

ORDER BASED LABELING SCHEME
FOR DYNAMIC XML (EXTENSIBLE MARKUP

LANGUAGE) QUERY PROCESSING

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

 by
 Beakal Gizachew ASSEFA

May 2012

 İZMİR

We approve the thesis of Beakal Gizachew ASSEFA

Assist. Prof. Dr. Belgin ERGENÇ
Supervisor

Assist. Prof. Dr. Yalın BAŞTANLAR
Committee Member

Prof. Dr. Oğuz DİKENELLİ
Committee Member

2 May 2012

__________________________ ____________________________

Prof. Dr. Sıtkı AYTAÇ Prof. Dr. R. Tuğrul SENGER
Head of the Department Dean of the Graduate School

of Computer Engineering of Engineering and Sciences

ACKNOWLEDGEMENTS

It is with immense gratitude that I acknowledge the support and help of my

advisor Asst. Prof. Dr. Belgin ERGENÇ, whose encouragement, guidance and support

from the initial to the final level enabled me to develop an understanding of the subject.

Working with her has been a great pleasure and honor.

I am indebted to my wife Meba Tadesse. Had it not been for her continuous

support, encouragement and taking responsibilities on my behalf, my study in IZTECH

would have remained a dream.

I also would like to thank all the professors who gave me courses while my stay

in IZTECH. I truly believe the experience I acquired from them has changed me to a

great extent. I am also grateful to Dr. Sinem Bezircilioğlu for her patience and time in

giving me a valuable comment and suggestions on the format and vocabulary of the

thesis.

Finally, I would like to thank my colleagues and fellow academic and

administrative staff who had shown a great concern to me during my stay in Turkey and

IZTECH in particular.

iv

ABSTRACT

ORDER BASED LABELING SCHEME

FOR DYNAMIC XML (EXTENSIBLE MARKUP LANGUAGE)

QUERY PROCESSING

Need for robust and high performance XML database systems increased due to

growing XML data produced by today’s applications. Like indexes in relational

databases, XML labeling is the key to XML querying. Assigning unique labels to nodes

of a dynamic XML tree in which the labels encode all structural relationships between

the nodes is a challenging problem. Early labeling schemes designed for static XML

document generate short labels; however, their performance degrades in update

intensive environments due to the need for relabeling. On the other hand, dynamic

labeling schemes achieve dynamicity at the cost of large label size or complexity which

results in poor query performance.

This thesis presents OrderBased labeling scheme which is dynamic, simple and

compact yet able to identify structural relationships among nodes. A set of performance

tests show promising labeling, querying, update performance and optimum label size.

v

ÖZET

 GENİŞLETİLEBİLİR İŞARETLEME DİLİNDE(XML)
SORGU İŞLEMİ İÇİN SEVİYE TABANLI ETİKETLEME YAKLAŞIMI

Günümüz uygulamalarınca üretilen XML verisinin çoğalması, yüksek başarımlı

ve sağlam XML veritabanlarına olan gereksinimi arttırmıştır. İlişkisel veritabanlarındaki

indeksleme gibi, XML etiketleme de XML sorgulamanın anahtar bileşenidir. XML

ağacının düğümlerinin her biri için düğümler arasındaki ilişkileri ifade edebilen ayrı

etiketler oluşturmak zorlukları olan problemdir. Önceleri, etiketleme yaklaşımları kısa

etiketler üretebildiği halde devingen ortamlarda yeniden etiket oluşturmak

gerektirdiğinden düşük başarım göstermekteydiler. Devingen ortamları destekleyen

etiketleme yaklaşımları ise uzun etiketler ve üretim karmaşıklığı nedeniyle zayıf

başarım gösterebilmektedirler.

Bu tezde, devingen, basit ve kısa olduğu halde tüm düğümler arası ilşkileri ifade

eden tek etiketler üretebilen OrderBased etiketleme yaklaşımı sunulmaktadır. Bir dizi

başarım değerlendirme testi, bu yaklaşımın etiketleme, sorgulama ve güncelleme de

kayda değer sonuçları en iyi etiket uzunluğu ile verebildiğini göstermiştir.

vi

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. RELATED WORK .. 5

2.1. Region Based Labeling Schemes .. 5

2.2. Prefix- Based Labeling Schemes ... 9

2.3. Multiplication Based Labeling Schemes ... 15

2.4. Vector Based Labeling Schemes ... 18

2.5. Summary.. 23

CHAPTER 3. ORDERBASED LABELING SCHEME .. 25

3.1. Optimizing Label Size ... 26

3.2. Generating the Order of a Node .. 28

3.3. Generating Orders for New Inserted Nodes .. 29

CHAPTER 4. PERFORMANCE EVALUATION ... 31

4.1. Experimental Setting ... 31

4.2. Characteristics of Datasets .. 32

4.3. Storage Requirement ... 32

4.4. Labeling Time ... 34

4.5. Query ... 35

4.6. Updates .. 36

4.6.1. Inserting a Sub Tree .. 37

4.6.2. Deleting a Sub Tree .. 37

4.7. Discussion on Results .. 38

CHAPTER 5. CONCLUSION ... 40

REFERENCES ... 43

APPENDICES

APPENDIX A. LABELING SCHEME IMPLEMENTATION 47

APPENDIX B. STRUCTURAL RELATIONSHIPS ... 51

vii

LIST OF TABLES

Table………………………………………………………………………...………Page
Table 2.1. Summary of labeling schemes ... 24

Table 3.1. Analytical storage requirement .. 27

Table 4.1.Characteristics of datasets... 32

Table 4.2. Number of collisions detected by LSDX and Com-D 34

viii

LIST OF FIGURES

Figure Page

Figure 1.1. An example XML document .. 1

Figure 1.2. A tree representation of the XML document in Figure 1.1 2

Figure 2.1. Traversal Order Based labeling scheme ... 5

Figure 2.2. Extended Preorder Traversal labeling scheme ... 6

Figure 2.3. Containment labeling scheme .. 7

Figure 2.4. P- Containment labeling scheme .. 7

Figure 2.5. Dynamic Interval Based labeling scheme [4]... 8

Figure 2.6. Simple Prefix labeling scheme ... 10

Figure 2.7. Dewey ID ... 11

Figure 2.8. ORDPATH labeling scheme .. 11

Figure 2.9. LSDX.. 12

Figure 2.10. Collision in LSDX and Com-D .. 12

Figure 2.11. ImprovedBinary labled XML tree scheme [36] ... 13

Figure 2.12. Unique Identifier labeling scheme with k=4 .. 16

Figure 2.13. Bottom up Prime Number labeling scheme ... 16

Figure 2.14. Top down Prime Number labeling scheme .. 17

Figure 2.15. Containment and V-Containment labeling schemes [17]........................... 19

Figure 2.16. V-Prefix labeling scheme [18] ... 20

Figure 2.17. Dynamic Dewey Encoding (DDE) labeling scheme [18] 21

Figure 2.18. CDDE labeling scheme [24]... 22

Figure 3.1. OrderBased labeling scheme .. 25

Figure 3.2. Determine-size routine ... 28

Figure 3.3. Insert a sub tree before the first node of a given level 29

Figure 3.4. Insert a sub tree between two nodes ... 30

Figure 3.5. Insert a sub tree after the last node of a given level 30

Figure 4.1. Storage requirement ... 33

Figure 4.2. Labeling time .. 35

Figure 4.3. Time required for retrieving all descendants of a given node 36

Figure 4.4. Insertion time .. 37

ix

Figure 4.5. Deletion time .. 38

1

 CHAPTER 1. INTRODUCTION

1. INTRODUCTION

The fact that XML has become the standard format for structuring, storing, and

transmitting information has attracted many researchers in the area of XML query

processing. XPath and XQuery are languages for retrieving both structural and full text

search queries from XML documents [1 and 2]. XML labeling is the basis for structural

query processing where the idea is to assign unique labels to the nodes of an XML

document that form a tree structure. Label of each node is formed in a way to convey

the position of the node in XML tree and its relationship with neighbor nodes. These

relationships are Ancestor-Descendent (AD), Parent-Child (PC), Sibling and Ordering

[2].Figure 1.1 shows an example XML document whereas Figure 1.2 shows a tree

representation of the XML document in Figure 1.1.

<XML>

 <bookstore>

 <book category="COOKING">

 <title lang="en">Everyday Italian</title>

 <author> Giada De Laurentiis</author>

 <year>2005</year>

 <price>30.00</price>

 </book>

 <book category="CHILDREN">

 <title lang="en">Harry Potter</title>

 <author>J K. Rowling</author>

 <year>2005</year>

 <price>29.99</price>

 </book>

 <book category="WEB">

 <title lang="en">Learning XML</title>

 <author>Erik T. Ray</author>

 <year>2003</year>

 <price>39.95</price>

 </book>

 </bookstore>

</XML>

Figure 1.1. An example XML document

2

Figure 1.2. A tree representation of the XML document in Figure 1.1

There are basically two approaches to store XML document. The first one is to

shred the XML document to some database model. The XML document is mapped to

the destination data model example, relational, object oriented, object relational, and

hierarchical. The second approach is to use native XML Database (NXD) [39, 40, 41,

42, and 43]. Native XML database (NXD) is described as a database that has an XML

document as its fundamental unit of storage and defines a model for an XML document,

as opposed to the data in that document (its contents). It represents logical XML

document model and stores and manipulates documents according to that model.

Although XML labeling is widely used in NXD, it also plays a role in the shredding

process.

Labeling schemes can be grouped under four main categories namely; Range

based, Prefix based, Multiplication based, and Vector based. Range based labeling

schemes label nodes by giving start and end position which indicate the range of labels

of nodes in sub trees [3, 4, 5 and 23]. Prefix based labeling schemes concatenate the

label- of ancestors in each label using a delimiter [6, 7, 8, 9 and 10]. Multiplication

based labeling schemes use multiplication of atomic numbers to label the nodes of an

XML document [16 and 19]. Vector based labeling schemes are based on a

mathematical concept of vector orders [17, 18 and 24]. Recently, it is common to see a

hybrid labeling schemes which combine the advantages of two or more approaches [25

and 26].

3

A good labeling scheme should be concise in terms of size, efficient with regard

to labeling and querying time, persistent in assuring unique labels, dynamic in that it

should avoid relabeling of nodes in an update intensive environment, and be able to

directly identify all structural relationships. Last but not least, a good labeling scheme

should be conceptually easy to understand and simple to implement. Finding a labeling

scheme fulfilling those properties is a challenging task. Generally speaking, labeling

schemes that generate small size labels either do not provide sufficient information to

identify all structural relationships among nodes or they are not dynamic [3, 4 and 5].

On the other hand, labeling schemes that are dynamic need more storage which results

in a decrease of query performance [6, 7, 8, 9, 10 and 20] or are not persistent in

assuring unique labels [9 and 10].

With the increasing popularity of XML we see commercial software developers

engaged in accommodating the demand of efficient XML querying. DB2 supports

native format and uses Dewey encoding to assign a unique identifier (NID) that gives

the node both a logical and physical addressability that can be used for indexing and

query evaluation. NID provides efficient navigation of the XML document, and is also

beneficial for evaluating XQuery statements [42 and 43]. ORDPATH is a hierarchical

labeling scheme used in the internal implementation of the XML data type in SQL

Server 2005 [41]. It's meant to provide optimized representation of hierarchies, simplify

insertion of nodes at arbitrary locations in a tree, and also provide document order. In

SQL Server 2008, there are additional uses of ORDPATH. There is a new system data

type HierarchyID that uses ORDPATH in its implementation. This allows simply

hierarchies to be represented as relational column and provides methods that optimize

common structural relationship queries [41]. Moreover, many NDXs like TIMBER have

been developed for research purposes [40]. TIMBER uses Containment labeling scheme

for structural query support.

This thesis presents a novel dynamic labeling scheme based on a combination of

letters and numbers called OrderBased. Each label contains level, order of the node in

the level and the order of its parent. Keeping the label of the existing nodes unaltered in

case of updates and guaranteeing optimized label size are the main strengths of this

approach. Label size and dynamicity is achieved without sacrificing simplicity in terms

of implementation.

4

In performance evaluation, OrderBased labeling scheme is compared with

LSDX and Com-D [9 and 10]. These labeling schemes are chosen because using

combinations of letter and numbers, including the level information of a node in every

label, and avoiding relabeling when update occurs are the common features and design

goals of the three schemes. Storage requirement, labeling time, querying time, and

update performance are measured. Results show that OrderBased labeling scheme is

smaller in size and faster in labeling and query processing than LSDX labeling scheme.

Although Com-D labeling scheme needs slightly less storage than OrderBased, its

labeling, querying, and update performance is the least efficient due to compression and

decompression overhead cost.

The thesis is organized as follows: Chapter 2 presents a thorough discussion of

related work, Chapter 3 presents OrderBased labeling scheme. Chapter 4 illustrates

storage requirements, labeling time, querying, and update performance of OrderBased

labeling scheme in comparison with LSDX and Com-D labeling schemes. Finally,

Chapter 5 concludes the thesis and gives a glimpse of future works.

5

 CHAPTER 2. RELATED WORK

2. RELATED WORK

Labeling schemes can be defined as a systematic way of assigning values or

labels to the nodes of an XML tree in order to speed up querying. The problem of

finding a labeling scheme that generates concise, persistent labels, supporting updates

without the need of relabeling, and ease of understanding and implementation dates

back to 1982 [3]. In the pursuit of solving the labeling scheme problem, a number of

approaches have been proposed. These labeling approaches can be grouped in four

major categories: Range based, Prefix based, Multiplication based and Vector based.

2.1. Range Based Labeling Schemes

Range based labels for a node X has a general form of <start-position, end-

position>, where start-position and end-position are numbers such that for all nodes Y in

the sub tree of X, start_position(Y)> start-position(X) and end-position (Y) < end-

position(X).

Figure 2.1. Traversal Order Based labeling scheme

The first XML labeling scheme introduced is Traversal Order Based labeling

scheme [3]. This scheme uses numbers and it is based on preorder- postorder traversal

notation of a tree. Traversal order based labels has a form of <pre, post>. A given node

Y is a descendant of node X Iff Y.pre >X.pre and Y.post < X.post.

6

The two disadvantages of this labeling scheme are first the labels do not contain

sufficient information to determine Parent-Child, and Sibling-Order relationships.

Secondly, this scheme is not efficient for dynamic XML documents. For example in

Figure 2.1 , <9, 12> is the ancestor or <11, 8>, and <12,9>. However, there is not

enough information to identify whether <1, 17> is a parent of <7, 7> since the only

relationship identified by this labeling scheme is ancestor descendant relationship.

Moreover, inserting a node or a sub tree at any point causes global relabeling.

 Figure 2.2. Extended Preorder Traversal labeling scheme

Li and Moon proposed an Extended Preorder Traversal labeling scheme to

improve the second drawback of traversal order labeling scheme [4]. This labeling

scheme is based on the notation of extended preorder traversal to accommodate future

insertions gracefully. Each label is of the form <preorder, size>, such that preorder is

the preorder of the node and size is an arbitrary integer greater than the total number of

descendants of the node as shown in Figure 2.2. So as to make insertion without

relabeling, the size should be reasonably large.

However, assigning a value for size is not straightforward. The approach used is

based on an anticipation of the maximum number of nodes to be added and allocating

large value to the size parameter. Nonetheless, skewed insertions eventually fill the

reserved space. Even if size is large enough, when the reserved spaces are all used up,

re-computing becomes inevitable.

In Containment labeling scheme, every node is assigned three values: “start”,

“end” and “level” [29]. For any two nodes u and v, u is an ancestor of v iff u:start <

v:start and v:end < u:end. Node u is the parent of node v iff u is an ancestor of v and

v:level - u:level = 1. Although containment scheme is efficient for determining A-D and

P-C relationships, the insertion of a node n will lead to re-labeling of all the ancestor

7

nodes of n and all the nodes after n in document order. To solve the re-labeling problem,

float-point values for the start and end of the intervals was suggested [30]. However, in

practice, float-point is represented physically with a fixed number of bits. As a result,

after the possible float number is used, relabeling is required. An example of

containment labeling scheme is shown in Figure 2.3.

 Figure 2.3. Containment labeling scheme

P-Containment labeling scheme is a modified form of Containment labeling

scheme [32]. In contrast to the traditional Containment labeling scheme, it stores the

start value of the parent node instead of the level information. Hence a P- Containment

label is a triple with <start, end, parent_start>. The motivation for including the parent

start rather than the level information is to enhance the performance of Parent - Child

relationship queries.

Given nodes u and v, node u is a parent of node v iff the “parent_start” value of

node v is equal to the “start” value of node u based on P-Containment. For two different

nodes u and v that are not the root of the XML tree, node u is a sibling of node v iff the

“parent_start” value of node u is equal to the “parent_start” value of node v based on P-

Containment. Figure 2.4 illustrates an example of a P-Containment encoding.

 Figure 2.4. P- Containment labeling scheme

8

It is reported that determining the parent-child relationship is faster, and

determining the sibling relationship is much faster. The Ancestor-Descendant and

Sibling, Order relationship determinations based on P-Containment remain the same as

the traditional containment encoding [32].

In order to fix the limitations of the Preorder and Extended Preorder Labeling

and containment labeling schemes, Dynamic Interval Based labeling scheme was

introduced [5]. It is based on the concept of nested and inverted nested tree. The

labeling scheme treats newly inserted nodes as a sub tree and only one number will be

used from the reserved numbers.

 Figure 2.5. Dynamic Interval Based labeling scheme [4]

As illustrated in Figure 2.5, to insert another node after the node with label (55,

72), first it checks if there is free space in the parent node. The label of the parent node

is (37, 75). Because numbers 73 and 74 are between 72 and 75, the scheme picks 74

arbitrarily. The new inserted sub tree is labeled starting from 1 as a new tree; however,

74 are regarded as the prefix for all nodes in the inserted sub tree. It was argued that that

Dynamic Interval Based labeling scheme is a hybrid labeling scheme with attempt of

combining the advantages of prefix and range based approaches [35].

The fact that algorithm uses a single number and treats the inserted sub tree as

one tree clearly reduces the usage of the reserved numbers and more nodes can be

inserted at a time. The other advantage of this approach is that even if the reserved

9

spaces are consumed, this approach localizes the relabeling to a great extent by only

affecting the parent of the node. However, it does not fully support dynamic XML

document since after the reserved space is used up relabeling the whole tree in the worst

case becomes unavoidable.

Sector Based labeling scheme, SL in short is also a range based labeling

scheme, however sectors are used instead of intervals and mathematical formulae are

presented to determine ancestor-descendant and document-order relationships between

label pairs. The two components of a SL labels are the radius of the node from its parent

node and its offset value [23]. The idea is that all nodes enclosed in the start and end

angle are children of a given node. The radius of the sector is stored on its logarithmic

form rather than the radius itself so as to optimize the size of labels. However, it is

stated in [28] that in SL, insertion and deletion operations do not adapt gracefully

without the need of relabeling.

2.2. Prefix- Based Labeling Schemes

In Prefix based labeling schemes, node X is an ancestor of node Y if the label of

node X is the prefix of node Y. The main advantage of prefix based labeling approach is

that all structural relationships can be determined by just looking at the labels. The main

critics about prefix based labeling schemes is their impractically large storage

requirement.

Simple Prefix labeling scheme is an example of a prefix labeling scheme which

uses 0’s and 1’s to label the nodes of an XML tree [6]. The root node is labeled with

empty string. The first, second, third , and the n
th

 child of the root node are labeled as

‘0’, ‘10’, ‘110’ ,’ (n-1) 1’s 0’ respectively. For the rest of the nodes of the XML tree,

each label concatenates the label of its parent and its self-position using 0’s and 1’s.

Figure 2.6 shows an example of a simple prefix labeling scheme.

10

Figure 2.6. Simple Prefix labeling scheme

The advantages of Simple Prefix labeling scheme are the determination of all

structural relationships and support of updates without the need of relabeling. For

example, “11010” and “1101010” can be generated between “110” and “1110”. As

shown in Figure 2.6, to insert a node between the nodes with labels ‘0’ and ’10’, it

generates a new label with ‘010’. However, ‘010’ had already been given to another

node. Hence, Simple Prefix labeling scheme does not guarantee uniqueness after

insertions.

The authors of the Simple Prefix labeling scheme proposed two approaches for

assigning the bits [6]. The first approach has a label growth rate of one-bit such that the

positional identifier of the first child of a given node is 0, of the second child is 10, of

the third child is 110 and of the n
th

 child is (n-1) ones with a 0 concatenated at the end.

The second approach has a double-bit label growth rate. Though the author proposed the

use of a clue to minimize the size, the clues are too strict to be satisfied. As a result,

both approaches tend to produce significantly large label sizes.

Despite the support of updates without the need of relabeling and the capacity of

determining all structural relationships, Simple Prefix labeling scheme generates labels

with impractically large size. Moreover, it is not persistent since insertion may result in

collision.

Dewey ID is a prefix labeling scheme adapted from the Dewey decimal

classification system [31] for the organization of library collections [7]. In Dewey ID,

the positional identifier of the n
th

 child is assigned the integer n and this is concatenated

to the parent’s label and a delimiter.

The main advantage of Dewey ID is that all structural relationships can be

identified by just looking at the labels. Insertions and deletions at the right most nodes

of a sub tree are accommodated gracefully without relabeling. However, update in the

middle or on the left side of a tree /sub tree triggers following siblings relabeling, this

11

relabeling propagates to their descendants also. The two limitations of Dewey ID are its

huge size and inability to fully adapt all kinds of updates gracefully regardless of the

position of update. An example of Dewey ID labeling scheme is illustrated on Figure

2.7.

 Figure 2.7. Dewey ID

ORDPATH labeling scheme is a prefix based labeling scheme with similar

concept with Dewey ID [8]. It has all the advantages of Dewey ID and also allows the

usage of negative integers and escapes even numbers to accommodate future insertions.

As it can be seen from Figure 2.8, this approach partially supports dynamic XML

document. However, bulk insertion at a given position consumes the reserved places

hence re-computing of labels becomes inevitable.

 Figure 2.8. ORDPATH labeling scheme

LSDX – Labeling Scheme for Dynamic XML documents is also a prefix based

labeling scheme that employs both integers and letters in the construction of a node's

label [9]. The root node of the tree is labeled as 0a, where the integer component 0

represents the level or depth of the node and the alphabetic component represents the

positional identifier. All structural relationships can be identified by looking at the

labels.

LSDX is designed to meet the dynamic nature of xml data. The algorithm for

generating labels for a node can be summarized as follows. Given a node v with n child

12

nodes: u1, u2, u3 ... un, a unique code for u1 is a combination of its level + code of its

parent node + “.” + “b”. The unique code for u2 is its level + code of its parent node +

“.” + “c”. The labeling continues for the rest of child nodes in alphabetical order.

Figure 2.9. LSDX

For instance, in Figure 2.9, 3abc.b is the descendant of 2ab.c,1a.b, and 0a,

because it concatenates the labels ‘ abc’,’ab’, and ‘a’ as its prefix. One of the drawbacks

of LSDX is its huge label size. The total size of labels depends upon the fan-outs and

the depth of the tree.

Figure 2.10. Collision in LSDX and Com-D

The other pitfall of LSDX is that it is not persistent. It had been reported that

LSDX does not guarantee uniqueness at the time of labeling [20, 28]. In addition to the

type of collisions identified above, Figure 2.10 shows that LSDX labeling scheme also

does not guarantee uniqueness after insertions.

Com-D which stands for Compact Labeling Scheme for Dynamic XML

documents [10] is an attempt to overcome the large label size drawback of LSDX. The

idea behind this improved version of LSDX is to check repetitive letters, if any letter

appears more than once, it shall be accumulated and replaced by number of its

13

occurrence + the letter itself. For example, the Com-D equivalents for LSDX labels

“1bdddccccxxx”, and “2dfffffgyyyyrrrrr” are “1b3d4c4x” and “2d5fg4y5r” respectively.

Com-D reduces the size of the labels significantly. It has all the advantages of LSDX;

however, it is not persistent and has compression and decompression overhead while

labeling and querying respectively.

ImprovedBinary labeling scheme uses bit strings in conjunction with a recursive

algorithm to assign unique labels to each node in the XML tree. Figure 2.11 illustrates

an ImprovedBinary labelled XML tree; the grey nodes indicating newly inserted nodes

in an existing tree. When the XML tree is initially constructed, the root node is assigned

the empty string. Initially the leftmost child of the root node is assigned the positional

identifier 01 and the rightmost child of the root node is assigned the positional

identifier011. From this point onwards, the Labeling algorithm is a recursive function

that takes three inputs; an array of nodes (corresponding to all sibling children of a

given node), the label of the leftmost sibling node and the label of the rightmost sibling

node.

Figure 2.11. ImprovedBinary labled XML tree scheme [36]

 An AssignMiddleSelfLabel function is invoked to compute a binary string

(positional identifier) for the middle node residing between the leftmost and rightmost

sibling nodes (e.g.: node 0101 in Figure 2.11). The middle node is determined using the

simple calculation ((1 + n) / 2)) where n is the number of sibling nodes passed to the

Labeling algorithm. The AssignMiddleSelfLabel function takes both values of the

leftmost and rightmost nodes into account as well as their lengths to compute a binary

string identifier that is minimal in length while ordered lexicographically between the

leftmost and rightmost node labels. This is always possible due to a useful property of

the algorithm that ensures the computed binary string always to end with 1. Finally, the

14

labeling algorithm uses the new left and right node labels to recursively call itself until

each node in the XML tree has been labeled.

There are three possible types of node insertions. To insert a new node before

the first sibling node, the positional identifier of the inserted node is assigned the

identifier of the first sibling node with the last 1 changed to 01 (e.g.: node 0101.001 in

Figure 2.11). To insert a new node after the last sibling node, the positional identifier of

the inserted node is assigned the identifier of the last sibling node with an extra 1

concatenated (e.g.: node 0101.011 in Figure 2.11). To insert a node between any two

nodes, the AssignMiddleSelfLabel function is used to compute the new positional

identifier of the node (e.g.: node 011.0101 in Figure 2.11). The ImprovedBinary

labeling scheme ensures that the positional identifiers and node prefixes are

lexicographically ordered and consequently node labels are lexicographically ordered

when performing component by component comparisons. This labeling scheme permits

the evaluation of ancestor-descendant, parent-child and sibling-based relationships [36].

However, it is reported that the label sizes can grow quite rapidly. In particular, a

skewed insertion before the first sibling node and after the last sibling node has a bit-

growth rate of 1 for each insertion. Also, the ImprovedBinarylabelling scheme cannot

completely avoid the relabeling of existing nodes due to the overflow problem. In other

words, when the size of labels run out of memory, there will be a need for global

relabeling of nodes [36].

Quaternary Encoding labeling scheme was proposed by the authors of the

ImprovedBinary labeling scheme with the main motivation of completely avoiding the

relabeling of nodes in the presence of updates [34]. The QED labeling scheme is

conceptually similar to the approach taken by the ImprovedBinary scheme. However,

instead of using a binary string, a quaternary code is employed consisting of four

numbers 0, 1, 2, 3 and each number is stored with two bits, that is 00, 01, 10, 11. The

number 0 is reserved for use as a separator and only 1, 2, and 3 are used in the QED

code itself.

The Labeling algorithm is also a recursive function and operates in a similar

manner to its counterpart in the ImprovedBinary scheme. The distinction arises from the

fact that the ImprovedBinary scheme is based on the one half () node position whereas

the QED scheme is based on one third () and two third () node positions. The

AssignMiddleSelfLabel function is replaced with the GetOneThirdAndTwoThirdCode

15

function. Thus, rather than computing a QED code for the middle node, two QED codes

(positional identifiers) are computed, one each for the ()th and ()th nodes that reside

between the leftmost and rightmost sibling nodes.

The GetOneThirdAndTwoThirdCode function takes the values of the leftmost

and rightmost sibling nodes into account as well as their lengths to compute two QED

codes that always have the following lexicographic order properties: Left node < ()th

node < ()th node < Right node. The Labeling algorithm recursively calls itself until all

nodes in the XML tree have been labeled.

The key mechanism employed to reduce the label size is the use of the separator

0 (2 bits) to separate the different codes instead of explicitly storing the size of each

variable code. The QED codes may vary in size but the size of the separator 0 remains

constant. Each number in the QED code will always be represented by two bits and due

to the properties of the labeling scheme, the numbers will never have the 2-bit value 00,

which has been reserved as the separator. The QED codes are lexicographically and not

numerical ordered. Furthermore, the properties of the QED labeling scheme ensure that

an infinite number of QED codes may be inserted between any two consecutive labels

without the need to re-label existing nodes and document order will be maintained [34].

A more compact version of QED is presented in [27] called the Compact

Dynamic Quaternary String (CDQS) labeling scheme, which can completely avoid

relabeling existing nodes in the presence of node insertions.

2.3. Multiplication Based Labeling Schemes

 Multiplication based labeling schemes use atomic numbers to identify nodes.

Relationships between nodes can be computed based on some arithmetic properties of

the node labels. The main limitations of this approach are its very expensive

computation and large size. Hence, it is unsuitable for labeling a large-scale XML

document.

Unique Identifier labeling scheme is an example of a multiplication based

labeling schemes [16]. This technique enumerates nodes using a k fan-out of nodes.

Here, each internal node is supposed to have the same number of fan-out k. Thus,

virtual nodes are created to balance the number of fan from each level. Each node is

16

assigned a label starting with integer 1 from top to bottom and from left to right as

shown in Figure 2.12 .The UID technique has an interesting property for the parent node

to be determined, based on the identifier of the child node. Given a node having the

identifier i, the parent ID can be computed as

 Parent(i)= (2.1)

Figure 2.12. Unique Identifier labeling scheme with k=4

In UID the value for the maximum fan-out K should be determined prior to

labeling. However, choosing K is an arbitrary selection based on anticipation. If the

anticipated value for K is reasonably large, a valuable memory space may be wasted by

the virtual nodes. On the other, hand if the value of K is not large enough to

accommodate all children of a given node, relabeling the whole tree along with setting a

new value for K becomes necessary. Especially, in a dynamic environment where

insertions are common, resting K and relabeling the whole tree will be a costly

operation. On the contrary, deletion intensive environments tend to waste memory

spaces due to virtual nodes.

Prime Number labeling scheme makes use of prime numbers as the building

blocks of labels [19]. There are two methods that can be used in prime number labeling

scheme namely, bottom-up and top-down labeling schemes.

Figure 2.13. Bottom up Prime Number labeling scheme

17

 For bottom-up approach, leaf nodes will be assigned a unique prime number

which represents the self-label of the node itself. The parent node will be the product of

the child nodes. For an instance, if the labels for two leaf nodes are 3 and 5 respectively,

the label of the parent node will be 15 (3 x 5). Parent-Child relationship can be

determined easily by calculating the factor for the number assigned to the parent node.

Ancestor-Descendant relationship can be calculated by calculating the modulus of the

ancestor and descendant node. If the result is 0 then Ancestor-Descendant relationship

between the two nodes exists. On Figure 3.13, if the self-label of the ancestor node is

143 and child node = 13, 143 mod 13 = 0; thus, node with the label 143 is the ancestor

of node with the label 13. The main problem with this approach is that nodes at the top

level would be assigned relatively large numbers.

 Figure 2.14. Top down Prime Number labeling scheme

On the other hand, top-down approach calculates the label of a node by

multiplying parent label and self-label which is a unique prime number. Figure 2.14

demonstrates an example of a top down prime number labeling scheme. For instance, if

the parent label is 2 and the self-label is 11 (prime number), the label assigned for this

node is 22 (2x11). Parent-child relationship can be determined easily by dividing the

child label and parent label. If these numbers are divisible, then parent-child relationship

exists between these nodes. Ancestor–Descendant relationship can be ascertained using

the same method as in bottom-up approach. Though this approach supports dynamic

update, prime number used in this approach may grow larger which produces huge

value for the self-label of a node. Since prime number that is assigned to a node can

only be used once, larger amount of prime numbers are required for complex XML

document.

18

2.4. Vector Based Labeling Schemes

The other groups of labeling scheme that are seen in literature are based on

vector order. A vector code is a binary tuple of the form (x, y) where x > 0. Given two

vector codes A: (x1, y1) and B: (x2, y2), vector a precedes vector B in vector order if and

only if . If we want to add a new vector C between vector A and B, the vector

code of C is computed as x1+x2 , y1 +y2).The vector order of A<B<C because

 holds true [17,18].

It is demonstrated that the vector based approach can be applied to both range

based and prefix based labeling schemes [18]. DDE and CDDE are application of vector

order approach to Dewey ID [18, 24] whereas V-containment is its application to

containment labeling scheme (range based) [17]. Vector based labeling schemes avoid

relabeling in update intensive environment and can be applied to any other labeling

schemes, however, there is always a computation overhead to determine relationship

among nodes.

V-Containment labeling scheme is an application of vector order to

Containment labeling scheme [17]. The order of vector encodings intern is based on the

numerical ordering of the Gradients of the vectors.

Given that the range of integers is from 1 to 18, we assign vector (1,0) (of

Gradient 0) to the start position in the range which is 1; and (0,1) (of Gradient +1) to

the end position in the range which is 18, i.e. v(1)=(1,0) and v(18) = (0,1). The middle

position in the range [1, 18] can be found by: middle = d(1+18)/2 = 10. Hence v(middle)

= v(10) = v(1) + v(18) = (1,0) + (0,1) = (1,1). Now that the range [1,18] is divided into

two ranges: [1, 10] and [10, 18]. The middle position of [1, 10] is d(1 + 10)/2 = 6; and

the middle position of [10, 18] is d(10 + 18)/2= 14. Therefore, v(6) = (1,0) + (1,1) =

(2,1) and v(14) = (1,1) + (0,1) = (1,2). Likewise, this operation continues till all nodes in

the tree are labeled.

Figure 2.15 shows an example of applying vector encoding to containment

scheme. The start and end value of the original containment labels are replaced by their

corresponding vector codes. The resulting VContainment labels are of the form (startV;

endV; level) where startV , endV are two vectors. It is easy to verify that the property of

19

containment scheme holds. For example, Node((2,3),(1,4),2) is the parent of

node((3,5),(1,2),3) as G(2,3)=1.5 < G(3,5)=1.67 < G(1,2)=2 < G(1,4) =4and 2+1=3.

(a) An example of Containment labeling scheme

(b) The V-Containment of Figure 2.15 (a)

 Figure 2.15. Containment and V-Containment labeling schemes [17]

In V-Containment scheme to handle updated, the concept of the Granularity

Sum of a vector V = (x, y) (denoted by GS (v)) is defined as x+y is used. To find a

vector between two vectors in vector order, its Granularity Sum needs to be as small as

possible so that the resulting label size is small. In Figure 2.15 (b), when inserting node

A having both left sibling and right sibling, its startV and endV are bounded by endV of

its closest left sibling and startV of its closest right sibling, i.e. (4,3) and (1,1).

Moreover, GS(1,1)=2<7=GS(4,3). Therefore, the startV of A is v1 + v2 = (5; 4)

whereas endV is v1+2*v2 = (6; 5). When inserting node B which has only left sibling,

its startV and endV are bounded by the endV of its closest left sibling the endV of its

parent, i.e. (1,4) and (0,1). Therefore, the startV of B is v1 + v2 = (1; 5) whereas endV is

v1+2*v2 = (1; 6). Similarly, when we continue to insert C as the last child of the root,

its startV is v1+v2 = (1; 7) and endV is v1+2*v2 = (1; 8).

20

Figure 2.16. V-Prefix labeling scheme [18]

V-Prefix labeling scheme is also an application of a vector order to a prefix

labeling scheme [18]. Figure 2.16 demonstrates an example of V-prefix labeling

scheme. The idea of prefix labeling scheme is that given a V-Prefix label of the form

(x1; y1):(x2; y2) … (xm; ym), we denote it as: v1:v2 … vm where v1=(x1; y1), v2 =

(x2; y2) . . . vm = (xm; ym). Thus, V-Prefix label can be seen as a generalized Dewey

label where every component is a vector code.

First, we consider the leftmost insertion of element node A in Figure 2.16. A

takes the label of its parent as its parent label and a local order less than (1, 1). Thus, we

get the new label of A by concatenating its parent’s label (1:1) to (1; 0). Since B is

inserted at the rightmost position after (1.1).(1.2).(1.3), we derive its local order to be

(1; 4). C is inserted between two consecutive siblings. Its parent label is the same as its

parent’s label whereas its local order should fall between the local orders of its two

siblings. That is, (2; 3) = (1; 1) + (1; 2). The local order of D is similarly computed: (3;

5) = (2; 3) + (1; 2). We process the insertion of a leaf node (E) by concatenating its

parent label with an additional component, example, (1; 1) as shown in figure 2.17. V-

Prefix labeling scheme handles updates with no need of relabeling. However, its label

size is nearly double of its equivalent Dewey Id labels.

Dynamic Dewey Encoding (DDE) labeling scheme is an improved and

optimized version of V-Prefix labeling scheme [24]. Their difference lies in the fact that

21

DDE’s labels are not vector codes. An example of DDE labeling scheme is depicted in

Figure 2.17.

Figure 2.17. Dynamic Dewey Encoding (DDE) labeling scheme [18]

 In Figure 2.17, node A is inserted before the first child of the root, we get its

label 1.0 by decreasing the local order of 1.1 by 1. Node B is then inserted before A and

its label is therefore 1.-1. Node C is inserted after the node with label 1.4.1; in order to

get its label 1.4.2 by adding 1 to the local order of 1.4.1. Similarly, the label of node D

is 1.4.3. Node E is inserted between two nodes with labels 1.2.1 and 1.2.2 and its label

is 2.4.3 which equals to 1.2.2+1.2.3. Likewise, the labels of node F and G are 3.6.5

(2.4.3+1.2.2) and 5.10.8 (2.4.3+3.6.5) respectively. Next, node H is inserted as the child

of leaf node 1.2.1, its label is 1.2.1.1 which is concatenation of its parent's label and 1.

Node I is also inserted below a leaf node 3.6.5 and its label is therefore 3.6.5.1.

Compact Dynamic Dewey Encoding (CDDE) labeling scheme is also an

application of vector order to Dewey ID labeling scheme. The initial labeling of CDDE

is the same as DDE. However, in contrast to DDE it employs an optimized way towards

reducing the labels size [24]. An example of CDDE is demonstrated in Figure 2.18.

22

Figure 2.18. CDDE labeling scheme [24]

As illustrated in Figure 2.18, leftmost insertions (node A and B) and rightmost

insertions (node C and D) are processed in the same way as DDE labels. Addition of

two CCDE labels is handled as follow: Let A : a1:a2 :a3 : : : am-1:am and A’= a’1.a’2.a’3

… am-1:a’m be two CDDE labels with sibling relationship, addition of them is defined

as:

 A +c A’ = (a1 + a’ 1):a2.a3 … am-1.(am + a’m) (2.2)

Accordingly, when inserting between node 1.2.1 and 1.2.2, the new label for

node E is 2.2.3 (1:2:1 +c 1:2:2). Likewise, the labels for node F and G are 3.2.5 (2:2:3 +c

1:2:2) and 5.2.8 (2:2:3 +c 3:2:5).

In order to handle insertion below leaf nodes, CDDE introduces a concept called

The extension operation of a CDDE label A: a1:a2:a3 : : : am-1:am is defined as:

 (2.3)

For insertion between nodes and below leaf nodes, CDDE has a technique

Consider the insertion of H in Figure 2.18, given that the parent of H has label 1.2.1, the

label of H is EXT(1:2:1) = 1:2:1:1. Similarly, the label of I is EXT(F) =EXT(3:2:5) = -

1:3:6:5:1. Inserting node J is just processed as a rightmost insertion and the new label is

23

-1:3:6:5:2. To insert K between I and J, the new label is derived by adding the labels of I

and J: -2:3:6:5:3 (-1:3:6:5:1 +c -1:3:6:5:2).

Finally, in recent years, it is common to see hybrid labeling schemes which

balances the weakness of one approach with the strength of another approach [25 and

26]. There are also labeling schemes that capitalize on the characteristics of data

structures. The two data structures, W-BOX (Weight-balanced B-tree for Ordering

XML) and B-BOX (Back-linked B-tree for ordering XML), are B-tree based data

structures which organize the labels for efficient updates [22]. The ideas provided here

are fairly general and can be incorporated into any labeling scheme. The work presented

in [21] uses XML type information and DTD to enhance query performance. A through

survey and trends in XML labeling scheme can be referred from [35, 36, and 37].

2.5. Summary

The chapter is aimed at discussing related work in the area of XML labeling

scheme. XML labeling schemes can be grouped into four major categories: Namely,

Range based, Prefix based, Multiplication based and Vector based. A summary of the

related work is presented on Table 2.1. It is demonstrated that the range based labeling

schemes are faster in executing parent A-D (Ancestor Descendant) relationships. Prefix

labeling schemes are generally provide adequate information to determine all kinds of

structural relations; however they produce large label size. Large label size is the

common feature of multiplicative labeling schemes though they guarantee uniqueness.

Although most of the vector based labeling schemes are efficient in dynamic

environment, generating a new label always needs computation.

The chapter presented a detailed analysis of labeling schemes. Label size,

dynamicity, efficient structural relationship determination, uniqueness of labels and

complexity are major criteria when choosing a labeling scheme. A desirable labeling

scheme hence should be compact, dynamic, persistent, able to identify all structural

relationships, and simple.

Labeling schemes that generate small labels, generally, do not provide sufficient

information to determine all structural relationships. Perhaps they are not dynamic. On

the contrary, labeling schemes supporting full structural relationships tend to generate

large label sizes. Moreover, though dynamic labeling schemes avoid relabeling of

24

nodes, they achieve this at the cost of poor query and labeling time. It is also shown in

this chapter that in-persistence and complexity had been the main challenges of dynamic

labeling schemes.

Table 2.1. Summary of labeling schemes

Advantage Disadvantage

Structural
Relationships Dynamic

Persi-
stent

Range based labeling schemes

Traversal

Order Based

Small size,

Fast A-D

Query

P-C, Sibling, Order –

Recursive ,Not Dynamic A-D N Y

Extended Pre

order

Small size,

Fast A-D

Query

P-C, Sibling, Order –

Recursive ,Not Dynamic A-D N Y

Containment

Small size,

Fast A-D

Query

P-C, Sibling, Order –

Recursive ,Not Dynamic A-D N Y

P-Containment

Fast P-C

Query

A-D– Recursive ,Not

Dynamic P-C N Y

Dynamic

Interval Based

Small size,

Fast A-D

Query

P-C, Sibling, Order –

Recursive A-D Y Y

Prefix based labeling schemes

Simple Prefix All Relations Large Size, Collision All N N

Dewey ID All Relations Large Size All N Y

ORDPATHS All Relations Large Size All N Y

LSDX Dynamic Large Size All Y N

Com-D

Dynamic,

Small size Collision All Y N

Improved

Binary

All

relationships Large size All Y Y

Quaternary

Encoding

All

relationships Large size All Y Y

Multiplication based labeling schemes

Unique

Identifier

Fast for Order

Queries

Computation cost, Virtual

nodes P-C N Y

Bottom up

Prime Number Unique Large size

N Y

Top down

Prime Number Dynamic Large size A-D,P-C Y Y

Vector based labeling schemes

V-Containment

Fast A-D

Query

Computation cost, large

size A-D Y Y

V-Prefix

Skewed

insertion

Computation cost,

impractical size All Y Y

DDE

Skewed

insertion

Computation cost, large

size All Y Y

CDDE

Skewed

insertion

Computation cost, large

size All Y Y

25

 CHAPTER 3. ORDERBASED
LABELING SCHEME

3. ORDERBASED LABELING SCHEME

OrderBased labeling scheme presented in this thesis is based on combination of

letters and numbers. Each label contains level, order of the node in the level and the

order of its parent. First part of the label is numeric and indicates the level information

of a given node. The second part gives alphabetical order of the node relative to the left

most node of the level. The last part is the order of the parent node. The order and the

level information guarantee unique labels. The usage of characters enables it to generate

a completely new order before and after the position of a given node, and also between

two nodes without affecting existing order in case of insertions. For instance given two

orders O1, and O2 where O1=”abc” and O2= “bd”, we can generate as many strings as

we need which are between O1 and O2 in alphabetic order (“abcb”, ”abcd”, abce”..).

In OrderBased labeling scheme each label is a triple <level, order, parentorder>,

where level is an integer that represents the distance of the node from the root node,

order is a character that represents the level based horizontal distance of the node from

the left most node at each level, parentorder is the parent’s order of a given node .The

level of the root node is 0, and the level of the children of the root node is 1. Likewise,

the levels of other nodes can be computed as the distance of the node from the root node

as seen in Figure 3.1.

Figure 3.1. OrderBased labeling scheme

An OrderBased label provides the information of the parent-child, and siblings-

following/previous in a direct way, and ancestor-descendant relationships in recursive

manner. For example in Figure 3.1, the node with label “1e, a” is the parent of the nodes

26

with labels “2g, e”, “2h,e”, and “2i,e”. This parent to child relationship is provided

because the parent order of the three nodes is “e”, and presumably their level is 1+1=2.

Moreover, nodes that have the same level information and with the same parent order

are siblings. However, to find the ancestors /descendants of a given node, first there is a

need to move to the parent/children, and then the parent of the parent/children

recursively till the intended level is reached.

3.1. Optimizing Label Size

 To address the problem of large storage size, OrderBased labeling scheme has a

routine which optimizes the label size of every level. Small label sizes enhance query,

update and labeling performances. Before labeling or making any insertions, the

OrderBased labeling scheme computes the optimal number of characters needed to label

the nodes at every level. To illustrate the need of optimizing the size, we will give a

brief description of the size requirement in terms of number of characters.

Assume the total number of nodes at a given level is M. If we start labeling

order of the first node in the level by ‘b’, the labeling continues with ‘c’, accordingly the

orders of the 25
th

 and 26
th

 nodes will be ‘z’ and ‘zb’ respectively. Since there is a need

of concatenating extra ‘b’ after reaching the letter ‘z’ in ever 26
th

 node, the size of the

order increases dramatically. If the total number of nodes at a given level M is not

greater than 25, we can generate M unique one character length orders using alphabets

from b to z. If M is between 26 and 50 inclusive, we use 25 single character alphabets

and (M-25) double character length. For example If M= 10, 40, 66, and 90, then size

requirement is then 1(10) =10, 1(25) + 2(40-25) =55, 1(25) + 2(25) + 3(66-50) = 123,

and 1(25) +2(25) + 3(25) + 4(90-75) = 210 number of characters respectively.

The total size requirement for orders at a given level with a total number of

nodes M can be generalized as,

 + M mod 25*(w+1)

 (3.1)

where w=floor (M/25)

27

In order to have an optimal size of orders, the OrderBased labeling first

calculates the number of characters needed to label M number of nodes.

The function Ceil returns the smallest integer that is greater than or equal to the

given expression. For example, Ceil (1.45) =2, Ceil (9.8) =10, and Ceil (11) = 11.

By this approach the first child is labeled with x number of b’s. For example if

M is 625, X computed to be 2 , the order of the 1
st
 ,2

nd
 , 26

th
, 624

th
 , and 625

th
 is

‘bb’,’bc’,’cb’,’zy’, and ‘zz’ respectively. By this approach, the total size of orders for

all nodes of a given level is

 (3.2)

 Table 3.1. Analytical storage requirement

M Optimized Un- optimized
24 24 24

50 100 75

75 150 75

100 200 250

1000 3000 20500

2000 6000 81000

1000000 5000000 20000500000

Table 3.1 shows a comparison of the total number of characters needed to label

the order of nodes using optimized and un-optimized approaches. For M<=25 both

approaches need same storage requirement, while the number of nodes M is from 26 to

99, storage requirement for the un-optimized approaches is slightly smaller. Generally,

for the number of nodes M>100, the storage requirement for the optimized approach is

always smaller than the storage requirement of the un-optimized approach. The

difference of the storage requirements for the two approaches considerably increases as

the number of nodes M increases. This makes the optimized approach to be preferred to

the un-optimized approach.

28

In OrderBased labeling scheme, optimizing the size is a prior operation before

labeling and inserting a sub tree. The Determine-size routine seen in Figure 2, takes the

XML tree to be labeled or inserted as input computes the number of nodes at every

level, then returns a string array.

Determine-size (XML tree)

{

String array Y[height of tree]

Integer array X[height of tree]

Determine the total number of nodes per each level

Put them into an integer array X

for (i=0 to height of tree)

{

Y[i]=concatenate X[i] number of ‘b’

}

Return Y

}

Figure 3.2. Determine-size routine

For example , if a given XML document has 500, 3000, 9000 , 1000000, and

2000000 number of nodes at 1st, 2nd ,3rd, 4th and 5th level respectively, the above

routine returns Y, where Y[1]=’bb’, Y[2]=’bbb’, Y[3]=’bbb’, Y[4]=’bbbbb’, and

Y[5]=’ bbbbb’.

3.2. Generating the Order of a Node

Rule 1

Label the order nodes of a given level starting by the concatenation of b’s

returned by the Determine-size routine. For the second, third, and forth node,

increment the last character to ‘c’,’d’, and ‘e’ respectively. Accordingly for the rest of

the nodes, increment the orders alphabetically.

For example if ‘bbb’ is the string returned for a given level, the order of the 1st,

2
nd

 , 25
th

 , 26
th

 , an 15625
th

 node are labeled as ‘bbb’, ‘bbc’,’ bbz’, ‘bcb’,and ‘zzz’

respectively.

29

3.3. Generating Orders for Newly Inserted Nodes

Rule 2

To insert a node before the first node of a given level, get the order of the node

then count down to the preceding alphabet, if all characters are “b”, insert “a” before

the last “b”.

Figure 3.3. Insert a sub tree before the first node of a given level

Figure 3.3 shows how insertion before the first node of a given level is handled

by OrderBased labeling scheme. Here Rule 2 is applied to insert a node before “1b,a”.

Because there is no node before it we add ‘a’ before ‘b’ then we will have “1ab,a”. At

the second level, there are two nodes to be inserted before “2b,b”. Thus, applying Rule

2, the labels of the inserted nodes will be “2,ab,ab”, and “2aab,ab”. Similarly, the labels

of the two nodes at level 3 will be “3ab,ab” and “3aab,ab”. Insertions before the first

node of a given level can be handled by applying Rule 2 without the need of relabeling.

Rule 3

To insert a node between two nodes, keep counting from the code standing

before it so that the code for the new node will be greater than the code of its previous

sibling and less than the code of its next sibling.

It can be seen from Figure 3.4 that, insertion between two nodes can be made

without affecting the order of the existing nodes. Applying Rule 3 at the first level a

unique label “1bb,a” is generated between “1b,a” and “1c,a”. Likewise at level 3 and

level “2cb,bb” , “2cc.bb”, and “3cb,cc”, “3cd,cc” respectively are unique labels

generated between two nodes without the need or relabeling.

30

 Figure 3.4. Insert a sub tree between two nodes

Rule 4

To insert a node after the last node of a level, increment the order of the last

order alphabetically.

Figure 3.5 shows how insertion after the left most node of a tree is handled. Rule

4 states that insertion after the last node of a given node is handled by incrementing the

order of the last node alphabetically. That is after “1e,a” is “1f,a”, likewise, “2j,f” ,

“2k,f” and “3f,k”,”3g,k’ are after “2,i,h” and “3e,e” respectively.

Figure 3.5. Insert a sub tree after the last node of a given level

Figure 3.3, Figure 3.4 and Figure 3.5 demonstrate that inserting a sub tree at any

arbitrary position does not need any relabeling of nodes. Rules 2, 3 and 4 guarantee

unique labels are given to the newly inserted nodes or sub tree with regardless of the

point of insertion. OrderBased labeling scheme is persistent in that it insures a

uniqueness of labels in a dynamic environment.

31

 CHAPTER 4. PERFORMANCE

EVALUATION

4. PERFORMANCE EVALUATION

In this performance evaluation part of the study, OrderBased labeling scheme is

compared with the LSDX and Com-D (Compressed LSDX) labeling schemes. These

labeling schemes are chosen because they share main feature and design goals. Using

combinations of letter and numbers, including the level information of a node in every

label, and avoiding relabeling when update occurs are the common feature and design

goals of the three schemes. Moreover, because three of them contain the information

about the label of the parent node, they can be grouped under prefix based labeling

scheme.

There are four sets of tests in this performance evaluation: the first set compares

the storage requirement of three schemes. The second set analyzes labeling time. The

third set examines the query performance and the last set investigates update

performance.

4.1. Experimental Setting

The performance evaluation is conducted on an Intel(R) Core™2Duo CPU

E8400 @3GHz 2.7 GHz and 2.00 GB of RAM Windows 7 Professional computer. All

schemes are implemented using Visual Basic .net 2010. So as to avoid discrepancy,

each querying and labeling time performance test is run 5 times and the average is

taken.

A B+ tree is used to store the labels. In the non-leaf nodes of the B+ tree, only

labels are stored. In addition to labels, the leaf nodes contain the name of nodes of the

XML tree or attributes with their corresponding values [15 and 22]. The full

implementation source code is presented in the Appendix. The program can be run

Visual Basic 2008 or later version.

32

4.2. Characteristics of the Datasets

The datasets used in this performance evaluation are generated using xmlgen of

the XMark: Benchmark Standard for XML Database Management [11]. The xmlgen

produces XML documents modeling an auction website, a typical e-commerce

application. It generates a well-formed, valid and meaningful XML data. Xmlgen is well

known for its efficient and scalable generation of XML documents of several GBs.

Number and type of elements are chosen according to a template and

parameterized with certain probability distributions. The words for text paragraphs are

taken from Shakespeare's plays. The generator is deliberately designed to have only a

single parameter: factor. The factor parameter determines the size of the document

generated. It accepts float number from 0 to any number. Zero value for the factor

generates the minimum document.

By giving values from 0.5 to 1.0 to the factor parameter of the xmlgen, six

datasets with size of 56.2 to 113 MB, with number of nodes ranging from 832,911 to

1666315 and maximum fan-out starting 12750 to 25,500 are generated. The

characteristics of the datasets are seen in Table 4.1.

 Table 4.1.Characteristics of datasets

Dataset Factor Size(MB) No of Nodes Max Fan-out

D05 0.5 56.2 832911 12750

D06 0.6 68.2 1003441 15300

D07 0.7 79.7 1172640 17850

D08 0.8 90.7 1337383 20400

D09 0.9 102 1504685 22950

D10 1.0 113 1666315 25500

4.3. Storage Requirement

In this performance evaluation test set, the storage requirement for the three

schemes is studied. For the six datasets introduced in the previous section, the sizes of

labels in MB are shown in Figure 4.1.

The storage requirement of LSDX labels is the largest as compared to the rest of

the two. This resulted from the fact that LSDX label size depends on fan-outs and the

33

height of the tree. To illustrate: for the first 25 children the size of a LSDX label is 25

characters (letter b to z) plus the label of the all its ancestors. Since after every 25th

children we reach at letter z, there is a need to concatenate b. This makes the label size

to increase by one character. The storage requirement for LSDX labels depend on the

fan-outs and the height of the tree (since each label contains the label of its ancestor

nodes). The more the number of fan-outs and the taller the tree, the larger is the label

size.

Com-D is a compressed version of LSDX. The compression is done by counting

the number of times a letter is consecutively repeated. For example if the LSDX label of

an XML node is abzzzzzzrr.dd, its equivalent Com-D label is ab6z2r.2d [10].

As it can be seen from Figure 4.1, for all the datasets used in this performance

analysis, Com-D needs the least storage requirement. Com-D label size is from 4.7% to

8.9% of LSDX label size. The figure also demonstrates that the storage requirement for

OrderBased labels is from 5.1% to 8.9% of the storage requirement of LSDX labels.

For dataset D05, Com-D label size is the same as that of OrderBased. However, for the

rest of the datasets, the storage requirements are from 92.2% to 97.7% of the label size

of OrderBased.

Figure 4.1. Storage requirement

Collision is one of the drawbacks of the LSDX and Com-D labeling scheme. For

every dataset used in this performance evaluation, the two schemes give the same label

for more than one XML nodes. Table 4.2 demonstrates the number of collisions

D05 D06 D07 D08 D09 D10

LSDX 106.07 152.17 205.66 266.08 335.03 411.08

Com-D 9.44 11.46 13.46 15.40 17.37 19.28

OrderBased 9.43 11.86 13.86 15.81 17.78 20.78

0

10

20

30

M
B

LSDX Com-D OrderBased

34

detected while labeling using the LSDX and Com-D labeling schemes. For this reason,

both LSDX and Com-D are impractical.

 Table 4.2. Number of collisions detected by LSDX and Com-D

 D05 D06 D07 D08 D09 D10

Collision 7 43 34 13 30 86

In OrderBased labeling scheme, there is no collision. It avoids collision by

keeping a global level based horizontal order and parent order. Both LSDX and Com-D

are impractical due to the existence of collision. OrderBased is superior to the two

labeling schemes for its persistence. Moreover, it is optimized label size is superior to

LSDX and nearly as good as Com-D.

4.4. Labeling Time

In this sub section, the time required to label a given XML document is studied.

The time required for labeling that is seen on Figure 4.2 below is the average labeling

time taken from five tests done on each dataset. The labels are generated by a depth first

traversal for the three labeling schemes.

Figure 4.2 stipulates that for all the six datasets, LSDX is at 7.99 to 15.74 times

faster than Com-D. With regard to labeling time, OrderBased labeling scheme is

approximately 2.2 to 3.9 and 17.28 to 51.8 times faster than LSDX and Com-D labeling

schemes respectively.

The labeling time performance hit of OrderBased over LSDX is due to LSDX’s

larger label size (In Figure 4.1, the total label size of LSDX is more than 100 to 400

times larger than the total label size of OrderBased). Even though Com-D labels need

the minimum storage requirement, it takes the longest labeling time. This decrease in

labeling performance results from compression overhead.

35

Figure 4.2. Labeling time

The labeling time test set shows that OrderBased labeling scheme takes the least

labeling time compared to LSDX and Com-D labeling schemes. This labeling time

performance hit of OrderBased is because of the optimal label size. From this result it

can be concluded that compression degrades labeling time performance more than large

label size does.

4.5. Query

In this performance evaluation part, a query which returns all descendants of the

root node is run. Finding descendant of a given node depends on the time required for

Parent-Child, and Sibling, and Order queries.

Given an ancestor finding its descendants is one of the structural queries found

in XML querying. These types of queries are usually seen in XPath statements. The

query for retrieving all descendant of a root node is equivalent to the XPath expression

Site/*(since the root node of the data sets used in this performance evaluation is site).

D05 D06 D07 D08 D09 D10

LSDX 14.8582 19.937 25.025 31.543 37.674 44.9434

Com-D 118.7752 189.119 279.334 395.632 535.502 707.726

OrderBased 6.6862 8.315 9.719 11.014 12.418 13.665

0

10

20

30

40

50

S
e

co
n

d
s

Labeling Time

LSDX Com-D OrderBased

36

Figure 4.3. Time required for retrieving all descendants of a given node

For a reasonably small size and small number of nodes of a given XML data set,

LSDX and OrderBased take nearly the same time. However, OrderBased executes faster

as the data size and the number of nodes increase. In addition, both LSDX and

OrderBased labeling scheme are incomparably faster than Com-D. This performance

variation comes from decompressing overhead for Com-D. Com-D querying involves

decompressing of each label. It can be seen from Figure 4.3 that decompressing

degrades query performance than label size does.

OrderBased labeling scheme is superior to LSDX and Com-D with respect to

querying time. Such a performance hit is due to its optimized size of labels.

4.6. Updates

In this update performance evaluation of the study, the time needed to insert a

sub tree, and delete a sub tree for the three schemes is analyzed. The most profound

problem with most XML labeling schemes is that they are designed with an assumption

of static document. Whenever a deletion or an insertion is done on the XML document,

relabeling of all or part of the XML tree is inevitable. However, in real world

applications, updating an XML document is an important and necessary operation.

D01 D02 D03 D04 D05 D06 D07

LSDX 15.6 40.56 62.4 78 109 133.6 165

Com-D 218 380 518 614 712 810 963

OrderBased 15.6 40.56 62.4 78 98.8 115 140

0

50

100

150

200

M
il

li
se

co
n

d
s

LSDX Com-D OrderBased

37

4.6.1. Inserting a Sub Tree

In this performance evaluation part of the study, the time to insert a sub tree

which is an XML by itself is seen. For this study, an XML dataset D01 of 11.3 MB is

generated by giving 0.01 to the factor parameter of the xmlgen generator. Inserting D01

at different part of the XML tree produces same time. Thus, for convenience for all the

datasets the D01 is inserted as the child of the root node.

Figure 4.4 shows that the time of insertion of DO1 to the six datasets is nearly

constant irrespective of their size. Moreover, insertion time mainly depends on the size

of the inserted sub tree.

Figure 4.4. Insertion time

Com-D takes at least twice and four times longer time than that of LSDX and

OrderBased labeling schemes. These performances degradations are resulted from the

time needed for compression, since all labels have to be compressed. Figure 4.4

illustrates that OrderBased is superior to the rest of the schemes with respect to insertion

time in that it is twice faster than LSDX and four times faster than Com-D. OrderBased

insertion time performance hit is due to its reasonable small size.

4.6.2. Deleting a Sub Tree

 In this part of the performance evaluation, the time needed to delete a sub tree is

studied. All the three schemes avoid relabeling after deletion. The spaces and the labels

deleted can be used for future insertions.

D05 D06 D07 D08 D09 D10

LSDX 3.0728 3.10744 3.13354 3.16704 3.2136 3.23652

Com-D 7.37472 7.457856 7.520496 7.600896 7.71264 7.767648

OrderBased 1.4194 1.43516 1.4444 1.47576 1.5188 1.5598

0

2

4

6

8

S
ec

o
n

d
s

LSDX Com-D OrderBased

38

For the B+ tree used to store the labels of XML tree nodes, a mechanism of lazy

deletion is employed. Lazy deletion does not rebalance the B+ tree on deletion.

Avoiding rebalancing on deletion has been justified empirically [12, 13 and 14].

Delete site/closed_auctions: delete the node with name closed_auctions.

Figure 4.5 depicts that Com-D takes the longest time to delete in all the six

datasets. This is because decompressing is necessary to determine whether the nodes are

descendants of the deleted node. OrderBased labeling scheme deletion is 1.5 to 2.33

faster than LSDX.

Figure 4.5. Deletion time

4.7. Discussion on Results

 In this performance evaluation study we have seen the storage requirement,

labeling time, querying time, insertion time and deletion time for OrderBased, LSDX,

and Com-D labeling schemes.

The first test set for storage requirement, LSDX labels need the largest storage

requirement .Com-D labels need the least space. The storage requirement for

OrderBased labels is nearly as good as the storage requirement for Com-D labels

(2.34% to 7.7% greater than Com-D). Com-D reduces the total size of LSDX labels by

91% to 95%. On the other hand, the size requirement for OrderBased labels is 91.1 % to

94.94% less than the storage requirement for LSDX.

D05 D06 D07 D08 D09 D10

LSDX 46.8 62.4 78 93.5 109.2 124.72

Com-D 3166 3987 4017.4 4531.8 5030.4 5406.6

OrderBased 31.2 31.2 46.8 46.8 46.8 62.4

0

50

100

150

M
il

li
se

co
n

d
s

LSDX Com-D OrderBased

39

The second test set for labeling time requirement shows that OrderBased needs

the least labeling time whereas Com-D takes the longest labeling time because of

compression overhead. From this result it can be concluded that the larger the label size,

the faster the labeling is. On the other hand, the compression reduces the label size; it

degrades labeling time more than large label size does.

For querying performance, for small data sets, it seems LSDX and OrderBased

take equal time. However, as the data size increases, it becomes clear that OrderBased

needs the least time. Com-D has the least performance because of the need of

decompression.

In the fourth test, update performance (insertion and deletion) time requirement

is studied. With regard to insertion, OrderBased needs the least time. Again Com-D

needs the longest time because of compression overhead. For deletion time requirement

test, OrderBased needs the least time.

40

 CHAPTER 5. CONCLUSION

CONCLUSION

XML is a standard format for structuring and transmitting information across

platforms. An XML document has a natural order. In addition to the natural order,

Parent- Child, Ancestor –Descendant, Siblings relationships constitute the structural

component of an XML document. In short, XML is a semi structured document in

which XML query processing mainly depends on the structural relationships among the

nodes and their order. Labeling scheme is hence a systematic way of assigning labels to

the nodes of an XML tree such that the information embedded in labels conveys

information about the relationships among nodes.

 XML labeling schemes can be grouped under four categories: Range based,

Prefix based, Multiplication based, and Vector based. In this thesis, by giving example

labeling schemes to the four aforementioned categories of labeling schemes, a detailed

illustration along with the advantages, disadvantages, and improvements is presented.

Range based labeling schemes are generally characterized by incorporating

<START, END> arguments to the labels. The START and END components of an

XML label tell that any label enclosed in the range is regarded as the descendant or

child of a given label. Labeling schemes under this category are fast in determining

Ancestor-Descendant relationships. Inefficiency in update intensive environment due to

the need of relabeling and inability to determine all structural relationships are the main

challenges of the Range based labeling schemes.

Prefix based labeling schemes include the label of their ancestors and the self-

label. This makes determination of all structural relationships easy just by looking at the

labels. However, with a tall XML tree the size of the labels grow dramatically. In all

prefix based labeling schemes, right most insertions adapt gracefully without the need of

relabeling. Not only does this approach have an inherent impractically large label size

problem but also improvements made to fully support update happen to be in

persistence.

41

Multiplication based labeling schemes, on the other hand, uses atomic numbers

and multiplication and division operations to determine structural relationships. Because

unique number has to be used, the size of labels increases dramatically.

Last but not least, Vector based labeling schemes employ a vector order. The

ideas used here are general and can be applied to the other categories of labeling

schemes. However, insertions, and querying always need mathematical computations.

This thesis pointed out the challenges of dynamic labeling scheme for XML

documents. Large storage requirement, inefficient labeling or querying time and

complexity are challenges of dynamic labeling schemes. To address these problems, a

novel fully dynamic labeling scheme called OrderBased is proposed.

An OrderBased label is a triple consisting of the level of the node, the horizontal

distance of the given node from the left most nodes, and the order of the parent node.

The level part of the label is an integer which stores the information of the level where

the node is found. The order component of the level is an alphabet string from ‘b’ to ‘z’.

Character ‘a’ is reserved to facilitate future insertions. The peculiar characteristic of

character enables us to make skewed insertions without the need of relabeling the

existing nodes. Whereas the combination of level, order, and parent order guarantee

uniqueness, this approach introduces an optimization routine to reduce the size of labels.

OrderBased labeling scheme is fully dynamic, persistent, compact and simple to

understand and implement.

In performance evaluation studies, OrderBased labeling scheme is compared

with LSDX and Com-D. The reasons for choosing the two labeling schemes for

comparison are that they are fully dynamic, include level information, and intend to

compress the size of labels. Last but not least, since they include the label of the parent

of a given node except for the root node, they can be grouped under prefix based

labeling schemes.

 Storage requirement of labels, labeling time, querying time and update time are

the attributes we measure in the performance evaluation studies. To avoid

inconvenience, each time measuring tests were run five times and the average is

recorded.

Performance evaluation study results can be summarized as follows

· Storage Requirement

o OrderBased label size is on average 6.6% of LSDX label size

42

o Com-D label size is on average 97% of OrderBased label size

· Labeling time

o OrderBased is 2.2 to 3.9 times faster than LSDX

o OrderBased is 17.2 to 51.8 times faster than Com-D

· Querying time

o OrderBased is faster for large datasets than LSDX

o OrderBased is 6.9 to 14.9 times faster than Com-D

· Update performance

o Insertion time

§ OrderBased is on average 2 times faster than LSDX

§ OrderBased in on average 5 times faster than Com-D

o Deletion time

§ OrderBased is 1.5 to 2 times faster than LSDX

§ OrderBased is 85 to 127 times faster than Com-D

In summary, performance evaluation studies show that OrderBased labeling

scheme outperforms LSDX and Com-D with respect to labeling time, query

performance, and update performance. It is also shown that the total label size for

OrderBased labels from 91.1% to 91.95% smaller than label size of LSDX. Even though

OrderBased label size is from 2.4% to 7.1% greater than that of Com-D, its efficient

querying, labeling and update performance makes it preferable.

In future, a comprehensive research can be done to see if the rationales of

OrderBased labeling scheme can be applied to other labeling schemes. Making an

extended query performance comparison using real world datasets can also be

considered as future work.

43

REFERENCES

1. S. Boag, D. Chamberlin, Mary, F. Fernandez, D.Florescu, J. Robie, and J.

…..Simeon, “XQuery 1.0: An XML query language”, W3C working draft. 2001.

2. J. Clarke and S. DeRose, “XML path language (XPath) version 1.0”,W3C

…..recommendation,1999.

3. P.F Diets “Maintaining Order in a Linked Lists”, In Proceedings of the ACM

…..Symposium on Theory of Computing, 1982. …..…..…..…..…..…..

4. Q. Li, and B. Moon,”Indexing and Querying XML Data for Regular Path

…..Expressions”, in proceedings of the VLDB, 2001. …..…..…..…..…..

5. Jung-Hee Y., Chin-Wan C. ,”Dynamic interval-based labeling scheme for

…..efficient XML query and update processing”, The Journal of Systems and

…..Software,2008.

6. E.Cohen, H. Kaplan, T. ilo,”Labeling Dynamic XML Trees”, in Proceedings of

…..the ACM SIGMOD- SIGACT- SiGART,2002. …..…..…..…..…..…..…..

7. I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C.

…..Zhang “Storing and Querying Ordered XML Using a Relational Database

…..System”, In Proceedings of ACM SIGMOD, 2002. …..…..

8. ONeil, P.E. et al., “ORDPATHs: Insert-friendly XML node labels”, In

…..Proceedings of the ACM SIGMOD 2004. …..…..…..…..…..…..…..

9. M. Duong, and Y. Zhang, “LSDX: New Labeling Scheme for Dynamically

…..Updating XML Data”,In proceedings of 16th Australian Database

…..Conference, 2005. jjjjjj …..…..

10. Duogn M, Zhang Y,”Dynamic Labeling Scheme for XML Data Processing”,

…..On the Move to Meaningful Internet Systems: OTM, 2008.nnnnnnnnnnj

…..…..

11. Schmidt A., Waas F., Kersten M., Carey, J., M.Manolescu I. and Busse, R.

….. (2002): XMark: A Benchmark for XML Data Management, in Proceedings

…..of VLDB ,2002. …..…..

12. J. Gray and A. Reuter, editors “Transaction Processing: Concepts and

…..Techniques”, Morgan Kaufmann, San Mateo, California, 1993.

44

13. C. Mohan and F. Levine. ARIES/IM,”An Efficient and High Concurrency

…..Index Management Method using write-ahead logging”, SIGMOD Record,

…..21(2):371–380, 1992. …..…..

14. M. A. Olson, K. Bostic, and M. I. Seltzer: Berkeley DB. In USENIX Annual,

…..FREENIX Track, pages 183–191, 1999. …..…..

15. Li Y., Ma J., Sun Y.” Applying Dewey Encoding to Construct XML Index of

…..Path and Keyword Query”, Proceedings of IEEE First International

…..Workshop on Database Technology and Applications, 2009.
…..…..

16. D.D.Kha, M. Yoshikawa, and S. Uemara, “A Structural Numbering Scheme for

…..XML Data”, in Lecture Notes in Computer Science 2490,2002.

17. L. Xu, Z. Bao, and T.W. Ling, “A Dynamic Labeling Scheme Using Vectors”,

…..Proceedings of the 18th International Conference on Database and Expert

…..Systems Applications (DEXA), 2007.

18. Liang Xu, T. W. Ling, and Huayu Wu, “Labeling dynamic XML Documents:

…..An Order-centric Approach”, IEEE Transactions on Knowledge and Data

…..Engineering, 2010.

19. X. Wu, M.L. Lee, W. Hsu, “A Prime Number Labeling Scheme for Dynamic

…..Ordered XML Trees”, In Proceedings of the 20th International Conference

…..on Data Engineering, 2004.

20. A. Gabillon and M. Fansi “ A Persistent Labeling Scheme for XML and tree

…..Database”, In Proceedings of ACI, 2006.

21. Damien K., F. Franky ,L. William M. Shui Raymond K.Wong, “Dynamic

…..Labeling Schemes for Ordered XML Based on Type Information”,

…..Seventeenth Australasian Database Conference Technology, Vol. 49, 2006.

22. A. Silberstein et al,”BOXes: Efficient Maintenance of Order-Based Labeling for

…..Dynamic XML Data”, In Proceedings of Inenrnational conference on Data

…..Engineering (ICDE), IEEE CS Press, 2005.

23. R. Thonangi,”A Concise Labeling Scheme for XML Data”, International

…..Conference on Management of Data COMAD 2006, Delhi,India, 2006.

24. Liang X/ , Tok W. L. , Huayu W. , Z. Bao,” DDE: From Dewey to a Fully

…..Dynamic XML Labeling Scheme”, Proceedings of the 35th SIGMOD

…..International Conference on Management of Data, Providence, Rhode Island,

…..USA, June 29-July 02, 2009.

25. J.H. Yun and C.W. Chung, “Dynamic Interval-Based labeling Scheme for

…..Efficient XML Query and Update processing”, Journal of Systems and

…..Software, 81, p.p. 56-70, 2008.

45

26. S.C. Haw, and C.S. Lee, “Extending Path Summary and Region Encoding for

…..Efficient Structural Query Processing in Native XML Databases”, Journal of

…..Systems and Software, 2009.

27. C. Li, T. W. Ling, and M. Hu. “Efficient Updates in Dynamic XML Data: from

…..Binary String to Quaternary String”. VLDB Journal, 2008.

28. Martin F. O’Connor Mark Roantree, “Desirable Properties for XML Update

…..Mechanisms”, Updates in XML (EDBT Workshop Proceedings), Lausanne,

…..Switzerland, 2010.

29. C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman, “On

…..Supporting Containment Queries in Relational Database Management

…..Systems” In SIGMOD, 2001.

30. T. Amagasa, M. Yoshikawa, and S. Uemura, “QRS: A Robust Numbering

…..Scheme for XML Documents”, In ICDE, 2003.

31. M. Dewey, “Dewey Decimal Classification (DDC) system, http://www.oclc. org

…../dewey/

32. Li C., Ling T. W., Lu J., Yu T, “On Reducing Redundancy and Improving

…..Efficiency of XML Labeling Schemes”, CIKM, 2005.

33. C. Li and T. W. Ling. An Improved Prefix Labeling Scheme: A Binary String

…..Approach for Dynamic Ordered XML. In DASFAA, pages 125-137, 2005.

34. C. Li and T. W. Ling. QED: A Novel Quaternary Encoding to Completely

…..Avoid Re-labeling in XML Updates. In CIKM, pages 501.508, 2005.

35. Haw Su-Cheng, Lee Chien-Sing, “Node Labeling Scheme in XML Query

…..Optimization: Survey and Trend”, IETE Technical Review ,2009.

36. Martin F. O’Connor Mark Roantree, “Desirable Properties for XML Update

…..Mechanisms”, Updates in XML (EDBT Workshop Proceedings, Lausanne,

…..Switzerland, March 2010.

37. S. Subramaniam, Su-Cheng Haw, P. K. Hoong “XML Labeling Schemes for

…..Dynamic Updates: Strengths and Limitations”, on the Proceeding of the

…..International Conference on Advanced Science, Engineering and

…..Information Technology, 2011.

38. C. Li, T. W. Ling, and M. Hu. “Efficient Processing of Updates in Dynamic

…..XML Data”. In ICDE, page 13, 2006.

39. Fomichev A., Grinev, M., and Kuznetsov, “ Sedna: A native XML DBMS”, In

…..32nd Conference on Current Trends in Theory and Practice of Computer

…..Science, SOFSEM 2006.

46

40. H. V. Jagadish , S. Al-Khalifa , A. Chapman , L. V. S. Lakshmanan , A.

…..Nierman , S. Paparizos , J. M. Patel , D. Srivastava , N. Wiwatwattana , Y.

…..Wu , …..C. Yu, “TIMBER: A native XML database’, The VLDB Journal

…..The International Journal on Very Large Data Bases, , December 2002.

41. Sh. Pal , I. Cseri , O. Seeliger , M. Rys , G. Schaller , Wei Yu , D. Tomic ,

…..Adrian Baras , Brandon B., Denis Ch. , Eugene K. , “XQuery

…..implementation in a relational database system”, Proceedings of the 31st

…..international conference on Very large data bases, August 30-September 02,

…..2005.

42. Nicola, M. and van der Linden, B. 2005. Native XML support in DB2 universal

…..database. In Proceedings of the 31st international Conference on Very Large

…..Data Bases (Trondheim, Norway, August 30 - September 02, 2005). Very

…..Large Data Bases. VLDB Endowment, 1164-1174. .

43. Guangjun X., Qi Cheng, Jarek G.,Calisto Z, “Some Rewrite Optimizations of

…..DB2 XQuery Navigation”, CIKM’08,2008.

47

 APPENDIX A. LABELING SCHEME

IMPLEMENTATION

 LABELING SCHEME IMPLEMENTATION

The input XML form is the first interface appearing while running the

implementation. The txtlabel and txtinsert text fields are used to enter the location of

the XML document to be labeled and inserted respectively.

String d=txtlabel.Text
String dinsert= txtinsert.Text
Dim document As Xml.XPath.XPathDocument = New
Xml.XPath.XPathDocument(d)

 Dim navigator As Xml.XPath.XPathNavigator =
document.CreateNavigator
 Dim nodes As Xml.XPath.XPathNodeIterator = navigator.Select("//*")
 Dim documentinsert As Xml.XPath.XPathDocument = New
Xml.XPath.XPathDocument(d_insert)
 Dim navigatorinsert As Xml.XPath.XPathNavigator =
documentinsert.CreateNavigator
 Dim nodes2 As Xml.XPath.XPathNodeIterator =
navigatorinsert.Select("//*")

A.1. LSDX Labeling Scheme Code

The LSDX labeling scheme accepts two parameters: My-tree which is an instance of a

B+ tree class, and str is the initial label for LSDX i.e . in this case it is ‘a’.

Private Sub LSDX_Labeling(ByRef My_tree As BTree(Of Label), ByVal str
As String)
 Dim s As New Stack
 Dim h As Integer = 0
 Dim m As Integer = 0
 Dim k As Integer
 Dim r As String

 navigator.MoveToRoot()

48

 navigator.MoveToFirstChild()
 s.Push(str)
 My_tree.AddItem(h.ToString("00") & "," & s.Peek,
navigator.Name)
1: While navigator.HasChildren
 navigator.MoveToFirstChild()
 h = h + 1
 s.Push(Replace(s.Peek, ".", "") & ".b")
 If navigator.Name.ToString.Length > 0 Then
 My_tree.AddItem(h.ToString("00") & "," & s.Peek,
navigator.Name)
 End If
 m = IIf(h > m, h, m)
 End While
2: While navigator.MoveToNext
 If navigator.Name.Length > 0 Then
 r = s.Pop
 k = r.IndexOf(".") + 1
 s.Push(Mid(r, 1, k) & NextString(Mid(r, k + 1, Len(r)
- k)))
 My_tree.AddItem(h.ToString("00") & "," & s.Peek,
navigator.Name.ToString)

 If navigator.HasChildren Then GoTo 1
 End If
 End While
 If navigator.MoveToParent Then
 h = h - 1
 s.Pop()
 GoTo 2
 End If
 End Sub

A.2. OrderBased Labeling Scheme Code

For OrderBased labeling scheme, it first runs InitializeDyanamicOrder_

Basedlabeling () before labeling the XML tree. This routine does the function as the

Determine-Size routine discussed on chapter three, section 3.1.

A.2.1. Determine_Size routine

Private Sub InitializeDyanamicOrderBasedlabeling()
 Dim h As Integer = 0
 Dim xm As Integer = 0
 c.Clear()
 c.Add(0)
 navigator.MoveToRoot()
 navigator.MoveToChild(Xml.XPath.XPathNodeType.All)

1: While navigator.HasChildren
 navigator.MoveToFirstChild()
 h = h + 1
 If navigator.Name.Length > 0 Then
 If h = c.Count Then
 c.Add(1)
 xm = h
 Else

49

 c.Insert(h, c(h) + 1)
 c.RemoveAt(h + 1)
 End If
 End If
 If h > xm Then
 c.Add(0)
 xm = h
 End If
 End While
2: While navigator.MoveToNext
 If navigator.Name.Length > 0 Then
 c.Insert(h, c(h) + 1)
 c.RemoveAt(h + 1)
 If navigator.HasChildren Then GoTo 1
 End If
 GoTo 1
 End While
 If navigator.MoveToParent Then
 h = h - 1
 GoTo 2
 End If

 If c(xm) = 0 Then
 c.RemoveAt(xm)
 xm -= 1
 End If
 max = xm
 ReDim f(max)
 f(0) = "a"
 Dim m As Integer
 For j = 1 To max
 m = IIf(c(j) = 1, 1, Math.Ceiling(Math.Log10(c(j)) /
Math.Log10(25)))
 For g = 1 To m
 f(j) &= "b"
 Next
 Next j

 End Sub

A.2.2. OrderBased Labeling Scheme

Private Sub OrderBased_Labeling(ByRef My_tree As BTree(Of Label))
 InitializeDyanamicOrderBasedlabeling()
 Dim h, maxh As Integer
 h = 0
 maxh = 0
 navigator.MoveToRoot()
 navigator.MoveToFirstChild()
 My_tree.AddItem(h.ToString("00") & "," & String.Empty & "." &
f(h), navigator.Name.ToString)
 'lstorderbased.Items.Add(h.ToString("00") & "," & String.Empty
& "." & f(h) & "-" & navigator.Name.ToString)
1: While navigator.HasChildren
 navigator.MoveToFirstChild()
 h += 1
 If Len(navigator.Name) > 0 Then
 If maxh >= h Then
 f(h) = nextOrderlabel(f(h))
 End If
 My_tree.AddItem(h.ToString("00") & "," & f(h - 1) &
"." & f(h), navigator.Name.ToString)

 End If

50

 maxh = IIf(h > maxh, h, maxh)
 End While
2: While navigator.MoveToNext
 If navigator.Name.Length > 0 Then
 f(h) = nextOrderlabel(f(h))
 My_tree.AddItem(h.ToString("00") & "," & f(h - 1) &
"." & f(h), navigator.Name.ToString)
 If navigator.HasChildren Then GoTo 1
 End If
 End While
 If navigator.MoveToParent Then
 h -= 1
 GoTo 2
 End If

 End Sub

51

 APPENDIX B. STRUCTURAL

RELATIONSHIPS

STRUCTURAL RELATIONSHIPS

B.1. Parent Child Relationships

B.1.1. Find LSDX Parent

Public Function findlsdxparent(ByVal target_key As String)
 Dim d As BTreeNode(Of T) = Me
 Dim x As String = Mid(target_key, 1, target_key.IndexOf(","))
 Dim y As String = (CInt(x) - 1).ToString("00")
 If y < 0 Then Return String.Empty
 Dim a As Integer = target_key.IndexOf(",")
 Dim b As Integer = target_key.IndexOf(".")
 Dim parent_key As String = y & Mid(target_key, a + 1, b - a)
 Dim spot As Integer = 0
 Do While d.isleaf = False
 While spot < d.NumKeysUsed
 If Replace(d.Keys(spot), ".", "") >= parent_key Then Exit
While
 spot += 1
 End While
 d = d.Children(spot)
 spot = 0
 Loop
 For spot = 0 To d.NumKeysUsed - 1
 If Replace(d.Keys(spot), ".", "") >= parent_key Then
 If Replace(d.Keys(spot), ".", "") = parent_key Then
 parent_key = d.Keys(spot)
 Exit For
 Else
 Return String.Empty
 End If
 End If
 Next
 Return parent_key
 End Function

B.1.2. Find Com-D Parent

Public Function findcomplsdxparent(ByVal target_key As String)

 Dim d As BTreeNode(Of T) = Me

 Dim x As String = Mid(target_key, 1, target_key.IndexOf(","))

 Dim y As String = (CInt(x) - 1).ToString("00")

 If y < 0 Then Return String.Empty

52

 Dim a As Integer = target_key.IndexOf(",")

 Dim b As Integer = target_key.IndexOf(".")

 Dim parent_key As String = y & uncompress(Mid(target_key, a +

1, b - a))

 Dim spot As Integer = 0

 Do While d.isleaf = False

 While spot < d.NumKeysUsed

 If Replace(d.Keys(spot), ".", "") >= parent_key Then

Exit While

 spot += 1

 End While

 d = d.Children(spot)

 spot = 0

 Loop

 For spot = 0 To d.NumKeysUsed - 1

 If Replace(uncompress(d.Keys(spot)), ".", "") >=

parent_key Then

 If Replace(uncompress(d.Keys(spot)), ".", "") =

parent_key Then

 parent_key = d.Keys(spot)

 Exit For

 Else

 Return String.Empty

 End If

 End If

 Next

 Return parent_key

 End Function

53

B.1.3. Find OrderBased Parent

Public Function findorderbasedparent(ByVal target_key As String)

 Dim d As BTreeNode(Of T) = Me

 Dim x As String = Mid(target_key, 1, target_key.IndexOf(","))

 Dim y As String = (CInt(x) - 1).ToString("00")

 If y < 0 Then Return String.Empty

 Dim a As Integer = target_key.IndexOf(",") + 1

 Dim b As Integer = target_key.IndexOf(".")

 Dim parent_key As String = "." & Mid(target_key, a + 1, b - a)

 Dim spot As Integer = 0

 While d.isleaf = False

 Do While spot < d.NumKeysUsed

 Dim t As String = Mid(d.Keys(spot), 1,

d.Keys(spot).IndexOf(","))

 If t >= y Then

 If t = y Then

 Exit While

 End If

 Exit Do

 End If

 spot += 1

 Loop

 d = d.Children(spot)

 spot = 0

 End While

 While d.isleaf = False

 Do While spot < d.NumKeysUsed

54

 If Mid(d.Keys(spot), 1, d.Keys(spot).IndexOf(",")) = y

Then

 a = d.Keys(spot).IndexOf(".")

 Dim t As String = Right(d.Keys(spot),

d.Keys(spot).Length - a)

 If Right(d.Keys(spot), d.Keys(spot).Length - a) >=

parent_key Then

 Exit Do

 End If

 Else

 Exit Do

 End If

 spot += 1

 Loop

 d = d.Children(spot)

 spot = 0

 End While

 For spot = 0 To d.NumKeysUsed - 1

 If Mid(d.Keys(spot), 1, d.Keys(spot).IndexOf(",")) = y

Then

 a = d.Keys(spot).IndexOf(".")

 If Right(d.Keys(spot), d.Keys(spot).Length - a) =

parent_key Then

 parent_key = d.Keys(spot)

 Exit For

 End If

 End If

55

 Next

 Return parent_key

 End Function

