or

truncate signal values within the finite set of possibilities. Quantized samples are repre-

sented by a group (word) of zeros and ones (bits) that can be processed digitally. The finer

the quantization, the larger the number of bits in the sampleword.

Like sampling, improper quantization leads to loss of information. Unlike sam-

pling, however, no matter how fine the quantization, the effects are irreversible, since word

lengths must be finite. Finite word lengths appear as nonlinear effects (such as overflow

and limit cycles) and can make systematic treatment of quantization extremely difficult.

Quantization noise can be described in statistical terms, and is usually considered only in

the final stages of design.

Before the application of quantized filtering it is necessaryto understand fixed

point arithmetic. Hence, we provide a short overview about fundamental concepts of

fixed point arithmetic.

3.2.4.1. Fixed Point Arithmetic

One can specify how numbers are quantized using fixed-point arithmetic. The two

most important parameters are:

• Word lengthw in bits
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• Fraction lengthf in bits

The fraction length is the number of bits between the binary point and the least-

significant bit.

Where you place the binary point determines how fixed-point numbers are inter-

preted. For example, for a signed (twos complement) fixed-point number, 10.110 repre-

sents−2 + 2−1 + 2−2 = −1.25.

A fixed-point quantization scheme determines the dynamic range of the numbers

that are used. Numbers outside this range are always mapped to fixed-point numbers

within the range when you quantize them. Theprecisionis the distance between succes-

sive numbers occurring within the dynamic range in a fixed-point representation.

• For a signed fixed-point number with word length w and fraction length f, the dy-

namic range is from−2w−f−1 to 2w−f−1 − 2−f .

• For an unsigned fixed-point number with word length w and fraction length f, the

dynamic range is from 0 to2w−f − 2−f .

• In either case the precision is2−f .

When you quantize a number outside of the dynamic range,overflowsoccur.

Overflows are more frequent with fixed-point quantization than with floating-point quan-

tization, because the dynamic range is less for equivalent word lengths. Overflows can

occur when you create a fixed-point quantized filter from an arbitrary floating-point de-

sign. You can eithernormalizeyour coefficients (and introduce a corresponding scaling

factor for filtering) to avoid overflows, or elsesaturateor wrap.

3.2.4.2. Quantized Filter Application Results

In this section, we implement our proposed ARMA(3,3) filter asa fixed-point

filter. Both fixed point filters and single precision floating point filters are referred to as

quantized filters. We use MATLAB Filter Design Toolbox to implement the fixed-point

scheme. After determining the filter coefficients of our proposed filter, we construct the

discrete time filter objecthd by evaluating the MATLAB scripthd = dfilt.df2(b,a). This

script returns a discrete-time, direct-form II filter object hd, with numerator coefficients

b and denominator coefficientsa. To create the fixed-point direct-form II filter, we must
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change theArithmeticproperty setting forhd to fixed-point arithmetic by evaluating this

MATLAB script set(hd,’Arithmetic’,’fixed’).

There are several parameters for fixed-point filter. First weconcentrate on the

coefficient word length and fraction length (scaling). Thenwe compare the magnitude

responses for both the quantized filter and the corresponding reference filter. To deter-

mine the number of bits being used in the fixed-point filterhd, one must look at the

CoeffWordLengthproperty value. To look at the coefficient word length, MATLAB script

get(hd,’CoeffWordLength’)must be evaluated and to look at the fraction length, MAT-

LAB script get(hd,’NumFracLength’)must be evaluated. IfCoeffWordLengthvalue is 16

andNumFracLengthvalue is 21, this means thathd uses 16 bits to represent the coef-

ficients, and the least significant bit (LSB) is weighted by2−21. 16 bits is the default

coefficient word length the filter uses for coefficients, but the2−21 weight has been com-

puted automatically to represent the coefficients with the best possible precision, given

the coefficient word length value.

In the Figure 3.4, the magnitude responses for the various versions of fixed-point

filter hd are plotted. So we can compare the effects of changing the coefficient word

length. Magnitude responses of all versions of the fixed-point filter, except 10 bits version,

and magnitude response of the reference filter are nearly thesame. Peak value of the

magnitude response of the 10 bits version is 2-3 dB less than the other versions of the

fixed-point filter and the reference filter. But comparison of the magnitude responses does

not ensure the performance of the fixed-point filter during filtering.

To evaluate the accuracy of the fixed-point filter, we filter complex white Gaussian

noise with both filters to generate the Rayleigh fading sequence. When evaluating the

accuracy of fixed-point filtering, three quantities for comparing between the quantized

filter and the reference filter must be considered:

• The ideal filtered output: This is the goal. It is computed by using the reference

coefficients and double-precision floating-point arithmetic.

• The best-you-can-hope-for filtered output: This is the bestone can hope to achieve.

It is computed by using the quantized coefficients and double-precision floating-

point arithmetic.

• The filtered output can actually be attained with the quantized filter: This is the
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output computed by using the quantized coefficients and fixed-point arithmetic.

To represent the complex white Gaussian noise as a fixed-point object, we evaluate

the MATLAB script,xin = fi(x,true,’WordLength’,’FractionLength’). We can compute the

actually attained filtered output by filtering this fixed-point object through the quantized

filter and we can compute the best-you-can-hope-for filteredoutput by casting the fixed-

point filter to double-precision and filtering this fixed-point object with double-precision

floating-point arithmetic. In this case we must also cast theinput dataxin to double format

to use it with the double-precision filter. We can compare these two outputs by taking the

norm of the difference of them. If we select the ’WordLength’of the fixed-point input

equals to 16 bits, ’FractionLength’ of the input equals to 21bit, and filter1000 samples

through fixed-point filter with 16-bit quantized coefficients, in two aforementioned differ-

ent case then the norm of the difference of the two outputs equals to1.5649 × 10−4. This

means that the accumulator is introducing neglible quantization error. For completeness,

we must compare the ideal filtered output to the actually attained filtered output. If we

take the norm of the difference of the ideal filtered output and the actually attained output,

when the ’WordLength’ of the fixed-point input equals to 16 bits and the ’FractionLength’

of the input equals to 21 bits, this norm equals to0.2637. When the ’WordLength’ of the

fixed-point input equals to 14 bits and the ’FractionLength’of the input equals to 18 bits,

then the error equals to0.7964. But if we select the ’WordLength’ of the fixed-point input

equals to 10 bits and the ’FractionLength’ of the input equals to 13 bits, and we also select

the coefficient wordlength equals to 10 bits, then the norm ofthe difference of the attained

and ideal filtered outputs equals to1.5083. In this case, 10-bit quantized coeffients is not

enough the represent the filter output accurately. The errorin 16 bits case is rather small,

but error in 14 bits case and especially in 10 bits case are bigger than 16 bits case. By

implementing 10-bits fixed-point filter, we can not achieve enough accuracy.

In Figure 3.5 actually attained outputs of 10 bits, 14 bits,16 bits and ideal filtered

output are provided for comparison. Also in Figure 3.6, Figure 3.7 and Figure 3.8, the

Rayleigh faded outputs of the 10-bits case and 24-bits case are given respectively.
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Figure 3.4. Magnitude responses for the various versions ofquantized filter and the refer-

ence filter
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Figure 3.5. The actually attained outputs of 10,14,16 bits case and the ideal output
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Figure 3.6. The filtered outputs for 10-bits case
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Figure 3.7. The filtered outputs for 14-bits case
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Figure 3.8. The filtered outputs for 16-bits case

3.3. Performance and Complexity Evaluation

In this section, we evaluate the suitability of our proposedfilter design technique

for producing high-quality Rayleigh fading sequence. Comparisons of our proposed

method provided in Section 3 are made to a WSS-improved Jakes’model (Zheng and

Xiao 2002), AR fading filter approximation (Baddour and Beaulieu 2005), and to the

IDFT technique (Young and Beaulieu 2000) which was shown in tobe the most efficient

and highest quality method among different Rayleigh fading generator design methods.

First, the quantitative measures that are used for this comparison are described.

3.3.1. Quantitative Measures

Quantitative quality measures for generated random sequences have been pro-

posed in (Young and Beaulieu 2003). Two quality measures havebeen defined as follows.

The first measure, called themean basis power margin, is given by

Gmean =
1

σ2
XL

trace{CXC−1

X̂
CX} (3.23)
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and the second measure, themaximum basis power margin, is defined as

Gmax =
1

σ2
X

max{diag{CXC−1

X̂
CX}} (3.24)

In (3.23) and (3.24),σ2
X is the variance of the reference(ideal) distribution,CX̂ is the

L × L covariance matrix of any length-L subset of adjacent samples produced by the

stationary random sequence generator, andCX represents the desired covariance matrix

of L ideally distributed samples.

3.3.2. Performance Comparisons

Before evaluating the quality measures, we demonstrate the BER simulation re-

sults for both binary shift keying (BPSK) and quadrature phase shift keying modulation

schemes in Rayleigh channel generated by our proposed filter,AR(20) filter, and Jakes’

model. All of the results are calculated by using106 channel samples. These results are

presented in Figure 3.9 and in Figure 3.10.
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Figure 3.9. BER for BPSK modulation in Rayleigh channel

As seen on the Figure 3.9 and Figure 3.10, BER performances of all Rayleigh

fading sequence generators are nearly the same; so we can only compare this generation

methods in terms of the quality of the generated autocorrelation sequences and computa-

tional complexity.
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Figure 3.10. BER for QPSK modulation in Rayleigh channel

The quality measure comparison results, which are presented in Table 3.2, com-

pare the quality of the real part of the simulator outputs. Similar results were achieved

for the imaginary sequences and these are omitted for brevity. Perfect Rayleigh fad-

ing sequence generation method corresponds to 0 dB for both measures. In all cases,

the reference autocorrelation function is (2.27) with a normalized maximum Doppler of

fd · Ts = 0.05 where1/Ts denotes the sample rate. An autocorrelation sequence length

of 200 was considered for evaluation of all theoretical results. For the empirical results,

time average correlations were calculated based on220 generated samples. The computed

quality measures were then averaged over 50 independent simulation trials. Plots of the

empirical autocorrelation functions of the AR model and ourproposed Rayleigh fading

generator via AR models are shown in Figure 3.11 and the plotsof the IDFT method

and our proposed filter generator via ARMA models are shown in Figure 3.12. The re-

sults show that the IDFT method generally provides closer the highest quality Rayleigh

samples. The AR model provides a more precise match to the desired autocorrelation

function as the order of the model used increases. But our proposed filter design method

provides same accuracy with much lower order models. Our ARMA(3,3) generator has

a significant advantage over AR(20) generator. Similar accuracy can be achieved by the

WSS sinusoidal generator when a large number of sinusoidal oscillators are used.
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Table 3.2. Quality measures for the IDFT, our proposed filterdesign via AR and ARMA,

AR filtering and sum of sinusoids methods

Rayleigh Fading Random Theoretical(dB) Empirical(dB)

Sequence Generators Gmean Gmax Gmean Gmax

IDFT Method 0.00076 0.00081 0.0035 0.0037

Proposed ARMA(2,2) 2.5066 2.5505 2.5068 2.5514

Filter Design AR(2) 2.6707 2.7247 2.6768 2.7313

ARMA(3,3) 1.9777 1.9962 1.9775 1.9979

AR(3) 2.0924 2.1173 2.1447 2.1727

AR Filtering AR(20) 2.7 2.9 2.6 2.9

AR(50) 0.29 0.43 0.26 0.40

AR(100) 0.13 0.28 0.11 0.26

Sum of Sinusoids 8 Sinusoids N/A N/A 36.223 37.730

16 Sinusoids N/A N/A 4.0264 6.4140

64 Sinusoids N/A N/A 0.0211 0.0370

128 Sinusoids N/A N/A 0.0027 0.0049
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Figure 3.11. The empirical autocorrelations for AR method and proposed model
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Table 3.3. Computational Complexity comparison

Simulator Design Technique Number of

Real Multiplications

IDFT Method 44 × 106

Proposed Filter ARMA(2,2) 8 × 106

Design AR(2) 2 × 106

ARMA(3,3) 12 × 106

AR(3) 6 × 106

AR Filtering AR(20) 42 × 106

AR(50) 105 × 106

AR(100) 210 × 106

Sum of Sinusoids 8 Sinusoids 178 × 106

16 Sinusoids 356 × 106

64 Sinusoids 1424 × 106

128 Sinusoids 2848 × 106
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Figure 3.12. The empirical autocorrelations for IDFT method and proposed model
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The main advantage of our low complexity Rayleigh fading generator is that the

samples of the fading sequence can be generated as they are required while achieving the

lowest complexity of all the Rayleigh fading generators mentioned. The computational

efficiency of the IDFT method brings a cost in storage requirements as all samples are

generated using a single IFFT. Our proposed fading generator and the all other generators

don’t have such a limitation. As provided in Table 3.3, to generate220 samples, IDFT

method requires44 × 106 real multiplications, our proposed filter design techniquevia

ARMA(3,3) model requires12 × 106 real multiplications, AR(20) model requires42 ×
106 multiplications and the improved Jakes’ model with 16 sinusoids requires356 × 106

multiplications.
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CHAPTER 4

PATH LOSS AND SHADOWING PREDICTIONS

To predict the path loss and shadowing is very important for wireless channel

modeling and wireless communication system design. In thischapter, path loss and shad-

owing predictions will be made by using a site-specific radiopropagation software called

Wireless InSite. In the first part, some theoretical information about path loss is given

with an experiment done in Wireless InSite, where the path loss is calculated in a propa-

gation scenario including a transmitter, a receiver route,and a concrete barrier. The aim

of this experiment is to predict the power loss in a shadowed region. Then we provide

theoretical information about shadowing.

4.1. Path Loss

Path loss refers to the attenuation in the transmitted signal while propagating from

the transmitter to the receiver. Path loss is caused by dissipation of the radiated power

as well as effects of the propagation channel such as absorption due to moisture. Typical

path loss models assume a distance dependence attenuation,i.e., the received power is a

function of the distance between the transmitter and the receiver. Significant variations in

the path loss are observed over distances of several hundredto thousand wavelengths.

The simplest path loss model corresponds to propagation in free space, i.e., line-

of-sight (LOS) link between the transmitter and receiver. Under this model, the received

signal power is given as

PR = PT GT GR
λ2

4πd2
(4.1)

wherePT is the transmitted power,GT andGR are the transmit and receive antennas gains,

respectively,λ is the wavelength of the transmitted carrier, andd is the distance between

the transmitter and the receiver. Thus, the received power decreases with a factor of

distance-squared under free space propagation. We also observe the path loss dependency

on the carrier wavelength. Shorter the wavelength or equivalently higher the transmitter

frequency, higher the path loss.
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The free space path loss model cannot capture all the propagation scenarios en-

countered in the real world. Therefore, several different models such as Okumura, Hata,

Walfish-Ikegami, etc., have been proposed to model path lossin different propagation

environments such as urban, rural, and indoor areas.

4.1.1. Shadowing Loss Prediction Experiment

In this section, we investigate the effect of a barrier on thereceived power, which

completely blocks the line of sight. Therefore there existsa shadowed region behind the

barrier. We make path loss prediction by using Wireless InSite. Our experimental setup

in Figure 4.1 includes a transmitter with a height of 30 m, a receiver route with a length

of 1 km, where the distance between the receivers is 5 m, and a barrier which is 20 m

height. All of the antennas used in this experiment are half-wave dipole antenna and the

transmitted signal waveform is sinusoid with a carrier frequency equals to 900.5 Mhz, so

the wavelength is 0.3331 m.

Figure 4.1. Experimental setup to predict the shadowing loss

Figure 4.2 shows the plots of the predicted results. As seen on the figures the

shadow region covers the area bounded with distances of 0 m - 70 meters. In this re-

gion the fluctuations of the received signal strength are caused from diffraction (for more

information refer to (Saunders 1999)). If we distract the theoretical path loss from the

total loss measured in shadowed region then we can achieve the shadowing loss. After

the distance of 70 m the values that we predict are approximately equal to the theoretical

values and the predicted values obtained by the experiment done without barrier.
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Figure 4.2. Predicted path loss and shadowing values

4.2. Shadowing

The presence of obstacles such as buildings and trees results in random variations

of the received power at a given distance. Measurements havebeen made under several

different conditions and statistical variations have beenobserved. Different values of the

received signal power were measured for a fixed frequency anddistance. Thus for a

given fixed distance, frequency and transmission power, thereceived signal power is not

deterministic, but varies due to the objects in and around the signal path. These stochastic,

location dependent variations are calledshadowingand were denoted in Equation 1.1 by

aSH(t). But these stochastic variations are constant in time, as long as the receiver and its

complete environment do not move. Shadowing reflects the differences in the measured

received power with relation to the theoretical value calculated by path loss formulas.

However averaging over many received power values for the same distance yields the

exact value given by path loss.

The objects causing these variations are of very large dimensions that a receiver

moving along a line at constant distance from the transmitter will take several hundreds

of milliseconds (ms) to move an area with different characteristics. As a result, path loss
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and shadowing are often called large scale effects. Large scale effects play an important

role in the system design at the network level. For instance,the cell coverage area, outage,

and handoffs are influenced by these effects.

4.2.1. Shadowing Model

Experimental results show that the shadow fading can be fairly accurately modeled

as a log-normal random variable (Okumura, et al. 1968), (Reudink 1972), (Black and

Reudink 1972), (Ibrahim and Parsons 1983), (Gudmundson 1991). This hypothesis

has been verified withχ2 and Kolmogorov-Smirnov test and found to be valid with high

confidence intervals. The theoretical basis to the log-normal distribution is that in an

environment different signals suffer random reflections and diffractions as they traverse

the propagation medium. If the total loss is expressed in dB then the extra loss due to the

shadowing in each path corresponds to subtracting a random loss from the path loss value.

Since the different propagation paths are independent, thesum of all the dB losses for a

large number of propagation paths converges to a normally distributed random variable

(central limit theorem). In natural units, that becomes a log-normal distribution.

The pdf of the shadowing is given by:

p(aSH) =
1

σSH

√
2π

exp

(

− a2
SH

2σ2
SH

)

(4.2)

whereσSH is the standard deviation ofaSH and all variables are expressed in dB.

The value of the variation due to the shadowing is then added to the path loss value

to obtain the variations. This value is determined by

a[dB] = 10 · log
P0

Pt

= aPL[dB] + aSH [dB] (4.3)

whereP0 is the received power andPt is the transmitted power.

4.2.2. Shadowing Correlation

The autocorrelation of the shadowing process in space also needs to be modeled,

since values at close locations are expected to be correlated. The spatial correlation is

given by the exponential correlation model proposed by (Gudmundson 1991) based upon

an approximate fitting of empirical data. According to this model, the spatial correlation
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is quantified as

RSH(∆x) = σ2
SH exp(−|∆x|/dc) (4.4)

where∆x is the spatial separation between points at which the correlation is measured

anddc is the spatial de-correlation distance. Typically, the shadowing de-correlation dis-

tancedc ranges from 10-50 m. It must be noted that though theoreticalresults prevent an

exponential correlation model for shadowing, it is still widely used because of providing

a reasonably good fit to experimental data (Mandayam, et al. 1996).

When the Rx is mobile, these spatial correlation translates into time correlation.

Therefore, the shadowing behaves as a correlated, time-varying process. The time auto-

correlation can be obtained from 4.4 by substituting∆x = vt, wherev is the Rx speed

andt is the time variable.

Large scale effects play an important role in the system design at the network level.

For example, the cell coverage area, outage, and handoffs are influenced by these effects.

The above discussion suggests that shadowing variations become significant when the

receiver moves over distances greater than several tens of the carrier wavelength. As a

result, these effects are often called large scale effects.On the other hand, small scale

fading caused by multipath propagation, determines the link level performance in terms

of the bit error rate (BER), average fade durations, etc.
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CHAPTER 5

SIMULATION OF SPATIAL SHADOWING PROCESS

In this chapter, we simulate spatial shadowing process by using the 1-D simulation

model proposed in (P̈atzold and Nguyen 2004). The simulation model is derived from

a non-realizable reference model by replacing the underlying spatial shadowing process

by a finite sum of sinusoids with constant gains, constant spatial frequencies, and random

phases. Constant gains and constant spatial frequencies arethe model parameters. Two

parameter computation methods are discussed enabling the fitting of the simulation model

to the reference model with respect to the PDF of the receivedsignal strength as well as

to a given spatial autocorrelation function. Theoretically, this autocorrelation function is

well-known decaying exponential function which is proposed in (Gudmundson 1991).

We also predict an autocorrelation function by using a site-specific radio propagation

software named Wireless InSite. We used both predicted and theoretical autocorrelation

functions to determine the model parameters.

5.1. Reference Model for Shadowing

The effect of shadowing is generally modeled as a log-normalprocessλ(t), which

can be expressed as

λ(t) = 10[σLν(t)+mL]/20 (5.1)

whereν(t) is a real valued Gaussian process with unit variance. The parameters

σL andmL in 5.1 are called the shadow standard deviation and the area mean, respectively.

The area meanmL is obtained by averaging the received signal strength over an area that

is large enough to average over the shadowing effects (Stüber 2001). The value ofmL

is determined by the path loss between the BS and the MS. The value of σL increases

slightly with the antenna heights and the environment. The shadow standard deviationσL

is usually in the range from 5 to 12 dB at 900 MHz (Okumura, et al. 1968), (Reudink

1972), (Black and Reudink 1972), (Ibrahim and Parsons 1983), (Gudmundson 1991)

where 8 dB is a typical value for macrocellular applications. Let us assume that the MS

49



starts at the originx0 = 0 and moves along the x-axis with velocityv. Then, by using the

time-distance relationshipt = x/v we can express both the log-normal processλ(t) and

the Gaussian processν(t) as a function of the distance x, i.e.,λ(x) andν(x). There as a

result of empirical studies, the following spatial autocorrelation functionrνν(∆x) of ν(x)

has been proposed in (Gudmundson 1991)

rνν(∆x) = e−|∆x|/D (5.2)

where∆x denotes the spatial separation which measures the distancebetween two

locations and D is called the de-correlation distance, which is an environment dependant

real-valued constant.

It is widely accepted that the PDFpλ(y) of λ(x) follows the log-normal distribu-

tion

pλ(y) =
20√

2π ln 10σLy
e
− (20 log10 y−mL)

2σ2
L y ≥ 0. (5.3)

The spatial autocorrelation functionrλλ(∆x) of the log-normal processλ(x) can

be expressed in terms of the spatial autocorrelation function rνν(∆x) as follows (P̈atzold

and Nguyen 2004)

rλλ(∆x) = e2m0+σ2
0 [1+rνν(∆x)] (5.4)

whereσ0 = σL ln(10)/20 andm0 = mL ln(10)/20. From the above equation, the mean

power of the spatial log-normal processλ(x) can easily obtained asrλλ(0) = e2m0+σ2
0 .

A good approximation of̃rλλ(∆x) can be given by (5.4), if we replace thererνν(∆x) by

rνν(∆x), i.e.,

r̃λλ(∆x) = e2m0+σ2
0 [1+r̃νν(∆x)] (5.5)

whereσ0 = σL ln(10)/20 andm0 = mL ln(10)/20 as in 5.4.

5.2. The Simulation Model for Shadowing

A stochastic continuous-time simulation model for a log-normal processλ(t) is

obtained by replacing the Gaussian processν(t) in (5.1) by the following sum of N sinu-

soids

ṽ(t) =
N
∑

n=1

cn cos(2πfnt + Θn). (5.6)
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In this equation, the gainscn and the frequenciesfn are non-zero real-valued con-

stant quantities and the phasesΘn are independent, identically distributed (iid) random

variables, which are uniformly distributed over the interval (0, 2π]. Therefore,̃ν(t) rep-

resents a stochastic process, which is first-order stationary and ergodic (P̈atzold 2003).

The corresponding stochastic spatial processν̃(x) is obtained from (5.6) by applying the

time-distance transformation oft 7→ x/v = x/(λcfmax), whereλc is the wavelength of

the carrier frequency andfmax denotes the maximum Doppler frequency. Hence, we can

express the resulting spatial processν̃(x) as

ν̃(x) =
N
∑

n=1

cn cos(2παnx + Θn) (5.7)

whereαn = fn/(λcfmax) are called the spatial frequencies. By analogy to 5.1, a stochas-

tic simulation model for a spatial log-normal process is then obtained as

λ̃(x) = 10[σLν̃(x)+mL]/20. (5.8)

The structure of the simulation model for spatial shadowingprocess is shown in Fig-

ure 5.1.

Figure 5.1. Structure of the spatial shadowing simulator

5.2.1. Statistics of the Simulation Model

Since the gainscn and the spatial frequenciesαn are constant and the phasesΘn

are iid uniformly distributed random variables then it follows from 5.7 that the expected

value ofν̃(x) equalsE[ν̃(x)] = 0. The variance can be expressed also asV ar{ν̃(x)} =
∑N

n=1 c2
n/2. Let us define the gainscn ascn =

√

2/N , then the variance of̃ν(x) equals
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unity and thus it is identical with the variance ofν(x). The spatial autocorrelation function

of ν̃(x), defined as̃rνν(∆x) = E[ν̃(x)ν̃(x + ∆x)], is given by

r̃νν(∆x) =
N
∑

n=1

c2
n

2
cos(2παn∆x). (5.9)

Sinceν̃(x) in 5.7 represents a finite sum of sinusoids with random phases, we can

use the results presented in (Bennett 1948) to express the PDFp̃ν(x) of ν̃(x)

p̃ν(x) = 2

∫ ∞

0

[

N
∏

n=1

J0(2πcnz)

]

cos(2πxz)dz (5.10)

whereJ0(·) denotes the zeroth order Bessel function of first kind.

Applying the concept of transformation of random variables(Stark and Woods

2002), the PDF̃p(y) of λ̃(x) can be expressed in terms of the PDFp̃ν(x) of ν̃(x) as

p̃ν(y) =
20p̃ν

(

20log10y−mL

σL
)
)

yσL ln 10
(5.11)

5.2.2. Parameter Computation Methods

There are two fundamental methods for the computation of themodel parameters

cn andαn. The first one is called the method of equal areas and the second one is known

as theLp-norm method.

5.2.2.1. Method of Equal Areas

This method has been introduced in (Pätzold, et al. 1996) to model the classical

Jakes/Clark Doppler spectrum and the Gaussian Doppler spectrum. This method can be

applied on the spatial autocorrelation functionrνν(∆x) of the reference model described

by 5.2. Then, the following closed-form expressions are derived:

αn =
1

2πD
tan[

π(n − 0.5)

2N
] (5.12)

cn =
√

2/N (5.13)

wheren = 1, 2, . . . , N .
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Table 5.1. Model parameters of the reference model

Shadowing area D ∆xmax σL mL

Suburban 503.9 m 2500 m 7.5 dB 0

Urban 8.3058 m 40 m 4.3 dB 0

5.2.2.2.Lp-Norm Method (LPNM)

The Lp-norm Method (LPNM) was introduced in (Pätzold, et al. 1998). The

application of this method implies the minimization of theLp-norm given in (5.14) where

rνν(∆x) andr̃νν(∆x) are given by (5.2) and (5.9), respectively.

E(p)
rνν

=

[

1

∆xmax

∫ ∆xmax

0

|rνν(∆x) − r̃νν(∆x)|pd(∆x)

]1/p

p = 1, 2, . . . (5.14)

The quantity∆xmax indicates the upper limit of the interval[0, ∆xmax] over which the

approximation is of interest. In the simulation model bothαn andcn are the model pa-

rameters which have to be optimized numerically until theLp-normEp
rνν

in (5.14) reaches

a local minimum (P̈atzold and Nguyen 2004). The numerical optimization can be per-

formed, by using the Fletcher-Powell algorithm (Fletcher and Powell 1963). The most

important advantage of the LPNM is that this powerful procedure enables the fitting of the

statistical properties of the channel simulator to real world channels simply by replacing

the spatial autocorrelation of the theoretical reference model rνν(∆x) by the measured

one in theLp-norm equation (5.14). In this thesis we use our predicted autocorrelation

function in order to fit the statistical properties of the channel simulator.

5.2.3. Application of the Simulation Model

In this section, procedure of (Pätzold and Nguyen 2004) is applied to the de-

sign of a spatial shadowing simulator. The parameters used to the describe the reference

model are given in Table 5.1. The values of the decorrelationdistance D and the shadow

standard deviationσL given in this table are obtained from signal strength measurements

(Gudmundson 1991).

The corresponding spatial simulation models in all figures has been designed by
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usingN = 25 sinusoids. The parametersαn andcn have been computed by applying both

MEA and the LPNM methods, for the aim of comparison. In the LPNM methodp was

equal to 2. Figure 5.2 and Figure 5.3 show plots of the spatialautocorrelation functions

r̃νν(∆x) for the urban and suburban areas respectively and Figure 5.4and Figure 5.5 show

plots of the spatial autocorrelation functionsr̃λλ(∆x) of the log-normal processes for the

urban and suburban areas respectively. Also in both figures the reference autocorrelation

functionsrνν(∆x) andrλλ(∆x) are plotted for comparative purposes.

One can understand from the figures that the performance of the LPNM is higher

than that of the MEA. But the MEA results in a closed form solution whereas the LPNM

does not. One can obtain better results from MEA, if the number of sinusoids tends to

infinity. Because, at that time the simulation model converges to the reference model. So

advantages of the LPNM reduce the higher the number of sinusoids is chosen.
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Figure 5.2. Spatial autocorrelation functionsrνν(∆x) andr̃νν(∆x) for the urban area (N

= 25)

5.3. Prediction of Autocorrelation of Spatial Shadowing Process

LPNM provides a big advantage for simulating spatial shadowing process by us-

ing sum of sinusoids based simulators. Because the model parameters of this method

is acquired via numerical optimization and one can fit the spatial shadowing simulator to
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Figure 5.3. Spatial autocorrelation functionsrνν(∆x) andr̃νν(∆x) for the suburban area

(N = 25)
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Figure 5.4. Spatial autocorrelation functionsrλλ(∆x) andr̃λλ(∆x) for the urban area (N

= 25)
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Figure 5.5. Spatial autocorrelation functionsrλλ(∆x) andr̃νν(∆x) for the suburban area

(N = 25)

real world channels by replacing the spatial autocorrelation of the theoretical model by the

measured one in the optimization equation (5.14) of simulation model parameters. So we

can measure or predict a spatial autocorrelation to fit the channel simulator to real world

channels. In this section, we make a urban propagation experiment by using Wireless

InSite to obtain spatial autocorrelation of shadowing. Then we use this autocorrelation to

determine the model parameters of sum of sinusoids based spatial shadowing simulator

which is discussed in the previous section.

5.3.1. Autocorrelation Prediction Experiment

One of the most powerful features of Wireless InSite is the ability to apply state-

of the-art models and analysis methods to a wide range of propagation problems. In this

experiment we predict received power in an urban area to obtain the shadowing auto-

correlation. We use Urban Canyon model to make urban propagation predictions in a

microcellular environment in a section of Helsinki, Finland. Without specific knowledge

of a particular buildings material parameters, a single material can be used for the entire

city such as brick or concrete. For this analysis a uniform building material of concrete is

used with a dielectric constant of 5.0. We have also chosen touse the predicted received
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power values obtained from non-line-of sight AOB street. For this study, antennas similar

to the ones used in Zhangs paper (Zhang 2000) are added. A narrow beam directional an-

tenna is used for transmitters, and monopoles for each receiver point and the transmitted

signal waveform is sinusoid with a carrier frequency equalsto 900.5 MHz as used in the

shadowing prediction experiment in Chapter 4. Our project view showing transmitter and

receiver route along AOB street is given in Figure 5.6. In this figure the red line denotes

the receiver route while the green point denotes the transmitter.

Figure 5.6. Project view showing transmitter and receiver route

Once the received power is calculated, then we should refine the received power

data to determine the shadowing autocorrelation. To extract the shadowing characteristics,

first the distance dependent path loss is removed from the received power data. Then we

average the measured signal as explained in Figure 5.7 over adistance of 2 meters to

remove some of the effects of fading.

We calculate the autocorrelation of the spatial shadowing process over a range of

lags, using (5.15). The lags correspond to a range of distances where the received power

is predicted. In (5.15)xi denotes the received power value for each lag andρk denotes the

autocorrelation value.

x̃i = xi −
1

n

n
∑

i=1

xi

ρk =
1

n−k

∑n
i=k+1 x̃ix̃i−k

1
n

∑n
i=1 x̃2

i

(5.15)

After obtaining of the predicted autocorrelation, this autocorrelation is used to de-

termine the model parameters of sum of sinusoids based spatial shadowing simulation
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Figure 5.7. Averaging of the received power

model discussed in the previous chapter. In theLp-norm equation given in (5.14),rνν

denotes the predicted autocorrelation, whiler̃νν denotes the autocorrelation of the result-

ing spatial process, given in (5.9). The model parametersαn andcn is optimized until

theLp-norm given in (5.14) reaches a local minimum. The initial values forαn andcn

is determined from (5.12) and (5.13) respectively. We can calculate the autocorrelation

of the resulting spatial shadowing process by using these model parameters in Equation

( 5.9). The resulting autocorrelation of the simulated shadowing process, predicted auto-

correlation and theoretical autocorrelation plots are illustrated in Figure 5.8.
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Figure 5.8. Predicted, Simulated and Theoretical Autocorrelations of Shadowing
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CHAPTER 6

CONCLUSION

A low-complexity high performance Rayleigh fading simulator has been pro-

posed. Our proposed ARMA(3,3) model has been compared with improved Jakes’ model

of (Zheng and Xiao 2002), AR fading filter approximation of (Baddour and Beaulieu

2005), and to the IDFT technique of (Young and Beaulieu 2000),in terms of performance

measures and computational complexity. Our ARMA(3,3) Rayleigh fading generator,

outperforms AR(20) generator, by about 1dB in both performance measures provided,

while requiring approximately a quarter of the multiplications required by the AR(20)

generator. Similarly, our ARMA(3,3) fading generator outperforms modified Jakes’ gen-

erator with 8 and 16 sinusoids by 32dB and 2dB respectively, while requiring less than

one-tenth of the multiplications required by the Jakes’ generators with 8 and 16 sinu-

soids. While the IDFT method of achieves the best performancein terms of the quality

measures, it brings a significant cost in storage requirements as all samples are generated

using a single IFFT. Thus the IDFT method is undesirable fromsimulation point of view

when the Rayleigh fading samples are generated as they are required. The main advantage

of our ARMA(3,3) Rayleigh fading generator is that the samplesof the Rayleigh fading

sequence can be generated as they are required while achieving the lowest complexity

of all the Rayleigh fading generators mentioned. Since multiple-input multiple-output

(MIMO) antenna systems have the ability to increase capacity and reliability of a wireless

communication system compared to single-input single-output (SISO) systems; for the

future work, MIMO extension of our ARMA(3,3) fading generator can be developed.

We also apply the fixed-point extension of our proposed filterdesign. Accurate

results can be obtained by using 16-bits quantized filter coefficients. But 10-bits and

14-bits quantized coefficients are not enough for the accuracy of the filtering.

The shadowing loss is easily predicted in a specific propagation experiment, by

extracting the theoretical free-space path loss from the total loss, by using the site-specific

radio propagation software called Wireless InSite.

A sum-of-sinusoids based spatial simulator proposed in (Pätzold and Nguyen

2004) has been used to simulate shadowing processes. Two schemes have been used
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for the computation of the model parameters; the MEA and LPNM. LPNM is preferred

for medium and especially for low values of the number of sinusoids. LPNM has also big

advantage, because this method enables the fitting of the statistical properties of the sim-

ulator to real-world channels simply by using measured autocorrelation in order to spatial

autocorrelation of the theoretical reference model. We useour predicted autocorrelation

in an urban area, to fit the simulator.

Altough LPNM is a very useful method, MEA results in a closed form solution

whereas the LPNM does not. When using the MEA, it can be shown that the simulation

model converges to the reference model if the number of sinusoids tends to infinity.

However it has been shown that by applying the sum-of-sinusoids based simula-

tion method on shadowing channels, the simulation model hasnearly the same statistics

as the reference model.

60



REFERENCES

Aguiar, A. and James Gross. 2003. Wireless Channel Models. TKN Technical Report
TKN-03-007, Technical University Berlin.

Baddour, K. E. and N. C. Beaulieu. 2005. Autoregressive modeling for fading channel
simulation.IEEE Trans. on Wireless Commun.4 (4): 1650-1662.

Bello, P. A. 1963. Characterization of randomly time-variantlinear channels,IEEE Trans.
Commun. Syst.11 (4): 360-393.

Bennett, W. R. 1948. Distribution of the sum of randomly phasedcomponentsQuart.
Appl. Math.5: 385-393.

Black, D. M. and D. O. Reudink. 1972. Some characteristics of mobile radio propagation
at 836 Mhz in the Philadelphia Area.IEEE Trans. Veh. Tech.21: 45-51.

Clarke, R. H. 1968. A statistical theory of mobile-radio reception. Bell Syst. Tech. J.47:
975-1000.

Cavers, James K. 2000.Mobile Channel CharacteristicsNorwell: Kluver Academic Pub-
lishers.

Fletcher, R. and M. J. D. Powell. 1963. A rapidly convergent descent method for mini-
mizationComputer Journal6(2):163-168.

Giancristofaro, D. 1996. Correlation model for shadow fading in mobile radio channels.
Electron. Lett.32(11):958-959.

Gudmundson, M. 1991. Correlation model for shadow fading in mobile radio systems.
Electron. Lett.27(23):2145-2146.

Ibrahim, M. F. and J. D. Parsons. 1983. Signal strength predictions in built-up areasProc.
IEE 130(5):377-384.

Jakes, W. C. 1974.Microwave Mobile Communications. New York: Wiley.

Kim, H. and Y. Han. 2002. Enhanced correlation shadowing generation in channel simu-
lation. IEEE Commun. Lett.6(7):279-281.

Mandayam, N. B., P. C. Chen, and J. M. Holtzman. 1996. Minimum duration outage
for cellular systems: a level crossing analysis.Proc. IEEE Veh. Technol. Conf.
2:879-883.

Marsan, M. and G. Hess. 1990. Shadow variability in an urban land mobile environment.
IEEE Electron. Lett.26:646-648.

Okumura, Y., E. Ohmori, and T. Kawano, eds. 1968. Field strength and its variability in
VHF and UHF land mobile radio services.Rev. Elec. Commun. Lab.16:825-873.

Omidi, M. J., S. Pasupathy and P. G. Gulak. 1999. Joint Data and Channel Estimation for
Rayleigh Fading Channels.Wireless Personal Communications10:319-339.

61
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