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ABSTRACT 

A STUDY ON MIXED CONVECTION HEAT TRANSFER THROUGH 
A CHANNEL PARTIALLY FILLED WITH POROUS MEDIUM 

A study on mixed convection heat transfer in a laminar, fully developed, vertical 

channel is performed for three different cases: i) clear fluid channel ii) saturated porous 

medium filled channel iii) partially porous medium filled channel. For the all analyzed 

cases, motion and heat transfer equations are solved both analytically and numerically. 

The governing equations are presented both in dimensional and dimensionless forms. 

The dimensional forms of the governing equations are solved by numerical method 

while dimensionless equations are solved analytically. The dimensional results, 

obtained by numerical method, are converted into dimensionless values and compared 

with dimensionless results of analytical solutions. Good agreement between analytical 

and numerical results is observed. Based on the obtained results, velocity and 

temperature profiles are plotted for different values of Gr/Re, Da and porous layer 

thickness. A detailed discussion is performed on the obtained results. Moreover, 

heatline functions are obtained and plotted for different values of Gr/Re, Da and Peclet 

number. It is found that flow reversals in the channel highly depends on Gr/Re value 

and flow reversals occurs in the channel if Gr/Re exceeds threshold value. It is also 

found that for low Peclet numbers (i.e., Pe = 0.01), the path of heat flow is independent 

of Gr/Re and Darcy number. However, for high Peclet numbers (i.e., Pe = 5), the ratio 

of Gr/Re, Darcy number and thermal conductivity ratio influence heatline patterns, 

considerably. 
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ÖZET 

 KISMEN GÖZENEKLİ YAPI İLE DOLDURULMUŞ BİR KANALDA 
KARIŞIK ISI TAŞINIMI ÜZERİNE BİR ÇALIŞMA 

 
Bu çalışma; tam gelişmiş, laminar, dik bir kanalda karışık taşınım için üç farklı 

durum üzerine yapılmıştır: i)akışkanla dolu kanal ii) gözenekli ortamla doldurulmuş 

kanal, iii) kısmen gözenekli ortamla doldurulmuş kanal. Momentum ve ısı transferi 

denklemleri her durum için analitik ve nümerik olarak çözülmüştür. Çalışmada, 

momentum ve ısı transferi denklemleri boyutlu ve boyutsuz olarak verilmiştir. Boyutlu 

momentum ve ısı transferi denklemleri nümerik olarak; boyutsuz momentum ve ısı 

transferi denklemleri ise analitik olarak çözülmüştür. Nümerik çalışma sonucu elde 

edilen boyutlu denklemlerin sonuçları, boyutsuz hale dönüştürülerek analitik sonuçlar 

ile karşılaştırılmıştır ve analitik ile nümerik sonuçların birbiri ile örtüştüğü görülmüştür. 

Elde edilen sonuçlara göre, hız ve sıcaklık profilleri değişik Gr/Re, Da ve gözenekli 

ortam kalınlıkları için çizilmiş ve yorumlanmıştır. Ayrıca ısının akışı denklemleri elde 

edilmiş ve farklı Gr/Re, Da ve Peclet değerleri için çizilmiştir. Ters akışların Gr/Re 

değerine oldukça bağlı olduğu görülmüş ve belli bir Gr/Re değeri aşıldığında ters 

akışların ortaya çıktığı gözlemlenmiştir. Ayrıca düşük Peclet değerlerinde ısı akışının 

Gr/Re değerinden bağımsız olduğu elde edilmiştir. Ancak yüksek Peclet değerlerinde 

hız profili,Gr/Re ve Da değeri ve akışkan ile gözenekli ortam ısı iletim katsayıları oranı  

ısı akış yönünü oldukça etkilemektedir. 
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CHAPTER 1 

INTRODUCTION 

A material consisting of finite volume solids with interconnected voids can be 

called as porous medium. Beach sand, human lungs and wood can be given as examples 

of porous medium. Researches in heat and mass transfer in porous media has been 

increased due to importance of the subject in many engineering applications. A sample 

of porous medium can be seen in Figure 1.1.   

 

  

Figure 1.1. Porous media 
 

Porous media provide enhancement of heat transfer in convection problems. The 

following comments may explain this issue better. As it is known, the Newton’s Law of 

Cooling is:  

 )( refTThAQ −=  (1.1) 

where Q is total heat transfer rate (W), h is convective heat transfer coefficient 

(W/m2K),  A (m2) is the heat transfer area and T and Tref (K) are the temperature of fluid 

and free stream respectively. As seen from the Equation 1.1, the increase of convective 

heat transfer coefficient and/or heat transfer area and/or increase of temperature 

difference between the fluid and reference can enhance heat transfer. There are several 
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techniques to effect these parameters to enhance heat transfer such as use of fins, jet 

impingement, fluid vibration or porous media.  

The use of a porous medium might be very effective way to enhance heat 

transfer. There are several reasons for enhancing of heat transfer by using a porous 

medium. First of all, a porous medium increases heat transfer area. Thus, the total heat 

transfer is increased as it was mentioned. Secondly, a porous medium generates 

fluctuations and mixed fluid flow. These fluctuations provide the increase of heat 

transfer coefficient and consequently heat transfer rate increases. Third of all, a porous 

medium can increase diffusion heat transfer if a high conductive porous medium is used 

in the system. The use of high conductive porous medium increases the heat conduction 

in flow field. 

Heat is transferred due to random molecular motion, diffusion, as well as 

macroscopic or bulk motion of the fluid where bulk motion represents a motion of large 

number of molecules collectively. This bulk motion, advection, contributes to heat 

transfer if temperature gradient occurs. Therefore, total heat transfer can be explained as 

a superposition of energy transport by random motion and by bulk motion or in other 

words by convection. Therefore, convection can be explained as energy transfer 

between a solid surface and a fluid in motion (Incropera and DeWitt (2007)).Nature of 

the flow is widely used to classify convection heat transfer. If the flow is caused by 

external means such as fan, pump etc. convection is called forced convection (Figure 

1.2(a)). The buoyancy forces which are a result of density differences due to 

temperature variation in fluid can be neglected in forced convection. However, if the 

motion of fluid is caused by buoyancy forces, convection is called as natural convection 

(Figure 1.2(b)). If both natural and forced convection heat transfer conjugates each 

other in situations like the velocity of the flow of external means is small and buoyancy 

forces are high, this heat transfer situation, where the importance of natural and forced 

convection are competent, is called as mixed convection.(Figure 1.2(c)). Mixed 

convection is an important heat transfer situation in applications where buoyancy forces 

exist and can change the flow pattern(Kakaç and Yener (1995)). For instance, although 

forced flow through rotating components such as rotor blades of turbines presents in 

means of centrifugal forces, these forces may provide natural convection flows and may 

change flow pattern due to temperature differences. Mixed convection is also important 
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in design of solar collectors. What is more, heat exchange in oil coolers is affected by 

natural convection on the forced flow (Kakaç and Yener (1995)). 

 

 

(a) (b) 

 

(c) 

Figure 1.2. Convection mechanisms a) Forced convection b) Natural convection           
c) Mixed convection  

 

Mixed convection may be aided or opposed to forced convection related to the 

forced motion as seen on Figure 1.3. If the buoyant motion is in the same direction with 
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the forced motion, then the flow is called buoyancy-aided flow which enhances heat 

transfer rate. However, if the buoyant motion is in the opposite direction with the forced 

motion, the flow is called buoyancy-opposed flow which hurts heat transfer rate. 

  

              a)                  b) 

Figure 1.3. Types of mixed convection a) aided b) opposing 

 

Convection problems can be divided into two groups as external and internal 

problems. External convection heat transfer occurs over a body, while internal 

convection forms inside a body. Convection heat transfer in ducts and channels are 

widely faced in industrial application such as heat exchanger designs. Heat transfer in a 

duct or channel can be divided into two regions as entrance and fully developed regions. 

The definition and determination of entrance region are given in heat transfer text books 

in details. However, for many applications when the channel is long, the effect of the 

entrance region can be neglected if heat transfer in entrance region is compared with the 

heat transfer of the whole channel/duct. That is why the analysis of fully developed heat 

and fluid flow has been performed by many researchers.  

The concept of fully developed flow in channels with mixed convection is 

different than forced convection since velocity profiles depend on the temperature 

gradient in the channel. Fully developed mixed convection can appear in channels with 
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asymmetric boundary conditions. Flow reversal in fully developed mixed convection 

heat transfer in channels has an important effect on heat transfer from the walls. This 

flow may appear in a channel when the flow rate is fixed and the buoyancy effect 

cannot be neglected. Buoyancy effect is high at the region close to the hot wall which 

increases velocity in that region. Thus, a downward flow emanates from the open top of 

the channel and by this way flow reversal occurs. 

The present study is aimed to investigate heat and fluid flow in a fully developed 

mixed convection channel partially filled with porous medium. The enhancement of 

heat transfer by using a porous layer is also analyzed for the considered channel. 

However, before attain to the main of this thesis, many cases are analyzed to be sure of 

the obtained results.  The present study is started with investigating heat and fluid flow 

in a clear vertical channel whose walls are at different temperatures. Two different 

studies as dimensional and dimensionless are performed for analyzing the heat and fluid 

flow in a clear channel. Constant wall temperatures are applied at both sides of the 

channel. The studies for clear channel are presented in Chapter 4 and 5. Heat and fluid 

flow in fully porous vertical channel is studied by dimensional and dimensionless 

approaches in Chapter 6 and 7, respectively. Finally, partially porous channel is studied 

by dimensional and dimensionless approaches in Chapter 8 and 9. Heatline functions 

are described for clear, fully porous medium and partially porous medium channels in 

Chapter 10. In Chapter 11, numerical solution procedure employed to solve heat 

transfer and motion equations is explained. The obtained results for the studies channels 

are made in Chapter 12. The performed study in this thesis is concluded in Chapter 13.  

In this thesis, firstly, all governing equations are solved dimensionally for given 

cases. Then, the governing equations are solved dimensionless to find a general solution 

and make general conclusions. The main purpose of this thesis is to increase heat 

transfer rate along the channel.  
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CHAPTER 2 

A REVIEW ON MIXED CONVECTION HEAT AND 

FLUID FLOW IN CHANNEL/DUCT 

Several studies on mixed convection in a channel/duct filled with clear fluid, 

fully saturated porous medium and partially filled with porous medium were reported in 

literature. These studies are summarized in this chapter. 

As it is mentioned in Chapter 1, the energy and fluid motion equations of fully 

developed mixed convection flow are different than the forced convection fully 

developed flow since the velocity changes with temperature in the channel. In a channel 

with fixed inlet mass flow, flow reversal may appear due to buoyancy effect. The 

buoyancy effect near the hot wall increases the fluid velocity in that region, and thus, a 

downward flow occurs from the open top of the channel.  The first experimental 

evidence for its occurrence has been supplied by Sparrow, Chrysler, and Azevedo 

(1984). The initial flow analysis of mixed convection has been discussed in the work of 

Ostrach (1954), and Lietzke (1954).  

Win Aung and Worku (1986) presented the results for mixed convection flows 

between parallel-plate channels in which the net through-flow rates are constant as 

shown in Figure 2.1. They assumed that the flow is fully developed. The mixed 

convection flow between parallel plates in which fixed flow rate is studied theoretically. 

They found that when the wall temperatures are unequal, a reversed flow situation 

occurs if the magnitude of the buoyancy parameter Gr/Re exceeds a certain threshold 

value. Here, Gr and Re are Grashof and Reynolds numbers and they are defined based 

on distance between vertical plates. 
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Figure 2.1. Schematic view of study of Aung and Worku (1986) 
 

W. Aung and Worku (1987) has studied mixed convection in ducts with 

asymmetric wall heat fluxes. The studied domain is shown in Figure 2.2. They 

considered fully developed pure fluid flow channel with aiding buoyancy forces. They 

concluded that there are significant differences between uniform heat fluxes and 

uniform wall temperatures in mixed convection with asymmetrically heated vertical 

plates. They also provided that flow reversal is more prone to occur in asymmetric wall 

heating at uniform wall heat fluxes than asymmetric wall heating at uniform wall 

temperature.  

 

Figure 2.2. Schematic view of study of Aung and Worku (1987)  
 

Parang and Keyhani (1987) investigated the boundary effects in a laminar mixed 

convection flow through an annular porous medium by using Brinkman-Extended 
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Darcy model. They aimed to clarify in which situations Brinkman term can be neglected 

in their study. They found that the Brinkman term has a negligible effect on the flow 

when Darcy number is very small. 

The problem of aiding and opposing mixed convection in a vertical porous layer 

with a finite wall heat source was investigated by Lai et al. (1988). They studied two-

dimensional, steady mixed convection in a vertical porous layer for the case when a 

finite isothermal heat source is located on one adiabatic vertical wall and the other 

vertical wall is isothermally cooled. They concluded that for the aiding flow, the slope 

of the Nusselt number curve increases with Peclet number unless the flow has 

approached the forced convection regime. 

The combined free and forced convection of a fully developed Newtonian fluid 

within a vertical channel composed of porous media when the viscous dissipation 

effects are taken into consideration is studied by Al-Hadhrami et al. (2002) as their 

studied channel seen on Figure 2.3. The governing fourth-order, ordinary differential 

equation, which contains the Darcy and the viscous dissipation terms, is solved 

analytically using perturbation techniques and numerical method. They showed that the 

effect of the Darcy number decreases as the critical Rayleigh numbers increase. 

 

 

Figure 2.3. Schematic view of study of Al- Hadhrami et al. (2002) 
(Source: Al-Hadhrami et al., 2002) 

 

Umavathi et al. (2005) studied a numerical study of mixed convection in a 

vertical channel filled with porous media, as seen on Figure 2.4, including inertial 

forces. They considered isothermal-isothermal, isoflux-isothermal boundary conditions. 
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The governing equations are solved numerically by finite difference method with 

Southwell–Over–Relaxation technique for extended Darcy model and analytically using 

perturbation series method for Darcian model. They concluded that viscous forces 

enhance flow reversal in downward flow while it counters the flow in upward flow. 

 

Figure 2.4. Schematic view of study of Umavathi et al.(2002) 
(Source: Umavathiet al.,2005) 

 

 Mixed convection with viscous dissipation in a vertical channel filled with a 

porous medium, buoyancy aided and opposing flow is analyzed analytically with 

isothermal and isoflux boundary conditions by Barletta et al. (2007). The study was 

performed for fully developed flow as seen from Figure 2.5.They assumed that the 

Darcy law and the Boussinesq approximation hold, the effect of viscous dissipation is 

significant, and the average flow velocity Um is prescribed. The Darcy and energy 

balance equations have been solved by an analytical series expansion method. The 

mechanical and thermal characteristics of the flow are investigated in this study. They 

concluded that upward or downward laminar flow solutions may exist as long as Um 

does not exceed a maximum value. 
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Figure 2.5. Schematic view of study of Barletta et al.(2007) 
(Source: Barletta et al., 2007) 

 

Buoyancy aided and opposing flow is analyzed numerically for a vertical porous 

channel with isothermal and isoflux boundary conditions in the case of a fully 

developed flow is studied by Barletta and Nield (2009), as seen on Figure 2.6. In their 

study, the effects of viscous dissipation and pressure work are taken into account in the 

framework of the Oberbeck–Boussinesq approximation scheme and of the Darcy flow 

model. Buoyant flow for a saturated porous layer is examined in fully developed 

parallel velocity field in their study. They concluded that for upward driven flows, the 

combined effects of viscous dissipation and pressure work may produce a net cooling of 

the fluid even in the case of a positive heat input from the isoflux wall. However, for 

downward driven flows, viscous dissipation and pressure work yield a net heating of the 

fluid. 
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Figure 2.6. Schematic view of study of Barletta and Nield(2009) 
(Source: Barletta and Nield, 2009) 

 

Chang and Chang (1995) numerically analyzed the developing mixed 

convection in a vertical tube partially filled with porous medium which is demonstrated 

on Figure 2.7. Inertia and boundary effects are included in this study. They concluded 

that the hydrodynamic enhance length is shorter as the value dimensionless porous layer 

thickness is increased, and is longer as the values of Darcy and Grashof dimensionless 

numbers are increased. The thermal entrance becomes longer as the values of 

dimensionless porous layer thickness and Darcy number increase and shorter as the 

values of Gr increase.  

An analysis of mixed convective flow in partially filled porous channel is 

studied by Kumar et al. (2009) as seen on Figure 2.8. Three types of thermal boundary 

conditions such as isothermal–isothermal, isoflux–isothermal, and isothermal–isoflux 

for the left–right walls of the channel are considered. They studied velocity and 

temperature distribution in the channel in their paper. 
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Figure 2.7. Schematic view of study of Chang and Chang 
(Source: Chang and Chang, 1995) 

 

 

Figure 2.8. Schematic view of study of Kumar et al.(2009) 
 (Source: Kumar et al., 2009) 

 

Isotherms and streamlines are widely used in convective heat transfer studies in 

order to describe heat and fluid flow in a domain. However, understanding of heat flow 

direction is not easy by using isotherms and streamlines. That is why, heatline technique 

was proposed by Kimura and Bejan (1983) to observe path of heat flow. The heatline 

visualization technique can be employed to observe not only path of heat flow but also 
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intensity of heat flux at any location of domain for a convection and/or conduction 

steady or unsteady heat/mass transfer problems.  

Costa (1999) reviewed studies on heatline visualization technique and 

summarized its application. He concluded that the heat and mass functions conjugated 

problems, as well as the stream-function problem can be derived using a common 

physical procedure and such problems are formally similar. 

Hakyemez et al. (2008) and Mobedi (2008) used the heatline technique to 

observe heat transport in the entire domain of a square cavity with thick horizontal 

walls. In their study, the vertical walls of the enclosure are differentially heated and the 

horizontal walls are adiabatic. They used heatline technique to visualize heat transport. 

In the study of Mobedi (2008), the effect of conduction of horizontal walls on natural 

convection heat transfer in a square cavity, as seen on Figure 2.9(b), is numerically 

investigated. The vertical walls of the cavity are at different constant temperatures while 

the outer surfaces of horizontal walls are insulated. Usefulness of heatline visualization 

technique for conjugate heat transfer problems is showed in this study. 

 

  

(a) (b) 

Figure 2.9. Schematic view of study of a) Hakyemez et al. (2008) b) Mobedi (2008) 
(Source: Hakyemez et al. 2008 ; Mobedi 2008) 

  

 Mobedi et al. (2010) also divided heatfunction equation into the diffusion and 

convection heatfunctions by using superposition rule. They used superposition rule to 

obtain the mathematical definitions of diffusion and convection heatfunctions and 

corresponding boundary conditions. They concluded that based on the distribution of 

total heatlines, two regions are detected in the cavity, an active region with the positive 

values of heatlines signifying dominant conduction heat transfer and a passive region 
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with the negative heatfunction values in where convection heat flow is dominant and 

heat only rotates in a closed contour pattern. 

 

 

Figure 2.10. Schematic view of study of Mobedi et al. 
(Source: Mobedi et al., 2010) 

 

Varol et al. (2010) used heatline patterns to study natural convection heat 

transfer of cold water near 4 oC in a thick bottom walled cavity filled with a porous 

medium, as seen on Figure 2.11, numerically. In their study, they assumed the cavity is 

isothermally heated from the outside of the thick bottom wall and cooled from ceiling. 

They concluded that the increase of Rayleigh number and thermal conductivity ratio 

increases heat transfer through the cavity. However, the increase of thickness of the 

bottom wall reduces the mean Nusselt number. 

 

 

Figure 2.11. Schematic view of study of Varol et al. 
(Source: Varol et al., 2010) 
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Kaluri et al. (2009) performed a numerical study on heat distribution and 

thermal mixing for steady laminar natural convective flow within fluid-saturated porous 

square cavities by using heatline technique. They considered three different cases; 

firstly uniformly heated bottom wall, then discrete heat sources on walls and finally 

uniformly heated left and bottom walls. They found that distributed heating enhances 

heat distribution and thermal mixing compared to uniform heating case. Their studied 

domain is demonstrated in Figure 2.12. 

 

 

Figure 2.12. Schematic view of study of Kaluri et al. 
(Source: Kaluri et al. 2009) 

 

Basak et al. (2010), Kaluri and Basak (2010) and Kaluri et al. (2010) performed 

several studies on heat transport field for various domains under different boundary 

conditions.  
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Figure 2.13. Schematic view of study of Basak et al. 
(Source: Basak et al. 2010) 

 

In the study of Basak et al. (2010), Figure 2.13, natural convection in a porous 

triangular cavity has been analyzed. They used finite element method to solve 

governing equations. They provided heat transfer analysis in terms of local and average 

Nusselt numbers. They concluded that the local Nusselt number for the side wall is low 

at the intersection point of hot walls and high at the intersection point of the hot and 

cold walls. 
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Kaluri et al. (2010), Figure 2.14, studied Natural convection in right-angled 

triangular enclosures with various angels via heat flow analysis for various uniform 

isothermal and linear isothermal heating thermal boundary conditions. They visualized 

heatline patterns under different conditions. They provided effect of increase in angle 

heat flux at top vertex decreases.  

 

Figure 2.14. Schematic view of study of Kaluri et al. 
(Source: Kaluri et al. 2010) 

 

Waheed (2009) studied the problem seen on Figure 2.15 of the natural laminar 

convection in square enclosures filled with fluid-saturated porous medium by using the 

heatfunction formulation approach. The Brinkman-extended Darcy equations of motion, 

energy, and heatfunction equations were solved by the finite-difference method in the 

study. It is concluded that problem governing parameters have strong effect on the 

convection strength, isotherms, and heatfunction fields and profiles. What is more, an 

increase in the value of the Darcy number above unity has no more influence on the 

heatfunction profiles.  
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Figure 2.15. Schematic view of study of Waheed  
(Source: Waheed 2009) 

 

The above literature review reveals that the most of studies on visualization of 

heat flow were performed on the closed spaces such as closed cavities rather channels 

and ducts. Probably, the first study on observation of heat transport path in a channel 

was performed by Morega and Bejan (1993).  
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CHAPTER 3 

FUNDAMENTAL CONCEPTS 

 As it is described in Chapter 1, finite volume solids with interconnected voids 

called as porous media. Studies on porous media are rising due to its importance in 

nature science and industrial applications. Convection in porous media also has many 

application areas in many technologies. These technologies include oil recovery, 

nuclear waste disposal, insulation of buildings, drying processes, nuclear reactors, solar 

systems, geothermal reservoirs, porous journal bearings, modern electronic equipment 

and heat exchangers. 

3.1. Porosity 

Porosity, ε, is defined as the ratio of volume occupied by the fluid to the total 

volume of the porous medium. 

  (3.1) 

In defining of porosity, all the void space is assumed to be connected each other. 

If any discontinuity in connection between void appears in the medium then effective 

porosity, which can be explained as the ratio of connected void to total volume, should 

be introduced to the study. The porosity is mostly between 0.2 and 0.6 for natural 

media. However, this value approaches to 1 by man-made materials such as foams 

(Nield and Bejan (2006)). 

 

Figure 3.1. A sample of porous media 
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A sample calculation for determination of porosity for a square bar porous media shown 

in Figure 3.1 can be done as; 

  (3.2) 

3.2. Permeability 

Permeability, K, is a coefficient in dimension of m2. Although permeability is 

independent of nature of the fluid, geometric structure of the porous medium is highly 

dependent factor of permeability. The increase in permeability provides a fluid flow 

similar to a clear medium. The values of permeability vary widely depending on the 

porous material. Similar to effective porosity, effective permeability should be 

introduced to the study if any discontinuity between voids appears. 

As permeability depends on the geometry inside the porous medium, the 

equation to calculate permeability differs for all geometry. In this thesis, porous 

medium consists of large numbers of square bar is considered in Chapter 6 and 8. The 

relation used to calculate for the aforementioned porous medium is:  

 

  (3.3) 

3.3. Fluid Motion Equation for Porous Media 

There are several fluid motion equations for studying of fluid flow in a porous 

medium. In the following subsection these equations are discussed. 

3.3.1. Darcy’s Law 

Henry Darcy’s studies into hydrogeology stated that the volume averaged fluid 

velocity through a column of porous media is directly proportional to the pressure 

gradient established along the column and the permeability of the space and inversely 

proportional to the viscosity of the fluid. This equation for mixed convection can be 

written as; 
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  (3.4) 

where K is permeability and µ is dynamic viscosity. In three dimensions, Darcy’s Law 

can be expressed as; 

  (3.5) 

where K is second order tensor. It should be mentioned that gρ represents the effect of 

buoyancy force. It is negligible for forced convection; however this term should be 

taken into account for natural and mixed convection problems.   

3.3.2. Brinkman-Extended Darcy’s Law 

Darcy’s Law fails when boundary effects are important. (i.e. internal flows) 

Therefore, additional terms for boundary conditions are needed to be included into fluid 

motion equation. Thus, a new variable depends on the fluid and structure of the porous 

medium, effective dynamic viscosity, effµ  should be introduced to the fluid motion 

equation. 

  (3.6) 

where is effective dynamic viscosity . There are many studies on determination of 

effective dynamic viscosity. One of the common relations for determination of effective 

dynamic viscosity is:  

 
ε

µ 1
=eff  (3.7) 

The general form of Brinkman-Extended Darcy’s Law is:  

  (3.8) 
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3.3.3. Forchheimer - Brinkman Extended Darcy’s Law 

Darcy’s Law may not be appropriate when inertial forces are not negligible 

because Darcy’s Law is only function of pressure gradient and viscous effects. For high 

velocity fluid flow in the porous medium, the inertia effect should be included. Thus, a 

modification is needed to be made to include inertial forces. Forchheimer – Brinkman 

Extended Darcy’s Law can be written as follows; 

 02
2

2

=+−−− g
dx
dpu

K
u

K
C

dy
ud

feff ρµρµ  (3.9) 

where C is Forchheimer constant, K is permeability, is dynamic viscosity. Second 

term stands for inertial contribution while third is viscous contribution. For three 

dimensions, Forchheimer equation can be written as; 

  (3.10) 

3.4. Heat Flow in Porous Media 

According to the first law of thermodynamics, the total energy in the system 

should be conserved. Therefore, energy balance can be written as follows when a 

thermal equilibrium exists between fluid and solid in the porous media.  

  (3.11) 

where T is the average temperature of the solid and fluid for a small volume inside the 

porous media. is effective thermal conductivity for fluid and solid porous material 

which can be calculated as follows; 

  (3.12) 
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3.5. Compatibility 

Definition of mean temperature is used to derive compatibility condition. Mean 

temperature equation is seen on Equation (3.13); 
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As density and constant pressure specific heat of the fluid is assumed constant and can 

be taken out of integral. Therefore, Equation (3.13) can be written as; 
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Using definition of mean velocity; 
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Therefore, Equation (3.14) turns into; 
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Using normalized velocity definition, , Equation (3.16) can be written as; 
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Using dimensionless parameters in Equation (3.18), Equation (3.17) turns into Equation 

(3.19); 

mu
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 , 
b
Yy =  (3.18) 
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Therefore, using Equation (3.20) in Equation (3.19), compatibility condition can be 

found as follows; 
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CHAPTER 4 

FULLY DEVELOPED MIXED CONVECTION IN A 

CHANNEL WITH PURE FLUID: DIMENSIONAL 

GOVERNING EQUATIONS 

4.1. Definition of the Problem 

Mixed convection between a two vertical parallel plate filled with a clear, 

incompressible fluid is considered. The fluid is assumed to be Newtonian and 

incompressible, while the flow is laminar, thermally and hydro-thermally fully 

developed and steady. The channel has a rectangular cross-section with width of b. It is 

assumed that the plates are infinitely long in z direction, x is being vertical direction and 

y is perpendicular direction to x direction. It is also assumed that the flow in the channel 

is fully developed, unidirectional and steady. The fluid properties are constant except 

the density in buoyancy term of the momentum equation. Viscous dissipation is 

neglected for this case. A constant temperature is applied to the walls of the channel as 

shown in Figure 4.1 and also gravity acts in x-direction. 

 
Figure 4.1. Considered problem 
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4.2. Governing Equations 

The governing equations, continuity, momentum and heat transfer equations, is 

explained in this section.  

4.2.1. Continuity Equation 

The general form of the continuity equation for incompressible flow can be expressed 

as; 

  (4.1) 

Hence, continuity equation for the case mentioned in Section 4.1 can be written 

for rectangular coordinates; 

  (4.2) 

4.2.2. Momentum Equation 

 To obtain velocity field, Navier-Stokes equation in x and y directions are needed 

to be solved simultaneously. The general form of Navier-Stokes equations can be 

expressed as; 
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 Navier-Stokes equation can be reduced under the assumptions mentioned in 

section 4.1 as; 

  (4.5) 

where is average temperature of the left and right plates.  
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  (4.6) 

4.2.3. Heat Transfer Equation 

 General form of energy equation can be written as; 

   (4.7) 

 The energy equation for an incompressible flow with no viscous dissipation, no 

compression work and without heat generation and under the assumption which is 

described in section 4.1 is; 

   (4.8) 

4.3. Boundary Conditions 

 The boundary conditions for momentum equation which expressed in Equation 

(4.5) can be written using non-slip condition as respectively; 

On the left side; 

   (4.9) 

On the right side; 

bY =    (4.10) 

 The boundary conditions for heat transfer equation, Equation (4.8), can be 

written as; 

On the left side; 

   (4.11) 

 

0=
∂
∂

y
P

Φ+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂ µρ )()()( 2

22

y
T

x
Tk

y
Tv

x
TuC p

02

2
=

yd

Td

0=Y 0)0( =U

0)( =bU

0Y = 1)0( TT =



28 

On the right side; 

bY =    (4.12) 

 Equation (4.5) and (4.8), using boundary conditions given in section 4.3, are 

solved numerically using the method described in a detail in Chapter 11. The results of 

these equations are given in Chapter 12.1.  

 

 

 

2)( TbT =



29 

CHAPTER 5 

FULLY DEVELOPED MIXED CONVECTION IN A 

CHANNEL WITH PURE FLUID: DIMENSIONLESS 

GOVERNING EQUATIONS 

5.1. Definition of the Problem 

The same problem discussed in Chapter 4 is analyzed in this chapter again using 

dimensionless governing equations. Considered problem is shown in Figure 5.1. 

Although the studied channel and the problem are same, the governing equations which 

are given in Chapter 4 are nondimensionalized using dimensionless parameters and 

dimensionless governing equations are obtained and these equations are solved in these 

chapter.  

 

Figure 5.1. Considered problem 
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5.2. Governing Equations 

The governing equations for laminar, mixed convection fully developed flow 

under the assumptions explained in Chapter 4 are continuity, momentum and heat 

transfer equations. Dimensional governing equations were given in previous chapter.  

5.2.1. Dimensionless Continuity, Momentum and Energy Equations 

 The Equations (4.5) and (4.8) are needed to be solved to obtain velocity and 

temperature distribution in the channel.  By applying Boussinesq’s approximation and 

introducing dimensionless parameters;  
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where  is the Reynolds number, b is the gap between plates, uo is the 

velocity of the inlet flow and T is the temperature. By considering, linear change of 

pressure in flow direction for fully developed flow; the variation of pressure along the 

channel can be shown by  which is constant. Then, Equation (4.5) and (4.8) can be 

written in dimensionless form respectively as; 

   (5.2) 

   (5.3) 

where  is the Grashof number. 

5.3. Boundary Conditions 

 The dimensionless boundary conditions for momentum equation which 

expressed in Equation (5.2) can be written using non-slip condition as respectively; 

 

ν/Re 0 bu=

Γ

0
2

2
=Γ−+ θ

Re
clGr

Yd

Ud

0
2Yd

θ2d
=

23 νβ /b)TT(gGr chcl −=



31 

On the left side; 

   (5.4) 

On the right side; 

   (5.5) 

 The dimensionless boundary conditions for energy equation, Equation (5.3), can 

be written as; 

 

On the left side; 

   (5.6) 

On the right side; 

   (5.7) 

5.4. Solutions of the Governing Equations 

 The analytical solution of Equation (5.3) with the boundary conditions expressed 

in Equation (5.6) and (5.7) is; 

    (5.8) 

 The analytical solution of Equation (5.2) can be obtained by using the boundary 

conditions expressed in Equation (5.4) and (5.5);  

   (5.9)
 

where  parameter still needs to be evaluated. Therefore, to obtain a result for , one 

more equation is needed. The conservation of mass in the channel can be written as; 

    (5.10) 
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Then, integration of Equation (5.10) using Equation (5.9) leads to; 

    (5.11) 

The mean temperature which is known as;  

    (5.12) 

Substituting Equation (5.8) and (5.9) into Equation (5.12) yields to; 

   
(5.13) 

 The results of these equations are given in Chapter 12.1.2.  
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CHAPTER 6 

FULLY DEVELOPED MIXED CONVECTION IN A 

CHANNEL COMPLETELY FILLED WITH POROUS 

MEDIA: DIMENSIONAL GOVERNING EQUATIONS 

6.1. Definition of the Problem 

The only difference of this chapter from Chapter 4 is that the channel is filled 

with saturated porous media in this case. Schematic view of the considered channel is 

shown in Figure 6.1. Governing equations of the problem will be investigated 

dimensionally. 

 

Figure 6.1. Considered problem 
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6.2. Governing Equations 

The governing equations, continuity, fluid motion and heat transfer equations, is 

explained in this section.  

6.2.1. Continuity Equation 

The continuity equation does not get affected by adding porous media to the 

channel. Therefore, the continuity equation is same with the studied problem in Chapter 

4. 

  
(6.1) 

6.2.2. Fluid Motion Equation 

  Brinkman-Extended-Darcy law can be used to analyze this problem as 

written below. 

  (6.2) 

where effµ is effective dynamic viscosity and K is permeability.  

6.2.3. Heat Transfer Equation 

 The energy equation for an incompressible flow with no viscous dissipation, no 

compression work and without heat generation and under the assumption which is 

described in Chapter 4; 

   (6.3) 
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6.3. Boundary Conditions 

 The boundary conditions for fluid motion equation which expressed in Equation 

(6.2) can be written using non-slip condition as respectively; 

On the left side; 

   (6.4) 

On the right side; 

   (6.5) 

 The boundary conditions for heat transfer equation, Equation (6.3), can be 

written as; 

On the left side; 

   (6.6) 

On the right side; 

   (6.7) 

 Equation (6.2) and (6.3), using boundary conditions given in section 6.3, are 

solved numerically using the method described in a detail in Chapter 11. The results of 

these equations are given in Chapter 12.2.  
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CHAPTER 7 

DIMENSIONLESS STUDY ON FULLY DEVELOPED 

MIXED CONVECTION IN A CHANNEL COMPLETELY 

FILLED WITH POROUS MEDIA 

7.1. Definition of the Problem 

In this chapter, mixed convection between a two vertical parallel plate filled with 

isotropic porous media is considered. The fluid is assumed to be Newtonian and 

incompressible, while the flow is laminar, fully developed and steady. The channel has 

a rectangular cross-section with width of b. It is assumed that the plates are infinitely 

long in z direction, x is being vertical direction and y is perpendicular direction to x 

direction. It is also assumed that the flow in the channel is fully developed, 

unidirectional and steady. The fluid properties are assumed constant except the density 

in buoyancy term of the fluid motion equation. Viscous dissipation is neglected for this 

case. A constant temperature is applied to the walls of the channel as shown in Figure 

7.1. 

 

Figure 7.1. Considered problem 
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7.2. Governing Equations 

The governing equations for laminar, mixed convection fully developed flow 

under the assumptions explained in the section above are continuity, fluid motion 

equations and energy equation. Dimensional equations are given in Chapter 6 and these 

equations will be made nondimensionalized in this chapter. 

7.2.1. Dimensionless Continuity, Fluid Motion and Heat Transfer      
Equations 

 The Equations (6.2), (6.3) are needed to be solved to obtain velocity and 

temperature distribution in the channel.  By applying Boussinesq’s approximation and 

introducing dimensionless parameters;  

  
dX
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where  is the Reynolds number. By considering, linear change of pressure 

in flow direction for fully developed flow; the variation of pressure along channel can 

be shown by  which is constant. Then, Equation (6.2), (6.3) can be written in 

dimensionless form as; 

   (7.2) 

   (7.3) 

where 2/)( νβρ bTTKgGr chp −=  is the Darcy-modified Grashof number. 

7.3. Boundary Conditions 

 The dimensionless boundary conditions for fluid motion equation which 

expressed in Equation (7.2) can be written using non-slip condition as respectively; 

On the left side; 
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   (7.4) 

On the right side; 

   (7.5) 

 The dimensionless boundary conditions for energy equation, Equation (7.3), can 

be written as; 

On the left side; 

   (7.6) 

On the right side; 

   (7.7) 

7.4. Solutions of the Governing Equations 

 The analytical solution of Equation (7.3) with the boundary conditions expressed 

in Equation (7.6) and (7.7) is; 

    (7.8) 

 The analytical solution of Equation (7.2) can be obtained by using the boundary 

conditions expressed in Equation (7.4) and (7.5);  

    (7.9) 

where C1, C2, C3 and C4 are constants given in Appendix, and DaMS /= .

parameter still needs to be evaluated. Therefore, to obtain a result for , one more 

equation is needed. The conservation of mass in the channel can be written as; 

    (7.10) 

Then, integration of Equation (7.10) using Equation (7.9) leads to; 
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    (7.11) 

 The results of these equations are given in Chapter 12.2.2.  
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CHAPTER 8 

FULLY DEVELOPED MIXED CONVECTION IN A 

CHANNEL PARTIALLY FILLED WITH POROUS 

MEDIA: DIMENSIONAL GOVERNING EQUATIONS 

8.1. Definition of the Problem 

The only difference between this chapter and the explained problem in Chapter 6 

is that the channel is partially filled with porous media. Considered problem is shown in 

Figure 8.1 schematically.   

 

Figure 8.1. Considered problem 

 

 

 



41 

8.2. Governing Equations 

The governing equations for laminar, mixed convection fully developed flow 

under the assumptions explained in Chapter 4 and 6 are continuity, fluid motion and 

heat transfer equations. Brinkman-Extended Darcy law is used to examine porous 

section. Dimensional governing equations were given in Chapter 4 and Chapter 6. 

8.3. Boundary Conditions 

In this section, boundary conditions for pure fluid part and saturated porous section is 

given separately. The dimensional fluid motion equation (Equation 4.5) boundary 

conditions for pure fluid part are; 

On the left side; 

   (8.1) 

On the right side; 

  (8.2) 

 The dimensional boundary conditions for energy equation, Equation (4.8), can 

be written as; 

On the left side; 

  1)0( TT =  (8.3) 

On the right side; 

  (8.4) 

The dimensional fluid motion equation (Equation 6.2) boundary conditions for saturated 

porous part are; 

On the left side; 

  (8.5) 
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On the right side; 

   (8.6) 

 The dimensional boundary conditions for energy equation, Equation (6.3), can 

be written as; 

On the left side; 

  (8.7) 

On the right side; 

  2)( TbT =  (8.8) 
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CHAPTER 9 

FULLY DEVELOPED MIXED CONVECTION IN A 

CHANNEL PARTIALLY FILLED WITH POROUS 

MEDIA: DIMENSIONLESS GOVERNING EQUATIONS 

9.1. Definition of the Problem 

Fully developed mixed convection in a channel partially filled with porous 

media is investigated in this chapter dimensionless. The assumptions which are given in 

Chapter 4 are also valid for this chapter.  

 

Figure 9.1. Considered problem 
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9.2. Governing Equations 

The governing equations for laminar, mixed convection fully developed flow 

under the assumptions explained in Chapter 4 and 8 are continuity, fluid motion and 

heat transfer equations. Dimensional governing equations were given in previous 

chapter. These governing equations are non-dimensionalized in this chapter. 

9.2.1. Dimensionless Continuity, Fluid Motion and Energy Equations 

 The Equations (4.5) and (4.8) for clear fluid layer and (6.2) and (6.3) for porous 

layer are needed to be solved to obtain velocity and temperature distribution in the 

channel. By applying Boussinesq’s approximation and introducing dimensionless 

parameters given in Equation (5.1), dimensionless momentum and heat transfer 

equations can be written as in Equation (5.2) and (5.3) for pure fluid part. Using the 

same dimensionless parameters dimensionless governing equations for saturated porous 

part can be found as in Equation (7.2) and (7.3).   

9.3. Boundary Conditions 

In this section, boundary conditions for pure fluid part and saturated porous section is 

given separately. The dimensionless momentum equation (Equation 5.2) boundary 

conditions for pure fluid part are; 

On the left side; 

   (9.1) 

On the right side; 

  (9.2) 

 The dimensionless boundary conditions for energy equation, Equation (5.3), can 

be written as; 
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5.0Y = iU)5.0(U =
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On the left side; 

   (9.3) 

On the right side; 

  (9.4) 

The dimensionless fluid motion equation (Equation 6.2) boundary conditions for 

saturated porous part are; 

On the left side; 

  (9.5) 

On the right side; 

   (9.6) 

 The dimensionless boundary conditions for energy equation, Equation (6.3), can 

be written as; 

On the left side; 

  (9.7) 

On the right side; 

   (9.8) 

9.4. Solutions of the Governing Equations 

The dimensional governing equations are made dimensionless using the dimensionless 

parameters explained in Equation (7.1). The analytical solutions of the heat transfer and 

fluid motion equations for the left half part with clear fluid section using the boundary 

conditions given by Equation. (9.3) and (9.4) are obtained as follows; 

   (9.9) 
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   (9.10) 

where C5, C6 and C7 are constants and their values are presented in Appendix. Similarly, 

the temperature and velocity profiles equation for fluid saturated porous region can be 

obtained as:  

   (9.11) 

   (9.12) 

where C8, C9 and C10 and C11 are constants and their values are given in Appendix. pU

and cU  show velocity of fluid in clear fluid and porous regions. By using condition of 

continuous shear stress and heat flux at the interface, iU  and iθ which are interface 

velocity and temperature can be found as:  

  (9.13) 

  (9.14) 

where K is thermal conductivity ratio of the fluid to effective conductivity ratio of the 

porous medium andΓ  parameter still is needed to be evaluated. The conservation of 

mass in the channel can be expressed as: 

   

(9.15) 

The integration of Equation (9.15) yields Γ  value as:  
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where C18, C19, C20, C21, C22 and C23 are constants and they are defined in Appendix. 

 The results of these equations are given in Chapter 12.3.2.   

)YY(YCYCYUYCU ic 24
2

2
3

7
2

65 +−Γ+−++=

2/1)12(Y2 iip −−−= θθθ

111098 21 CYC))/Y(Ssinh(C)SYSsinh(CU p +−−−−=

)(S/sinhC))(S/sinh(C(S)sinhC
)(S)cosh(C)(S/sinhC))(S/sinh(C

U i 22
122

17
2

1615

1413
2

12

++
−−+

=

)1K(2
1K

i
+

−
−=θ

1
1

50

50

0
=∫+∫

.
dY)Y(U

.
dY)Y(U pc



47 

CHAPTER 10 

HEATFUNCTIONS 

 Heatfunction and heatlines are used to visualize and explain the path of the flow 

of energy. For a two-dimensional, incompressible and steady flow with neglecting 

viscous dissipation, heat flux vector in x and y directions respectively can be expressed 

as; 

      (10.1) 

    y
TkTTvCJ refpy ∂
∂

−−= )(ρ
   (10.2)

 

where  is reference temperature. In Cartesian coordinates, heat flux vector can be 

written as; 

         (10.3) 

For fully developed flow; 

        (10.4) 

Therefore, for fully developed flow and by assuming h as a continuous scalar function, 

the heatfunction can be written as; 

     (10.5) 
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The Equation (10.5) and (10.6) can be written in dimensionless form using 

dimensionless parameters in Equation (5.1) as; 
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    (10.7) 

   (10.8) 

where  is accepted as  and H is dimensionless heatfunction:  

    (10.9) 

and Peclet number which is a dimensionless number and defined as the ratio of 

advection of a physical quantity by the flow to the rate of diffusion of the same quantity 

can be expressed as:    

    (10.10) 

 Thermal conductivity plays an important role on definition of dimensionless 

heatfunction. There is no doubt that for the channel with completely clear fluid,  is the 

thermal conductivity of fluid ( ) and consequently  and

. Another important point in determination of heatfunction is the 

reference value for heatfunction. and  are dimensionless heatfunction and Peclet 

number for the clear fluid channel. In this study, the value of heat function at the origin 

is assumed zero, . The following equations can be written based on taking 

integral from Equation (10.7) and (10.8): 
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The heatfunction should be valid for the whole of domain. The value of )0(25C  can be 

found by applying Equation (10.12) for the origin: 
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The Eq (10.11) and (10.12) are also valid for Y = 0 surface, then 

   2624 )()0,( CXCXH f +=  (10.14) 

 

    )0()0,( 25CXXH f +=  (10.15) 

 

From the above equations, )(24 XC  can be found as:  

 

   2624 )( CXXC +=  (10.16) 

 

Therefore, the heatfunction can be expressed as: 

 

 26)2/1(),( CXdYPeUYXH f +++= ∫ θ
  (10.17) 

 

Therefore, heatfunction equation for channel with fully clear fluid can be obtained as:  
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The value of 26C  and integral constant are zero since . 

The Equations (10.7) and (10.8) are valid for dimensionless heatfunction in a 

channel with completely porous medium. However, the effective thermal conductivity 

of porous medium should be used for the definition of dimensionless heatfunction and 

Peclet numbers and consequently, and , where

 is effective thermal conductivity and can be described as . 

Similar to the procedure performed to obtain Equation (10.18), the heatfunction 

equation for the channel filled with fluid saturated porous medium can be obtained as: 
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where  are constants and the related equations are given in Appendix. 
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Similarly, for the channel with partially filled porous medium, the dimensionless 

heatfunction for the clear fluid region can be found from the following equation: 

 

    (10.20) 

  (10.21) 

 

Heatfunction differential equation for the porous medium region can also be found from 

the following equations:  

  (10.22) 

  (10.23) 

 

The comparison between the definitions of dimensionless heatfunction for clear 

fluid and porous medium filled regions (i.e.,  and

) show that the values of and   are not the same on the 

solid–fluid interface and a discontinuity exits. A point on the interface has two 

dimensionless heatfunction values due to different definitions of   and  . Finding 

a relation between   and   may be a solution for this difficulty. 
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By substituting Equation (10.24) into Equations (10.22) and (10.23), the following 

equations can be obtained for the porous medium region in the channel.  
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As seen, Equations (10.25) and (10.26), the heatfunction for porous region is 

defined based on the fluid thermal conductivity. By the other words, the fluid thermal 

conductivity is used to define dimensionless heatfunction in the entire channel, and no 

discontinuity of dimensionless heatfunction will be faced at the interface.  Similar 

method, used to find Equation (10.18), can be employed to determine dimensionless 

heatfunction for the clear and porous medium regions. Dimensionless heatfunction for 

the left half of the channel can be obtained as: 
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The dimensionless heatfunction for right half of the channel region is:  
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CHAPTER 11 

NUMERICAL APPROACH FOR THE SOLUTION OF 

GOVERNING EQUATIONS 

In this chapter, the numerical solution of governing equations by using finite 

difference method is explained. 101 nodes in Y or X directions are used in solving all 

governing equations. The employed nodal equations are given for each studied cases in 

following subsections. 

 
 

 

      
       
  

        
 

  
        

 
  

        
 

  
        

 
  

        
 

  
        

 
       
       
              

Figure 11.1 Node system used to solve the equations 

 

 In Figure 11.1, nodal system followed to obtained numerical solution can be 

seen. Distance between two cells is . Thus, central difference in y direction is 

 while central difference in x direction is

. 

11.1. Nodal Equations for Pure Fluid Channel 

Nodal equations of governing equations for pure fluid channel, which are given 

in Chapter 4, can be written as follows: 
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 For momentum equation, Equation (4.5): 
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(11.1) 

where A stands for Γ .For heat transfer equation, Equation (4.8): 

   (11.2) 

11.2. Nodal Equations for Fully Porous Channel 

For fluid motion equation, Equation (6.2): 
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whereA stands for Γ and  (11.4) 

For heat transfer equation, Equation (6.3): 

   (11.5) 

11.3. Nodal Equations for Partially Porous Channel 

Momentum equation for pure fluid section: 

 
))((

22
)1()1()( 2 avTiTgA

y
iuiuiu −+−

∆
−++

= βρµ
  

(11.6) 

Fluid motion equation for porous section: 

For fluid motion equation, Equation (6.2): 
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11.4. Elliptic PDEs 

In this section, an elliptic partial differential equation for dimensionless 

heatfunction is derived and numerical method to solve these PDEs is explained.  

Taking derivatives with respect to y and x from Equations (10.5) and (10.6) leads to: 

  (11.8) 

  (11.9) 

For mixed convection fully developed flow, . The summation of 

Equation (11.8) and (11.9) yields partial differential heatfunction equation: 

  (11.10) 

The above heatfunction equation, which is an elliptical partial differential equation, can 

be written in dimensionless form. 

  (11.11) 

where  is accepted as  . The solution of Equation (11.11) yields the distribution of 

heatfunction in the channel. The boundary conditions for heatfunction equation can be 

written by using Equations (10.7) and (10.8): 
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filled with porous medium, , and  are replaced with , for the left half 

of the channel, and the same parameters are replaced with ,  and for the right 

half of the channel. Then, can be written instead of . The value of  at the 

interface can be calculated by the following relation: 

 

 For    (11.16) 

 

The Equation(11.11) can be solved numerically by using the following nodal equation: 

 

  (11.17) 

 

where H is dimensionless heatfunction, for each case is given in Chapter 5, 7 and 9. 

Boundary conditions are given in Equation (11.12), (11.13), (11.14), (11.15) and 

(11.16) for elliptic PDE. Following same central difference method, these boundary 

conditions can be also evaluated numerically. 
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CHAPTER 12 

RESULTS AND DISCUSSIONS 

Three different channels are studied in this thesis. The first channel is filled with 

completely pure fluid; the second one is completely filled with fluid saturated porous 

medium. A porous layer exists in the half of the third channel while another half is filled 

with pure fluid. Obtained results of the studied problems explained in previous chapters 

are given in this chapter.  Results are explained for each chapter in separate subheadings 

and discussions are made. First, the results for pure fluid channel are which is 

investigated in Chapter 4 and 5, discussed dimensionally in section 12.1.1 and 

dimensionless in section 12.1.2. Completely filled porous channel is analyzed 

dimensional and dimensionless in section 12.2.1 and 12.2.2 separately. Then, partially 

filled porous channel is discussed in section 12.3.1 and 12.3.2. Finally, heatfunctions 

are discussed in section 12.4. 

12.1. Obtained Results for Fully Clear Channel 

Discussions for fully clear channel are studied in this subsection.  

12.1.1. Dimensional Results 

The momentum and heat transfer equations are solved numerically. The 

numerical solution procedure is explained in Chapter 10. The considered channel is 

shown in Figure 4.1. 2T temperature is kept constant at 100 0C degree and 1T   is changed 

from 0 to 80 0C. Velocity is also taken as 0.2 m/s. The gap is taken 25 and 50mm. Using

, Grc/Re values are calculated for four different 1T

temperatures and it is given in Table 12.1.  As it can be seen from Table 12.1, a 

decrease of temperature difference between plates results in decrease of Grc/Re ratio 

which means buoyancy effects lose their effectiveness with decrease of temperature 

difference.  

23
12 /)( νβ bTTgGrc −=
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Table 12.1.Grc/Re values for different cold temperatures while the gap is 25 mm 

Tc [0C] Th [0C] Velocity [m/s] Grc/Re 

0 100 0.2 530 

40 100 0.2 270 

60 100 0.2 166 

80 100 0.2 77 

99 100 0.2 3 

 

Figure 12.1. Dimensional velocity profiles for different Grc/Re values in a vertical 
channel while the gap between plates is 25 mm 

 

Figure 12.1 shows the velocity profiles for different values of Tc temperature in 

a vertical channel where the gap between plates, b, is 25 mm. Th value is kept at 100 0C. 

As it can be seen from the figure, with decreasing temperature difference which causes 

decreasing in Grc/Re ratio, the buoyancy effects decreases. Therefore, forced convection 

becomes dominant and a parabolic velocity profile occurs. However, the increase of 

temperature difference (e.g. ∆T = 100 0C) causes the increase of buoyancy effect and 



58 

consequently Grc/Re ratio increases. That is why flow reversal is seen near cold plate 

due to fixed flow rate.  

 
Figure 12.2. Dimensional velocity profiles for different Grc/Re values in a vertical 

channel while the gap between plates is 50 mm 
 

Table 12.2 Grc/Re values for different cold temperatures while the gap is 50 mm 

Tc [0C] Th [0C] Velocity [m/s] Gr/Re 

0 100 0.2 2112 

40 100 0.2 1080 

60 100 0.2 666 

80 100 0.2 309 

99 100 0.2 14 

 

Figure 12.2 also shows velocity profile in the channel for different values of 

Grc/Re. However, the gap between plates, b, is taken 50 mm this time. T1 temperature is 

changed from 0 to 99, as seen on Table 12.2 while T2 value is kept constant. The 

variation of velocity profile with Grc/Re is similar with Figure 12.1. By decreasing of 

temperature difference between two walls, the buoyancy effect decreases, forced 

convection become dominant and a parabolic velocity profile occurs. However with 
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increasing of temperature difference reverse flow occurs. Although variation of velocity 

profile similar with Figure 12.1, the maximum velocity values are higher than Figure 

12.1 as a result of high Grc/Re numbers due to increasing gap, 50 mm, between plates 

because using the definition of Grc dimensionless number, we can see that increasing 

gap between plates means increasing Grc number and increasing Grc number means 

more effective buoyancy forces. Thus, with increasing gap between plates, buoyancy 

forces are getting stronger and therefore, velocity near hot plate increases due to 

increasing Grc number.  

 
 

 (a)  (b) 

Figure 12.3. Change of pressure gradient with Grc/Re numbers for pure fluid channel   
a) The gap is 25 mm b) The gap is 50 mm 

 

Figure 12.3 shows pressure gradient along the channel for different values of 

Grc/Re and the gap between plates. The gap is taken as 25 and 50 mm. As seen from 

Figure 12.3(a), the pressure gradient along the channel is nearly the same with a change 

of Grc/Re value. However, the pressure gradient increases along the channel with a 

change of the gap between plates, b. The pressure gradient values in a channel with a 

gap of 25 mm are approximately ten times greater than the gradient of the channel with 

gap of 50 mm. 

12.1.2. Dimensionless Results 

In this subsection, the results of the dimensionless study defined in Chapter 5 are 

given and discussions are made. The considered channel is given in Figure 5.1. The 
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flow in the channel is thermally and hydrodynamically laminar. For the presented 

results M = 1, the value of Gr/Re number is changed from 0 to 750. The Equations (5.2) 

and (5.3) which are motion equation and heat transfer equation described in detail in 

Chapter 5 are considered and the solution of these equations which are Equation (5.8) 

and (5.9) are used to obtain results.   

 

Figure 12.4. Comparison of dimensional and dimensionless study for pure fluid 
channel, Grc/Re = 14 

 

Figure 12.4 shows the comparison between the dimensional and dimensionless 

study. For Grc/Re = 14, the dimensional results represented in section 12.1.1 by Figure 

12.2 are made dimensionless by using parameters defined by Equation (5.1). Then, the 

dimensionless form of Figure 12.2 for Gr / Re = 14 is presented in Figure 12.4. 

Moreover, the velocity expressions represented by Equation (4.5) and analytically found 

for dimensionless differential equation of motion equation (Equation 5.9) are used and 

dimensionless velocity profile is plotted for Gr / Re = 14 in the same figure. As seen, 

there is a good agreement between the analytical values and numerical values based on 

the dimensional results. 
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Figure 12.5. The change of velocity profile with Grc/Re numbers for pure fluid channel, 
dimensionless study 

 

The change of dimensionless velocity profile with Grc/Re number is seen from 

Figure 12.5. The velocity profile is parabolic when Grc/Re number is zero where the 

buoyancy force does not exist. When the buoyancy effect is not effective, the force 

convection is the only dominant heat transfer mechanism, and a parabolic velocity 

profile is observed for Grc/Re numbers. However, with increasing Grc/Re number, the 

temperature difference between the parallel plate increases and the velocity of flow near 

hot plate becomes higher than the flow near cold plate. Thus, a flow reversal is seen due 

to the fixed flow rate. 

12.2. Obtained Results for Channel Completely Filled with Porous 
Medium 

As it is discussed in Chapter 6 and 7, the same channel studied in Chapter 4 and 

5 is studied again but this time the studied channel is filled with porous media.  The 

governing equations are continuity, Brinkman-Darcy fluid motion equation and heat 

transfer equations. These equations are solved for a case (i.e. ) and CTCT hc 8000 ==
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then made dimensionless using the dimensionless parameters, as it is explained in 

Chapter 5. Then, a comparison between dimensional and dimensionless study and 

discussions are made in following subsections.  

12.2.1. Dimensional Study 

 
Figure 12.6. Dimensional study for fully filled porous channel, b=67 mm, K=0.40 (m2) 

 

Figure 12.6 shows velocity profile of the dimensional study for fully porous 

channel. The gap between plates is taken 67 mm. The temperature of the cold plate is 0 
oC while the hot plate is kept at 800 oC. 2.5 mm square bars are placed in the channel 

with the 4.2 mm distance. Using the Equation (3.3), the permeability, K, is calculated as 

0.40 and Darcy number is calculated as 2.49x10-5. As a result of high temperature 

differences which mean strong buoyancy forces, flow reversal is seen near the cold 

plate due to fixed flow rate. 
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Figure 12.7. Dimensional study for fully filled porous channel, b=33.5 mm, K=0.40 

(m2) 
 

 Figure 12.7 shows the same channel of Figure 12.6 but the gap between plates is 

taken as 33.5 mm. The square bars and gap between square bars are kept the same but 

the change in gap results in the change of Darcy number. The change of gap between 

the plates reduces Da number to 9.95x10-5. The velocity decreases due to obstacles in 

the porous medium. Compared to the Figure 12.6, the velocity along the channel 

decreases because the distance between the parallel plates is reduced. Darcy number is 

decreased which means that the fluid cannot flow in the channel easily due to smaller 

distance between the parallel plates.  

Figure 12.8 shows pressure gradient along the channel for different values of 

Grc/Re and the gap between hot and cold plates. The gap is taken as 33.5 and 65 mm. 

Porosity is taken as 0.40 m2. As seen from the both lines in Figure 12.8, the pressure 

gradient along the channel is nearly the same with a change of Grp/Re value. However, 

the pressure gradient increases along the channel with a change of the gap between 

plates, b.  
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Figure 12.8. Pressure gradient along the fully porous channel 

12.2.2. Dimensionless Study 

 

Figure 12.9. Comparison of dimensional and dimensionless study for fully porous 
channel, Grp/Re=20000 

 

 Figure 12.9 shows comparison of the dimensional and dimensionless study for 

fully porous channel. Dimensional results given in section 12.2.1 by Figure 12.6 are 

made using dimensionless parameters given in Equation 7.1. Grp/ Re value is calculated 

as 20000 for aforementioned problem and dimensionless form of Figure 12.6 is 

presented in Figure 12.9. Analytical expression for velocity distribution (Equation 6.2) 

and analytical solution of velocity distribution (Equation 7.9) are plotted in Figure 12.9.  
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As it can be seen on figure, there is a great agreement between dimensional and 

dimensionless study. 

 

Figure 12.10. The change of velocity profile with Grp/Re numbers for fully porous 
channel while Da=10-2, dimensionless study 

 

 Figure 12.10 shows the change of dimensionless velocity profiles with different 

Grp/Re values when Da= 10-2. As seen on figure, when the force convection is 

dominant, which means Grp/Re value is low, no reversal flow occurs due to negligible 

buoyancy forces. However, with increasing Grp/Re value, which means buoyancy forces 

becomes effective and natural convection is not negligible anymore, the flow reversals 

are seen near cold plate while increasing velocity near the hot wall. It should be 

reminded that a fixed mass flow rate is considered for the all presented results. 
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Figure 12.11. The change of velocity profile with Grp/Re numbers for fully porous 
channel while Da=10-4, dimensionless study 

 

 Figure 12.11 is almost the same with Figure 12.10,but the value of Da is 

changed as Da=10-4. The reduction of Da number from 0.01 to 0.0001 considerably 

changes the shape of velocity profile, if Figure 12.11 is compared with Figure 12.10.  

By decrease of Da value, the fluid cannot flow easily in the channel due to denser 

distribution of obstacles in the channel. Again, as it is seen from Figure 12.10, the 

dimensionless velocity profile is parabolic for the low values of Grp/Re such as value 

Grp/Re = 0.01 A parabolic velocity profile is also expected on Figure 12.11,however the 

velocity profiles become flatten due to obstacles in the channel when Grp/Re=0.01 and 

1. 

12.3. Obtained Results for Channel Partially Filled with Porous 
Medium 

 In this subsection, results of Chapter 8 and 9 are discussed. The results of 

dimensionless and dimensional studies are presented. A sample study for different cases 

of a thermal conductivity ratio is given in Table 12.3. All values are taken for 27 ℃. 
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Table 12.3. A sample study for thermal conductivity ratio, K 

Material kfluid ksolid ε keff K 
Mercury - Magnesium 8,54 1024 0,4 617,82 0,01 

Mercury - Aluminum foil 8,54 0,000017 0,1 0,85 10 
Engine Oil - Aluminum foil 0,143 0,000017 0,02 0,003 50 

Water - Aluminum foil 0,0263 0,000017 0,01 0,0001 100 

12.3.1. Dimensional Study 

 

Figure 12.12. Velocity profile of dimensional study for partially filled porous channel 
while K= 3.7x10-4, Da = 2.3287x10-5, Grc/Re = 8.45x109 

 
 Figure 12.12 shows the velocity profile of dimensional study of a partially filled 

porous channel. The temperatures of the left and right plates are taken as 0oC and 800oC 

respectively. Thermal conductivity ratio (i.e., K) is calculated as 3.7x10-4, permeability 

is found as 10.05x10-7, while the Darcy number is 2.3287x10-5 and Grc/Re ratio is 

8.45x109. The right half part of the channel is filled with porous medium. The porous 

material is taken as aluminum. Porosity is calculated as 0.40, thermal conductivity of air 

is 0.0525 W/mK at film temperature. As it is seen from Figure 12.12, the fluid velocity 
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in the right half side of the channel is very low due to the obstacles in the channel. 

However, the fluid can flow easily as there is no restriction or obstacle in the left part of 

the channel. 

 

 

Figure 12.13. Velocity profile of dimensional study for partially filled porous channel 
while K= 0.6034, Da = 2.3287x10-5, Grc/Re = 8.45x109 

 

 Figure 12.13 shows the same channel with the Figure 12.12 but this time, the 

porous material is taken as polystyrene whose thermal conductivity ratio is lower than 

aluminum. Thermal conductivity ratio (i.e. K) is calculated as 0.6034. Porosity and 

thermal conductivity ratio of the air is kept constant. Da and Grc/Re is also not changed. 

As it is seen, the change of thermal conductivity ratio affects the velocity profile; 

velocity is decreased in the channel. The change in thermal conductivity ratio affects the 

temperature along the channel which affects the buoyancy effect. Therefore, the rate of 

flow reversal decreases.  
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Figure 12.14. Velocity profile of dimensional study for partially filled porous channel 
while K= 0.6034, Da = 2.3287x10-5, Grc/Re = 2.1213x109 

 

 The gap between plates is reduced to 33.5 mm in Figure 12.14. All other 

properties are kept constant with Figure 12.13.Therefore, Figure 12.14 shows that a 

decrease of the gap between hot and cold plates results in decrease in Grc/Re ratio. 

Thus, this results in decrease of buoyancy effects in the channel. That’s why velocity is 

decreased in the left part of the partially filled channel due to reduced Grc/Re compared 

to Figure 12.13.  

12.3.2. Dimensionless Study 

 Validation of the dimensionless study using numerical methods can be 

seen on Figure 12.15. Dimensional results given in section 12.3.1 by Figure 12.13 are 

made using dimensionless parameters given in Equation 7.1. The thermal conductivity 

ratio K= 0.6034, Da = 2.3287x10-5, Grc/Re = 8.45x109 is found and dimensionless form 

of Figure 12.13 is presented in Figure 12.15. Analytical expression for velocity 

distribution for clear fluid and porous layer (Equation 4.5 and 6.2) and analytical 

solution of velocity distribution (Equation 5.2 and 7.9) are plotted in Figure 12.15. A 

good agreement between dimensional and dimensionless study is observed. 
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Figure 12.15. Comparison of dimensional and dimensionless study for partially filled 
porous channel 

 

  

a) b) 

Figure 12.16. Velocity profile for partially porous channel, dimensionless study, 
K=0.05, Da=10-4, Grc/Re=2000, a) velocity profile b) temperature 
distribution 

 

 Figure 12.16 shows the dimensionless velocity profile for partially porous filled 

channel for K=0.05, Da=10-4 and Grc/Re=2000. The thickness of the porous layer is 0.5 

while the channel thickness is 1. As seen from the Figure 12.16, the temperature in the 

right half of the channel is uniform due to high effective thermal conductivity of porous 

medium. Consequently, the interface temperature almost same with hot plate and a 

linear temperature change is observed in the left half of the channel. The velocity is 
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small in the right region due to low value of Darcy number and a reverse flow occurs in 

the left half of the channel due to high buoyancy effect. 

 

  

a) b) 

Figure 12.17. Velocity profile for partially porous channel, dimensionless study, 
K=0.05, Da=10-4, Grc/Re=1, a) velocity profile b) temperature 
distribution 

 

 Figure 12.17 shows the velocity profile for channels partially filled with porous 

medium. The thickness of the porous layer is 0.5 while the channel thickness is 1. The 

right half of the channel is filled with porous medium while the pure fluid flows in the 

left half of the channel. Figure 12.17 shows the velocity profile and temperature 

distribution for the channel with Grc/Re= 1, and   which refers to 

high effective thermal conductivity of porous medium compared to that of clear fluid. 

As seen from this figure, the right half of the channel, filled with high conductive 

porous medium, is hot. The value of Grc/Re= 1 refers to the strong forced convection 

heat transfer in the channel. The value of Darcy is low (i.e. 10-4) and that is why a 

parabolic velocity profile occurs in the left half of the channel. The fluid flow in the 

right half of the channel is small compared to left side due to the low value of Darcy 

number. 

410−=Da 05.0=k
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a) b) 

Figure 12.18. Velocity profile for partially porous channel, dimensionless study, K=100, 
Da=10-4, Grc/Re=1, a) velocity profile b) temperature distribution 

 

 The velocity profile and temperature distribution in the channel with Grc/Re= 1, 

is shown in Figure 12.18. However,   which refers to high effective thermal 

conductivity of clear fluid compared to that of porous medium. As seen, a linear 

temperature distribution is observed in the right half of the channel while temperature is 

uniform in the left half due to the high thermal conductivity of pure fluid compared to 

the effective thermal conductivity of porous medium region. The velocity is small in the 

right half of channel while a parabolic velocity profile is observed in the left half. 

 

  

a) b) 

Figure 12.19. Velocity profile for partially porous channel, dimensionless study, K=100, 
Da=10-4, Grc/Re=2000, a) velocity profile b) temperature distribution 

100=k
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 The parameters of Figure 12.19 are the same with the parameters of Figure 

12.18, except Grc/Re is 2000 which refers to high buoyancy forces. As seen from Figure 

12.19, the temperature linearly changes in the right half of the channel and it is uniform 

in the left half as = -0.5. No buoyancy effect exists in the left half of channel since 

both the left wall and interface are at  = -0.5. A parabolic velocity profile occurs in 

this region due to the fixed inlet mass flow rate. 

  

a) b) 

Figure 12.20. Velocity profile for partially porous channel, dimensionless study, 
K=0.05, Da=10-2, Grc/Re=1, a) velocity profile b) temperature 
distribution 

 

 Figure 12.20 shows the velocity profile for same channels partially filled with 

porous medium with Figure 12.17. However, in Figure 12.20, Darcy number is 

increased to   10-2. The thickness of the porous layer is 0.5 while the channel thickness 

is 1 too and also, the right half of the channel is filled with porous medium while the 

pure fluid flows in the left half of the channel. Figure 12.20 shows the velocity profile 

and temperature distribution the channel with Grc/Re= 1, and which refers to 

high effective thermal conductivity of porous medium compared to that of clear fluid. 

As seen from this figure, the right half of the channel, filled with high conductive 

porous medium, is hot. The value of Grc/Re= 1 refers to the strong forced convection 

heat transfer in the channel. The value of Darcy is higher than Figure 12.17 that’s why 

flow in the right half of the channel is increased compared to right side of Figure 12.17 

due to the increased value of Darcy number. 

 

θ

θ

05.0=k
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a) b) 

Figure 12.21. Velocity profile for partially porous channel, dimensionless study, 
K=0.05, Da=10-2, Grc/Re=2000, a) velocity profile b) temperature 
distribution 

 

 Figure 12.21 shows the dimensionless velocity profile for partially porous filled 

channel for K=0.05, Da=10-2 and Grc/Re=2000. The channel and assumptions are same. 

However, in Figure 12.21, Darcy number is increased to 10-2 from 10-4. As seen from 

the Figure 12.21, the temperature in the right half of the channel is uniform due to high 

effective thermal conductivity of porous medium. Consequently, the interface 

temperature almost same with hot plate and a linear temperature change is observed in 

the left half of the channel. The velocity is increased in the right region due to higher 

value of Darcy number and that’s why a reverse flow occurs in the left half of the 

channel is higher due to high buoyancy effect and higher Darcy number. 
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a) b) 

Figure 12.22. Velocity profile for partially porous channel, dimensionless study, K=100, 
Da=10-2, Grc/Re=1, a) velocity profile b) temperature distribution 

 

 Figure 12.22 is same study with Figure 12.18 with a difference of Darcy number. 

As it is seen, an increase in Darcy number results in fluid flows easier on the right half 

of the channel. That’s why velocity increases in the right half of the channel.  

 

  

a) b) 

Figure 12.23. Velocity profile for partially porous channel, dimensionless study, K=100, 
Da=10-2, Grc/Re=2000, a) velocity profile b) temperature distribution 

 

 The parameters of Figure 12.23 are the same with the parameters of Figure 

12.19, except Darcy number which is 10-2. As seen from Figure 12.23, the temperature 

linearly changes in the right half of the channel and it is uniform in the left half as = -

0.5. Buoyancy effect exists in the left half of channel since Darcy number is increased 

θ



76 

compared to the Figure 12.19. This results in increase of velocity in the right half of the 

channel. 

12.4. Heatline Patterns 

12.4.1. Results and Discussion 

Both numerical and analytical results (the velocity profile, temperature and 

heatfunction distribution) were found and compared for all presented results. The 

numerical and analytical results are identical when 101x101 number of nodes is used in 

the numerical approach. Furthermore, the velocity profiles are also compared with the 

profiles reported in literature. For instance, the velocity profiles of the present work and 

the profiles reported by Aung and Worku (1986) for the channels with clear fluid and by 

Degan and Vasseur (2002) for the channels filled with fluid saturated porous medium 

are compared and good agreement between the results are observed. 

12.4.2. Heatline Patterns in the Channel with Pure Fluid Flow 

Figure 12.24 shows the velocity profile, temperature distribution and heatline 

patterns in a channel with two values of of 1 and 400, and three Peclet numbers 

of 0.01, 1 and 5. The velocity profile and temperature distribution are shown in the first 

columns while the heatline patterns are in the second, the third and fourth columns for 

three Peclet numbers of 0.01, 1 and 5, respectively. The velocity profile, temperature 

distribution and heatline patterns for the channel with  =1 are shown in the first 

column of Figure 12.24(a). Forced convection is dominant and velocity profile is almost 

parabolic and a linear temperature variation exits in the channel. The heatline patterns in 

the channel with Peclet number of 0.01 are not affected from fluid flow and heat path is 

almost horizontal. By increasing of Peclet number from 0.01 to 1, the heatline patterns 

are considerably changed and the convection heat transfer becomes stronger. For Pe = 1, 

the heatlines are not horizontal and the effect of vertical convection transport can be 

observed. The convection heat transport in vertical direction is improved for the channel 

with Pe = 5.  Heat takes a long distance in vertical direction to be transferred from the 

right to left wall. It should be mentioned that the maximum heatfunction value at the left 

Re/Grc

Re/Grc
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wall, showing the dimensionless heat transfer from the right to left wall, is  Hmax = 2 for 

three Peclet numbers, as expected. Figure 12.24(b) shows the velocity profile, 

temperature distribution, and heatline patterns in a channel with  = 400 for the 

same Peclet numbers of Figure 12.24(a). The increase of  ratio, increases mass 

flow in upward direction and that is why a reverse flow occurs in the channel. The 

comparison of Figure 12.24(a) and 12.24(b) shows that the change of velocity profile in 

the channel does not affect heatline distribution in the channel for Pe = 0.01 since the 

conduction heat transfer from the right to left wall is the dominant mode of heat 

transport between two plates and heat moves horizontally from the right to left wall. For 

Pe = 1, the effects of the convection mode of heat transport and the effect of reverse 

flows on heatline patterns can be observed. Heat is separated from the right wall and 

goes in upward direction due to the strong convection. After a distance, the direction of 

heat transport is changed and heat flows in downward direction due to the reverse flow 

and finally it is received by the left wall. Further distortion of heatline patterns can be 

observed in the channel with Pe = 5. In the channels with high value of Peclet number 

(i.e., Pe = 5), for which convective heat transport is dominant, heatline patterns are 

highly affected from fluid flow. It should be mentioned that for the clear fluid channel 

with  = 400, the dimensionless heat transfer rate is 2 since a linear temperature 

distribution exists in the channel. 

 

Re/Grc

Re/Grc

Re/Grc
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 Pe=0.01 Pe=1 Pe=5 

(a) 

    
 Pe =0.01 Pe=1 Pe=5 

(b) 
 

Figure 12.24. Velocity profile (the first column) , temperature profile (the second 
column) and heatline patterns for Pe = 0.01, 1 and 5 (the third, fourth and 
fifth columns, respectively) in channel with clear fluid, a) Grc/Re = 1, b) 
Grc/Re =400 

12.4.3. Heatline Patterns in the Channel Filled with Fluid Saturated 
Porous Media 

Figure 12.25 shows the velocity profile, temperature distribution and heatline 

patterns in a porous medium filled channel with  = 10-4 and two values of  Da Re/Grp
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as 0.01 and 5. It shows the heatline patterns for three Peclet numbers of 0.01, 1 and 5. 

Similar to the Figure 12.24(a), for low values of = 0.01, forced convection is 

dominant and a symmetrical velocity profile is observed in the channel. For the low 

values of Peclet number (i.e. Pe = 0.01), the conduction mode of heat transfer from the 

right to left wall is dominant and heat flows horizontally. By increasing of Peclet 

number from 0.01 to 1.0, the convection in vertical direction affects heatline patterns 

and heat separated from the right wall takes a vertical distance to be received by the left 

wall. The effect of vertical flow on heatline patterns is clearly observed in the channel 

with Pe = 5 in which a strong convective transport exists. Figure 12.25(b) shows that by 

increasing of  from 0.01 to 5, a reverse flow occurs in the channel. This 

reversal flow does not affect heatline patterns for the channel with Pe = 0.01 due to 

strong heat conduction from the right to left wall. However, the heatline distribution in 

the channel with Pe = 5 is highly influenced from the reverse flow due to the 

encountering effect of convection heat transport in vertical direction. 

Figure 12.26 compares the velocity and heatline patterns in the channel with clear fluid 

( =1) and the channel completely filled with saturated fluid porous medium        

(  = 0.01, ) when Pe = 5. The velocity profile of the channel with 

completely porous medium is flattened due to the obstacles in the porous medium. The 

temperature variation for both channels is identical, and temperature linearly changes 

from right to the left wall. Figure 12.26(b) compares the heatline patterns of the both 

channels. As seen, there is difference in heatline patterns due to small changes in the 

velocity profiles. This figure shows that for high values of Peclet number, how the small 

changes in velocity profile can affect heatline patterns. 
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Figure 12.25. Velocity profile (the first column) , temperature profile (the second 
column) and heatline patterns for Pe = 0.01, 1 and 5 (the third, fourth 
and fifth columns, respectively) in channel filled with saturated porous 
medium, a) Grp/Re = 0.01, b) Grp/Re = 5 

  

    
 Pe =0.01 Pe=1 Pe=5 

(a) 
 

    
 Pe =0.01 Pe=1 Pe=5 

(b) 

 



81 

 
 

(a)                                                         (b) 

Figure 12.26. Comparison of heatline for clear fluid (Grc/Re=1) and completely porous 
medium channel (Grp/Re = 0.01, Da=10-4) when Pe = 5 a) velocity 
profile b) heatline patterns 
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12.4.4. Heatlines Patterns in the Channel Partially Filled with 
Saturated Porous Media 

Figure 12.27 shows the velocity profile, temperature distribution and heatline 

patterns for channels partially filled with porous medium. The thickness of the porous 

layer is 0.5 while the channel thickness is 1. The right half of the channel is filled with 

porous medium while the pure fluid flows in the left half of the channel. Figure 12.27(a) 

shows the velocity profile, temperature distribution an heatline patterns for the channel 

with  = 1,  and  which refers to high effective thermal 

conductivity of porous medium compared to that of clear fluid. As seen from this figure, 

the right half of the channel, filled with high conductive porous medium, is hot (  = 

0.5) and temperature is almost uniform. The dimensionless temperature is linearly 

changes from 0.5 to -0.5 in the right half of the channel. The value of = 1 refers 

to the strong forced convection heat transfer in the channel. The value of Darcy is low 

(i.e. ) and that is why a parabolic velocity profile occurs in the left half of the 

channel. The fluid flow in the right half of the channel is small compared to left side 

due to the low value of Darcy number. For Pe = 0.01, the conduction mode of heat 

transfer from the right to left wall is dominant and that is why heat flows horizontally 

from the hot to cold wall. By increasing of Peclet number from 0.01 to 1, the direction 

of heat flow in the right half region is not changed. The convection strength in vertical 

direction is weak while the conduction heat transport from the right wall to the interface 

is strong. That is why, heat flows horizontally in the right half of channel. In the left 

half of the channel, the effect of convection heat transfer in vertical direction is 

considerably higher that the conduction heat transfer in horizontal direction. The path of 

heat transfer is changed in the left region of channel.  Heat flows upward due to the 

strong convection effect while it flows towards the cold wall and finally it is received by 

the left wall. By increasing of Peclet number from 1 to 5, the heat path does not change 

in the right half of the channel due to the strong conduction mode of heat transfer from 

the right wall toward the interface.  However, in the left half of region, heat takes a 

longer distance in vertical direction due to the strong convection heat transfer in vertical 

direction. The maximum value of dimensionless heatfunction at the left wall is 3.81 

indicating that by inserting of high conductive porous layer heat transfer rate from the 

right to left increase. 

Re/cGr 410−=Da 05.0=k

θ

Re/cGr

410−=Da
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The velocity profile, temperature distribution and heat flow patterns in the 

channel with  = 1,  and  are shown in Figure 12.27(b). The 

heatline patterns are plotted for three different Peclet numbers of 0.01, 1 and 5. As seen 

from the first column, a linear temperature distribution is observed in the right half of 

the channel while temperature is uniform in the left half (i.e., = -0.5) due to the high 

thermal conductivity of pure fluid compared to the effective thermal conductivity of 

porous medium region. The velocity is small in the right half of channel while a 

parabolic velocity profile is observed in the left half. For low Peclet number of 0.01, the 

heat flow is horizontal from the hot to cold wall. For Pe = 1, in the right half of channel, 

the conduction heat transport in horizontal direction from the right wall to interface is 

weak and it is comparable with convective heat transport in the vertical direction. That 

is why; heat separated from the right wall moves vertically due to the convective heat 

transport and then it moves toward the interface. In the left half of channel, the 

convection heat transport in vertical direction (i.e., thermal energy transported in 

vertical direction) is comparable with the conduction heat transport in horizontal 

direction since the fluid thermal conductivity is high. Hence, heat moves vertically 

when it moves toward the left wall. By increasing Peclet number from 1 to 5, the same 

heat transport paths are valid. However, the heatlines becomes more vertically due to 

the stronger convection heat transport in vertical direction. The maximum 

dimensionless heatfunction at the left wall is 0.04 showing inserting of porous layer 

with low thermal conductivity reduces heat transfer between walls.  
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 Pe=0.01 Pe=1 Pe=5 

(a) 

    

 Pe=0.01 Pe=1 Pe=5 

(b) 
Figure 12.27. Velocity profile (the first column) , temperature profile (the second 

column) and heatline patterns for Pe = 0.01, 1 and 5 (the third, fourth and 
fifth columns, respectively) in channel filled with saturated porous 
medium, Grc/Re= 1, Da=10-4  a) K = 0.05, b) K=100 

 

Figure 12.28(a) shows the velocity profile, temperature distribution and heatline 

patterns in the channel with  = 2000 and when . Similar to 

the Figure 12.26, the heatline patterns are plotted for Peclet numbers of 0.01,1 and 5. As 

seen from the first column of the Figure 12.28(a), the temperature in the right half of the 

channel is uniform as = 0.5 due to high effective thermal conductivity of porous 

Re/cGr 410−=Da 05.0=k

θ
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medium. Consequently, the interface temperature is = 0.5 and a linear temperature 

change is observed in the left half of the channel. The velocity is small in the right 

region due to low value of Darcy number and a reverse flow occurs in the left half of 

the channel due to high buoyancy effect. The second column of Figure 12.28(a) shows 

heatline patterns in the channel when Pe = 0.01. As expected, heat is transported 

horizontally from the hot to the cold wall for Pe = 0.01. For Pe = 1, heat transfers 

horizontally in the right half of the channel is comparable with due to the considerable 

conduction heat transport from the right wall to the interface. Then, it moves upward in 

the left half of the channel due to the strong convective heat transport and attains a 

maximum point. After this point, heat moves downward due to the reverse flow occurs 

in the region close to the cold wall. By increasing of Peclet number from 1 to 5, the 

effect of convection heat transfer in vertical direction increases and heat moves a long 

distance in the vertical direction in the left half of the channel.  

The parameters of Figure 12.28(b) are the same with the parameters of Figure 

12.27(b), except thermal conductivity ratio which is 0.01 refers to low thermal 

conductivity of the right half compared to the left one. As seen from the first column of 

Figure 12.28(b), the temperature linearly changes in the right half of the channel and it 

is uniform in the left half as = -0.5. No buoyancy effect exists in the left half of 

channel since both the left wall and interface are at = -0.5. A parabolic velocity profile 

occurs in this region due to the fixed inlet mass flow rate. For Pe = 0.01, as expected, 

the heat transport is horizontally. For Pe = 1, in the right region, the convection heat 

transport in vertical direction is higher than conduction heat transport in horizontal 

direction. It should be reminded that in the right half of the channel, the conduction heat 

transfer from the right wall to the interface is weak due to the low effective thermal 

conductivity of porous medium.  That is why; heat moves a distance in vertical direction 

when it goes towards the interface. After passing of heat from the interface, in the left 

half of the channel, heat moves more horizontally due to high conduction heat transfer 

from the interface to the left wall. The same comments are valid for the channel with Pe 

= 5, however the effect of upward flow on heatline patterns increases as seen from the 

fourth column of Figure 12.28(b).  

θ

θ
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 Pe=0.01 Pe=1 Pe=5 

(a) 

    
 Pe=0.01 Pe=1 Pe = 5 

(b) 

Figure 12.28. Velocity profile (the first column) , temperature profile (the second 
column) and heatline patterns for Pe = 0.01, 1 and 5 (the third, fourth 
and fifth columns, respectively) in channel filled with saturated porous 
medium, Grc/Re=2000, Da=10-4  a) K = 0.05, b) K=100 
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CHAPTER 13 

CONCLUSION 

In this thesis, heat transfer enhancement in a vertical channel filled with a clear 

fluid, fully porous media and partially porous media is investigated. Firstly, fluid and 

heat flow in clear channel is solved both dimensional for a specific case and 

dimensionless and analytical expressions are given in separate sections. Following 

analytical expressions, each problem is solved dimensional and dimensionless 

numerically. Dimensional results are compared with analytical equations and 

dimensionless numerical results. As it is given in Chapter 12, a great agreement 

between analytical and numerical results is obtained between each solution. All these 

steps are done for each studied case; clear fluid channel (Chapter 4 and 5), fully porous 

channel (Chapter 6 and 7) and partially filled channel (Chapter 8 and 9) as they are 

explained in separate chapters.  

The occurrence of flow reversals along the channel is highly affected by a 

change of Gr/Re value. Increase of Gr/Re value increases the possibility of flow 

reversals, as buoyancy force gets effective along the channel and therefore, flow 

reversal occurs due to fixed flow rate. Another conclusion can be made is porous media 

decreases the possibility of flow reversal occurrence. For instance, in pure fluid channel, 

0 oC and 100 oC cold and hot plate temperatures respectively is enough to visualize flow 

reversals in the channel. However, the hot plate temperature should be increased to 800 
oC in completely and partially filled porous channels to visualize flow reversals in the 

channel. It also can be concluded that it is possible to prevent flow reversals by using 

porous media in the channel.  

Following to obtaining velocity profiles by solving momentum equations, two 

dimensional heatfunctions are solved to obtain heat transport along the channel. It is 

observed that the use of heatfunction concept can explain the competition between the 

horizontal conduction heat transport and vertical convection mode of heat transfer in the 

channel. The equations needed to be solved to visualize heat transport are explained in a 

detail in Chapter 10.  
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Several conclusions can be made about heat transport along the channel. First of 

all, Peclet number is one of the parameters that affect heat transfer along the channel. 

For low Peclet numbers, heatline patterns are horizontal while heatline patterns take a 

vertical distance along the channel. The heat transfer is highly affected by velocity 

profile at high Peclet numbers since convection is the main driven mechanism. 

However, at low Peclet numbers, velocity profile does not affect heat patterns since 

conduction is the main driven heat transfer mechanism. What is more, the use of 

heatfunction for analyzing of heat and fluid flow problems also shows the 

dimensionless heat transfer rate through the channel. Thus, the increase or decrease of 

heat transfer through the channel can be predicted. 
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