ANOMALY DETECTION USING NETWORK
TRAFFIC CHARACTERIZATION

A Thesis Submitted to
the Graduate School of Engineering and Sciences of
[zmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Software

by
Oguz YARIMTEPE

July 2009
[ZMIR

We approve the thesis of Oguz YARIMTEPE

Asst. Prof. Dr. Tugkan TUGLULAR
Supervisor

Asst. Prof. Dr. Tugkan TUGLULAR
Committee Member

Asst. Prof. Dr. Tolga AYAV
Committee Member

Prof. Dr. Saban EREN
Committee Member

6 July 2009
Prof. Dr. Sitki AYTAC Prof. Dr. Hasan BOKE
Head of the Computer Engineering Dean of the Graduate School of

Department Engineering and Sciences

ABSTRACT

ANOMALY DETECTION USING NETWORK TRAFFIC
CHARACTERIZATION

Detecting suspicious traffic and anomaly sources are a general tendency about
approaching the traffic analyzing. Since the necessity of detecting anomalies, different
approaches are developed with their software candidates. Either event based or
signature based anomaly detection mechanism can be applied to analyze network traffic.
Signature based approaches require the detected signatures of the past anomalies though
event based approaches propose a more flexible approach that is defining application
level abnormal anomalies is possible. Both approach focus on the implementing and
defining abnormal traffic. The problem about anomaly is that there is not a common
definition of anomaly for all protocols or malicious attacks. In this thesis it is aimed to
define the non-malicious traffic and extract it, so that the rest is marked as suspicious
traffic for further traffic. To achieve this approach, a method and its software application
to identify IP sessions, based on statistical metrics of the packet flows are presented. An
adaptive network flow knowledge-base is derived. The knowledge-base is constructed
using calculated flows attributes. A method to define known traffic is displayed by
using the derived flow attributes. By using the attributes, analyzed flow is categorized
as a known application level protocol. It is also explained a mathematical model to
analyze the undefined traffic to display network traffic anomalies. The mathematical
model is based on principle component analysis which is applied on the origin-
destination pair flows. By using metric based traffic characterization and principle
component analysis it is observed that network traffic can be analyzed and some

anomalies can be detected.

il

OZET

AG TRAFIGI KARAKTERISTIGINI KULLANARAK
ANOMALI TESPITI

Trafik analizindeki en temel yaklasimlardan birisi de silipheli trafigin tespit
edilmesidir. Network trafigi ile ilgili anomali tespitine olan ihtiyagtan dolayr farkli
yaklagimlar ve bunlarin yazilim ¢oziimleri gelistirilmistir. Network trafiginin
incelenmesinde olay tabanli veya imza tabanli bir yaklasim sergilenebilir. Imza tabanli
yaklagimlar 6nceden yasanmis anormalliklerden ¢ikarilan imzalara dayanirken olay
tabanli yaklagimlar daha esnek bir sekilde anormalliklerin ifade edilebilmesini saglar.
Her iki yaklasimda da anormal trafigin ifade edilebilmesi gerekmektedir. Anomali ile
ilgili genel sorun ise, her protokol ve durum i¢in genel bir ifade bi¢cimin olmayisidir. Bu
tez calismasinda, normal trafigin tanimlanmasi amaclanmistir. Gézlemlenen trafikten
normal olarak tanimlanan trafik ¢ikarilarak kalan trafigin siipheli olarak incelenmesi
hedeflenmistir. Bu hedefi gergeklemek igin IP oturumlarina ve istatistiksel metrik
degerlerine bagl ag paket akislar1 kullanilmistir. Ag akislar ile ilgili ger¢eklenebilir ve
agdaki akislarin davranis 6zelliklerini ifade eden bir veri tabani olusturulmustur. Akis
ozelliklerinden yola c¢ikarak trafik karakteristigi ¢ikarma yontemi agiklanmistir. Akis
Ozellik degerleri kullanilarak trafik karakteristiginin nasil yapildigir gosterilmistir.
Ayrica, ele alinan trafik ile ilgili anormallik tespitinde kullanilabilmesi i¢in de
matematiksel bir model agiklanmistir. Birincil Bilesen Analizi (Principle Component
Analysis) isimli bu yontem ile kaynak-hedef ¢iftlerini iceren akislar i¢in grafiksel olarak
anomali tespit edilebildigi gosterilmistir. BOylece, incelenen trafigin karakteristigi

cikarilarak stipheli trafik tizerinde nasil anomali tespiti yapilacagi agiklanmistir.

v

TABLE OF CONTENT

CHAPTER 1. INTRODUCTION......c..coittiiiiieieniieniteieeitesieee sttt 1
CHAPTER 2. BACKGROUND.......ccciiitieiieiesteieee sttt 4
2.1 NetWork FIOWS.....ooueiiiiiiiiiieniceccceecsee et 4

2.1.1. Notion Of FIOW.....couiiiiiiiiiiiiieieeee e 4

2.1.2. Flow Directionality..........ccceervieriiieniieeiiie e esieeeeeee e e e eiveeee e 5

2.1.3. Flow Identification..........ccceecuieeeiiieniie e 7

2.1.4. FIOW Periodcccooviiiiiiiiiiiiieicecceeeeeeeeee e 7

2.1.5. FIOW AHIIDULES. ...coveeiieiieiieiiesi e 8

2.2. Network FIOW TOOIS ...cc.coiiiiiiiiiiiiiieiieceeeteeeee e 11
2.2 1 ATZUS ottt e e e e e e e e aaaaaaaaaaas 11

2.3, Network Packets........cooviiiiriiiiiiiiiccccceee e 13

2.4. Network Packet TOOIS.cooeiiirieniiieiiieceeeeeee e 14

B S TR o7 o4 L 1 01 SRS 14

2.4.2. WITEShATK.....c.eviieiiieciie et 15

2.4.3. TCPIEPIAY ..ot e 15

2.5. Principle Component ANalysis..........ccceereervirerieenieenienieeneesreesiee e 16

2.5.1. Tools Used Through PCA Process.......ccccceeeeuveeriirencniieeeeeernnnnen. 19

2.5.1. 1. OCLAVE.....eeeiie ettt ettt e e et e e e e e e e et eeeennnnnaes 19

2.5.1.20 SNOT it 20

2.5, 1.3, BHeICAD. cecvieeiiie ettt ettt ettt et 20

2.5 1.4, NIMAP...cevie ettt ettt ete e te et e s aee e sbae e s e s aaaeeeeeeennnnns 21

CHAPTER 3. APPROACH......cc.ooiiiiiiiiteeeeee ettt 22
3.1. Principle of APProach..........ccceevieeiiieniieiierie et 22

3.2. Processing of Captured Dataccoooveeeviieeiiiiiiiieeieeeeeeee, 24

3.3. Processing of FIow Datacccccvevvviiiiiiiieiecce e 27

3.4. Handling FIOW AtrIiDULES.ccoveeiieiieeiieiieeieee e 28

3.4.1. Discrete Distribution Attributes for Payload and Inter-Packet

DEIAY ...t e e e e e e aaaeeas 29

3.4.2. Conversations and Transactions............ccccuveeevieerieeerveeesveeeeennnnnn 30

3.4.3. Encryption INdicators.........cooueriieniieniieniieeieeie e 32

3.4.4. Command Line and Keystroke Indicators.............cccvveercurerennnen. 33

3.4.5. File Transfer Indicators............coveeriiiiiiniiinieieeiceieeeeee e 34

3.5. Deriving ANOMALY........cceeviuiieriiieciieeciee e 35

CHAPTER 4. IMPLEMENTATION......c..eoiitiiiititenienieeeeiee ettt 37

4.1. Programming Language............cceevuieeiiieiiieeniieeeieeesieeesieeesvee e e e 37

4.2, Class SIUCKUIE ...cccuveieieiieeiiieeitieeeieeesieeesteeesteeessaaeesaaeesessansseeaeeeennnns 38

4.2.1. FLOW ODBJECL...ccuetietieeiieeiieee ettt ettt et 38

4.3, SOftWAre SIIUCTUTE ...ecuveiieiieiieriieieeie sttt 42

CHAPTER 5. TEST RESULTS. ...ttt 45

S L PCATESES ..ttt 45

5.1.1. Tests with Clean TraffiC........ccccoveevirieniiiiinieeeceeee e, 45

5.1.2. Tests with Manual Attacks.........cccceevieriiiniiniiiniiiiieeeeee 47

5.2. Threshold TeStS.....cccuvieieriieeiiieeiee ettt e e e araeeee s 49

5.3. BitTorrent Traffic ANalysis.......cccoceeriieiieniiieieiieeiee e 53

5.3.1. BitTorrent Protocol.........coceevueriiriinienienieienicesee e 53

5.3.2. Testbed for BitTorrent Characterization..........c..ccccceevvueenienueennnenn. 54

5.3.3. Criteria for BitTOITent..........ccooiiiiiiiiieiiieieeieeeeeee e 55

CHAPTER 6. CONCLUSION......c.ctiiiitiiiieitentteiestesit ettt et 61

REFERENCES. ..ottt sttt ettt et st et ente e enteeenneeenneees 63
APPENDICES

APPENDIX AL ..ottt ettt ettt ettt b et st na et it e 67

APPENDIX Bttt ettt ettt et sttt et 71

vi

LIST OF FIGURES

Figure Page
Figure 2.1. Unidirectional Flow Demonstration, From Source to Destination 6
Figure 2.2. Unidirectional Flow Demonstration, From Destination to Source 6
Figure 2.3. Bidirectional Flow Between Two Endpointscccocceeiiiiiininncen. 6
Figure 3.1. Steps Through Anomaly Detection.............cceevieeiiiniiiiieniiiiiieieeee 23
Figure 3.2. Total Bits Per Second for Week 1 Day 1 Record.........ccccoceeveriencennen. 25
Figure 3.3. Total Number of Packets for Week 1 Day 1 Record..........c..ccceeuenenne 26
Figure 4.1. AbstractFlow Diagram...........cccccooiiiiiiiiiiiiiieeceeeeeeeee 38
Figure 4.2. FlowGenerator and WholeFlowGenerator Class Relations.................. 39
Figure 4.3. Factory Class DIiagram.........ccccceceviiririenienienienieeeseesieeieseesie e 40
Figure 4.4. Indicator Class Diagram..........ccccooceeveerierienienienieneeieeeseee e 40
Figure 4.5. Recognizer Class Diagram.........cccccceveeiiiieniiiiienieiieeieceeee e 41
Figure 4.6. Threshold Calculation Sequence Diagram.............cocceeviieiiinieeniennene 41
Figure 4.7. PCA Sequence Diagram............ccoecuieriieiieniiieniienieeiieeie e 42
Figure 5.1. PCA Analysis of Week 1 Day 1 Record.........ccccoovevieniniencnnieniienne. 46
Figure 5.2. PCA Analysis of Week 5 Day 2 Record..........ccoooeviiiniiiiinniiniiceen 46
Figure 5.3. Ettercap DOS Attack PCA Analysis........cccevviiinieniiienieiiieienieeeeee, 48
Figure 5.4. Snort Result of Undefined Traffic, DOS Attack..........cccccovevvirienennnen. 48
Figure 5.5. Nmap Syn Scan PCA ANalysis.......cccceeveriierieneiiinienieeiesceieeeeeeene 49
Figure 5.6. FTPCommand Test Results............ccocoieiiiiiiiniiiniicceceee 49
Figure 5.7. FTPData Test ReSUlts........cocueeiiiiiiiiiiiiiieieecee e 50
Figure 5.8. HTTP Test ReSUILS.......cccceviiiiiiiiiiieiiiececceeeeeee e 50
Figure 5.9. POP Test RESUILS......cc.ceiuiiiiriiiiiiecieieeeee e 51
Figure 5.10. SMTP Test ReSUILS......cc.eoiiiiiiiiiiiieiiee e 51
Figure 5.11. SSH Test ReSUILS.......c.ooiiiiiiiiiiiiiee e 52
Figure 5.12. Telnet Test RESUILS.......cc.ceouiriiriiiiniiiecieeeeeeeeee e 52
Figure 5.13. Protocols Similarities Defined for Torrent Traffic..........cccccoveveennnne. 54
Figure 5.14. Payload Distribution Graph for Originator...........cccceeeeniiiieeniennnen. 55
Figure 5.15. DatabyteRatioOrigToResp Distribution Graph..........ccccceeveeriienennee. 56
Figure 5.16. DataByteCount/ByteCount Graph for Responder...............c.cccuvenneenne. 56

vil

Figure 5.17. DataByteCount/ByteCount Graph for Originator...............cccccveeunenee. 57

Figure 5.18. firstNonEmptyPacketSize of the Whole Flowccccoovviieiinnnnen. 57
Figure 5.19. P2P Test with FTPDatacccoceviiiiniiiiniiecieecceecece 58
Figure 5.20. FTP Data Test With P2P.......cccooiiiiiiiiiiiieceeeeee 59
Figure 5.21. Telnet Test With P2P.........oooiiiiiiiece 59
Figure 5.22. HTTP Test With P2P......c..cocoiiiiiiiiiiicceeeee 60

viii

LIST OF TABLES

Table Page
Table2.1. Attributes measured over the whole flow............cccooiiiiiiiiiiiiiie, 9
Table 2.2 Attributes measured for each direction of the flow...........ccceevvenieninnene. 10
Table 3.1. Table structure for table FIowPkgTbl..........ccoooieviiiiiiniiiiiiiieiees 26
Table 3.2. Conceptual illustration of discrete payload distribution......................... 30
Table 3.3. Conceptual illustration of discrete packet delay distribution.................. 30
Table 4.1. Table structure for table UndefinedFlowTbl............cccceveriiniininiinnnnne. 43

X

CHAPTER 1

INTRODUCTION

Network traffic measurement provides basic traffic characteristics, supplies
information for the control of the network, allows modeling and provides an opportunity
to develop and plan the use of network resources. It also enables developers to control
the quality of network service operations. Although network traffic measurement is a
well-known and applicable area, a general method for detecting anomalies in network
traffic is an important, unsolved problem (Denning 1986).

Anomaly detection can be described as an alarm for strange system behavior.
The concept stems from a paper fundamental to the field of security, An Intrusion
Detection Model, by Denning (Denning 1986). In it, she describes building an "activity
profile" of normal usage over an interval of time. Once in place, the profile is compared
against real time events. Anything that deviates from the baseline, or the norm, is logged
as anomalous. So, anomaly detection systems establish a baseline of normal usage
patterns, and anything that widely deviates from it gets flagged as a possible intrusion. A
good example for this approach is Bro-IDS (Bro-IDS 2009). It works as en event based
intrusion detection system, that is it does not rely on only signatures, recorded and
generated by observing previously seen anomalies, but also event definitions that
enables dynamic approach to intrusion detection systems. By using its own language, it
i1s possible to define anomalies on application level. Such an event based approach
enable further protection for the unseen anomalies. Another anomaly detection system
works using signatures that are previously recorded. Since its dependency to previous
anomalies and signature collection, signature based systems are not as dynamic as event
based systems.

The network traffic to be an anomaly can vary, but normally, any incident that

occurs on frequency greater than or less than two standard deviations from the statistical

norm can be approached as a suspicious event. Since the ambiguity on determination of
the statistical norm, a general method for detecting anomalies in network traffic doesn't
have a unique solution. Basically, it should be possible to observe most anomaly types
by inspecting traffic flows. However, to date, there is not a common approach to
anomaly detection. There are many good reasons for this: Traffic flows present many
possible types of network traffic, the set of all flows occupies a very high-dimensional
space, and collecting all traffic flows is very resource-intensive.

In this thesis, detecting anomalies are achieved neither signature nor signature
based. Both approaches require definition of an anomaly either in a signature way or an
application level protocol way. Instead of defining abnormal traffic, it is presented that,
defining normal traffic behavior is easier. By using the normal traffic characteristics, the
rest of the traffic can be extracted as suspicious traffic for anomaly detection.

Throughout this thesis, it is shown that traffic flow attributes can be used to
define known traffic, which covers application level protocols like FTP, TELNET, SSH,
HTTP, HTTPS, IMAP, POP, SMTP, MSN CHAT, RLogin, BitTorrent. Network traffic is
taken into consideration as combination of directional flows. For each flow, flow
attributes are calculated either using flow metrics or packet based inspection. Packet
based inspection includes traversing through the collected packets that belong to a flow
session. Especially, attribute values related with statistical analysis requires packet
based inspection.

By using the attribute values, it is possible to calculate a match result for each
application level protocol. By looking at the match result of the calculated values, it is
seen that it is possible to define a threshold value for each protocol and any flow that is
under the defined threshold value can be marked as undefined for further inspection.
When the undefined flows are observed as a whole and principle component analysis is
applied over byte and packet number level, it is seen that the generated graphs has peeks
that displays suspicious anomalies over time intervals. For calculating the principle
components, number of packets, number of bytes and number of IP flow values are used
for each origin-destination pairs. Origin-destination pairs are calculated for the splitted
time series of the undefined traffic.

The exact number of applications that contribute to the network traffic is not

known and even the actual impact of well-known protocols is not clear. This is due to

the shortcomings of the state-of-the-art in traffic monitoring, which make use of
registered and well-known port numbers to classify packets and computer statistics. The
problem is new applications often do not use a registered port, do not have a fixed port
number, or simply disguise themselves using the port numbers of another application
(for example, the web's port 80) to avoid detection (so they can pass through firewalls,
and avoid rate limits) (Hernandez-Campos, et. al. 2005).

This thesis will cover mathematical models for traffic characterization, anomaly
detection and implementation of them on network traffic. Chapter 2 aims to give a
background information. Flow explanations like directionality or flow metrics and tools
that are used either on packet or flow based are explained throughout this chapter. This
chapter also covers the background information about principle component analysis that
is used for anomaly detection for the suspicious traffic. Chapter 3 explains the model of
the solution. It is aimed to answer the how part of the thesis. Before starting the
implementation phase it is aimed to give logical methodical steps that will be follow to
gather anomalies at the network traffic. Chapter 4 covers the implementation details
starting from the programming language itself to UML diagrams of the class hierarchy.
Chapter 5 includes test results of the particular application level protocols. The results
are used to detect threshold for each protocol. Chapter 5 also includes the test results
related with the BitTorrent traffic which is added to this thesis as a contribution for the

related work. The thesis ends with a conclusion and a further work part.

CHAPTER 2

BACKGROUND

This section aims to provide a background for the concepts used in this thesis.
To provide the reader a familiarity with the topics covered through this thesis, this
section is divided into three subsections. First section is dedicated for network flow
explanations. Flow notion, flow based metrics, directionality and flow attributes are
explained in detail. This category also includes the tools used for calculating flow
metrics. The second sub section is for packet based inspection and packet based tools
used throughout this thesis. In this thesis work, it is also mentioned an anomaly
detection method that can be applied on to the flow records, which is called principle
component analysis (PCA). Mathematical details about PCA calculation is given at the

third subsection of this section.

2.1. Network Flows

2.1.1. Notion of Flow

The notion of flow was introduced within the network research community in
order to better understand the nature of Internet traffic. Flow is the sequence of packets
or a packet that belonged to certain network session(conversation) between two hosts
but delimited by the setting of flow generation or analyzing tool (Lee 2008, June).
Network flow data represents a summary of conversation between two end points. It

provides valuable information to assist investigation and analysis of network and

security issues. Unlike deep packet inspection, flow data does not rely on packet
payloads. Instead the analyst relies on information gathered from packet headers and its
associated metrics. This provides the analyst a neutral view of network traffic flow by
tracking network sessions between multiple endpoints simultaneously. In addition,
having network flow data will provide a better visibility of network events without
having the need to perform payload analysis. It is convenient for protocol analysis (Lee
2008, May) or debugging.

In 1995, the IETF’s Realtime Traffic Flow Measurement (RTFM) working group
was formed to develop a frame-work for real-time traffic data reduction and
measurements (RTFM 1995). A flow in the RTFM model can be loosely defined as the
set of packets that have in common values of certain fields found in headers of packets.
The fields used to aggregate traffic typically specify addresses at various levels of the
protocol stack (e.g. IP addresses, IP protocol, TCP/UDP port numbers). Herein, it is
used the term key to refer to the set of address attributes used to aggregate packets into a

flow.

2.1.2. Flow Directionality

Flow definition is given above as summary of conversation between two end

points. The endpoints here are defined as follows:

a. Layer 2 Endpoint - Source Mac Address | Destination Mac Address
Layer 3 Endpoint - Source IP Address | Destination IP Address
Layer 4 Endpoint - Source Port | Destination Port

The conversation between these two ends has a direction so flow tool display a
direction information related with the flow also. There are two types of direction
information related with a network flow. A flow can be defined either as a unidirectional
flow or as a bidirectional flow.

At unidirectional flow model, every flow record contains the attribute of single

endpoint only. Figure 2.1 and Figure 2.2 show directionality in a more simple way (Lee

2008, June).

B

Figure 2.1. Unidirectional Flow Demonstration, From Source to Destination

%

Figure 2.2. Unidirectional Flow Demonstration, From Destination to Source

At bidirectional flow model every flow record contains the attribute of both

endpoints. Figure 2.2 illustrates it (Lee 2008, June):

< =

Figure 2.3. Bidirectional Flow Between Two Endpoints

To make the directionality more clear lets assume that source host sends 90
bytes to destination host and destination host replies with 120 bytes. If the flow
communication between these two hosts are unidirectional, then the flow information

will be as follows:

b. Srcaddr Direction Dstaddr Total Bytes
Source Host -> Destination Host 90
Destination Host -> Source Host 120

Though, if the flow communication is bidirectional, then the result will be

different:

C. Srcaddr Direction Dstaddr Total Bytes Src Bytes Dst Bytes
Source Host <> Destination Host 210 90 120

In unidirectional flow, it is only seen the total bytes that sent by source host but
nothing about destination in the first flow record. Then the next record shows
destination sends 120 bytes to source. The total bytes is accounted from single endpoint
only. But in bidirectional flow, it can be seen that source host sends 90 bytes and
destination replies with 120 bytes. The total bytes is the accumulation of source and

destination bytes.

2.1.3. Flow Identification

Giving a unique label to a flow information depends on the aim of the analysis
related with it. If the intent is to analyze the amount of traffic between two hosts, then
the focus can be source and destination IP addresses. However, a finer intent like
considering the flow information over a state approach to identify connections will
require additional information. To identify each flow it is used 5-tuple key
representation. The tuple includes source IP address, source port number, destination IP

address, destination port number and protocol information.

2.1.4. Flow Period

Flow period means the time periodically report on a flow's activity. The period

determines the start and end times of each flow. There are three primary expiry methods

that are appropriate for studying characteristics of individual flows: protocol based,
fixed timeout, and adaptive timeout (Keys, et. al. 2001). With protocol based
mechanisms, the state of a flow is determined by observing protocol specific messages
(e.g. TCP SYN, FIN or RST). With a fixed timeout method, a flow has expired when
some fixed period has elapsed since the last packet belonging to that flow was captured.
An adaptive timeout strategy is a little more sophisticated than a fixed timeout method.
The timeout is different for each flow and is computed based on the packet rate
observed so far within each flow.

In this thesis, because of its simplicity a fixed timeout approach is chosen over
an adaptive timeout mechanism to decide the expiration time of flows. The timeout
value is chosen as 60 seconds for preliminary examination, which is also commonly

used in related works (Xu, et.al. 2005) (Claffy, et.al. 1995) (Karagiannis, et.al. 2005).

2.1.5. Flow Attributes

In the literature, flow attributes are often called features, or characteristics.
According to the RFTM Architecture (RFC2722 1999) a flow has computed attributes
that are derived from end point attribute values, metric values like packet and byte
counts, time values as well as summary information like mean, median or average
values, jitters and distributional information. The goal in defining flow attributes is to
identify now only the relevant characteristics but also the proper way to measure them.

In 2005, De Montigny and Leboeuf published the definition of flow attributes
that can be used to characterize a flow at their paper (De Montigny and Leboeuf 2005).
At their work it is mentioned nearly thirty property that can be derived from a flow
information. The mentioned flow metrics are also used throughout this thesis. The
following sub sections will be covering the details of the flow attributes mentioned at
the De Montigny and Leboeuf's work (De Montigny and Leboeuf 2005).

Flow attributes are examined in two categories. One of the categories includes
the whole flow values, while the second one includes values per directional flows. The
attributes derived are summarized in Table 2.1 and Table 2.2. The following sub

sections will describe each attribute with greater detail. Table 2.1 lists the attributes that

8

are measured over the entire flow. The first three attributes (Key, BeginTime, EndTime)
are simply used to identify and sort the flows. Table 2.2 gives the attributes that are
specific to each direction, and thus are measured in each direction separately. The

details of Table 2.1 and Table 2.2 can be found at Appendix A.

Table 2.1. Attributes measured over the whole flow

Attributes Inspection Method
KEY Flow Based
BEGIN_TIME Flow Based
END_TIME Flow Based
DURATION Flow Based
FIRST NONEMPTY PACKET SIZE Packet Based
FIRST FEW_NONEMPTY PACKET DIRECTIONS |Packet Based
DATA BYTE RATIO ORIG TO RESP Flow Based
INTERARRIVAL DISTRIBUTION Packet Based
Conversational Indicator

ALPHA conversation Packet Based
BETA conversation Packet Based
GAMMA nversation Packet Based
Transaction Indicator

ALPHA tansaction Packet Based

Table 2.2. Attributes measured for each direction of the flow

Attributes Inspection Method
INTERARRIVAL DISTRIBUTION Packet Based
PAYLOAD DISTRIBUTION Packet Based
BYTE_COUNT Flow Based
DATA BYTE _COUNT Flow Based
PACKET COUNT Flow Based
DATAPACKET COUNT Flow Based
Encryption Indicators

ALPHA hipherblock Packet Based
BETA chipherblock Packet Based
Keystroke Interactive Indicator

ALPHA ¢y interactive Packet Based
BETAxey interactive Packet Based
GAMMA .y interactive Packet Based
DELTAuey interactive Packet Based
EPSILONiey interactive Packet Based
Command-line Interactive Indicator

ALPHA 4 interactive Packet Based
BETAmd interactive Packet Based
GAMMA (i interactive Packet Based
DELTA g interactive Packet Based
EPSILONmd interactive Packet Based
File transfer Indicators

ALPHA constantpacketrate Packet Based
BETAge Packet Based
GAMMAe Packet Based

As it can be seen from Table 2.1 and Table 2.2, attributes related with whole
flow or each direction of flow have indicators. Indicators generally depend on packet
based calculations and enables to derive application level information from flow itself.
Although it is mentioned they are calculated mainly by packet based inspection, some of
them also use flow based data to calculate some indicator values. Details about the

indicators are mentioned at the next section.

10

2.2. Network Flow Tools

Custom flow tools ease the work on flow data. They reconstructs the actual data
streams and enable it to be saved to a file in a formated way or to be displayed
graphically. What they do basically is understanding sequence numbers and state
information to decide to which session of the packages belongs to.

Cisco's NetFlow (Cisco Systems 2009) is a network protocol developed by
Cisco Systems to run on Cisco [OS-enabled equipment for collecting IP traffic
information. It's proprietary and supported by platforms other than IOS, such as Juniper
routers or FreeBSD and OpenBSD (Netflow 2009). Although it is widely used, its flows
are unidirectional and limited number of flow attributes are recorded. NetFlow traffic is
mainly analyzed by adapting other tools to the network like cflowd (CAIDA 2006) and
SiLK (SiLK, 2009). Another popular tool is Argus, which is fixed-model real time flow
monitor designed to track and report on the status and performance of all network

transactions seen in a data network traffic stream.

2.2.1 Argus

The Argus Open Project is focused on developing network audit strategies that
can do real work for the network architect, administrator and network user. Argus is a
fixed-model real time flow monitor designed to track and report on the status and
performance of all network transactions seen in a data network traffic stream. Argus
provides a common data format for reporting flow metrics such as connectivity,
capacity, demand, loss, delay, and jitter on a per transaction basis. The record format
that Argus uses is flexible and extensible, supporting generic flow identifiers and
metrics, as well as application/protocol specific information.

Argus can be used to analyze and report on the contents of packet capture files

or it can run as a continuous monitor, examining data from a live interface, generating

11

an audit log of all the network activity seen in the packet stream. Argus currently runs
on Linux, Solaris, FreeBSD, OpenBSD, NetBSD, MAC OS X and OpenWrt (ARGUS
2009).

Argus is used for converting previously recorded pcap files to its own flows
format and to produce meaningful human readable flow information from it. It is used

as follows:

d. argus -mAJZR -r ettercap-dos.pcap -w ettercap-dos.pcap.arg3

Here, ettercap-dos.pcap file is converted into an Argus flow format by using the

parameters defined below:

€. -m: Provide MAC addresses information in argus records.
-A: Generate application byte metrics in each audit record.
-J: Generate packet peformance data in each audit record.
-Z: Generate packet size data.
-R: Generate argus records such that response times can be derived from
transaction data.

Converted Argus flow file is a binary file which requires Argus client tools to be
used for meaningful information. Racluster is one of the Argus client tools that is used
for gathering flow information. Racluster reads Argus data from an Argus data
source, and clusters/merges the records based on the flow key criteria specified either on
the command line, or in a racluster configuration file, and outputs a valid Argus stream.

This tool is primarily used for data mining, data management and report generation.

Below is a sample usage and the produced output of it:

f. racluster -LO -nr ettercap-dos.pcap.arg3 -s proto saddr sport dir daddr dport

Proto SrcAddr Sport Dir DstAddr Dport
tcp 192.168.1.118.32743 > 192.168.1.188.2
tcp 192.168.1.118.32999 -> 192.168.1.188.3

By looking at the produced output, it can be said that, the first flow indicates a
connection over TCP between the IP addresses 192.168.1.118 and 192.168.1.188 that is
also a unidirectional flow. During the flow inspection process more information rather

than the ones mentioned above is gathered using racluster, like the start time of flow,

12

duration, number of packets send by source, ... etc.

Another Argus client was rasplit which was used for splitting flow sources into
sub flows depending on either time or size values. Rasplit reads Argus data from an
Argus data source, and splits the resulting output into consecutive sections of records
based on size, count time, or flow event, writing the output into a set of output files.
This tool is mainly used at the principle component analysis phase for creating sub

flows.

2.3. Network Packets

In information technology, a packet is a formatted unit of data carried by a
packet mode computer network. Computer communications links that do not support
packets, such as traditional point-to-point telecommunications links, simply transmit
data as a series of bytes, characters, or bits alone. When data is formatted into packets,
the bitrate of the communication medium can better be shared among users than if the
network were circuit switched (Packet 2009).

The format of the network packets are defined as protocols. Throughout this
thesis, User Datagram Protocol (UDP) and Transmission Control Protocol (TCP)
packets are taken into consideration because of their common usage at application level.
So is this thesis, packet is used as either a TCP or an UDP packet.

Each protocol has its own header definitions. Headers carry details about
network packets. For both UDP and TCP, it is gathered common header information for
each packet. One of the gathered header information is the IP addresses, that are defined
in 32 bit fields in dot separated format for IPv4. It should be mentioned that, current
work in this thesis is done on IPv4 networks. An IP packet contains two IP address
information that is the sender/source IP address and the other one is the
receiver/destination IP address. Packets are left the machines or received by using port
numbers which are defined as 8 bit information at the packet headers. An IP packets
also carry protocol information, which is defined in 8 bit fields. This number is 17 for
TCP protocol packets and 6 for UDP packets when converted into decimal value.

Each packet has a length information that is defined in a 24 bit header length.

13

This gives the total length of the packet. The most important header part for this thesis
is the payload. Payloads are the data carriage of the packets. Protocol related
commands, text information or binary data is carried on payload parts. Depending on
how the network traffic is sniffed and the length of the captured packets defined, the
size of payload can vary. But in general, the size and ingredients of it gives much

information related with which application the packet belongs to.

2.4. Network Packet Tools

This section is covering the tools that gathers packet level data from network
traffic. These tools generally use libpcap (Libpcap 2009) library for low-level network
jobs.

2.4.1. Tcpdump

Tepdump is a common packet sniffer that runs under the command line. It
allows the user to intercept and display TCP/IP and other packets being transmitted or
received over a network to which the computer is attached (Tcpdump 2009). It prints
out a description of the contents of packets on a network interface that match the
boolean expression. It can also be run with the -w flag, which causes it to save the
packet data to a file for later analysis, and/or with the -r flag, which causes it to read
from a saved packet file rather than to read packets from a network interface. In all
cases, only packets that match expression will be processed by tcpdump.

Tepdump is used in this thesis to save the manually produced attacks as pcap
format for further investigation. The saved files are processed via the developed

software and a general anomaly graph is produced for an attack sample.

14

2.4.2. Wireshark

Wireshark is a free packet sniffer computer application. It is used for network
troubleshooting, analysis, software and communications protocol development, and
education.

Wireshark is very similar to tcpdump, but it has a graphical front-end, and many
more information sorting and filtering options. It allows the user to see all traffic being
passed over the network (usually an Ethernet network but support is being added for
others) by putting the network interface into promiscuous mode (Wireshark 2009).

It is used as a controller through the development of flow attributes. By
inspecting each packets per flow, it is decided to understand the which header fields

should be taken into consideration for each protocol.

2.4.3. Tcpreplay

Tcpreplay is a tool for replaying network traffic from files saved with tcpdump
or other tools which write pcap files. It allows one to classify traffic as client or server,
rewrite Layer 2, 3 and 4 headers and finally replay the traffic back onto the network and
through other devices such as switches, routers, firewalls, NIDS and IPS's. Tcpreplay
supports both single and dual NIC modes for testing both sniffing and inline devices
(TcpReplay 2009).

Throughout this thesis, it is used to reproduce the captured manual attack over
an Ethernet interface to be sniffed and analyzed by Snort. It is aimed to check the
produced anomaly results with the Snort results, so the undefined flows are sent to Snort

after being analyzed.

15

2.5. Principle Component Analysis

Principal component analysis (PCA) involves a mathematical procedure that
transforms a number of possibly correlated variables into a smaller number of
uncorrelated variables called principal components (PCA 2009). With minimal effort
PCA provides a road map for how to reduce a complex data set to a lower dimension to
reveal the sometimes hidden, simplified structures that often underlie it.

Principal component analysis is based on the statistical representation of a

random variable. Suppose we have a random vector population x, where

x=(x,,%,, .., x,)" (2.1)

and the mean of that population is denoted by

u,=E|(x] (2.2)

and the covariance matrix of the same data set is

C.=E{(x—pu)(x—u,)") (2.3)

The components of Cy, denoted by c;, represent the covariances between the
random variable components x;, and x;. The component c; is the variance of the
component X;. The variance of a component indicates the spread of the component
values around its mean value. If two components x; and x; of the data are uncorrelated,
their covariance is zero (cj = cji = 0). The covariance matrix is, by definition, always is
always zero.

From a sample of vectors xi,...,xu it can be calculated the sample mean and the
sample covariance matrix as the estimates of the mean and the covariance matrix. From
a symmetric matrix such as the covariance matrix, it can be calculated an orthogonal

basis by finding its eigenvalues and eigenvectors. The eigenvectors e; The eigenvectors

16

Ai are the solutions of the equation.

Ciei = kg, 1=1,...,n (2.4)

For simplicity it is assumed that the A; are distinct. These values can be found,

for example, by finding the solutions of the characteristic equation

|C . —AI|=0 (2.5)

where the I is the identity matrix having the same order than Cy and the |.|
denotes the determinant of the matrix. If the data vector has n components, the
characteristic equation becomes of order n. This is easy to solve only if n is small.
Solving eigenvalues and corresponding eigenvectors is a non-trivial task, and many
methods exist.

By ordering the eigenvectors in the order of descending eigenvalues (largest
first), one can create an ordered orthogonal basis with the first eigenvector having the
direction of largest variance of the data. In this way, it can be found directions in which
the data set has the most significant amounts of energy.

Suppose one has a data set of which the sample mean and the covariance matrix
have been calculated. Let A be a matrix consisting of eigenvectors of the covariance

matrix as the row vectors. By transforming a data vector x, it is got

y = A(x-1) 2.7)

which is a point in the orthogonal coordinate system defined by the
eigenvectors. Components of y can be seen as the coordinates in the orthogonal base. It

can be reconstructed the original data vector x from y by

xZATy-l-,ux (2.3)

using the property of an orthogonal matrix 4 '=4" . The A" is the transpose

of a matrix of A. The original vector x was projected on the coordinate axes defined by

17

the orthogonal basis. The original vector was then reconstructed by a linear combination
of the orthogonal basis vectors.

Instead of using all the eigenvectors of the covariance matrix, the data is
represented in terms of only a few basis vectors of the orthogonal basis. If the matrixis
denoted having the K first eigenvectors as rows by Ak a similar transformation can be

created as seen above

Y = Ax (X =) (2.9)

and

X = ATy+ix (2.10)

This means that it is projected the original data vector on the coordinate axes
having the dimension K and transforming the vector back by a linear combination of the
basis vectors. This minimizes the mean-square error between the data and this
representation with given number of eigenvectors.

If the data is concentrated in a linear subspace, this provides a way to compress
data without losing much information and simplifying the representation. By picking the
eigenvectors having the largest eigenvalues it is lost as little information as possible in
the mean-square sense. One can e.g. choose a fixed number of eigenvectors and their
respective eigenvalues and get a consistent representation, or abstraction of the data.
This preserves a varying amount of energy of the original data. Alternatively, it can be
chosen approximately the same amount of energy and a varying amount of eigenvectors
and their respective eigenvalues. This would in turn give approximately consistent
amount of information in the expense of varying representations with regard to the

dimension of the subspace (Hollmen 1996).

18

2.5.1. Tools Used Through PCA Process

PCA process is a manual process. This section describes the details about the

tools used throughout the PCA steps.

2.5.1.1. Octave

GNU Octave is a high-level language, primarily intended for numerical
computations. It provides a convenient command line interface for solving linear and
nonlinear problems numerically, and for performing other numerical experiments using
a language that is mostly compatible with Matlab. It may also be used as a batch-
oriented language[13].

It is used for principle component calculation and generating graphs of the
calculation to see the peeks at the graphs.

GNU Octave's statistical package has princomp function which enables

computing the PCA of a X matrix. It works as follows:

g. [pc,z,w,Tsq] = princomp(X)

pc: the principal components

z : the transformed data

w: the eigenvalues of the covariance matrix

Tsq: Hotelling's T/2 statistic for the transformed data

Throughout PCA process, anomaly detection is done over undefined flow
records. While Octave is used for PCA computation and generating anomaly graphs,

some other tools are used for creating manual attacks and retesting them.

19

2.5.1.2. Snort

SNORT is an open source network intrusion prevention and detection system
utilizing a rule-driven language, which combines the benefits of signature, protocol and
anomaly based inspection methods. Snort is the most widely deployed intrusion
detection and prevention technology worldwide and has become the de facto standard
for the industry (Snort 2009).

Snort is used in intrusion detection mode to detect the anomalies for the
undefined traffic. Snort BASE (BASE 2009) web interface is used for observing the

produced results.

2.5.1.3. Ettercap

Ettercap is a suite for man in the middle attacks on LAN. It features sniffing of
live connections, content filtering on the fly and many other interesting tricks. It
supports active and passive dissection of many protocols (even ciphered ones) and
includes many feature for network and host analysis (Ettercap 2009).

Ettercap is able to perform attacks against the ARP protocol by positioning itself
as "man in the middle" and, once positioned as this, it is able to:

- infect, replace, delete data in a connection

- discover passwords for protocols such as FTP, HTTP, POP, SSH1, etc ...

- provide fake SSL certificates in HTTPS sections to the victims.

It is used for producing DOS attacks, manually. The produced dos attacks are

saved by using tcpdump, and analyzed both with Snort and developed software.

20

2.5.1.4. Nmap

Nmap ("Network Mapper") is a free and open source (license) utility for
network exploration or security auditing. Many systems and network administrators also
find it useful for tasks such as network inventory, managing service upgrade schedules,
and monitoring host or service uptime. Nmap uses raw [P packets in novel ways to
determine what hosts are available on the network, what services (application name and
version) those hosts are offering, what operating systems (and OS versions) they are
running, what type of packet filters/firewalls are in use, and dozens of other
characteristics. It was designed to rapidly scan large networks, but works fine against
single hosts. Nmap runs on all major computer operating systems, and both console and
graphical versions are available (Nmap 2009). It is used as a port scanner to generate

port scan traffic over a target machine.

21

CHAPTER 3

APPROACH

This chapter explains the methodical work that is followed to characterize
network traffic and to get anomaly information related with the traffic examined. The
method involves the steps followed to produce anomaly result. The steps start with
examining of the off line prerecorded data and ends with an graph representing the
abnormal traffic in a time interval. Each step is achieved by considering some key
points which are also mentioned at the following sub sections. The key points constitute

a unique view which differs this thesis work from the similar works.

3.1. Principle of Approach

The method that is followed at this work can be viewed at four steps. To get a
general view the steps are explained in a simple way. The details are explained at the

following subsections.

Packets are grouped into flows: Off line data is used at this thesis. The

details about the captured data is given at the subsection 3.2. The data is a
prerecorded data that includes captured traffic by tcpdump. The recorded data is
first converted into a flow record by keeping mac address information, packet
performance data, application byte metrics in each audit record.

Characteristics (attributes) are measured on each flow: Attributes mentioned

at the Annie De Montigny and Leboeufare (De Montigny and Leboeuf 2005) work
are calculated and recorded.

Flows are recognized and described: The flow is described with its two main

22

properties. One category includes the metric values of the flow, the other one is the
statistical information that is gathered through a packet inspection. With these
knowledges it is aimed to define the application level definition for a flow.

- Anomaly Detection: Anomaly analysis is covered on the undefined flow

data. Undefined traffic is saved for a further statistical analysis to detect

uncorrelated data from the correlated data.

The process is outlined also at Figure 3.1 in a more visual way.

Packets Step 1 Flows Flow Attributes
Step 2
= I:> = * Interactive Indicators
|:> * File Transfer Indicators
= |:> = * Conversation
=] =] Indicators
* Transcation Indicators
= |:> * Encryption Indicators
= Step 3 .
Step 4 Principle Component Analysis

Anomaly Graph

>

Figure 3.1. Steps Through Anomaly Detection

There are some points that should be highlighted about the approach in this

thesis:

« Anomaly detection method at this thesis is based on traffic characterization
which requires to derive flow characteristics. At the current work it is possible to get
and analyze nearly twenty three flow metrics.

-« It is completely avoided relying on port numbers or payload analysis. This
provides an alternative method to more conventional traffic categorization

techniques provided by current networking tools.

23

- It is only examined communication patterns found at the network and
transport layers, requiring minimal information per packet to be retained.

- Patterns are identified at the 5-tuple flow granularity of TCP/UDP
communications. Therefore even sporadic malicious activities may be identified
without the requirement of waiting until multiple connections can be examined.

« The flow attributes can serve as a starting point for different traffic
characterization studies. By using the same attributes but different statistical
analysis more powerful techniques can be defined. The methodology also open to
adding to new flow attribute additions. So defining new attributes may ease the

anomaly detection process.

3.2. Processing of Captured Data

The traffic analysis process starts with a tcpdump data file which is used for
extracting flow data and for gathering per packet information. There are two types of
tcpdump records that was used through this thesis work. One of them is the 1999
DARPA Intrusion Detection Evaluation Data Set which was used throughout the
development phase. DARPA Intrusion Detection Evaluation Data Set (DARPA 2009)
includes weekly prerecorded tcpdump files for further evaluation. The data set was
used for intrusion detection so it has separated clean traffic. Attack free (clean) traffic
was important during the development period to detect the metric values for each flow
attributes. So the first week of the dataset is used for development purposes. Second
record type is the one including manually produced anomalies. These records include
both abnormal traffic and a scheduled attack produced manually. These type of records
are used for checking the accuracy of the work.

Below 1is the graphical and statistical representation of the week one day one

record of the DARPA Intrusion Detection Evaluation Data Set:

24

File name: inside.tcpdump w1 d1 File type:

Wireshark/tcpdumpy/... - libpcap

File encapsulation: Ethernet

Number of packets: 1492331

File size: 341027537 bytes

Data size: 317150217 bytes

Capture duration: 79210.265570 seconds
Start time: Mon Mar 1 15:00:05 1999
End time: Tue Mar 2 13:00:16 1999
Data rate: 4003.90 bytes/s

Data rate: 32031.22 bits/s

Average packet size: 212.52 bytes

h. represents the all available statistical information gathered from the captured

file, inside.tcpdump w1 d1 which is the name of the file created by using Tepdump.

Following two figures give the graphical representation of the flow information

for the captured file.

400 k

350 k

300 k

250 k

200 k

Total bitsfsec

156 k

106 k

58 k

M TotBytes

16: 80 18: 00 20: 08 22: 00 0o: Ba 02: 00

Mon Mar 1 1993

04: 00

P s
0E: 08 G0E: 88

Figure 3.2. Total Bits Per Second for Week 1 Day 1 Record

25

1loo

28

20

70

1]

50

Total Packets

48

30

20

18

i 1

1c: 0@ 100 20: 00 22:00 00: 00 02: 00 04: 00 0&: 00 0B: 00
Mon Mar 1 1599

B TotPkts

Figure 3.3. Total Number of Packets for Week 1 Day 1 Record

During the preprocessing period, the prerecorded dump file is first converted
into Argus flow file. After this process flow records are written to a text file in a human
readable form. The records include 5-tuple key information, direction of transaction,
record start time, record last time, record total duration, transaction bytes from source to
destination, transaction bytes from destination to source, application bytes from source
to destination, application bytes from destination to source, packet count from source to
destination, packet count from destination to source, source packets retransmitted or
dropped and destination packets retransmitted or dropped for each flow.

Preprocessing period also requires packet based traversing on the recorded
traffic. While traversing on the recorded data, information per packets are saved. To
save the packet based information database table created on MySQL database server is
used. MySQL is a relational database management system (RDBMS). Because it is a
fast, stable and true multi-user, multi-threaded SQL database server it is used to save
packet level information. Below is the structure of the table that is used to keep whole

flow packet information.

26

Table 3.1. Table structure for table FlowPkgTbl

Field Type Null Default
orderno bigint(20) Yes NULL
srcip varchar(20) Yes NULL
dstip varchar(20) Yes NULL
dstport int(11) Yes NULL
sport int(11) Yes NULL
arrivaltime datetime Yes NULL
epochtime decimal(40,10) Yes NULL
proto varchar(10) Yes NULL
payloadsize int(11) Yes NULL
payloadinfo text Yes NULL
packetsize bigint(20) Yes NULL

For each of the flow record, attribute values that are mentioned at the Chapter 2
are calculated. As it is mentioned some attribute metrics require packet based inspection
that means packets that belong to the analyzed flow should be taken into consideration.
To identify in request packets, 5-tuple key value is used from the flow information.
Packets including the 5-tuple key information are queried from the FlowPkgTbl. By
traversing on the result set and following the calculations mentioned at the Chapter 2,
flow attributes are calculated. Packet based attribute calculation requires additional

database tables usage.

3.3. Processing of Flow Data

Attribute values are used to define the flow characteristics. For each of the
protocol, observed values of the flow attributes are given at the De Montigny and
Leboeuf's work (De Montigny and Leboeuf 2005). The values are added to the
Appendix B. Throughout the development phase, to check the correctness of the values
defined at the paper, protocol based traffic should be used, so for every application level
protocol that is under consideration, specific traffic is extracted from the recorded traffic
record. This is done using the racluster, Argus client. Racluster enables filtering traffic.

A sample racluster command for filtering HTTP traffic and creating flow data is as

27

follows:

1. racluster -LO -nr tcpdump-07-05-2009 23:25:24.dump.arg3 -s proto
saddr sport dir daddr dport stime Itime dur sbytes sappbytes dappbytes
dbytes spkts dpkts sloss dloss - ip and port 80 >
tcpdump-07-05-2009 23:25:24.dump.txt

This command takes tcpdump-07-05-2009 23:25:24.dump.arg3 Argus flow data
as input and produces clustered readable flow information by filtering IP based traffic
and port 80, that is flows with UDP, TCP or ICMP protocols with destination or source
port number 80 is taken into consideration.

Another reason to use the filtered flows is the necessity of calculating threshold
value for each protocol. By looking at the flow attribute values and the value ranges
defined at the De Montigny and Lebouf's paper, it is only possible to produce the
percentage of the relevance for each protocol. By observing the test results, a threshold
value is produced for every protocol. Any match result below that percentage is marked
as undefined flow for PCA.

Thresholds are calculated for each application level protocol. By using the clean
data set and the filtered application level flows, match results for each protocol is
calculated. By looking at the average of the collected results a general tendency at the
threshold value for each protocol is calculated. Chapter 4 gives the details about the test

results.

3.4. Handling Flow Attributes

Flow attributes are mainly calculated on non-empty packages. A non-empty
packet is the one carrying a payload. The reason about dealing with non-empty packets
is that packets carry either binary data or protocol specific commands through payload.
It is clear that the size of the payload may vary depending on the capture snaplen, but
the default value of using the first 60 Bytes are enough to decide about the protocol.
Generally the size of the payload is used instead of the text based inspection. Depending

on the protocol itself, it is seen that size of the payload can bu used for detecting some

28

information about flow. In addition, calculating the size is easier than inspecting the

ingredients of the payload.

3.4.1. Discrete Distribution Attributes for Payload and Inter-Packet
Delay

Discrete distributions are used for inter-packet delay and packet payload length.
Distribution values are especially important for packet payload length. Application
protocol overhead may imply that non-empty packets are always greater or equal in
length to a given minimum (due to header length). Application negotiation mechanisms
may also exhibit a high frequency of packets of special sizes. Moreover, certain
applications may have a preferential packet size, and completely avoid sending packets
of lengths within a given range. For instance, as noted in (Hernandez-Campos, et. al.
2005), the HTTP-protocol is characterized by many short and long packets. Such
characteristics are not effectively reflected by means and variances which may be
sensitive to outliers. Discrete distribution attributes are therefore preferred in this work
(De Montigny and Leboeuf 2005).

The payload and inter-packet delay delimiters are used as defined at the De
Montigny and Leboeuf's work (De Montigny and Leboeuf 2005).

It is currently used the following bin delimiters for payload length (in bytes):

i, [0-1[, [1-2[, [2-3[, [3-5[, [5-10[, [10-20[, [20-40[, [40-50[, [50-100][,
[100-180[, [180-236[, [236-269[, [269-350[, [350-450], [450-516],
[516-549[, [549-650[, [650-1000[, [1000-1380[, [1380-1381],
[1381-1432[, [1432-1473[, [1473-inf].

The inter-packet delays are distributed according to bins ranging from 0 to 64 second-
delays. It is currently used the following bin delimiters for inter-packet delay (in

seconds):

k. [0-0.000001[, [0.000001-0.0001[, [0.0001-0.001[, [0.001-0.01],
[0.01-0.1, [0.1-1.0[, [1.0-10.0[, [10.0-64.0[, [64.0-inf].

29

Below tables display a conceptual illustration.

Table 3.2. Conceptual illustration of discrete payload distribution

Payload |45%, 30% 10% | 15%
(bytes) [0 [1 .. [1000 [1380 [1381 [1473 [1500, +]

Table 3.3. Conceptual illustration of discrete packet delay distribution

Inter- 45% 30% 10% 15%

packet

delay

(seconds) [0 [10° [0.0001 [0.001 [0.01 [1 [10 [64, +]

According to the Table 2.3, 45% of the packets carried no data, and another
45% of the packets were relatively big, not full size packets but big packets.

3.4.2. Conversations and Transactions

Conversation and transactions are heuristic approaches to the directionality of
the whole connection. Packets are treated as a sequence of positive and negative values
(the sign of each value indicates the direction of the packet) and the idea is to
characterize the changes in sign. Whether they are interactive or machine-driven,
applications often exhibit differences with respect to the transaction and conversation
indicators.

A conversation episode in this work contains consecutive (back to back) packets
in one direction followed by consecutive packets in the other direction. There is also a
sustained conversation definition that is the episode containing consecutive packets in
one direction, followed by consecutive packets in the opposite, and followed again by

consecutive packets in the first direction (e.g. A->B, B->A, A->B).

30

According to the De Montigny and Leboeuf's work ALPHA, BETA and GAMMA
values of a conversation is calculated as follows (De Montigny and Leboeuf 2005). Let
M be the total number of non-empty packets in a flow, let C be the number of non-
empty packets associated with a conversation, and { be number of non-empty packets
associated with a sustained conversation. It is defined ALPHA conversation @s the number of
non-empty packets that belong to a conversation over the total number of non-empty

packets:

ALPHA conversation = (3 . 1)

<
M

It is defined BETA conversation @s the number of non-empty packets that belong to a
sustained conversation over the total of non-empty packets that belong to a

conversation:

BETA conversation = % (3 2)

Let O be the number of non-empty packets associated with a conversation and
transmitted by the Originator, it is defined an indicator of symmetry in a conversational
flow, GAMMA ¢onversation @S the proportion of conversation packets that are transmitted by

the originator:

GAMMAnmin = & 3-3)
A similar approach is applied for the transactions. Transactions include “ping-
pong” exchanges, where one packet is followed by a packet coming in the opposite
direction. It is quantified this phenomenon by comparing the number of changes in sign
effectively seen, with the maximum number of times a change of sign can occur, given
the number of positive and negative values in that sequence.
More precisely, let p and n be respectively the number of positive and negative

values, the maximum number of time a change in sign can occur, denoted by T, is

31

2p—1 if p=n (3.4)
2min(p, n) otherwise

and let 6 be the number of sign changes observed, then

ALPHAtransaction = (3 ' 5)

is an indicator of how often “ping pong” exchanges are seen in a flow. t is equal
to 0 when the flow is unidirectional and thus ALPHA yansaciion may not be defined for all
flows. ALPHA yansaction 18 1nitialized to zero by default. When ALPHA yansaction 18 NON-Z€T10,

a value close to 1 is a strong indicator of multiple transaction exchanges.

3.4.3. Encryption Indicators

Encryption indicators are calculated by comparing the greatest common divisor
(GCD) values of payloads.

The algorithm follows an iterative process. At each step, the array of input is
broken into two parts for pair wise GCD calculation, and the array to be examined in the
following step will contain the GCD values that are greater than 1.

The process is interrupted if, at a given step, the count of GCDs that are greater
than 1 is smaller than the count of GCDs equalled to 1. The calculation is done for each
direction separately, the output gives two values:

ALPHA ipheviock g1ves the estimated popular GCD among payload lengths of
packets. BETA ipherviock gives the ratio of non-empty packet-payloads that are divisible by
ALPHA ipherblock-

If the GCD calculation process got interrupted due to too many pair-wise GCD
equal to one, then the value for ALPHA ek 1S equal to 1 and the value for
BETA.ipherblock 1S set to 0.

The reason of evaluating the GCD values for encryption related packets is that

32

the lengths of encrypted packets typically have a greatest common divisor different than

one (Zhang and Paxson 2000).

3.4.4. Command Line and Keystroke Indicators

Command-line transmissions are larger in size and are separated by longer
delays than keystrokes. The distinction between command-line and keystroke
interactivity helps refine the classification process a step further. FTP command for
instance can be distinguished from interactive SSH and TELNET sessions; and it is
foreseen that chat sessions will be classed differently depending on the “flavour” (De
Montigny and Leboeuf 2005).

For keystroke interactive indicators, a small packet is defined as a non-empty
packet when carrying 60 bytes or less. The inter-arrival delays between keystrokes are
taken as between 25ms (dmin) and 3000ms (dmax).

On the other hand, for command line indicators, a small packet is defined as a
non-empty packet when carrying 200 bytes or less. The inter-arrival delays between
keystrokes are taken as between 250ms and 30000ms.

For each direction of the flow, let Q be the set of delays between consecutive
small packets and A = { ® € Q, such that dmin<w<dmax }, the indicator of interactive

inter-packet departure is defined as:

number of elements € 4 (3.6)
number of elements € Q

ALPHAinteractive =

Let S be the number of small packets, let N be the number of non-empty
packets, let G be the number of gaps between small packets, the indicator of

interactivity based on the proportion of small packets is:

S
BETAinteractive = ﬁ (3 ’ 7)

33

Here, a gap occurs whenever two small non-empty packets are separated by at

least one packet (big or empty). The indicator of consecutive small packets is

S-G-1 (3.8)

GAMMAinteractive = N

The fourth indicator gives the proportion of small non-empty packets with
respect to the total number of small packets (including empty packets). The goal with
this heuristic is to penalize machine-driven applications that transmit a lot of small
packets, which may however be dominated by empty control segments (i.e. TCP ACK
packets without piggyback data). Thus let E be the number of empty packets, it is
defined:

S (3.9)

DELTAinteractive = S_‘__E

Lastly, it is defined a fifth indicator measuring irregularity in the transmission
rate of consecutive small packets. Let p and ¢ be respectively the mean and standard
deviation of the delays between consecutive small packets; let A= { ® € Q, such that ®
€ [u-o,uto] }, then the indicator of irregularity between inter-arrival times of

consecutive small packets is:

_ number of elements € /A (3.10)
number of elements € Q

EP SILONinteractive =

3.4.5. File Transfer Indicators

From the interactive indicators, it is derived file transfer indicators. In general, a
file transfer flow contains episodes of consecutive big packets transmitted within a short
delay. A big packet is defined as carrying 225 or more bytes. A short inter-packet delay
is 50ms or less.

For each direction of the flow, let B be the number of big packets, let N be the

34

number of non-empty packets, let G' be the number of gaps between big packets.
Furthermore, let Q' be the set of delays between consecutive big packets and A'= { o €
Q', such that ® € [0, dmax] }, then the indicator of inter-packet departure during a file

transfer is:

number of elements€ A’ (3.11)
number of elements€ Q'

ALPHAg. =

The indicator of file transfer based on the proportion of big packets is defined

as:
3.12
BETAﬁ]e = N ()
and lastly, the indicator of consecutive big packets is
—
GAMMA. = BG1 3-13)
N
3.5. Deriving Anomaly

According to the Lakhina, Crovella and Diot's work (Lakhina, Crovella and,
Crovella 2004), number of bytes, number of packets and number of IP flow values for a
flow traffic can be used to identify anomalies on the network traffic. It is required the
evaluation of multivariate time series of origin-destination flow traffic defined as # of
bytes, # of packets and # of IP flows. By using the subspace method (Lakhina, Crovella,
and Dio 2004) it is showed that each of these traffic types reveals a different (sometimes
overlapping) class of anomalies and so all three types together are important for
anomaly detection.

The subspace method works by examining the time series of traffic in all OD
flows simultaneously. It then separates this multivariate timer series into normal and

anomalous attributes. Normal traffic behavior is determined directly from the data, as

35

the temporal patterns that are most common to the ensemble of OD flows. This
extraction of common trends is achieved by Principal Component Analysis (Lakhina,
Crovella and, Crovella 2004).

To produce the multivariate time series of a flow traffic, splitting the record is
required. Rasplit, Argus client, is used for splitting the record into sub flows depending
on a time interval. The time interval is chosen depending on the flow duration. Either 1
minute or 5 minute time interval values are used.

By traversing on the sub flow files, # of bytes, # of packets or # of IP flow
values are calculated depending on the origin-destination pairs. A file with comma
separated values (CSV) is created. The CSV file is used for creating matrix for PCA
evaluation. After the PCA value is calculated, transformed data of the PCA result is
graphed. It is observed that peeks at the graphs represents the anomalies at the network

traffic.

36

CHAPTER 4

IMPLEMENTATION

This section includes the implementation details of the approach preferred in this
thesis. Starting from the programming language preferred from development, class
structure details and the implementation steps are explained. Python is chosen as the
development programming language. A class hierarchy is constructed and implemented
by using Python. The details of the class hierarchy is given as UML diagrams. By
following the class structure and using the Python language, steps that should be

followed for running the software is defined.

4.1. Programming Language

This thesis can be divided into two level of survey. The first level is the traffic
characterization, which requires pcap file traversing to get the packet level information,
operation on MySQL database tables and mathematical calculations. Second level is the
PCA part which is done mainly by Octave. It is used a CSV file for Octave's princomp
function as an input. The CSV file creation requires flow splitting and traversing on the
readable flow files to calculate # of values and save them to database.

It is chosen Python as the programming language for development. Python is an
interpreted, object-oriented, high-level programming language with dynamic semantics.
Its high-level built in data structures, combined with dynamic typing and dynamic
binding, make it very attractive for rapid application development, as well as for use as
a scripting or glue language to connect existing components together. Python's simple,

easy to learn syntax emphasizes readability and therefore reduces the cost of program

37

maintenance. Python supports modules and packages, which encourages program
modularity and code reuse. The Python interpreter and the extensive standard library are
available in source or binary form without charge for all major platforms, and can be
freely distributed (Python 2009). Python is also actively used by penetration testers,
vulnerability researchers and information security practitioners.

Python's Scapy (Scapy 2009) module is used to decode packets from pcap files
and analyze them according to their header information. Scapy is a powerful interactive
packet manipulation program. It is able to forge or decode packets of a wide number of
protocols, send them on the wire, capture them, match requests and replies, and much
more. Scapy is mainly used for traversing through the prerecorded network traffic via
tcpdump and get IP level information from packets for saving them to the database.

By using Scapy it is possible to get the source IP address, source port number,
destination IP address, destination port number, packet size, payload ingredients and
payload size, capture time and protocol information from each packet. Capture time is
valuable for calculating jitter. Payload size is important for detecting the non-empty
packets. The rest of the information that is 5-tuple key also, is used to understand what

flows they belong to.

4.2. Class Structure

4.2.1. Flow Object

AbstractFlow -

+ triggerindicators()
+ getName() : String
+ getindicators() : Indicato

f
WholeFlow 1.2

[UnidirectionalFLow |
+ getResponder() : UnidirectionalFLoe—— 1

+ getariginator() : UnidirectionalFLow| [|
+ getMatchResult() : MatchResult
1.1

MatchResult

+ getResult(index : int) : tupld
+ getBestResult() : tuple

Figure 4.1. AbstractFlow Diagram

38

Every flow is defined as an object. As it can be seen from Figure 4.1 (Gergek
2009), it is defined two types of flows. One type is the directional flow. It is defined an
UnidirectionalFlow class to create directional flows. A directional flow may be either
from source IP number (Originator) to destination IP number (Responder) or vice versa.
WholeFlow class is inherited from an AbstractFlow class. AbstractFlow is a general
class that has abstract definitions to create flow indicator objects.

Flows are created by using a generator class.

WholeFlowGenerator

+ getWholeFlow() : WholeFlow [
+ checkFlowRecord() : bool [
+ getFlowPackages() : int [

ResponderGenerator

1
+ getResponderFlow() : UnidirectionalFLo

ArgusFileReader + getFirstFewDirs()
+ readNextTrtRecordline(= uses > + getinterarrivalDistribution() - Uses =
+ readPrevTxtRecordLine() + getkey(): string X i :
- fillThevars() + getDir() : string < Uses >

+ getBeginTime() : datetime
+ getEndTime() : datetime

+ getDuration() : float [
+ getFirstNonEmptyPacketSize() : inl i

FlowGenerator |
|
+ getiextFlow() . WheleFlow|

< creates =

< uses >

< create =

OriginatorGenerator

[|
ArgusFileLineRecord i+ getOriginatorFlow() : Umd\rectlonalFLow“
+ proto: string
+ srcaddr: string
+ sport : int WholeFlow
+ dir: string
+ dstaddr : string
+ dport : int
+ starttime : datetime
+ lasttime : datetime
+ dur: float
+ srchytes: int
+ sappbytes : int

+ getResponder() : UnidirectionalFLo
+ getOriginator() : UnidirectionalFLow|
+ getMatchResult() : MatchResult

+ dappbytes ! int
+ dstbytes : int
+ srcpkts : int

+ dstpkts : int

+ srcloss : int

+ dstloss : int

Figure 4.2. FlowGenerator and WholeFlowGenerator Class Relations

It is required to calculate attributes related with a whole flow. Attribute related
details are given at Figure 4.2 (Ger¢ek 2009). By using ArgusFileReader class, every
line of the produced flow text record is traversed and whole flow attributes are
calculated.

Except from the attributes mentioned inside the WholeFlowGenerator, additional
directional and whole flow indicators are required to be calculated. To achieve indicator

calculation, generators are used. Figure 4.3 presents the relation between indicators.

39

«abstract» -
Factory

+ createClassesl()
+ getMName() : String
+ getModuleName()

Indicatorfactory ProtocolTesterFactory

+ getAllindicators() : Indicator
+ getWholeFlowindicators() : Indicator
+ getUnidirectionalFlowindicators() : Indicato

+ getAllProtocolTesters(] : ProtocolTester

<<creates>>
<<=creates>>
«absrtact» «abstracts»
Indicator ProtocolTester
+ calculateindicators(flow : AbstractFlow) + testProtocol{flow : WholeFlow

Figure 4.3. Factory Class Diagram

At Figure 4.3 (Gergek 2009), IndicatorFactory includes the method calls for

each flow object handled.
Conversationindicator CommandLinelndicator
~ calculatelindicators(flow : AbstractFlow) ~ calculatelndicators(flow : AbstractFlow)
FileTransferindicator Encryptionindicator
~ calculateindicators(flow : AbstractFlow) ~ calculateindicators(flow : AbstractFlow)
Keystrokelndicator Transactionindicator
~ calculateindicatorsiflow : AbstractFlow) ~ calculatelndicators(flow : AbstractFlow)

«absrtact»
Indicator

+ calculatelndicators(flow : AbstractFlow)

1..%
WholeFlow

<triggers indicators= Evaluator

+ getResponder() : UnidirectionalFLoW-
+ getOriginator() : UnidirectionalFLow| + evaluateFlow(flow : WholeFlow)
+ getMatchResult() : MatchResult

Figure 4.4. Indicator Class Diagram (Gergek 2009)

The mathematical calculations are done inside the each of the indicators

40

mentioned. Each of them are presented at Figure 4.4 (Gergek 2009), above. The aim of
calculating attribute values is to decide about the protocol. By looking at the results, the
flow examined is tried to be categorized as an application level protocol. ProtocolTester

includes the match cases that should be taken into consideration for each flow.

_ «abstract»
Recognizer 1.* ProtocolTester
fel—— |
+ testFlow(flow ; WholeFlow) + testProtocol(flow : WholeFlow
<=createss>
WholeFlow 1.1

+ getResponder() : UnidirectionaIFLov(:}_h MatchResult

+ getOriginator() : UnidirectionalFLow| + getResuft(index: int) : tupld

+ getMatchResult() : MatchResult + getBestResult() : tuple

Figure 4.5. Recognizer Class Diagram

As a result of attribute calculation, a match result is calculated for each flow
examined. The result includes the best 3 match. The relation between match result

calculation and recognizer is mentioned at Figure 4.5 (Gergek 2009), as above.

| : FIowGenerator| ‘ : Evaluator| | : Recounizer| ‘ :WholeFIow‘ | : MatchResuIt‘

| 1: getMextFlow(] : ‘J'«-’hc)IeFIQWH |

F *

Figure 4.6. Threshold Calculation Sequence Diagram

For a general view, lets check the Figure 4.6. For each of the flow generated a

41

testFlow class is used to trigger the match results. By looking at the best match results a
threshold for each of the protocol is decided.
Any flow that does not have a best result above the threshold is save as an

undefined flow for further evaluation. The PCA process is explained as follows:

: PCAANalzer V Traverse i PCAProcess
| | |

! 1: walk{path : string) | |

Figure 4.7. PCA Sequence Diagram
Packages related with the undefined flows are saved and splitted for PCA

analysis. The splitted pcap files are traversed and saved to a database table. After this
process the table is used to produce a CSV file for PCA graph operation.

4.3. Software Structure

The developed software takes a pcap record as input. After the following steps,

the result is a graph which may include peeks. The whole is not fully automatized.

1. pcap file is traversed and saved to the database: This process is the

requirement part of all the processes. Depending on the captured packet size
time varies.

2. Human readable flow information is saved into the text file: This process

42

is done via using Argus and racluster commands.

3. UndefinedTest.py is run: The name of the produced flow text file is

changed before running, so the file is used for per flow attribute calculation.
Each line of the text file includes one flow record. For each flow record,
attribute values are calculated and a match result is returned. A typical match

result include the best three matches:

1. [(0.65, FTPCommand'),(0.80, 'Telnet'),(1.0, 'SSH")]

By looking at the threshold values and the highest match percentage, the flow is
categorized. If it is not possible to categorize the flow it is save as undefined for PCA

process. What is saved is mainly the key values of the flow. Below table gives the

details:
Table 4.1. Table structure for table UndefinedFlowTbl
Field Type Null Default
orderno bigint(20) Yes NULL
srcip varchar(20) Yes NULL
dstip varchar(20) Yes NULL
dstport int(11) Yes NULL
sport int(11) Yes NULL
proto varchar(10) Yes NULL
begintime varchar(60) Yes NULL

4. A new pcap file is created: After the undefined flow detection is finished,

packages that belong to the undefined flows should be separated and saved as a
new undefined pcap file. For this process a Perl script called pcap-util
(Boddington 2009) is used. Pcap-util enables libpcap (Libpcap 2009) filter
language usage, that is prerecorded data can be filtered according host, port,
time information or some other parameters. It is used the IP address filtering as

follows:

m. ./pcap-util filter infile.dump outfile.dump "host 192.168.1.118 or host
192.168.1.188”

43

host parameter is used to define source and destination IP addresses, so above
command finds and extracts the packets related with the above IP addresses and saves

them as a outfile.dump pcap file.

5. outfile.dump file is splitted into time series: The pcap file is first

converted to a flow data and then rasplit is called to split the file into sub flows:

n. rasplit -r outfile.dump.pcap.arg3 -M time 1m -w argus-%d.%m.%Y-%H:
%M:%S —1p

Above command splits the flow file into 1 minute sub flows. Each sub flow is

converted to a readable text file for being processed.

6. traverseAndSave.py module is used: This module is walk through the

directory that contains sub flow text files and saves the origin-destination related
of bytes and # of packet values to the database table. PCAProcess.py is then
used to create a CSV file for PCA process.

7. Octave is run: By using the CSV file, a matrix is created first.

nonom.,

0. x=dlmread ("graph.csv",",");

The created X matrix is used for PCA calculation:

p. [a,b,c,d]=princomp(x);

b value calculated at the (36) above includes the transformed data. It is used for

plotting. By using the plot function, anomaly graph is produced.

44

CHAPTER §

TEST RESULTS

This chapter is dedicated for the test results that are processed to calculate
threshold values for each application level protocol. Calculating threshold results are an
important step for anomaly detection. By looking at the threshold values, undefined
traffic is decided. This chapter also includes PCA results. PCA is first tested on

prerecorded data, then applied on manually produced attacks.

5.1. PCA Tests

5.1.1. Tests with Clean Traffic

PCA process is first tested on the clean traffic. 1999 DARPA Intrusion Detection
Evaluation Data Set's weekl dayl and week 5 day 2 recorded traffic is used. It is
known that week 1 has a clean traffic though week 5 has labeled attacks. So the
produced graphs can be used for comparison and understanding the peek concept.

Week 1 day 1 record is splitted into 5 minutes sub flows and throughout these
sub flows, origin-destination pair of # of packages values are calculated and graphed by

using Octave's princomp function. The resulted graph is as follows:

45

Humber of Packets

1e+08

B00000

EO0000

400000

200000

/

15:10 15:20 15:30 15:40 15:50 1630 16310 16:20 16:30 16240 16:50 17:0 17:10 17:20
Time

Figure 5.1. PCA Analysis of Week 1 Day 1 Record

As it can be seen from Figure 5.1, there is no sudden increase at the graph levels.

The same process is done for the week 5 day 2 record and the below graph is produced.

Number of Packets

Se+07 |

4e+07 |

3e+7 |

2e+07 F

le+07 |

0

0

15:10 15320 15:30 15340 15:50 16:0 16:10 16:20 16:30 16:40 16;50 17;0 17310 17320

Time

Figure 5.2. PCA Analysis of Week 5 Day 2 Record

When Figure 5.1 and Figure 5.2 is compared, it can be seen that the later one has

46

sudden increases at the y levels. It is mentioned that these peeks correspond to

anomalies at the network traffic.

5.1.2. Tests with Manual Attacks

By using ettercap DOS attack plugin, manually produced DOS attack is
produced. At the target machine, a regular Internet traffic is produced, like web surfing,
MSN Chat and file downloading. During these traffics and attack, the traffic is saved

and analyzed. Below is the information related with collected traffic:

qg. File name: ettercap-dos.pcap
File type: Wireshark/tcpdumpy/... - libpcap
File encapsulation: Ethernet
Number of packets: 5495141
File size: 415279995 bytes
Data size: 332851811 bytes
Capture duration: 307.992800 seconds
Start time: Mon May 4 15:19:30 2009
End time: Mon May 4 15:24:38 2009
Data rate: 1080712.96 bytes/s
Data rate: 8645703.69 bits/s
Average packet size: 60.57 bytes

After the traffic characterization, undefined flows are detected and by using the
pcap-util, a new pcap file is created. When the PCA is processed over the new pcap file

the following graph is produced.

47

le+if ool

BO0000

Humber of Bytes

—GO0000 | S I PO S -

1520 15:21 15522 15123 15:24 15525 15:26 15527 15:28 15:29

Time

Figure 5.3. Ettercap DOS Attack PCA Analysis

It can be observed from Figure 5.3 that between the time intervals 15:24 and
15:28, there is an anomaly at the network traffic. When the flows are checked and the
packets belong to these flows are saved as another pcap file, the new pcap file is used
for tcpreplay program. By using the tcpreplay and Snort, the suspicious traffic is
rechecked. Tcpreplay enables reproducing the pcap data through an Ethernet interface.
Below is the Snort result that is taken from the Snort BASE interface.

< Classification > < Total # > Sensor# < Source Address > < Dest. Address > < First = < Last =

SNMP attempted-recon 15(25%) 1 1 1 2009-05-11 2009-05-11
16:13:27 16:16:38

SNMP trap attempted-recon 11(18%) 1 1 1 20039-05-11 2009-05-11
16:13:27 16:16:38

SNMP attempted-recon 10{16%) 1 1 1 2009-05-11 2009-05-11
16:15:48 16:16:40

unclassified B(13%) 1 1 1 2009-05-11 2009-05-11

16:13:20 16:16:25

| MISC UPnP misc-attack B(13%) 1 1 1 2009-05-11 2009-05-11
16:13:20 16:17:22

Figure 5.4. Snort Result of Undefined Traffic, DOS Attack

The same test is done for a scan attack. Nmap is used for scanning the target as

follows:

I. nmap -P0 -sS -p0-65535 -e ethO 192.168.1.188

When the sniffed traffic is analyzed as above, the resulted graph is below:

48

G - -

4000 = -

3000 - -

Humber of IP Flows

2000 - —

1000 - -

o
0 13:9 13:14 13:19 13:24 13:29 13:34 13:39 13044 13:49 13:54 13:89 1404 1409 14214 14:19 14124 14:29 14:34 14139 14:44 14249 14:54 14:59 15:4

Time

Figure 5.5. Nmap Syn Scan PCA Analysis

It can be seen from Figure 5.5 that, it is used # of IP flows for the origin-

destination pairs to gather scan results.

5.2. Threshold Tests

It is mentioned that threshold values are necessary to decide undefined flows.
Below are the tested values and the duration of the calculation. The tests are run over
100 flow records. Every test is done for a dedicated traffic, that is FTPCommand is

tested with the traffic that includes only flows with port number 21.

FTPCommand FTPCommand Percentage
120 120
B 100 2 100
= (]
S 80 5 80
o IS
o
§ 60 E 60
< 3
9: 40 o 40
S T
§ 20 “5. 20
0 5 0 =
FTPCommand NONE 0.71 UNDEFINED 0.86

Protocol Name
Percentage

Figure 5.6. FTPCommand Test Results

49

For 100 FTPCommand related flows, every of them is defined as FTPCommand.

2 of the defined FTPCommand flows are matched with 71%, and the rest 98 flows are

matched with 98%. Total duration time of the calculation is 79 minutes.

12
10

o]
o

IS
o

N
o

Num. of Protocols Defined
(o]

0
0

o

o

FTPData FTPData Percentage

60

50

40

30

20

10

Num. of FTPData Flows

FTPData NONE

1 UNDEFINED 0.8
Percentage

Protocol Name

Figure 5.7. FTPData Test Results

For 100 FTPData related flows, every of them is defined as FTPCommand. 43
of the defined FTPData flows are matched with 100%, and the rest 57 flows are

matched with 80%. Total duration time of the calculation is 72 minutes.

Num. of Protocols Defined

70
60
50
40
30
20
10

HTTP HTTP Percentage

Num. of HTTP Flows

35

30

25

20

15

: 10
5

0

HTTP HTTPS

Protocol Name

0.88

Figure 5.8. HTTP Test Results

0.75 UNDEFINED 0.63

Percentage

50

For 100 HTTP related flows, 65 of them is defined as HTTP. 35 of them is
defined as HTTPS, 35 of the defined HTTP flows are matched with 88%, another 35 of
them are matched with 75%, one of them is not matched and the rest 29 flows are

matched with 63%. Total duration time of the calculation is 47 minutes.

POP POP Percentage

30 30
8 25 25
“as
a 20 2 20
k%] kel
o
g 15 o 15
g e
o
s 10 5 10
: €
E ° 35
b4 0 0

FPOP NONE UNDEFINED 0.86

Protocol Name Percentage

Figure 5.9. POP Test Results

For 28 POP related flows, except from one of them every of them is defined as
POP. All the defined POP traffic is matched with 86%. Total duration time of the

calculation is 22 minutes.

SMTP SMTP Precentage

100 45
3 o0 40
e 80 35
g 70 "
S 60 8 30
§ 50 5 25
5 40 = 20
o
T 30 g 15
. 20 3
S o °
zZ

o I

SMTP IMAP 0
1 0.78 UNDEFINED 0.89

Protocol Name
Percentage

Figure 5.10. SMTP Test Results

51

SSH

SSH Percentage
14
14

3 12 12
c
£ 10
3 5 10
28 c 8
8 o
B 6 5 6
o £
5 4 z)
E 2 2
2 0 [|

0

SSH Telnet 1 0.6 UNDEFINED 0.8
Percentage

Protocol Name

Figure 5.11. SSH Test Results

For 100 SMTP related flows, 90 of them is defined as SMTP. 10 of them is
defined as IMAP, 38 of the defined POP flows are matched with 100%, another 22 of
them are matched with 78%, and the rest 40 flows are matched with 89%. Total
duration time of the calculation is 90 minutes.

For 19 SSH related flows, 13 of them is defined as SSH. 6 of them is defined as
Telnet, 13 of the defined SSH flows are matched with 100%, another 1 of them are
matched with 60%, and the rest 5 flows are matched with 80%. Total duration time of

the calculation is 25 minutes.

Telnet Telnet Percentage

100 50

g 20 45

£ 80 40

8 70 » 35
o 2

5 00 230

g %0 g 25
5 40 >

® 30 920

; 20 § 15

10

20 5

POP Telnet 0 -
05 1 0.83UNDEFINED0.67

Protocol Name
Percentage

Figure 5.12. Telnet Test Results

52

For 100 Telnet related flows, 8 of them is defined as POP. 92 of them is defined
as Telnet, 4 of the defined Telnet flows are matched with 50%, another 25 of them are
matched with 25%, 45 of them are defined with 83% and the rest 26 flows are matched

with 67%. Total duration time of the calculation is 92 minutes.

5.3. BitTorrent Traffic Analysis

Flow attributes for each flow are calculated depending the predefined criteria.
The criteria defined at the De Montigny and Leboeuf (De Montigny and Leboeuf 2005)
don't include BitTorrent traffic restrictions. In this thesis it is aimed to calculate the

required criteria to characterize BitTorrent traffic.

5.3.1. BitTorrent Protocol

The BitTorrent Protocol (BTP) is a protocol for collaborative file distribution
across the Internet and has been in place on the Internet since 2002. It is best classified
as a peer-to-peer (P2P) protocol, although it also contains highly centralized elements.
BTP has already been implemented many times for different platforms, and could well
be said to be a mature protocol (Fonseca and Reza 2005).

The protocol works when a file provider initially makes his/her file (or group of
files) available to the network. This is called a seed and allows others, named peers, to
connect and download the file. Each peer that downloads a part of the data makes it
available to other peers to download. After the file is successfully downloaded by a
peer, many continue to make the data available, becoming additional seeds. This
distributed nature of BitTorrent leads to a viral spreading of a file throughout peers. As
more peers join the swarm, the likelihood of a successful download increases. Relative

to standard Internet hosting, this provides a significant reduction in the original

53

distributor's hardware and bandwidth resource costs. It also provides redundancy against

system problems and reduces dependence on the original distributor (BitTorrent 2009).

5.3.2. Testbed for BitTorrent Characterization

To characterize torrent traffic, a clean traffic is required to be analyzed. To get a
clean BitTorrent traffic, torrent traffic is manually collected. To achieve this goal, all the
network services at a host on a network is closed and by using a torrent client tool
(Ktorrent (Ktorrent 2009) is used on Kubuntu Linux system), all the traffic is saved in
100MB parts by using Tcpdump on the same network interface.

The first 100MB part is used to decide the traffic protocol limits. First the pcap
file is traversed and saved on MySQL database. After converted to Argus flow record ,
protocol tester modules are run and for a torrent traffic, the below similarities are

gathered:

400
350
300
250
200
150

100
2 1 1_nl
0 [| . —_— []
HTTPS POP

FTPCommand SMTP Telnet
ChatMSN FTPData IMAP Rlogin SSH

Protocol Name

Flow Count

Figure 5.13. Protocol Similarities Defined for Torrent Traffic

From the Figure 5.6 it can be seen that BitTorrent traffic is more like a FTPData,
Telnet and FTPCommand. Indeed BTP consists of two logically distinct protocols,
namely the Tracker HTTP Protocol (THP), and the Peer Wire Protocol (PWP). THP
defines a method for contacting a tracker for the purposes of joining a swarm, reporting

progress etc. PWP defines a mechanism for communication between peers, and is thus

54

responsible for carrying out the actual download and upload of the torrent (Fonseca and
Reza 2005).

By observing the HTTP, FTPData, FTPCommand and Telnet protocol's

recognizer criteria, characteristics are tried to be defined for BitTorrent traffic. 1000

BitTorrent flows are used and their attribute values are saved to database.

5.3.3. Criteria for BitTorrent

The first handled attribute is payload distribution. By using the packet based

queries on the MySQL table, it is seen that Originator payload distribution has a
meaningful characteristics.

120

100

80 | A

g \ / \\
2 60 | ~J \\
5 \
£ 40 |
> “ ‘\
Z \ |
20 | ‘\\
0
[2-3) [20-40) [180-236) [450-516) [1000-1380) [1473-inf)
[0-1) [5-10) [50-100) [269-350) [549-650) [1381-1432)
Byte Interval

Figure 5.14. Payload Distribution Graph for Originator

According to Figure 5.7, there is no flow that has a payload distribution over 50

bytes. So for torrent traffic, source flows will have payload distribution values less than
50 bytes.

Second handled criteria is DatabyteRatioOrigToResp value of the whole flow
attribute.

55

500

450 A
400 / |
350 / \\
300 |
250 i
200 |
150 |
100 |
50

0 —_—

Num. of Flows

-101 2 3 45 6 7 8101314182327 28 29 32 35 36 42 51 57 62 66 68 69 81285

Databy teRatioOrigtoResp Intervals

Figure 5.15. DatabyteRatioOrigToResp Distribution Graph

It can be seen from the Figure 5.8 that ratio of the total number of data bytes sent
by originator over total number of data bytes sent by responder is always less than 4.
Because torrent traffic is a data transaction also, handling DataByteCount and
ByteCount values will be meaningfully. Figure 5.9 and Figure 5.10 shows the

DataByteCount value over ByteCaount value for each directional flow.

350
300 |
250 |
200 |

150 | /¥
\ |
| /

100 | / \
50 |/ \

\ T~ - A
0 L — — . .
0.01

0.03 0.05 0.07 0.09 0.11 0.13 015 0.17 02 023 025 032 04
0 0.02 0.04 0.06 0.08 0.1 012 0.14 0.16 0.18 0.21 0.24 0.27 0.37

Responder.DataByteCount / Responder.ByteCount

Num. of Flow s

Figure 5.16. DataByteCount/ByteCount Graph for Responder

56

300
250 "
’r’ \

200

/, \
150 /

100 \
/ \\
\
50 \ e —_
o

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.26

Figure 5.17. DataByteCount/ByteCount Graph for Originator

From Figure 5.9 it can be

seen that (Responder.DataByteCount /

Responder.ByteCount) value is less than 0.40 though (Originator.DataByteCount /

Originator.ByteCount) value at the Figure 5.10 is less than 0.27.
Another

attribute value that is taken into consideration is
firstNonEmptyPacketSize. According to the Figure 5.11 the value should be between 23
and 42 bytes.
900
800 / \
700 // \
600 ; \
2]
o/
S 500
T
5 400 /
g /
= 300 / \
200 \
100 / \
O 7777777777777777777 .
23 30 42 54
firstNonEmptyPacketSize

Figure 5.18. firstNonEmptyPacketSize of the Whole Flow

In addition to the above attribute values some other values are also taken into

consideration. FirstFewNonEmptyPacketDirections value is observed and seen that it

57

has two characteristics. First there direction of the flows packet is either (1,0,0) that is
all three packets are from originator to destination, though the second characteristic is
(1,-1,1) that is the first and the third packet is from originator to responder and the
second one from responder to originator. The reason of the two different characteristics
is that BTP has two different protocol work inside. One is the THP, that will allow the
client to contact other peers must be periodically requested from the tracker. The other
one is the PWP that is responsible from download.

Transaction value is also observed and it is seen that ALPHA gansaction 1S €ither O or
1. File transfer indicator values are also observed and seen that ALPHA, BETA,
GAMMA values for both Originator and Responder are equal to zero. By using the
above defined criteria, torrent traffic is retested for characterization. The result gathered

is as follows:

100 80
90 70
80 60
" 70 2
z 60 U—O_ 50
% 50 % 40
g‘ 40 §30
2 30 <20
10 []
[] 0
0 0.89 0.78 UNDEFINED 1
P2P FTPData

Percentage
Protocol Name

Figure 5.19. P2P Test with FTPData

According to the above figures, 93 flows are detected as BitTorrent protocol,
though the rest 7 flows are detected as FTPData. For the recognized peer-to-peer traffic,
21 of them are recognized with 89% percentage, 5 of them are recognized with 78% and
1 of them recognized with 74%.

To be sure from the defined criteria, FTPData, Telnet and HTTP traffic is

retested.

58

120 60

100 50

o 80 o 40
3 5
o o

5 60 5 30
£ £

3 40 320

20 10

0

1 UNDEFINED 0.8

Percentage

FTPData P2P
Protocol Name

Figure 5.20. FTPData Test with P2P

According to the above graphs, 100 flows related with FTPData is examined. 99
of them are still recognized as FTPData though only 1 of them is determined to be false.
For the recognized FTPData, 57 of them are recognized with 80% though the rest 43 of
them are recognized with 100%.

For the Telnet traffic, the results are as follows:

80 1.2
70
1
60
» 0.8
S 50 %
[T -
5 40 L o6
£ 30 2
S €
Z 20 3 0.4
., 1N
POP Telnet P2P 0
0.5 1 0.83 UNDEFINED 0.67

Protocol Name
Percentage

Figure 5.21. Telnet Test with P2P

59

According to the Telnet test results, 100 flows related with Telnet is examined.
73 of them are still recognized as Telnet, thogh 27 of them is determined as false. For
the recognized Telnet flows, 4 of them are recognized with 50%, 43 of them are
recognized with 83%, 26 of them are recognized with 67% and the rest 25 of them are
recognized with 100%.

The HTTP results are more meaningful that the defined criteria has no effect on

HTTP results. The results are as follows.

® ©
o O
w b
o O

30
» 60
: 3 25
T 50 2
© 40 s 20
g .
330 § 15
20 10
10 5
0
0 |
HTTP HTTPS
0.63 1 UNDEFINED 0.88 0.75

Protocol Name
Percentage

Figure 5.22. HTTP Test with P2P

60

CHAPTER 6

CONCLUSION

In this thesis it is represented that network traffic can be characterized by using
flow characteristics. Flow characteristics are evaluated with a combined method that
some metrics are calculated using packet inspection and some requires flow based
approach. It is seen that by using the attribute values it is possible to detect many
application level protocols. Although calculating the attribute values for each flow takes
long time in some cases, they give trustful information that is independent from port
numbers. The attributes are easy to calculate that there is no need to follow state
information for flow packets, instead easy packet and flow metrics are used to calculate
attribute values.

Attribute detection of this thesis is working an autonomous way so it can be used
to characterize any application level protocol which is not mentioned at the test results.
So as a contribution to the related work (De Montigny and Leboeuf 2005), BitTorrent
traffic characteristics are defined. The derived characteristics depend on determination
of attributes by observing similarities and patterns. Though, the anomaly detection part
is not being handled by a single program, because of the usage of different tools. By
using the principle component analysis, it is represented that splitting the undefined
traffic eases the anomaly detection. After calculating the number of bytes, packets of IP
flow values, applying the PCA causes a graph that has peeks inside which represents the
anomalies at the traffic.

Although it is possible to detect byte or packet based anomalies, it is hard to
decide what type of anomaly the peek belongs to. This requires an additional inspection
of the packets that belong to the suspicious traffic either manually or by using an IDS
like snort.

Current solutions to the network anomaly detection depends on either event

61

based or signature based approaches. Both of them require to define the abnormal
behavior or traffic either as a signature or as an event expression. This thesis
concentrates on the defining the normal traffic instead of suspicious traffic. Suspicious
traffic is separated from the whole observed traffic during the characterization period.
The rest undefined traffic is marked as for further evaluation. After applying PCA on the
undefined traffic, anomalies occurred in a time intervals are detected.

This thesis applies both characterization and anomaly detection mechanism to
the network traffic, so it presents a different and applicable approach to the current
anomaly detection problem.

This thesis combines packet based and flow based evaluation and represents the
method for anomaly detection. Calculating flow attributes is applied for some
application level protocols but some are still missing. As a further work additional
application level protocols should be taken into consideration, like peer to peer traffic
except from BitTorrent and audio/video streams.

Another main further aim can be optimizing the software as if it will be able to
analyze real time traffic. Current work is only done by using off line records. This will
require to find the bottlenecks of the software where the attribute calculation is taking
much time.

The last contribution to this work will be adding recognizers for the detected
anomalies. This will enable the analyzer see the type of the anomaly detected. So
enhancing this work as a tool that can be used from its graphical user interface which
enable real time traffic anomaly detection will be a remarkable contribution to network

anomaly detection.

62

REFERENCES

Basic Analysis and Security Engine (BASE). http://base.secureideas.net/ (accessed
May 25, 2009).

BitTorrent (protocol) http://en.wikipedia.org/wiki/BitTorrent (protocol) (accessed May
25,2009).

Boddington M. 2009. Utility for processing pcap files
http://www.badpenguin.co.uk/main/content/view/46/1/ (accessed May 25, 2009).

CarnegieMellon Software Engineering Institute 2009. SiLK - Documentation.
http://tools.netsa.cert.org/silk/silk _docs.html (accessed May 20, 2009).

Cisco Systems 2009. CISCO 10S Netflow. http://www.cisco.com/web/go/netflow
(accessed May 20, 2009).

Claffy K., Braun H-W., Polyzos G. October 1995. A Parameterizable Methodology for
Internet Traftic Flow Profiling. [EEE JSAC 1481-1494.

Cooperative Association for Internet Data Analysis (CAIDA) 2006. cflowd: Traffic
Flow Analysis Tool. http://www.caida.org/tools/measurement/cflowd/

(accessed May 20, 2009).

De Montigny A. and Leboeuf. December 2005. Flow Attributes For Use In Traffic

Characterization.

Denning D. 1986. An Intrusion-Detection Model. IEEE Symposium on Security and

Privacy.

63

Ettercap. http://ettercap.sourceforge.net/ (accessed May 25, 2009).

Fonseca J., Reza B. 2005 BitTorrent Protocol - BTP/1.0
http://jonas.nitro.dk/bittorrent/bittorrent-rfc.html (accessed May 25, 2009).

Gergek G. A Flow Based Tool for Network Traffic Characterization. Izmir Institute of

Technology, License Thesis.

Hernandez-Campos, F., Nobel, A.B., Smith, F.D., and Jeffay, K. 2005. Understanding
Patterns of TCP Connection Usage with Statistical Clustering. /3th IEEE
International Symposium. 27(29) 35-44.

Hollmen J. March 1996. Principle component analysis.

http://www.cis.hut.fi/~jhollmen/dippa/node30.html (accessed May 20, 2009).

Karagiannis T., Papagiannaki K. and Faloutsos M. August 2005. BLINC: Multilevel
Traffic Classification in the Dark. ACM SIGCOMM.

Keys K., Moore D., Koga R., Lagache E., Tesch M., and Claffy K. April 2001. The
Architecture of CoralReef: an Internet Traffic Monitoring Software Suite.

PAM?2001, A workshop on Passive and Active Measurements.

Ktorrent http://ktorrent.org/ (accessed May 25, 2009).

Lakhina A., Crovella M., and Dio C. 2004. Diagnosing Network-Wide Traffic

Anomalies.

Lakhina A., Crovella M., Crovella M. May 2004. Characterization of Network-Wide

Anomalies in Traffic Flows.

Lawrence Berkeley National Laboratory 2009. Bro Intrusion Detection System — Bro

Overview. http://www.bro-ids.org/ (accessed May 15, 2009).

64

Lee C.S. Jume 2008. Network Flow: Uni-Directional VS Bi-Directional.
http://geek001.blogspot.com/2008/01/network-flow-uni-directional-vs-bi.html
(accessed May 15, 2009).

Lee C.S. May 2008. Training: Practical Network Flow Analysis
http://geek001.blogspot.com/2008/05/training-practical-network-flow.html
(accessed May 15, 2009).

Lincoln Labarotary Massachusetts Institute of Technology 2009. 1999 DARPA
Intrusion Detection Evaluation Data Set Overview.
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/1999data.html

(accessed May 25, 2009).

Luis MG. 2009. TCPDUMP/LIBPCAP public repository. http://www.tcpdump.org/
(accessed May 20, 2009).

Netflow. http://en.wikipedia.org/wiki/Netflow (accessed May 20, 2009).

Nmap - Free Security Scanner for Networ Exploration & Security Audits.

http://nmap.org/ (accessed May 25, 2009).

Network Working Group 1999. Traftic Flow Measurement Architecture. CRC
Technical Note No. CRC-TN-2005-003 http://www.fags.org/rfcs/rfc2722.html
(accessed May 20, 2009).

Packet (information technology). http://en.wikipedia.org/wiki/Network packet
(accessed May 20, 2009).

Principle component analysis.
http://en.wikipedia.org/wiki/Principal component analysis (accessed May 20,

2009).

65

http://www.faqs.org/rfcs/rfc2722.html

Python Software Foundation 2009. Python Programming Language - Official Web Site.
http://www.python.org/ (accessed May 25, 2009).

QoSient, LLC. 2009. ARGUS - Auditing Network Activity. http://qosient.com/argus/
(accessed May 20, 2009).

Realtime Traffic Flow Measurement Working Group (RTFM) December 1995. http://
www.ietf.org/proceedings/95dec/ops/rtfm.html (accessed May 20, 2009).

Scapy. http://www.secdev.org/projects/scapy/ (accessed May 25, 2009).

Sourcefire May 2009. What is Snort?. http://www.snort.org/ (accessed May 25, 2009).

Turner A. 2009. Tcpreplay. http://tcpreplay.synfin.net/trac/ (accessed May 20, 2009).

Wireshark. http://en.wikipedia.org/wiki/Wireshark (accessed May 20, 2009).

Xu K., Zhang Z., and Bhattacharya S. 2005. Profiling Internet Backbone Traffic:
Behavior Models and Applications. SIGCOMM.

Zhang Y. and Paxson V. August 2000. Detecting Backdoors. USENIX Security

Symposium.

66

APPENDIX A

Table A.1. Attributes measured over the whole flow

Attributes Description Inspection
Method
KEY A 5-tuple indicating the Originator IP address, | Flow Based
the Responder IP address, the TP
Protocol (i.e. TCP or UDP), the source port of
the Originator, and the source port of
the Responder.
BEGIN TIME Arrival time of the 1st packet as provided by | Flow Based
libpcap.
END TIME Arrival time of the last packet as provided by | Flow Based
libpcap.
DURATION Completion time of the flow in microseconds. |Flow Based
FIRST NONEMPTY PACKET SIZE |Payload length of the first non-empty packet. |Packet Based
FIRST FEW_NONEMPTY PACKET | An array of 10 discrete values for the Packet Based
_DIRECTIONS directions (-1 or 1) of the first 10 non-empty
packets.
1: Originator to Responder,
-1: Responder to Originator
Array is initialized with values equal to 0 in
case fewer than 10 packets contain data.
DATA BYTE RATIO ORIG TO RE | Total amount of payload data transmitted by | Flow Based

SP

the Originator over the Total amount of
payload data transmitted by the Responder
(initialized to -1 for flows with no data

transmitted by the Responder).

(cont. on next page)

67

Table A.1. (cont.) Attributes measured over the whole flow

Attributes Description Inspection
Method
INTERARRIVAL DISTRIBUTION | A discrete distribution of inter-packet delays | Packet Based
represented by an array of 9 continuous
binned values. The value in each bin is
between 0 and 1 and represents the relative
proportion of packets that fell into that bin.
Conversational Indicator
ALPHA conversation The number of non-empty packets that belong | Packet Based
to a conversation over the total of nonempty
packets.
BETA conversation The number of non-empty packets that belong | Packet Based
to a sustained conversation over the
total of non-empty packets that belong to a
conversation.
GAMMA onversation The proportion of conversation packets that Packet Based
are transmitted by the originator.
Transaction Indicator
ALPHA qansaction Indicator of how often “ping pong” exchanges |Packet Based

are seen in a flow.

68

Table A.2. Attributes measured for each direction of the flow

Attributes Description Inspection
Method
INTERARRIVAL DISTRIBUTION A discrete distribution represented by an array of 9 | Packet Based
continuous values. The array contains
the binned values for inter-packet delays in the
considered direction. The value in each bin
is between 0 and 1 and represents the relative
proportion of packets that fell into that bin.
PAYLOAD_ DISTRIBUTION A discrete distribution of packet payload length Packet Based
represented by an array of 23 continuous
values. The array contains the binned values for
payload lengths per packet.
BYTE _COUNT Total amount of byte transferred (including bytes Flow Based
found in the network and transport headers).
DATA BYTE _COUNT Total amount of byte transferred as payload. Flow Based
PACKET_COUNT Total number of packets. Flow Based
DATAPACKET COUNT Total number of non-empty packets. Flow Based
Encryption Indicators
ALPHA chipherblock Estimated popular GCD among the packet payload | Packet Based
lengths
BETA chipherblock Ratio of non-empty packet-payload lengths that are | Packet Based
divisible by ALPHA cipherblock
Keystroke Interactive Indicator
ALPHA ey interactive Indicator of interactive inter-packet departure (for Packet Based
keystroke packets)
BETAkey interactive Indicator of interactivity based on the proportion of | Packet Based
small packets
GAMMA ¢y interactive Indicator of consecutive small packet Packet Based
DELTAukey interactive Indicator of consecutive small packet Packet Based
EPSILONiey interactive Indicator of irregularity between inter-arrival of Packet Based
consecutive small packets
Command-line Interactive Indicator
ALPHA g interactive Indicator of interactive inter-packet departure (for | Packet Based
command-line packets
BETAcnd_interactive Indicator of interactivity based on the proportion of | Packet Based
small packets
GAMMA 4 interactive Indicator of consecutive small packets Packet Based
DELTA i interactive Indicator of piggyback packing Packet Based
EPSILONmd interactive Indicator of irregularity between inter-arrival of Packet Based

consecutive small packets

(cont.

on next page)

69

Table A.2

. (cont.) Attributes measured for each direction of the flow

Attributes

Description

Inspection

Method

File transfer Indicators

ALPHAG. Indicator of inter-packet departure during a file transfer

BETAfi. Indicator of file transfer based on the proportion of | Packet Based
big packets

GAMMAsie Indicator of consecutive big packet

ALPHA constantpacketrate Indicator of how close to the mean the 5-second Packet Based

packet rate measurements are

70

APPENDIX B

The appendix contains the rule sets currently used in the profiles of the protocols
mentioned at the De Montigny and Leboeuf's9 work. To satisfy a profile, all of the

specified tests must succeed.

1) HTTP web browsing

lest_duration:

Duration > 50000 psec
lest_transmissionrate.

Originator-aconstantbitratc <05 && Originator-acanstampackctratc <05 &&
Responder. Olconstantbitrate <05 && Responder« uconstampackctratc <05

i.e. The transmission rate is more irregular than regular.

lest_pavload:

Originator.PayloadDistribution([0-1]) + Originator.PayloadDistribution([180-650[)>0.8 &&
Originator.PayloadDistribution([1-100[)+Originator.PayloadDistribution([1380-inf[)==0

Test_databyteratio:

0.005<DatabyteRatioOrigToResp<4
Test_requestdatabyte:

Originator.DatabyteCount < 21000
Test firstnonemptypacketsize:

120 < FirstNonEmptyPacketSize < 1000
i.e. The first non-empty packet of the session, which is a HTTP GET, contains at

least 120 bytes of data (small URL and only essential HTTP fields) and at most 1000
bytes of data (long URL and many HTTP fields).

Test firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1:2)=[1, -1]
i.e. The first non-empty packet is sent by the Originator (client) and the second is

sent by the Responder (server).

Test_noconsecutivesmallpackets:

OriginatOT-Y key_interactive S 0 && OriginatOF.Y cmd_interactive S O &&
Responder.Y kcyﬁimcractivcs 0 && ReSPOHder.Y cmd_interactive S O

71

2) IMAP

Test _duration:

Duration > 100000 psec
Test_transmissionrate:

Orlglnator Olconstantbitrate <05 && Originat0r~aconstan(packetrate <05 &&
ReSponder- chonstantbitrate <05 && ReSponder- aconstantpacketrate <05

1.e. The transmission rate is more irregular than regular.

Test_pavload:
Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([5-180[)>0.8
&&
Responder.PayloadDistribution([0-1[)+Responder.PayloadDistribution([20-100[)>0.2
lest_databyteratio:

DatabyteRatioOrigToResp<1
i.e. The server sends more data than the client.

Test firstnonemptvpacketsize:

10 < FirstNonEmptyPacketSize < 250
1.e. The first non-empty packet, which is sent by the mail server, is typically

small (“OK” + optional info such as server version, name, capabilities, etc.).

Test firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1:5)=[-1, 1,-1, 1,-1] ||
FirstFewNonEmptyPacketDirections(1:6)=[-1,-1, 1,-1, 1,-1]
1.e.

1) Responder describes server,

2) (optional) If client remains quiet, server sends an empty response. From this
point, IMAP behaves like a Request/Response protocol driven by the client Requests.
For instance, the following sequence may follow:

3) Originator asks for capability

4) Responder responds with capability

5) Originator sends login & password

6) Responder accepts/rejects login

Test_nonemptypacketratio:

Originator.datapacketcount/Originator.packetcount > 0.5 &&
Responder.datapacketcount/Responder.packetcount > 0.6

i.e At least 50% of the packets sent by the client carry data, and at least 60% of

the packets sent by the mail server carry data.

72

3) POP

Test _duration:

100000 < Duration < 10000000 psec
i.e. In contrast with IMAP, POP terminates the session once mail messages have

been downloaded, this typically takes less than 5 seconds (say a maximum of 10
seconds to set a loose threshold).

lest_transmissionrate.

Originator. deonstanbirate <0.5 && Originator. deonstantpacketrae <0.5 &&
Responder~chonstambitratc <05 && Responder~aconstampackctratc <05

i.e. The transmission rate is more irregular than regular.

Test_pavload:

Originator.PayloadDistribution([0-1])+Originator.PayloadDistribution([5-20[)>0.9 &&

Originator.PayloadDistribution([1-5[)==0 &&

(Responder.PayloadDistribution([0-50])+Responder.PayloadDistribution([236-269[)+

Responder.PayloadDistribution([516-549[)+Responder.PayloadDistribution([1432-1473[))>0.6
Test_databyteratio:

DatabyteRatioOrigToResp<0.65
i.e. The server sends more data than the client.

Test firstnonemptvpacketsize:

10 < FirstNonEmptyPacketSize < 100
i.e. The first non-empty packet, which is sent by the mail server, is typically

small (“OK” + optional info such as server version, and name). POP server responses
tend perhaps to be smaller than IMAP server responses.

Test firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1:5)=[-1, 1,-1, 1,-1] ||
FirstFewNonEmptyPacketDirections(1:6)=[-1,-1, 1,-1, 1,-1]
1.e. Similar to IMAP with regards to the initial directional dynamics.

Test nonemptypacketratio:

Originator.datapacketcount/Originator.packetcount < 0.7 &&
Responder.datapacketcount/Responder.packetcount > 0.5

i.e At most 70% of the packets sent by the client carry data, and at least 50% of

the packets sent by the mail server carry data.

73

4) SMTP

Test _duration:

100000 < Duration < 10000000 psec
i.e. SMTP terminates the session once mail messages have been transferred, this

typically takes less than 5 seconds (say a maximum of 10 seconds to set a loose

threshold).

lest_transmissionrate.

Originator.aconstantbitrate <0.5 && Originator.oconstantpacketrate <0.5 &&
Responder.aconstantbitrate <0.5 && Responder.aconstantpacketrate <0.5

i.e. The transmission rate is more irregular than regular.

Test_pavload:

(Originator.PayloadDistribution(] 0-1[)+Originator.PayloadDistribution([5-100[)+
Originator.PayloadDistribution([236-269[)+ Originator.PayloadDistribution([516-549[)+
Originator.PayloadDistribution([1432-1473[))>0.6 &&
Responder.PayloadDistribution([0-1])+Responder.PayloadDistribution([5-100[)>0.8 &&
Responder.PayloadDistribution([1-5[)+Responder.PayloadDistribution([350-inf])==0

lest_databyteratio:

DatabyteRatioOrigToResp > 1
i.e. The databyte ratio Originator To Responder is greater than one, typically

MUCH greater than 1.

Test firstnonemptvpacketsize:

20 < FirstNonEmptyPacketSize < 300
1.e. SMTP server responses are typically around a hundred bytes. We chose loose

boundaries (20 and 300 bytes).

Test firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1:5)=[-1, 1,-1, 1,-1]
1e.

1) Responder describes server. From this point, SMTP behaves like a
Request/Response protocol driven by the client Requests. For instance, the following
sequence may follow:

2) Originator sends Client Helo

3) Responder sends Server Helo

4) Originator sends AUTH command

5) Responder accepts/rejects

Test_nonemptypacketratio:

74

Originator.datapacketcount/Originator.packetcount > 0.5
i.e At least 50% of the packets sent by the client carry data.

Test_datapacketcount:

4 <Responder.datapacketcount < 15
SMTP servers respond with a somewhat fixed number of non-empty packets.

Test_databytecount:

300 < Responder.databytecount < 900
SMTP servers respond with a somewhat fixed number of data bytes.

5) SSH

Test_payload:

Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([10-180[) > 0.8 &&

Originator.PayloadDistribution([1-10])==0% && Responder.PayloadDistribution(] 1-10[)==0
&&

Responder.PayloadDistribution([0-1])+Responder.PayloadDistribution([10-180[) > 0.5

Test_databyteratio:

DatabyteRatioOrigToResp<1
1.e. The server sends more data than the client.

Test _cipherblock:

mod(Originator. deiphervlock » 4)==0 && mod(Responder. deipherviock , 4)==0 &&
Originator. Peipherviock > 0.8 && Responder. Beipherviock > 0.8

1.e. At least 80% of the non-empty packets must be divisible by 4.

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1)= -1
i.e. The first non-empty packet is sent by the Responder (server).

Test_nonemptypacketratio:
Responder.datapacketcount/Responder.packetcount > 0.5

1.e At least 50% of the packets sent by the server carry data.

75

6) TELNET

Test_payvload:

Originator.PayloadDistribution([0-10[) > 0.8 && Originator.PayloadDistribution([350-
inf[)==0
lest_databyteratio:

DatabyteRatioOrigToResp<0.2 && Originator.datapacketcount < Responder.datapacketcount
i.e. The server sends much more data than the client. The server also sends more

non-empty packets.

Test firstnonemptvpacketsize:

FirstNonEmptyPacketSize < 30
1.e. empirical estimate based on a max of 10 options negotiated.

Test firstnonemptypacketdirections.

FirstFewNonEmptyPacketDirections(1:2)= [-1, 1]
1.e. The first non-empty packet is sent by the Responder (server) and the second

is sent by the Originator.

Test nonemptypacketratio:

Responder.datapacketcount/Responder.packetcount > 0.4
1.e At least 40% of the packets sent by the server carry data.

lest_transaction:

Oliransaction > 0 . 7

1.e Telnet is mostly transactional.

7) FTPCommand

Test_duration:

Duration > 500000 psec

Test_payload:

Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([5-100[)>0.8 &&
Originator.PayloadDistribution([1-5[)+Originator.PayloadDistribution([350-inf])==0 &&
Responder.PayloadDistribution([0-1])+Responder.PayloadDistribution([10-180[)>0.8 &&
(Responder.PayloadDistribution([1-5[)+Responder.PayloadDistribution([350-650[)+
Responder.PayloadDistribution([1000-inf]))==0

Note that while the responder also avoids sending big packets, it was not unusual

to see packets containing between 650 and 1000 bytes of payload, in particular when

76

transmitting “code 220 for greetings and warnings.

lest_databyteratio:

0.1 < DatabyteRatioOrigToResp < 0.5 && Originator.datapacketcount <
Responder.datapacketcount

1.e. The server sends more data and non-empty packets than the client.

Test firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1)= -1
i.e. The first non-empty packet is sent by the Responder.

Test nonemptypacketratio:

Responder.datapacketcount/Responder.packetcount > 0.6
i.e. At least 60% of the ftpcmd packets sent by the server carry data.

lest_transaction:

atransaction > 0.95
1.e. FTPcommand is mostly (if not completely) transactional.

Test_noconsecutivebigpackets:

Responder.yfile <0
1.e While IMAP and FTPcommand are similar with respect to the other criteria,

ftp server tend not to transmit consecutive big packets in the FTPcommand connection.

8) FTPDATA

Test_payload:

(Originator.PayloadDistribution([1-5[)==0 && Responder.PayloadDistribution([0-1[)==1)

|
(Responder.PayloadDistribution([1-5[)==0 && Originator.PayloadDistribution([0-1[)==1)

lest_databyteratio:

DatabyteRatioOrigToResp == 0 || DatabyteRatioOrigToResp == -1
i.e. The data is flowing in one direction only. The value is -1 if the transmitting

end is the Originator, and the value is 0 if the Responder is the transmitting end. A value
of -1 can be associated to two cases: the transfer is an ACTIVE get or a PASSIVE put,
depending on whether the Originator is the FTP server or the FTP client respectively.
Similarly, a value of 0 indicates an ACTIVE put or a PASSIVE get, depending on
whether the Originator is the FTP server or the client respectively. The role of the
Originator can be determined by examining related flows marked as FTPcommand.

Test databytecount:

71

Originator.DatabyteCount + Responder.DatabyteCount > 0
i.e. As a rule of thumb, a FTPdata session involves transferring data... therefore

there should be packets carrying data in at least one of the direction.

Test packetcount:

0.3 < (Originator.PacketCount/(Originator.PacketCount+Responder.PacketCount))
<0.7

i.e. The amount of packets transmitted in each direction is similar.

Test_nonemptypacketratio:

(Originator.datapacketcount==0 && Responder.datapacketcount/Responder.packetcount > 0.3) ||
(Responder.datapacketcount==0 && Originator.datapacketcount/Originator.packetcount > 0.3)

This rule typically holds provided there are more than 5 packets in each

direction.

9) HTTPS

lest_duration:

Duration > 50000 psec
Test_transmissionrate:

Originator.aconstantbitrate <0.5 && Originator.oconstantpacketrate <0.5 &&
Responder.aconstantbitrate <0.5 && Responder.aconstantpacketrate <0.5

1.e. The transmission rate is more irregular than regular.

Test_payvload:

Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([50-180[) > 0.6 &&
Originator.PayloadDistribution([1-5[)+Originator.PayloadDistribution([1000-inf])==0 & &
Responder.PayloadDistribution([0-1])+Responder.PayloadDistribution([20-100[)+
Responder.PayloadDistribution([549-inf]) > 0.6

Test_datapacketcount:

Originator.datapacketcount<10
Test firstnonemptypacketsize:

90 < FirstNonEmptyPacketSize < 250
i.e. The first non-empty packet of direct SSL connections (a SSL Client Helo

packet) is typically small (contains very few cipher specifications).

Test firstnonemptypacketdirections.

FirstFewNonEmptyPacketDirections(1:2)=[1, -1]
1.e. The first non-empty packet is sent by the Originator (client) and the second is

sent by the Responder (server).

lest_conversation.

78

(Originator.aconversation > 0.25 && Originator.datapacketcount > 5) ||
Originator.datapacketcount < 5

10) RLOGIN

Test_payload:

Originator.PayloadDistribution([0-5[) > 0.8 &&
Originator.PayloadDistribution([350-inf])==0
Test firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1)= 1
1.e. The first non-empty packet is sent by the Originator.

Test_nonemptypacketratio:

Responder.datapacketcount/Responder.packetcount > 0.4
1.e. At least 40% of the packets sent by the server carry data.

Test _conversation:

aconversation > 0.01 && Pconversation > 0.4 && yconversation > 0.6

i.e. RLOGIN appears a little like a conversation (compared to SSH, TELNET,
and FTPcommand). When conversing, the Originator sends more packets than the

Responder.

11) MSNChat

Test_pavload:

Originator.PayloadDistribution([0-1[) + Originator.PayloadDistribution([100-450[) > 0.8

&&
Originator.PayloadDistribution([1-5])==0 && Responder.PayloadDistribution([1-5[)==0 &&
Responder.PayloadDistribution([0-1]) + Responder.PayloadDistribution([100-450[) > 0.8

Test_databyteratio:

0.1 < DatabyteRatioOrigToResp < 10
1.e. This assumes that one of the user may be at most 10 times chattier than the

other.

Test firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1)= 1
i.e. The first non-empty packet is sent by the Originator.

lest_interactive:

Originator.acmd _interactive > 0.3 && Originator. femd_interactive > 0.6 &&
Originator.ycmd_interactive > 0.6 &&

79

Originator.dcmd _interactive > 0.3 && Originator.ecmd _interactive > 0.3 &&
Responder.acmd _interactive > 0.3 && Responder. femd_interactive > 0.6 &&
Responder.yemd _interactive > 0.6 &&

Responder.dcmd _interactive > 0.3 && Responder.ecmd_interactive > 0.3

i.e. Each direction is command-line interactive.

Test _conversation:

aconversation > 0.4 && Pconversation > 0.4 && (0.35 < yconversation < 0.65)
i.e the flow must have conversational episodes (aconversation), it must have

sustained conversation episodes (fconversation) and the amount of packets belonging to

a conversation must be similar in each direction (yconversation).

80

	titlepage.pdf
	approvalpage.pdf
	abstract.pdf
	ozet.pdf
	toc1.pdf
	toc2.pdf
	listoffigures1.pdf
	listoffigures2.pdf
	listoftables.pdf
	thesis.pdf

