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ABSTRACT

A STUDY ON WIRELESS CHANNEL MODELS: SIMULATION OF
FADING, SHADOWING AND FURTHER APPLICATIONS

In this thesis, we simulate multipath fading which is assditechave Rayleigh or
Rician distribution under the non-line-of sight or linesight condition respectively; as
well as spatial shadowing process, assumed to be log-nigrdistributed. We propose
a low-complexity high performance Rayleigh fading simutaém autoregressive moving
average (ARMA)(3,3) model. This proposed method is a vaoétite method of filtering
of the white Gaussian noise where the filter design is acashead in the analog domain
and transferred into the digital domain. The proposed misdedmpared with improved
Jakes’ model, autoregressive (AR) filtering and inverserdisd~ourier transform (IDFT)
techniques, in performance and computational complexitye proposed method out-
performs AR(20) filter and modified Jakes’ generators in parémce. Although IDFT
method achieves the best performance, it brings a signifezest in storage which is un-
desirable. The proposed method achieves high performaiticehe lowest complexity.
Additionally, we apply the quantized filter extension of quoposed filter design, since
qguantized filters are generally used in hardware implenientdue to their minimum
power consumption, minimum heat generation and their céatipnal efficiency. We
simulate spatial shadowing process, via the simulatiorhateproposed by &zold and
Nguyen. This method is derived from a reference model bygugie sum of sinusoids
principle. There are two methods enabling the fitting of tineutation model to the ref-
erence model with respect to the probability density fuorc{pdf) of the received signal
strength as well as to a given autocorrelation function @&ittecaying exponential shape.
Furthermore we use our predicted autocorrelation funatimained via the site-specific
radio propagation prediction software named Wirelessttnii order to determine the

model parameters.



OZET

KABLOSUZ KANAL MODELLER | UZERINE BIR CALISMA:
SONUMLEMENIN, GOLGELEMENIN VE DAHA ILERI
UYGULAMALARIN BENZET IMI

Bu tezde, dgrudan @ris bulunmayan durumlarda ve @adan @ris bulunan
durumlarda, sirasiyla Rayleigh ya da Riciargdiana sahip ¢ok yollu &nimlemenin,
log-normal d@ilima sahip oldgu varsayilan uzamsalodtpeleme &reciyle birlikte
benzetimini yaptik. Dgik karmasikija ve yiksek performansa sahip bir Rayleigh
soniimleme benzeticisipzbalanimli hareketli ortalama (ARMA)(3,3) modeli sunduk.
Sunulan bu gntem bir gesit beyaz Gaussirgltusi dizgecleme gntemidir. Burada
slizge¢ tasarimi analogdlgede yapilir ve sayisaldlgeye transfer edilir. Sundumuz
yontemi, iyilestiriimis Jakes modeliyl@zbajlanimli (AR) gizgeclemeyle ve ters ayrik
Fourier ddnusimi (IDFT) teknikleriyle performans ve islemsel karmasgkkhcisindan
karsilastirdik. Sundiumuz yontem, AR(20) 8zgecinden ve iyilestiriimis Jakes modelin-
den daha iyi performans §adi. IDFT yontemi en iyi performansi §gamasina r@gmen
depolama acisindan belirgin biily getirdi. Sundgumuz yYntem en iyi performansi en
dugik karmasiklkla sgladi. Nicemlenmisi&zgecler genellikle, iagik gug tiketiminden,
dugik 1s1 Uretiminden ve islemsel etkifinden dolayr donanim uygulamalarinda kul-
laniimaktadir. Bu yzden, sundgumuz yntemin nicemlenmisigzgec¢ uygulamasini
da yaptik. Uzamsaldgeleme &recinin benzetimini ise &zold ve Nguyen tarafindan
sunulan benzetimgntemiyle yaptik. Bu gntem referans modelden sinuzoidlerin toplami
prensibi kullanilarak cikariimistir. Benzetim modelneiferans modele uydurmak icin,
kullanilan iki yontem vardir. Bu gntemler alinan sinyalin olasilik goanluk fonksiy-
onuyla birlikte teorikdz ilinti fonksiyonuna @re belirlenir. Biz bu yaptiklarimiza ek
olarak, ayrica Wireless InSite yazilimiyla kestidniz 6z ilinti fonksiyonunu kullanarak

model parametrelerini belirledik.
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CHAPTER 1

INTRODUCTION

1.1. Background and Motivation

The performance of any communication system is eventuaitgrchined by the
medium which the message signal passes through. This mediaynbe an optical fiber,
a hard disk drive of a computer or a wireless link, is refetoegls communication channel.
There exists a large variety of channels, which may be divid® two groups. If a solid
connection exists between transmitter and receiver, theredl is called a wired channel.
If this solid connection is missing, this connection is edlh wireless channel. Wireless
channels differ from wired channels, due to their unreédihavior compared to wired
channels. In wireless channels the state of the channel hreyge within a very short
time span. This random and severe behavior of wireless @maiturns communication
over such channels into a difficult task.

There are several different classifications regarding tinel@ss channels. Wire-
less channels may be distinguished by the propagationemgnt encountered. Many
different propagation environments have been identifiech &s urban, suburban, indoor,
underwater or orbital propagation environments, whicfedih various ways.

The wireless channel puts fundamental limitations on tliopmance of wireless
communication systems. The transmission path betweeretadver and the transmitter
can be altered from simple line-of-sight to one that is deally obstructed by buildings,
foliage and mountains. Even the speed of the mobile impawtsrapidly the signal level
fades. Modeling the wireless channel has historically eenof the most difficult parts
of the communication system design and is typically done stasistical manner, based
on measurements made specifically for a designated comatigmeystem or spectrum
allocation.

There are a lot of mechanisms behind the electromagnetie wapagation, but
they can be generally attributed to reflection, diffractéord scattering as shown in Fig-
ure 1.1. Reflections arise when the plane waves are incidem agurface with dimen-

sions that are very large compared to the wavelength. Biffra occurs according to



Huygen'’s principle when there is an obstruction betweenrdmesmitter and the receiver
antennas and as a result of this, there are secondary wavesagge behind the obstruct-
ing body. Scattering arises when the incident wavelengimtise order of or larger than

the dimension of the blocking object with non-regular shaged causes the transmit-
ting energy to be redirected in many directions. The retaitaportance of these three

propagation mechanisms depends on the particular prapagaenario.

Transmitter Receiver

A free space
B: reflection

C: diffraction
D: scattering

Figure 1.1. Mechanisms behind the electromagnetic waveggation

Due to the three aforementioned different propagation @eisms, radio prop-
agation can be roughly described by three nearly indepermenomenonpath loss
variation with distance shadowingand multipath fading Each of these phenomenon is
caused by a different underlying physical principle and nw@sconsidered when design-
ing and evaluating the performance of a wireless commubital/stem.

Among three independent phenomenon, only path loss is andeistic effect
which depends only on the distance between the transmittéitree receiver. It plays
an important role on larger time scales like seconds or rasjugince the distance be-
tween the transmitter and the receiver in most situatioes adot change significantly on
smaller time scales. On the other hand, shadowing and fadengot deterministic. They
both have stochastic nature. Shadowing occurs due to tlygngaterrain conditions in
suburban area and due to the obstacles such as buildings etban area causing partic-
ular obstructions between the base station and mobil@stdtading leads to significant

attenuation changes within smaller time scales such assedtinds or even microsec-



onds. Fading is always caused by a multipath propagatiomcgmaent, therefore by an
environment reflecting the transmitted electromagneticesauch that multiple copies
of this wave interfere at the receiving antenna. All thrderaiating phenomenon com-
bined result in the actual experienced attenuation of tmel@ss channel. Therefore this

attenuation might be decomposed as given in Equation (1.1).

a(t) = apr(t) - asu(t) - ara(t) (1.1)

In this thesis we will focus on modeling and simulation ofifapland also model-
ing and analysis of shadowing. We will investigate a new $itau design for multipath
fading and also we will model and analyze the correlatioas é¢ist in shadowing.

The fading caused by multipath propagation in wireless camoation systems is
commonly modeled by the Rayleigh distribution. It is well lwrothat a Rayleigh fading
process is characterized by its power spectral density tsrauto-correlation function.
The autocorrelation function depends on the Doppler frequevhich corresponds to the
relative motion of the receiver and transmitter.

In the communications literature, a number of differentimes have been pro-
posed and used for the simulation of Rayleigh fading (Clarké819akes 1974, Smith
1975, Rtzold, et al. 1996, Omidi, et al. 1999, Young and Beaulieu 02@¥xen
and Zoltowski 2001, Zheng and Xiao 2002, Baddour and Beauli®d5R Jakes’
model (Jakes 1974) has been of great interest which is basedro of sinusoids ap-
proach. Simulators based on white noise filtering methodsi¢D et al. 1999,0zen
and Zoltowski 2001, Baddour and Beaulieu 2005), and on thesev@iscrete Fourier
Transform (IDFT) (Smith 1975, Young and Beaulieu 2000) mdthave also become
popular. It was shown in (Young and Beaulieu 2001) that thentadignals which are
produced by classical Jakes’ simulator are not wide-saasiersary (WSS). On the other
hand simulators based on the IDFT method are high-qualdye#ficient. Unfortunately,
a disadvantage of the IDFT method is that all samples arergetewith a single fast
Fourier transform (FFT), hence the storage requiremenkemaiseless for the genera-
tion of very large number of samples and for sample-by-samiphulations.

In this thesis, we consider using a fading filter to filter vehi@aussian noise that
was first proposed inQzen and Zoltowski 2001). Unlike the other filter structures

(Omidi, et al. 1999, Baddour and Beaulieu 2005), a differerinupation and de-



sign criterion is used to set the filter parameters in thecgndbmain as would yield the
transfer function of the fading filter, denoted b (s), where~ is the filter order. Bi-
linear transform is then used to get the desired filter stirechs an ARMA{, ) filter.
Comparisons to other methods are then made by using quietita¢asures introduced
in (Young and Beaulieu 2003).

Experimental results have shown that the signal strengtiatiens caused by
shadowing can adequately be modeled by a log-normal pr¢Cdssnura, et al. 1968,
Reudink 1972, Black and Reudink 1972, Ibrahim and Parsons X988mundson
1991). Measurements also show that the shadowing exhijtéti$as correlation (Gud-
mundson 1991, Marsan and Hess 1990, Giancristofaro 19%9&higeand Cox 2001)
in other words, shadowing is correlated over short distangesimple exponential cor-
relation model has been suggested in (Gudmundson 199Ed b@®n an approximate
fitting of empirical data. This model was improved then late(Giancristofaro 1996) to
avoid the inconsistencies caused by the exponential sHabe spatial autocorrelation
function. In this thesis, we simulate spatial shadowingpss via the simulation model
proposed in (Btzold and Nguyen 2004). Also, we predict an autocorrelafimction

and this function is used to determine the model parameters.

1.2. Outline

After the introduction, which contains a brief summary ofreuseful terms that
will be used in this thesis, a detailed overviewadingphenomenon is provided in Chap-
ter 2. In Chapter 3, different simulation techniques commemhployed to simulate fad-
ing channels are discussed. The first part of Chapter 3 canestimthe sum of sinusoids
models and in the second part, different kind of filtered Gaursnoise models including
our proposed filter design are discussed. Also in Chaptera)tqed filter application of
our proposed design is given. In Chapter 4, large-scale dastundy is undertaken with
shadowing prediction experiment made by Wireless InSieChapter 5, simulation of
spatial shadowing process is done by using the simulatiatehpyoposed in (&zold and
Nguyen 2004). Also in this chapter, prediction of shadowangpcorrelation in an urban
area is made by using Wireless InSite. We use this autoatiorlin order to determine
the simulation model parameters of the spatial shadowinggss. The last chapter is

entirely dedicated to the discussion and interpretaticdh®presented results.



CHAPTER 2

AN OVERVIEW OF WIRELESS CHANNEL MODELS

2.1. Introduction

In digital communication theory the most frequently assdmmodel for a trans-
mission channel is the additive white Gaussian noise (AWGQNnael. However, for
many communication systems the AWGN channel is a poor mo@eigenthe need to
resort to more precise and complicated channel models. @sie type of non-Gaussian
channel, which frequently occurs in practice, is the fadihgnnel. A typical example of
such a fading channel is the mobile radio channel, whererttal sintennas of portable
units pick up several multipath reflections. As a result,ttebile channel exhibits a time
varying behavior in the received signal energy, which isechfading. In the communi-
cations literature, most often we encounter two types ahtadefinitions for the mobile
radio channel, and they are calllegige-scale fadingandsmall scale fadingLarge-scale
fading usually is defined as the average signal power att@muar path loss due to mo-
tion over large areas. This depends on the presence of tdssiache signal path, on
the position of the mobile unit and its distance from the draitter. The statistics of
large-scale fading provide a way of computing an estimateat loss as a function of
distance. This is normally described in terms of a mean-jwsih (nth-power law) and a
log-normally distributed variation about the mean whickn®wn as shadowing. Hence
the term large-scale fading correspond to the combinedtsfté path-loss and shadowing
loss that we have indicated in Chapter one in Equation 1.1revie path loss has been
denoted by:p; (¢) and the shadowing process has been denotegd hit). The emphasis
of this chapter and the following chapter is on the smalleséading. The large scale
fading study, also known ahadowing and path-lodsas been undertaken in Chapters 4
and 5.

Small-scale fading refers to dramatic changes in signalitudp and phase that
can be experienced as a result of small changes in the spapiaration between a re-
ceiver and transmitter. Small-scale fading is referrecstRayleigh fading if the multiple

reflective paths are large in number and there is no line dit signal component, hence



the envelope of the received signal is statistically deésciby a Rayleigh probability den-
sity function (pdf). However, if there is a dominant nonifagisignal component present,
such as a line-of sight propagation path, the small scaiedaeshvelope is described by
a Rician pdf. A number of different models have been proposedhie simulation of
Rayleigh fading channels in the past years. Generally, theskels can be classified as
either being statistical or deterministic. The statidtinadels are based on the shaping of
the power spectral densities of white Gaussian random pseseby either time-domain
or frequency-domain filtering, whereas the deterministaxeis approximate the Gaus-
sian processes by the superposition of finite properly ssdesinusoids. Details of these

are presented herein.

2.2. Small Scale Fading

In a wireless mobile communication system, a signal caretfaem transmitter
to receiver over multiple reflective paths. The effect camsedluctuations in the received
signals amplitude, phase, and angle of arrival, giving tisthe terminology multipath
fading. These signal variations are experienced on a simal ¢cale, mostly a fraction
of a second or shorter, depending on the velocity of the veceiln this section we
will discuss the physical reasons of fading, present a madiieal model for fading and
characterize it as a stochastic process. Fading might héiveeavarying or frequency
varying attenuating impact on the transmitted signal. Quthé frequency varying and
time varying (complex valued) nature of fading, we will demthe attenuating impact in
this Section byH (¢, f). The relationship to the notation used in Equation 1.1 isgivy
ara(t) = |H(t, f)| for the observed carrier frequency. In some cases the fadligt be
only time varying or frequency varying, we denote the fadiygh(t) = H(t,0) in the
case of time varying fading only, and B§(f) = H(0, f) in the case of frequency varying
fading only.The relationship to the notation used in Ecuratl.1 is in these cases sitill
given byar4(t) = |H(t, f)| for the observed carrier frequency. The subjects discussed

in this section is following the chapter about fading in (Qav2000).



2.2.1. Physical Basis

The physical basis of fading is given by the reception of ipldtcopies of the
transmitted signal, each having followed a different p&tapending on the environment
of transmitter and receiver, there can be many or only fewaibjreflecting the transmit-
ted radio signal. In general these objects are knovwataterersand the transmission of a
signal leads to a situation which is callednaltipath signal propagatioand an example

of this scenario is given in Figure 2.1.

& 7y
N fa
0O e I B HO
1 L i
// \}/ Receiver
A )
Transmitt //<\.
ransmitter Ij D\' o= 00
ﬂ s H ’_‘

Scatterer

Figure 2.1. Multipath propagation scenario

In a typical environment each pathhas a different lengtly;,. Because of this
difference in length, each signal travelling along a pattives with a differentdelay
T = % where c is the speed of the light. Some signal copies tiagedlong short paths
will arrive quite fast, while other copies travelling alotgnger paths will arrive later.
Physically this equals an echo, encountered in a canyon. cfiienel is said to have
memory, since it is able to store signal copies for a certeig span.

Beside this multipath propagation, each signal copy is a#texd differently, since
the signal paths have to pass different obstacles like wisdbuilding walls of different
materials, trees of different sizes and so on. The attemu#dictor of path is denoted by

Q;.



Taking all this into account, the multipath propagation tfeamsmitted radio wave
results in an interference pattern, where at certain ptietsvave interfere constructively
while at other points they interfere destructively. If eatbdment within the propagation
environment (transmitter, scatterer, receiver) do notentlve receiving signal will only
suffer from thedelay spreacand the different attenuation. In this case, the interfegen
situation of the channel stays constant and therefore theng is said to be time invari-
ant. In contrast, if any kind of movement is encountered engtopagation environment,
all paths or some paths change in time, such that;@hdr; change in time. As a conse-
guence the wireless channel become time variant. Hereg alth a constant changing
delay spread, the receiver also experiences a varyinglsgeagth due to its movement

through the interference pattern, therefore the receigthkfades.

2.2.2. Mathematical Model of Fading

Consider the transmission of a bandpass signal at carrgudrey f. with com-

plex envelop&(t). This transmitted bandpass signal is given by Equation 2.1

s(t) = Re (3(t) - €™ 1<) (2.1)
The received bandpass signal is given by Equation 2.2

r(t) = Re (F(t) - €™ 1) (2.2)

We look for a mathematical model of the received bandpassabigking into
account the effect of multipath propagation. At first we ddesthe case where we do
not encounter motion in the environment. As described inipus section, each path is
associated with a different lengthand a different attenuatiary. Therefore the received
signalr(t) is the superposition of all copies, given in Equation 2.3

rt) =Y a;-s (t - ZE) — Re <Z a; -3 (t - ZE) : e%j'fc(tli)) (2.3)

Considering the relationship between wavelength and frequg = fi we obtain a
complex envelope representation in Equation 2.4. If we tetlee phase shift of the
carrier frequency caused by the different length of each pgatp, = 2%% = 2%% and
path delay byr; = % we have Equation 2.4.

7(t) = Zai eI g <t - %) = Z a; - €% 5(t — 1) (2.4)

) 7



Now let us consider the effect of the motion in this model. Thange of the
path length ,as a function of speednd timet, is given byAl, = —v cos(v;)t, where~;
denotes the angle of arrival of pattvith respect to the direction of motion of the receiver.
From this we obtain a different function for the complex dape, which depends now

on the time t, as given in Equation 2.5.

o, Lit+AL l; + Al;
7(+ _ - —jomAtet T i i
7(t) Zi:a e 5 ( . )
= Y g eI e mesttR g (t I M) (2.5)
c

i

We can simplify Equation 2.5. First we indicate the terme=7% by writing A,
instead. Second if we compare the delay caused by thextetoa(; )t/ c with the overall
signal length of the complex envelopét), this delay is so short that can be ignored.
Another simplification is done through introducing tbeppler frequencydenoted by
fa = f; -v = § and theDoppler shiftdenoted by; = cos(v;) - fs. By doing these

simplifications we obtain Equation 2.6.

Z A 6]27r cos(v;)-t fa S t _ Tz Z A 6327r vit t — Tz) (26)

The motion of the receiver in combination with tiheh scatterer affects the re-
ceived signal in amplitude and in the phase by the termin the carrier frequency by
the termy; and in the delay of the envelope by the termThe delay change of the en-
velopev - cos(;)t/c is too small that it can be ignored. Therefore motion of treeneer
or a scatterer in the model introduces a frequency offset@tarrier in addition to the
changes when no motion is involved.

When the number of the scatterers is very high, the discratéeser model has to
be turned into a continuous scatterer model, where eaclifispgenario is represented

by a gain density, given by thraelay-Doppler spread function Equation 2.7.

o(v, T)dvdr = ZZ; (2.7)

Here index: refers to all scatterers with delay i and Doppler shift inv. With

this we obtain the received signglt) given in Equation 2.8.



< rfd
7(t) = /o /_f o(v,7) - 7™t 5(t — 1) - dvdT (2.8)

2.2.3. Characterization in Time and Frequency

The most harmful effects on the received signal in a muliat/ironment includ-
ing motion are the frequency offset (Doppler shift) of therigat and the time delay of the
envelope. This is because these shifted and delayed wagés imierfere destructively
so that they cause severe attenuation. In practice a wsrél@ssmission in a certain
environment including a certain velocity of objects is désad by theDoppler spread
Af, and thedelay spreadAr. Each path can be characterized by a different Doppler
shift(due to a different receive angle) and time delay irhtsptreads result from multipath
reception and also in the case of the Doppler spread caugedthe mobility. While
the Doppler spread is caused by the motion of objects witténemnvironment (which
might be the transmitter, the receiver or scatterers), glaydspread is caused only the
topology of the environment itself. Although the Doppleresd is a phenomenon in fre-
guency(generating Doppler shift, a shift in frequencyg tlverall result on the received
signal, which is the result of interfering multiple Doppkhifted signal copies, is a time
selective behavior. The situation is exactly oppositelierdelay spread. While the delay
spread is a phenomenon in time, the resulting effect on tteved signal indicates a fre-
guency selective behavior. This can be derived from the ema#ttical model introduced
in the previous section. We first start with the discussiorhef effect of the Doppler
spread, then we discuss the impact of the delay spread.

Consider a receiver, moving through a multipath environmsetiit a certain fixed
velocity. All path delays in this environment are too smhé#ttcan be ignored, therefore
s(t—m;) = s(t). Then the received complex envelope, given by Equatiorismplified

and turns into Equation 2.9.

T(t) =5(t) - Y A 00T = 5(1) - h(t) (2.9)

Hereh(t) is called thecomplex gairof the channel. In this case, the ingit)
and the outpur(t) of the channel are connected by a simple multiplicativetieiahip.
Since the phase anglg®r - cos(v;) - t - f; change in time, the complex gain of the channel

is time varying. If a pure tong(t) = U) is transmitted through this channel, then the
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received signal would be spread out in frequency, thus ihésshifted version of the
transmitted signal within the intervét f,, f4]. Due to this spreading, the received signal
7(t), consists several tones at different frequencies iniedget the receiver, vary in time.
Therefore the wireless channel is caltede selectivaccording to symbol time. At some
instances the received signal is not attenuated and coplebagven enhanced, while at
other time instances the signal is severely attenuated. dsequences(t) varies in
time.

The time span which the receiver needs to process the ingaenirelope indicates
the severity of the time selective behavior of the chanmegdneral, the processing time
span is represented by - T, whereT, denotes the symbol length. If the fade rate of
the time selective process given by the Doppler frequéicty larger than the processing
rate given byﬁ then the fading process is calledhe selectiveln contrast, if the fade
rate is much lower than the processing rafg; N - T, < 1, then the fading process
is callednot time selective These two conditions are also nanmfadt fadingand slow
fading respectively.

Now let us consider the impact of delay spread, without tlesg@mce of Doppler
spread. For a stationary receiver, the phases of the rafleofges can be assumed con-

stant. So we can consider Equation 2.10 as a mathematicalmod

T(t) = ZZi -5(t — 1) = h(t) *3(t) (2.10)

In this case the input is related to the output by convolutith the complex gain
h(t). Since the phases are constant(but still random), the ehaan be modelled in this

case as linear time invariant filter with an impulse respaigen in Equation 2.11.

Bty =) a-e 70t —7) =D A5t —7) (2.11)

The relationship between the inp6t f) and the outputR(f) in the frequency
domain is given by multiplication of the input with the frezncy response of the filter,

the complex transfer functiofl (f). The transfer function is given in Equation 2.12.

H(f) =) A-e?mdm (2.12)

Since the delays; are different for several paths, some frequencies areustted
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while the others not. If the delay difference between thép& very small or even not
existing, then there is no frequency attenuation causetidyelay spread. The severity
of the delay spread can be indicated by the product of thenemjbaseband bandwidth
of the signal (denoted by W, and related to the symbol tifyjeand the delay spread. If
the delay spread is very small compared to the symbol fimthen there is no impact on
the received signal(i7 - W < 1). In this case the transfer function of the channel does
not attenuates the signal significantly within the bandwaftthe signalV’. This time the
fading is calledlat or frequency non selectibecause there is no signal attenuation for the
utilized frequencies of the channel due to the delay spr@adhe other hand if the delay
spread is significant compared to the symbol tifethen the channel has a frequency
selective behavior. That is, at some frequencies the redesignal is attenuated while
at other frequencies the signal might be enhanced. In tisis ttee phenomenon called
intersymbol interference occurs at the receiver. For ms#aif the delay spread is half of
the symbol time, then the signal copies of two consecutiralysmitted symbols interfere
at the receiver, such that the 'fast’ signal copy of the fat@nsmitted symbol interferes
with the 'slow’ signal copy of the previous transmitted syohldn Table 2.1 categories in
order to characterize the fading of a wireless channel d#pgron the Doppler and delay
spread are provided.

Table 2.2 gives typical ranges for the standard deviatidheftielay spread. Note
that mean values of the mentioned environments are nelgligecause the variation of
delays damage the signal, not a longer or shorter delay.

In practical situations both Doppler and delay spread agsgut most of the time.
As a consequence a channel can be categorized into fouetitfiypes, always depending
on the ratios mentioned.

If both kinds of spread are present, then the channel has naoblelled adinear
time variant filter(the filter model is necessary due to the delay spread, theevianant
behavior is due to the Doppler spread). In this case inpyiLduelationship of the channel

is given by Equation 2.13.

y(t) = ZZZ- eVt g (t— 1) = h(t,T) *3(t) = /0 Tﬁ(t, T)-5(t —7)dr (2.13)

The impulse response of the channel is given by Equation 2.14
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Table 2.1. Categories in order to characterize the fadingwafeless channel depending

on the Doppler and delay spread

Criteria Category

%{ < 1, fa- Ts < 1 | not frequency selective (flat), not time selective (slqw)

% > 1, fq-Ts < 1 | frequency selective, not time selective (slow)

%ST < 1, fq-Ts > 1 | not frequency selective (flat), time selective (fast)

%T > 1, fq-Ts > 1 | frequency selective, time selective

Table 2.2. Standard deviation of delay spread values feetbften referred transmission

environments

Environment Trms

Urban 1-25us

Suburban 0.2-2us
Indoor 25-250ns

B(t,r) = A5t — 1) (2.14)

In the frequency domain input output relationship is givgrbguation 2.15.

Y(f)=H(t f)-S(f) = (ZE-eﬂ”'”"'t-e_ﬂ”'f'”) -S(f) (2.15)

Here H (t, f) denotes the time variant transfer function and determinesgain

experienced at timeto a frequency component at frequengty

2.2.4. First Order Statistics of Fading

In general a received signal consists of a large number oiatigopies which
interfere at receive antenna. If all channel coefficientsaskmown at each time instance,
the wireless channel could be seen as a deterministic chanpénciple. Due to the
large number of reflection paths this is not possible in practTherefore a statistical

description is the only way to characterize at least sompepties of the channel.
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Since there is high number of signal paths existing in a ystegdagation environ-
ment, thecentral limit theoremmay be applied to the statistical behavior of the interfgrin
signal copies at the receiver. If the number of paths tenditaty, then the fading can
be modeled by complex white Gaussian process. As a consegjuebBoppler spread is
present and there is high number of signal copies intedetiren the complex gaih(t)
can be modelled as Gaussian random process in time. If delegdis present, the com-
plex transfer functiorZ ( f) can be modelled as Gaussian random process in frequency. If
both kinds of spread are present, the time variant transfetion (¢, f) in other words,
the Fourier transform of the time variant impulse resporasel®e modelled as Gaussian
random process in both time and frequency.

Let us consider the complex gain is Gaussian (in the casetdaflang and the
absence of a line of sight component), the probability dgrfsinction of the complex
gainh(t) is given by Equation 2.16.

1 _anp?

p(|h) = e (2.16)

210}
The variancer? is given by Equation 2.17 where () andh,(t) denotes real and
imaginary parts of the complex Gaussian random proé¢ssrespectively. Also this
process has zero mean.
1 1 1

7 = 5 BROP) = 5 - B0 + 5 - B(0)?) (2.17)

If we change Cartesian coordinates to polar coordinates §, + h; = r - /%) by
standard transformation then we obtain the following jpirttbability density function in
Equation 2.18.

r -

p0) = gz e (2.18)
h

Sincer andf are independent, whefehas a uniform distribution, then the distri-
bution of r is called Rayleigh distribution and probabilitgrasity function of this distri-
bution is given by Equation 2.19.

2

p(RO)) = p(r) = U— e (2.19)

This form of fading is characterized by the absence of a lir@ght component,
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which is a very strong and 'fast’ path compared to all otheéhpaThe pdf of this function

is plotted in Figure 2.2. The instantaneous power has to berad for determining the

Probability density function of Rayleigh distribution
07 T T T T T T T

0.6 b

0.5f b

0.4F b

p(lhl)

0.3 i

0.2

0.1

O | | | | | | i L
0 0.5 1 15 2 25 3 3.5 4 4.5 5

lhl =r
Figure 2.2. Probability Density Function of the Rayleightizition

actual SNR at the receiver rather than the instantaneoubtadgy This is given by the
squared amplitude = r? = |h|? and the distribution of z is actually? distribution with
two degrees of freedom. This is due to the two independentlyoGaussian random
process of the real and imaginary parts of the signal comginThe probability density
function of z is determined by Equation 2.20.

PR = p(2) = = - €4 (2.20)

— 5 2
203,

In the case of existing line of sight component, the distrduof r is no longer

Rayleigh buRician, since one distinct path dominates. In other words it isivecemuch
stronger (in terms of power) than the remaining paths. I susituation, random multi-
path components arriving at different angles are supers@gpon a stationary dominant
signal. At the output of an envelope detector, this has tleeedf adding dc component
to the random multipath.

The Rician distribution depends on the ratio between the poihe strong path
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and the power of the remaining paths. Therefore this digiobh can characterize many
different line of sight scenarios while the Rayleigh diaitibn only characterize the non-
line of sight situation.

The probability density function of the Rician distributi@given by the Equa-
tion 2.21.

T, 7L T (Ar > >
7€ i Io(ag) A>0,r>0 (2.21)

0 r<0
The parameter denotes the peak amplitude of the dominant signal &id
is the zero-order modified Bessel function of the first kind.e Rician distribution is
often described in terms of a parameférwhich is defined as the ratio between the
deterministic signal power and the variance of the mulkipathis parameter is given
by K = A%/(207), or in terms of dB
2

K(dB) = 10log(%)dB (2.22)
h

The parametek is known as the Rician factor and completely specifies the Ri-
cian distribution. AsA — 0, K — —oo dB, and as the dominant path decreases in
amplitude, the Rician distribution degenerates to a Rayldigtnibution.

For small number of paths<( 5), the central limit theorem does not hold any
more, so Gaussian process assumption does not fit adeq{@aelrs 2000). In this case
the amplitude of- of the received signal can be modelledMgkagamdistribution. The
instantaneous power of the signal has & distribution. Addition to this by varying a
variablem the Nakagami distribution can take into account the absenpeesence of a
line of sight. Also the Nakagami distribution is more conegn for analytical work. For
detailed derivation and discussion refer to (Cavers 2000).

As already mentioned, the Rayleigh distribution occurs irshmon-line of sight
settings, which are encountered mostly with indoor scesas well as with microcells
in urban areas. Rician distribution are seen on the oppasieoaments where Rayleigh
fading occurs (refer to (Cavers 2000)). However, by consideRayleigh fading, one is
working with the worst possible scenario, since the Ricialing is less destructive and

the performance of the communication system is better.
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2.2.5. Second Order Statistics of Fading

In order to describe a Gaussian random process it is suffibeknow its mean
and its autocorrelation function, @ower spectrunwhich is the Fourier transform of
autocorrelation function. We have already shown the mealigitly in the previous
Section. In this Section we desire to obtain the second ateleeription of the process in
case of the Doppler spread as well as in the case of delaydsprea

In the case of Doppler spread only, whefe — 7;) ~ s(t), the received signal
7(t) is determined by the product of the transmitted sicii&l and the complex gain of
the channeh(t) where the complex gain of the channel is time variant. If zegone
is transmitted through the channel then the received sigmadists of multiple tones at
frequencies in the vicinity of the carrier with a maximumfsbf the Doppler frequency
Ja-

Let us consider a mobile receiver moving with the velocityy a multipath envi-

ronment. Each Doppler frequeneyis given by Equation 5.7.

v = fy-cos(v) (2.23)

Generallyv varies fromy- f,;, resulting from reflected paths in front of the receiver,
to — f,, resulting from reflected paths behind the receiver (beaimdlin front relate to the
direction of movement of the receiver). Sineg(-) is an even function, the Doppler shift
frequency varies from a scattering angle-of or ~. If we differentiate Equation 5.7 then

we obtain the relationship between (small) rangesahd of the angle in Equation 2.24

j—: = fa-sin(y) = fa- V1 —cos(y)? = fa- 4|1 - (%) (2.24)

Assume that there is high number of scatterers, thereferpdtver received from
differential anglei is given by the product of power densi}(~y) and differential angle
d~. Thus we can relate the received poverto the Doppler shift frequency and with

this we obtain the receivgabwer spectrund; (v).

P(y) + P(—v)

fo 1= (3)

If we consider the special case igbtropic scatteringimplying that the power

(2.25)

Silv) =
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received from different angles is equivaleft({y) = %). In this case the Equation 2.25

turns into Equation 2.26.

Sp(v) = 98" ! (2.26)

- fq 1—<f—l;>2

This is well known U shaped spectrum shown in Figure 2.3, tisaiten referred

to asJakes’ spectrum

12
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Figure 2.3. Power spectrum for the isotropic scattering cas

We can easily derive the autocorrelation function of the gle@mchannel gain by

taking inverse Fourier transform of the power spectrummyiveEquation 2.27

fa ' o2 T
rp(m) = ; Sr(v) - ™V T dr = # . / g2 facos(N7 g
—f .
= oph(2nfir) = o o(2r) (2.27)

The function/y(-) denotes the zeroth-order Bessel function of the first kindiazq
tion 2.27 relates the autocorrelation function which dejseon time difference with a

space difference.
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Table 2.3. Coherence time values for different carrier fesmies at various speeds

Carrier Frequency | 7.@Q1 m/s | T.@10 m/s | T.@20 m/s | T.@100 m/s
1 MHz 68.2s 6.82s 341s 0.68 s

100 MHz 0.68s 68.2 ms 34.1ms 6.82 ms

1 GHz 68.2ms | 6.82ms 3.41ms 0.68 ms
2.4 GHz 281ms | 2.81ms 1.4ms 0.28 ms
5.4 GHz 125ms | 1.25ms 0.62ms 0.12ms

10 Ghz 6.82ms | 0.68 ms 0.34 ms 68.2us

60 Ghz 1.12ms | 0.11 ms 56.2us 11.2us

If we assume that the scatterers at different Doppler shifte uncorrelated, then
h(t) is in fact uncorrelated. This assumption is called Wide sense stationary (WSS)
assumption and given in Equation 2.28.

— Tk

Elh(t)h (t —71)] = ry(1) (2.28)

From the autocorrelation function, one can derive a meastirae characterizing
the channel encountered. This is called toberence timand indicates the time span
that channel roughly stays constant. One mathematicalitiefirof the coherence time
is determined by Equation 2.29 which equals an autocoiwelatalue of 0.98 (Cavers
2000). But this definition is somewhat subjective and othéindens can be found in
literature (Proakis 2001), (Rappaport 1999), (Steele 1992)

11
B 27 - Vrms B \/§7de
In (2.29)v,.,,, denotes the standard deviation of the power specf§gn) given

1.

(2.29)

by Equation 2.26. For the case of isotropic scattering thianee isv,,,, = 5—% Typical
values for the coherence time are given in Table 2.3. As leantha required bandwidth
is much smaller than the carrier frequency, it has no efféicthe required bandwidth
is not significantly smaller compared to the carrier frequyerthe expected coherence
time equals the coherence time of the highest frequencyvesidn the communication

scheme.
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In the presence of only delay spread the wireless channddearodeled as linear
time invariant filter. Thus the received signgt) is determined by the convolution of the
transmitted signa#(¢) and the channel impulse resporige). Accordingly, the received
signal in the frequency domain is given by the product of tbarfer transform of the
transmitted signal and the transfer functifif f) of the channel. We desire to obtain a
spaced frequency correlation function/@f f), that is a function giving us the correlation

between the transfer function at different frequenciegydneral this function is given by:

Ta(f, f—Af) =< -E[H(f)-H (f — Af)] (2.30)

1
2

If we substitute Equation 2.12 into Equation 2.30 then weshav

Ta(f f-Af)=5 B

ZZAA e~ 2mif (ri= -e—%ﬂ'ﬂfﬂf] . (2.31)

If scatterers at different delays are uncorrelated, thisaurelation function de-
pends only on the frequency differendgf. This assumption is called thencorrelated

scatterers (US) assumptiarf wireless channels.

ZZAA ZAA

Herek; indicates the scatterers with the same defayJsing this identity Equa-

% — 0, (2.32)

tion 2.31 turns into

8f) = St e 23

k
If there are a lot of scatterers then this summation beconuensity depending

on the delayr. This density is called thpower delay profilgiven by
Tu(Af) = / P(r) - e ?™AT . qr, (2.34)
0

Exponential profile, which is one idealized but often useacfion for the power delay

profile is given by

P(r) = (o8)° c e s (2.35)

Trms

(7,ms)? is the delay variance and the square root of this, the stdrduiation of

the delay, is an often used measure for the delay spread afpagation environment.

The delay variance is obtained by
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Table 2.4. Coherence Bandwidth ranges for three typical emmients

Environment W,

Urban 6.4 kHz - 160 kHz

Suburban 80 kHz - 800 kHz

Indoor 0.64 MHz -6.4 MHz

2 _ L OOT—TZ~ 7)dT
2 /0 (r — )2 P(r)dr (2.36)

g EQ

T.» denotes the mean delay and is given by

%

For the exponential power delay profitg,, equalsr,,,.

1 oo
T = —5 * /0 T P(7)dr. (2.37)

From the autocorrelation function of the transfer functadrthe wireless chan-
nel with uncorrelated scatterers a measure in frequencheaerived characterizing the
channel encountered. The meaning of this measure is rdlathbé coherence time and
is called thecoherence bandwidthThe coherence bandwidth measures the frequency
spacing roughly for which the channel does not change sigmifiy. Again the exact
mathematical definition is somewhat subjective. One dedmiovf the coherence band-
width is given in (Cavers 2000)

W, = ! (2.38)

o 27T7—rms '
Other definitions can be found in (Proakis 2001), (Rappap8a9}, (Steele 1992).

In Table 2.4 ranges of the coherence bandwidth are givenifiereht environ-

ments. Note that the carrier frequency does not affect theremce bandwidth. If the
coherence bandwidth is much smaller than the required batid¥or transmission, the
system will suffer from intersymbol interference (I1SI), nmatter at which carrier fre-
guency the system is working. Therefore, it is much easieotomunicate at high data
rates in indoor scenarios due to the large coherence batidtidn in urban environ-
ments, here ISI degradates the performance severely. Nas nsider the case where

both effects present at the same time. First recall the iopitut relationship in the case
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of many scatterers given by Equation 2.8.

0 rfa )
T(t) = / / o(v,7) - ™ 5(t — 1) - dvdr
0 —fd

If we observe the output in the case of a single carrier inpfreguencyf, where

s(t) = e2™/'t we obtain the output given by:
o rfa , . . o
T(t) = / / o(v, 1) - eBPmvite T2t oI L dydr = SN H (L f) (2.39)
0 —fa

HereH (t, f) is the time variant transfer function and determines thegergain
at frequencyf at timet. Since both delay and Doppler spread are now present, we want
to obtain a time-frequency correlation function/ft, f). That is a function representing
the correlation between the complex gain at titvend at frequency, compared to the
complex gain at time + At and at frequency + Af.

Considering the WSS assumption (scatterers at different Bogpifts are un-
correlated) and the US assumption (scatterers at diffetelalys are uncorrelated), this

desired function only depends on the delay and the frequeiffeyences present.

ra(ALAf) = / / S - 2L FTIAT G (2.40)

In this equationSy(,, ;) is called thedelay-Doppler power density functiam also
the scattering function It represents the power density of the environment at Deppl

shift v and delayr. This function is related to the power delay profile by

Plr) = /_ " S, ). (2.41)

It is related to the Doppler spectrum by integrating thetsciaig function in the delay
domain.

In order to determine the functional behavior of the scattefunction assume
that the Doppler spectrum is not linked to the delay profileed the scattering function

is called to beseparable
Sg(v, 1) - P(T)

Se(v, 1) = 5 (2.42)
Th
With this assumption, the Equation 2.40 becomes simpletang into
re( At Af) = (&) ';"ﬁ(Af ), (2.43)

o
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CHAPTER 3

SIMULATION MODELS FOR FADING CHANNELS

It is important to simulate communication systems in sofenfar system design
and verification. Simulation offers cost effective and tisawing alternative to real time
testing in the field. The prime requirement of the simulaetrup is to capture the fading
effects created by a radio channel. As a result, efforts haea made to develop efficient
models to simulate the actual radio propagation environnmesoftware and test various
communications algorithms. There are several methodsicdmmunications literature
to simulate Rayleigh fading. This methods can be based oeresthm of sinusoids prin-
ciple or filtering of the white Gaussian noise. Our proposiedukation model is also
based on filtering of the white Gaussian noise. Before we dssour contributions in this
area, it is necessary to understand different simulatidlogdphies commonly employed
to simulate fading channels. Therefore, we provide an aeerof different simulation
techniques in this chapter. Specifically, we discuss the agusinusoids models and dif-

ferent kinds of filtered noise models along with their prod aans.

3.1. Sum of Sinusoids Models

Complex channel envelope of multipath fading channel carepeesented as a
sum of homogeneous wave components. Each homogenous cemjorepresented by
a complex sinusoid with certain amplitude, frequency, ahdse. The overall channel
waveform is the sum of several sinusoids. Therefore, thaphl description is often
called a "sum-of-sinusoids” model. Being a natural represén of the channel wave-
form, several sum of sinusoids models have been presentieel rast to simulate wireless
channels. Rather than simulating the channel by directlyyappthe Clarke’s reference
model (Clarke 1968), specialized sum of sinusoids modelparposed to efficiently
simulate the channel by using a finite number of sinusoide. pflosophy of sum of si-
nusoids modeling has been made popular by the pioneeringatfdiakes (Jakes 1974),
which is discussed below.

For convenience, first we discuss the Clarke’s reference In@larke’s model
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defines the complex channel gain under non-line of sightukeacy flat fading, and 2-D

isotropic scattering assumptions as (Clarke 1968)

N
[ 2 .
h(t) — N E 6][27rf,1tcos(an)+q5n] (31)
n=1

where N denotes the number of propagation paths; U[—n, 7) anda,, ~ U[—m,7)
are the random phase and angle of arrival of.#tHemultipath component respectively,
andf, is the maximum Doppler frequency due to the mobility of theereer. To simulate
the wireless channel, this sum of sinusoids model can beeapgirectly by generating
the random variables involved in the model. However, thghhdegree of randomness
is not desirable for efficient simulation. Therefore Jakexppsed the following sum of

sinusoids model:

hi(t) = V2cos(2m fqt) - 2;COS (%) oS (27de cos {4]\2;1 2} t> (3.2)

M
ho(t) = 2 ;sm <277Wn) cos (27rfd cos [4]\247Tj— 2} t) (3.3)

whereh;(t) andhg(t) denotes the in-phase and quadrature phase componentsofithe

plex channel gain and M denotes the number of sinusoids. &lddtdiscussion about
derivation of the model parameters can be found in (Jakest)193tiber 2001). The
intuition behind this model is the fact that under 2-D isptooscattering, the symmetry in
the environment can be exploited to reduce the number ofsids. For instance, while
the Clarke’s model distributes the angles of arrival dver, ) resulting in negative as
well as positive Doppler frequencies in the model, the Jakeslel simulates only the
positive Doppler frequencies to reduce the number of sidgskl. The amplitudes of
these sinusoids, i.ecps(«,) andsin(a,,) are chosen to produce zero cross-correlation
between the in-phase and quadrature components, a caohgmpiosed by the Clarke’s
model to generate Rayleigh faded envelope.

The Jakes’ model has been the de-facto simulation model lfmmgatime. How-
ever, recent studies have highlighted several drawback&an@y and Beaulieu 2001),
(Zheng and Xiao 2002) of this model. It was shown in (Young &edwulieu 2001)
that the fading signals which are produced by classicals)sikeulator are not wide-sense

stationary (WSS). Also, since all the parameters in the madeifixed (deterministic),
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the channel gains simulated in each simulation run is idahtiTherefore, statistical av-
eraging or Monte Carlo simulation results cannot be obtaimeide computing metrics
such as bit error rate (BER).

Several statistical methods have been proposed by Zhengiand(Xiao and
Zheng 2002), (Zheng and Xiao 2002), (Zheng and Xiao 2003)eiig, et al. 2003)
for wireless channels to remove this drawback. These msttiidiér from one another in
terms of the model parameters and therefore they haved@lifféime-average properties.
In this thesis we simulate and make performance and conyplaralysis of one of the
method’s proposed in (Zheng and Xiao 2002). With this methedormalized low-pass

discrete Rayleigh fading process is generated by

h[n] = h;[n} +th[n], (348_)

1 &
hiln] = (27 fin cos 3.4b
1[n] m;cos( T fmn cos ag + ¢y) (3.4b)

1 &
hgln| = — Z cos(2m fun sin oy, + @r) (3.4c)

N k=1

with
ok —

O-/k:ﬂ-kTﬂ'_'—ea k:1727"'aNS (35)

wheregy, ¢ andd are statistically independent and uniformly distributed-er, ) for

all k and Ng denotes the number of sinusoids.

3.2. Filtered Gaussian Noise Models

Ultimately, the goal of any simulation model is to reprodtice channel proper-
ties. Therefore, in contrast to sum of sinusoids modelgrétt Gaussian noise models
are adapted to simulate the channel properties by meangratl girocessing techniques
without considering the underlying propagation mechanismstead of adding sinusoids
to generate fading, these models filter Gaussian noise tergenthe complex channel
gains. The underlying principle is that on filtering Gaussiise through appropriately
designed filters, the channel power spectral density (psiaeoDoppler spectrum) can be
simulated, thereby capturing the important first and secwddr fading statistics.

To understand the working of filtered noise models, first veewa$s an important

result obtained from the linear time invariant filteringding Given a filter with frequency
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response (f), if a signalz(n) with psd P,.(f) is filtered through this filter, the output
y(n) has psd given by

Pyy(f) = Pe(H)IH(f). (3.6)

To generate the Gaussian in-phase or quadrature compafi#mscomplex chan-
nel coefficients, each having a Doppler spectry(f) = S(f), one can filter a white
Gaussian random process with psd\f/2 through a filterH () whose frequency re-

sponse is chosen to be

H(f) = Niosof). (3.7)

Then, the output random process will also be Gaussian witld@f5 (), thereby
reproducing the properties of the complex Gaussian chanred next goal in the sim-
ulation model is to implement the filtd (/). We describe three such implementation
schemes below - the Inverse Discrete Fourier TransformT)Dier model (Young and
Beaulieu 2000), the Autoregressive (AR) filter model (Baddaa Beaulieu 2005) and
our proposed fading filter design. The IDFT filter method isigeed in the frequency
domain while our proposed filter design and the Autoregvessiodel are designed in

time domain to provide an approximation of the Doppler speutthat we desire.

3.2.1. IDFT Filter Design Method

Since it is easy to discuss the IDFT operation in discretes tiand our ulti-
mate goal is to simulate discrete time waveforms, we dedi discrete time-domain

sequences in this section. A block diagram of this methodhd@sva in Figure 3.1. In

MLLD Multipl

Zero-Mean {‘4[k]} LY hqu:ﬁeYr

Gaussian Sequence

Wariates {FIkI MN-Point
Cormplex {1} : || 3
Inverse Rayleigh

DFT Fading
‘[ Sequence

b
MLLD
Zero-Mean Multiply
Gaussian % by Filter

Variates Sefuence

{FIkIt

Figure 3.1. Block Diagram of the IDFT Method

this method, the IDFT operation is applied to complex seqasrof independent, nor-
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mally distributed random numbers, each sequence mulligdie suitable filter coeffi-
cients. To generate a discrete time sequeficeof N complex Gaussian variables with a
given Doppler spectrum, the Doppler spectrum is sampled eqN-spaced frequencies
fr = (kfs)/(N),k = 0,1,..., N — 1 where f, is the sampling frequency. The filter
coefficients can be determined by Equation (3.8):

(

0 k=0,

[——L k=1,2 . kn — 1,
2,/1-(55-)?

\/%”[g — arctan(—kﬁ’,z;il)] k =k,
Flk] = (3.8)

V2km—1

1 k N k 1 o N 1.
/ N—F m )y
L 2\/1 (me)2

where N denotes the number of symbols apd= |(f,.V)]. In addition, two sequences

\/%[% — arctan(—==L)] k=N —k,,,

Alk] and B[k], each having N independent and identically distributed) (€al Gaussian
random variables with zero mean and varianéare generated. Then, the desired signal
y[n] is obtained as

y[n] = IDFT{A[k|F[k] — jB[k|F[k]}. (3.9)

3.2.2. Autoregressive Filter Model

The AR model imposes an all-pole structure on the fif#rf) and determines
the AR filter coefficients in the time-domain by using the kieslge of channel auto-
correlation function. However, it must be noted that thearhying principle of filtering
Gaussian noise to produce an output with the desired psdnsiiee same.

Autoregressive models are generally used to approximatzate-time random
processes. This is due to the simplicity of computing of rtipgirameters and due to

their correlation matching property. Lefn| be a white Gaussian random process filtered
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through ap’" order (p poles) AR filter (z) = 1/Ax(z) = 1/(1 + Y 7_, axz~*). Then,

the outputy|n] is given by the difference equation
p
y[n] = — Z apx[n — k] + z[n]. (3.10)
k=1

The AR model parameters are the filter coefficiefats ao, . . ., a,} and the vari-
anceaf, of the driving noise processn|. The corresponding power spectral density of

the AR(p) process is given by (Baddour and Beaulieu 2005)

0.2

— p
Syy(f) - ‘1 _|_ Z£:1 akefj%f’“P (311)

Although the Doppler spectrum models proposed for mobderahannel are not
rational, an arbitrary spectrum can be closely approxichaéte a sufficiently large AR
model order. The basic relationship between the desirecehaadocorrelation function

R,,[k] and the AR(p) parameters is given by:

=3 amRyy [k —m], E>1
Ryy[k] = (3.12)
= amRyy [k —m] + ag, k=0.
In the matrix form this becomes fér=1,2,--- ,p
Ryya = —v, (3.13)
where ~ .
Ry, [0] Ryy[—1] Ryy[—p+1]
R.. — Ryym Ryy {O] Ryy[_ 2]
vy ) )
Ryylp—1] Rylp—2] R,,[0]
a = |ay, G2, - aap]T WV [Ryymv Ryy[z]a B Ryy[p“T' and
P
012) = Ry, [0] + akRyy[k:]. (3.14)
k=1

Given the desired autocorrelation sequence, the AR filtefficeents can be determined
by solving the set op Yule-Walker equations. These equations can in principledbesd
by the Levinson-Durbin recursion. However, an exact sofutd the Yule-Walker equa-
tion does not exist if the autocorrelation matky,, is non-singular and therefore non-

invertible. In such cases, a solution is obtained by usingcartique called diagonal
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loading or matrix stabilization, where we artificially inttuce some noise variance into
R,, to make it stable, non-singular and thus invertible matibhen AR fading filter

coefficients can be obtained by:
ax = —(Ryy +€l) v, (3.15)

wherel is ap x p identity matrix and: # 0 is a suitable diagonal loading parameter that

rendergR,, + €I) non singular and invertible.

3.2.3. Our Proposed Fading Filter Design

A straightforward method to simulate a faded signal is to lgogee modulate the

carrier signal with a low-pass filtered Gaussian noise soascsshown in Figure 3.2. If the

Complex Gaussian Fading Filter ® Faded
Noise Source g(k) signal

Transmitter

Figure 3.2. Faded signal generator that uses low-passftltehite complex Gaussian

noise

Gaussian noise sources have zero-mean then this methascpsod Rayleigh faded en-
velope (Stiber 2001). In order to obtain time varying frequency setedading channel
we must have a bank of these fading filters where each filtezrgées the corresponding
fading channel tap. A fading filter with impulse resporgé) can be designed so that
its output spectral density is an approximation to theoa¢spectral density of the com-
plex envelope of the faded sign&i f). Consider the elementary first order filter transfer

functionG,(s), and the second order filter transfer functi@g(s) where

Wy
Gils) = - o (3.16)
and
w2
Gy(s) = 55— (3.17)

32+%—|—w%'
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Then we can have fading filter continuous time transfer fionstwith higher orders (of
ordery), G,(s), that are given by
G2 (s), if 4 even

G, (s) = { s ' (3.18)
Gi(s)Gy' ™ "(s), if v odd

whereG,(s) andGs(s) are as given by (3.16) and (3.17) respectively, and the tsefec
of ) is such that there is a pre-specified frequency responskdeve= w, rad/sec; for
example for the third-order filter i) = /10 then the magnitude af/(-) will have a gain
of 7dB atw = w, (10dB gain from the second order filter and -3dB from the firsteo
part making the overall gain of 7dB). In order to find the parereeof the fading filter
transfer function(z,(s), we will first set the filter ordety and@. Then definingS(f;e),

as an approximation to the theoretical spectral densityakds 1974), by

e |fI< fa—e
S(fie) = 2m far/1=(f/fa) I (3.19)
0 else

wheree € R* is a small positive real number, which can be taken as metipf the
smallest positive number the computing platform that camdlea Then we solved the

numerical optimization problem, for fixed f; and(@,
w, = argmin |S(f;€) — |G, (j2n ). (3.20)

The result of this numerical optimization (3.20) gives thmimizer of the norm of the
distance between the modified theoretical spectral deasitythe theoretical fading fil-
ter spectrum. In Table 3.1 ratio of, /w, with respect to various filter orders and desired
peak atw, = wy is tabulated. Theoretical and approximate spectral dendgitere the ap-
proximate spectral density is for the output of the filtgf(s), are provided in Figure 3.3.
For the transfer functions provided in theglomain, we can use th@linear trans-
form to getG, (=) with an ARMA(y,y) model, orimpulse invariance methotb get a
G, (z) with an AR(y) model (all pole filter), where
—k

v M
=09k ?
G,(z2) = k=0

(3.21)

-k

with {gi*}7_,,{gM}]_, are the auto-regressive and moving-average filter tapsheof t

ARMA(~,7) model, respectively. The generated Rayleigh fading pbas an auto-
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—— ading filter frequency response (3rd order filter)
= | = Theoretical spectral density of the faded complex envelope
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Spectral Density(dB)
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Frequency(rads/sec)

Figure 3.3. Theoretical and approximate spectral denfitytite filter G(s))

Table 3.1. Ratio ofv, /w, tabulated with respect to various filter orders and desieskp

(dB) atw, = wy

Filter Order || Desired Peak (dB) aty = w,

10 15 20

1.0200| 1.0055| 1.0025
1.0152| 1.0060| 1.0017
1.0668| 1.0401| 1.0247
1.0668| 1.0413| 1.0228

g b |w | N |
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correlation function,R,.[n], which can be found by directly using Wiener-Khinchine
theorem (Proakis and Manolakis 2007). That is,

Ra.[n] = 0g[n] * g[—n] (3.22)

whereo? is the variance of the complex zero-mean white Gaussiarenaisdg(n| =
Z7YG,(2)) is the discrete time filter impulse response and as giveneamtersez-

transform of the transfer functioé, (z).

3.2.4. Quantized Filter Application of Proposed Filter Design

Hardware implementations can require filters to use mininmower, generate
minimum heat, and avoid computational overload in theicpesors. Meeting these con-
straints often requires the use of quantized filters.

Because of finite signal lengths and the finite memory of coeppitocessors,
only a finite set of quantized sequences is possible. Saghphd quantization round or
truncate signal values within the finite set of possibiiti€Quantized samples are repre-
sented by a groupnord) of zeros and one®its) that can be processed digitally. The finer
the quantization, the larger the number of bits in the samwplel.

Like sampling, improper quantization leads to loss of infation. Unlike sam-
pling, however, no matter how fine the quantization, thect$fare irreversible, since word
lengths must be finite. Finite word lengths appear as naalieffects (such as overflow
and limit cycles) and can make systematic treatment of dgetian extremely difficult.
Quantization noise can be described in statistical termsjsausually considered only in
the final stages of design.

Before the application of quantized filtering it is necessaryinderstand fixed
point arithmetic. Hence, we provide a short overview aboutdmental concepts of

fixed point arithmetic.

3.2.4.1. Fixed Point Arithmetic

One can specify how numbers are quantized using fixed-poihtreetic. The two

most important parameters are:

e Word lengthw in bits
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e Fraction lengtH in bits

The fraction length is the number of bits between the binaiptoand the least-
significant bit.

Where you place the binary point determines how fixed-pointlmers are inter-
preted. For example, for a signed (twos complement) fixadtpmmber, 10.110 repre-
sents—2 + 271 4272 = —1.25.

A fixed-point quantization scheme determines the dynanmgeaf the numbers
that are used. Numbers outside this range are always mapgecd-point numbers
within the range when you quantize them. Trecisionis the distance between succes-

sive numbers occurring within the dynamic range in a fixetip@presentation.

e For a signed fixed-point number with word length w and fractength f, the dy-

namic range is from-2v—/=1 to 2v—/=1 — 2=/,

e For an unsigned fixed-point number with word length w andtfoaclength f, the

dynamic range is from 0 t&*—/ — 2=/,
e In either case the precisionis’.

When you quantize a number outside of the dynamic raogerflowsoccur.
Overflows are more frequent with fixed-point quantizatioarthvith floating-point quan-
tization, because the dynamic range is less for equivalend \engths. Overflows can
occur when you create a fixed-point quantized filter from doiteary floating-point de-
sign. You can eithenormalizeyour coefficients (and introduce a corresponding scaling

factor for filtering) to avoid overflows, or elsaturateor wrap.

3.2.4.2. Quantized Filter Application Results

In this section, we implement our proposed ARMA(3,3) filteraafixed-point
filter. Both fixed point filters and single precision floatingmdilters are referred to as
guantized filters We use MATLAB Filter Design Toolbox to implement the fixed#pt
scheme. After determining the filter coefficients of our egd filter, we construct the
discrete time filter objedtd by evaluating the MATLAB scriphd = dfilt.df2(b,a) This
script returns a discrete-time, direct-form I filter oljdacl, with numerator coefficients

b and denominator coefficiengs To create the fixed-point direct-form Il filter, we must
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change thé\rithmeticproperty setting fohd to fixed-point arithmetic by evaluating this
MATLAB script set(hd, Arithmetic’,fixed’)

There are several parameters for fixed-point filter. Firstoeecentrate on the
coefficient word length and fraction length (scaling). Thes compare the magnitude
responses for both the quantized filter and the correspgreierence filter. To deter-
mine the number of bits being used in the fixed-point filkelr one must look at the
CoeffWordLengtlproperty value. To look at the coefficient word length, MATRAcript
get(hd,CoeffWordLength’)nust be evaluated and to look at the fraction length, MAT-
LAB script get(hd,NumFracLength’inust be evaluated. £oeffWordLengtlvalue is 16
and NumFracLengthvalue is 21, this means that/ uses 16 bits to represent the coef-
ficients, and the least significant bit (LSB) is weightedZy!. 16 bits is the default
coefficient word length the filter uses for coefficients, l&2-2! weight has been com-
puted automatically to represent the coefficients with test [possible precision, given
the coefficient word length value.

In the Figure 3.4, the magnitude responses for the variotssores of fixed-point
filter hd are plotted. So we can compare the effects of changing thiéiccelst word
length. Magnitude responses of all versions of the fixeaddier, except 10 bits version,
and magnitude response of the reference filter are nearlgaime. Peak value of the
magnitude response of the 10 bits version is 2-3 dB less tmamwther versions of the
fixed-point filter and the reference filter. But comparisonha magnitude responses does
not ensure the performance of the fixed-point filter durirtgtithg.

To evaluate the accuracy of the fixed-point filter, we filtempbex white Gaussian
noise with both filters to generate the Rayleigh fading seceileiWhen evaluating the
accuracy of fixed-point filtering, three quantities for caripg between the quantized

filter and the reference filter must be considered:

e The ideal filtered output: This is the goal. It is computed Ising the reference

coefficients and double-precision floating-point arithimet

e The best-you-can-hope-for filtered output: This is the bestcan hope to achieve.
It is computed by using the quantized coefficients and doeplaeision floating-

point arithmetic.

e The filtered output can actually be attained with the qualtitilter: This is the
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output computed by using the quantized coefficients and-padt arithmetic.

To represent the complex white Gaussian noise as a fixed-qggct, we evaluate
the MATLAB script, xin = fi(x,true, WordLength’,FractionLength)We can compute the
actually attained filtered output by filtering this fixed-poobject through the quantized
filter and we can compute the best-you-can-hope-for filtexrggut by casting the fixed-
point filter to double-precision and filtering this fixed-pbbbject with double-precision
floating-point arithmetic. In this case we must also casiripat dataxin to double format
to use it with the double-precision filter. We can comparasdiigvo outputs by taking the
norm of the difference of them. If we select the "WordLengtfi'the fixed-point input
equals to 16 bits, 'FractionLength’ of the input equals tob#] and filter1000 samples
through fixed-point filter with 16-bit quantized coefficiepin two aforementioned differ-
ent case then the norm of the difference of the two outputaledal.5649 x 10~%. This
means that the accumulator is introducing neglible quatitim error. For completeness,
we must compare the ideal filtered output to the actuallyirethfiltered output. If we
take the norm of the difference of the ideal filtered output e actually attained output,
when the "WordLength’ of the fixed-point input equals to 1&lasind the 'FractionLength’
of the input equals to 21 bits, this norm equal9637. When the "WordLength’ of the
fixed-point input equals to 14 bits and the 'FractionLengththe input equals to 18 bits,
then the error equals ©7964. But if we select the 'WordLength’ of the fixed-point input
equals to 10 bits and the 'FractionLength’ of the input egi@ll3 bits, and we also select
the coefficient wordlength equals to 10 bits, then the northeflifference of the attained
and ideal filtered outputs equalst®083. In this case, 10-bit quantized coeffients is not
enough the represent the filter output accurately. The errd8 bits case is rather small,
but error in 14 bits case and especially in 10 bits case agebithan 16 bits case. By
implementing 10-bits fixed-point filter, we can not achiemegh accuracy.

In Figure 3.5 actually attained outputs of 10 bits, 14 b@dits and ideal filtered
output are provided for comparison. Also in Figure 3.6, Fég8.7 and Figure 3.8, the
Rayleigh faded outputs of the 10-bits case and 24-bits casgian respectively.
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Figure 3.5. The actually attained outputs of 10,14,16 l@teand the ideal output
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Figure 3.6. The filtered outputs for 10-bits case
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Figure 3.7. The filtered outputs for 14-bits case
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Figure 3.8. The filtered outputs for 16-bits case

3.3. Performance and Complexity Evaluation

In this section, we evaluate the suitability of our propofker design technique

for producing high-quality Rayleigh fading sequence. Congoais of our proposed
method provided in Section 3 are made to a WSS-improved Jakedél (Zheng and

Xiao 2002), AR fading filter approximation (Baddour and Beauli2005), and to the

IDFT technique (Young and Beaulieu 2000) which was shown Iretthe most efficient

and highest quality method among different Rayleigh fadiagegator design methods.

First, the quantitative measures that are used for this easgn are described.

3.3.1. Quantitative Measures

Quantitative quality measures for generated random segselmave been pro-

posed in (Young and Beaulieu 2003). Two quality measureslhese defined as follows.

The first measure, called timeean basis power margirs given by

gmean

X

1
- 2—Ltmce{C’XC;(10X}

(3.23)
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and the second measure, theximum basis power margiis defined as

1
Grnaw = —Qmax{diag{CxC;C’X}} (3.24)
Ox

In (3.23) and (3.24)¢% is the variance of the reference(ideal) distributiog,is the
L x L covariance matrix of any length-L subset of adjacent sasnpteduced by the
stationary random sequence generator, @pdepresents the desired covariance matrix

of L ideally distributed samples.

3.3.2. Performance Comparisons

Before evaluating the quality measures, we demonstrate ttie d3fulation re-
sults for both binary shift keying (BPSK) and quadrature phstsft keying modulation
schemes in Rayleigh channel generated by our proposed ARERO) filter, and Jakes’
model. All of the results are calculated by usitf channel samples. These results are

presented in Figure 3.9 and in Figure 3.10.

—&— AWGN-Theory
—=fe— Rayleigh-Theory
——#— Rayleigh—-SOS 8
=—f— Rayleigh—-SOS 16
Rayleigh—-SOS 64
—A— Rayleigh—AR(20)
—6— Rayleigh—ARMA(3,3)| |

Bit Error Rate

0 5 10 15 20 25 30 35
Eb/No, dB

Figure 3.9. BER for BPSK modulation in Rayleigh channel

As seen on the Figure 3.9 and Figure 3.10, BER performancel Bhgleigh
fading sequence generators are nearly the same; so we gacoombare this generation

methods in terms of the quality of the generated autocdielaequences and computa-

tional complexity.
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Figure 3.10. BER for QPSK modulation in Rayleigh channel

The quality measure comparison results, which are pregemt€ble 3.2, com-
pare the quality of the real part of the simulator outputsnifir results were achieved
for the imaginary sequences and these are omitted for preWerfect Rayleigh fad-
ing sequence generation method corresponds to 0 dB for be#sunes. In all cases,
the reference autocorrelation function is (2.27) with anmalized maximum Doppler of
fa - Ts = 0.05 wherel/T, denotes the sample rate. An autocorrelation sequencehlengt
of 200 was considered for evaluation of all theoretical itssuor the empirical results,
time average correlations were calculated basezfbgenerated samples. The computed
guality measures were then averaged over 50 independeuliasion trials. Plots of the
empirical autocorrelation functions of the AR model and ptoposed Rayleigh fading
generator via AR models are shown in Figure 3.11 and the pliotse IDFT method
and our proposed filter generator via ARMA models are showngnrgé 3.12. The re-
sults show that the IDFT method generally provides closethilghest quality Rayleigh
samples. The AR model provides a more precise match to theedesmutocorrelation
function as the order of the model used increases. But ouopeapfilter design method
provides same accuracy with much lower order models. Our ARBVBA generator has
a significant advantage over AR(20) generator. Similar amyucan be achieved by the

WSS sinusoidal generator when a large number of sinusoidaladsrs are used.
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Table 3.2. Quality measures for the IDFT, our proposed fiesign via AR and ARMA,

AR filtering and sum of sinusoids methods

Rayleigh Fading Random Theoretical(dB) Empirical(dB)

Sequence Generators Omean Gmaz Gmean | Ymaa
IDFT Method 0.00076| 0.00081| 0.0035| 0.0037
Proposed ARMA(2,2) || 2.5066 | 2.5505 || 2.5068| 2.5514
Filter Design AR(2) 2.6707 | 2.7247 || 2.6768| 2.7313
ARMA(3,3) 1.9777 | 1.9962 || 1.9775| 1.9979
AR(3) 2.0924 | 2.1173 || 2.1447| 2.1727

AR Filtering AR(20) 2.7 2.9 2.6 2.9

AR(50) 0.29 0.43 0.26 0.40

AR(100) 0.13 028 | 0.11 | 0.26
Sum of Sinusoids 8 Sinusoids| N/A N/A 36.223| 37.730
16 Sinusoids N/A N/A 4.0264| 6.4140
64 Sinusoids| N/A N/A 0.0211| 0.0370
128 Sinusoidg| N/A N/A 0.0027| 0.0049

Our Proposed Filter(AR(3))
—— AR(20)
vk AR(50)
AR(100)

0.6

1p= ‘
< Theory
0.8 € = © = Our Proposed Filter(AR(2)) |-
%
i
|

Autocorrelation

50 100 150 200
Lag

Figure 3.11. The empirical autocorrelations for AR method proposed model
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Table 3.3. Computational Complexity comparison

Simulator Design Technique Number of
Real Multiplications
IDFT Method 44 x 10°
Proposed Filter ARMA(2,2) 8 x 106
Design AR(2) 2 x 106
ARMA(3,3) 12 x 108
AR(3) 6 x 100
AR Filtering AR(20) 42 x 108
AR(50) 105 x 106
AR(100) 210 x 109
Sum of Sinusoids 8 Sinusoids 178 x 108
16 Sinusoids 356 x 106
64 Sinusoids 1424 x 106
128 Sinusoids 2848 x 10°

1 \

Theory

'+ =@=" Our Proposed Filter(ARMA(3,3)) |
= © = Our Proposed Filter(ARMA(2,2))
® IDFT

0.8

Autocorrelation

0 50 100 150 200
Lag

Figure 3.12. The empirical autocorrelations for IDFT metlamd proposed model
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The main advantage of our low complexity Rayleigh fading getoe is that the
samples of the fading sequence can be generated as thegairedevhile achieving the
lowest complexity of all the Rayleigh fading generators rnmred. The computational
efficiency of the IDFT method brings a cost in storage reauéwts as all samples are
generated using a single IFFT. Our proposed fading genaaatbthe all other generators
don't have such a limitation. As provided in Table 3.3, to gette2*® samples, IDFT
method required4 x 10° real multiplications, our proposed filter design technigise
ARMA(3,3) model required2 x 10° real multiplications, AR(20) model requirdg x
10° multiplications and the improved Jakes’ model with 16 saids requires$56 x 10°

multiplications.
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CHAPTER 4

PATH LOSS AND SHADOWING PREDICTIONS

To predict the path loss and shadowing is very important foeless channel
modeling and wireless communication system design. Incthegpter, path loss and shad-
owing predictions will be made by using a site-specific ragtimpagation software called
Wireless InSite. In the first part, some theoretical infotioraabout path loss is given
with an experiment done in Wireless InSite, where the path is calculated in a propa-
gation scenario including a transmitter, a receiver roame, a concrete barrier. The aim
of this experiment is to predict the power loss in a shadovegibn. Then we provide

theoretical information about shadowing.

4.1. Path Loss

Path loss refers to the attenuation in the transmitted bwgimiée propagating from
the transmitter to the receiver. Path loss is caused bypaissn of the radiated power
as well as effects of the propagation channel such as abmohie to moisture. Typical
path loss models assume a distance dependence attenuatidhge received power is a
function of the distance between the transmitter and theivec Significant variations in
the path loss are observed over distances of several hutotieousand wavelengths.

The simplest path loss model corresponds to propagatiaeéspace, i.e., line-
of-sight (LOS) link between the transmitter and receivemder this model, the received

signal power is given as
/\2
A d?

whereP; is the transmitted powet; - andG i are the transmit and receive antennas gains,

Pp = PrGrGr 4.1)

respectively) is the wavelength of the transmitted carrier, aid the distance between
the transmitter and the receiver. Thus, the received poweredses with a factor of
distance-squared under free space propagation. We alsoselibe path loss dependency
on the carrier wavelength. Shorter the wavelength or etgnély higher the transmitter

frequency, higher the path loss.
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The free space path loss model cannot capture all the propagzenarios en-
countered in the real world. Therefore, several differeatais such as Okumura, Hata,
Walfish-lkegami, etc., have been proposed to model pathitodgferent propagation

environments such as urban, rural, and indoor areas.

4.1.1. Shadowing Loss Prediction Experiment

In this section, we investigate the effect of a barrier onrdezived power, which
completely blocks the line of sight. Therefore there exasthadowed region behind the
barrier. We make path loss prediction by using WirelessttaSDur experimental setup
in Figure 4.1 includes a transmitter with a height of 30 m,@neer route with a length
of 1 km, where the distance between the receivers is 5 m, ardreebwhich is 20 m
height. All of the antennas used in this experiment are Wwalfe dipole antenna and the
transmitted signal waveform is sinusoid with a carrier frexgcy equals to 900.5 Mhz, so

the wavelength is 0.3331 m.

—
;: — — —_
il —
o
R =
1 Lo
& n
= " = =
+ > -+
dy=25m @ =5m
N
Shadowed Receiver antennas
Receiver antennas with LOS signal

Figure 4.1. Experimental setup to predict the shadowing los

Figure 4.2 shows the plots of the predicted results. As seeth® figures the
shadow region covers the area bounded with distances of 0 @nmeéters. In this re-
gion the fluctuations of the received signal strength arseddrom diffraction (for more
information refer to (Saunders 1999)). If we distract theoattetical path loss from the
total loss measured in shadowed region then we can achiev&htidowing loss. After
the distance of 70 m the values that we predict are approgignaual to the theoretical

values and the predicted values obtained by the experinueret @ithout barrier.
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Figure 4.2. Predicted path loss and shadowing values
4.2. Shadowing

The presence of obstacles such as buildings and treessregstdhdom variations
of the received power at a given distance. Measurementsliese made under several
different conditions and statistical variations have bekserved. Different values of the
received signal power were measured for a fixed frequencydastdnce. Thus for a
given fixed distance, frequency and transmission powengbeived signal power is not
deterministic, but varies due to the objects in and aroueditinal path. These stochastic,
location dependent variations are calthdowingand were denoted in Equation 1.1 by
asy(t). But these stochastic variations are constant in time, agdsrthe receiver and its
complete environment do not move. Shadowing reflects therdiices in the measured
received power with relation to the theoretical value cla®d by path loss formulas.
However averaging over many received power values for theesdistance yields the
exact value given by path loss.

The objects causing these variations are of very large dsioes that a receiver
moving along a line at constant distance from the transmitit take several hundreds

of milliseconds (ms) to move an area with different chanasties. As a result, path loss
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and shadowing are often called large scale effects. Lamgje sffects play an important
role in the system design at the network level. For instatfeegell coverage area, outage,

and handoffs are influenced by these effects.

4.2.1. Shadowing Model

Experimental results show that the shadow fading can g &scurately modeled
as a log-normal random variable (Okumura, et al. 1968), (Réud972), (Black and
Reudink 1972), (Ibrahim and Parsons 1983), (Gudmundson )19B4is hypothesis
has been verified witly? and Kolmogorov-Smirnov test and found to be valid with high
confidence intervals. The theoretical basis to the log-abmiistribution is that in an
environment different signals suffer random reflectiond diffractions as they traverse
the propagation medium. If the total loss is expressed inh@ the extra loss due to the
shadowing in each path corresponds to subtracting a ranoks1irom the path loss value.
Since the different propagation paths are independensuheof all the dB losses for a
large number of propagation paths converges to a normadlyilalited random variable
(central limit theorem). In natural units, that becomesgariormal distribution.

The pdf of the shadowing is given by:

(asn) = ———o ( U ) 4.2)
a = ———=€X — .
Psn OsHV 2T P 208y

whereosy is the standard deviation af; and all variables are expressed in dB.
The value of the variation due to the shadowing is then aduldtetpath loss value

to obtain the variations. This value is determined by

P
a[dB] = 10 - log FO = app|dB] + asy[dB] (4.3)

t

whereF; is the received power ang is the transmitted power.

4.2.2. Shadowing Correlation

The autocorrelation of the shadowing process in space alsdsto be modeled,
since values at close locations are expected to be comleldiee spatial correlation is
given by the exponential correlation model proposed by (@uadson 1991) based upon

an approximate fitting of empirical data. According to thiedel, the spatial correlation
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is quantified as
Rsp(Az) = o2y exp(—|Ax|/d.) (4.4)

whereAz is the spatial separation between points at which the @iioal is measured
andd. is the spatial de-correlation distance. Typically, thedslwéing de-correlation dis-
tanced. ranges from 10-50 m. It must be noted that though theoragsallts prevent an
exponential correlation model for shadowing, it is stilldely used because of providing
a reasonably good fit to experimental data (Mandayam, et396)1

When the Rx is mobile, these spatial correlation translat@stime correlation.
Therefore, the shadowing behaves as a correlated, tinygggprocess. The time auto-
correlation can be obtained from 4.4 by substituting = vt, wherev is the Rx speed
andt is the time variable.

Large scale effects play an important role in the systengdestithe network level.
For example, the cell coverage area, outage, and handefisfarenced by these effects.
The above discussion suggests that shadowing variaticctni®e significant when the
receiver moves over distances greater than several teine alatrier wavelength. As a
result, these effects are often called large scale effé@tsthe other hand, small scale
fading caused by multipath propagation, determines theléwvel performance in terms

of the bit error rate (BER), average fade durations, etc.
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CHAPTER 5

SIMULATION OF SPATIAL SHADOWING PROCESS

In this chapter, we simulate spatial shadowing processipgtise 1-D simulation
model proposed in @zold and Nguyen 2004). The simulation model is derivethfro
a non-realizable reference model by replacing the undeglgpatial shadowing process
by a finite sum of sinusoids with constant gains, constartapgeequencies, and random
phases. Constant gains and constant spatial frequencidseamodel parameters. Two
parameter computation methods are discussed enablingtithg &f the simulation model
to the reference model with respect to the PDF of the recedigathl strength as well as
to a given spatial autocorrelation function. Theoretigaliis autocorrelation function is
well-known decaying exponential function which is propbse (Gudmundson 1991).
We also predict an autocorrelation function by using a sjeeific radio propagation
software named Wireless InSite. We used both predictedlautetical autocorrelation

functions to determine the model parameters.

5.1. Reference Model for Shadowing

The effect of shadowing is generally modeled as a log-nopradess\(¢), which

can be expressed as

At) = 10lozv(t)+mr]/20 (5.1)

wherev(t) is a real valued Gaussian process with unit variance. Thenpeters
op andmy in 5.1 are called the shadow standard deviation and the agan,mespectively.
The area meam, is obtained by averaging the received signal strength averea that
is large enough to average over the shadowing effectdbé&st 2001). The value of;,
is determined by the path loss between the BS and the MS. The @b, increases
slightly with the antenna heights and the environment. THaelew standard deviatiar,
is usually in the range from 5 to 12 dB at 900 MHz (Okumura, et #968), (Reudink
1972), (Black and Reudink 1972), (Ibrahim and Parsons 198&3)dhundson 1991)

where 8 dB is a typical value for macrocellular applicatiohst us assume that the MS
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starts at the originy = 0 and moves along the x-axis with velocity Then, by using the
time-distance relationship= x /v we can express both the log-normal procggs and
the Gaussian proces$t) as a function of the distance X, i.e((z) andv(z). There as a
result of empirical studies, the following spatial autaetation functionr,, (Ax) of v(z)

has been proposed in (Gudmundson 1991)
roy(Az) = e~ 1Azl/D (5.2)

whereAx denotes the spatial separation which measures the didiatween two
locations and D is called the de-correlation distance, lwig@n environment dependant
real-valued constant.

It is widely accepted that the POk (y) of A\(z) follows the log-normal distribu-

tion

20 _ (20logjgy—mp)

= ——€ 20_% > O 5.3
V2rIn 100y V= >3)
The spatial autocorrelation function, (Ax) of the log-normal proces(z) can

a(y)

be expressed in terms of the spatial autocorrelation fonetj, (Ax) as follows (Rtzold
and Nguyen 2004)

7")\)\<A.CE) _ €2m0+ag[1+rw (Ax)] (54)

whereo, = o, 1n(10)/20 andm, = my In(10)/20. From the above equation, the mean
power of the spatial log-normal procesér) can easily obtained as,(0) = 20+,

A good approximation of,,(Ax) can be given by (5.4), if we replace therg (Az) by
ro(Ax), i.e.,

Faa(Az) = e2motoslitiv (Av) (5.5)

whereoy = o7 In(10) /20 andmy = m In(10)/20 as in 5.4.

5.2. The Simulation Model for Shadowing

A stochastic continuous-time simulation model for a logmal process\(t) is
obtained by replacing the Gaussian proceggsin (5.1) by the following sum of N sinu-

soids

N
o(t) = Z Cp cos(2m frt + ©,,). (5.6)

n=1
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In this equation, the gains, and the frequencief, are non-zero real-valued con-
stant quantities and the phages are independent, identically distributed (iid) random
variables, which are uniformly distributed over the intdrl0, 27]. Therefore(t) rep-
resents a stochastic process, which is first-order staycarad ergodic (Rtzold 2003).
The corresponding stochastic spatial proaggss is obtained from (5.6) by applying the
time-distance transformation of— z/v = z/(A.fmaz), Where), is the wavelength of
the carrier frequency anf,., denotes the maximum Doppler frequency. Hence, we can

express the resulting spatial process) as

N
() = Z Cp cos(2man, T + ©,,) (5.7)

n=1

wherea,, = f,,/(A.fmaz) @re called the spatial frequencies. By analogy to 5.1, a atech

tic simulation model for a spatial log-normal process isitbbtained as

Az) = 10loe7(@+me]/20, (5.8)

The structure of the simulation model for spatial shadowpngcess is shown in Fig-
ure 5.1.
¢

\
cos(2ma x4+ (—)1)—®—>
C
2

|
cos(2mase + Oy —x)—

£ TN 1060720 |
. v(x) % T Alx)
Cn

oy my,

\
cos(2raye+ Oy )—®4.

Figure 5.1. Structure of the spatial shadowing simulator

5.2.1. Statistics of the Simulation Model

Since the gains,, and the spatial frequencies, are constant and the phases
are iid uniformly distributed random variables then it folis from 5.7 that the expected
value of(x) equalsE[r(z)] = 0. The variance can be expressed als®as{v(z)} =

SN ¢2/2. Let us define the gains, asc, = /2/N, then the variance of(z) equals

n:lcn
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unity and thus itis identical with the varianceugfr). The spatial autocorrelation function

of v(x), defined as,,(Ax) = E[v(x)v(x + Ax)], is given by

2
En s(2ra, Ax). (5.9)

Mz

T (Ax)

n=1
Sincer(x) in 5.7 represents a finite sum of sinusoids with random phasesan

use the results presented in (Bennett 1948) to express theRBFof v (z)

o [ N
= 2/0 b:[l J0(27rcnz)] cos(2mzz)dz (5.10)

whereJy(-) denotes the zeroth order Bessel function of first kind.
Applying the concept of transformation of random variabl8tark and Woods
2002), the PDR(y) of A(z) can be expressed in terms of the PR)Er) of 7(z) as

20D, (20l091oy—mL ))
or
Dy = 511
Pu(y) o In10 (5.11)

5.2.2. Parameter Computation Methods

There are two fundamental methods for the computation ofrtbdel parameters
¢, anday,,. The first one is called the method of equal areas and the dexwnis known

as theL,-norm method.

5.2.2.1. Method of Equal Areas

This method has been introduced irafold, et al. 1996) to model the classical
Jakes/Clark Doppler spectrum and the Gaussian Dopplerrapecthis method can be
applied on the spatial autocorrelation functign(Ax) of the reference model described

by 5.2. Then, the following closed-form expressions arévedr

] (5.12)

a, = tan|

cn = V2/N (5.13)

wheren =1,2,..., N.
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Table 5.1. Model parameters of the reference model

Shadowing area D AT ax or, my,

Suburban 503.9m | 2500 m| 7.5dB| O

Urban 8.3058m| 40m |4.3dB| O

5.2.2.2.L,-Norm Method (LPNM)

The L,-norm Method (LPNM) was introduced in &old, et al. 1998). The
application of this method implies the minimization of thg-norm given in (5.14) where
r.,(Ax) andr,, (Ax) are given by (5.2) and (5.9), respectively.

1/p

AZmaz
E® — [ 1 / |r,, (Az) — 7, (Ax)|Pd(Ax) p=1,2,... (5.14)
0

r
o Axmax

The quantityAz,,., indicates the upper limit of the intervdll, Az,,..| over which the

approximation is of interest. In the simulation model bathandc, are the model pa-
rameters which have to be optimized numerically untilfhenorm £Z in (5.14) reaches
a local minimum (Rtzold and Nguyen 2004). The numerical optimization candye p
formed, by using the Fletcher-Powell algorithm (Fletched &#owell 1963). The most
important advantage of the LPNM is that this powerful pragedenables the fitting of the
statistical properties of the channel simulator to realldvohannels simply by replacing
the spatial autocorrelation of the theoretical referencelehr,, (Ax) by the measured
one in theL,-norm equation (5.14). In this thesis we use our predictedcaurelation

function in order to fit the statistical properties of the chal simulator.

5.2.3. Application of the Simulation Model

In this section, procedure of &~old and Nguyen 2004) is applied to the de-
sign of a spatial shadowing simulator. The parameters ws#tetdescribe the reference
model are given in Table 5.1. The values of the decorrelatistance D and the shadow
standard deviation;, given in this table are obtained from signal strength mesments
(Gudmundson 1991).

The corresponding spatial simulation models in all figuras been designed by
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usingN = 25 sinusoids. The parameters andc,, have been computed by applying both
MEA and the LPNM methods, for the aim of comparison. In the MPhiethodp was
equal to 2. Figure 5.2 and Figure 5.3 show plots of the spatigdcorrelation functions
Tuu(az) fOr the urban and suburban areas respectively and Figuanl.&igure 5.5 show
plots of the spatial autocorrelation functiong a.) of the log-normal processes for the
urban and suburban areas respectively. Also in both figheeseference autocorrelation
functionsr,, (Ax) andr,,(Ax) are plotted for comparative purposes.

One can understand from the figures that the performancedfRNM is higher
than that of the MEA. But the MEA results in a closed form santwhereas the LPNM
does not. One can obtain better results from MEA, if the nunabeinusoids tends to
infinity. Because, at that time the simulation model convetgehe reference model. So

advantages of the LPNM reduce the higher the number of sidsigochosen.

1.2
----- LPNM
Theory
1 \ MEA
0.8 *\
%
c \Y
£ osf \\‘
o \
§ \
S o4f \
<
0.2 W,
0 . _‘_.-
_02 Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40

Spatial Seperation (m)

Figure 5.2. Spatial autocorrelation functions(Az) andr,, (Ax) for the urban area (N

= 25)

5.3. Prediction of Autocorrelation of Spatial Shadowing Process

LPNM provides a big advantage for simulating spatial shadgwrocess by us-
ing sum of sinusoids based simulators. Because the modahptees of this method

is acquired via numerical optimization and one can fit theigpshadowing simulator to
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Figure 5.3. Spatial autocorrelation functions(Az) andr,, (Ax) for the suburban area
(N =25)
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Figure 5.4. Spatial autocorrelation functiong(Ax) and7y,(Axz) for the urban area (N
=25)
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Figure 5.5. Spatial autocorrelation functiong(Az) andr,, (Ax) for the suburban area

(N = 25)

real world channels by replacing the spatial autocormhati the theoretical model by the
measured one in the optimization equation (5.14) of sinadanodel parameters. So we
can measure or predict a spatial autocorrelation to fit tlecll simulator to real world
channels. In this section, we make a urban propagation iexeet by using Wireless
InSite to obtain spatial autocorrelation of shadowing. e use this autocorrelation to
determine the model parameters of sum of sinusoids basédlsgfadowing simulator

which is discussed in the previous section.

5.3.1. Autocorrelation Prediction Experiment

One of the most powerful features of Wireless InSite is thétplbo apply state-
of the-art models and analysis methods to a wide range ofbgain problems. In this
experiment we predict received power in an urban area tarothtie shadowing auto-
correlation. We use Urban Canyon model to make urban projpagpatedictions in a
microcellular environment in a section of Helsinki, FintarWithout specific knowledge
of a particular buildings material parameters, a singleematcan be used for the entire
city such as brick or concrete. For this analysis a uniforiiding material of concrete is

used with a dielectric constant of 5.0. We have also chosesddhe predicted received
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power values obtained from non-line-of sight AOB street. thes study, antennas similar
to the ones used in Zhangs paper (Zhang 2000) are added. ?wlagam directional an-
tenna is used for transmitters, and monopoles for eachvexgedint and the transmitted
signal waveform is sinusoid with a carrier frequency eqt@B800.5 MHz as used in the
shadowing prediction experiment in Chapter 4. Our projemtnghowing transmitter and
receiver route along AOB street is given in Figure 5.6. Iis figure the red line denotes

the receiver route while the green point denotes the tratemi

I-lllllll'

Figure 5.6. Project view showing transmitter and receivete

Wireless insite

Once the received power is calculated, then we should rdimeeiceived power
data to determine the shadowing autocorrelation. To exttnashadowing characteristics,
first the distance dependent path loss is removed from tledvext power data. Then we
average the measured signal as explained in Figure 5.7 odistance of 2 meters to
remove some of the effects of fading.

We calculate the autocorrelation of the spatial shadownoegess over a range of
lags, using (5.15). The lags correspond to a range of dissawbere the received power
is predicted. In (5.15); denotes the received power value for each lag@rdenotes the

autocorrelation value.

n
. 1
n-
i=1

S e Tl

lzzl z

After obtaining of the predicted autocorrelation, thiscaairrelation is used to de-

termine the model parameters of sum of sinusoids basedakphtidowing simulation
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Figure 5.7. Averaging of the received power

model discussed in the previous chapter. In fthenorm equation given in (5.14),,
denotes the predicted autocorrelation, whijlg denotes the autocorrelation of the result-
ing spatial process, given in (5.9). The model parametgrandc, is optimized until
the L,-norm given in (5.14) reaches a local minimum. The initidues fora,, andc,

is determined from (5.12) and (5.13) respectively. We cdoutate the autocorrelation
of the resulting spatial shadowing process by using thesgehmarameters in Equation
(5.9). The resulting autocorrelation of the simulated shadg process, predicted auto-

correlation and theoretical autocorrelation plots arestiated in Figure 5.8.
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Figure 5.8. Predicted, Simulated and Theoretical Aut@tations of Shadowing
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CHAPTER 6

CONCLUSION

A low-complexity high performance Rayleigh fading simulateas been pro-
posed. Our proposed ARMA(3,3) model has been compared wiiloved Jakes’ model
of (Zheng and Xiao 2002), AR fading filter approximation of (B@ur and Beaulieu
2005), and to the IDFT technique of (Young and Beaulieu 200Qgrms of performance
measures and computational complexity. Our ARMA(3,3) Rayidading generator,
outperforms AR(20) generator, by about 1dB in both perforreameasures provided,
while requiring approximately a quarter of the multipliceis required by the AR(20)
generator. Similarly, our ARMA(3,3) fading generator outpems modified Jakes’ gen-
erator with 8 and 16 sinusoids by 32dB and 2dB respectivetyiewequiring less than
one-tenth of the multiplications required by the Jakes’ggators with 8 and 16 sinu-
soids. While the IDFT method of achieves the best performanterms of the quality
measures, it brings a significant cost in storage requiré&remall samples are generated
using a single IFFT. Thus the IDFT method is undesirable fsamulation point of view
when the Rayleigh fading samples are generated as they anesedlhe main advantage
of our ARMA(3,3) Rayleigh fading generator is that the sampiethe Rayleigh fading
sequence can be generated as they are required while aghiéeé lowest complexity
of all the Rayleigh fading generators mentioned. Since plelinput multiple-output
(MIMO) antenna systems have the ability to increase capaaid reliability of a wireless
communication system compared to single-input singl@autSISO) systems; for the
future work, MIMO extension of our ARMA(3,3) fading generatan be developed.

We also apply the fixed-point extension of our proposed fdi&sign. Accurate
results can be obtained by using 16-bits quantized filtefficants. But 10-bits and
14-bits quantized coefficients are not enough for the acguwhthe filtering.

The shadowing loss is easily predicted in a specific propaga&xperiment, by
extracting the theoretical free-space path loss from ttaé limss, by using the site-specific
radio propagation software called Wireless InSite.

A sum-of-sinusoids based spatial simulator proposed &tz(?d and Nguyen

2004) has been used to simulate shadowing processes. Twmeshhave been used

59



for the computation of the model parameters; the MEA and LPNRNM is preferred
for medium and especially for low values of the number of sgids. LPNM has also big
advantage, because this method enables the fitting of ttigtis&l properties of the sim-
ulator to real-world channels simply by using measuredaartelation in order to spatial
autocorrelation of the theoretical reference model. Weausepredicted autocorrelation
in an urban area, to fit the simulator.

Altough LPNM is a very useful method, MEA results in a closedhi solution
whereas the LPNM does not. When using the MEA, it can be shoatrtlle simulation
model converges to the reference model if the number of sidagends to infinity.

However it has been shown that by applying the sum-of-sidgdmased simula-
tion method on shadowing channels, the simulation modehbagy the same statistics

as the reference model.
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