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ABSTRACT 

 

SELF-MOTION CONTROL OF KINEMATICALLY REDUNDANT 

ROBOT MANIPULATORS 

 

Redundancy in general provides space for optimization in robotics. Redundancy 

can be defined as sensor/actuator redundancy or kinematic redundancy. The redundancy 

considered in this thesis is the kinematic redundancy where the total degrees-of-freedom 

of the robot is more than the total degrees-of-freedom required for the task to be 

executed. This provides infinite number of solutions to perform the same task, thus, 

various subtasks can be carried out during the main-task execution.  

This work utilizes the property of self-motion for kinematically redundant robot 

manipulators by designing the general subtask controller that controls the joint motion 

in the null-space of the Jacobian matrix. The general subtask controller is implemented 

for various subtasks in this thesis. Minimizing the total joint motion, singularity 

avoidance, posture optimization for static impact force objectives, which include 

maximizing/minimizing the static impact force magnitude, and static and moving 

obstacle (point to point) collision avoidance are the subtasks considered in this thesis.  

New control architecture is developed to accomplish both the main-task and the 

previously mentioned subtasks. In this architecture, objective function for each subtask 

is formed. Then, the gradient of the objective function is used in the subtask controller 

to execute subtask objective while tracking a given end-effector trajectory. The tracking 

of the end-effector is called main-task.  

The SCHUNK LWA4-Arm robot arm with seven degrees-of-freedom is 

developed first in SolidWorks® as a computer-aided-design (CAD) model. Then, the 

CAD model is converted to MATLAB® Simulink model using SimMechanics CAD 

translator to be used in the simulation tests of the controller. Kinematics and dynamics 

equations of the robot are derived to be used in the controllers. Simulation test results 

are presented for the kinematically redundant robot manipulator operating in 3D space 

carrying out the main-task and the selected subtasks for this study. The simulation test 

results indicate that the developed controller’s performance is successful for all the 

main-task and subtask objectives. 

 

 



v 

ÖZET 

 

KİNEMATİK OLARAK ARTIK ROBOT KOLLARININ İÇ-HAREKET 

DENETİMİ 

 

 Robotbiliminde artıklık genellikle eniyileştirme için bir alan sağlar. Artıklık 

algılayıcı/eyletici veya kinematik artıklık olarak tanımlanabilir. Bu tezde ele alınan 

artıklık, robotun toplam serbestlik derecesinin gerçekleştirilecek görevin gerektirdiği 

toplam serbestlik derecesinden fazla olduğu kinematik artıklıktır. Bu durum, aynı görevi 

yerine getirmek için sonsuz sayıda çözüm imkanı sağlar, dolayısı ile, değişik alt-

görevlerin ana görev gerçekleştirilirken devam ettirilmesine imkan verir. 

 Bu çalışmada, Jacobi matrisinin sıfır uzayında, eklem hareketlerini denetleyen 

genel alt-görev denetleyicisi tasarlayarak, kinematik olarak artık robot kollarının iç-

hareketi özelliği kullanılmaktadır. Bu tezde genel alt-görev denetleyicisi değişik al-

görevler için uygulanmıştır. Bu alt-görevler, toplam eklem hareketinin en aza 

indirgenmesi, tekillikten kaçınma, statik darbe büyüklüğünü arttıran/azaltan statik darbe 

kuvveti amaçlarını içeren duruş eniyileştirmesi, ve statik ve dinamik (noktadan-noktaya) 

çarpışmadan kaçınma bu tezde ele alınan alt-görevlerdir. 

 Hem ana görevi hem de daha önce bahsi geçen alt-görevleri gerçekleştirmek için 

yeni denetleme mimarisi geliştirildi. Bu mimaride, amaç fonksiyonu her alt-görev için 

oluşturuldu. Sonrasında, robotun uç noktasının belirlenmiş yörüngesi takip edilirken, 

amaç fonksiyonunun gradyanı, alt-görev denetleyicisinde alt-görev hedefini 

gerçekleştirmek için kullanıldı. Robotun uç noktasının yörüngesinin takip edilmesi ana 

görev olarak adlandırılmıştır.  

 Yedi serbestlik dereceli SHUNCK LWA4-Arm robot kolu ilk önce 

SolidWorks® ortamında bilgisayar-destekli-tasarım (BDT) modeli olarak oluşturuldu. 

Sonrasında, denetleyicisinin benzetim testlerinde kullanılması için BDT modeli 

MATLAB® Simulink modeline SimMechanics BDT çeviricisi ile dönüştürüldü. 

Denetleyicide kullanılması için robotun kinematik ve dinamik denklemleri  türetildi. Bu 

çalışma için, benzetim test sonuçları, ana görev ve seçilmiş alt-görevleri yerine getiren 

3B uzayda çalışan, kinematik olarak artık robot kol için sunuldu. Benzetim testi 

sonuçları oluşturulan denetleyici peformansının bütün ana görev ve alt-görev hedefleri 

için başarılı olduğunu göstermektedir. 
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CHAPTER 1 

 

OVERVIEW FOR REDUNDANT ROBOT 

MANIPULATORS 

 

 Robotics is concerned with the study of machines that are expected to replace 

human beings in the execution of a task, as regards both physical activity and decision 

making. Robot makers tend to imitate the characteristics in nature/human. Redundancy 

is present in human or in any living creature. Human body redundancy can be observed 

in different levels such as; sensor/actuator level and mechanism level. Sensor/actuator 

level redundancy includes having two eyes, ears, some interior organs, etc. The 

mechanism level redundancy can be observed in multiple fingers, and two arms. 

Furthermore, the arm itself is redundant and this is called kinematic redundancy. 

Kinematic redundancy provides extra capabilities for the human arm, which will be 

explored for robot manipulators in this thesis. The aim of this introductory chapter is to 

define the redundancy concept in robot manipulators, kinematic redundancy, self-

motion and the applications of redundant robot manipulators. The objective of this 

work, contributions of the thesis to the literature, and the contents of this thesis as an 

outline are presented at the end of the chapter. 

 

1.1. Redundant Robot Manipulator 

 

 The motivation for introducing redundancy in robot manipulators goes beyond 

that for using redundancy in traditional engineering design, namely, increasing 

robustness to faults so as to improve reliability (e.g., redundant processors or sensors or 

actuators). The term redundancy used in this thesis, means kinematic redundancy. 

 

1.1.1. Kinematic Redundancy 

 

Redundancy is described in various papers and books which discuss several 

different issues related to redundant robots. The definitions are very similar to each 
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other but the most general and clarified definition is given by (Conkur and Buckingham 

1997). This definition gives a clear and simple method of describing all potential cases 

for robot manipulators, relating to the dimensions of the spaces, the manipulator end-

effector and the task space. The manipulator can be described as having n axes of 

motion. Similarly, the space defined by the achievable motion of the end-effector will 

have a dimension m. The task space will have dimension r. 

 Case 1:   n = m 

This is the standard non-redundant robot. 

 Case 2:    n > m 

When n is designed to be greater than m, then the device is redundant. In such 

situations, the self-shape of a device can be varied without changing the end-effector 

pose, since the joints do not produce independent motion in end-effector space. 

 Case 3:    m > r 

When the task space r is completely within the end-effector space m, and the 

dimension of the end-effector space m, irrespective of the dimension of the joint 

space n, is greater than the task space, then this describes task redundancy. 

 Case 4: 

As a distinct case in any of these situations there can be examples where for a 

particular configuration, a mirror configuration exists (such as elbow-up and elbow-

down case in Two DOF Revolute Arm). This gives rise to multiple solutions where 

there is a finite and well defined set of solutions for the end-effector pose. 

These mathematical expressions can now be converted into definitions: 

Definition 1: If the number of solutions to the inverse kinematics of a manipulator is 

not unique but finite, the manipulator is said to have multiple solutions. 

Definition 2: If the dimension of joint space is greater than the dimension of end-

effector space then the device is kinematically redundant. 

Definition 3: If the task-space is completely contained by, and has a lower 

dimensionality than the end-effector space, the manipulator is said to be task redundant.  

In standard, it is not necessary that a manipulator is fundamentally redundant; 

rather, there are some tasks with respect to those make it redundant. Since it is usually 

recognized that a general task space consists of following an end-effector motion 

trajectory requiring six degrees-of-freedom (DOF), a robot arm with seven or more 

DOFs is considered as the typical example of inherently redundant manipulator, for 
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example 7-DOF LWA4-Arm by SCHUNK. However, even in robot arms with fewer 

DOF, redundancy can be seen as implying extra DOF which are not needed for tasks in 

well-organized environments. For instance, using a six axis machine for welding or for 

stereotactic surgery is not kinematically required, since five axes will place a uniform 

cross section tool at the appropriate position with the required orientation to complete 

the task, no final rotation about the tool axis is required. Another example is a planar 

robotic arm manipulator with three or more joints that acquires to track end-effector 

position in a Cartesian plane. 

In fact, providing robot manipulators with kinematic redundancy is mainly 

aimed at increasing dexterity and using arm motion in the null space for subtask 

objective, during executing the main-task in the task space. A simple example given in 

Figure 1.1. 

 

 
 

Figure 1.1. Task space and null space motion 

 

 

  In addition to the distinction between non-redundant and redundant robot 

manipulators, it is also necessary to specify the number of redundancy. Hence the 

redundant manipulator has more DOF than is required to perform a task in the task 

space. These extra DOFs allow the robot manipulator to perform more dexterous 

manipulation and/or provide the robot manipulator with increased flexibility for the 

execution of sophisticated tasks. For this reason, highly or hyper-redundant 

manipulators present to improve manipulator performance in complex and unstructured 

environment. Highly or hyper redundant manipulators are often used in conjunction 

with trunk or snake robots. The intent is clear, such devices either being planar or fully 

spatial should have a joint space dimension n that is much greater than the dimension of 
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the end-effector space m (i. e., n >> m). Since the maximum value of m is 6, any value 

of n greater than 10 fulfills this criterion (Reznik et al. 1995). Often the implication of 

such designs is the need to consider non-Jacobian based inverse kinematics techniques 

for controlling the self-motion of the device.  

 

1.2. Self-motion 

 

 Early manipulator designs, which are characterized by designing the manipulator 

with the minimum number of joints required to execute its task resulted in a serious 

limitation in real-world applications. The limitations are due to the singularity problem, 

joint limits, and workspace obstacles. These limitations increase the regions to be 

avoided in the joint and task space during operation, thus requiring a carefully planned 

task space of the manipulator. This is the case of work cells in traditional industrial 

applications.  

On the other hand, the presence of additional DOFs, besides those strictly 

required to execute the task, brings the flexibility to avoid the limitations stated above. 

This flexibility is due to having infinite joint configurations for the same end-effector 

pose since there are an infinite number of possible solutions for the inverse kinematics 

analysis of redundant robot manipulators. As a result, there exists joint motion which 

can be propagated in the null space of the Jacobian matrix of a robot manipulator 

without affecting the end-effector pose. A phenomenon commonly referred to as self-

motion (Nakamura 1991). This phenomenon implies that the same task at the end-

effector level can be executed in several ways at the joint level, giving the possibility of 

avoiding limitations and ultimately resulting in a more versatile mechanism.  

 Such a feature is a key to allowing operation in unstructured or dynamically 

varying environments that characterize advanced industrial applications and service 

robotics scenarios. In practice, if properly managed, the increased dexterity of 

kinematically redundant manipulators may allow the robot manipulator to avoid 

singularities, joint limits, and workspace obstacles, but also to minimize torque/energy 

over a given task, ultimately meaning that the robotic manipulator can achieve a higher 

degree of autonomy. 
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1.3. Applications of the 7-DOF Robot Manipulator 

 

 The biological archetype of kinematically redundant manipulator is the human 

arm, which, not unexpectedly, also inspires the terminology used to characterize the 

structure of serial-chain manipulators. In fact, the human arm has three DOF at the 

shoulder, one DOF at the elbow and three DOF at the wrist. The available redundancy 

can easily be verified, e.g., by laying one’s palm on a table and moving the elbow while 

keeping the shoulder motionless. The kinematic arrangement of the human arm has 

been replicated in a number of robots often termed as human-arm-like manipulators. 

This family of 7-DOF manipulators is used for many applications such as; the care-

providing robotic system FRIEND presented in Figure 1.2, which is a semi-autonomous 

robot designed to support disabled and elderly people in their daily life activities 

(Schunk 2011). Another example is the usage of Care-o-bot, a next generation of 

household robots, presented in Figure 1.3. 

 

 
 

Figure 1.2. The care-providing robotic system FRIEND  

(Source: Schunk  2011) 
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Figure 1.3. Care-o-bot® Household robot 

 (Source: Fraunhofer 2010) 

 

 

The new application of an advanced brain-machine interface is shown in Figure 

1.4. This brain-controlled DLR redundant robot arm is used for assisting disabled 

people. Another application shown in Figure 1.5 is the MODICAS assistance robot for 

total hip arthroplasty implantation using a 7-DOF Mitsubishi PA-10 robot arm. 

 

 
 

Figure 1.4. Paralyzed woman drinking from a bottle using the DLR Lightweight Robot. 

(Source: Leigh et al. 2012) 
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Figure 1.5. Mitsubishi PA-10 Robot arm 

(Source: Hans-Christian et al. 2010) 

 

 

 The use of two or more robot arms to execute a task, which is the case in the 

humanoid robot arms that use cooperating multi-fingered hands, is another important 

application for the 7-DOF arms. The dual usage of 7-DOF redundant arms can be 

observed in Figure 1.6.  

 

 
 

Figure 1.6. Justin the robot  

(Source: DLR 2012) 

 

 

Robot redundancy also has been recognized of major importance for 

manipulators in space applications. The Special-Purpose Dexterous Manipulator 

(SPDM), shown in Figure 1.7, consists of two 7-DOF arms which can be interpreted as 

enhancing the importance of kinematic redundancy in critical tasks. 
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Figure 1.7. The Special-Purpose Dexterous Manipulator (SPDM)  
(Source: Canadian Space Agency 2012) 

 

 

1.4. Objective of the Thesis 

      

 The main objective is to design the control torque input signal, such that the 

robot end-effector can follow a desired end-effector position trajectory with minimum 

error. The control signal that will be fed into the actuation system should also include 

enough information to execute subtasks defined by at least one motion optimization 

measure. The secondary aim of this study is to integrate a number of different subtasks 

including minimizing the total joint motion, singularity avoidance, posture optimization 

for the static impact force objectives, which include maximizing/minimizing the static 

impact force magnitude, and static and moving obstacle (point to point) collision 

avoidance.  

 The controllers developed in this thesis are to be employed for a simulation 

model of a 7-DOF robot arm. The performance of the controllers is to be evaluated 

through the simulation tests for a selected main-task and the subtask objective. 
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1.5. Outline 

 

 This thesis comprises of seven chapters. The chapters and their contents are 

organized as;  

 Chapter 2: Literature survey provides a survey for previous work and up-to-date 

approaches for the control of redundant robot manipulators. 

 Chapter 3: Fundamentals of robotics and control, methodology and notation 

used throughout the thesis are explained in this chapter. It is possible to begin 

the modeling and control of the redundant robot manipulator with this 

background knowledge. 

 Chapter 4: This chapter focuses on modeling the robot arm in SolidWorks® and 

MATLAB® Simulink, deriving the kinematics equations, and using the Euler-

Lagrange formulation for dynamic modeling. 

 Chapter 5: Control design for the main-task and the subtask along with the 

stability analysis, and the subtask objectives that will be used in this thesis are 

presented in this chapter. 

 Chapter 6: In this chapter an explanation of the main-task objective and the 

simulation test scenario is followed with the presentation of the results achieved 

for all the subtasks. 

 Chapter 7: This chapter presents the concluding summary of the thesis as well as 

the discussions on the results and recommendations for future work. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 

 As explained in the previous chapter, redundant robot manipulators are used in 

wide range of applications. Redundancy introduced to robot manipulators gives 

advantage upon non-redundant robots because of the self-motion property. Self-Motion 

property enables the manipulator to achieve the same task in infinite different 

configurations, and this property is the main motivation behind the thesis. The aim of 

this chapter is to present a survey on control of redundant robot manipulators.  

 

2.1. Survey on Control of Redundant Robot Manipulators 

 

 Redundant robot manipulators provide increased flexibility for the execution of 

complex tasks, where the redundancy of such manipulators can be effectively used. 

Therefore, it has been the subject of significant research in the last decades. Various 

applications of manipulators in space, underwater, and hazardous material handling 

have led to considerable activity in many research areas especially for those applications 

using redundant robot manipulator arms. 

  In an industrial environment, the redundant robots are expected to reduce the 

manufacturing costs, increase the productivity, and possibly improve the safety for 

human co-operators. Redundancy of such manipulators should be effectively used in the 

near future in medical, assistive and rehabilitation robotics applications to improve the 

safety by answering specific configuration needs during the manipulation.  

Self-Motion control of kinematically redundant manipulators has been the 

subject of intensive research in many directions. This motion is referred to self-motion 

by (Nakamura 1991) since it is not observed in the task space. The extra DOFs have 

been used to satisfy specific additional tasks. Kinematic redundancy has been promoted 

as a useful tool in robotics and investigated by many researchers. Robotics researchers 

have discussed how to specify such joint velocities while performing the main-task 

controller (end-effector trajectory tracking). In some studies, the redundancy resolution 

at velocity level (Rajiv et al. 1991) is performed to control the main-task integrating the 
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velocity of the null space into the control signal in task space control. In others, 

redundancy resolution at acceleration level is used (Wang et al. 2010). These techniques 

might be termed kinematic control.  

Some researchers worked on other techniques of kinematic control by defining 

inverse kinematic not using pseudo inverse. In (Seraji 1989), the configuration control 

approach in which the end-effector motion in task space is augmented by any n-m 

dimensional additional tasks, such as optimization of kinematic and dynamic objectives 

or posture control, was proposed. (Yangmin et al. 2001) used neural networks 

(Cerebellar Model Articulation Controller) for solving the inverse kinematics problems 

in real time. Another study was conducted for decentralized kinematic control of 

multiple redundant manipulators for the cooperative task execution problem via 

recurrent neural networks (Shuai et al. 2012). 

In (Rajiv et al. 1991), kinematic optimal control scheme was presented for 7-

DOF manipulators. This scheme used the gradient projection optimization method in 

the framework of resolved motion rate control, and it did not require calculation of the 

pseudo-inverse of the Jacobian matrix.  

Other works on dynamic control laws for redundant manipulators include 

approaches for redundancy resolution through torque optimization (Baillieul et al. 1984, 

Hollerbach et al. 1985 and Hollerbach et al. 1987).   

In the work of (Khatib 1983), a control scheme based on the dynamic model of a 

manipulator in Cartesian space was proposed and this result was extended for redundant 

manipulators by using the pseudo-inverse of the Jacobian matrix. A dynamic feedback 

linearizing control law that guarantees asymptotic tracking of a desired end-effector 

trajectory and the desirable subtask objective was proposed in (Hsu et al. 1989). This 

controller required that the exact dynamic model of the robot manipulator should be 

known. In (Peng et al. 1993), a compliant motion control for kinematically redundant 

manipulators using an extended task-space formulation was explained. 

 A robust adaptive controller that ensures globally ultimately bounded Cartesian 

tracking was proposed in (Colbaugh et al. 1995), provided that no external disturbances 

are present in the robot dynamics and some sufficient conditions on control gains were 

satisfied. In (Zergeroğlu et al. 2004), an adaptive controller to compensate for the 

parametric uncertainty in the dynamic model was developed. They designed a dynamic 

feedback linearizing control law that guarantees the tracking of the redundant joint 

velocities while providing end-effector tracking. In (Tatlıcıoğlu et al. 2009), the 
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feedback linearizing controller presented in (Hsu et al. 1989) was redesigned to 

compensate for parametric uncertainties that are present in the dynamic model. The 

proposed design used a least-squares algorithm instead of gradient-type algorithms for 

parameter estimation. 

 In (Özbay et al. 2009), a controller that ensured uniformly ultimately bounded 

end-effector and subtask tracking is formulated despite the parametric uncertainty 

associated with the dynamic model. In (Oh et al. 1999), a disturbance observer-based 

robust controller that controls both the motion of the end-effector and the null space 

motion of the redundant manipulator was proposed. The proposed controller used an 

extended task space formulation to express both task space and null space dynamics. 

  A model-based controller that achieves exponential convergence of end-effector 

and subtask tracking errors was presented by (Zergeroğlu et al. 2004). The extensions 

for adaptive and output feedback type of controllers were also presented in this work. 

As it can be observed from the previous research on control of kinematically 

redundant manipulators, the studies are mainly focused on two major approaches. One 

approach is the extended or augmented task space formulation. The dimension of the 

task space is extended by incorporating as many additional constraints as the degree of 

the redundancy in this approach. Therefore, the resulting system becomes non-

redundant (Özbay et al. 2008). Another approach is the generalized/pseudo-inverse 

based control formulations that use the pseudo-inverse of the manipulator’s Jacobian 

matrix in the control formulation. However, this approach cannot guarantee that the 

control remains bounded when the manipulator is near singularities associated with the 

Jacobian matrix. 

 Redundancy has been recognized as a major characteristic in performing tasks 

that require dexterity comparable to that of the human arm. Most methods for resolving 

redundancy in manipulation involve defining an objective function to satisfy specific 

additional tasks. The extra DOFs have been used for obstacle avoidance in (Guo et al. 

1990, Wang et al. 1992, Kemeny 1999 and Chen et al. 2002), and in (Kwang-Kyu et al. 

2007) where the transpose of the Jacobian matrix was used instead of its inverse. The 

kinematic redundancy is also used for other sub objectives such as mechanical joint-

limit avoidance (Tatlıcıoğlu et al. 2009). Another use of the kinematic redundancy was 

observed for optimization of user-defined objective functions such as minimization of 

joint velocities and accelerations (Seraji 1991). Gertz (Gertz et al. 1991), Walker 

(Walker 1994) and Lin (Lin et al. 1995) have used a generalized inertia-weighted 
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inverse of the Jacobian matrix to resolve redundancy in order to reduce impact forces. 

In (Yoshikawa 1984), the manipulability measure was used, which has a minimum or 

maximum value at a desirable configuration. When using the objective function for 

subtask control while tracking a given end-effector pose, the gradient (or its negative) of 

objective function for a specific or multi subtasks was used to control joint velocities in 

the redundant directions. 

 

2.2. Conclusion 

  

In this chapter, the research areas identified for control of redundant 

manipulators were addressed. In this context, existing schemes in the areas of main-task 

and subtask control were reviewed. Based on the results of this review, a redundancy 

resolution scheme at the acceleration level is selected to be implemented in this thesis 

study to perform dynamic control. Hence dynamic control can deal with external forces 

and torques and the applied torque signals to the actuators can be bounded as a result 

end-effector force and torques can be bounded.   

The subtask objectives selected for this work comply with the studies that are 

conducted on rehabilitation and assistive robotics in IZTECH Robotics Laboratory 

(IRL). Robot manipulators working with the human requires improved level of safety. 

Dexterity achieved as a result of kinematic redundancy is envisaged to be used for 

minimizing the total joint motion, avoiding of singularity, bounding the end-effector 

static force and collision avoidance for static and moving objects. 

 In spite of the challenging nature of solving the kinematics problem and defining 

the dynamics model for 7-DOF robot manipulator, the redundant spatial 7-DOF case is 

taken as a benchmark to gain insight toward a more general and realistic situation for 

the control study carried out in this work. 

The property of self-motion for redundant robot manipulators is utilized to 

design a general subtask controller. This controller uses the joint motion in the null-

space of the Jacobian matrix to perform assigned subtasks. Specifically, objective 

function for each subtask is formed dependently. The only drawback of the designed 

controller was the need for the exact model knowledge of the dimensions and masses, 

but the ability of modeling using CAD programs such as SolidWorks®, model 

knowledge problem is restricted. Furthermore MATLAB® Simulink and embedded 
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SimMechanics CAD translator can be utilized for the simulation tests of the controller 

in the virtual environment before testing in real world. The kinematics and dynamics 

equations are required to be derived to be used in the controller equation and the next 

chapter gives fundamental background knowledge to begin the modeling and control of 

the redundant robot manipulator.  
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CHAPTER 3 

 

BACKGROUND THEORY AND NOTATION 

 

Fundamental background theory on robot kinematics and control, and notation 

that are used throughout the thesis are explained in this chapter to facilitate the 

understanding of the content of the latter chapters. Understanding the concept of 

rotation matrices is an essential part of modeling robot manipulators. This chapter 

describes rotational transformations in exponential form to define relative rotations of 

coordinate systems with respect to each other. Then, the parameters to define a robot 

mechanism are explained through Denavit-Hartenberg (DH) convention. Formulation of 

Homogenous Transformation Matrix (HTM) is explained by making use of the DH 

parameters to represent the position and orientation, which in total is called the pose, of 

the robot manipulator’s end-effector with respect to the task coordinate system. The 

orientation of the end-effector is also expressed by an Euler’s angles sequence; Roll, 

Pitch, and Yaw angles Representation. The rest of the chapter is dedicated to the 

concepts of feedback controllers, positive and negative definiteness, Pseudo-Inverse and 

Singular Value Decomposition (SVD), and presenting the philosophy of the Lyapunov’s 

direct method for analyzing the stability of the dynamic system. 

 

3.1. Kinematics Background 

 

 The next subsections give fundamental background needed to derive the 

kinematics and dynamics equations.  

 

3.1.1. Exponential Form of Rotation Matrix 

 

 Consider a point P on the rigid body frame B, which its unit vectors are parallel 

with frame G unit vectors at the beginning. The location of point P is defined with a 

position vector  ̅ from the origin of frame G. If the rigid body has an angular velocity  ̅, 

then the velocity of P in the global coordinate frame is 
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 ̇̅     ̅     ̅     ̃ ̅             .                                    (3.1)  

 

In Equation 3.1,  ̃, represents the cross-product matrix corresponding to the unit 

column vector ̅. This is a first-order linear differential equation that may be integrated 

to give 

 

 ̅( )      ̃  ̅( )           ,                                           (3.2)  

 

Where,  ̅( ), is the initial position vector of P, and   ̃  is a matrix exponential as shown 

in Equation 3.3. 

 

  ̃   ̂   ̃  
( ̃ ) 

  
 
( ̃ ) 

  
                                      (3.3) 

 

 
 

Figure 3.1. Axis and angle of rotation 

 

 

The angular velocity  ̅, has a magnitude ω and direction indicated by a unit 

vector   ̅. Therefore, 

 

 ̅    ̅ 

 ̃    ̃ 

 ̃     ̃    ̃                                                   (3.4) 

 

and hence:                                                                  



17 

  ̃     ̃   ̂  .  
  

  
 
  

  
  /  ̃  .

  

  
 
  

  
 
  

  
 /  ̃              (3.5) 

 

or equivalently 

 

   ̃   ̂   ̃      ̃ (      )                                    (3.6)                     

 

is derived to represent a rotation in exponential form, where   is the rotation angle,  ̂ is 

identity matrix and  ̃ is the cross-product matrix corresponding to the unit column 

vector  ̅, which describes the axis of rotation.  ̃ is generated from the components of  ̅ 

as follows: 

 

 ̅  [

  
  
  
]   ̃  [

      
      
      

]    .                              (3.7) 

 

Equation 3.6 is an alternative form of the Rodriguez formula showing that    ̃ 

is the rotation transformation to map   ̅   ̅( )      ̅   ̅( ). Therefore,    ̃ is 

equivalent to the rotation matrix 
G
RB   ̂ ̅   . For proofs and more details on Rodriguez 

formula, one can read (Reza 2010). 

 

3.1.2. Denavit-Hartenberg Convention in Exponential Form 

 

 DH convention parameters are shown in Figure 3.2. The symbols that appear in 

the figure are explained below: 
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Figure 3.2. Sketch with Link Parameters of D-H Convention 

(Source: Balkan et al. 2001) 

 

 

   : Origin of the reference frame    attached to link k. 

 ⃗  
( )

 : Unit basis vectors of    ; i=1,2,3. 

   : Effective length      of link k along  ⃗  
( )

. 

  : Variable offset        of link k with respect to link k-1 along  ⃗  
(   )

 if joint k is 

prismatic. 

  : Constant offset        of link k with respect to link k-1 along  ⃗  
(   )

 if joint k is 

revolute. 

  : Rotation angle of link k with respect to link k-1 about  ⃗  
(   )

 if joint k is revolute.  

δk: Rotation angle of link k with respect to link k-1 about  ⃗  
(   )

 if joint k is prismatic. 

  : twist angle of joint k+1 with respect to joint k about  ⃗  
( )

. 

    
(    ): Reference frame fixed to link k-1  

  
(  ): Reference frame fixed to link k 
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To express position vector of point Ok with respect to point Ok-1 on reference 

frame     
(    )  

 

                 

                ̅     
(   )

 *       +  
   

(    ) 
 

                                     ̅     
(   )

    ̅ 
(      ⁄ )

    ̅ 
(    ⁄ )

 

 ̅     
(   )

    ̅     ̂
(        ) ̅                           (3.8) 

 

A general exponential rotation matrix is expressed as in Rodriguez formula 

 

  ̃   ̂       ̃       ̅ ̅ (      ).                             (3.9) 

 

The position equation can be simplified as shown in Equation 3.10 and 3.11.  

  

 ̂(        ) ̅   
 ̃     ̃    ̅   

 ̃    ̅          ̅          ̅          (3.10) 

 

 ̅     
(   )

         ̅          ̅     ̅ .                          (3.11) 

 

According to the DH convention, the rotation matrix between two successive 

link frames can be expressed using exponential rotation matrices as; 

 

 ̂(        )    ̃     ̃    [

                          
                          
           

]      .     (3.12) 

 

If the homogeneous transformation matrix is represented as follows for a single 

link transformation; 

 

 ̂(        )   ̂      
(        )

 [ ̂
(        )  ̅     

(   )

    
]                          (3.13) 

 

then the open form of the HTM can be derived as; 
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      ̂(        )  [

                          
                          
           

       
       
  

                                                                

]  .      (3.14) 

 

This matrix expresses the pose of link k with respect to link k-1. This process 

can be extended for multi-link mechanism as a sequence of HTM multiplications which 

is represented in Equation 3.15 for a k-link manipulator. 

 

 ̂(   )   ̂(   ) ̂(   )  ̂(     )                                  (3.15) 

 

3.1.3. Roll, Pitch, and Yaw Angles Representation 

 

 A rotation matrix R can also be described as a product of successive rotations 

about the principal coordinate axes  ⃗    ⃗        ⃗   taken in a specific order. These 

rotations define the roll, pitch, and yaw angles, which are denoted by  , θ, ψ as shown 

in Figure 3.3. The order of rotation are specified as  ⃗    ⃗    ⃗  , in other words, first a 

rotation about  ⃗   by an angle  , which is called yaw angle, then a rotation about the  ⃗   

by an angle θ, which is called pitch angle, and finally rotation about the  ⃗   by an angle 

ψ, which is called roll angle. Since the successive rotations are relative to the fixed 

frame, successive rotation sequence is taken in the reverse order (Spong et al. 2005). 

 

 
 

Figure 3.3. Roll, Pitch, and Yaw Angles. 
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Resulting transformation matrix is given by 

 

    ̃    ̃    ̃                                                                  

 [

      

     

   

] [
     
   
      

] [

   
      
     

] 

 [

                           
                           
           

]      .               (3.16) 

 

 Instead of yaw-pitch-roll sequence relative to the fixed frames, the above 

transformation can be interpreted as roll-pitch-yaw sequence.  

 The three angles,          , can be obtained for a calculated rotation matrix as 

a result of successive rotation of each link of the mechanism. The method to calculate 

for these three angles is similar to deriving the Euler angles (Spong et al. 2005). 

 

3.2. Linear System Theory and Control Background 

 

 The next subsections express the concepts of feedback controllers, positive and 

negative definiteness, Pseudo-Inverse and Singular Value Decomposition (SVD), and 

the philosophy of the Lyapunov’s direct method for analyzing the stability of the 

dynamic system is presented. 

 

3.2.1. Feedback Controllers 

 

 A control system can be configured as an open-loop or closed-loop control 

system. With an open-loop controller, the output of the controller is computed without 

observing the output of the controlled system. This type of a control strategy requires 

exact knowledge of the behavior of the system and assumes that there will not be any 

external disturbances. However, by configuring feedback controllers or closed-loop 

control systems, it might be possible to reject the external disturbances dynamically. A 

feedback controller observes the system output and calculates the error between this 

output and a reference value. Then, the controller output is computed based on this error 
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such that the output approaches the reference value. To achieve a desired behavior of 

the output, one conventional method is configuring controllers as a combination of the 

following control actions: 

 P - Proportional term: The input is proportional to the error between the 

reference value and the current output. Kp is the proportional gain. 

 I - Integral term: Integrates the error over time and multiplies with the integral 

gain Ki. The term eliminates steady state error. 

 D - Derivative term: Determines the slope of the error over time and multiplies 

with the derivative gain Kv. The term has a damping effect. 

The controller that is configured as a combination of these control elements needs to 

be tuned in order to guarantee stability or required tracking performance. 

Lyapunov’s direct method is explained in this chapter for this purpose. 

 

3.2.2. Positive and Negative Definiteness  

 

 In order to carry out stability analysis using Lyapunov’s direct method, the 

positive and negative definiteness concepts are explained in the subsection. A function 

 ( ) satisfying the conditions  ( )    and  ( )    for     is said to be positive 

definite. If it satisfies  ( )    and the weaker second condition  ( )     for x ≠ 0 it 

is said to be positive semidefinite. The function  ( ) is said to be negative definite if 

  ( ) is positive definite, and negative semidefinite if   ( ) is positive semidefinite. 

Function of the quadratic form is represented as; 

 

 ( )                                                        (3.17) 

 

where P is a real symmetric matrix, and sign definiteness can easily be checked by 

inspecting P. If all eigenvalues of P are positive (nonnegative), which is true if and only 

if all the leading principal minors of P are positive (nonnegative), then  ( ) is a 

positive definite (positive semidefinite) function. If  ( ) is a positive definite (positive 

semidefinite) function, the matrix P is also said to be positive definite (positive 

semidefinite). Finally, P is considered to be negative definite if    is positive definite, 

and negative semidefinite if    is positive semidefinite (Siciliano et al. 2009). 
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  It is common practice to write P > 0 if P is positive definite, and      if P is 

positive semidefinite. 

 

3.2.3. Lyapunov Direct Method  

 

 The philosophy of the Lyapunov’s direct method is the same as that of most 

methods used in control engineering to study stability, namely, testing for stability 

without solving the differential equations describing the dynamic system. 

 “This method can be presented in short on the basis of the following reasoning. 

If it is possible to associate an energy-based description with a (linear or nonlinear) 

autonomous dynamic system and, for each system state with the exception of the 

equilibrium state, the time rate of such energy is negative” (Siciliano et al. 2009). 

 Then energy decreases along any system trajectory until it attains its minimum 

at the equilibrium state; this argument justifies an intuitive concept of stability. 

For  ̇   ( ) by setting  ( )     , the equilibrium state is e = 0. A scalar 

function V (e) of the system state, continuous together with its first derivative, is defined 

as a Lyapunov function if the following properties hold: 

V (e) > 0 ∀e ≠ 0;  

V (e) = 0   e = 0;  

 ̇( )     ∀e ≠ 0;  

V (e) → ∞, ||e|| → ∞. 

 The existence of such a function ensures global asymptotic stability of the 

equilibrium e = 0. In practice, the equilibrium e = 0 is globally asymptotically stable if a 

positive definite, radially unbounded function V (e) is found so that its time derivative 

along the system trajectories is negative definite. If positive definiteness of V (e) is 

realized by the adoption of a quadratic form, i.e., 

 

  ( )                                                           (3.18) 

 

with Q a symmetric positive definite matrix, then in view of  ̇   ( ) it follows 

 

 ̇( )         ( ).                                              (3.19) 
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If f(e) is so as to render the function  ̇( ) negative definite, the function V (e) is 

a Lyapunov function, since the choice in Equation 3.18 allows system global asymptotic 

stability to be proved.  

If  ̇( ) in Equation 3.19 is not negative definite for the given V (e), nothing can 

be inferred on the stability of the system, since the Lyapunov method gives only a 

sufficient condition. In such cases, one should resort to different choices of V (e) in 

order to find, if possible, a negative definite  ̇( ). In the case when the property of 

negative definiteness does not hold, but  ̇( ) is only negative semi-definite  ̇( )    , 

global asymptotic stability of the equilibrium state is ensured if the only system 

trajectory, for which  ̇( )  is identically null ( ̇( )    ),  is the equilibrium trajectory 

e ≡ 0. This is a consequence of La Salle theorem (Siciliano et al. 2009).  

 

3.2.4. Pseudo-Inverse  

 

 The inverse of a matrix can be defined only when the matrix is square and 

nonsingular. The inverse operation can be extended to the case of non-square matrices. 

Consider a matrix A of dimensions m × n. If m < n, a right inverse of A can be defined 

as the matrix Ar of dimensions n × m so that 

 

        .                                                   (3.20) 

 

If instead m > n, a left inverse of A can be defined as the matrix Al of dimensions n × m 

so that 

 

                              .                                                    (3.21) 

 

it can be noted that Im and In are both identity matrices with dimensions  m × m and n × 

n respectively.  

If A has more columns than rows, m < n, and has rank m, a special right inverse 

is the matrix 

 

  
    (   )                                                 (3.22) 
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which is termed right pseudo-inverse, since    
    . If Wr is an n × n positive 

definite matrix, a weighted right pseudo-inverse is given by 

 

  
    

    (   
    )            .                              (3.23) 

 

If A has more rows than columns m > n and has rank n, a special left inverse is the 

matrix 

 

  
  (   )                                                     (3.24) 

 

which is termed left pseudo-inverse, since   
     . If Wl is an m × m positive definite 

matrix, a weighted left pseudo-inverse is given by 

 

  
  (     )

         .                                         (3.25) 

 

The pseudo-inverse is very useful to invert a linear transformation y = Ax when 

A is a full-rank matrix. If A is a square nonsingular matrix, then obviously x = A
−1

y and 

then   
    

     . If A has more columns than rows, m < n, and has rank m, then the 

solution x for a given y is not unique. This fact can be shown by the expression 

presented in Equation 3.26. 

 

        (     )  .                                         (3.26) 

 

In Equation 3.26, k is an arbitrary, n×1 vector and A
+
 is the inverse matrix 

defined in Equation 3.22. Therefore Equation 3.25 can be a solution to the system of 

linear equation established by: 

 

         .                                                   (3.27) 

 

The term       ( )   (  ) minimizes the norm of the solution ||x||. The 

term (I –A
+
A)k is the projection of k in  ( ) and is termed homogeneous solution. As k 

varies, all the solutions to the homogeneous equation system, Ax = 0, associated with 

Equation 3.27 are generated. 
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       On the other hand, if A has more rows than columns, m > n, then no solution exist 

for Equation 3.27. An approximate solution is given by 

 

                                                             (3.28) 

 

where A
+
 as in Equation 3.22 minimizes ||y −Ax||. If instead y   R(A), then Equation. 

3.28 is a real solution. 

       Notice that the use of the weighted (left or right) pseudo-inverses in the solution for 

the linear equation systems leads to analogous results where the minimized norms are 

weighted according to the metrics defined by matrices Wr and Wl, respectively 

(Siciliano et al. 2009). 

 

3.2.5. Singular Value Decomposition (SVD)  

 

 It is not possible to define eigenvalues for a non-square matrix. An extension of 

the eigenvalue concept can be obtained by singular values of a non-square matrix. 

Given a matrix A of dimensions, m × n, the matrix A
T
A has n nonnegative eigenvalues 

λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 (ordered from the largest to the smallest) which can be expressed 

in the form 

 

λi = σi
2
 ,            σi ≥ 0.                                             (3.29) 

 

The scalars σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 are said to be the singular values of matrix A. 

The SVD of matrix A is given by 

 

A = UΣV 
T
                                                      (3.30) 

 

where U is an m × m orthogonal matrix 

 

U = [u1 u2 . . . um ],                                                (3.31) 

 

V is an n × n orthogonal matrix 
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V = [v1 v2 . . . vn ]                                                (3.32) 

 

and Σ is an m × n matrix 

 

  0
  
  

1                    D = diag{σ1, σ2, . . . , σr}                        (3.33) 

 

where σ1 ≥ σ2 ≥ . . . ≥ σr > 0. The number of non-null singular values is equal to the rank 

r of matrix A. 

           The columns of U are the eigenvectors of the matrix AA
T
, whereas the columns 

of V are the eigenvectors of the matrix A
T
A. In view of the partitions of U and V in 

Equations 3.31 and 3.32, it is Avi = σiui, for i = 1, . . . , r and Avi = 0, for i = r + 1, . . . , 

n. 

         SVD is useful for the analysis of the linear transformation as will be seen in 

Chapter 5. According to a geometric interpretation, the matrix A transforms the unit 

sphere in    defined by ||x|| = 1 into the set of vectors y = Ax which define an ellipsoid 

of dimension r in   . The singular values are the lengths of the various axes of the 

ellipsoid. The condition number of the matrix 

 

   
  

  
                                                        (3.34) 

 

is related to the eccentricity of the ellipsoid and provides a measure of ill-conditioning 

(κ >> 1) for numerical solution of the system established by Equation 3.27, (Siciliano et 

al. 2009). 

 It is worth noticing that the numerical procedure of SVD is commonly adopted 

to compute the (right or left) pseudo inverse A
+
, even in the case of a matrix A not 

having full rank. In fact, from Equations 3.30-3.32 it is 

 

                                                                                    
 (3.35) 

 

with 

 

   0 
  
  

1                     2
 

  
 
 

  
   

 

  
3    .                   (3.36) 
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CHAPTER 4 

 

MODELING OF THE ROBOT MANIPULATOR 

 

SCHUNK 7-DOF LWA4-Arm shown in Figure 4.1 is chosen to be modeled for 

simulation purposes for this thesis study. This robot manipulator arm has a modular 

configuration which makes it flexible for use in different robot applications such as 

industrial and service robotics. This robot arm is a lightweight manipulator that has 

seven DOF where the joint rotation axes are arranged to intersect at a shoulder point, an 

elbow, and a wrist point. 

 

 
 

 

Figure 4.1. SCHUNK 7-DOF LWA4-Arm 
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4.1. Computer-Aided Modeling of the Robot Arm 

 

 Computer-aided modeling is done using the virtual prototyping of robot 

controllers’ method (Dede 2010) in two stages. First, robot arm is modeled and 

reassembled in SolidWorks computer-aided-design (CAD) software with respect to the 

CAD data provided in (Schunk modular robotics 2011) as shown in Figure 4.2. 

COSMOSMotion module of SolidWorks is then used to develop the mechanism by 

configuring the joint structures in CAD environment. Then, the CAD model is exported 

in 3D XML format by using the plug-in, SimMechanics Link, to MATLAB® Simulink. 

MATLAB Simulink, which is a block diagram modeling environment for the 

engineering design and simulation of rigid multibody machines and their motions, using 

the standard Newtonian dynamics of forces and torques, is used for simulation studies. 

  

 
 

Figure 4.2. Robot manipulator arm CAD model 

 

 

 The robot manipulator arm is modeled with a suite of tools to specify various 

issues like; bodies and their mass properties, their possible motions, kinematic 

constraints, and coordinate systems. Furthermore to initiate and measure body motions 
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with respect to the physical criteria. Like other Simulink models, the system is 

represented by a set of connected block diagram as illustrated in Figure 4.3. As a result 

of the transfer of the model from CAD environment to SimMechanics software, the 

model could be used for simulation studies that are conducted to test the controller. 

 

 
 

Figure 4.3. Block diagram of LWA4 
 

 

 The second stage includes the modeling of the control system and development 

of the necessary kinematics and dynamics equations for the robot using MATLAB® 

Simulink blocks. The subsystems created for the necessary calculations are shown in 

Figure 4.4. The subsystems represent the calculation of the Jacobian matrix for the end-

effector and its inverse. The calculations of inertia matrix and gravity vector needed for 

the equation of motion are also built in Simulink which are denoted with “Inertia 

Matrix” and “Gravity Matrix” subsystem titles in Figure 4.4. The necessary feedback 

signals are built in sensor reading block which is denoted with “sensor reading”. The 

main-task controller, subtask controller and end-effector trajectory are also created as 

will be shown throughout this work. The visualization tool of MATLAB Simulink is 

also used to display and animate 3D machine geometries, before and during simulation. 
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Figure 4.4. Block diagram of LWA4 and control system 

 

 

4.2. Deriving the Robot Arm Equations 

 

 In this subsection, kinematic and dynamic analyses are conducted to derive the 

robot arm equations. The first part contains the derivation of the robot arm kinematics 

and the next part is reserved for the dynamics equations of the robot arm.  

 

4.2.1. Robot Arm Kinematics 

 

 The problem of kinematics is to describe the motion of the manipulator without 

consideration of the forces and torques causing the motion. The kinematic description is 

therefore a geometric one. A large part of robot kinematics is concerned with the 

establishment of various coordinate systems to represent the positions and orientations 

of rigid objects, and with transformations among these coordinate systems. Indeed, the 

geometry of three-dimensional space and of rigid motions plays a central role in all 

aspects of robotic manipulation. The proposed robot manipulator arm is composed of a 

set of links connected to each other by revolute joints. In this section, Forward 

Kinematic Analysis is carried out according to DH convention. Then, velocity equations 
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are derived for wrist point, tip point of the manipulator (end-effector) and mass center 

point for each link. 

 

 4.2.1.1. Forward Kinematics Analysis 

 

 The objective of forward kinematic analysis is to determine the cumulative 

effect of the entire set of joint variables, that is, to determine the position and orientation 

of the end-effector given the values of these joint variables. To perform the kinematic 

analysis, we attach a coordinate frame rigidly to each link. In particular, we attach 

    ⃗  
( )
 ⃗  
( )
 ⃗  
( )

, to link i. This means that whatever motion the robot executes, the 

coordinates of each point on link i, are constant when expressed in the i
th

 coordinate 

frame  i. Furthermore, when revolute joint Ri is actuated, link i and its attached frame, 

    ⃗  
( )
 ⃗  
( )
 ⃗  
( )

, experience a resulting motion. The frame     ⃗  
( )
 ⃗  
( )
 ⃗  
( )

, which is 

attached to the robot base, is referred to as the base frame as shown in Figure 4.5. The 

gravitational effect vector is   ̅    ,          -  (    ) 
. 

 It is possible to carry out forward kinematics analysis without using the DH 

convention. However, the kinematic analysis of an n-link manipulator can be extremely 

complex, and the DH convention introduced in Sub-section 3.2.2 simplifies the analysis 

considerably. 

 The DH convention is a commonly used convention, for selecting reference 

frames in robotic applications that eases the communication between robot engineers. 

After assigning the coordinate frames, HTM,  ̂, for each link will be configured. DH 

parameters will be used to formulate the HTM for each link. DH parameters, for the 

proposed redundant arm manipulator demonstrated in Figure 4.5, are represented in 

Table 4.1. 
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Figure 4.5. LWA4 Robot arm joint schematic 
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Table 4.1. Denavit-Hartenberg convention 

 

i θi  di (m) ai (m) αi (rad) 

1 θ1 0.3 0 π/2 

2 θ2 0 0 - π/2 

3 θ3 0.328 0 π/2 

4 θ4 0 0 - π/2 

5 θ5 0.317248 0 π/2 

6 θ6 0 0 - π/2 

7 θ7 0 0 0 

 

 

 In the DH convention the only variable is θi, therefore the notation simplified by 

writing ci for cos θi and si for sin θi. The distance from the end-effector to the wrist 

point is selected to be Pe = 0.0757 m. 

According to DH convention, the components of HTM for each link will be 

calculated as follows: 

 

 ̂(   )    ̃     ̃ 
 

  ,      ̅  
( )
    ̅ 

( )
, 

 

 ̂(   )    ̃      ̃ 
 

  ,      ̅  
( )
  ̅, 

 

 ̂(   )    ̃     ̃ 
 

  ,      ̅  
( )
    ̅ 

( )
,  

 

 ̂(   )    ̃      ̃ 
 

  ,      ̅  
( )
  ̅, 

 

 ̂(   )    ̃     ̃ 
 

  ,      ̅  
( )
    ̅ 

( )
, 

 

 ̂(   )    ̃      ̃ 
 

  ,      ̅  
( )
  ̅, 

 

 ̂(   )    ̃   ,      ̅  
( )
  ̅, 

 

 

 (4.1) 
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where the column representations of the unit basis vectors are 

 

 ̅  [
 
 
 
]          ̅  [

 
 
 
]          ̅  [

 
 
 
]. 

 

The base-to-hand rotation matrix,  ̂(   ), is obtained as a successive 

multiplication of seven matrices after the necessary simplification are conducted; 

 

 ̂(   )   ̂(   ) ̂(   )  ̂(   )    ̃      ̃     ̃      ̃     ̃      ̃     ̃   .      (4.2) 

 

HTM representation for each link can be expressed as; 

                                     

                                             ̂(   )  [  ̂
(   )  ̅  

( )

    
],  

 ̂(   )  [  ̂
(   )  ̅  

( )

    
], 

 ̂(   )  [  ̂
(   )  ̅  

( )

    
],  

 ̂(   )  [  ̂
(   )  ̅  

( )

    
], 

 ̂(   )  [  ̂
(   )  ̅  

( )

    
], 

 ̂(   )  [  ̂
(   )  ̅  

( )

    
], 

 ̂(   )  [  ̂
(   )  ̅  

( )

    
]. 

 

HTM between the base frame and the last link frame can be represented as a 

successive multiplication of seven HTMs;  ̂(   )   ̂(   ) ̂(   )  ̂(   ), and  ̂(   ) can 

be represented as; 

 

 ̂(   )  [
 ̂(   )

  
  
  

    

]    .                                       (4.4) 

 

(4.3) 
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Wrist-point position is shown in the open form in Equation 4.5. 

 

 ̅  [

  
  
  

]     ̅ 
( )
    ̂

(   ) ̅ 
( )
    ̂

(   ) ̅ 
( )
                                

        ̅   
 ̃   ,(                     ) ̅  (       ) ̅         

                                        (                    ) ̅ -                              (4.5) 

 

If the tip point of the end-effector is selected to be in the direction of the 

approach vector,   ̅ 
( )
  ̅ , then the tip-point position can be calculated as, 

 

 ̅  [

  
  
  
]   ̅     ̂

(   ) ̅ 
( )

              ,                              (4.6) 

 

or  

 

 ̅   ̂(   ) [

 
 
  
 

]                      .                                  (4.7) 

 

4.2.1.2.   Derivation of the Jacobian Matrix 

 

 The LWA4 manipulator with 7-DOF is considered with joint variables 

q           . Let   ̂(   ) denote the transformation from the base frame to the end-

effector frame, where     ,          -  is the vector of joint variables. As the robot is 

in motion, the joint variables, qi, the end-effector position,  ̅( ), and orientation of the 

end-effector,  ̂(   ), will be functions of time. The objective of this section is to relate 

the linear and angular velocity of the end-effector to the vector of joint velocities  ̇( ). 

Let 

 

     ̇                                                           (4.8) 
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and  

 

     ̇   ,                                                        (4.9) 

 

where      denotes the linear velocity of the end-effector and      defines the 

angular velocity vector of the end-effector where the portions of the Jacobian matrix for 

the linear and angular velocity are denoted respectively as Jv and Jω      . The 

Equations 4.8 and 4.9 combined as: 

 

 ̇    ̇  ,                                                        (4.10) 

 

in which both  ̇ and J are given by 

 

 ̇  0
 
 
1            ,           [

  
  
]    .                                  (4.11) 

 

 The above formulas make the determination of the Jacobian matrix of any 

manipulator simple since all of the quantities needed are available once the forward 

kinematics analysis is carried out. The end-effector position is calculated from Equation 

4.7. However, the position will be the first three rows of the vector as  ̅( )    . Jp will 

be denoted as the Jacobian matrix of the end-effector and it will be calculated in linear 

and angular portions as: 

 

  ̂   0
  ̅( )

   

  ̅( )

   
 

  ̅( )

   
1                                      (4.12) 

 

and 

 

  ̅      ,
  ̂

   
 ̂ -,                                              (4.13) 

 

 

 ̂   [  ̅    ̅     ̅  ].                                     (4.14) 

 



38 

The portions of the Jacobian matrix calculated for the end-effector can then be 

combined as shown in Equation 4.15.  

 

 ̂   [
 ̂  

 ̂  
].                                                     (4.15) 

 

 The above procedure works not only for computing the velocity of the end-

effector but also for computing the velocity of any point on the manipulator by 

calculating for    , the Jacobian matrix at mass center point at link i. This information 

will be required in Sub-section 4.3.2.1 when the velocities of the mass centers of 

various links are to be calculated in order to derive the dynamic equations of motion. 

This information will also be used for obstacle avoidance subtask. 

 

4.2.2. Derivation of the Dynamic Equation of Motion 

 

 The dynamic equations explicitly describe the relationship between force and 

motion whereas the kinematic equations describe the motion of the robot without 

consideration of the forces and torques producing the motion. The equation of motion is 

important to consider in the design of robots, in simulation and animation of robot 

motion, and in the design of control algorithms. 

 Euler-Lagrange equation to derive the equation of motion is often used for 

numerical calculation. The general form of Euler-Lagrange equations of motion is 

represented in Equation 4.16. The forces/torques required for the actuation of the system 

is denoted with    in this equation 

 

 

  

  

   ̇
 

  

   
                   .                             (4.16) 

 

 The order, n, of the system is determined by the number of so-called 

generalized coordinates (Spong et al. 2005) that are required to describe the evolution 

of the system. In robotics, the order of the system is determined by the DOF of the robot 

arm. 

 

      –                                                   (4.17) 
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 The function L, which is the difference of the kinetic and potential energy, is 

called the Lagrangian term for the system. The Euler-Lagrange equations provide a 

formulation of the dynamic equations of motion equivalent to those derived using 

Newton’s Second Law. 

 

 4.2.2.1. Kinetic Energy for an n-Link Robot 

 

The kinetic energy of the rigid body is given as; 

 

  
 

 
     

 

 
      ,                                    (4.18) 

 

where m is a mass and I is inertia matrix. 

 The linear and angular velocities of any point on any link can be expressed in 

terms of the Jacobian matrix and the derivative of the joint variables as explained in 

Sub-section 4.3.1.2.  

 In the analyses of robot arms, the joint variables are indeed the generalized 

coordinates. Therefore, for Jacobian sub-matrices calculated for each link,     and    , 

being functions of joint variables and time,  the linear and angular velocity equations are 

formulated as 

 

                                                   ( ) ̇      ,           ( ) ̇                .            (4.19) 

 

 It is supposed that the mass of link i is mi and the inertia matrix of link i 

evaluated around the coordinate frame parallel to frame i with the origin at the center of 

mass is Ii. Making use of Equation 4.19, the overall kinetic energy of the manipulator 

can be calculated as 

    

  
 

 
 ̇ ∑ ,     ( )

    ( )     ( )
   ( )    ( )

    ( )-
 
    ̇ .          (4.20) 

 

In other words, the kinetic energy of the manipulator is formulated in the form 

                                  

  
 

 
∑    ( )  ̇  ̇
 
    

 

 
 ̇  ( ) ̇                             (4.21) 
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In Equation 4.21, M(q) is a symmetric positive definite matrix that is in general 

configuration dependent. The matrix M is called the inertia matrix.                       

 

4.2.2.2. Potential Energy for an n-Link Robot 

 

 In the case of rigid dynamics, the only source of potential energy is gravity. The 

potential energy of the i
th

 link can be computed by assuming that the mass of the entire 

object is concentrated at its center of mass and is given by 

 

    ̅
   ̅           .                                            (4.22) 

 

In Equation 4.22,  ̅ vector contains the direction and magnitude information of 

gravity in the base frame and the vector  ̅  
( )

 provides the coordinates of the center of 

mass of link i with respect to base frame. The total potential energy of the n-link robot 

is therefore  

 

           ∑   
 
    ∑  ̅   ̅  

( )
  

 
   .                                  (4.23) 

  

 In the case that the robot contains elasticity, for example, flexible joints, then the 

potential energy will include terms containing the energy stored in the elastic elements. 

It should be noted that the potential energy is a function only of the generalized 

coordinates and not their derivatives, i.e. the potential energy depends on the 

configuration of the robot but not on its velocity. 

 

4.2.2.3. Euler-Lagrange Equation 

 

 The Euler-Lagrange equations for such a system can be derived as follows. 

Since      

                  

      
 

 
∑    ( ) ̇  ̇   ( )   ,                              (4.24) 

 

 we have that : 
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  ̇ 
 ∑     ̇  ,                                               (4.25)  

 

and 

 

 
 

  
 
  

  ̇ 
 ∑    ̈ 

 

 ∑
 

  
    ̇ 

 

 

               ∑     ̈   ∑
    

   
 ̇     ̇ ,                              (4.26) 

  

also 

 

  

   
 
 

 
∑

    

   
 ̇     ̇  

  

   
 .                                     (4.27) 

  

Thus, the Euler-Lagrange equations can be written  

 

∑     ̈   ∑ 2
    

   
 
 

 

    

   
3  ̇     ̇  

  

   
   .                   (4.28) 

  

By interchanging the order of summation and taking advantage of symmetry, we 

can show that  

 

∑ 2
    

   
3  ̇     ̇  

 

 
∑ {

    

   
 
    

   
}  ̇     ̇ ,                    (4.29) 

  

hence: 

 

∑ 2
    

   
 
 

 

    

   
3  ̇     ̇  ∑

 

 
{
    

   
 
    

   
 
    

   
}  ̇     ̇           (4.30) 

 

Christoffel symbols of the First Kind: 

 

     
 

 
∑ {

    

   
 
    

   
 
    

   
}   .                                 (4.31)  
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 The terms      in Equation 4.31 are known as Christoffel symbols (of the first 

kind) see in (Spong et al. 2005). Note that, for a fixed k, we have           , which 

reduces the effort involved in computing these symbols by a factor of about one half. 

Finally, for the gravitational term 

 

   
  

   
      .                                              (4.32) 

 

  Then we can write the Euler-Lagrange equations as: 

 

∑    ( ) ̈   ∑         ( ) ̇  ̇    ( )               .            (4.33) 

 

 In the above equation, there are three types of terms. The first involve the second 

derivative of the generalized coordinates. The second are quadratic terms in the first 

derivatives of q, where the coefficients may depend on  ̇. These are further classified 

into two types as terms involving a product of the type  ̇ 
  which are called centrifugal 

and terms involving a product of the type  ̇  ̇  where      which are called Coriolis 

terms. The third type of terms is involving only q but not its derivatives. Clearly the 

latter arise from differentiating the potential energy. It is common to write Equation 

4.33 in matrix form, from Euler-Lagrange equations: 

 

                                        ( ) ̈   (   ̇) ̇   ( )             ,                       (4.34) 

 

where the elements of  (   ̇) matrix is defined as: 

 

    ∑     
 
   ( ) ̇  ∑

 

 
{
    

   
 
    

   
 
    

   
}  ̇ 

 
        .          (4.35) 
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CHAPTER 5 

 

REDUNDANT ROBOT MANIPULATOR CONTROL 

 

 In this chapter, the inverse kinematic of redundant robot manipulator is 

calculated using pseudo-inverse. Redundancy resolution at acceleration level is 

presented. Computed-torque control output signal needed to perform the main-task and 

subtask objective is designed. Designing process and derivation of control signals are 

revealed. Furthermore the techniques of selecting the objective functions for the 

subtasks considered in this thesis are illustrated. the subtasks considered for this study 

are; Minimizing the total joint motion, singularity avoidance, posture optimization for 

the static impact force objectives, which include maximizing/minimizing the static 

impact force magnitude, and static and moving obstacle (point to point) collision 

avoidance. 

 

5.1. Kinematics Model of Redundant Robot Manipulator 

 

 Redundant manipulators have a larger number of DOF, n, than the dimension of 

the workspace m. The end-effector position and orientation in the task space, denoted by 

x( )     , is defined as a function of joint position vector as: 

 

   ( )  [
 ( )

 ( )
] ,                                              (5.1) 

 

 Where  ( )         is the forward kinematics calculation,  ( )     

denote the link position vector of an n-link manipulator,  ( )     and  ( )   (   ) 

are the vectors representing the end-effector position, and orientation respectively and 

    is the size of the task space for positioning. 

 Based on Equation 5.1, relationships between the end-effector velocity and 

acceleration and the joint variables’ velocities and accelerations are obtained as follows: 

 

 ̇   ( ) ̇                                                         (5.2) 
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 ̈   (̇ ) ̇   ( ) ̈     ,                                             (5.3) 

 

where  ( )    ( )   ⁄      , is the Jacobian matrix of the manipulator and d 

 ̇( )  ̈( )     denote the link velocities and acceleration vectors, respectively. Since J 

is not a square matrix for redundant manipulators, where m < n, the psuedo-inverse, J
+
 

defined in Equation 5.7, can be used to obtain the inverse relations as can be depicted in 

Equations 5.4 and 5.5. 

 

  ̇     ̇   ̇                                                      (5.4) 

 

  ̈    ( ̈    ̇̇)   ̈                                                (5.5) 

 

In the above equations, both  ̇  and  ̈  are vectors of joints’ velocity and 

acceleration in the null space of J respectively. The psuedo-inverse   , is defined as the 

unique matrix such that (Golub 1983, Yoshikawa 1984) 

 

                                                                 ,           , 

     (   )              , (   )      .                                    (5.6) 

 

        When J has full rank (the manipulator is not in a singular configuration), the 

pseudo-inverse can be calculated as; 

 

                                                     (   )          ,                                             (5.7) 

 

so that J
+
 satisfies JJ

+
= Im, where Im is m x m identity matrix. 

 

5.2. Dynamic Model of Redundant Robot Manipulator 

 

 The dynamic model for an n-link, all revolute-joint robot manipulator is 

developed in the following form (Spong et al. 1989). 

 

                           ( ) ̈   (   ̇) ̇   ( )   ( ̇)                                  (5.8) 
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 Equation 5.8 is the extended version of Equation 4.35 with the addition of 

external effects where  ( )       represents the inertia matrix,  (   ̇)       

represents the Centripetal-Coriolis matrix,  ( )     is the  gravity  vector,  ( ̇)     

represents the friction effects vector,     
  is a vector containing the unknown but 

bounded, additive disturbance effects and  ( )     is the torque input vector. 

 

5.3. The Control Problem 

 

  Various techniques can be employed for controlling a robot manipulator. The 

technique may have a major influence on the manipulator performance and the possible 

range of applications, depending on the way it is followed and implemented. For 

instance, the need for trajectory tracking control in the task space may lead to 

software/hardware implementations with respect those allowing point-to-point controls, 

where only the final position is of concern. 

 Independent of the type of mechanical manipulator, it is worth stating that task 

specification (end-effector motion and forces) is usually performed in the task space, 

whereas control actions (joint actuator generalized forces) are carried out in the joint 

space. This fact leads to considering two kinds of general control schemes (Siciliano et 

al. 2009), namely, a joint space control scheme Figure 5.1 and task space control 

scheme Figure 5.2. In both schemes, the control structure has closed-loops to exploit the 

needed features provided by feedback to control the robot arm and execute the required 

tasks. In general terms, the following considerations are stated in the next paragraph 

should be made. 

 

 
 

Figure. 5.1. General scheme of joint space control 

    (Source: Siciliano et al. 2009) 
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 The joint space control problem first makes use of the manipulator inverse 

kinematics solution to transform the motion requirements, xd, from the task space into 

the corresponding motion, qd, in the joint space. Then, a joint space control scheme is 

designed that allows the actual motion, q, to track the reference inputs. However, this 

solution has two drawbacks. First, in redundant robot manipulators for the desired 

motion in the task space, xd, there are an infinity number of the corresponding motion 

possibilities in the joint space, qd. However, by using pseudo-inverse we can find 

minimum joint velocities  ̇ , when the null space motion is zero, but qd is also needed 

to apply PD control which is hard to find, especially when the motion in the null space 

is included. Second, the joint space control scheme does not influence the task space 

variables x, which are controlled in an open-loop fashion through the manipulator 

mechanical structure.  

 

 
 

Figure. 5.2. General scheme of task space control 

(Source: Siciliano et al. 2009)  

 

 

It is then clear that any uncertainty of the structure (construction tolerance, lack 

of calibration, gear backlash, elasticity) or any imprecision in the knowledge of the end-

effector pose relative to a desired trajectory, causes a loss of precision on the task space.  

 The task space control problem follows a global approach that requires a greater 

algorithmic complexity when taking into account that inverse kinematics is now 

embedded into the feedback control loop. Its advantage is the possibility of acting 

directly on task space variables. However, this is somewhat only a potential advantage, 

since measurement of task space variables is often performed not directly, but through 

the evaluation of direct kinematics functions starting from measured joint space 

variables. Evaluating the facts listed above, task space control technique is selected to 

be implemented in this thesis study. 
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5.4. Dynamic Control Objective 

  

 The dynamic control objective is to design the control torque input signal τ (t) to 

be fed into the actuators of the robot to make the end-effector follow a desired end-

effector position trajectory as closely as possible. The control signal should also include 

enough information to execute subtasks defined by at least one motion optimization 

measure. In this thesis study one motion optimization measure is used in the simulation 

tests. From now on, the task-space tracking will be referred as main-task objective and 

enabling the use of manipulators redundancy in optimization as secondary or subtask 

objective. 

 

5.4.1. Main-task Control Objective 

 

 Dynamic control of redundant manipulators in task space requires the 

computation of joint accelerations. Hence, redundancy resolution should be performed 

at the acceleration level. By using the second-order differential kinematics given in 

Equation 5.5 and applying PD control a version of computed-torque control is 

developed to determine the control output τ (t) as shown in Equation 5.9. 

 

    { 
 ( ̈     ̇        ̇̇)   ̈ }                                 (5.9) 

 

 In Equation 5.9, xd  is the desired position defined in task space,  e = xd - x is the 

tracking error, Kv and Kp are constant feedback gain matrices, Mc is the calculated 

inertia matrix, Nc is the calculated nonlinear terms that appear in the dynamics equation 

of the robot and  ̈  is designed joint acceleration vector in the null space of J. If the 

manipulator does not go through a singularity, then the control law in Equation 5.9 

guarantees that the tracking error converges to zero exponentially. 

Proof: The closed loop system is given by 

 

          ̈      { 
 ( ̈     ̇        ̇̇)   ̈ }      .               (5.10) 
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In this equation, the manipulator dynamics is assumed to be known with high 

precision so that  ̂   ̂   ̂ and  ̅   ̅   ̅. Making use of this assumption, Equation 

5.10 is simplified to 

 

                                   ̈    ( ̈     ̇        ̇̇)   ̈                        .            (5.11) 

 

 Since M is uniformly positive definite, Equation 5.5 can be combined with 

Equation 5.11 to formulate Equation 5.12 considering that JJ
+
 = I when J has full rank. 

 

                                                         ̈     ̇      ,                                                 (5.12) 

 

 The proper choice of Kv and Kp (e.g. Kv = kvI and Kp = kpI  with  s
2
 +kvs + kp  a 

Hunwitz polynomial) in Equation 5.12  implies that e goes to zero exponentially. Figure 

5.3 shows main-task controller modeled in Simulink environment with respect to 

Equation 5.9. 

 

 
 

Figure 5.3. Main-task controller modeled in Simulink 
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5.4.2. Subtask Control Objective 

 

 We consider that a vector function  ( )     is calculated as a gradient of the 

objective function f(q) for a specific subtask (which may be a function of time, the 

current state, etc.), and the null space joint velocities will be needed to track the 

projection of g onto the null space of J. Since (In - J
+
J) projects vectors onto the null 

space of J, this can be formulated in an error signal calculation, 

 

 ̇  (   
  )   ̇                                             (5.13) 

 

which converges to zero. 

 Assuming the manipulator does not go through a singularity condition, it is 

needed to design  ̈  to get the desired result for subtask objective. Let missing part of 

the control that was given in Equation 5.9,  ̈ , be determined as; 

 

           ̈  (   
  ) ̇  (    ̇    ̇)      ̇   .                          (5.14) 

 

In Equation 5.14, KN is a positive definite feedback matrix. Then, the joint 

velocities in the null space converge to (     ) , i.e.,  ̇ , and the tracking error e (as 

defined in Section 5.1) converges to zero as given in the proof. 

Proof: First note that   ̈  given by Equation 5.11 belongs to the null space of J (when J 

has full rank) since 

 

                                        (     )                                                   (5.15) 

 

 (    ̇    ̇)    ̇     ̇  
 

  
(   )  

 

  
                      (5.16) 

 

  ̇ : is in the null space of J as well, and therefore, 

 

                                           ̇                                                         (5.17) 

 

 Equations 5.15 - 5.17 prove that the designed equation, Equation 5.14, in null 

space will not affect the main-task objective.  
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 Now, let the second derivative of the error, calculated by taking the derivative of 

Equation 5.13 with respect to time, be considered as; 

 

 ̈  (   
  ) ̇  (  ̇     )̇   ̈  .                                   (5.18) 

 

Adding and subtracting     ̇   , to Equation 5.18, and substituting  ̈  from 

Equation 5.14, Equation 5.19 is derived. 

 

 ̈    
   ̇      ̇       ̇   .                                 (5.19) 

 

By defining the following non-negative scalar Lyapunov function, the designed 

Equation 5.14 can be proven to be stable as follow: 

 

  
 

 
 ̇ 
                                                       (5.20) 

 

Then 

 

                                                 ̇   ̇ 
  ̈ , 

                                                     ̇ 
 (     ̇      ̇       ̇ )            

                                                     ̇ 
    ̇   .                                                          (5.21) 

 

 In Equation 5.21, the following equality in Equation 5.22 is used that are formed 

by using Equation 5.13 and  ̇  from Equation 5.4; 

 

                                                ̇ 
  (   ̇) (     )  .                                    (5.22) 

 

 The equalities represented below are the mathematical proofs that were used to 

calculate for Equation 5.21. 

 

                                          (     )  (     ),                                          (5.23) 

 

                                           (     )(     )  (     ),                                   (5.24) 
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                                            (     )                                                    (5.25) 

 

Since v is positive definite and v  is negative definite, ‖ ̇ ‖, goes to zero, exponentially 

fast. 

Figure 5.4 shows subtask control scheme modeled in Simulink environment. 

 

 
 

Figure 5.4. Subtask controller modeled in Simulink 

 

 

5.5. Subtasks 

 

 The projection of the gradient function g onto the null space of J can be 

considered as the desired null space joint velocities that are needed to accomplish a 

given subtask. To control self-motion of the joint velocities, the gradient g (or its 

negative) of the objective function f(q) can be used as, 

 

     
  

  
 0

  

   
 

  

   
 

  

   
1.                               (5.26) 

 

 Several researchers have worked on selecting the null space joint velocities for 

the purpose of avoiding singularity, joint limit avoidance, obstacle avoidance, 

minimizing potential energy, impact force configuration and achieving other subtasks. 

In the next subsections, the subtasks that are used in this thesis are presented. 
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5.5.1. Joints Motion Minimization 

 

 By using the stated principles above, the first subtask objective is based on 

minimizing joint motions for a 7-DOF redundant manipulator where the norm (or 

length) of joint velocities vector, ‖ ̇‖, will minimized, in addition to the Main-task 

objective, which is tracking control.  

 To achieve this subtask, f(q) is chosen to be zero then, and as long as the 

manipulator is not in a singularity configuration, the null space velocity, (I -J
+
J)g will 

go to zero. However, this choice of control makes no provision for avoiding 

singularities (Baillieul 1984). If the manipulator approaches a singularity configuration, 

the control law defined by Equation 5.9 and 5.14 is no longer defined since J
+
 is 

discontinuous. 

 

5.5.2. Singularity Avoidance 

 

 The objective function is selected according to the manipulability measure 

presented in (Yoshikawa 1984), which is a scalar value wm defined as 

 

   √   (   )                                            (5.27) 

 

where    is the i
th

 singular value of Jacobian matrix J. Depending on SVD explained in 

Sub-section 3.3.4, the manipulability ellipsoid is defined to be 

 

        (   )              .                              (5.28) 

 

 This definition forms an ellipsoid in m dimension (note that J has full rank 

equals to m), with principal axes in the directions of the columns of u, and their 

magnitudes are the values of the corresponding singular values in wm. The volume of 

the ellipsoid is equal to 
 

 
 √   (   ), so it is proportional to wm. Since J maps joint 

velocities to end-effector velocities, the interpretation of the ellipsoid Figure 5.5 is as 

follows: large (small) magnitudes for the ellipsoid axes are corresponding to directions 

in end-effector space in which large (small) end-effector velocities can be generated.  
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Figure 5.5. 3D Manipulability ellipsoid  

(Source: Walker 1990) 

 

 

 The objective function is therefore chosen as, 

 

                                       ( )    (  )
      (   )                                   (5.29) 

 

where k is the self-motion control parameter gain, det(.) denotes the determinant of 

matrix, J(q) is the manipulator Jacobian matrix. This objective function is based on 

purely robot kinematics. When the manipulator approaches its singularities, f(q) 

decreases to zero. In order to maximize the manipulability of the manipulator, choosing 

the gradient as      would keep the manipulator away from singularities. 

 

5.5.3. Posture Optimization for the Static Impact Force Magnitude 

Measure Subtask Objectives 

 

 For robotic manipulators that are used in interaction tasks, the control engineer 

often requires the ability to specify the impact force that the end-effector can exert to 

the environment. For hammering or chiseling applications, the impact force may be 

required to be maximized, while in a medical application, a reduced collision force may 

be necessary. For these reasons, an appealing subtask is to position the arm in a posture 

which requires minimum or maximum torque for a desired force in a certain direction 

(Patel et al. 2005).  

 The manipulating force measure is a scalar, wf, based on the static force/torque 

vector,  , relationship given by (Walker 1990); 
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     ,                                                     (5.30) 

 

and 

 

                                             ⁄   (     ⁄      )          .                     (5.31) 

 

 A manipulating force ellipsoid is defined similar to the manipulability ellipsoid 

in Section 5.2. In this case, large (small) principal axis directions are associated with 

directions in which large (small) static forces can be generated. The ellipsoid is 

perpendicular to the manipulability ellipsoid in the sense that their magnitudes in each 

principal axis direction are inversely proportional. Force ellipsoid can be defined by;                                                      

  (   )  where, F is the environment reaction force, which could also be selected as 

the forces exerted by the manipulator to the environment. The optimal direction for 

exerting the maximum force is along the major axis of the force ellipsoid which 

coincides with the eigenvector of the matrix JJ
T
 corresponding to its largest eigenvalue 

λmax as shown in Figure 5.6(a). The force transfer ratio along a certain direction is equal 

to the distance from the center to the surface of the force ellipsoid along this vector as it 

can be observed in Figure 5.6(b). In Figure 5.6(b),  ̅ is the unit vector along the desired 

direction and   is the force transmission ratio along  ̅. Since   ̅ is a point on the 

surface of the ellipsoid, it should satisfy the following equation: 

 

(  ̅) (   )(  ̅)                                          (5.32)      

 

 Re-arranging Equation 5.32, an impact force magnitude measure can be written 

as   , ̅ (   )( ̅)-
  

 ⁄ . Hence, Chiu (Chiu 1988) proposed to maximize the 

following kinematic function presented in Equation 5.33 (task compatibility index) for 

maximum force configuration. 

 

 ( )     
 

 ̅ (   ) ̅
                       (5.33) 

 

 In this thesis, utilizing Equation 5.33, impact force subtask objectives is defined 

to bound the impact force with the environment at the highest or lowest level 

(Tatlıcıoğlu et al. 2009). 
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(a)                            (b) 

 

Figure 5.6. Force Ellipsoid (a) Ellipsoid axes, (b) Force Transfer Ratio in direction  ̅ 

 

 

5.5.3.1. Maximizing the Static Impact Force Magnitude  

 

 The objective for this subtask is to keep the robot manipulator in a posture that 

maximizes the ability to withstand external static impact force with the environment at a 

given end-effector position and in specific direction at the point of contact. f(q) is 

defined as the denominator of Equation 5.33, and can be written as follows: 

 

     ( )     ̅ (   ) ̅,                                       (5.34) 

 

small values of f(q) indicate postures with high impact forces at the end-effector; 

therefore, after setting,       , and specifying force unit vector at the point of 

contact for the end-effector, by minimizing f(q), subtask objective can be reached.  

 

5.5.3.2. Minimizing the Static Impact Force Magnitude 

 

 The objective for this subtask is to keep the robot manipulator in a posture that 

minimizes the ability to withstand external static impact force with the environment, for 

a given end-effector position and in specific direction at the point of contact. The goal 

of this subtask is to force the manipulator into postures that result in larger values of 

f(q) which is defined in Equation 5.34. After setting,      , and specifying force unit 

vector at the point of contact for the end-effector, the  subtask objective will be reached.  
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5.5.4. Static and Moving Obstacle (point to point) Collision Avoidance 

 

 The purpose of this subtask is to select an objective function that keeps the 

closest point on the links away from the selected obstacles. Varies studies have been 

reported on the obstacle avoidance issues for redundant manipulators. One of the 

common approaches is to optimize an objective function for obstacle avoidance using 

self-motion while completing the main-task. Typical forms for such an objective 

function employ the minimum distance between manipulator and obstacles: 

 

      *‖     ‖+                                          (5.35) 

 

 Where     
 and     

  denote a point on the manipulator and the obstacle, 

respectively, and ||.|| is the Euclidean norm. Once the minimum distance is determined, 

there are several different ways to establish the objective function by using d for the 

purpose of collision avoidance. The simplest objective function is directly obtained by 

setting f(q) = d to be maximized with positive k (Guo et al. 1990), ( Wang  et al. 1992). 

Assuming multiple obstacles in the workspace, the objective function f(q) can be 

modified as a sum of minimum distances (Kemeny 1999): 

 

 ( )  ∑ ∑    ( )
 
   

 
                                         (5.36) 

 

Where dij is the minimum distance between i
th

 link and j
th

 obstacle, l and o are 

the total number of links and obstacle respectively. While in (Chen et al. 2002) squared 

minimum distance is used as an objective function as follows. 

 

 ( )  ∑ ∑    
 ( ) 

   
 
                                              (5.37) 

 

 The other type of common objective function for collision avoidance has been 

formulated using reciprocal of the minimum distance: 

 

 ( )  ∑ ∑    
  ( ) 

   
 
                                             (5.38) 

 

this should be minimized with negative k. 
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 For all above objective functions, there are several shortcomings of using 

minimum distance as in the review of (Kwang-Kyu et al. 2007). Let us consider the 

gradient of several distances between point obstacles and a robot link, see Figure 5.7. 

The points P1, P2, and P3 represent point obstacles which lie on the same line 

perpendicular to the link at C, d1, d2, and d3 is the distance from the link to P1, P2, and 

P3, respectively. For infinitesimal rotation δq1 of the joint variable q1, δd1 and δd2 can 

be rewritten as 

 

   

   
 
   

   
 ‖  ‖                                           (5.39) 

 

From Equation 5.39, it should be noted that all the obstacles along the same line 

perpendicular to the i
th

 link have the same norm of distance gradient with respect to qi 

regardless of the distance. Furthermore, the norm of the gradient is equal to the 

projection of the obstacles to the link, in this case ‖  ‖. Therefore, the following 

relationship holds in this case: 

 

   

   
 
   

   
  

   

   
                                            (5.40) 

 

When taking multiple obstacles P1 and P2 illustrated in Figure 5.8.a. into 

account and assuming that both d1 and d2 are the smallest distances from obstacles, the 

objective function in Equation 5.36 with gradient projection method (GPM) cannot 

provide a decision for obstacle avoidance priority. 

 

 
 

Figure 5.7. Manipulator with point obstacles: P1, P2, and P3 lie on the same line 

(Source: Kwang-Kyu et al. 2007) 
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Figure 5.8. Manipulator with point obstacles: P1, P2, and P3 

(Source: Kwang-Kyu et al. 2007) 

 

 

Because both gradients are of the same norm and opposite direction, the obstacle 

P1 is more critical for collision. Even wrong decision for collision avoidance can also be 

made, for instance, the links shown in Figure. 5.8.b. In this configuration, clearly P1 is 

potentially more dangerous for the collision to the manipulator. However, the objective 

function Equation 5.36 with GPM will drive the first link counter clock wise to increase 

d2 since the gradient of d2 is greater than that of d1. This problem is getting even worse 

when the objective function Equation 5.37 is applied to Figure. 5.8.a, since its gradient 

is now weighted by each distance such that the obstacle P2 has dominant gradient (d2

d2) over P2 (d1 d1). 

 The Jacobian matrix transpose enhanced inverse kinematics proposed in 

(Wolovich et al. 1984) only differs from the resolved motion rate control in that the 

transpose of the Jacobian matrix is used instead of its inverse. This method extended to 

redundant manipulators (Sciavicco 1988) with extended task space scheme and its 

stability was discussed in (Das et al. 1988).  

 Although the convergence properties of the Jacobian matrix transpose method is 

poor, its low computational burden is still very attractive for such applications in which 

exact trajectory tracking for the critical point with respect to obstacles is not in question. 

Hence, a computationally simple obstacle avoidance scheme can be achieved by means 

of the Jacobian matrix transpose method, in which the escape velocity gain vcij can be 

defined as a function of the minimum distance dij along the direction away from the 

critical point XCij. 

 

        
     ̅                                              (5.41) 
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 Where vm is the maximum escape velocity gain, and  ̅   is the unit vector from 

the critical point XCij on the i
th

 link to the j
th

 obstacle. A cleaver way to select the gain 

for each obstacle avoidance objective will give a decision to the robot to select the best 

self-motion to reach the objective. A set of calculations will be needed to calculate for 

 ̅  . This set of calculation will be started by defining the unit vector direction of the 

link i as follows: 

 

   
(       )

  
                                                (5.42) 

 

where,    represents the unit vector in frame i and along link i.    and       are the 

positions of both ends for link i of length li . Then to find the position of point     , 

Equation 5.43and 5.44 are used. 

 

      
 (      )                                           (5.43) 

 

                                                          (5.44) 

 

Then the minimum distance between i
th

 link and j
th

 obstacle is calculated as 

shown in Equation 5.45. Finally, the unit vector direction is calculated by Equation 

5.46. 

    ‖        ‖                                               (5.45) 

 

    
.        /

   
                                                    (5.46) 

 

Furthermore, in case of multiple obstacles, the escape velocity vci can be 

obtained as: 

 

    ∑     
 
                            .                       (5.47) 

 

 When dij is sufficiently large, then no collision danger exists, which results in vcij 

to be small. On the contrary, when dij is getting small (equal to zero), then additional 
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safety action should be taken while holding vcij with its maximum value (vcij = vm). Once 

the obstacle escape velocity is determined, it can be transformed to the joint space using 

Jacobian matrix transpose method (Sciavicco et al. 1988, Das et al. 1988): 

 

 ̇  ∑    
 ( )   

 
                             .                 (5.48) 

 

 In Equation 5.48,  ̇  , is a vector of joint velocities. This vector will be used as a 

gradient g of objective function to avoid obstacles.  

To determine the minimum distance dij, links are modeled by straight lines and 

the objects are assumed to be circles for planar case and spheres for spatial case. Each 

object is enclosed in a fictitious protection shield (represented by a circle or sphere) 

called the Surface of Influence (SOI). This method can provide increased safety for 

avoiding collusions. 

 The first step involves distance calculation to find the location of the point XCij 

(called the critical point) on each link that is nearest to the obstacle by the procedure 

indicated in Equation 5.42 to Equation 5.46. This algorithm is executed for each link 

and each obstacle. 

 

 
 

Figure 5.9. Critical Distance scheme from obstacle one 
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CHAPTER 6 

 

SIMULATION AND RESULTS 

 

In this chapter simulation test setup is revealed. The criteria for selecting the 

main-task objective, end-effector trajectory in the task space, are discussed. The 

Simulink model defined in Chapter 4 and the designed control presented in Chapter 5 

are implemented in MATLAB® Simulink to conduct tests for evaluating the controller 

developed in this study. In this chapter, first, the simulation test scenario is explained 

and it is followed by the presentation of the results achieved for all the subtask 

simulation tests. 

 

6.1. Simulation Test Setup 

 

 To illustrate the performance of the proposed general subtask controller 

presented in this work, a set of simulation results are presented in this section. In these 

simulations, the aim is to utilize the virtual model of 7-DOF LWA4-Arm produced by 

SCHUNK GmbH. The manipulator’s CAD model is presented in Figure 6.1. The 

manipulator model is then transferred to the simulation environment as explained in 

Chapter 4. 

  

 
 

Figure 6.1. The CAD Model of 7-DOF LWA4-Arm by SCHUNK GmbH 
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The simulations tests are carried out in MATLAB® Simulink simulation 

environment Version 7.11.0.584 (R2010b), 64-bit (win64) with a third-order ordinary 

differential equation solver (Bogacki-Shamine) and fixed-step sample time of 0.1 kHz. 

The manipulator is initially at rest in the following joint positions q= [0 -25 0 -

35 0 0 0]
T
, in degrees.  

In the main-task controller presented in Equation 5.9, the nonlinear terms that 

include centripetal and Coriolis,  (   ̇) ̇, frictional,  ( ̇) and disturbance,   , are 

neglected since the robot moves in slow motion. However, the effect of gravitational 

forces is calculated to form the N nonlinear effect cancellation term in Equation 5.9. 

 

6.2. Task Space Trajectory  

  

 The selected main-task objective is to track positions in x-y-z space where the 

end-effector orientation is not specified. In this case, the redundant manipulator had 

more DOF than is required to perform a task in its task space. Hence, these extra DOFs 

allowed the robot manipulator to perform more dexterous manipulation and/or provided 

the robot manipulator system with increased flexibility for the execution of 

sophisticated tasks as illustrated in Figure 6.2 by making use of increase self-motion 

capability. Since the dimension n of the link position variables is seven and the number 

of the task-space variables m is three, the null space of Jacobian matrix has a minimum 

dimension of, n – m, four, which is the extra DOF. As shown in Figure 6.2.b. the self-

motion can be represented as a spherical movement of the elbow around shoulder point 

center and spherical movement for the wrist around the end-effector point accompanied 

with relative movement of the joints in between.  

 

 

Figure 6.2. Self-Motion of Spatial 7-DOF. (a) With one extra DOF, (b) With four extra 

      DOF  
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 Figure 6.3 shows the desired task-space trajectories for all simulations. The 

trajectory is selected to be in 3D space following linear and curved motions in the 

directions as shown in Figure 6.3.a. Initial position of the end-effector can be depicted 

in Figure 6.3.b. At each corner of the path, the end-effector motion velocity goes to zero 

as it can be noticed in Figure 6.3.c. 

 

 
 

(a) 

 

 

 

 

(b) 

 

 

Figure 6.3. Desired task-space trajectories: (a) 3D task space trajectory, (b) Desired 

      position trajectory, (c) Desired velocity 

 

 

 

(cont. on next page) 
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(c) 

 

Figure 6.3. (cont.) 

 

6.3. Simulation Results 

 

Simulations are conducted to test and illustrate the performance of the proposed 

controller. The main-task and subtask controller parameters are tuned to the following 

values after some iterative experimental tests to provide better performance: 

 

               

       *                            +. 

 

6.3.1. Free Self-Motion Simulation Result 

 

The first simulation presented here is carried out to provide a comparison for the 

evaluation of the next two subtask simulations. In this simulation, the subtask input  ̈  

is set to zero, where no restriction on the self-motion of the robot is set and only the 

end-effector tracking objective is enforced. Figure 6.4 shows tracking error for the end-

effector position. It can be observed that the end-effector position tracking error is 

bounded within 0.5 mm per axis for simulation test.  
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Figure 6.4. End-effector position error for Free Self-Motion 

 

 

Figure 6.5 shows the joint velocities trajectories for the free self-motion test. It 

can be noticed that the joint velocities can reach up to 1.2 rad/sec and this high amount 

of velocities will be shown to be unnecessary motion for some joints in the next sub-

section.  

 

 
 

Figure 6.5. Joint velocities for Free Self-Motion 

 

 

Figure 6.6 shows the controller’s output torque signals as a result of the main-

task and free self-motion, which appear to be up to 15 Nm resulting from the 

uncontrolled motion in the null space. In this figure and in the Torque vs. Time plots 

from this point on, torque applied to the i
th

 joint is indicated with Ti symbol in the 

legends. 
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Figure 6.6. Controller output torque signals for Free Self-Motion 

 

 

6.3.2. Joint Motion Minimization Simulation Result 

 

In this subtask simulation f(q), is set to zero to minimize total joint motion and 

to realize the subtask objective presented in Sub-section 5.5.1. Subtask’s objective 

function control gain magnitude k is tuned to 50 for better result. Figure 6.7 shows 

tracking error for the end-effector position. It can be observed that error magnitude is 

less than the Free Self-Motion test result. Figure 6.8 shows the link velocity trajectories 

with Joint Motion Minimization Subtask. It shows that the main-task is executed with 

less joint motion than observed in the Free Self-Motion test results.  

 

 
 

Figure 6.7. End-effector position error for Joint Motion Minimization subtask 
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Figure 6.8. Joint velocities for Joint Motion Minimization subtask 

 

 

The required torque signals for executing both main-task and subtask are 

presented in Figure 6.9. It can be observed that the applied torque magnitudes are less 

than the ones in the Free Self-Motion test. Figure 6.10 clearly indicates the performance 

of this subtask by showing joint velocities vector’s norm (or length) and comparing it 

with the previous simulation. Figure 6.11 verifies the validity of subtask controller by 

showing that the subtask error signal is bounded. 

 

 
 

Figure 6.9. Controller output torque signals for Joint Motion Minimization subtask 
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Figure 6.10. Joint velocities vector norm 

 

 

 
 

Figure 6.11. Subtask error norm magnitude for Joint Motion Minimization subtask 

 

 

6.3.3. Singularity Avoidance Simulation Result 

 

In this simulation test, f(q) is selected to maximize the manipulability and to 

realize the subtask objective presented in Sub-section 5.5.2. Subtask’s objective 

function control gain magnitude k is tuned to be 50 for better result. Figure 6.12 shows 

tracking error for the end-effector position. As the error is bounded within 0.2 mm, it 

can be stated that the main-task objective is reached. Figure 6.13 shows joint velocities 

for singularity avoidance subtask. It can be observed that the main-task is executed with 

less joint motion than the Free Self-Motion results as it was the case for the Joint 

Motion Minimization subtask simulations. The torque signals required to execute both 
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main-task and subtask together is presented in Figure 6.14, which are also smaller in 

magnitude than for the Free Self-Motion simulation. 

 

 
 

Figure 6.12. End-effector position error for Singularity Avoidance subtask 

 

 

 
 

Figure 6.13. Joint velocities for Singularity Avoidance subtask 
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Figure 6.14. Controller output torque signals for Singularity Avoidance subtask 

 

 

The effect of singularity avoidance subtask objective on the system can be 

observed in Figure 6.15. The difference in manipulability measures between the results 

of Free Self-Motion simulation and Singularity Avoidance   subtask can be noticed in 

this figure. As the manipulability approaches zero after the 12
th

 second for the Free Self-

Motion simulation, which indicates that the manipulator approaches a singularity 

condition, the manipulability measure is maximized in the test results of the Singularity 

Avoidance subtask. Figure 6.16 verifies the validity of subtask controller by showing 

subtask error signal is bounded. 

 

 
 

Figure 6.15. Manipulability measure for Free Self-Motion and Singularity Avoidance 

                     subtask 
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Figure 6.16. Subtask error signal norm for Singularity Avoidance subtask 

 

 

6.3.4. Posture Optimization for the Static Impact Force Magnitude 

     Measure Subtask Objectives Simulation Results 

 

In this simulation test, the posture optimization for the static impact force 

subtask presented in Sub-section 5.5.3 is used. Two sets of simulations are performed 

for maximization and minimization of static impact force magnitudes. 

 

6.3.4.1. Maximizing the Static Impact Force Magnitude 

 

In this simulation, posture optimization presented in Sub-section 5.5.3.1 for the 

static impact force magnitude maximizing subtask objective is executed. 

Subtask’s objective function controller parameter is tuned to be       for 

providing better results. Force unit vector direction is selected to be in x direction, 

 ̅  ,     - .  

Figure 6.17 shows tracking error for the end-effector position. The error for the 

main-task is bounded within 1.5 mm and this indicates that the main-task objective is 

satisfied.  
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Figure 6.17. End-effector position error for Static Impact Force Maximization subtask 

 

 

Acquired joint velocities from the joint sensors throughout this simulation are 

presented in Figure 6.18. At the 2
nd

 second of the simulation test, the second joint axis is 

rotated to be parallel to x-axis as a result of the motion of the first and third joint and 

this can be observed by the large amount of joint velocities for the first and the third 

joint in Figure 6.18. By this configuration of the robot arm, the manipulability in x 

direction is minimized and subtask objective is reached.  

 

 
 

Figure 6.18. Joint velocities for Static Impact Force Maximization subtask 

 

 

Figure 6.19 shows the controller output torque signals calculated by the  subtask 

and main-task controller. It can be noticed that both joint velocities and control input 

torque signals are bounded. The maximum torque signal is within 13 Nm, which is 

smaller than the Free Self-Motion simulation result, however, it is larger than the Joint 

Motion Minimization subtask as expected. 
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Figure 6.19. Controller output torque signals for Static Impact Force Maximization  

        subtask 

 

 

It can be observed from Figure 6.20 that the objective function magnitude was 

minimized throughout the simulation. The sudden decrease of the manipulability at the 

2
nd

 second indicates the change in the configuration that was previously mentioned for 

joint velocities, which is needed for the purpose of maximizing the static impact force.  

 

 
 

Figure 6.20. Objective function magnitude for Static Impact Force Maximization  

          subtask 

 

 

The configuration of the robot during the simulation is illustrated in Figure 6.21 

where the link positions are shown at each second of simulation test. Figure 6.22 

verifies the validity of subtask controller by showing subtask error signal is bounded. 

The relatively large error observed at 2
nd

 second is due to the higher velocities achieved 

in the first and third joints, which are needed to change the configuration. 
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Figure 6.21. Robot arm motion during simulation for Static Impact Force Maximization  

        subtask 

 

 

 
 

Figure 6.22. Subtask error signal norm for Static Impact Force Maximization subtask 

 

 

6.3.4.2. Minimizing the Static Impact Force Magnitude 

 

In this simulation, posture optimization presented in Sub-section 5.5.3.2 for the 

static impact force magnitude minimizing subtask objective is executed. 

Subtask’s objective function controller parameter is tuned to be        for 

achieving better results. The forces the manipulator can exert are selected to be 

minimized in the x-axis direction,  ̅  ,     - .  
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Figure 6.23 shows tracking error for the end-effector position. The small 

increase in error shown here between the 2
nd

 and 4
th

 seconds is due to the change in 

configuration. This change in configuration is needed to achieve this subtask objective.  

 

 
  

Figure 6.23. End-effector position error for Static Impact Force Minimization subtask 

 

 

The joint velocities signals vector measured and recorded throughout this 

simulation is presented in Figure 6.24. The increase in the velocity of joints 2, 4 and 6 is 

due to the change in configuration. Furthermore, this configuration was near singularity 

because the wrist point is near its workspace limits, which is also called extended 

singularity.   

 

 
 

Figure 6.24. Joint velocities for Static Impact Force Minimization subtask 

 

 

Figure 6.25 shows the controller output torque signals calculated as a result of 

the main-task and subtask controller. The torque signal of joint 2 is higher than the 
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others since it carries the robot arm weight and the mass center of the links are arranged 

to be in the furthest possible configuration from joint 2 to realize this subtask objective. 

 

 
 

Figure 6.25. Controller output torque signals for Static Impact Force Minimization 

                     subtask 

 

 

It can be observed from Figure 6.26 that the objective function magnitude was 

maximized throughout the simulation, which is needed for the purpose of minimizing 

the static impact force. The effect of the change in configuration between the 2
nd

 and 4
th

 

seconds can be observed in this figure. The increase in magnitude as expected can also 

be observed with respect to the objective function of the previous simulation shown in 

Figure 6.20.  

 

 
 

Figure 6.26. Objective function magnitude for Static Impact Force Minimization 

                    subtask 

 

 

The configuration of the robot during the simulation is illustrated in Figure 6.27 

and link positions are shown for each second of simulation. Figure 6.28 verifies the 
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validity of subtask controller by showing subtask error signal is bounded. However, 

some increase in the error value can be observed since the arm approaches the extended 

singularity between the 2
nd

 and 4
th

 seconds of the simulation. 

 

 
 

Figure 6.27. Robot arm motion during simulation for Static Impact Force Minimization  

                     subtask 

 

 

 
 

Figure 6.28. Subtask error signal for Static Impact Force Minimization subtask 
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6.3.5. Static and Moving Obstacle (point to point) Collision Avoidance  

         Simulation Results 

 

 In this simulation test, static and moving obstacle (point to point) collision 

avoidance as presented in Sub-section 5.5.4 is utilized. Two simulations are executed 

separately; first for one static obstacle avoidance and second for two static obstacles 

avoidance subtask objectives. 

Subtask’s objective function controller parameter is tuned to be        for the 

case of one obstacle located at    ,           -
  and       for the case of two 

obstacles located at     ,              -
  and     ,                -

  

respectively (It should be noted that the obstacles in both simulation results are 

considered to be static). Figure 6.29 shows the obstacles along with the robot arm.  

 

 
 

Figure 6.29. Obstacle avoidance; (a) For One obstacle, (b) For Two obstacles. 

 

 

Figure 6.30 shows the tracking error for the end-effector position for each 

simulation; for one obstacle and for two obstacles avoidance. Magnitude of the errors 

are bounded which indicate that main-task objective is achieved for each simulation 

test. 
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(a) 

 

 

 
 

(b) 
 

Figure. 6.30. End-effector position error; (a) One Obstacle Avoidance subtask, (b) Two 

                     Obstacles Avoidance subtask 

 

Figure 6.31 shows joint velocities measured in one obstacle and two obstacles 

avoidance subtasks simulation tests. The joint velocities are observed to be relatively 

larger than all of the previous simulations. The escape velocity is minimized but does 

not go to zero as the manipulator is away from the obstacles, thus the joint velocities 

receive higher magnitudes in this subtask.  
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(a) 

 

 

 
 

(b) 

 

Figure 6.31. Joint velocities; (a) One Obstacle Avoidance subtask, (b) Two Obstacles  

         Avoidance subtask 

 

 

The torque signals required to execute both main-task and avoiding obstacles are 

presented in Figure 6.32. It can be noticed that joint velocities and input torque signals 

are bounded for both simulation tests. 
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(a) 

 

 

 
 

(b) 

 

Figure 6.32. Controller output torque signals; (a) One Obstacle Avoidance subtask, 

        (b) Two Obstacles Avoidance subtask 

 

 

Figure 6.33 shows the validity of avoiding obstacles subtasks by showing that 

the subtask error signals are bounded. It can be noticed that this error is small relative to 

the previous simulation results.  
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(a) 

 

 

 
 

(b) 

 

Figure 6.33. Subtask signal error norm magnitude; (a) One Obstacle Avoidance subtask,  

        (b) Two Obstacles Avoidance subtask 

 

 

Obstacle avoidance sequences througout both of the two simulation test 

executions can be depicted in Figure 6.34. In both simulation tests, no collision happens 

between the robot body and the obstacles.  
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(a) 

 

Figure 6.34. Obstacle avoidance sequences; (a) One Obstacle Avoidance subtask, 

        (b) Two Obstacles Avoidance subtask. 

 

 

 

 

 

 

(cont. on next page) 
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(b) 

 

Figure 6.34. (cont.) 
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CHAPTER 7 

 

CONCLUSIONS  

 

7.1. Conclusions  

 

 New general subtask controller is designed by utilizing self-motion property of 

redundant robot manipulator in this study. The controller does not place any restriction 

on the self-motion of the manipulator; thus, the extra degrees of freedom are available 

for subtasks like maintaining manipulability, avoidance of mechanical limits and 

obstacle avoidance, etc. 

The 7-DOF LWA4-Arm by SCHUNK GmbH is modeled for simulation test 

studies to validate the designed controller. Four subtasks, defined as minimization of the 

total joint motion and singularity avoidance, static impact force minimization / 

maximization, single- and multi-obstacle avoidance, are implemented separately to test 

the designed controller.  

 In all simulations, the main task is designated to be the tracking of the end-

effector position trajectory. The end-effector position trajectory is followed with 

bounded errors in all simulation tests. Therefore, it is valid to state that the main 

objective of the proposed controller for end-effector position trajectory tracking is 

achieved regardless of the subtask. However, a slight difference in the error magnitude 

can be observed in some of the simulation test. The reason for that is when joint 

velocities are increased relatively for the same main-task but different subtasks, the 

disregarded Coriolis and centripetal forces in the controller have an increased effect on 

the error signal. 

 First subtask objective studied in this thesis is the minimization of joint motion. 

Results indicated that the total motion of the joints is minimized with respect to the 

uncontrolled self-motion case study. Motion in the null space is forced to be zero as a 

result of the designed subtask objective function. The second subtask was the 

singularity avoidance where the manipulability of the end-effector is maximized. 

However, the extended singularity cannot be avoided because the end-effector reaches 

the boundaries of its workspace. It can be observed from the results that determinant of 
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JJ
T
 is maximized. Minimizing or maximizing the static impact force of the manipulator 

was studied as the third subtask. The first set of simulation tests were conducted for the 

maximizing the static impact force and the second set were conducted for the 

minimization. The manipulability of the end-effector for maximizing the static impact 

forces is designated to be minimized along the desired direction (which can be the 

normal of the surface to be contacted). On the other hand, the manipulability of the end-

effector for minimizing the static impact forces is designated to be maximized along the 

desired direction. In both cases, the effectiveness of the subtask controller can be 

observed from the manipulability along the desired direction (along the x-axis) plots 

which the objective function. Robot arm motion sketches for each second of the 

simulation are also presented to observe the configuration of the robot arm. The last 

subtask was selected to be obstacle avoidance. In the simulations static obstacle 

avoidance is studied, however, the idea can be extended for moving obstacle case by 

making the obstacle position as a function of time. The results indicate that the links 

move away from the obstacle relatively faster as they are near the obstacle. The reason 

for this phenomenon is that the objective function equation is selected to be an 

exponential function with negative power of the distance. This function can be modified 

if the motion of the links going away from the obstacle needs to be zero after some 

predefined distance. It should be also noted that the obstacle placement is taken as the 

mass center and a surface of influence (SOI) is not defined. 

 It can also be noticed that the uncontrolled self-motion of the robot (first 

simulation) results in undesired motion of the links. Therefore, it can be concluded that 

the self-motion definitely should be controlled in redundant manipulators. Furthermore 

it can be employed to execute another subtask beside the main-task. Overall, it can be 

stated that, in this thesis study, the stability and effectiveness of the designed controller 

is verified first mathematically and then by simulation results.  
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7.2. Future Work 

 

Designed controller can be tested for other subtasks like; Joint Limit Avoidance, 

Robot Body Collision Avoidance, Minimizing Potential Energy, Whole Arm Grasping 

Control, etc. in the future studies. 

 Virtual model can be also improved by using Virtual Reality Sink block in 

Simulink to visualize the associated model (.wrl) file drawn in Solidwork during 

simulation instead of using SimMechanics visualization used in this thesis, which shows 

the model as an equivalent ellipsoids for each link. 

This controller can also be tested by defining a 6-DOF task space but it is 

advisable to use more than 7-DOF redundant robot arm to perform the required main-

task and subtask with more flexibility. Also, in this situation, it can be advised to select 

other methods than using pseudo-inverse method to find the inverse kinematics because, 

using pseudo inverse will lead to increased mathematics calculations due to the need of 

calculating the determinant of a larger Jacobian matrix. 

In application specific case, this study can be extended for use in robot 

controllers designed for working with human. The use of redundancy along with 

minimizing the static force and obstacle avoidance can increase the level of safety in 

assistive and rehabilitation robotics. Furthermore the simulation results can be verified 

by carrying out real-world experimental study of the control algorithm developed in this 

thesis.  
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