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ABSTRACT 

 

RAY: A PROFILE-BASED APPROACH FOR HOMOLOGY 

MATCHING OF TANDEM-MS SPECTRA TO SEQUENCE 

DATABASES 
 

Mass spectrometry is a tool that is commonly used in proteomics to identify and 

quantify proteins. Thousands of spectra can be obtained in just few hours. 

Computational methods enable the analysis of high-throughput studies. There are 

mainly two strategies: database search and de novo sequencing. Most of the researchers 

prefer database search as a first choice but any slight changes on protein can prevent 

identification. In such cases, de novo sequencing can be used. However, this approach 

highly depends on spectral quality and it is difficult to achieve predictions with full 

length sequence. Peptide sequence tags (PST) allows some flexibility on database 

searches. A PST is a short amino acid sequence with certain mass information but 

obtaining accurate PST is still arduous. In case a sequence is missing in database, 

homology searches can be useful. There are some homology search algorithms such as 

MS-BLAST, MS-Shotgun, FASTS. But, they are altered versions of existing 

algorithms, for example BLAST has been modified for mass spectrometric data and 

became MS-BLAST. Besides, they are usually coupled with de novo sequencing which 

still possess limitations. Therefore, there is a need for novel algorithms in order to 

increase the scope of homology searches. For this purpose, a novel approach that is 

based on sequence profiles has been implemented. A sequence profile is like a table that 

contains frequencies of all possible amino acids on a given MS/MS spectrum. Then, 

they are aligned to sequences in database. Profiles are more specific than PSTs and the 

requirement for precursor mass restrictions or enzyme information can be removed. 
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ÖZET 

 

RAY: DİZİ VERİTABANLARINDA TANDEM MS SPEKTRALARIN 

HOMOLJİ EŞLEŞMESİNİ SAĞLAMAK AMACI İLE PROFİLE 

DAYALI YAKLAŞIM 
 

Kütle spektrometresi, proteinleri tanımlamak ve miktarını belirmede 

Proteomiks’te sıkça kullanılan bir araçtır. Birkaç saat içinde, binlerce spektra elde 

etmek mümkündür. Bilişimsel yöntemler, böylesi yüksek verimliğe sahip çalışmalar 

hakkında bilgi alınmasını sağlar. Temel olarak iki strateji mevcuttur: veritabanı araması 

ve de novo sekanslama. Çoğu araştırmacının ilk tercihi veri tabanı aramasıdır; fakat 

proteindeki en ufak değişiklik bile tanımlanmayı engeller. Böylesi durumlarda, de novo 

sekanslama kullanılabilir. Fakat, bu yaklaşım spektral kaliteye oldukça bağlı olup, bütün 

dizi tahminlerini elde etmek oldukça zordur. Veritabanı aramalarına esneklik vermesi 

amacı ile,  peptit dizi etiketleri (PDE) kullanılabilir. PDE belirli kütle bilgisini içeren 

kısa amino asit dizisidir, fakat hassas PDE’leri elde etmek hala güçtür. Bu nedenle, eğer 

veritabanında dizi bulunmuyorsa, homoloji aramaları yararlı olabilir. Günümüzde, bazı 

homoloji arama algoritmaları bulunmaktadır, MS-BLAST, MS-Shotgun, FASTS gibi. 

Fakat bunlar varolan algoritmaların değiştirilmiş halleridir, mesela BLAST kütle 

spektrometrik verisine göre modifiye edilmiş ve MS-BLAST adı verilmiştir. Ayrıca, bu 

algoritmalar, hala kısıtlamaları bulunan de novo sekanslama algoritmalarına dayalı 

çalışmaktadır. Homoloji aramalarının kapsamını genişletmek amacı ile yeni 

algoritmalara ihtiyaç duyulmaktadır. Bu amaçla, sekans profiline dayalı yeni bir 

yaklaşıma uygulanmıştır. Sekans profili, verilen MS/MS spektrumunda yer alan olası 

tüm amino asitlerin frekansını içeren bir tablodur. Elde edilen bu profiller sonra 

veritabanındaki dizilerle hizalanır. Profiller, PDE’lerden daha spesifiktirler ve öncül 

iyon kütlesine yada enzim bilgisine dair herhangi bir kısıtlama bulunmamaktadır. 
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CHAPTER 1 

 

INTRODUCTION 

 

1. 1. Proteomics 

 

Proteins are biochemical molecules that perform biological functions such as 

regulation (e.g. enzyme), immunological response (e.g. antibody), and transportation 

(e.g. hemoglobin) in any cells. They are composed of several polypeptides that consist 

of amino acids. The protein compositions vary in different cells, also at particular time 

and conditions. There is correlation between amino acid sequences and genomes and 

physiology which makes it possible to find out genomics information via amino acid 

sequences (Domon & Aebersold, 2006). 

The proteome is the entire set of the proteins that are expressed by the genome at 

a particular time and under a certain condition. In addition, it may contain alternatively 

spliced or modified proteins (Forner, Foster, & Toppo, 2007; Allmer, 2011). Proteomics 

is the study of the proteome to identify proteins and also post translational modifications 

(Shadforth, Crowther, & Bessant, 2005), to map protein interactions (Cox & Mann, 

2011), to characterize components of proteins and pathways in cells (Mann, 

Hendrickson, & Pandey, 2001) and to quantitate proteins (Aebersold & Mann, 2003). 

 Edman degradation (Edman, 1950) was used to sequence amino acids until 

90’s. But Edman-based analysis was usually slow due to sequencing of each peptide 

peak separately which prevents high-throughput proteomics studies (Gevaert & 

Vandekerckhove, 2000). In addition, this method usually failed to obtain long or 

accurate peptide sequences in case of any acetylations of amino terminus (Steen & 

Mann, 2004). Therefore, there was a need for new techniques in protein studies. Hence, 

the mass spectrometry technique took the place of Edman degradation due to sensitivity 

and speed features (Steen & Mann, 2004; Domon & Aebersold, 2006). 
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1. 2. Mass Spectrometry 

 

Mass spectrometry is an analytical technique that measures mass-to-charge 

(m/z) ratios of analytes in a gas phase. A mass spectrometer consists of three main 

components which are an ion source, an analyzer and a detector, respectively (Figure 

1.1). An analyte, which is shown in Figure 1.1 as input – a sample mixture, is entered 

into an ion source where it becomes ionized depending on different ionization 

techniques. Then, the ionized sample passes through an analyzer which separates the 

ions in a sample according to their m/z ratios by electrical field under vacuum. Finally, 

the ions hit a detector which records number of ions at each m/z value and then a mass 

spectrum is generated. In addition, mass spectrometric analysis for protein are usually 

done with the positive mode on where the ions are protonated instead of the negative 

mode which is deduction of protons from peptide (Mann, Hendrickson, & Pandey, 

2001). 

 

 

Figure 1.1. Main mass spectrometry components: ion source, analyzer, detector. A sample mixture is ionized in ion  

source then ions are separated through an analyzer according to their m/z ratios. Number of ions is 

recorded via a detector and finally a mass spectrum is generated. 

  

Mass spectrometry has been studied over decades but in the late 80’s two 

ionization techniques which are electro-spray ionization (ESI) and matrix assisted laser 

desorption ionization (MALDI) allow ionizing of thermally instable proteins (Domon & 

Aebersold, 2006). Since then, mass spectrometry has become essential in proteomics 

studies (Aebersold & Mann, 2003). The studies of John Bennett Fenn and Koichi 

Tanaka who developed these ionization techniques for biological compounds were 

awarded the Nobel Prize in Chemistry, 2002. They are soft-ionization techniques that 

allow the formation of ions from entire protein into a gas phase with little 

fragmentations (Kiner & Sherman, 2000; Tuli & Ressom, 2009) 
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Mass spectrometry can be used with several stages to get information about 

proteins under study. A single-stage mass spectrometry (MS), which is shown in Figure 

1.1, enables measuring peptide fragments in a protein sample and it forms a “peptide 

mass fingerprint (PMF)”. A PMF makes it possible to assign proteins with 2 peptides 

and also speeds up database searches (Henzel, Watanabe, & Stults, 2003). On the other 

hand, any changes on mass such as post-translational modifications or single nucleotide 

polymorphisms halt predictions and secondly database size affects protein predictions 

(McHugh & Arthur, 2008).  Thirdly, PMF performs well for a single protein, but not 

protein mixtures (Olsen & Mann, 2004). In addition to MS, tandem mass spectrometry 

can be used to determine the primary structure, attachment sites or post translational 

modifications. In this approach, particular ions from a single stage are selected and then 

fragmented by collisions with an inert gas in a collision cell (“fragmentation unit” in 

Figure 1.2.) between two analyzers inside of a mass spectrometer machine. Since two 

analyzers are used, the technique is called “tandem mass spectrometry (MS/MS or 

MS2)” (Steen & Mann, 2004; Domon & Aebersold, 2006) (Figure 1.2). A fragmented 

peptide is called a “precursor ion” or a “parent ion” and the resultant ions measured in 

the sequential analyzers are named as “product ions” or “daughter ions” (Standing, 

2003).  If a fragment is without any charges, it is referred to as “neutral loss” and cannot 

be detected directly. So, to improve identification especially for complex sample 

mixtures, further fragmentation sections are performed in additional stages and this 

method is termed “multistage mass spectrometry (MS
n
)” (Olsen & Mann, 2004; Steen 

& Mann, 2004; Bandeira, Olsen, Mann, & Pevzner, 2008). 

 

 

Figure 1.2. Tandem mass spectrometry (MS/MS). A sample mixture is ionized at an ion source and then ions are 

separated through an analyzer according to their m/z values. After the first analyzer, some ions are 

selected (“precursor ion”) and they are fragmented in a fragmentation unit so as to obtain segment 

peptides (“product ion”). Then they are separated throughout the second analyzer. At the end of the 

second analyzer, number of ions hit to a detector is recorded and a MS/MS spectrum is generated. 
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In MS-based proteomics, MALDI and ESI are commonly used as ion sources. In 

MALDI, peptides are charged singly predominantly whereas in ESI there are mainly 

multiply charged ions (Aebersold & Goodlett, 2001). Besides, quadrupole (Q), time-of-

flight (TOF) and ion traps (especially in MS
3
 studies) are commonly used analyzers in 

this field (Steen & Mann, 2004). 

 

1. 3. Bottom-up and Top-down Proteomics  

 

Proteomics strategies with mass spectrometry can be divided into two main 

groups: bottom-up and top-down (Figure 1.3). In bottom-up proteomics, proteins are 

digested with proteases such as trypsin prior to MS analysis. Then, peptide fragments 

are ionized and transformed into a gas phase without any fragmentations. This 

technique is appropriate for peptide identification, but not ideal for any modifications 

(Chait, 2006).  

In top-down proteomics, a sample is directly introduced to mass spectrometry. 

Then, fragmentation occurs inside of a mass spectrometer. This approach enables 

studying modifications in addition to peptide identification (Chait, 2006). Nevertheless, 

there are limitation for protein size (<50 kDa) and dynamic range (Kelleher, 2004). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Bottom-up and top-down proteomics. In bottom-up strategy, a sample is digested with enzyme before 

introducing to a mass spectrometer. In top-down approach, an intact protein is ionized and converted into 

gas phase then fragmentation occurs inside of a mass spectrometer (Source: Chait, 2006). 
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1. 4. Peptide Fragmentation 

 

Peptide fragmentation enables getting the primary structure information of 

peptide under study. It is possible to ionize entire peptides due to soft-ionization feature 

of MS and then they can be selected as precursor ions which are fragmented into 

product ions in a fragmentation unit (Figure 1.2) by exposing low energy (<100eV) on 

the molecule. There are several activation techniques for fragmentation (Eidhammer, 

Flikka, Martens, & Mikalsen, 2008) which are in-source decay (ISD), post-source decay 

(PSD), laser-induced dissociation (LID), collision-induced dissociation (CID, or also 

referred to as collisionally-activated dissociated, CAD), electron transfer dissociation 

(ETD), and electron capture dissociation (ECD).  

This phenomenon occurs in a predictable way and the accepted naming is the 

Roepstorff-Fohlmann-Biemann nomenclature which was explained according to 

fragmentation status with CID (Forner, Foster, & Toppo, 2007).  In theory, 

fragmentation can occur at any bonds on peptide (Allmer, 2011). In regard to the 

“mobile proton model”, protons move along peptide backbone and while increasing 

dissociation energy protonation weakens amide bond which leads fragmentation at this 

bond (Eidhammer, Flikka, Martens, & Mikalsen, 2008; Forner, Foster & Troppo, 2007; 

Seidler, Zinn, Boehm, & Lehmann, 2010). As a result of this fragmentation, two 

different prevailing ion types are obtained: b and y ion respect to charge status whether 

in amino-terminus and carboxyl-terminus respectively. These two ions are 

complementary to each other. If fragment ions are in amino-terminus, they are labeled 

a, b and c and the complementing fragment ions in carboxyl-terminus are named x, y 

and z (Figure 1.4.). b ions usually have satellite ions which are lower 28 u due to neutral 

loss of carbon monoxide and actually a ions (Aebersold & Goodlett, 2001). Depending 

on MS analyzer, prevailing ion types vary such as for quadrupole instrument y ions are 

predominant , but for ion traps b and y ions are (Forner, Foster, & Toppo, 2007; Steen & 

Mann, 2004) Some undesired fragmentations can happen such as an internal 

fragmentation (Cottrell, 2011). Moreover, side chain loss (scl) can also be observed, 

especially with high collision energy (>500 eV) (Johnson, Davis, Taylor, & Patterson, 

2005). If side chain loss fragmentation takes place in a-, y- and z-ions, scI ions are 

labeled d-, v- and  w-ions (Eidhammer, Flikka, Martens, & Mikalsen, 2008). In 

addition, subscripts in fragment ions show number of side chains groups (R) in that 



 

6 

region. For example in Figure 1.4, a2 ion contains 2 side chain groups (R1 and R2) and 

a2 is complementary to xn-1 which holds actually n-1 side chain groups.  

A fragmentation ladder is a group of peptide fragments. They share the same 

terminus information, but are different from each other due to length and each element 

is apart from each other by one amino acid  (Aebersold & Goodlett, 2001; Chait, 2006; 

Forner, Foster & Troppo, 2007). An example of a consecutive fragment ladder would be 

b3, b4, b5 and b6. They are the same ion types that have terminus in common which is the 

amino-terminus in this case.  

Peptide fragmentation success depends on the abundance the of precursor ion, 

fragmentation amount and fragmentation energy (Allmer, 2011). Hence, fragmentation 

may not be always successful.  

 

 

Figure 1.4. Peptide fragmentation. Proteins are usually fragmented on peptide bonds and a, b and c ions are fragment 

in amino terminus and x, y and z ions are complementary ions in carboxyl terminus part. Subscripts show 

location of ions. ifi: internal fragment ions and scI: side chain lose (Source: Allmer, 2011).  

 

1. 5. Deisotoping and Charge State Deconvolution 

 

Preprocessing MS/MS spectra allows more accurate and specific peptide 

identification. For this purpose, some preprocesses such as spectrum denoising, 

precursor ion charge state recognition, calibration and centroiding are implemented  

(Gentzel, Köcher, Ponnusamy, & Wilm, 2003; Forner, Foster & Troppo, 2007; 

Eidhammer, Flikka, Martens, & Mikalsen, 2008). 

An isotope is one of several versions of one chemical element which has the 

same atomic number (number of protons), but differs in mass number (number of 

neutrons and protons). There are several isotopes of atoms such as carbon (C), hydrogen 

(H), oxygen (O), nitrogen (N) and also sulfur (S) which occur in the composition of 

biological molecules. They have different natural abundances. For instance, the carbon 
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atom has 16 isotopes including Carbon-12, Carbon-13 and Carbon-14. Due to different 

natural abundances of the isotopes for different atoms, isotopic envelopes are observed 

in a MS/MS spectrum. They are like a cluster of peaks that are separated by small m/z 

differences due to mass differences of the isotopes. Peptide charges enables 

determination of the distance between isotopic peaks in an envelope, for instance the 

distances equals to 1 Da and 0.5 Da for the singly and doubly charged peaks 

respectively (Matthiesen, 2006). Monoisotopic mass is the mass value of the most 

abundant isotopic ions per elements whereas the average mass is the weighted sum of 

all isotopes for an element based on their natural abundance (Eidhammer, Flikka, 

Martens, & Mikalsen, 2008). Isotopomer are isotopic isomers which composed of the 

same elements, but different locations. Isotopic envelopes include monoisotopic peaks 

and isotopomers and therefore, they are also called an “isotopomeric envelope” 

(Hellerstein & Neese, 1999) (Figure 1.5). 

 

 

Figure 1.5. An isotopic envelope which is composed of several isotopomers 

(Source: Sykes & Williamson, 2008). 

 

Deisotoping is the process that aims to reduce isotopic envelopes into a single 

peak. This process is generally followed by another process. Herein ions with various 

charges (up to three or four, but not higher than charge of precursor mass) are converted 

to singly charged status and intensities are summed up if the translated ion already 

exists on a mass spectrum. This step is termed “charge state deconvolution”. 

Deisotoping and charge state deconvolution are the processes that take place 

concurrently. As a result of these two steps, the complexity level of mass spectra is 

reduced since there are fewer fragments that are represented by more than one datum.  
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Figure 1.6. Deisotoping and charge state deconvolution. One fragment ion (A) with triply charged is shown as full 

line and it has four isotopic peaks. Another fragment ion (B) is indicated as dashed line and doubly and 

singly charged B ions have three and two isotopic peaks respectively. There are also overlapping isotopic 

envelopes for both ions. After deisotoping and deconvolution, intensities are summed up (Source: 

Eidhammer, Flikka, Martens, & Mikalsen, 2008). 
 

 

1. 6. Computational Methods  

 

Tandem mass spectrometry (MS/MS) is one of the tools in protein identification. 

Correctly identified proteins are crucial in proteomics experiments. To identify peptides, 

there are basically two methods: database search and de novo sequencing. Database 

search algorithms depend on sequences in the databases whereas de novo sequencing 

can find a peptide without any aids from a database, directly from a tandem MS 

spectrum under study (Allmer, 2011). 

 

1.6.1.  Database Search 

 

Database search algorithms are the first choice of many researchers in 

proteomics (Xu & Ma, 2006). The algorithms differ from each other in terms of their 

algorithmic aspects and scoring functions. Sequest (Eng, Mccormack, & Yates, 1994) 

and Mascot (Perkins, Pappin, Creasy, & Cottrell, 1999) are the commercial software. 

OMSSA (Geer et al., 2004), X!Tandem (Craig & Beavis, 2004) and MyriMatch (Tabb, 

Fernando, & Chambers, 2007) are some of the freely available tools. 

Protein sequences in databases are digested by a user-defined enzyme, and then 

theoretical spectra for the fragmented peptides which have similar masses to precursor 

mass of the experimental MS/MS spectrum under study are created. Likelihoods are 

examined by scoring functions that are specific to algorithms (Figure 1.7). There are 
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probability and non-probability based scoring functions (Forner, Foster & Troppo, 

2007).Hits with high scores may not be the correct sequence. Therefore, statistical 

analysis such as e-value or p-value must be carried out (Eidhammer, Flikka, Martens, & 

Mikalsen, 2008).   

Database search algorithms depend on correctly annotated sequences in the 

database. It fails in case of unexpected post-translational modifications, novel proteins, 

lack of genomic data, incorrect predictions and alternative splicing (Xu & Ma, 2006; 

Allmer, 2011).  

Mass tolerance and enzyme information are some of the search parameters that 

influence the results dramatically. Mass tolerance shows the correlation between an 

experimental and a theoretical spectrum. It is related to the mass accuracy of the 

instrument (Forner , Foster & Troppo, 2007) and mass accuracy varies with different 

mass analyzers.  

Besides, sensitivity is a limiting factor in predictions that discriminates the 

correct results (true positive) from incorrect results (false positive). For this purpose, 

false discovery rates (FDR) are calculated. This statistical term is used to explain a 

proportion of incorrect predictions which have lower scores than thresholds within 

search parameters (Elias & Gygi, 2010). There are two approaches to evaluate FDR 

(Elias & Gygi, 2007): target-decoy and target|decoy. Targets are the sequences found in 

the organism under the study whereas decoys are shuffled version of targets to indicate 

incorrect hits. While creation of decoy sequences, some features such as similar length, 

similar amino acid compositions and uncommon peptides between target and decoy 

sequences can be considered. In target-decoy approach, two sequences are merged into 

one database. In target|decoy strategy, two separate databases are used.  
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Figure 1.7. Database search. Sequences in a database are virtually digested if precursor mass of MS/MS spectrum 

matches to mass of those sequences. That is followed by generation of theoretical spectra. Then an 

experimental MS/MS spectrum and a theoretical MS/MS spectrum are compared by scoring function 

(Source: Steen & Mann, 2004). 
 

 

1.6.1.1. Peptide Sequence Tag 

 

A peptide sequence tag (PST) is a short amino acid sequence with certain mass 

information that can be found in an experimental MS/MS spectrum (Mann & Wilm, 

1994). They are like a signature of a peptide and usually of a 3-amino acid length. They 

are divided into three regions, m1 (from 0 to the start m/z of the first amino acid in the 

sequence), the partial sequence, and m3 (from the last m/z of the last amino acid in the 

sequence to precursor mass). The mass information of the partial sequence is known as 

well. For even noisy and incomplete fragmentations in some spectra, there are some 

parts that can be identified partially instead of a full construction. This was the starting 

point of the PST study of Mann et al.  (Mann & Wilm, 1994). This approach gives 

flexibility to database searches especially for modified proteins.  

There are several PST algorithms, for example DirecTag (Tabb, Ma, Martin, 

Ham, & Chambers, 2008), GutenTag (Tabb, Saraf, & Yates, 2003), InsPect (Tanner, 

Shu, Frank,  Wang, Zandi, Mumby, Pevzner & Bafna, 2005) and MultiTag (Sunyaev, 

Liska, Golod, Shevchenko, & Shevchenko, 2003). The algorithms usually work based 

on singly charged fragment ions but they should consider that some ions especially in 

higher charged spectra are multiply charged (Sun, Zhang, & Liu, 2011). Besides, they 

have different aspect in algorithms. For instance, GutenTag considers all ions in a PST 

are y ions and use b ions are used to confirm y ions (Tabb, Saraf, & Yates, 2003). 
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They can be used to speed up database search (Frank, Tanner, Bafna, & Pevzner, 

2005), to identify peptides and also PTMs (Cao & Nesvizhskii, 2008) and to assess 

spectral quality (Ham, Aerni, Cheek, Whitwell, Caprioli, Tabb & Ma, 2011).   

 

 

Figure 1.8. A peptide sequence tag (PST). A PST is a short amino acid sequence with unique mass information. They 

are specific to an experimental MS/MS spectrum and used in database searches.  
 

 

1.6.2. De Novo Sequencing  

 

 De novo sequencing algorithms work on directly experimental MS/MS spectra 

without any aids from databases. Database searches fail if a protein in study is novel or 

a modified version of a known protein (Xu & Ma, 2006), alternatively spliced (Allmer, 

2011), or genome of the organism has not been sequenced yet (Shadforth, Crowther,  

Bessant, 2005). In such cases, de novo sequencing can be useful to identify peptides. 

The strategy is based on the fact that proteins are fragmented in a predictable manner 

(See Section 1.4. Peptide Fragmentation) (Forner, Foster & Troppo, 2007). In addition 

to identification, they can be used to validate database results and homology-based 

searches (Xu & Ma, 2006). However, de novo sequencing predictions depend on 

spectral quality and precision of mass spectrometer (McHugh & Arthur, 2008). 

There are several de novo sequencing algorithms. Some of them are PepNovo 

(Frank & Pevzner, 2005), Lutefisk (Taylor & Johnson, 1997), SHERENGA (Dancík, 

Addona, Clauser, Vath, & Pevzner, 1999), PEAKS (Ma, Zhang, Hendrie, Liang, Li, 

Doherty-Kirby & Lajoie, 2003).   
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Figure 1.9. De novo sequencing. The algorithms work on directly spectrum itself without any aids from databases to 

sequence a peptide (Source: Allmer, 2011). 
 

 

1.6.3. Homology Search 

 

Homology search can be useful to identify peptides if the sequence is missing in 

database (Shevchenko, Sunyaev, Loboda, Bork,  Ens,  & Standing, 2001) since 

homologous proteins have some identical peptides in common. BLAST, FASTA and 

Shotgun programs were modified to work on mass spectrometric data and became MS-

BLAST (Shevchenko, Sunyaev, Loboda, Bork, Ens, & Standing, 2001), FASTS 

(Mackey, Haystead, & Pearson, 2001) and MS-Shotgun (Huang, Jacob, Pegg, Baldwin, 

Wang, Burlingame & Babbitt, 2001) in homology based studies. A general procedure in 

these homology-based tools starts with getting de novo sequencing results and then 

carrying out similarity searches to get hits from a database. The problem with these 

tools is underestimating the de novo sequencing error (Xu & Ma, 2006).  To overcome 

this problem, other homology-based programs were introduced, such as OpenSea 

(Searle, Dasari, Turner, Reddy, Choi, Wilmarth Mccormack, David, Nagalla, 2004) and 

Spider (Han, Ma, Zhang, & Na, 2004). OpenSea algorithm is based on mass 

information, not amino acid codes. The algorithm works on tag creation and then 

breadth-first search. OpenSea considers de novo sequencing errors. Nevertheless, it does 

not allow de novo sequencing errors and homolog mutations at the same position. This 

problem is overcome by another homology-based search tool named Spider.  
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1.6.4. Spectral Profile 

 

Currently, there are problems in existing protein identification tools. For 

example, even though extensive studies have been carried out in de novo sequencing, it 

is still difficult to achieve full length of peptide sequences and also percentage of fully 

reconstructed peptide sequences is less than 50% (Kim, Bandeira, & Pevzner, 2009). 

Besides, local qualities in MS/MS spectra prevent identifications. Herein, local quality 

means that some part of an experimental MS/MS spectrum is lack of consecutive ions in 

fragmentation ladder to construct a full peptide sequence. Therefore, there must be some 

novel methods in protein identification. 

Spectral profiles (Kim, Bandeira, & Pevzner, 2009) are used to represent 

MS/MS spectra with probability of all possible amino acids (range is [0-1]). They are 

similar to “motif profile” in bioinformatics, but here the information is not known for 

sure. In addition, they may look like “scored spectra”, nevertheless they work globally 

instead of a local satellite peaks.   

Kim et al. used spectral profiles to create gapped peptide sequences. Within a 

gapped peptide sequence, some ambiguous regions caused by local quality are shown as 

between brackets with mass values. This approach enables short and/or long gaps on a 

spectrum. They can be considered as a niche between full-length de novo sequences and 

PSTs (Kim et al., 2009). 

Gapped peptide sequences are used in database searches to find homologs. In 

addition to homology searches, they also speed up database searches. They provide 

information even poor quality spectra as well. Gapped peptides give more accurate 

results compared to PSTs.  
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Figure 1.10. A spectral profile. Top: An experimental spectrum with b-ions (green) and y-ions (blue). Middle: A 

spectral profile shows probability of all possible amino acids in an experimental spectrum. Bottom: 

database match (DBMatch), de novo prediction (DeNovo) and gapped peptide sequences (Gapped) 

respectively. A gapped peptide is created by a spectral profile and ambiguous regions are shown 

between brackets (Source: Kim, Bandeira, & Pevzner, 2009). 
 

 

1.7. The Aim of the Study 

 

Computational methods for mass spectrometry-based proteomics enables to 

identify proteins under study. Database search is the most commonly used approach by 

researches, but slight changes on protein sequences prevent identification. De novo 

sequencing is another approach which works without any aids from a database, but it is 

still difficult to achieve full length protein prediction in spite of extensive studies in the 

recent years. 

Homology searches can be useful to get information about the protein in study 

when the sequence is missing in database. In such cases, getting information about those 

homologous proteins can be useful due to homologous proteins have some peptides in 



 

15 

common. Existing homology search tools are generally coupled with de novo 

sequencing algorithms. The results from those homology searches depend on the 

success of de novo algorithms which owns some handicaps and does not give prediction 

successfully. Also, they are generally modified versions of another bioinformatics tool, 

for example MS-BLAST is modified version of BLAST so as to work with mass 

spectrometric data.  

Therefore, new strategies are necessary in order to increase the scope of 

homology searches for comprehensive sequence databases. For this purpose, we are 

presenting a new algorithm that is based on a novel approach. Herein, sequence profiles 

are constructed for a given MS/MS spectrum and then they are aligned to sequences in a 

database via the Smith-Waterman algorithm. A profile is specific to a MS/MS spectrum 

and contains frequencies of all possible amino acids that can be found on a given 

MS/MS spectrum. They are like a table where each row shows amino acids whereas 

each column indicates frequency at a sequential position.  
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CHAPTER 2 

 

MATERIAL AND METHODS 

 

2.1. Tandem Mass Spectra Data Sets 

 

2.1.1. Keller et al. dataset 

 

The published dataset (Keller et al., 2002) is composed of two protein mixtures 

(A and B) which are cleaved by trypsin. In mixtures there are 18 proteins (bovine beta-

casein, bovine carbonic anhydrase, bovine cytochrome c, bovine beta-lactoglobulin, 

bovine alpha-lactalbumin, bovine serum albumin, chick ovalbumin, bovine transferrin, 

rabbit gapdh, rabbit phosphorylase b, E.coli beta-galactosidase, bovine gamma-actin, 

bovine catalase, rabbit myosin, E.coli alkaline phosphatase, horse myoglobin, 

B.lichenformis alpha-amylase, S.cerevisiae phosphomannose isomerase). MS analysis is 

done with LCQ tandem mass spectrometer which liquid chromatography (LC) is 

coupled MS/MS with ESI-ITMS (TheromoFinnigan, San Jose, CA). Some spectra are 

selected and in the selected dataset there are 109 spectra with singly charged precursor 

ions, 629 spectra with doubly charged precursor ions and 18 spectra with triply charged 

precursor ion. 

 

2.1.2. Synthetic Peptide Dataset 

 

There are two synthetic peptide datasets. The first synthetic peptide dataset is 

composed of 4 different peptide sequences (ASCMGLY, AVFDRKSDAK, 

CLGGLLTMV and GLCTLVAML). It contains 20 MS/MS spectra of the synthetic 

peptides with singly charged precursor mass in this dataset.  The second one is 

composed of 45 peptides that are derived from cytochrome c (ACN P00004), bovine 

serum albumin (ACN P02769), ovalalbumin (ACN P01012), myoglobin (ACN P68082) 

and lysozyme C (ACN P61626).  
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The first and the second datasets are measured with AB Applied Biosystems 

MDS SCIEX 4000 ESI Q-Trap and Thermo Scientific LTQ XL Linear Ion Trap ESI 

mass spectrometers with CID fragmentation respectively. Prepared peptide mixture is 

introduced to a mass spectrometer directly, without any prior chromatography steps. 

Herein, parameters including filling time, activation time, collision energy (CID), TIC 

and cycle numbers are changed to obtain spectra with different spectral quality 

regarding to existence of different ion types.  

 

2.1.3. Synthetic Spectra Dataset 

 

The dataset contains 32 synthetic spectra which are different regarding to b-ions, 

y-ions and a-ions. The ions for the expected sequences are calculated via tool named 

MS-Product (UCSF, by Burlingame).  In addition, there are 110 spectra with a-, b- and 

y- ions. 

 

2.2. Databases 

 

Three databases are used to evaluate performance of this algorithm.  

 Synthetic spectra databases: Entries which are all expected and modified 

(added/deleted/mutated/shuffled) sequences.  

 Keller et al.  – control mixture database:  103 entries which all protein sequences 

in the dataset and also human keratin sequences 

 Synthetic peptide databases: Uniprot databases for chicken (9031), bos taurus, 

human (9606) and horse (9796) which include expected and modified 

sequences. 

 Non-redundant database 

 

2.3. RAy Algorithm  

 

The algorithm has two steps: profile construction and profile alignment (Figure 

2.1). In the first step, profiles are constructed per each MS/MS spectrum (See Section 
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2.3.1. Profile Construction). Firstly, a MS/MS spectrum is preprocessed and any 

possible amino acids (fit amino acids) are found out which is followed by score 

maximization. Then, frequencies of all possible amino acids are calculated per location. 

In the second step, profiles are aligned against to sequences in database by using Smith-

Waterman algorithm (See Section 2.3.2. Profile Alignment). 

 

.  

Figure 2.1. The flowchart of RAy. In the first step of RAy, a MS/MS spectrum specific profile is constructed and 

then aligned against to sequences in a database. 

 

The algorithm is implemented in JAVA. There are some libraries used during 

the implementation which are Massspeclib, Seqlib and Helpers. Massspeclib and Seqlib 

libraries are created by Jens Allmer and developing by Allmer’s group in İYTE. 

Massspeclib library provides MassSpectrum, MSTypeFactory, Filtering, Tag classes 
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that enable working on mass spectrometric data. Seqlib library provides sequence 

related classes such as Amino Acid, Amino Acids for protein sequences and make it 

possible to read any database files such as FASTA. Helpers class facilitates doing 

statistical and also edit distance score calculations. In addition, Junit4 and JUnit3 testing 

are run. 

 

2.3.1. Profile Construction 

 

2.3.1.1. Preprocessing Experimental Spectra 

 

2.3.1.1.1. Isotopic Peaks Filtration & Deconvolution 

 

The first step in preprocessing is collapse isotopic peaks (See Section 

1.5.Deisotoping and Charge State Deconvolution). Herein, the isotopic envelopes are 

collapsed into one peak. 

The second step in preprocessing is deconvolution (Figure 2.2). First of all   ⁄  

value of doubly charged precursor ion (PM/2) is determined. Then, existence of any 

doubly charged ions from zero to   ⁄       values are checked in case that any 

corresponding singly charged ions are found. Herein, intensity of singly charged peak 

must be higher than assumed doubly charged peaks. Within the doubly charged ions, 

standard deviation (std) and average (avg) values of intensities are calculated. This step 

enables determination of the intensity limits for deconvolution. After that, the ions 

which have intensities are within the limits are assumed as doubly charged and then the 

charge state is converted into one according to Equation 2.1. If there are no singly 

charged ions for the converted ions prior to this step, the doubly charged peak is directly 

translated into charge state one (Light gray in Figure 2.2). In case that there is already 

singly charged ion in that location, the intensity of converted ion is added to the current 

singly charged ion (Dark gray in Figure 2.2).  

 

   ⁄
  

         ⁄
 

 (2.1) 
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Figure 2.2. Deconvolution. Any peaks that have lower   ⁄  values than doubly charged precursor ions can be doubly 

charged. Limits are determined for charge state deconvolution by checking existence of any doubly 

charged ions and then their average (avg) and standard deviation (std) of intensities in that location are 

calculated. Peaks that have intensity values between (avg-std) and (avg+std) are assumed charge status 

with two and then they are deconvulated into one. If the singly charged peak already exists, intensity is 

increased. Otherwise, a translated peak with charge state one is introduce to a MS/MS spectrum.  
 

 

2.3.1.1.2. Window Based Peak Filtration 

 

Then window based filtering is carried out. For this purpose, 

                 ⁄   windows are created for an experimental MS/MS spectrum and 

top 7 peaks that are sorted by intensity values are selected for each window (Figure 2.3). 

 

 

Figure 2.3. Window based filtering. An experimental MS/MS spectrum is divided into windows and then, the top 5 

peaks with the highest intensities are selected. For instance, on the figure the dashed lines are the peaks 

with the highest values in the given window (W11) therefore, they are selected.  
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2.3.1.1.3. Intensity Normalization 

 

The last step in preprocessing is intensity normalization. All intensities are 

sorted and the top 5% of and the lowest 5% of intensities are discarded temporarily for 

statistical evaluation. If discarded numbers in the top are less than 3, the top 3 intensities 

and the bottom 3 intensities are removed. Then average (avg) and standard deviation 

(std) values are calculated from the rest. According to average and standard deviation 

limits, intensities for all peaks are classified into 6 different groups and their intensity 

values are updated (Table 2.1). 

 

Table 2.1. Classification limits for intensity normalization 

 

Maximum (Exclusive) Minimum (Inclusive) Value 

+∞ avg + (2* std) 6 

avg + (2 * std) avg +  std 5 

avg +  std Avg 4 

Avg avg – std 3 

avg – (std) avg – (2*std) 2 

avg – (2*std) - ∞ 1 

 

 

2.3.1.2. Finding Fit Amino Acids  

 

It is likely to find any amino acids between peaks on a MS/MS spectrum. They 

may be b-, y- or any other ions types (See Section 1.4. Peptide Fragmentation). RAy 

finds all possible amino acids referred as “fit amino acids”. For example, there is a fit 

amino acid between two peaks (which are 342.10 and 489.20) that equals to mass of 

glutamic acid on the spectrum in Keller et al. dataset named GPFPII_sergei 

_digest_A_full _05.1518.1520.1.dta (Figure 2.4). 
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Figure 2.4. Finding fit amino acids. It is possible to find any amino acids between peaks in a tandem MS spectrum. 

Herein, differences between the peaks which have the m/z values are 342.10 and 489.20 respectively 

gives glutamic acid (Phe).   

 

There is a parameter which enables finding out fit amino acids within certain 

mass differences. It is called as “mass tolerance”. Depending on the mass tolerance, 

mass accuracy that affects certainty of fit amino acids can be adjusted. In single step 

MS/MS analysis, leucine (L) and isoleucine (I) cannot be differentiated since their 

masses are the same. Therefore, they are shown as J. In addition if MS analysis is not 

accurate enough, glutamine (Q) and lysine (K) cannot be differentiated as well. In such 

cases, these fit amino acids are shown as B. Mass values of all amino acids and their 

one letter codes are listed in Table 2.2 (See Section 1.5.Deisotoping and Charge State 

Deconvolution for monoisotopic and average mass). 

 

 

Table 2.2. Amino acid information 

 

Amino acid 

name 

3 letter code 1 letter code Precision 

adjusted 

Monoisotopic 

mass 

Avereage 

Mass 

Glycine Gly G G 57.021417 57.052 

Alanine Ala A A 71.03712 71.079 

Serine Ser S S 87.03203 87.078 

Proline Pro P P 97.05277 97.117 

Valine Val V V 99.06842 99.133 

Threonine Thr T T 101.04768 101.105 

Cysteine Cys C C 103.00919 103.144 

Isoleucine Ile I J 113.08407 113.160 

Leucine Leu L J 113.08407 113.160 

       

(cont. on the  next page) 
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Table 2.2. (cont.) 

 

Asparagine Asn N N 114.04293 114.104 

Aspartic acid Asp D D 115.02695 115.089 

Glutamine  Gln Q B 128.05858 128.131 

Lysine  Lys K B 128.09497 128.174 

Glutamic acid Glu E E 129.04260 129.116 

Methionine Met M M 131.04049 131.198 

Histidine His H H 137.05891 137.142 

Phenylalanine Phe F F 147.06842 174.177 

Arginine Arg R R 156.10112 156.188 

Tyrosine Tyr Y Y 163.06333 163.170 

Tryptophan Try W W 186.07932 186.213 

 

 

2.3.1.2.1. Score Maximization 

 

A tag is a short sequence with unique mass information (See Section 

1.6.1.2.Peptide Sequence Tag). Numerous tags can be generated on a one MS/MS 

spectrum. In order to obtain more an informative profile, tags are benefited. Because, 

any fit amino acids which take place on any tags are more likely to be part of the full 

length peptide sequence comparing to any individual fit amino acids.  

In order to fill a frequency table, scores for each fit amino acid are calculated. 

To calculate a score for any fit amino acids, two sub-scores are considered which are 

related to intensity and tag. Firstly, the intensities of start and end   ⁄  values are 

averaged. Then, in case that a fit amino acid is part of any tags, its score is increasing. 

Here, a tag score is calculated by multiplication of tag length with 2. At the end, these 

two values are summed up (Equation 2.2 and 2.3.). 

 

                                       (2.2) 

 

 
 

                
                            

 
              (2.3) 
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2.3.1.3. Orientation Elimination 

 

It is not certain which part of an experimental MS/MS spectrum is a carboxyl or 

an amine terminus of peptide in the study. There are two approaches to eliminate 

orientation in this algorithm: fit amino acid and tag based. 

First of all, any tags are generated with a mass tolerance related parameter 

named “tag precision”. If the precision is bigger than 0.5, it is set to 0.1 Da.  

Current tag-based approaches do not overcome the orientation problem. For 

instance, GutenTag algorithm assumes that all ion series in a tag is y-ions (See Section 

1.4.Peptide Fragmentation and 1.6.1.2.Peptide Sequence Tag). Herein, an algorithm 

specific approach is implemented in order to overcome that problem (Figure 2.5). Each 

tag is put into rows and the direction of the first tag.is assumed the correct direction. For 

instance, the tags with sequences of EAK, AVTH and RA are put into the first, second 

and third rows respectively. For each box in one row is different from each other with 

300 Da. Windows are created based on mirror symmetry matched with column size of 2 

(Wa1 is matched to Wb1 in Figure 2.5).Then, orientation check process starts from 

overlaps in the middle windows. In order to correct orientation,                  is 

calculated (Equation 2.4). Here the most frequent amino acid is counted and the value is 

divided by sum of all frequencies in one column. If the row is reversed and 

                 is increased as a result, direction is changed. 

 

                  
𝐶                           

𝐶                          

 (2.4) 
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Figure 2.5. Tag orientation elimination.  

 

After directionality fix in tags, score per each fit amino acid is calculated 

(Equation2.2) and a pre-frequency table is filled by these scores. In the beginning, each 

fit amino acid is converted to individual rows and each row has cells that contain mass 

information. Mass of each cell equals to glycine mass (Equation 2.5). Then, according 

to start and end   ⁄  values, a score is filled per locations. For instance, one glycine is a 

fit amino acid with the start and the end   ⁄  values are 238.08 and 285.1 respectively. 

Besides,                equals to 6. From zero to precursor mass, the determined 

locations in respect to   ⁄  values are filled with 6. Then in order to eliminate 

orientation, filling starts from precursor mass to zero. If the score from this direction 

increases the existing score, the scores are summed up to obtain “final” row (Figure 

2.6).  

 

                  (
                              

                        
) (2.5) 

 

 

Figure 2.6. Filling principle. On the figure, a fit amino acid is glycine with the start and end   ⁄  values are 238.08 

and 285.1 respectively. From zero to precursor mass, it is filling from the 5th cell till the 7th cell. Then 

from precursor mass to zero, scoring is at 4th and 5th cell. Since the score in 4th cell increases the existing 

score, the final score is summed of these two values (Note: indexing starts from zero instead of one). 
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2.3.1.4. Filling a Frequency Table and Obtaining a Profile 

 

The last step is obtaining a profile from a frequency table. On a pre-frequency 

table, each row indicates a fit amino acid and each column shows locations without 

directionality. In order to get a sequence profile, the scores on the same column for each 

individual amino acid are summed up and then divided by overall scores on that 

column. As a result, frequency per each amino acid which varies from 0.0 to 1.0 is 

calculated. 

A sequence profile is a table that each row represents certain amino acids and 

each column indicates positions without directionality information. Each cell contains 

frequencies. The Figure 2.7 is as an example for a profile. It is one of the spectra in 

Keller et al. dataset with singly charged precursor ion and the expected sequence is 

GPFPII. 

 

 

Figure 2.7. A sequence profile. This  is one of the spectra from Keller et al. dataset. A sequence profile contains 

frequencies per each amino acid in columns. Each row indicates amino acid and each column shows 

location without directionality. 

 

Parameters for profile constructions are summarized in Table 2.3. 
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Table 2.3. Parameters for the profile construction 

 

Name Default  Information 

Mass tolerance 0.5 Da To find out fit amino acids. 

Tag precision 0.1 Da To find out amino acids for a tag construction. Masses of the 

consecutive amino acids in a tag must be less than tag tolerance.  

Times of standard 

deviation 

1 To set limits (avg- (times*stdv)) for deconvolution.  

Window Num PM/50 To set the window number while window based filtration. 

Window Size 7  To set the peak number in a window during window based filtration. 

Isotopic Peak Filtering On In order to process filtration based on isotopic envelopes collapsing.   

Window Based Filtering On In order to process filtration based on selection of the top peaks 

regarding to intensity values for window based. 

 

 

2.3.2. Profile Alignment 

 

Profiles are aligned against sequences in a database by using Smith-Waterman 

algorithm which is one of dynamic programming algorithms (Smith & Waterman, 

1981). This algorithm guarantees the optimal results depending on scoring systems. 

Generally speaking, a scoring matrix is created and then results are obtained via back 

track.  

 

2.3.2.1. Construction of a Dynamic Programming Matrix 

 

A dynamic programming matrix (   is a table which contains scores between a 

sequence and a profile. It has one additional row and column filled with zero. For 

example, if a profile has 12 columns and a length of a sequence in database is 5, the 

matrix will be constructed with 12+1 columns and 5+1 rows (Figure 2.8).  

 

                         

                           

 [ ][ ]      

 [ ][ ]      
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Figure 2.8. Construction of a dynamic programming matrix. It has one additional row and column filled up with 

zeros. Row number equals to (length of a sequence+1) and column number equals to (columns of a 

profile+1). 
 

 

2.3.2.2. Scoring a Dynamic Programming Matrix 

 

Scoring of the dynamic matrix is based on the rule (Equation 2.6).  There are 

four possibilities for the score in a cell of a matrix. The highest value between these four 

options is selected for a value of a cell (Figure 2.9). 

1. Diagonal Score: The sum of two scores which are a score from the cell 

at the upper left ( [   ][   ]  and a similarity score shown as       . Two options 

are available to get a substitution score; using a simple substitution matrix and any 

known substitution matrices such as BLOSUM, PAM. For a simple substitution matrix, 

in case that an amino acid matches to itself, the score equals to a match score, otherwise 

a mismatch score. The two scores can be set by a user. The similarity scores are 

calculated by multiplication of a substitution score and a frequency of each amino acid 

on a profile. The substitution score is calculated per each amino acid (a) in a profile 

against one amino acid (b) of a sequence. Then, the highest similarity score is taken and 

that the information of amino acid in profile is selected (Equation 2.7).   

2. Left Score: The score from the left of the current cell at the matrix  

  [ ][   ]  is deducted by the gap score (  . 
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3. Up Score: The score from the up of the current cell ( [   ][ ]  is 

subtracted by the gap score (  . 

4. Zero. This option prevents any negative values on a scoring matrix.  

 

 [ ][ ]  {

 [   ][   ]        

 [ ][   ]   

 [   ][ ]   
   

 (2.6) 

  

                                    (2.7) 

 

 

 

 

Figure 2.9. Scoring a dynamic programming matrix. There are four possibilities to score any cells. These possibilities 

are indicated by arrows. If the score comes from upper left, similarity score is added to it. If the score is 

from left and up, the gap score is introduced to them. The fourth option, which is zero, prevents any 

negative values in the matrix. 
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Figure 2.10.  A simple substitution matrix. If an amino acid matches itself, it gives 1 (match score); otherwise the 

substitution score is 0 (mismatch score). Moreover, known substitution matrices  can be used (e.g. 

BLOSUM or PAM). These values can be set by a user. 
 

 

2.3.2.3. Determination of the Highest Score 

 

The next step after filling out the scoring matrix is determination of the highest 

score. It may be anywhere in the matrix. For instance, in the example of Figure 2.11, the 

highest score is 0.49 (which is circled).  

 

 

Figure 2.11. Determination of the highest score. The value can be anywhere in the matrix. For example here the 

highest score is 0.49 which is located in  [ ][ ]. (Note: indexing starts from zero, not one). 
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2.3.2.4. Back Track 

 

Back track starts after determination of the cell with the highest score. The 

direction is now other way around, to upper left, up and left. The scores in these 

locations are checked and the highest value is selected. There may be more than on 

highest values which causes alternative alignments. For example, in Figure 2.12 there 

are two alternatives from the cell with 0.49: up and upper left since they have the same 

value. This back track process continues until zero.  

 

 

Figure 2.12. Back track. From the cell with the highest score, three cells are checked in order to find the biggest 

scores between them. While back track, there may be more than one possible cell with the same highest 

score (Here, the second cell can be  [ ][ ] and [ ][ ]. It leads to obtain alternative alignments. 

 

After back track, alignments can be obtained. There are three options which are:  

1. Up: There is a gap on a sequence and “-“ is introduced into sequence part..   

2. Left: There is a gap on a profile and “-“ is introduced into profile part. 

3. Diagonal: There is a match and characters from sequence and a profile are 

introduced.  

In Figure 2.12, the best alignment is: 

    Profile: S P V T 

                  |      |   | 

Sequence: S - V T 
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Some parameters for profile alignment are listed in Table 2.4. 

 

Table 2.4. Some parameters for profile alignment 

 

Name Default  Information 

Match score 1 To score when an amino acid matches to itself on a sequence of 

database 

Mismatch score 0 To score when an amino acid does not match to itself on a sequence of 

database 

Gap score at 

sequence 

-1 To score a matrix from left (sequence direction) 

Gap score at 

profile 

-5 To score a matrix from up (profile direction).  

Substitution 

matrix (SM) 

Optional It is possible to give a SM file in addition to using a simple or any 

known SMs. 

Use mass 

constrain  

Optional To select alignments use mass constraint between predicted sequence 

and precursor mass 

 

 

2.4. Performance Evaluation 

 

2.4.1. Scoring Function  

 

To determine a scoring function for RAy, different scores based on various ion 

types are compared. First of all, one sequence is arbitrary selected and additional 100 

sequences are randomly generated (Length from 4 to 6 and edit distance scores up to 6,  

edit distance is a metric used to find out similarity between peptide sequences which 

calculates the minimum number of insertion, deletions and substitutions between 

sequences (Ristad, Yianilos, & Member, 1998)). After getting preliminary results, 

another dataset is constructed which contains 21 sequences with edit distance scores 0-2 

to select ion types for scoring functions. To analyze these results, edit distance score is 

normalized and adjusted to masses of sequences (Equation 2.8). As a result of this 

analysis, MSPepScorer named scoring function is determined (range: [0-1]) (See 

Section 3.3.1. Scoring Function Analysis for graphics) (Equation 2.9).  
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(                       ) 

 
 (2.9) 

  

 

2.4.2. Parameter Settings 

 

2.4.2.1. Workflow 

 

 The workflow principle is illustrated on Figure 2.13. An experimental MS/MS 

spectrum specific sequence profile is constructed depending on given parameters (See 

Table 2.3). Then, profile is aligned to sequences in database via Smith-Waterman 

algorithms with user defined parameters (See Table 2.4).  Finally, the outcomes are 

given with alignment results and SW (Equation 2.10) and MSPepScore scores 

(Equation 2.9). 

 

 

Figure 2.13. The workflow principle.  

 

 

2.4.2.2. Synthetic Spectra Dataset 

 

 Combinations of the scoring system including match, mismatch and gap scores 

are evaluated in order to get better results from the datasets. Firstly, a mass constrain 
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which shows the mass difference mass of sequence and a precursor mass is used to 

select alignments. Various mass constrain values are tested (2Da, 5 Da, 10Da, 20Da). 

Then, Smith-Waterman (SW) scores for alignments are analyzed to set a threshold. The 

SW score is sum of all frequencies in profile if there is a match while scoring the matrix 

before alignment (Equation 2.9). After that, the alignments with SW score above the 

threshold are selected for MSPepScorer analysis for prediction quality.  

 

                            (2.10) 

 

2.4.2.3. Synthetic Peptide and Keller et al. Datasets 

 

 The best settings are determined from the analysis of the synthetic spectra (See 

3.3.2.1. Synthetic Spectra Dataset) are used to evaluate synthetic peptide and Keller et 

al. datasets. Once again, sequence similarity (MASSS) and prediction quality 

(MSPepScore) are analyzed to see the performance. 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

 

3.1. Spectral Quality 

 

Spectral quality of each spectrum in three dataset is assessed to evaluate 

performance To calculate spectral quality score, ion existence of a-, b- and y-ions on a 

MS/MS spectraum is checked with +/- 0.3 Da mass tolerance. Then, weighted sum of 

three ion sets are calculated (Equation 3.1). 

The first synthetic peptide and Keller et al. datasets (See section 2.1. Tandem 

Mass Spectra Datasets) are analyzed in respect to spectral quality. For this purpose, ion 

quality (Ion_Qual) scores are calculated per spectrum (Equation 3.1) (Figure 3.1). 

 

                         (             )                  (3.1) 

  

 

Figure 3.1: Spectral quality assessment of datasets. x-axis shows peptide sequence or dataset name whereas y-axis 

shows spectral quality. Then weighted sum of found known ion types are calculated for each spectrum. 

Quality in the first synthetic peptide and Keller et al. datasets varies from 0.24 to 0.7  
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3.2. Profile Construction 

 

3.2.1. Preprocessing Success 

 

The first step in profile construction is spectra preprocessing (See Section 

2.3.1.1 Preprocessing Experimental Spectra). Basically, isotopic envelopes are 

condensed into single peaks. Then, deconvolution of charge state and windows based 

peak filtration steps are performed. 

To evaluate the performance of preprocess steps, existence of found b- and y-

ions are checked in the Keller et al dataset. Theoretical spectra with b- and y-ions 

depending on expected sequences are constructed. Then, they are compared to 

experimental spectra regarding to found b- and y-ions (Equation 3.2). As can be seen in 

Figure3.2, the majority of the informative peaks are remained.  

 

                 
                           

                                
 (3.2) 

  

 

Figure 3.2. Existence status of b- and y-ions before and after each steps in preprocess which are collapse isotopic 

peak filtration, deconvolution and windows based peak filtration, respectively. Found ion ratio is 

calculated based on found theoretical peaks. At the end of preprocessing, majority of b- and y- ions still 

exist. 
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 To see the status of found ion ratios over all peaks after preprocessing steps, 

calculated found ion ratios are normalized with total ion number on a spectrum. To 

achieve this, found ion ratios are divided by sum of all peaks (Equation 3.3). Figure3.3 

shows the distribution of normalized found ion ratios in Keller et al. dataset after each 

step. While peaks are discarding, a remarkable percent of informative peaks still remain.  

 

                            

                           
                                

                   
 

(3.3) 

  

 

 

Figure 3.3. Normalized found ion ratios before and after each step in preprocess which are collapse isotopic peak 

filtration, deconvolution and windows based peak filtration, respectively. Found ion ratios are normalized 

with total peak number. While peaks are removed, majority of b- and y- ions still exist. 

 

To have a closer look at overall peak removal success, before and after 

existences of b- and y-ions are also checked against overall removed ratios. Retained 

peaks number ratio (RPR) is the proportion of number of b- and y-ions that are found 

before and after preprocess steps (Equation 3.4). Overall removed peak number ratio 

(ORPR) is also the proportion of total removed peak number and the value that total 

peaks is subtracted by found b- and y-ions  after process (Equation 3.5).   
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 (3.4) 

  

      
                         

      (                )       (                 ) 
 (3.5) 

  

 

Then, retained peak ratio values (RPR) are plotted againes overall removed peak 

ratio (ORPR) in Figure 3.4.  It is clear that eventhough peak removal, informative peaks 

which are b- and y-ions still exist. Moreover, due to deconvulation, some doubly 

charged peaks are successfully converted to singly charged status. Therefore, the 

retained peak ratio is bigger than 1.0 in some cases. 

 

 

Figure 3.4. Peak removal success. x-axis shows overall removed peak ratio(ORPR) whereas y-axis indicated retained 

peak number ratio (RPR) values. After preprocessing, many b- and y-ions still exist. Besides, due to 

deconvolution of doubly charged peak into singly charge status, there are some values that are bigger than 

1.0 in y-axis. 

 

In addition, doubly charged peak removal success is also analyzed in Keller et al. 

dataset. In this step, 656 spectra with doubly charged precursor ion and also 18 spectra 

with triply charged precursor ion in the dataset are analyzed. Removed doubly charged 

peak ratio (RDCR) is calculated (Equation 3.5) and then ratios are analyzed in respect to 

spectral quality groups (Figure 3.5). The Figure 3.5 reveals that the majority of doubly 
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charged peaks are removed after process. Furthermore, there is a correlation between 

spectral quality and RDCR especially for the spectra with triply charged precursor ions. 

 

  𝐶  
     (               )                       

                      
 (3.5) 

 

 

 

Figure 3.5. Doubly charged peak removal success. x-axis shows spectral quality groups whereas y-axis shows 

removed doubly charged peak ratio (RDCR) distribution. 629 spectra with doubly charged precursor ion 

and 18 spectra with triply charged precursor ion in Keller et al. dataset are analyzed.  
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3.2.2. Orientation 

 

One of the essential features on RAy is orientation elimination as much as 

possible. Herein, two aspects are used (See Section 2.3.1.3. Orientation Elimination): 

the first strategy leads increase score of individual fit amino acids in orientation 

eliminated way and the second approach is regarding to correction of directionalities in 

tags.  

 

3.2.2.1. Fit Amino Acids 

 

To evaluate the success of orientation elimination on individual fit amino acids, 

Keller et al. dataset is used. Since the expected sequences in each experimental 

spectrum is known, it is checked whether fit amino acid is a part of the sequences, and 

then location is determined (right or left part of expected sequences). So as to calculate 

orientation score, all fit amino acids with the same direction are counted and then 

divided by the overall fit amino acid sequences. This process is repeated after 

orientation elimination step. If the orientation score equals to 1, it shows that all fit 

amino acids are in the same direction. If the scores in both directions equals to each 

other, orientation score is 0. The analysis is plotted in Figure 3.6. After this process in 

orientation elimination part, orientation scores and also amino acids with the same 

directions are increased. There is a correlation between spectral quality and orientation 

elimination success, orientation elimination works better on the spectra with high 

quality. 
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Figure 3.6. Orientation elimination, based on fit amino acids. x-axis shows spectral quality group and y-axis indicates 

orientation score distributions. Solid and dashed lines next to each other show the maximum and 

minimum values before and after orientation, respectively. Status756 spectra in Keller et al. dataset are 

used in this analysis, regardless of the charge status of precursor ions. Orientation scores for before and 

after the process are calculated and then compared. While spectral quality is increasing, orientation 

elimination success is improved as well.   
 

 

3.2.2.2. Tags 

 

 To evaluate the performance of tag orientation elimination process (See Section 

2.3.1.3. O, tags of each spectrum on the Keller et al. and synthetic spectra datasets are 

analyzed. After preprocessing of each spectrum, tag directions are found out since the 

expected sequence of that spectrum is known. If amino acids in tag sequence are mainly 

in the direction from the left to the right, they are considered “forward”; otherwise they 

are “reverse”.  For an example in Figure 3.7, the tag with sequence “GASP” is expected 

to be left since amino acids are from the left to the right according to the expected 

sequence which is “GASPVT”. Based on this information, all directions for the tags 

before and after orientation are named.  Then, orientation scores (Equation 3.6) are 

calculated for each spectrum and the score distributions for the different datasets are 

plotted in Figure 3.8.  
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Figure 3.7. Orientation success analysis. Herein, the expected sequence is “GASPVT”. According to this information, 

the directionalities of found tags are determined whether “forward” (light gray) or “reverse” (dark gray).  

 
  

 

 

Figure 3.8. Tag orientation process success. x-axis shows dataset information which are the first synthetic spectra and 

the second synthetic spectra and Keller et al. datasets, respectively. On the left of each group shows the 

orientation score distributions before process (dark gray) and on the right indicates the distributions after 

(light gray). After orientation elimination process, generally scores are increased for each dataset.   
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3.3. Profile Alignment 

 

3.3.1. Scoring Function Analysis 

 

In order to determine the scoring function of RAy, the analysis explained on the 

section “2.4.1 Scoring Function Analysis” is carried out. The dataset with 21 sequences 

are used to select ion types for the selected scoring functions.  To evaluate outcomes, 

edit distance score is normalized and adjusted to mass of the sequences (called as mass 

adjusted sequence similarity score - MASSS) (Equation 3.7). This score enables 

differentiating the sequences which have same edit distance score, but different masses. 

After evaluation of ion type combinations, the weighted sum of shared peak abundance 

ratio (a-, b- and y-ions) and cosine similarity (b- and y-ions) scores (Figure 3.9) is 

decided to be used and this score is called as MSPepScore (Equation 3.8) (range: [0-1]).  
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Figure . 3.9.  Comparison of cosine similarity and shared peak abundance ratio scores based on different ion types. x-

axis shows MASSS which is mass adjusted sequence similarity score and y-axis indicated different 

scoring functions. 8 different scores are compared and as a result. The combination of shared peak 

abundance ratio (a-, b- and y-ions) and cosine similarity (b- and y-ions) scores (Equation 3.7) is decided 

to be used as a MSPepScore. 
 

 

3.3.2. Parameter Settings Evaluation 

 

3.3.2.1. Datasets 

 

 The analysis to evaluate alignments the different spectra in the datasets with 

various parameters are carried out. Herein, sequence similarity (edit distance or 

MASSS) and scoring function (MSPepScore) are being analyzed. We aim to get the 

best results for the sequence that exactly matches to expected sequences, better result 

for the sequences that have some variation (addition/insertion/mutation) of expected 

sequences and the worst results for the sequences that are completely different than 

expected sequences. 
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CHAPTER 4 

 

CONCLUSION 

 

Mass spectrometry (MS) is a commonly used technique in protein studies. There 

are two main strategies regarding computational aspects to interpret mass spectrometric 

data: database search and de novo sequencing. The success of database search 

algorithms depends on correctly annotated sequences. In case that sequence is missing, 

database searches fail. If a sequence of protein in study is absent in database, homology 

search can be useful.  

We are presenting a new algorithm named RAy which aims to increase the 

scope of MS based homology searches in sequence databases. It has a novel approach – 

sequence profile which is specific for each MS/MS spectrum. RAy has two steps: 

profile construction and profile alignment. After construction of sequence profile, they 

are directly aligned to sequences in a database via the Smith-Waterman algorithm.  

The first steps of RAy in profile construction are preprocessing including 

isotopic peak filtration, deconvolution. After deconvolution, the number of the 

informative ions is increased. Also, filtration steps are successful since b- and y-ions are 

still remaining while removing unknown ions. RAy tries to eliminate directionality 

depending on the two strategies which are fit amino acid and tag based. Generally 

algorithm in computational mass spectrometry work based on tryptic cleavage of 

peptides, however RAy offers a possibility to work with the spectra which proteins are 

not cleaving by any tryptic enzymes. Moreover, alignment results are not restricted to 

mass constrain which is mass difference between sequence at database and precursor 

ion of a tandem MS spectrum and that is an optional settings can be changed by a user. 

  



 

46 

REFERENCES 

 

Aebersold, R, & Goodlett, D. R. (2001). Mass spectrometry in proteomics. Chemical 

reviews, 101(2), 269-95. 

Aebersold, Ruedi, & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 

422(6928), 198-207. 

Allmer, J. (2011). Algorithms for the de novo sequencing of peptides from tandem mass 

spectra. Expert Review of Proteomics, 8(5), 645-657. 

Bandeira, N., Olsen, J. V., Mann, M.,  Mann, M. & Pevzner, P. A.  (2008). Multi-

spectra peptide sequencing and its applications to multistage mass spectrometry. 

Bioinformatics, 24(13), i416-i423.  

Cao, X., & Nesvizhskii, A. I. (2008). Improved Sequence Tag Generation Method for 

Peptide Identification in Tandem Mass Spectrometry,  American Chemical 

Society, 7(10), 4422-4434. 

Chait, B. T. (2006). Mass spectrometry: bottom-up or top-down? Science, 314(5796), 

65-6.  

Cottrell, J. S. (2011). Protein identification using MS/MS data. Journal of Proteomics, 

74(10), 1842-51.  

Cox, J., & Mann, M. (2011). Quantitative, high-resolution proteomics for data-driven 

systems biology. Annual Review of Biochemistry, 80, 273-99.  

Craig, R., & Beavis, R. C. (2004). TANDEM: Matching proteins with tandem mass 

spectra. Bioinformatics, 20(9), 1466-1467.  

Dancík, V., Addona, T. A, Clauser, K. R., Vath, J. E., & Pevzner, P. A. (1999). De novo 

peptide sequencing via tandem mass spectrometry. Journal of Computational 

Biology : A Journal of Computational Molecular Cell Biology, 6(3-4), 327-42. 

Domon, B., & Aebersold, R. (2006). Mass spectrometry and protein analysis. Science, 

312(5771), 212-7.  

Edman, P. (1950). Method for determination of the amino acid sequence in peptides. 

Acta Chemica Scandinavica, 283-93. 

Eidhammer, I., Flikka, K., Martens, L., & Mikalsen, S.O. (2008). Computational 

Methods for Mass Spectrometry, Chichester, UK, John Wiley & Sons, Ltd (1
st
 Ed., 

p. 296). 



 

47 

Elias, J. E., & Gygi, S. P. (2007). Target-decoy search strategy for increased confidence 

in large-scale protein identifications by mass spectrometry, Nature Methods, 4(3), 

207-214.  

Elias, J. E., & Gygi, S. P. (2010). Target-decoy search strategy for mass spectrometry-

based proteomics, Methods Mol Biol., 604, 55-71.  

Eng, J. K., Mccormack, A. L., & Yates, J. R. (1994). An approach to correlate tandem 

mass spectral data of peptides with amino acid sequences in a protein database. 

Sciences, 67(8), 1426-36. 

Forner, F., Foster, L. J., & Toppo, S. (2007). Mass spectrometry data analysis in the 

Proteomics era. Current Bioinformatics, 2(1), 63-93.  

Frank, A., & Pevzner, P. (2005). PepNovo De novo peptide sequencing via probabilistic 

network modeling.  Analytical Chemistry, 77(4), 964-973.  

Frank, A., Tanner, S., Bafna, V., & Pevzner, P. (2005). Peptide Sequence Tags for Fast 

Database Search  in Mass-Spectrometry. American Chemical Society, 4(4), 1287 – 

1295. 

Geer, L. Y., Markey, S. P., Kowalak, J. A, Wagner, L., Xu, M., Maynard, D. M., Yang, 

X., et al. (2004). Open mass spectrometry search algorithm. Journal of Proteome 

Research, 3(5), 958-64.  

Gentzel, M., Köcher, T., Ponnusamy, S., & Wilm, M. (2003). Preprocessing of tandem 

mass spectrometric data to support automatic protein identification. Proteomics, 

3(8), 1597-610.  

Gevaert, K., & Vandekerckhove, J. (2000). Protein identification methods in 

Proteomics. Review Electrophoresis, 21, 1145-54. 

Han, Y., Ma, B., Zhang, K., & Na, C. (2004). SPIDER : Software for Protein 

Identification from Sequence Tags with De Novo Sequencing Error. Proc IEEE 

Computational Systems Bioinformatics Conference, 206-15. 

Hellerstein, M. K., Neese, R. A., (1999). Mass isotopomer distribution analysis at eight 

years : theoretical , analytic , and experimental considerations Mass isotopomer 

distribution analysis at eight years : theoretical , analytic , and experimental 

considerations. Am J Physiol Endocrinol Metab, 1146-1170. 

Henzel, W. J., Watanabe, C., & Stults, J. T. (2003). Protein identification: The origins 

of peptide mass fingerprinting. Journal of the American Society for Mass 

Spectrometry, 14(9), 931-42.  

Huang, L., Jacob, R. J., Pegg, S. C., Baldwin, M. a, Wang, C. C., Burlingame, A. L., & 

Babbitt, P. C. (2001). Functional assignment of the 20 S proteasome from 

Trypanosoma brucei using mass spectrometry and new bioinformatics approaches. 

The Journal of Biological Chemistry, 276(30), 28327-39.  



 

48 

Johnson, R. S., Davis, M. T., Taylor, J. A., & Patterson, S. D. (2005). Informatics for 

protein identification by mass spectrometry. Methods, 35(3), 223-36.  

Kelleher, N. L. (2004). Top-down proteomics. Analytical chemistry, 76(11), 197-203.  

Keller, A., Purvine, S., Nesvizhskii, A. I., Stolyar, S., Goodlett, D. R., & Kolker, E. 

(2002). Experimental protein mixture for validating tandem mass spectral analysis. 

Omics, 6(2), 207-212. 

Kim, S., Bandeira, N., & Pevzner, P. A. (2009). Spectral profiles, a novel representation 

of tandem mass spectra and their applications for de novo peptide sequencing and 

identification. Molecular & Cellular Proteomics: MCP, 8(6), 1391-400 

Kiner, M., & Sherman, N. E. (2000). Protein sequencing and identification using 

tandem mass spectrometry (1st ed.). Wiley-Interscience. 

Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A., & Lajoie, G. 

(2003). PEAKS: Powerful software for peptide de novo sequencing by tandem 

mass spectrometry. Rapid Communications in Mass Spectrometry : RCM, 17(20), 

2337-42.  

Ham, A. J., Aerni, H. R., Cheek, K., Whitwell, C. W., Caprioli, R. M. , Tabb D. L. , Ma, 

Z., (2011). ScanRanker: Quality assessment of tandem mass spectra via sequence 

tagging. Journal of proteome research, 10(7),  

Mackey, A. J., Haystead, T. A. J., & Pearson, W. R. (2001). Getting More from Less: 

Algorithms for Rapid Protein Identification with Multiple Short Peptide 

Sequences. Molecular & Cellular Proteomics:MCP, 1(2), 139-147.  

Mann, M, & Wilm, M. (1994). Error-tolerant identification of peptides in sequence 

databases by peptide sequence tags. Analytical Chemistry, 66(24), 4390-9.  

Mann, Matthias, Hendrickson, R. C., & Pandey, A. (2001). Analysis of proteins and 

proteomes by mass spectrometry. Annual Review of Biochemistry, 70, 437-73.  

Matthiesen, R. (2006). Mass Spectrometry Data Analysis in Proteomics (1st ed., p. 

336). Humana Press. 

McHugh, L., & Arthur, J. W. (2008). Computational methods for protein identification 

from mass spectrometry data. PLoS computational biology, 4(2), e12.  

Olsen, J. V., & Mann, M. (2004). Improved peptide identification in proteomics by two 

consecutive stages of mass spectrometric fragmentation. Proceedings of the 

National Academy of Sciences of the United States of America, 101(37), 13417-22.  

Perkins, D. N., Pappin, D. J. . C., Creasy, D. M., & Cottrell, J. S. (1999). Probability-

based protein identification by searching sequence databases using mass 

spectrometry data Proteomics and 2-DE. Electrophoresis, 20(18), 3551-3567. 



 

49 

Ristad, E. S., Yianilos, P. N., & Member, S. (1998). Learning String-Edit Distance, 

IEEE Transactions on Pattern Recognition and Machine Intelligence , 20(5), 522-

532. 

Searle, B. C., Dasari, S., Turner, M., Reddy, A. P., Choi, D., Wilmarth, P. A., 

Mccormack, A. L., David, L.L., Nagalla, S.R. (2004). High-Throughput 

Identification of Proteins and Unanticipated Sequence Modifications Using a 

Mass-Based Alignment Algorithm for MS / MS de Novo Sequencing Results. 

Analytical Chemistry, 76(8), 2220-2230. 

Seidler, J., Zinn, N., Boehm, M. E., & Lehmann, W. D. (2010). De novo sequencing of 

peptides by MS/MS. Proteomics, 10(4), 634-49. doi:10.1002/pmic.200900459 

Shadforth, I., Crowther, D., & Bessant, C. (2005). Protein and peptide identification 

algorithms using MS for use in high-throughput, automated pipelines. Proteomics, 

5(16), 4082-95. 

Shevchenko, A., Sunyaev, S., Loboda, A., Bork, P., Ens, W., & Standing, K. G. (2001). 

Charting the proteomes of organisms with unsequenced genomes by MALDI-

quadrupole time-of-flight mass spectrometry and BLAST homology searching. 

Analytical Chemistry, 73(9), 1917-26 

Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular 

subsequences. Journal of Molecular Biology, 147(1), 195-197. 

Standing, K. G. (2003). Peptide and protein de novo sequencing by mass spectrometry. 

Current Opinion in Structural Biology, 13(5), 595-601.  

Steen, H., & Mann, M. (2004). The ABC’s (and XYZ's) of peptide sequencing. Nature 

Reviews Molecular Cell Biology,  Molecular cell biology, 5(9), 699-711.  

Sun, H., Zhang, J., & Liu, H. (2011). ., A New Scoring Scheme for Peptide Sequence 

Tagging via Doubly Charged MS / MS Spectra, Bioinformatics and Biomedical 

Engineering, (iCBBE) 2011 5th International Conference on, Wuhan China  1-4. 

Sunyaev, S., Liska, A. J., Golod, A., Shevchenko, A., & Shevchenko, A. (2003). 

MultiTag: multiple error-tolerant sequence tag search for the sequence-similarity 

identification of proteins by mass spectrometry. Analytical chemistry, 75(6), 1307-

15.  

Sykes, M. T., & Williamson, J. R. (2008). Envelope: Interactive software for modeling 

and fitting complex isotope distributions. BMC Bioinformatics, 9(1), 446.  

Tabb, D. L., Fernando, C. G., & Chambers, M. C. (2007). MyriMatch : Highly Accurate 

Tandem Mass Spectral Peptide Identification by Multivariate Hypergeometric 

Analysis, Journal of Proteome Research, 6(2), 654-661. 



 

50 

Tabb, D. L., Ma, Z. Q., Martin, D. B., Ham, A.J., & Chambers, M. C. (2008). 

DirecTag : Accurate Sequence Tags from Peptide MS / MS through Statistical 

Scoring research articles. Journal of Proteome Research, 7(9), 3838-3846. 

Tabb, D. L., Saraf, A., & Yates, J. R. (2003). GutenTag : High-Throughput Sequence 

Tagging via an Empirically Derived Fragmentation Model. Analytical Chemistry, 

75(23), 6415-6421. 

Tanner, S., Shu, H., Frank, A., Wang, L.-chi, Zandi, E., Mumby, M., Pevzner, P. A., 

Bafna, V., (2005). InsPecT : Identification of Posttranslationally Modified Peptides 

from Tandem Mass Spectra.  Analytical Chemistry, 77(14), 4626-4639. 

Taylor, J. A, & Johnson, R. S. (1997). Sequence database searches via de novo peptide 

sequencing by tandem mass spectrometry. Rapid Communications in Mass 

Spectrometry : RCM, 11(9), 1067-75.  

Tuli, L., & Ressom, H. W. (2009). LC-MS Based Detection of Differential Protein 

Expression. Journal of Proteomics & Bioinformatics, 2(10), 416-438.  

UCSF, Directed by Dr. Alma Burlingame, MS-Product. 

http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msproduct 

(accessed July 22, 2012). 

Uniprot, http://www.uniprot.org/ (accessed July 22, 2012). 

Xu, C., & Ma, B. (2006). Software for computational peptide identification from MS-

MS data. Drug Discovery Today, 11(13-14), 595-600. 

 

 

 

 

http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msproduct
http://www.uniprot.org/

