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ABSTRACT

ANOMALY DETECTION USING NETWORK TRAFFIC 

CHARACTERIZATION

Detecting suspicious traffic and anomaly sources are a general tendency about 

approaching the traffic analyzing. Since the necessity of detecting anomalies, different 

approaches  are  developed  with  their  software  candidates.  Either  event  based  or 

signature based anomaly detection mechanism can be applied to analyze network traffic. 

Signature based approaches require the detected signatures of the past anomalies though 

event based approaches propose a more flexible approach that is defining application 

level abnormal anomalies is possible. Both approach focus on the implementing and 

defining abnormal traffic. The problem about anomaly is that there is not a common 

definition of anomaly for all protocols or malicious attacks. In this thesis it is aimed to 

define the non-malicious traffic and extract it, so that the rest is marked as suspicious 

traffic for further traffic. To achieve this approach, a method and its software application 

to identify IP sessions, based on statistical metrics of the packet flows are presented. An 

adaptive network flow knowledge-base is derived. The knowledge-base is constructed 

using calculated flows attributes. A method to define known traffic is displayed  by 

using the derived  flow attributes. By using the attributes, analyzed flow is categorized 

as a known application level protocol.  It  is  also explained a mathematical  model to 

analyze the undefined traffic to display network traffic anomalies.  The mathematical 

model  is  based  on  principle  component  analysis  which  is  applied  on  the  origin-

destination  pair  flows.  By  using  metric  based  traffic  characterization  and  principle 

component  analysis  it  is  observed  that  network  traffic  can  be  analyzed  and  some 

anomalies can be detected. 
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ÖZET

AĞ TRAFİĞİ KARAKTERİSTİĞİNİ KULLANARAK 
ANOMALİ TESPİTİ

Trafik  analizindeki  en  temel  yaklaşımlardan  birisi  de  şüpheli  trafiğin  tespit 

edilmesidir.  Network  trafiği  ile  ilgili  anomali  tespitine  olan  ihtiyaçtan  dolayı  farklı 

yaklaşımlar  ve  bunların  yazılım  çözümleri  geliştirilmiştir.  Network  trafiğinin 

incelenmesinde olay tabanlı veya imza tabanlı bir yaklaşım sergilenebilir. İmza tabanlı 

yaklaşımlar  önceden  yaşanmış  anormalliklerden  çıkarılan  imzalara  dayanırken  olay 

tabanlı yaklaşımlar daha esnek bir şekilde anormalliklerin ifade edilebilmesini sağlar. 

Her iki yaklaşımda da anormal trafiğin ifade edilebilmesi gerekmektedir. Anomali ile 

ilgili genel sorun ise, her protokol ve durum için genel bir ifade biçimin olmayışıdır. Bu 

tez çalışmasında,  normal  trafiğin tanımlanması  amaçlanmıştır.  Gözlemlenen trafikten 

normal olarak tanımlanan trafik  çıkarılarak kalan trafiğin şüpheli  olarak incelenmesi 

hedeflenmiştir.  Bu  hedefi  gerçeklemek  için  IP  oturumlarına  ve  istatistiksel  metrik 

değerlerine bağlı ağ paket akışları kullanılmıştır. Ağ akışları ile ilgili gerçeklenebilir ve 

ağdaki akışların davranış özelliklerini ifade eden bir veri tabanı oluşturulmuştur. Akış 

özelliklerinden yola  çıkarak trafik  karakteristiği  çıkarma yöntemi  açıklanmıştır.  Akış 

özellik  değerleri  kullanılarak  trafik  karakteristiğinin  nasıl  yapıldığı  gösterilmiştir. 

Ayrıca,  ele  alınan  trafik  ile  ilgili  anormallik  tespitinde  kullanılabilmesi  için  de 

matematiksel  bir  model  açıklanmıştır.  Birincil  Bileşen Analizi  (Principle  Component 

Analysis) isimli bu yöntem ile kaynak-hedef çiftlerini içeren akışlar için grafiksel olarak 

anomali  tespit  edilebildiği  gösterilmiştir.  Böylece,  incelenen  trafiğin  karakteristiği 

çıkarılarak şüpheli trafik üzerinde nasıl anomali tespiti yapılacağı açıklanmıştır.
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CHAPTER 1

INTRODUCTION

Network  traffic  measurement  provides  basic  traffic  characteristics,  supplies 

information for the control of the network, allows modeling and provides an opportunity 

to develop and plan the use of network resources. It also enables developers to control 

the quality of network service operations. Although network traffic measurement is a 

well-known and applicable area, a general method for detecting anomalies in network 

traffic is an important, unsolved problem (Denning 1986). 

Anomaly detection can be described as an alarm for strange system behavior. 

The  concept  stems  from a  paper  fundamental  to  the  field  of  security,  An Intrusion 

Detection Model, by Denning (Denning 1986). In it, she describes building an "activity 

profile" of normal usage over an interval of time. Once in place, the profile is compared 

against real time events. Anything that deviates from the baseline, or the norm, is logged 

as  anomalous.  So,  anomaly  detection  systems  establish  a  baseline  of  normal  usage 

patterns, and anything that widely deviates from it gets flagged as a possible intrusion. A 

good example for this approach is Bro-IDS (Bro-IDS 2009). It works as en event based 

intrusion detection system, that  is  it  does  not  rely on only signatures,  recorded and 

generated  by  observing  previously  seen  anomalies,  but  also  event  definitions  that 

enables dynamic approach to intrusion detection systems. By using its own language, it 

is  possible  to  define anomalies  on application level.  Such an event  based approach 

enable further protection for the unseen anomalies. Another anomaly detection system 

works using signatures that are previously recorded. Since its dependency to previous 

anomalies and signature collection, signature based systems are not as dynamic as event 

based systems.

The network traffic to be an anomaly can vary, but normally, any incident that 

occurs on frequency greater than or less than two standard deviations from the statistical 
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norm can be approached as a suspicious event. Since the ambiguity on determination of 

the statistical norm, a general method for detecting anomalies in network traffic doesn't 

have a unique solution. Basically, it should be possible to observe most anomaly types 

by  inspecting  traffic  flows.  However,  to  date,  there  is  not  a  common  approach  to 

anomaly detection. There are many good reasons for this: Traffic flows present many 

possible types of network traffic, the set of all flows occupies a very high-dimensional 

space, and collecting all traffic flows is very resource-intensive.

In this thesis, detecting anomalies are achieved neither signature nor signature 

based. Both approaches require definition of an anomaly either in a signature way or an 

application level protocol way. Instead of defining abnormal traffic, it is presented that, 

defining normal traffic behavior is easier. By using the normal traffic characteristics, the 

rest of the traffic can be extracted as suspicious traffic for anomaly detection. 

Throughout this thesis, it  is shown that traffic flow attributes can be used to 

define known traffic, which covers application level protocols like FTP, TELNET, SSH, 

HTTP, HTTPS, IMAP, POP, SMTP, MSN CHAT, RLogin, BitTorrent. Network traffic is 

taken  into  consideration  as  combination  of  directional  flows.  For  each  flow,  flow 

attributes are calculated either using flow metrics or packet based inspection. Packet 

based inspection includes traversing through the collected packets that belong to a flow 

session.  Especially,  attribute  values  related  with  statistical  analysis  requires  packet 

based inspection. 

By using the attribute values, it is possible to calculate a match result for each 

application level protocol. By looking at the match result of the calculated values, it is 

seen that it  is possible to define a threshold value for each protocol and any flow that is 

under the defined threshold value can be marked as undefined for further inspection. 

When the undefined flows are observed as a whole and principle component analysis is 

applied over byte and packet number level, it is seen that the generated graphs has peeks 

that  displays  suspicious  anomalies  over  time intervals.  For  calculating  the  principle 

components, number of packets, number of bytes and number of IP flow values are used 

for each origin-destination pairs. Origin-destination pairs are calculated for the splitted 

time series of the undefined traffic.

The exact number of applications that contribute to the network traffic is not 

known and even the actual impact of well-known protocols is not clear. This is due to 
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the  shortcomings  of  the  state-of-the-art  in  traffic  monitoring,  which  make  use  of 

registered and well-known port numbers to classify packets and computer statistics. The 

problem is new applications often do not use a registered port, do not have a fixed port 

number, or simply disguise themselves using the port numbers of another application 

(for example, the web's port 80) to avoid detection (so they can pass through firewalls, 

and avoid rate limits) (Hernandez-Campos, et. al. 2005).

This thesis will cover mathematical models for traffic characterization,  anomaly 

detection and implementation of  them on network traffic.  Chapter  2  aims to  give a 

background information. Flow explanations like directionality or flow metrics and tools 

that are used either on packet or flow based are explained throughout this chapter. This 

chapter also covers the background information about principle component analysis that 

is used for anomaly detection for the suspicious traffic. Chapter 3 explains the model of 

the  solution.  It  is  aimed  to  answer  the  how  part  of  the  thesis.  Before  starting  the 

implementation phase it is aimed to give logical methodical steps that will be follow to 

gather anomalies at the network traffic.  Chapter 4 covers the implementation details 

starting from the programming language itself to UML diagrams of the class hierarchy. 

Chapter 5 includes test results of the particular application level protocols. The results 

are used to detect threshold for each protocol. Chapter 5 also includes the test results 

related with the BitTorrent traffic which is added to this thesis as a contribution for the 

related work. The thesis ends with a conclusion and a further work part. 
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CHAPTER 2

BACKGROUND

This section aims to provide a background for the concepts used in this thesis. 

To provide the reader a familiarity with the  topics covered through this thesis, this 

section is divided into three subsections. First  section is dedicated for network flow 

explanations.  Flow notion,  flow based metrics,  directionality and flow attributes are 

explained  in  detail.  This  category also  includes  the  tools  used  for  calculating  flow 

metrics. The second sub section is for packet based inspection and packet based tools 

used  throughout  this  thesis.  In  this  thesis  work,  it  is  also  mentioned  an  anomaly 

detection method that can be applied on to the flow records, which is called principle 

component analysis (PCA). Mathematical details about PCA calculation is given at the 

third subsection of this section. 

2.1. Network Flows

2.1.1. Notion of Flow

The notion of flow was introduced within the network research community in 

order to better understand the nature of Internet traffic.  Flow is the sequence of packets 

or a packet that belonged to certain network session(conversation) between two hosts 

but  delimited by the setting of flow generation or analyzing tool  (Lee 2008, June). 

Network flow data represents a summary of conversation between two end points. It 

provides  valuable  information  to  assist  investigation  and  analysis  of  network  and 
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security  issues.  Unlike  deep  packet  inspection,  flow  data  does  not  rely  on  packet 

payloads. Instead the analyst relies on information gathered from packet headers and its 

associated metrics. This provides the analyst a neutral view of network traffic flow by 

tracking  network  sessions  between  multiple  endpoints  simultaneously.  In  addition, 

having network flow data  will  provide a  better  visibility of  network events  without 

having the need to perform payload analysis. It is convenient for protocol analysis (Lee

2008, May) or debugging.

In 1995, the IETF’s Realtime Traffic Flow Measurement (RTFM) working group 

was  formed  to  develop  a  frame-work  for  real-time  traffic  data  reduction  and 

measurements (RTFM 1995). A flow in the RTFM model can be loosely defined as the 

set of packets that have in common values of certain fields found in headers of packets. 

The fields used to aggregate traffic typically specify addresses at various levels of the 

protocol stack (e.g. IP addresses, IP protocol, TCP/UDP port numbers). Herein, it  is 

used the term key to refer to the set of address attributes used to aggregate packets into a 

flow.

2.1.2. Flow Directionality

Flow definition is given above as  summary of conversation between two end 

points. The endpoints here are defined as follows:

a. Layer 2 Endpoint - Source Mac Address  | Destination Mac Address
Layer 3 Endpoint - Source IP Address  | Destination IP Address
Layer 4 Endpoint - Source Port | Destination Port

The conversation between these two ends has a direction so flow tool display a 

direction  information  related  with  the  flow  also.  There  are  two  types  of  direction 

information related with a network flow. A flow can be defined either as a unidirectional 

flow or as a bidirectional flow. 

At unidirectional flow model, every flow record contains the attribute of single 

endpoint only. Figure 2.1 and Figure 2.2 show directionality in a more simple way (Lee
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2008, June).

At  bidirectional  flow model  every flow record  contains  the attribute  of  both 

endpoints. Figure 2.2 illustrates it (Lee 2008, June):

To make the directionality more clear  lets  assume that  source host  sends 90 

bytes  to  destination   host  and  destination  host  replies  with  120  bytes.  If  the  flow 

communication between these two hosts are unidirectional, then the flow information 

will be as follows:

6

Figure 2.1. Unidirectional Flow Demonstration, From Source to Destination 

Figure 2.2. Unidirectional Flow Demonstration, From Destination to Source 

Figure 2.3. Bidirectional Flow Between Two Endpoints



b. Srcaddr Direction Dstaddr Total Bytes
Source Host -> Destination Host 90
Destination Host -> Source Host 120

Though,  if  the  flow  communication  is  bidirectional,  then  the  result  will  be 

different:

c. Srcaddr Direction Dstaddr Total Bytes Src Bytes Dst Bytes
Source Host <-> Destination Host 210 90  120  

In unidirectional flow, it is only seen the total bytes that sent by source host but 

nothing  about  destination  in  the  first  flow  record.  Then  the  next  record  shows 

destination sends 120 bytes to source. The total bytes is accounted from single endpoint 

only.  But  in  bidirectional  flow,  it  can  be seen  that  source  host  sends  90 bytes  and 

destination replies with 120 bytes. The total bytes is the accumulation of source and 

destination bytes.

2.1.3. Flow Identification

Giving a unique label to a flow information depends on the aim of the analysis 

related with it. If the intent is to analyze the amount of traffic between two hosts, then 

the  focus  can  be  source  and  destination  IP addresses.  However,  a  finer  intent  like 

considering  the  flow information  over  a  state  approach to  identify connections  will 

require  additional  information.  To  identify  each  flow  it  is  used  5-tuple  key 

representation. The tuple includes source IP address, source port number, destination IP 

address, destination port number  and protocol information. 

2.1.4. Flow Period 

Flow period means the time periodically report on a flow's activity. The period 

determines the start and end times of each flow. There are three primary expiry methods 
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that  are  appropriate  for  studying  characteristics  of  individual  flows:  protocol  based, 

fixed  timeout,  and  adaptive  timeout  (Keys,  et.  al.  2001).  With  protocol  based 

mechanisms, the state of a flow is determined by observing protocol specific messages 

(e.g. TCP SYN, FIN or RST). With a fixed timeout method, a flow has expired when 

some fixed period has elapsed since the last packet belonging to that flow was captured. 

An adaptive timeout strategy is a little more sophisticated than a fixed timeout method. 

The  timeout  is  different  for  each  flow  and  is  computed  based  on  the  packet  rate 

observed so far within each flow.

In this thesis, because of its simplicity a fixed timeout approach is chosen over 

an adaptive timeout mechanism to decide the expiration time of flows.  The timeout 

value is chosen as 60 seconds for preliminary examination, which is also commonly 

used in related works (Xu, et.al. 2005) (Claffy, et.al. 1995) (Karagiannis, et.al. 2005).

2.1.5. Flow Attributes

In  the  literature,  flow  attributes  are  often  called  features,  or  characteristics. 

According to the RFTM Architecture (RFC2722 1999) a flow has computed attributes 

that  are  derived from end point  attribute  values,  metric  values  like packet  and byte 

counts,  time  values  as  well  as  summary information  like  mean,  median  or  average 

values, jitters and distributional information. The goal in defining flow attributes is to 

identify now only the relevant characteristics but also the proper way to measure them.

In 2005,  De Montigny and  Leboeuf published the definition of flow attributes 

that can be used to characterize a flow at their paper (De Montigny and Leboeuf 2005). 

At their work it is mentioned nearly thirty property that can be derived from a flow 

information.  The  mentioned  flow metrics  are  also  used  throughout  this  thesis.  The 

following sub sections will be covering the details of the flow attributes mentioned at 

the De Montigny and Leboeuf's work (De Montigny and Leboeuf 2005). 

Flow attributes are examined in two categories. One of the categories includes 

the whole flow values, while the second one includes values per directional flows. The 

attributes  derived  are  summarized  in  Table  2.1  and  Table  2.2.  The  following  sub 

sections will describe each attribute with greater detail. Table 2.1 lists the attributes that 
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are measured over the entire flow. The first three attributes (Key, BeginTime, EndTime) 

are simply used to identify and sort the flows. Table 2.2 gives the attributes that are 

specific  to  each  direction,  and  thus  are  measured  in  each  direction  separately.  The 

details of  Table 2.1 and Table 2.2 can be found at Appendix A.

Table 2.1. Attributes measured over the whole flow

Attributes Inspection Method 

KEY Flow Based

BEGIN_TIME Flow Based

END_TIME Flow Based

DURATION Flow Based

FIRST_NONEMPTY_PACKET_SIZE Packet Based

FIRST_FEW_NONEMPTY_PACKET_DIRECTIONS Packet Based

DATA_BYTE_RATIO_ORIG_TO_RESP Flow Based

INTERARRIVAL_DISTRIBUTION Packet Based

Conversational Indicator 

ALPHAconversation Packet Based

BETAconversation Packet Based

GAMMAconversation Packet Based

Transaction Indicator

ALPHAtransaction Packet Based
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Table 2.2. Attributes measured for each direction of the flow

Attributes Inspection Method 

INTERARRIVAL_DISTRIBUTION Packet Based

PAYLOAD_DISTRIBUTION Packet Based

BYTE_COUNT Flow Based

DATA_BYTE_COUNT Flow Based

PACKET_COUNT Flow Based

DATAPACKET_COUNT Flow Based

Encryption Indicators

ALPHAchipherblock Packet Based

BETAchipherblock Packet Based

Keystroke Interactive Indicator

ALPHAkey_interactive Packet Based

BETAkey_interactive Packet Based

GAMMAkey_interactive Packet Based

DELTAkey_interactive Packet Based

EPSILONkey_interactive Packet Based

Command-line Interactive Indicator

ALPHAcmd_interactive Packet Based

BETAcmd_interactive Packet Based

GAMMAcmd_interactive Packet Based

DELTAcmd_interactive Packet Based

EPSILONcmd_interactive Packet Based

File transfer Indicators

ALPHAconstantpacketrate Packet Based

BETAfile Packet Based

GAMMAfile Packet Based

As it can be seen from Table 2.1 and Table 2.2, attributes related with whole 

flow or each direction of flow have indicators. Indicators generally depend on packet 

based calculations and enables to derive application level information from flow itself. 

Although it is mentioned they are calculated mainly by packet based inspection, some of 

them also use flow based data to  calculate  some indicator  values.  Details  about  the 

indicators are mentioned at the next section.
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2.2. Network Flow Tools 

Custom flow tools ease the work on flow data. They reconstructs the actual data 

streams  and  enable  it  to  be  saved  to  a  file  in  a  formated  way or  to  be  displayed 

graphically.  What  they  do  basically  is  understanding  sequence  numbers  and  state 

information to decide to which session of the packages belongs to. 

Cisco's  NetFlow  (Cisco  Systems  2009) is  a  network  protocol  developed  by 

Cisco  Systems  to  run  on  Cisco  IOS-enabled  equipment  for  collecting  IP  traffic 

information. It's proprietary and supported by platforms other than IOS, such as Juniper 

routers or FreeBSD and OpenBSD (Netflow 2009). Although it is widely used, its flows 

are unidirectional and limited number of flow attributes are recorded. NetFlow traffic is 

mainly analyzed by adapting other tools to the network like cflowd (CAIDA 2006) and 

SiLK (SiLK, 2009). Another popular tool is Argus, which is fixed-model real time flow 

monitor  designed to  track  and report  on the  status  and performance  of  all  network 

transactions seen in a data network traffic stream. 

 2.2.1  Argus

 The Argus Open Project is focused on developing network audit strategies that 

can do real work for the network architect, administrator and network user. Argus is a 

fixed-model  real  time  flow monitor  designed  to  track  and report  on  the  status  and 

performance of all network transactions seen in a data network traffic stream. Argus 

provides  a  common  data  format  for  reporting  flow  metrics  such  as  connectivity, 

capacity, demand, loss, delay, and jitter on a per transaction basis. The record format 

that  Argus  uses  is  flexible  and  extensible,  supporting  generic  flow  identifiers  and 

metrics, as well as application/protocol specific information.

Argus can be used to analyze and report on the contents of packet capture files 

or it can run as a continuous monitor, examining data from a live interface, generating 

11



an audit log of all the network activity seen in the packet stream. Argus currently runs 

on Linux, Solaris, FreeBSD, OpenBSD, NetBSD, MAC OS X and OpenWrt (ARGUS

2009). 

Argus is used for converting previously recorded pcap files to its  own flows 

format and to produce meaningful human readable flow information from it. It is used 

as follows:

d. argus  -mAJZR  -r ettercap-dos.pcap  -w ettercap-dos.pcap.arg3

Here, ettercap-dos.pcap file is converted into an Argus flow format by using the 

parameters defined below:

e. -m:  Provide MAC addresses information in argus records.
-A: Generate application byte metrics in each audit record.
-J: Generate packet peformance data in each audit record.
-Z: Generate packet size data.
-R: Generate argus records such that response times can be derived from 
transaction data.

Converted Argus flow file is a binary file which requires Argus client tools to be 

used for meaningful information. Racluster is one of the Argus client tools that is used 

for gathering flow information. Racluster  reads  Argus  data  from  an  Argus data 

source, and clusters/merges the records based on the flow key criteria specified either on 

the command line, or in a racluster configuration file, and outputs a valid Argus stream. 

This tool is primarily used for data mining, data management and report generation. 

Below is a sample usage and the produced output of it:

f. racluster -L0 -nr ettercap-dos.pcap.arg3 -s proto saddr sport dir daddr dport

Proto            SrcAddr  Sport   Dir            DstAddr  Dport
tcp      192.168.1.118.32743     ->      192.168.1.188.2
tcp      192.168.1.118.32999     ->      192.168.1.188.3

By looking at the produced output, it can be said that, the first flow indicates a 

connection over TCP between the IP addresses 192.168.1.118 and 192.168.1.188 that is 

also a unidirectional flow. During the flow inspection process more information rather 

than the ones mentioned above is gathered using racluster, like the start time of flow, 
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duration, number of packets send by source, ... etc. 

Another Argus client was rasplit which was used for splitting flow sources into 

sub flows depending on either time or size values. Rasplit reads Argus data from an 

Argus data source, and splits the resulting output into consecutive sections of records 

based on size, count time, or flow event, writing the output into a set of output files. 

This tool is  mainly used at  the principle component analysis  phase for creating sub 

flows.

2.3. Network Packets

In  information technology,  a  packet  is  a  formatted  unit  of  data  carried by a 

packet mode computer network. Computer communications links that do not support 

packets,  such as  traditional  point-to-point  telecommunications  links,  simply transmit 

data as a series of bytes, characters, or bits alone. When data is formatted into packets, 

the bitrate of the communication medium can better be shared among users than if the 

network were circuit switched (Packet 2009).

The format of the network packets are defined as protocols.  Throughout this 

thesis,  User  Datagram  Protocol  (UDP)  and  Transmission  Control  Protocol   (TCP) 

packets are taken into consideration because of their common usage at application level. 

So is this thesis, packet is used as either a TCP or an UDP packet.  

Each  protocol  has  its  own  header  definitions.  Headers  carry  details  about 

network packets. For both UDP and TCP, it is gathered common header information for 

each packet. One of the gathered header information is the IP addresses, that are defined 

in 32 bit fields in dot separated format for IPv4. It should be mentioned that, current 

work in this thesis is done on IPv4 networks. An IP packet contains two IP address 

information  that  is  the  sender/source  IP  address  and  the  other  one  is  the 

receiver/destination IP address. Packets are left the machines or received by using port 

numbers which are defined as 8 bit information at the packet headers. An IP packets 

also carry protocol information,  which is defined in 8 bit fields. This number is 17 for 

TCP protocol packets and 6 for UDP packets when converted into decimal value. 

Each packet has a length information that is defined in a 24 bit header length. 
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This gives the total length of the packet. The most important header part for this thesis 

is  the  payload.  Payloads  are  the  data  carriage  of  the  packets.  Protocol  related 

commands, text information or binary data is carried on payload parts. Depending on 

how the network traffic is sniffed and the length of the captured packets defined, the 

size of  payload can vary.  But  in  general,  the size and ingredients  of it  gives much 

information related with which application the packet belongs to.

2.4. Network Packet Tools

This section is covering the tools that gathers packet level data from network 

traffic. These tools generally use libpcap (Libpcap 2009) library for low-level network 

jobs.

2.4.1. Tcpdump

Tcpdump  is  a  common  packet  sniffer  that  runs  under  the  command  line.  It 

allows the user to intercept and display TCP/IP and other packets being transmitted or 

received over a network to which the computer is attached  (Tcpdump 2009). It prints 

out  a  description  of  the  contents  of  packets  on  a  network  interface  that  match  the 

boolean expression.  It can also be run with the -w flag, which causes it to save the 

packet data to a file for later analysis, and/or with the -r flag, which causes it to read 

from a saved packet file rather than to read  packets  from a network interface.  In all 

cases, only packets that match expression will be processed by tcpdump.

Tcpdump is used in this thesis to save the manually produced attacks as pcap 

format  for  further  investigation.  The  saved  files  are  processed  via  the  developed 

software and a general anomaly graph is produced for an attack sample. 
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2.4.2. Wireshark

Wireshark is a free packet sniffer computer application. It is used for network 

troubleshooting,  analysis,  software  and  communications  protocol  development,  and 

education. 

Wireshark is very similar to tcpdump, but it has a graphical front-end, and many 

more information sorting and filtering options. It allows the user to see all traffic being 

passed over the network (usually an Ethernet network but support is being added for 

others) by putting the network interface into promiscuous mode (Wireshark 2009).

It  is  used  as  a  controller  through  the  development  of  flow  attributes.  By 

inspecting each packets per flow, it is decided to understand the which header fields 

should be taken into consideration for each protocol. 

2.4.3. Tcpreplay

Tcpreplay is a tool for replaying network traffic from files saved with tcpdump 

or other tools which write pcap files. It allows one to classify traffic as client or server, 

rewrite Layer 2, 3 and 4 headers and finally replay the traffic back onto the network and 

through other devices such as switches, routers, firewalls, NIDS and IPS's. Tcpreplay 

supports both single and dual NIC modes for testing both sniffing and inline devices 

(TcpReplay 2009). 

Throughout this thesis, it is used to reproduce the captured manual attack over 

an Ethernet  interface to  be sniffed and analyzed by Snort.  It  is  aimed to check the 

produced anomaly results with the Snort results, so the undefined flows are sent to Snort 

after being analyzed.
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2.5. Principle Component Analysis

Principal  component  analysis  (PCA)  involves  a  mathematical  procedure  that 

transforms  a  number  of  possibly  correlated  variables  into  a  smaller  number  of 

uncorrelated variables called principal components  (PCA 2009). With minimal effort 

PCA provides a road map for how to reduce a complex data set to a lower dimension to 

reveal the sometimes hidden, simplified structures that often underlie it.

Principal  component  analysis  is  based  on  the  statistical  representation  of  a 

random variable. Suppose we have a random vector population x, where 

x=x1 , x 2 , ... , xn
T (2.1)

 and the mean of that population is denoted by

µx=E {x } (2.2)

and the covariance matrix of the same data set is 

C x=E {x−µx x−µ x
T} (2.3)

The components of Cx,  denoted by cij,  represent the covariances between the 

random  variable  components  xi,  and  xj.  The  component  cii is  the  variance  of  the 

component  xi.  The  variance  of  a  component  indicates  the  spread  of  the  component 

values around its mean value. If two components xi and xj of the data are uncorrelated, 

their covariance is zero (cij = cji = 0). The covariance matrix is, by definition, always is 

always zero. 

From a sample of vectors x1,...,xM it  can be calculated the sample mean and the 

sample covariance matrix as the estimates of the mean and the covariance matrix. From 

a symmetric matrix such as the covariance matrix, it can be calculated an orthogonal 

basis by finding its eigenvalues and eigenvectors. The eigenvectors ei The eigenvectors 
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λi  are the solutions of the equation. 

Cxei = λiei, i=1,...,n (2.4)

For simplicity it is assumed that the λi are distinct. These values can be found, 

for example, by finding the solutions of the characteristic equation

∣C x−λI∣=0 (2.5)

where the I  is the identity matrix having the same order than Cx and the |.| 

denotes  the  determinant  of  the  matrix.  If  the  data  vector  has  n  components,  the 

characteristic equation becomes of order n. This is  easy to solve only if  n is  small. 

Solving  eigenvalues  and corresponding eigenvectors  is  a  non-trivial  task,  and many 

methods exist. 

By ordering the eigenvectors  in  the order of  descending eigenvalues  (largest 

first), one can create an ordered orthogonal basis with the first eigenvector having the 

direction of largest variance of the data. In this way, it can be found directions in which 

the data set has the most significant amounts of energy. 

Suppose one has a data set of which the sample mean and the covariance matrix 

have been calculated. Let A be a matrix consisting of eigenvectors of the covariance 

matrix as the row vectors. By transforming a data vector x, it is got

y = A(x-µx) (2.7)

which  is  a  point  in  the  orthogonal  coordinate  system  defined  by  the 

eigenvectors. Components of y can be seen as the coordinates in the orthogonal base.  It 

can be reconstructed the original data vector x from y by

x=AT yµx (2.8)

using the property of an orthogonal matrix A−1
=AT . The AT is the transpose 

of a matrix of A. The original vector x was projected on the coordinate axes defined by 
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the orthogonal basis. The original vector was then reconstructed by a linear combination 

of the orthogonal basis vectors. 

Instead  of  using  all  the  eigenvectors  of  the  covariance  matrix,  the  data  is 

represented in terms of only a few basis vectors of the orthogonal basis. If the matrixis 

denoted having the K first eigenvectors as rows by AK a similar transformation can be 

created as seen above 

y = AK (x – µx) (2.9)

and

x = AK
Ty+µx (2.10)

This means that it is projected the original data vector on the coordinate axes 

having the dimension K and transforming the vector back by a linear combination of the 

basis  vectors.  This  minimizes  the  mean-square  error  between  the  data  and  this 

representation with given number of eigenvectors. 

If the data is concentrated in a linear subspace, this provides a way to compress 

data without losing much information and simplifying the representation. By picking the 

eigenvectors having the largest eigenvalues it is  lost as little information as possible in 

the mean-square sense. One can e.g. choose a fixed number of eigenvectors and their 

respective eigenvalues and get a consistent representation, or abstraction of the data. 

This preserves a varying amount of energy of the original data. Alternatively, it can be 

chosen approximately the same amount of energy and a varying amount of eigenvectors 

and  their  respective  eigenvalues.  This  would  in  turn  give  approximately  consistent 

amount  of information in  the expense of  varying representations  with regard to  the 

dimension of the subspace (Hollmen 1996). 
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2.5.1. Tools Used Through PCA Process

PCA process is a manual process. This section describes the details about the 

tools used throughout the PCA steps.

2.5.1.1. Octave

GNU  Octave  is  a  high-level  language,  primarily  intended  for  numerical 

computations. It provides a convenient command line interface for solving linear and 

nonlinear problems numerically, and for performing other numerical experiments using 

a  language that  is  mostly compatible  with Matlab.  It  may also be used as  a batch-

oriented language[13].

It  is  used  for  principle  component  calculation  and  generating  graphs  of  the 

calculation to see the peeks at the graphs. 

GNU  Octave's  statistical  package  has  princomp function  which  enables 

computing the PCA of a X matrix. It works as follows:

g. [pc,z,w,Tsq] = princomp(X)

  pc:  the principal components
  z :  the transformed data
  w:   the eigenvalues of the covariance matrix
  Tsq: Hotelling's T^2 statistic for the transformed data

Throughout  PCA process,  anomaly  detection  is  done  over  undefined  flow 

records. While Octave is used for PCA computation and generating anomaly graphs, 

some other tools are used for creating manual attacks and retesting them. 
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2.5.1.2. Snort

SNORT is an open source network intrusion prevention and detection system 

utilizing a rule-driven language, which combines the benefits of signature, protocol and 

anomaly  based  inspection  methods.  Snort  is  the  most  widely  deployed  intrusion 

detection and prevention technology worldwide and has become the de facto standard 

for the industry (Snort 2009).

Snort  is  used  in  intrusion  detection  mode  to  detect  the  anomalies  for  the 

undefined traffic. Snort BASE  (BASE 2009) web interface is used for observing the 

produced results. 

2.5.1.3. Ettercap

Ettercap is a suite for man in the middle attacks on LAN. It features sniffing of 

live  connections,  content  filtering  on  the  fly  and  many  other  interesting  tricks.  It 

supports  active  and  passive  dissection  of  many protocols  (even  ciphered  ones)  and 

includes many feature for network and host analysis (Ettercap 2009).

Ettercap is able to perform attacks against the ARP protocol by positioning itself 

as "man in the middle" and, once positioned as this, it is able to:

- infect, replace, delete data in a connection

- discover passwords for protocols such as FTP, HTTP, POP, SSH1, etc ...

- provide fake SSL certificates in HTTPS sections to the victims.

 It is used for producing DOS attacks, manually. The produced dos attacks are 

saved by using tcpdump, and analyzed both with Snort and developed software.
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2.5.1.4. Nmap

Nmap  ("Network  Mapper")  is  a  free  and  open  source  (license)  utility  for 

network exploration or security auditing. Many systems and network administrators also 

find it useful for tasks such as network inventory, managing service upgrade schedules, 

and monitoring host or service uptime. Nmap uses raw IP packets in novel ways to 

determine what hosts are available on the network, what services (application name and 

version) those hosts are offering, what operating systems (and OS versions) they are 

running,  what  type  of  packet  filters/firewalls  are  in  use,  and  dozens  of  other 

characteristics. It was designed to rapidly scan large networks, but works fine against 

single hosts. Nmap runs on all major computer operating systems, and both console and 

graphical versions are available  (Nmap 2009). It is used as a port scanner to generate 

port scan traffic over a target machine.
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CHAPTER 3

APPROACH

 

This  chapter  explains  the  methodical  work  that  is  followed  to  characterize 

network traffic and to get anomaly information related with the traffic examined. The 

method involves the steps  followed to  produce anomaly result.  The steps start  with 

examining of the off  line prerecorded data  and ends with an graph representing the 

abnormal  traffic  in  a  time interval.  Each step is  achieved by considering some key 

points which are also mentioned at the following sub sections. The key points constitute 

a unique view which differs this thesis work from the similar works.

3.1. Principle of Approach

 

The method that is followed at this work can be viewed at four steps. To get a 

general view the steps are explained in a simple way. The details are explained at the 

following subsections. 

• Packets  are  grouped  into  flows  :  Off  line  data  is  used  at  this  thesis.  The 

details  about  the  captured  data  is  given  at  the  subsection  3.2.  The  data  is  a 

prerecorded data that includes captured traffic by tcpdump.   The recorded data is 

first  converted  into  a  flow  record  by  keeping  mac  address  information,  packet 

performance data, application byte metrics in each audit record.

• Characteristics (attributes) are measured on each flow  : Attributes mentioned 

at the Annie De Montigny and Leboeufare (De Montigny and Leboeuf 2005) work 

are calculated and recorded.

• Flows are recognized and described  : The flow is described with its two main 
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properties. One category includes the metric values of the flow, the other one is the 

statistical  information  that  is  gathered  through  a  packet  inspection.  With  these 

knowledges it is aimed to define the application level definition for a flow.

• Anomaly Detection  :  Anomaly analysis  is  covered  on  the  undefined  flow 

data.  Undefined  traffic  is  saved  for  a  further  statistical  analysis  to  detect 

uncorrelated data from the correlated data.

The process is outlined also at Figure 3.1 in a more visual way. 

 

 

 





Figure 3.1. Steps Through Anomaly Detection

There are  some points  that  should be highlighted about  the approach in  this 

thesis:

• Anomaly detection method at this thesis is based on traffic characterization 

which requires to derive flow characteristics. At the current work it is possible to get 

and analyze nearly twenty three flow metrics.

• It is completely avoided relying on port numbers or payload analysis. This 

provides  an  alternative  method  to  more  conventional  traffic  categorization 

techniques provided by current networking tools.
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• It  is  only  examined  communication  patterns  found  at  the  network  and 

transport layers, requiring minimal information per packet to be retained.

• Patterns  are  identified  at  the  5-tuple  flow  granularity  of  TCP/UDP 

communications.  Therefore  even  sporadic  malicious  activities  may be  identified 

without the requirement of waiting until multiple connections can be examined.

• The  flow  attributes  can  serve  as  a  starting  point  for  different  traffic 

characterization  studies.  By  using  the  same  attributes  but  different  statistical 

analysis more powerful techniques can be defined. The methodology also open to 

adding to  new flow attribute  additions.  So defining new attributes may ease the 

anomaly detection process. 

3.2.  Processing of Captured Data 

The traffic analysis process starts with a tcpdump data file which is used for 

extracting flow data and for gathering per packet information. There are two types of 

tcpdump records  that  was  used  through this  thesis  work.  One of  them is  the  1999 

DARPA Intrusion  Detection  Evaluation  Data  Set  which  was  used  throughout  the 

development phase. DARPA Intrusion Detection Evaluation Data Set  (DARPA 2009) 

includes  weekly prerecorded tcpdump files for further evaluation. The data set was 

used for intrusion detection so it has separated clean traffic. Attack free (clean) traffic 

was important during the development period to detect the metric values for each flow 

attributes. So the first week of the dataset is used for development purposes. Second 

record type is the one including manually produced anomalies.   These records include 

both abnormal traffic and a scheduled attack produced manually. These type of records 

are used for checking the accuracy of the work.

Below is the graphical and statistical representation of the week one day one 

record of the DARPA Intrusion Detection Evaluation Data Set:
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h. File name: inside.tcpdump_w1_d1 File type:
Wireshark/tcpdump/... - libpcap
File encapsulation: Ethernet
Number of packets: 1492331
File size: 341027537 bytes
Data size: 317150217 bytes
Capture duration: 79210.265570 seconds
Start time: Mon Mar 1 15:00:05 1999
End time: Tue Mar 2 13:00:16 1999
Data rate: 4003.90 bytes/s
Data rate: 32031.22 bits/s
Average packet size: 212.52 bytes

h. represents the all available statistical information gathered from the captured 

file,  inside.tcpdump_w1_d1 which is the name of the file created by using Tcpdump.

Following two figures give the graphical representation of the flow information 

for the captured file.
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During the preprocessing period,  the prerecorded dump file is first converted 

into Argus flow file. After this process flow records are written to a text file in a human 

readable form. The records include 5-tuple key information, direction of transaction, 

record start time, record last time, record total duration, transaction bytes from source to 

destination, transaction bytes from destination to source, application bytes from source 

to destination, application bytes from destination to source, packet count from source to 

destination,  packet count from destination to source,  source packets retransmitted or 

dropped and destination packets retransmitted or dropped for each flow.  

Preprocessing  period  also  requires  packet  based  traversing  on  the  recorded 

traffic. While traversing on the recorded data, information per packets are saved. To 

save the packet based information database table created on MySQL database server is 

used. MySQL is a relational database management system (RDBMS). Because it is a 

fast, stable and true multi-user, multi-threaded SQL database server it is used to save 

packet level information. Below is the structure of the table that is used to keep whole 

flow packet information.
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Table 3.1. Table structure for table FlowPkgTbl

Field Type Null Default

orderno bigint(20) Yes NULL

srcip varchar(20) Yes NULL

dstip varchar(20) Yes NULL

dstport int(11) Yes NULL

sport int(11) Yes NULL

arrivaltime datetime Yes NULL

epochtime decimal(40,10) Yes NULL

proto varchar(10) Yes NULL

payloadsize int(11) Yes NULL

payloadinfo text Yes NULL

packetsize bigint(20) Yes NULL

For each of the flow record, attribute values that are mentioned at the Chapter 2 

are calculated. As it is mentioned some attribute metrics require packet based inspection 

that means packets that belong to the analyzed flow should be taken into consideration. 

To identify in request  packets, 5-tuple key value is used from the flow information. 

Packets including the 5-tuple key information are queried from the FlowPkgTbl.  By 

traversing on the result set and following the calculations mentioned at the Chapter 2, 

flow  attributes  are  calculated.  Packet  based  attribute  calculation  requires  additional 

database tables usage.

3.3. Processing of Flow Data 

Attribute  values  are  used  to  define  the  flow characteristics.  For  each  of  the 

protocol,  observed  values  of  the  flow attributes  are  given  at  the  De Montigny and 

Leboeuf's  work  (De  Montigny  and  Leboeuf  2005).  The  values  are  added  to  the 

Appendix B. Throughout the development phase, to check the correctness of the values 

defined at the paper, protocol based traffic should be used, so for every application level 

protocol that is under consideration, specific traffic is extracted from the recorded traffic 

record. This is done using the racluster, Argus client. Racluster enables filtering traffic. 

A sample racluster command for filtering HTTP traffic and creating flow data  is as 
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follows:

i. racluster -L0 -nr tcpdump-07-05-2009_23:25:24.dump.arg3 -s proto 
saddr sport dir daddr dport stime ltime dur sbytes sappbytes dappbytes 
dbytes spkts dpkts sloss dloss  - ip and port 80 > 
tcpdump-07-05-2009_23:25:24.dump.txt

This command takes tcpdump-07-05-2009_23:25:24.dump.arg3 Argus flow data 

as input and produces clustered readable flow information by filtering IP based traffic 

and port 80, that is flows with UDP, TCP or ICMP protocols with destination or source 

port number 80 is taken into consideration.  

Another reason to use the filtered flows is the necessity of calculating threshold 

value for each protocol. By looking at the flow attribute values and the value ranges 

defined  at  the  De Montigny and  Lebouf's paper,  it  is  only possible  to  produce  the 

percentage of the relevance for each protocol. By observing the test results, a threshold 

value is produced for every protocol. Any match result below that percentage is marked 

as undefined flow for PCA. 

Thresholds are calculated for each application level protocol. By using the clean 

data  set  and  the  filtered  application  level  flows,  match  results  for  each  protocol  is 

calculated. By looking at the average of the collected results a general tendency at the 

threshold value for each protocol is calculated. Chapter 4 gives the details about the test 

results. 

3.4. Handling Flow Attributes

Flow attributes  are  mainly  calculated  on  non-empty  packages.  A non-empty 

packet is the one carrying a payload. The reason about dealing with non-empty packets 

is that packets carry either binary data or protocol specific commands through payload. 

It is clear that the size of the payload may vary depending on the capture snaplen, but 

the default value of using the first 60 Bytes are enough to decide about the protocol. 

Generally the size of the payload is used instead of the text based inspection. Depending 

on the protocol itself, it is seen that size of the payload can bu used for detecting some 
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information about flow. In addition, calculating the size is easier than inspecting the 

ingredients of the payload.

3.4.1. Discrete Distribution Attributes for Payload and Inter-Packet 
Delay

Discrete distributions are used for inter-packet delay and packet payload length. 

Distribution  values  are  especially  important  for  packet  payload  length.  Application 

protocol overhead may imply that non-empty packets are always greater or equal in 

length to a given minimum (due to header length). Application negotiation mechanisms 

may  also  exhibit  a  high  frequency  of  packets  of  special  sizes.  Moreover,  certain 

applications may have a preferential packet size, and completely avoid sending packets 

of lengths within a given range. For instance, as noted in  (Hernandez-Campos, et. al.

2005),  the  HTTP-protocol  is  characterized  by  many  short  and  long  packets.  Such 

characteristics  are  not  effectively  reflected  by  means  and  variances  which  may  be 

sensitive to outliers. Discrete distribution attributes are therefore preferred in this work 

(De Montigny and Leboeuf 2005).

The payload and inter-packet  delay delimiters  are  used as defined at  the  De 

Montigny and Leboeuf's work (De Montigny and Leboeuf 2005). 

It is currently used the following bin delimiters for payload length (in bytes):

j. [0-1[, [1-2[, [2-3[, [3-5[, [5-10[, [10-20[, [20-40[, [40-50[, [50-100[, 
[100-180[, [180-236[, [236-269[, [269-350[, [350-450[, [450-516[, 
[516-549[, [549-650[, [650-1000[, [1000-1380[, [1380-1381[, 
[1381-1432[, [1432-1473[, [1473-inf[.

The inter-packet delays are distributed according to bins ranging from 0 to 64 second-

delays.  It  is   currently  used  the  following  bin  delimiters  for  inter-packet  delay  (in 

seconds):

k. [0-0.000001[, [0.000001-0.0001[, [0.0001-0.001[, [0.001-0.01[, 
[0.01-0.1[, [0.1-1.0[, [1.0-10.0[, [10.0-64.0[, [64.0-inf[.
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Below tables display a conceptual illustration.

Table 3.2. Conceptual illustration of discrete payload distribution

Payload 45% 30% 10% 15%

(bytes) [0 [1 ... [1000 [1380 [1381 ... [1473 [1500, +]

Table 3.3. Conceptual illustration of discrete packet delay distribution

Inter-

packet 

delay

45% 30% 10% 15%

(seconds) [0 [10-6 [0.0001 [0.001 [0.01 [1 [10 [64, +]

According to the Table 2.3,  45% of the packets carried no data, and another 

45% of the packets were relatively big, not full size packets but big packets.

3.4.2. Conversations and Transactions

Conversation and transactions are heuristic approaches to the directionality of 

the whole connection. Packets are treated as a sequence of positive and negative values 

(the  sign  of  each  value  indicates  the  direction  of  the  packet)  and  the  idea  is  to 

characterize  the  changes  in  sign.  Whether  they  are  interactive  or  machine-driven, 

applications often exhibit differences with respect to the transaction and conversation 

indicators.

A conversation episode in this work contains consecutive (back to back) packets 

in one direction followed by consecutive packets in the other direction. There is also a 

sustained conversation definition that is the episode containing consecutive packets in 

one direction, followed by consecutive packets in the opposite, and followed again by 

consecutive packets in the first direction (e.g. A->B, B->A, A->B).
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According  to  the  De Montigny and  Leboeuf's work  ALPHA,  BETA and  GAMMA 

values of a conversation is calculated as follows (De Montigny and Leboeuf 2005). Let 

M be the total number of non-empty packets in a flow, let C be the number of non-

empty packets associated with a conversation, and ζ be number of non-empty packets 

associated with a sustained conversation. It is defined ALPHAconversation as the number of 

non-empty packets that belong to a conversation over the total number of non-empty 

packets:

ALPHAconversation =  
C
M

(3.1)

It is defined  BETAconversation as the number of non-empty packets that belong to a 

sustained  conversation  over  the  total  of  non-empty  packets  that  belong  to  a 

conversation:

BETAconversation = 
ζ
C

(3.2)

Let O be the number of non-empty packets associated with a conversation and 

transmitted by the Originator, it is defined an indicator of symmetry in a conversational 

flow, GAMMAconversation as the proportion of conversation packets that are transmitted by 

the originator:

GAMMAconversation = 
O
C

(3.3)

A similar approach is applied for the transactions. Transactions include “ping-

pong” exchanges, where one packet is followed by a packet coming in the opposite 

direction. It is quantified this phenomenon by comparing the number of changes in sign 

effectively seen, with the maximum number of times a change of sign can occur, given 

the number of positive and negative values in that sequence. 

More precisely, let ρ and η be respectively the number of positive and negative 

values, the maximum number of time a change in sign can occur, denoted by τ, is
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τ = 
2p−1 if p=n

2min  p , n otherwise
(3.4)

and let δ be the number of sign changes observed, then

ALPHAtransaction = 
δ
τ

(3.5)

is an indicator of how often “ping pong” exchanges are seen in a flow. τ is equal 

to 0 when the flow is unidirectional and thus ALPHAtransaction may not be defined for all 

flows. ALPHAtransaction is initialized to zero by default. When ALPHAtransaction is non-zero, 

a value close to 1 is a strong indicator of multiple transaction exchanges.

3.4.3. Encryption Indicators

Encryption indicators are calculated by comparing the greatest common divisor 

(GCD) values of payloads. 

The algorithm follows an iterative process. At each step, the array of input is 

broken into two parts for pair wise GCD calculation, and the array to be examined in the 

following step will contain the GCD values that are greater than 1.

The process is interrupted if, at a given step, the count of GCDs that are greater 

than 1 is smaller than the count of GCDs equalled to 1. The calculation is done for each 

direction separately, the output gives two values:

ALPHAcipherblock gives  the  estimated  popular  GCD among  payload  lengths  of 

packets. BETAcipherblock gives the ratio of non-empty packet-payloads that are divisible by 

ALPHAcipherblock.

If the GCD calculation process got interrupted due to too many pair-wise GCD 

equal  to  one,  then  the  value  for  ALPHAcipherblock is  equal  to  1  and  the  value  for 

BETAcipherblock is set to 0.

The reason of evaluating the GCD values for encryption related packets is that 
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the lengths of encrypted packets typically have a greatest common divisor different than 

one (Zhang and Paxson 2000). 

3.4.4. Command Line and Keystroke Indicators

Command-line  transmissions  are  larger  in  size  and  are  separated  by  longer 

delays  than  keystrokes.  The  distinction  between  command-line  and  keystroke 

interactivity helps refine the classification process  a step further.  FTP command for 

instance can be distinguished from interactive SSH and TELNET sessions; and it  is 

foreseen that chat sessions will be classed differently depending on the “flavour”  (De

Montigny and Leboeuf 2005).

For keystroke interactive indicators, a small packet is defined as a non-empty 

packet when carrying 60 bytes or less. The inter-arrival delays between keystrokes are 

taken as between 25ms (dmin) and 3000ms (dmax).

On the other hand, for command line indicators, a small packet is defined as a 

non-empty packet when carrying 200 bytes or less. The inter-arrival delays between 

keystrokes are taken as between 250ms and 30000ms.

For each direction of the flow, let Ω be the set of delays between consecutive 

small packets and Δ = { ω  Ω, such that dmin≤ω≤dmax }, the indicator of interactive∈  

inter-packet departure is defined as:

ALPHAinteractive = 
number of elements∈Δ
number of elements∈Ω

(3.6)

Let  S  be  the  number  of  small  packets,  let  N  be  the  number  of  non-empty 

packets,  let  G  be  the  number  of  gaps  between  small  packets,  the  indicator  of 

interactivity based on the proportion of small packets is:

BETAinteractive = 
S
N

(3.7)
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Here, a gap occurs whenever two small non-empty packets are separated by at 

least one packet (big or empty). The indicator of consecutive small packets is

GAMMAinteractive = 
S−G−1

N
(3.8)

The  fourth  indicator  gives  the  proportion  of  small  non-empty  packets  with 

respect to the total number of small packets (including empty packets). The goal with 

this  heuristic  is  to  penalize machine-driven applications  that  transmit  a  lot  of  small 

packets, which may however be dominated by empty control segments (i.e. TCP ACK 

packets  without  piggyback data).  Thus let  E be the number of  empty packets,  it  is 

defined:

DELTAinteractive = 
S

SE
(3.9)

Lastly, it is defined a fifth indicator measuring irregularity in the transmission 

rate of consecutive small packets. Let µ and σ be respectively the mean and standard 

deviation of the delays between consecutive small packets; let Λ= { ω  Ω, such that ω∈  

 [µ-σ,µ+σ]  },  then  the  indicator  of  irregularity  between  inter-arrival  times  of∈  

consecutive small packets is:

EPSILONinteractive = 1−
number of elements∈Λ
number of elements∈Ω

(3.10)

3.4.5. File Transfer Indicators

From the interactive indicators, it is derived file transfer indicators. In general, a 

file transfer flow contains episodes of consecutive big packets transmitted within a short 

delay. A big packet is defined as carrying 225 or more bytes. A short inter-packet delay 

is 50ms or less.

For each direction of the flow, let B be the number of big packets, let N be the 
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number  of  non-empty  packets,  let  G'  be  the  number  of  gaps  between  big  packets. 

Furthermore, let Ω' be the set of delays between consecutive big packets and Δ' = { ω ∈ 

Ω', such that ω  [0, dmax] }, then the indicator of inter-packet departure during a file∈  

transfer is:

ALPHAfile = 
number of elements∈Δ'
number of elements∈Ω '

(3.11)

 The indicator of file transfer based on the proportion of big packets is defined 

as:

BETAfile = 
B
N

(3.12)

and lastly, the indicator of consecutive big packets is

GAMMAfile = 
B−G '−1

N
(3.13)

3.5. Deriving Anomaly

According to the  Lakhina,  Crovella and  Diot's work  (Lakhina,  Crovella and,

Crovella 2004), number of bytes, number of packets and number of IP flow values for a 

flow traffic can be used to identify anomalies on the network traffic. It is required the 

evaluation of multivariate time series of origin-destination flow traffic defined as # of 

bytes, # of packets and # of IP flows. By using the subspace method (Lakhina, Crovella,

and Dio 2004) it is showed that each of these traffic types reveals a different (sometimes 

overlapping)  class  of  anomalies  and  so  all  three  types  together  are  important  for 

anomaly detection. 

The subspace method works by examining the time series of traffic in all OD 

flows simultaneously. It then separates this multivariate timer series into normal and 

anomalous attributes. Normal traffic behavior is determined directly from the data, as 
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the  temporal  patterns  that  are  most  common  to  the  ensemble  of  OD  flows.  This 

extraction of common trends is achieved by Principal Component Analysis  (Lakhina,

Crovella and, Crovella 2004).

To produce the multivariate time series of a flow traffic, splitting the record is 

required. Rasplit, Argus client, is used for splitting the record into sub flows depending 

on a time interval. The time interval is chosen depending on the flow duration. Either 1 

minute or 5 minute time interval values are used.

By traversing on the sub flow files, # of bytes, # of packets or # of IP flow 

values  are  calculated  depending  on  the  origin-destination  pairs.  A file  with  comma 

separated values (CSV) is created. The CSV file is used for creating matrix for PCA 

evaluation.  After the PCA value is calculated, transformed data of the PCA result is 

graphed. It is observed that peeks at the graphs represents the anomalies at the network 

traffic. 
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CHAPTER 4

IMPLEMENTATION

This section includes the implementation details of the approach preferred in this 

thesis.  Starting  from the  programming  language  preferred  from development,  class 

structure details and the implementation steps are explained. Python is chosen as the 

development programming language. A class hierarchy is constructed and implemented 

by using Python.  The details  of  the class  hierarchy is  given as UML diagrams.  By 

following  the  class  structure  and  using  the  Python  language,  steps  that  should  be 

followed for running the software is defined. 

4.1. Programming Language

This thesis can be divided into two level of survey. The first level is the traffic 

characterization, which requires pcap file traversing to get the packet level information, 

operation on MySQL database tables and mathematical calculations. Second level is the 

PCA part which is done mainly by Octave. It is used a CSV file for Octave's princomp 

function as an input. The CSV file creation requires flow splitting and traversing on the 

readable flow files to calculate # of values and save them to database. 

It is chosen Python as the programming language for development.  Python is an 

interpreted, object-oriented, high-level programming language with dynamic semantics. 

Its  high-level  built  in  data  structures,  combined  with  dynamic  typing  and  dynamic 

binding, make it very attractive for rapid application development, as well as for use as 

a scripting or glue language to connect existing components together. Python's simple, 

easy to learn syntax emphasizes readability and therefore reduces the cost of program 
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maintenance.  Python  supports  modules  and  packages,  which  encourages  program 

modularity and code reuse. The Python interpreter and the extensive standard library are 

available in source or binary form without charge for all major platforms, and can be 

freely distributed  (Python 2009). Python is also actively used by penetration testers, 

vulnerability researchers and information security practitioners. 

Python's Scapy (Scapy 2009) module is used to decode packets from pcap files 

and analyze them according to their header information. Scapy is a powerful interactive 

packet manipulation program. It is able to forge or decode packets of a wide number of 

protocols, send them on the wire, capture them, match requests and replies, and much 

more. Scapy is mainly used for traversing through the prerecorded network traffic via 

tcpdump and get IP level information from packets for saving them to the database.

By using Scapy it is possible to get the source IP address, source port number, 

destination IP address, destination port  number, packet size,  payload ingredients and 

payload size, capture time and protocol information from each packet. Capture time is 

valuable for calculating jitter.  Payload size is  important for detecting the non-empty 

packets. The rest of the information that is 5-tuple key also, is used to understand what 

flows they belong to.

4.2. Class Structure 

4.2.1. Flow Object
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Figure 4.1. AbstractFlow Diagram



Every flow is defined as an object. As it can be seen from Figure 4.1  (Gerçek

2009), it is defined two types of flows. One type is the directional flow. It is defined an 

UnidirectionalFlow class to create directional flows.   A directional flow may be either 

from source IP number (Originator) to destination IP number (Responder) or vice versa. 

WholeFlow class is inherited from an AbstractFlow class. AbstractFlow is a general 

class that has abstract definitions to create flow indicator objects. 

Flows are created by using a generator class.

It is required to calculate attributes related with a whole flow. Attribute related 

details are given at Figure 4.2  (Gerçek 2009). By using ArgusFileReader class, every 

line  of  the  produced  flow  text  record  is  traversed  and  whole  flow  attributes  are 

calculated. 

Except from the attributes mentioned inside the WholeFlowGenerator, additional 

directional and whole flow indicators are required to be calculated. To achieve indicator 

calculation, generators are used. Figure 4.3 presents the relation between indicators.  
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At Figure 4.3  (Gerçek 2009),  IndicatorFactory includes  the method calls  for 

each flow object handled.

The  mathematical  calculations  are  done  inside  the  each  of  the  indicators 
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Figure 4.4. Indicator Class Diagram (Gerçek 2009)

Figure 4.3.  Factory Class Diagram



mentioned. Each of them are presented at Figure 4.4 (Gerçek 2009), above. The aim of 

calculating attribute values is to decide about the protocol. By looking at the results, the 

flow examined is tried to be categorized as an application level protocol. ProtocolTester 

includes the match cases that should be taken into consideration for each flow. 

As a result of attribute calculation, a match result is calculated for each flow 

examined.  The  result  includes  the  best  3  match.  The  relation  between match  result 

calculation and recognizer is mentioned at Figure 4.5 (Gerçek 2009), as above. 

For a general view, lets check the Figure 4.6. For each of the flow generated a 
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Figure 4.6. Threshold Calculation Sequence Diagram



testFlow class is used to trigger the match results. By looking at the best match results a 

threshold for each of the protocol is decided. 

Any flow that  does not have a best  result  above the threshold is  save as an 

undefined flow for further evaluation. The PCA process is explained as follows:

Packages  related  with  the  undefined  flows  are  saved  and  splitted  for  PCA 

analysis. The splitted pcap files are traversed and saved to a database table. After this 

process the table is used to produce a CSV file for PCA graph operation.

4.3. Software Structure 

The developed software takes a pcap record as input. After the following steps, 

the result is a graph which may include peeks. The whole is not fully automatized. 

1. pcap  file  is  traversed  and  saved  to  the  database  :  This  process  is  the 

requirement part  of all  the processes. Depending on the captured packet size 

time varies.

2. Human readable flow information is saved into the text file  : This process 
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is done via using Argus and racluster commands. 

3. UndefinedTest.py is  run  :  The  name of  the  produced  flow text  file  is 

changed before running, so the file is used for per flow attribute calculation. 

Each  line  of  the  text  file  includes  one  flow  record.  For  each  flow  record, 

attribute values are calculated and a match result is returned. A typical match 

result include the best three matches:

l. [(0.65, 'FTPCommand'),(0.80, 'Telnet' ),(1.0, 'SSH')]

By looking at the threshold values and the highest match percentage, the flow is 

categorized. If it is not possible to categorize the flow it is save as undefined for PCA 

process.  What is saved is mainly the key values of the flow. Below table gives the 

details:

Table 4.1. Table structure for table UndefinedFlowTbl

Field Type Null Default

orderno bigint(20) Yes NULL

srcip varchar(20) Yes NULL

dstip varchar(20) Yes NULL

dstport int(11) Yes NULL

sport int(11) Yes NULL

proto varchar(10) Yes NULL

begintime varchar(60) Yes NULL

4. A new pcap file is created  : After the undefined flow detection is finished, 

packages that belong to the undefined flows should be separated and saved as a 

new  undefined  pcap  file.  For  this  process  a  Perl  script  called  pcap-util 

(Boddington  2009) is  used.  Pcap-util  enables  libpcap  (Libpcap  2009) filter 

language usage,  that  is prerecorded data can be filtered according host,  port, 

time information or some other parameters. It is used the IP address filtering as 

follows:

m. ./pcap-util filter infile.dump outfile.dump "host 192.168.1.118 or  host 
192.168.1.188”
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host parameter is used to define source and destination IP addresses, so above 

command finds and extracts the packets related with the above IP addresses and saves 

them as a outfile.dump pcap file.  

5. outfile.dump  file  is  splitted  into  time  series  :  The  pcap  file  is  first 

converted to a flow data and then rasplit is called to split the file into sub flows:

n. rasplit -r outfile.dump.pcap.arg3 -M time 1m -w argus-%d.%m.%Y-%H:
%M:%S – ip

Above command splits the flow file into 1 minute sub flows. Each sub flow is 

converted to a readable text file for being processed. 

6. traverseAndSave.py module is used  :  This module is walk through the 

directory that contains sub flow text files and saves the origin-destination related 

# of bytes and # of packet values to the database table. PCAProcess.py is then 

used to create a CSV file for PCA process.

7. Octave is run  : By using the CSV file, a matrix is created first.

o. x=dlmread ("graph.csv",",");

The created X matrix is used for PCA calculation:

p. [a,b,c,d]=princomp(x);

b value calculated at the (36) above includes the transformed data. It is used for 

plotting. By using the plot function, anomaly graph is produced. 
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CHAPTER 5

TEST RESULTS

This  chapter  is  dedicated  for  the  test  results  that  are  processed  to  calculate 

threshold values for each application level protocol. Calculating threshold results are an 

important step for anomaly detection.  By looking at  the threshold values, undefined 

traffic  is  decided.   This  chapter  also  includes  PCA results.  PCA is  first  tested  on 

prerecorded data, then applied on manually produced attacks. 

5.1. PCA Tests

5.1.1. Tests with Clean Traffic

PCA process is first tested on the clean traffic. 1999 DARPA Intrusion Detection 

Evaluation Data Set's  week1 day1 and week 5 day 2 recorded  traffic is used.  It is 

known that  week  1  has  a  clean  traffic  though  week  5  has  labeled  attacks.  So  the 

produced graphs can be used for comparison and understanding the peek concept.

Week 1 day 1 record is splitted into 5 minutes sub flows and throughout these 

sub flows, origin-destination pair of # of packages values are calculated and graphed by 

using Octave's princomp function.  The resulted graph is as follows:
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As it can be seen from Figure 5.1, there is no sudden increase at the graph levels. 

The same process is done for the week 5 day 2 record and the below graph is produced.

When Figure 5.1 and Figure 5.2 is compared, it can be seen that the later one has 
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Figure 5.1.  PCA Analysis of Week 1 Day 1 Record

Figure 5.2. PCA Analysis of Week 5 Day 2 Record



sudden  increases  at  the  y  levels.  It  is  mentioned  that  these  peeks  correspond  to 

anomalies at the network traffic.

5.1.2. Tests with Manual Attacks

By  using  ettercap  DOS  attack  plugin,  manually  produced  DOS  attack  is 

produced. At the target machine, a regular Internet traffic is produced, like web surfing, 

MSN Chat and file downloading. During these traffics and attack, the traffic is saved 

and analyzed. Below is the information related with collected traffic:

q. File name: ettercap-dos.pcap
File type: Wireshark/tcpdump/... - libpcap
File encapsulation: Ethernet
Number of packets: 5495141
File size: 415279995 bytes
Data size: 332851811 bytes
Capture duration: 307.992800 seconds
Start time: Mon May  4 15:19:30 2009
End time: Mon May  4 15:24:38 2009
Data rate: 1080712.96 bytes/s
Data rate: 8645703.69 bits/s
Average packet size: 60.57 bytes

After the traffic characterization, undefined flows are detected and by using the 

pcap-util, a new pcap file is created. When the PCA is processed over the new pcap file 

the following graph is produced. 
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It can be observed from Figure 5.3 that between the time intervals 15:24 and 

15:28, there is an anomaly at the network traffic. When the flows are checked and the 

packets belong to these flows are saved as another pcap file, the new pcap file is used 

for  tcpreplay  program.  By  using  the  tcpreplay  and  Snort,  the  suspicious  traffic  is 

rechecked. Tcpreplay enables reproducing the pcap data through an Ethernet interface.

Below is the Snort result that is taken from the Snort BASE interface.

The same test is done for a scan attack. Nmap is used for scanning the target as 

follows:

r. nmap -P0 -sS -p0-65535 -e eth0 192.168.1.188

When the sniffed traffic is analyzed as above, the resulted graph is below:
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Figure 5.3. Ettercap DOS Attack PCA Analysis

Figure 5.4. Snort Result of Undefined Traffic, DOS Attack



It  can be seen from Figure 5.5 that,  it  is  used # of IP flows for  the origin-

destination pairs to gather scan results.

5.2. Threshold Tests

It is mentioned that threshold values are necessary to decide undefined flows. 

Below are the tested values and the duration of the calculation. The tests are run over 

100 flow records. Every test is done for a dedicated traffic, that is FTPCommand is 

tested with the traffic that includes only flows with port number 21.
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Figure 5.5. Nmap Syn Scan PCA Analysis

Figure 5.6. FTPCommand Test Results
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For 100 FTPCommand related flows, every of them is defined as FTPCommand. 

2 of the defined FTPCommand flows are matched with 71%, and the rest 98 flows are 

matched with 98%. Total duration time of the calculation is 79 minutes.

For 100 FTPData related flows, every of them is defined as FTPCommand.  43 

of  the  defined  FTPData  flows  are  matched  with  100%,  and  the  rest  57  flows  are 

matched with 80%. Total duration time of the calculation is 72 minutes.
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Figure 5.7. FTPData Test Results
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Figure 5.8. HTTP Test Results
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For 100 HTTP related flows, 65 of them is defined as HTTP.  35 of them is 

defined as HTTPS, 35 of the defined HTTP flows are matched with 88%, another 35 of 

them are matched with 75%, one of them is not matched and the rest  29 flows are 

matched with 63%. Total duration time of the calculation is 47 minutes.

For 28 POP related flows, except from one of them every of them is defined as 

POP.   All  the defined POP traffic  is  matched with 86%. Total  duration time of the 

calculation is 22 minutes.
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Figure 5.9. POP Test Results
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Figure 5.10. SMTP Test Results
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For 100 SMTP related flows, 90 of them is defined as SMTP.  10 of them is 

defined as IMAP, 38 of the defined POP flows are matched with 100%, another 22 of 

them are  matched  with  78%,   and  the  rest  40  flows  are  matched  with  89%.  Total 

duration time of the calculation is 90 minutes.

For 19 SSH related flows, 13 of them is defined as SSH.  6 of them is defined as 

Telnet, 13 of the defined SSH flows are matched with 100%, another 1 of them are 

matched with 60%,  and the rest 5 flows are matched with 80%. Total duration time of 

the calculation is 25 minutes.
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Figure 5.11. SSH Test Results
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Figure 5.12. Telnet Test Results
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For 100 Telnet related flows, 8 of them is defined as POP.  92 of them is defined 

as Telnet, 4 of the defined Telnet flows are matched with 50%, another 25 of them are 

matched with 25%, 45 of them are defined with 83% and the rest 26 flows are matched 

with 67%. Total duration time of the calculation is 92 minutes.

5.3. BitTorrent Traffic Analysis

Flow attributes for each flow are calculated depending the predefined criteria. 

The criteria defined at the De Montigny and Leboeuf (De Montigny and Leboeuf 2005) 

don't include BitTorrent traffic restrictions. In this thesis it  is aimed to calculate the 

required criteria to characterize BitTorrent traffic. 

5.3.1. BitTorrent Protocol

The BitTorrent Protocol (BTP) is a protocol for collaborative file distribution 

across the Internet and has been in place on the Internet since 2002. It is best classified 

as a peer-to-peer (P2P) protocol, although it also contains highly centralized elements. 

BTP has already been implemented many times for different platforms, and could well 

be said to be a mature protocol (Fonseca and Reza 2005). 

The protocol works when a file provider initially makes his/her file (or group of 

files) available to the network. This is called a seed and allows others, named peers, to 

connect and download the file. Each peer that downloads a part of the data makes it 

available to other peers to download.  After the file is successfully downloaded by a 

peer,  many  continue  to  make  the  data  available,  becoming  additional  seeds.  This 

distributed nature of BitTorrent leads to a viral spreading of a file throughout peers. As 

more peers join the swarm, the likelihood of a successful download increases. Relative 

to  standard  Internet  hosting,  this  provides  a  significant  reduction  in  the  original 
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distributor's hardware and bandwidth resource costs. It also provides redundancy against 

system problems and reduces dependence on the original distributor (BitTorrent 2009).

5.3.2. Testbed for BitTorrent Characterization

To characterize torrent traffic, a clean traffic is required to be analyzed. To get a 

clean BitTorrent traffic, torrent traffic is manually collected. To achieve this goal, all the 

network services at a host on a network is closed and  by using a torrent client tool 

(Ktorrent (Ktorrent 2009) is used on Kubuntu Linux system), all the traffic is saved in 

100MB parts by using Tcpdump on the same network interface.

The first 100MB part is used to decide the traffic protocol limits. First the pcap 

file is traversed and saved on MySQL database. After converted to Argus flow record , 

protocol  tester  modules  are  run  and for  a  torrent  traffic,  the  below similarities  are 

gathered:

From the Figure 5.6 it can be seen that BitTorrent traffic is more like a FTPData, 

Telnet  and  FTPCommand.  Indeed  BTP consists  of  two  logically  distinct  protocols, 

namely the Tracker HTTP Protocol (THP), and the Peer Wire Protocol (PWP). THP 

defines a method for contacting a tracker for the purposes of joining a swarm, reporting 

progress etc. PWP defines a mechanism for communication between peers, and is thus 
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Figure 5.13. Protocol Similarities Defined for Torrent Traffic
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responsible for carrying out the actual download and upload of the torrent (Fonseca and

Reza 2005). 

By  observing  the  HTTP,  FTPData,  FTPCommand  and  Telnet  protocol's 

recognizer criteria,  characteristics are tried to be defined for BitTorrent traffic. 1000 

BitTorrent flows are used and their attribute values are saved to database.

5.3.3. Criteria for BitTorrent

The first  handled attribute is payload distribution.  By using the packet based 

queries  on  the  MySQL table,  it  is  seen  that  Originator  payload  distribution  has  a 

meaningful characteristics. 

According to Figure 5.7, there is no flow that has a payload distribution over 50 

bytes. So for torrent traffic, source flows will have payload distribution values less than 

50 bytes.

Second handled criteria is DatabyteRatioOrigToResp value of the whole flow 

attribute. 

55

Figure 5.14. Payload Distribution Graph for Originator
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It can be seen from the Figure 5.8 that ratio of the total number of data bytes sent 

by originator over total number of data bytes sent by responder is always less than 4. 

Because  torrent  traffic  is  a  data  transaction  also,  handling  DataByteCount  and 

ByteCount  values  will  be  meaningfully.  Figure  5.9  and  Figure  5.10  shows  the 

DataByteCount value over ByteCaount value for each directional flow. 
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Figure 5.15. DatabyteRatioOrigToResp Distribution Graph
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Figure 5.16. DataByteCount/ByteCount Graph for Responder
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From  Figure  5.9  it  can  be  seen  that  (Responder.DataByteCount  / 

Responder.ByteCount)  value  is  less  than  0.40  though  (Originator.DataByteCount  / 

Originator.ByteCount) value at the Figure 5.10 is less than 0.27.

Another  attribute  value  that  is  taken  into  consideration  is 

firstNonEmptyPacketSize. According to the Figure 5.11 the value should be between 23 

and 42 bytes.

In addition to the above attribute values some other values are also taken into 

consideration.  FirstFewNonEmptyPacketDirections value is observed and seen that it 

57

Figure 5.17. DataByteCount/ByteCount Graph for Originator
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has two characteristics. First there direction of the flows packet is either (1,0,0) that is 

all three packets are from originator to destination, though the second characteristic is 

(1,-1,1) that  is the first and the third packet is from originator to responder and the 

second one from responder to originator. The reason of the two different characteristics 

is that BTP has two different protocol work inside. One is the THP, that will allow the 

client to contact other peers must be periodically requested from the tracker. The other 

one is the PWP that is responsible from download. 

Transaction value is also observed and it is seen that ALPHAtransaction is either 0 or 

1.  File  transfer  indicator  values  are  also  observed  and  seen  that  ALPHA,  BETA, 

GAMMA values for both Originator and Responder are equal to zero.  By using the 

above defined criteria, torrent traffic is retested for characterization. The result gathered 

is as follows:

According to the above figures, 93 flows are detected as BitTorrent protocol, 

though the rest 7 flows are detected as FTPData. For the recognized peer-to-peer traffic, 

21 of them are recognized with 89% percentage, 5 of them are recognized with 78% and 

1 of them recognized with 74%. 

To  be  sure  from  the  defined  criteria,  FTPData,  Telnet  and  HTTP traffic  is 

retested.
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Figure 5.19. P2P Test with FTPData 
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According to the above graphs, 100 flows related with FTPData is examined. 99 

of them are still recognized as FTPData though only 1 of them is determined to be false. 

For the recognized FTPData, 57 of them are recognized with 80% though the rest 43 of 

them are recognized with 100%.

For the Telnet traffic, the results are as follows:
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Figure 5.20. FTPData Test with P2P 
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Figure 5.21. Telnet Test with P2P 
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According to the Telnet test results, 100 flows related with Telnet is examined. 

73 of them are still recognized as Telnet, thogh 27 of them is determined as false. For 

the  recognized  Telnet  flows,  4  of  them are  recognized  with  50%,  43  of  them are 

recognized with 83%, 26 of them are recognized with 67% and the rest 25 of them are 

recognized with 100%.

The HTTP results are more meaningful that the defined criteria has no effect on 

HTTP results. The results are as follows.
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Figure 5.22. HTTP Test with P2P 
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CHAPTER 6

CONCLUSION

 In this thesis it is represented that network traffic can be characterized by using 

flow characteristics. Flow characteristics are evaluated with a combined method that 

some  metrics  are  calculated  using  packet  inspection  and  some requires  flow based 

approach.  It  is  seen that  by using the  attribute  values  it  is  possible  to  detect  many 

application level protocols. Although calculating the attribute values for each flow takes 

long time in some cases, they give trustful information that is independent from port 

numbers.  The  attributes  are  easy  to  calculate  that  there  is  no  need  to  follow  state 

information for flow packets, instead easy packet and flow metrics are used to calculate 

attribute values. 

Attribute detection of this thesis is working an autonomous way so it can be used 

to characterize any application level protocol which is not mentioned at the test results. 

So as a contribution to the related work (De Montigny and Leboeuf 2005), BitTorrent 

traffic characteristics are defined. The derived characteristics depend on determination 

of attributes by observing similarities and patterns. Though, the anomaly detection part 

is not being handled by a single program, because of the usage of different tools. By 

using the principle component analysis,  it  is represented that splitting the undefined 

traffic eases the anomaly detection. After calculating the number of bytes, packets of IP 

flow values, applying the PCA causes a graph that has peeks inside which represents the 

anomalies at the traffic. 

Although it is possible to detect byte or packet based anomalies, it is hard to 

decide what type of anomaly the peek belongs to. This requires an additional inspection 

of the packets that belong to the suspicious traffic either manually or by using an IDS 

like snort. 

Current  solutions  to  the  network  anomaly detection  depends  on  either  event 
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based  or  signature  based  approaches.  Both  of  them require  to  define  the  abnormal 

behavior  or  traffic  either  as  a  signature  or  as  an  event  expression.  This  thesis 

concentrates on the defining the normal traffic instead of suspicious traffic. Suspicious 

traffic is separated from the whole observed traffic during the characterization period. 

The rest undefined traffic is marked as for further evaluation. After applying PCA on the 

undefined traffic, anomalies occurred in a time intervals are detected. 

This thesis applies both characterization and anomaly detection mechanism to 

the network traffic,  so it  presents a different and applicable approach to the current 

anomaly detection problem.  

This thesis combines packet based and flow based evaluation and represents the 

method  for  anomaly  detection.  Calculating  flow  attributes  is  applied  for  some 

application  level  protocols  but  some are  still  missing.  As  a  further  work  additional 

application level protocols should be taken into consideration, like peer to peer traffic 

except from BitTorrent and audio/video streams.

Another main further aim can be optimizing the software as if it will be able to 

analyze real time traffic. Current work is only done by using off line records. This will 

require to find the bottlenecks of the software where the attribute calculation is taking 

much time. 

The last contribution to this work will be adding recognizers for the detected 

anomalies.  This  will  enable  the  analyzer  see  the  type  of  the  anomaly  detected.  So 

enhancing this work as a tool that can be used from its graphical user interface which 

enable real time traffic anomaly detection will be a remarkable contribution to network 

anomaly detection. 
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APPENDIX A

Table A.1. Attributes measured over the whole flow

Attributes Description Inspection 

Method 

KEY A 5-tuple indicating the Originator IP address, 

the Responder IP address, the IP

Protocol (i.e. TCP or UDP), the source port of 

the Originator, and the source port of

the Responder.

Flow Based

BEGIN_TIME Arrival time of the 1st packet as provided by 

libpcap.

Flow Based

END_TIME Arrival time of the last packet as provided by 

libpcap.

Flow Based

DURATION Completion time of the flow in microseconds. Flow Based

FIRST_NONEMPTY_PACKET_SIZE Payload length of the first non-empty packet. Packet Based

FIRST_FEW_NONEMPTY_PACKET

_DIRECTIONS

An array of 10 discrete values for the 

directions (-1 or 1) of the first 10 non-empty

packets.

 1: Originator to Responder,

-1: Responder to Originator

Array is initialized with values equal to 0 in 

case fewer than 10 packets contain data.

Packet Based

DATA_BYTE_RATIO_ORIG_TO_RE

SP

Total amount of payload data transmitted by 

the Originator over the Total amount of

payload data transmitted by the Responder 

(initialized to -1 for flows with no data

transmitted by the Responder).

Flow Based

(cont. on next page)
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Table A.1. (cont.) Attributes measured over the whole flow

Attributes Description Inspection 

Method 

INTERARRIVAL_DISTRIBUTION A discrete distribution of inter-packet delays 

represented by an array of 9 continuous

binned values. The value in each bin is 

between 0 and 1 and represents the relative

proportion of packets that fell into that bin.

Packet Based

Conversational Indicator 

ALPHAconversation The number of non-empty packets that belong 

to a conversation over the total of nonempty 

packets.

Packet Based

BETAconversation The number of non-empty packets that belong 

to a sustained conversation over the

total of non-empty packets that belong to a 

conversation.

Packet Based

GAMMAconversation The proportion of conversation packets that 

are transmitted by the originator.

Packet Based

Transaction Indicator

ALPHAtransaction Indicator of how often “ping pong” exchanges 

are seen in a flow.

Packet Based
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Table A.2. Attributes measured for each direction of the flow

Attributes Description Inspection 

Method 

INTERARRIVAL_DISTRIBUTION A discrete distribution represented by an array of 9 

continuous values. The array contains

the binned values for inter-packet delays in the 

considered direction. The value in each bin

is between 0 and 1 and represents the relative 

proportion of packets that fell into that bin.

Packet Based

PAYLOAD_DISTRIBUTION A discrete distribution of packet payload length 

represented by an array of 23 continuous

values. The array contains the binned values for 

payload lengths per packet. 

Packet Based

BYTE_COUNT Total amount of byte transferred (including bytes 

found in the network and transport headers).

Flow Based

DATA_BYTE_COUNT Total amount of byte transferred as payload. Flow Based

PACKET_COUNT Total number of packets. Flow Based

DATAPACKET_COUNT Total number of non-empty packets. Flow Based

Encryption Indicators

ALPHAchipherblock Estimated popular GCD among the packet payload 

lengths

Packet Based

BETAchipherblock Ratio of non-empty packet-payload lengths that are 

divisible by ALPHAcipherblock

Packet Based

Keystroke Interactive Indicator

ALPHAkey_interactive Indicator of interactive inter-packet departure (for 

keystroke packets)

Packet Based

BETAkey_interactive Indicator of interactivity based on the proportion of 

small packets

Packet Based

GAMMAkey_interactive Indicator of consecutive small packet Packet Based

DELTAkey_interactive Indicator of consecutive small packet Packet Based

EPSILONkey_interactive Indicator of irregularity between inter-arrival of 

consecutive small packets

Packet Based

Command-line Interactive Indicator

ALPHAcmd_interactive Indicator of interactive inter-packet departure (for 

command-line packets

Packet Based

BETAcmd_interactive Indicator of interactivity based on the proportion of 

small packets

Packet Based

GAMMAcmd_interactive Indicator of consecutive small packets Packet Based

DELTAcmd_interactive Indicator of piggyback packing Packet Based

EPSILONcmd_interactive Indicator of irregularity between inter-arrival of 

consecutive small packets

Packet Based

(cont. on next page)
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Table A.2.  (cont.) Attributes measured for each direction of the flow

Attributes Description Inspection 

Method 

File transfer Indicators

ALPHAfile Indicator of inter-packet departure during a file transfer

BETAfile Indicator of file transfer based on the proportion of 

big packets

Packet Based

GAMMAfile Indicator of consecutive big packet

ALPHAconstantpacketrate Indicator of how close to the mean the 5-second 

packet rate measurements are

Packet Based
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APPENDIX B

The appendix contains the rule sets currently used in the profiles of the protocols 

mentioned at  the  De Montigny and  Leboeuf's9 work.  To satisfy a profile,  all  of  the 

specified tests must succeed. 

1) HTTP web browsing

Test_duration:

Duration > 50000 µsec
Test_transmissionrate:

Originator.αconstantbitrate <0.5 && Originator.αconstantpacketrate <0.5    &&
Responder.αconstantbitrate <0.5 && Responder.αconstantpacketrate <0.5
i.e. The transmission rate is more irregular than regular.

Test_payload:

Originator.PayloadDistribution([0-1[) + Originator.PayloadDistribution([180-650[)>0.8 &&
Originator.PayloadDistribution([1-100[)+Originator.PayloadDistribution( [1380-inf[)==0

Test_databyteratio:

0.005<DatabyteRatioOrigToResp<4
Test_requestdatabyte:

Originator.DatabyteCount < 21000
Test_firstnonemptypacketsize:

120 < FirstNonEmptyPacketSize < 1000
i.e. The first non-empty packet of the session, which is a HTTP GET, contains at 

least 120 bytes of data (small URL and only essential HTTP fields) and at most 1000 

bytes of data (long URL and many HTTP fields).

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1:2)=[1, -1]
i.e. The first non-empty packet is sent by the Originator (client) and the second is 

sent by the Responder (server).

Test_noconsecutivesmallpackets:

Originator.γ key_interactive ≤ 0 && Originator.γ cmd_interactive ≤ 0 &&
Responder.γ key_interactive ≤ 0 && Responder.γ cmd_interactive ≤ 0
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2) IMAP

Test_duration:

 Duration > 100000 µsec
Test_transmissionrate:

Originator.αconstantbitrate <0.5 && Originator.αconstantpacketrate <0.5     &&
Responder.αconstantbitrate <0.5 && Responder.αconstantpacketrate <0.5
 i.e. The transmission rate is more irregular than regular.

Test_payload:

Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([5-180[)>0.8 
&&

Responder.PayloadDistribution([0-1[)+Responder.PayloadDistribution([20-100[)>0.2
Test_databyteratio:

DatabyteRatioOrigToResp<1
i.e. The server sends more data than the client.

Test_firstnonemptypacketsize:

10 < FirstNonEmptyPacketSize < 250
i.e.  The first non-empty packet, which is sent by the mail server, is typically 

small (“OK” + optional info such as server version, name, capabilities, etc.).

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1:5)=[-1, 1,-1, 1,-1] ||
FirstFewNonEmptyPacketDirections(1:6)=[-1,-1, 1,-1, 1,-1]
 i.e. 

1) Responder describes server,

2) (optional) If client remains quiet, server sends an empty response. From this 

point, IMAP behaves like a Request/Response protocol driven by the client Requests. 

For instance, the following sequence may follow:

3) Originator asks for capability

4) Responder responds with capability

5) Originator sends login & password

6) Responder accepts/rejects login

Test_nonemptypacketratio:

Originator.datapacketcount/Originator.packetcount > 0.5 &&
Responder.datapacketcount/Responder.packetcount > 0.6
i.e At least 50% of the packets sent by the client carry data, and at least 60% of 

the packets sent by the mail server carry data.
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3) POP

Test_duration:

100000 < Duration < 10000000 µsec
i.e. In contrast with IMAP, POP terminates the session once mail messages have 

been  downloaded,  this  typically  takes  less  than  5  seconds  (say  a  maximum of  10 

seconds to set a loose threshold).

Test_transmissionrate:

Originator.αconstantbitrate <0.5 && Originator.αconstantpacketrate <0.5    &&
Responder.αconstantbitrate <0.5 && Responder.αconstantpacketrate <0.5
i.e. The transmission rate is more irregular than regular.

Test_payload:

Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([5-20[)>0.9 &&
Originator.PayloadDistribution([1-5[)==0 &&
(Responder.PayloadDistribution([0-50[)+Responder.PayloadDistribution([236-269[)+
Responder.PayloadDistribution([516-549[)+Responder.PayloadDistribution([1432-1473[))>0.6

Test_databyteratio:

DatabyteRatioOrigToResp<0.65
i.e. The server sends more data than the client.

Test_firstnonemptypacketsize:

10 < FirstNonEmptyPacketSize < 100
i.e.  The first non-empty packet, which is sent by the mail server, is typically 

small (“OK” + optional info such as server version, and name). POP server responses 

tend perhaps to be smaller than IMAP server responses.

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1:5)=[-1, 1,-1, 1,-1] ||
FirstFewNonEmptyPacketDirections(1:6)=[-1,-1, 1,-1, 1,-1]
i.e. Similar to IMAP with regards to the initial directional dynamics.

Test_nonemptypacketratio:

Originator.datapacketcount/Originator.packetcount < 0.7 &&
Responder.datapacketcount/Responder.packetcount > 0.5
i.e At most 70% of the packets sent by the client carry data, and at least 50% of 

the packets sent by the mail server carry data.
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4) SMTP

Test_duration:

100000 < Duration < 10000000 µsec
i.e. SMTP terminates the session once mail messages have been transferred, this 

typically  takes  less  than  5  seconds  (say  a  maximum of  10  seconds  to  set  a  loose 

threshold).

Test_transmissionrate:

Originator.αconstantbitrate <0.5 && Originator.αconstantpacketrate <0.5  &&
Responder.αconstantbitrate <0.5 && Responder.αconstantpacketrate <0.5
 i.e. The transmission rate is more irregular than regular.

Test_payload:

(Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([5-100[)+
Originator.PayloadDistribution([236-269[)+ Originator.PayloadDistribution([516-549[)+
Originator.PayloadDistribution([1432-1473[))>0.6 &&
Responder.PayloadDistribution([0-1[)+Responder.PayloadDistribution([5-100[)>0.8 &&
Responder.PayloadDistribution([1-5[)+Responder.PayloadDistribution([350-inf[)==0

Test_databyteratio:

DatabyteRatioOrigToResp > 1
i.e.  The databyte  ratio Originator To Responder is greater than one,  typically 

MUCH greater than 1.

Test_firstnonemptypacketsize:

20 < FirstNonEmptyPacketSize < 300
i.e. SMTP server responses are typically around a hundred bytes. We chose loose 

boundaries (20 and 300 bytes).

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1:5)=[-1, 1,-1, 1,-1]
i.e. 

1)  Responder  describes  server.  From  this  point,  SMTP  behaves  like  a 

Request/Response protocol driven by the client Requests. For instance, the following 

sequence may follow:

2) Originator sends Client Helo

3) Responder sends Server Helo

4) Originator sends AUTH command

5) Responder accepts/rejects

Test_nonemptypacketratio:
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Originator.datapacketcount/Originator.packetcount > 0.5
i.e At least 50% of the packets sent by the client carry data.

Test_datapacketcount:

4 < Responder.datapacketcount < 15
SMTP servers respond with a somewhat fixed number of non-empty packets.

Test_databytecount:

300 < Responder.databytecount < 900
SMTP servers respond with a somewhat fixed number of data bytes.

5) SSH

Test_payload:

Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([10-180[) > 0.8 &&
Originator.PayloadDistribution([1-10[)==0% && Responder.PayloadDistribution([1-10[)==0 

&&
Responder.PayloadDistribution([0-1[)+Responder.PayloadDistribution([10-180[) > 0.5

Test_databyteratio:

DatabyteRatioOrigToResp<1
 i.e. The server sends more data than the client.

Test_cipherblock:

mod(Originator.αcipherblock , 4)==0 && mod(Responder.αcipherblock , 4)==0 &&
Originator.     βcipherblock > 0.8 && Responder. βcipherblock > 0.8
 i.e. At least 80% of the non-empty packets must be divisible by 4.

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1)= -1
 i.e. The first non-empty packet is sent by the Responder (server).

Test_nonemptypacketratio:

Responder.datapacketcount/Responder.packetcount > 0.5

 i.e At least 50% of the packets sent by the server carry data.
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6) TELNET

Test_payload:

Originator.PayloadDistribution([0-10[) > 0.8             &&    Originator.PayloadDistribution([350-
inf[)==0
Test_databyteratio:

DatabyteRatioOrigToResp<0.2 && Originator.datapacketcount < Responder.datapacketcount
i.e. The server sends much more data than the client. The server also sends more 

non-empty packets.

Test_firstnonemptypacketsize:

FirstNonEmptyPacketSize < 30
 i.e. empirical estimate based on a max of 10 options negotiated.

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1:2)= [-1, 1]
i.e. The first non-empty packet is sent by the Responder (server) and the second 

is sent by the Originator.

Test_nonemptypacketratio:

Responder.datapacketcount/Responder.packetcount > 0.4
i.e At least 40% of the packets sent by the server carry data.

Test_transaction:

αtransaction > 0.7

i.e Telnet is mostly transactional.

7) FTPCommand

Test_duration:

Duration > 500000 µsec

Test_payload:

Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([5-100[)>0.8 &&
Originator.PayloadDistribution([1-5[)+Originator.PayloadDistribution([350-inf[)==0 &&
Responder.PayloadDistribution([0-1[)+Responder.PayloadDistribution([10-180[)>0.8 &&
(Responder.PayloadDistribution([1-5[)+Responder.PayloadDistribution([350-650[)+
Responder.PayloadDistribution([1000-inf[))==0
Note that while the responder also avoids sending big packets, it was not unusual 

to see packets containing between 650 and 1000 bytes of payload, in particular when 
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transmitting “code 220” for greetings and warnings.

Test_databyteratio:

0.1 < DatabyteRatioOrigToResp < 0.5 &&           Originator.datapacketcount < 
Responder.datapacketcount

i.e. The server sends more data and non-empty packets than the client.

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1)= -1
i.e. The first non-empty packet is sent by the Responder.

Test_nonemptypacketratio:

Responder.datapacketcount/Responder.packetcount > 0.6
i.e. At least 60% of the ftpcmd packets sent by the server carry data.

Test_transaction:

αtransaction > 0.95
i.e. FTPcommand is mostly (if not completely) transactional.

Test_noconsecutivebigpackets:

Responder.γfile ≤ 0
i.e While IMAP and FTPcommand are similar with respect to the other criteria, 

ftp server tend not to transmit consecutive big packets in the FTPcommand connection.

8) FTPDATA

Test_payload:

(Originator.PayloadDistribution([1-5[)==0 && Responder.PayloadDistribution([0-1[)==1) 
||
(Responder.PayloadDistribution([1-5[)==0 && Originator.PayloadDistribution([0-1[)==1)

Test_databyteratio:

DatabyteRatioOrigToResp == 0 || DatabyteRatioOrigToResp == -1
i.e. The data is flowing in one direction only. The value is -1 if the transmitting 

end is the Originator, and the value is 0 if the Responder is the transmitting end. A value 

of -1 can be associated to two cases: the transfer is an ACTIVE get or a PASSIVE put, 

depending on whether the Originator is the FTP server or the FTP client respectively. 

Similarly,  a  value of  0  indicates  an ACTIVE put  or  a  PASSIVE get,  depending on 

whether  the  Originator  is  the  FTP server  or  the  client  respectively.  The role  of  the 

Originator can be determined by examining related flows marked as FTPcommand.

Test_databytecount:
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Originator.DatabyteCount + Responder.DatabyteCount > 0
i.e. As a rule of thumb, a FTPdata session involves transferring data... therefore 

there should be packets carrying data in at least one of the direction.

Test_packetcount:

0.3 < (Originator.PacketCount/(Originator.PacketCount+Responder.PacketCount)) 
< 0.7

i.e. The amount of packets transmitted in each direction is similar.

Test_nonemptypacketratio:

(Originator.datapacketcount==0 && Responder.datapacketcount/Responder.packetcount > 0.3) ||
(Responder.datapacketcount==0 && Originator.datapacketcount/Originator.packetcount > 0.3)
This  rule  typically  holds  provided  there  are  more  than  5  packets  in  each 

direction.

9) HTTPS

Test_duration:

Duration > 50000 µsec
Test_transmissionrate:

Originator.αconstantbitrate <0.5      &&   Originator.αconstantpacketrate <0.5      &&
Responder.αconstantbitrate <0.5 &&       Responder.αconstantpacketrate <0.5
i.e. The transmission rate is more irregular than regular.

Test_payload:

Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([50-180[) > 0.6 &&
Originator.PayloadDistribution([1-5[)+Originator.PayloadDistribution( [1000-inf[)==0 &&
Responder.PayloadDistribution([0-1[)+Responder.PayloadDistribution([20-100[)+
Responder.PayloadDistribution([549-inf[) > 0.6

Test_datapacketcount:

Originator.datapacketcount<10
Test_firstnonemptypacketsize:

 90 < FirstNonEmptyPacketSize < 250
i.e. The first non-empty packet of direct SSL connections (a SSL Client Helo 

packet) is typically small (contains very few cipher specifications). 

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1:2)=[1, -1]
i.e. The first non-empty packet is sent by the Originator (client) and the second is 

sent by the Responder (server).

Test_conversation:

78



(Originator.αconversation > 0.25 && Originator.datapacketcount ≥ 5) || 
Originator.datapacketcount < 5

10) RLOGIN

Test_payload:

Originator.PayloadDistribution([0-5[) > 0.8                    &&  
Originator.PayloadDistribution([350-inf[)==0

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1)= 1
i.e. The first non-empty packet is sent by the Originator.

Test_nonemptypacketratio:

Responder.datapacketcount/Responder.packetcount > 0.4
i.e. At least 40% of the packets sent by the server carry data.

Test_conversation:

αconversation > 0.01 && βconversation > 0.4 && γconversation > 0.6
i.e. RLOGIN appears a little like a conversation (compared to SSH,TELNET, 

and  FTPcommand).  When  conversing,  the  Originator  sends  more  packets  than  the 

Responder.

11) MSNChat

Test_payload:

Originator.PayloadDistribution([0-1[) + Originator.PayloadDistribution([100-450[) > 0.8 
&&

Originator.PayloadDistribution([1-5[)==0 && Responder.PayloadDistribution([1-5[)==0 &&
Responder.PayloadDistribution([0-1[) + Responder.PayloadDistribution([100-450[) > 0.8

Test_databyteratio:

0.1 < DatabyteRatioOrigToResp < 10
i.e. This assumes that one of the user may be at most 10 times chattier than the 

other.

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1)= 1
i.e. The first non-empty packet is sent by the Originator.

Test_interactive:

Originator.αcmd_interactive > 0.3 && Originator. βcmd_interactive > 0.6 && 
Originator.γcmd_interactive > 0.6 &&
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Originator.δcmd_interactive > 0.3 && Originator.εcmd_interactive > 0.3 &&
Responder.αcmd_interactive > 0.3 && Responder. βcmd_interactive > 0.6 && 
Responder.γcmd_interactive > 0.6 &&
Responder.δcmd_interactive > 0.3 && Responder.εcmd_interactive > 0.3
i.e. Each direction is command-line interactive.

Test_conversation:

αconversation > 0.4 && βconversation > 0.4 && (0.35 < γconversation < 0.65)
i.e  the flow must  have conversational  episodes (αconversation),  it  must  have 

sustained conversation episodes (βconversation) and the amount of packets belonging to 

a conversation must be similar in each direction (γconversation).
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