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BORDERLINE - A FRACTAL POEM 

 
When tallying the interface? 

And then to pocks on grains of sand, 

Where lies the ocean, where the land? 

With surf and turf along the beaches, 

Each into the other reaches. 

 

Sand and water melt into 

A frothy fuzzy slurried stew, 

With fractal sand grains swimming wild 

And fractal drops on beaches piled. 

And algae green, a form of life 

Which further mediates the strife 

Incorporates a snatch of each. 

So much for life along the beach. 

 

Now intertwining earth and air 

Are ferns and bees and other fare. 

And one more question if you’ll hear it: 

Are we flesh or are we spirit? 

Does God exist and script the play 

Or are we, rather, chunks of clay? 

Lovers know as they entwine. 

Life is just a borderline. 

 

 

 

Ed Seykota, October 15, 1986 
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ABSTRACT 

 
In this thesis, three kinds of fractal dimensions, correlation dimension, Hausdorff 

dimension and box-counting dimension were used to examine time series. To 

demonstrate the universality of the method, ECG (Electrocardiogram) time series were 

chosen. The ECG signals consisted of ECGs of three persons in four states for two 

applications. States are normal, walk, rapid walk and run. These three people are 

selected from the same age, and height group to minimize variations. First application 

was made for approximately 1000 samples of size of ECG signals and the second for 

the whole of the measured ECG signals. Fractal dimension measurements under 

different conditions were carried out to find out whether these dimensions could 

discriminate the states under question. A total of  24 ECG signals were measured to 

determine their corresponding fractal dimensions through the above-mentioned 

methods. It was expected that fractal dimension values would indicate the states related 

to the different activities of the persons. Results show that no direct link was found 

connecting a certain dimension to a certain activity in a consistent manner. Furthermore, 

no congruence was also found among the three dimensions that were employed. 

According to these results, it can be stated that fractal dimension values on their own 

may not be sufficient to identify distinct cases hidden in time series. Time series 

analysis may be facilitated when additional tools and methods are utilized as well as 

fractal dimensions at detecting telltale signs in  signals of  different states. 
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ÖZET 

 
Bu tezde zaman serilerini incelemek için üç çeşit fraktal boyut, korelasyon 

boyutu, Hausdorff boyutu ve kutu sayma boyutu kullanılmıştır. Metodun evrenselliğini 

göstermek için EKG (Elektrokardiyogram) zaman serileri seçilmiştir. EKG sinyalleri 

dört durumda iki uygulama için üç kişinin EKG’lerinden oluşmaktadır. Durumlar 

normal, yürüme, hızlı yürüme ve koşmadır. Varyasyonları mümkün olduğu kadar 

azaltmak için bu üç kişi aynı yaş ve boy grubundan seçilmiştir. Birinci uygulama 

yaklaşık 1000 örnek büyüklüğündeki EKG sinyalleri için ve ikincisi EKG ‘lerin tam 

ölçümleri için yapılmıştır. Değişik şartlar altında fraktal boyut ölçümleri bu boyutların 

sorgu altındaki durumları ayırt edip edemeyeceğini öğrenmek için tatbik edilmiştir. 

Toplam 24 EKG sinyali yukarıda değinilen metodlarla boyut karşılıklarını belirlemek 

için ölçülmüştür. Fraktal boyut değerlerinin, kişilerin farklı aktivitelere göre durumlarını 

işaret edeceği beklenmiştir. Sonuçlar belirli bir boyutun belirli aktiviteye tutarlı bir 

biçimde bağlantısı olmadığını göstermiştir. Dahası, kullanılan üç boyut arasında 

uygunluk bulunamamıştır. Bu sonuçlara göre fraktal boyut değerlerinin kendi başına 

zaman serilerinde saklı farklı durumları belirlemek için yeterli olmadığı ifade edilebilir. 

Zaman serileri analizleri fraktal boyutlar gibi, değişik durumların sinyallerinde farklılığı 

açığa vuran işaretlerin bulunmasında ek alet ve metodlar kullanılarak kolaylaştırılabilir. 
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CHAPTER 1 

 

INTRODUCTION 

 
 Until recently, fractals have remained a novelty in explaining strange 

phenomena in nature. Today, it is realized that the capability of fractals is beyond the 

basic self-similar illustration of snow flakes. The use of fractals is in the range from 

interpolation, estimation, even as far away as to data compression and modelling. 

Detection of faults in mechanical systems has come under spotlight increasingly ever so 

with the advent of intelligent modelling tools in this field. By the use of fractals, the 

analysis of time series could point at inherent flaws, cracks, and impurities in the 

material. 

This thesis presents a tentative approach to time series analysis which is based 

on the geometry of fractals. Chaotic systems, which seem to be a distant topic, exhibit 

rich and surprising mathematical structures. In this context, deterministic chaos 

provides a striking interpretation for irregular temporal behaviour and anomalies in 

systems which do not seem to be inherently stochastic. The most direct link between 

chaos theory and the real world is the analysis of time series of real systems in terms of 

nonlinear dynamics. Sometimes time series are so complex that they could not be 

examined by traditional methods. Problems of this kind are typical in biology, 

physiology, geophysics, economics, to name a few,  as well as engineering and many 

other sciences. 

 This thesis is based on a mathematical technique to illustrate the analysis of 

ECG signals.  ECG signals were chosen for applications in order to show that this 

approach is universal. The ECG is a representative signal containing information about 

the condition of the heart. The shape and size of the P-QRS-T wave, the time intervals 

between its various peaks, etc. may contain useful information about the nature of 

disease afflicting the heart.  
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Figure 1.1. The shape and size of the P-QRS-T wave of the electrocardiogram (ECG) 

 

  Figure 1.1. defines the shape and size of the P-QRS-T wave of the 

electrocardiogram, this is essential for cardiologists to determine the classification of 

heart failure from ECG, “(Dublin 2000)”. The characteristics of all interval (PR, QRS, 

QT, RR) on Figure 1.1. can change by specific heart failures. Sinus Arrhythmia is 

considered as normal, where other sinus Arrhythmia shapes or intervals could lead us to 

heart disease e.g. atrial Fibrillation, wandering pacemaker, multifocal atrial tachycardia. 

ECG signals are widely examined signals, thinking the significance in humans’ life. On 

the other hand decisions about ECG signals were made through doctors and expert 

technicians, handling the intervals between P-QRS-T waves. In this thesis these 

observations are wanted to be demonstrated in numerical results, using three kinds of 

fractal dimension methods in fractal geometry. 

Classical geometry makes arrangements for an initial approach to the physical 

objects structure. It is a way of communication for designs of technological products 

and natural creations. Fractal geometry can be described as a branch of classical 

geometry, with some differences in dimension property. 

Fractal geometry is also the premier level for computation of rational roughness, 

in other words, the first scientific stage of researching the smoothness. Roughness is 
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present everywhere in nature. This reason is adequate to prove variety of the usage of 

fractals.  

The history of fractals has begun by the research of Gaston Julia, and continued 

with findings of Benoit Mandelbrot. Benoit Mandelbrot was one of the first to discover 

fractals. Mandelbrot extracted the “fractal” term from “frangere”, a Latin verb, meaning 

to break or fragment. He was examining the shapes created by Gaston Julia, by iterating 

a simple equation and mapping this equation in the complex plane, where Gaston Julia, 

a mathematician in the 1920’s (who was working without the benefit of computers) 

could not describe these shapes using Euclidean geometry, “(Barnsley 1993)”. 

From a mathematical aspect, fractals are embodiments of iterations of nonlinear 

equations, commonly building a feedback loop. By creating a vast number of points 

using computers these wonderfully complex images, called fractals, were discovered. 

This set of points is produced, by using the output value of the previous calculation as 

the input  value of the current calculation. Two important properties of fractals could be 

arranged as: 

 

• Fractional dimensions 

• Self-similarity 

 

Self-similarity means that the fractal image, at every level reiterates itself. For 

example, Sierpinski’s Triangle is a triangle within ever smaller triangles, on and on. A 

lot of natural shapes exhibit the self-similarity characteristic. Almost all objects possess 

this feature. Fractional dimension signifies that a shape is neither 1, 2 or 3 dimensional, 

practically may fall between integer numbers, resulting from fractions. Mandelbrot set a 

theory that fractals have a fractional dimension between 1 and 2, whereas in Euclidean 

geometry, image dimension is always given in integer units. 

By studying fractals, a whole new geometry has been created by mathematicians 

depicting the universe, beyond the boundaries of Euclidean geometry. Traditional 

Euclidean models come into view, simpler as they are magnified, the shape looks more 

and more like a straight line. But very little in nature is so regular. The need to deduce 

irregular shapes using geometry, namely fractal geometry, could provide to express the 

complexities of these shapes.  

Fractals can be thought of a mirror, describing these irregular shapes. They 

represent the relationships between disparate parts of the universe in a visual manner, 
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demonstrating the interdependence of all things in nature. They allow us to view the 

complexity of chaos and order. Fractal is a mathematical set with a high degree of 

geometrical complexity, which can model many classes of time series data as well as 

images. 

With fractals, scientists gained the knowledge that the scale did not change the 

outline of the original shape. It can reiterate itself regardless of size and therefore it 

takes a new understanding for scaling and measuring. Before fractal geometry, calculus 

helped to find the area or the perimeter of irregular shapes by creating rectangles of 

smaller dimensions, but this is also a limit to escape from simple models.  

Fractals are interesting, as more detail shows up indefinitely as one gets closer. 

A fractal dimension depends on how much space the object takes up as it twists.  As a 

fractal fills a plane progressively more, its dimension approaches two. So a fractal 

landscape made up of a large hill covered with tiny bumps would be close to dimension 

two, while a rough surface composed of many medium sized hills would be close to 

dimension three, “(Web_1 1998)”. It also could be said, because of wonderful shapes, 

fractals are the place, where math and art come together. 

As it is mentioned above, fractal dimension is one of the important features of 

fractals, because it contains information about their geometrical structure. A more clear 

definition, fractal dimension is one measure, which is useful for comparing two fractal 

images. Fractal geometry provides a means to get rid of the restriction on dimension by   

R-dimensional measurement features, where R can be any fractional (Real) number and 

so the fractional dimensions coined the “fractal geometry” term. On the other hand not 

all images are true fractals. Any set of discrete data points, no matter how fine the 

spacing between points, is not truly fractal because you can “zoom-in” such that all you 

see is an individual point or the blank space between points, “(Butterfield 1991)”.  

 The inspiration behind using fractal transformations is to develop a novel high -

speed feature extraction technique. Also in the area of pattern recognition and image 

processing, the fractal dimension has been used for image compression, texture 

segmentation and feature extraction. One of the basic characteristics of a fractal is its 

dimension, as it is seen. The main idea is to describe the complexity of the image 

through a new parameter. Fractal dimension can be thought as the basic parameter of a 

fractal set, which represents much information related to signal’s geometric features. 

 Mathematically, a fractal dimension is a fraction greater than the topological 

dimension of a set and remains constant whatever the scale. The more the fractal 
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dimension is close to the topological dimension, the more the fractal surface looks 

smooth, “(Tang et al. 2002)”. 

On the other hand it should be noted that the modelling of signals through fractal 

geometry could be used in fault diagnosis analysis. Various theoretical properties of the 

fractal dimension, including some explicit formulas, are developed to be successful in 

order to detect faults in a system. 

Some definitions and properties on fractals might further be expounded. For 

example, the term, “Gaussian fractal”, denotes any geometric fractal shape generated by 

a Gaussian random process. It is a form of fractional Brownian cluster, fractal sets are 

related to the fractional Brownian motions, FBM, denoted by B H (t), where the 

exponent, an essential exponent  denoted by  H is deeply rooted in two fields of  

knowledge that were thoroughly removed from each other until fractal geometry 

spanned the abyss between them, H was defined by the hydrologist  H.E. Hurst . H 

should satisfy 0 < H < 1. In the key case H = ½, FBM reduces to WBM, “(Leung and 

Romagnoli 2000)”. 

The prototype Gaussian fractals are generated by the original Brownian motion, 

for which Wiener provided the mathematical theory. The requirement for constructions 

beyond WBM appeared independently in finance and physics. In the natural harsh 

phenomena that should be inspected, the pathology of nature is not uncontrollable, 

because it complies a form of invariance or symmetry that overlaps nature and 

mathematics, and is called scale invariance, or scaling. 

The more specific term self-affinity, expresses invariance under some linear 

reductions and dilations, which ordinarily implies uniformly global statistical 

dependence.  Self-affinity takes at least three distinct forms: unifractality, 

mesofractality, multifractality. The far better known notion of self-similarity is the 

special case corresponding to isotropic reductions. Here, the lake and island coastlines 

are the best example to define self-similarity, while the relief itself is self-affine. That is 

the Gaussian records that represent reliefs are invariant under linear contractions whose 

ratios are different along the axes of the free variables and the axis of the function, 

“(Wu et al. 2004)”. Especially, the concept of fractal dimension experiences a very 

extensive general statement and becomes less directly convincing than in self-similar 

contexts. Roughness is the form of wildness of self-affinity.  

In this chapter, fractals and fractal geometry are mentioned roughly,  detailed 

explanations will be made in the following chapters.  
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Chapter 2 introduces the basic topological ideas that are needed to describe 

subsets to spaces such as R² which provide a suitable setting for fractal geometry. The 

concepts introduced include openness, closeness, compactness, convergence, 

completeness, connectedness and equivalence of metric spaces. This chapter includes 

also the concept of fractal dimension and other definitions. The fractal dimension of a 

set is a number that tells how densely the set occupies the metric spaces in which it lies. 

It is invariant under various stretching and squeezing of the underlying space. This 

makes the fractal dimension meaningful as an experimental observation; it possesses 

certain robustness and is independent of the measurement units. 

Chapter 3 deals with combining ECG signals with fractal geometry. The aim of 

this chapter is to show the usage of fractals in the field ECG signals. It will be explained 

through specified box-counting method, which has been mentioned in chapter 2. In 

addition, the software packages, which are used in experiments, will be introduced. 

Chapter 4 is concerned with examples, how to make the calculation of ECG 

signals parameters. It will be shown with diagrams, graphs and some visualizations. The 

necessary information about ECG signals will be also given.  

Chapter 5 will construct the discussion and the conclusion parts of this thesis. 
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CHAPTER 2 

 

FRACTALS AND FRACTAL GEOMETRY 

 
The balance between the roles of geometry and analysis is very distinctive in the 

field of sciences. A combination of analysis and geometry should be found in order to 

expand the aspect in science. Before fractal geometry, any measure of roughness 

quantity was not agreed-upon. The significant point in this thesis is to apply the scale–

invariance property to ECG time series. Approximately expressed, fractal geometry is 

the study of  scale–invariant roughness.  

Fractal geometry claims that roughness cannot be measured by any quantitiy 

taken from other examinations. In the way of  fractality being scale- invariance, 

roughness can be measured most naturally by the parameters. 

 

2.1. Why Fractals? 

 
Fractals, as these shapes are called, also must be without translational symmetry  

that is, the smoothness connected to Euclidean lines, planes, and spheres. Instead of a 

rough, jagged quality is kept in existence at every scale at which an object can be tested. 

Fractals are not referred solely to the region of mathematics. If the interpretation is 

made a bit wider, such objects can be established in essence everywhere in nature.  

The distinction is that "natural" fractals are randomly, statistically, or 

stochastically rather than exactly scale symmetric. The harsh shape exibited at one 

length scale bears only a near similarity to that at another, but the length scale being 

used is not obvious just by watching the shape. Moreover, there are both upper and 

lower limits to the size range over which the fractals in nature are surely fractal. 
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Figure 2.1. The Koch Curve 

 

 

 

Figure 2.2. Sierpinski Triangle 

 

Famous examples are the Koch curve and Sierpinski triangle, which can be seen 

in Figure 2.1. and Figure 2.2. Fractals may not actually give us a better way to measure 

coastlines, but they do help us see patterns in real objects and systems that appear not to 

be patterned, “(Web_1 1998)”. Fractal dimensions put to practical use the jagged edges 

of clouds, mountain and coastlines. They also deal with the loopy chaotic motions of 

weather, the economy, brain signals and heartbeats. 
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2.2. Scale-Invariance and Fractal Relation 

 
The question to explain why so many natural objects are scale-invariant, is very 

important. This theme concerns both physics and astronomy, and also synthetic 

structures, as examples,  finance and computers. While  “mathematical proof” is a 

nicely-specified concept where, “physical explanation” is a tricky fundamental idea. But 

computer simulation and fractals each conclued a significant wrinkle.  

Attractors and repellers of dynamical systems; fractality in phase space is fully 

explained by chaotic dynamics. In many scientists’ minds, explanation is the best 

implemented in terms of a dynamic process that transforms an arbitrary initial condition 

into what is observed and must be explained, “(Barnsley and Demko 1985)”.  

Fractals, which are consequential physical objects in real space, go into the 

problems that are governed by partial differential equations PDEs, “(Barnsley 1986)”. 

Last mentioned, a center topic in both sciences, mathematics and physics, have 

succeeded against many unknowns of nature and guard an eternal inherent beauty. It is 

the fact that physics is described by equations such as those of Laplace, Poisson, and 

Navier-Stokes. An important degree of local smoothness is provided by differential 

equations, although adjacent test shows isolated singularities or catastrophes. Inversely, 

fractality results from everywhere dense roughness and fragmentation. This is the best 

evidence, why fractal models in varied fields were initially noticed as being 

“anamolies” that stand in direct opposition with one of the most stable establishings of 

science. Many concrete situations where fractals are observed involve equations having 

free and moving boundaries and interfaces, and singularities are not prescribed in the 

statement of a problem, but determined by the problem’s solution, “(Curry et al. 1983)”. 

Under broad conditions, which largely remain to be specified, show us these free 

boundaries, interfaces and singularities converge to suitable fractals.  

 A sort of clusters comprise a third class of very influential fractals that elevate 

problems for mathematics and physics and are presently experiencing quick progress. 

Therefore, in the situation of the physical clusters conversed previously, fractality is the 

geometric complement of scaling and renormalization, that is why the analytic poperties 

of those objects pursue the power law relations. Some issues concerning mathematics, 

remain open, but the overall renormalization structure is strongly fixed.  
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This chapter introduces, as it is mentioned earlier, also the basic topological 

ideas that are needed to describe subsets to spaces such as R². They provide a suitable 

setting for fractal geometry. The concepts introduced include openness, closedness, 

compactness, convergence, completeness, connectedness and equivalence of metric 

spaces. It includes also the concept of fractal dimension and other important definitions 

(Detailed fractal geometry definitions could be found in Appendix A). 

 

2.3. Fractal Dimensions and Their Dimension Properties 

 
Whether natural or synthetic, all fractals have special fractal dimensions. The 

fractal dimension, with the symbol D, a chracteristic of fractals, shows clearly unlike 

other criteria to be an invariant measure of the  roughness of the fractures in materials. It 

has a sence that the words fracture and fractal came from  the same root, fract.  

Seen that there are some differences, these are not the same as the familiar 

Euclidean dimensions, quantified in discrete whole integers 1, 2, or 3. A fractal 

dimension implies the scope to which the fractal object fills the Euclidean dimension in 

which it is embedded and it is usually noninteger. In other words, finding fractal 

dimension is a search for an underlying order in things that appear randomly for 

patterns. Most real objects having serrated edges and are irregular they can not exactly 

fit simple classification in integer dimensions. For instance, the dimension of the edge 

of a coastline appear to be one, it's just a wiggly line. On the other hand, it is so twisted 

that it fills more of a two-dimensional rectangle than a straight line or even a smooth 

curve. Through this way the fractal dimension, a measure of irregularity degree allows 

to give us finally feasible knowledge. A system can be revealed as chaotic even though 

it appers to be random by measuring the fractal dimension of its phase space graph or 

attractor. Measurement of fractal dimensions from snapshots of chaotic dynamical 

systems supplies some intuitions into the dynamic forces which control them.  
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2.3.1. Hausdorff Measure and Dimension 

 
Hausdorff dimension has the advantage of being defined for any set, and is 

mathematically convenient, as it is based on measures, which are relatively easy to 

manipulate. A major disadvantage is that in many cases, it is hard to calculate or to 

estimate by computational means. D can take on noninteger values, is based on metric 

properties, and gives the right values for the sets for which it can be computed. Lurking 

behind, were nondifferentiable and infinitely discontinuous functions, singular 

monotone-increasing functions, the  Hausdorff dimension  D, and the Hölder exponent. 

 

U : Non-empty subset of n-dimensional Euclidean space, IR n . 

Diameter of U : U = sup{ yx − : x,y ∈U}, i.e. the greatest distance apart of  any 

pair of points in U.  

{U i } : Countable (finite) collection of sets of diameter at most δ that cover F, i.e. 

F ∞
=⊂ 1iU U i  with  0< iU ≤ δ for each I .( I : interval ) 

Then we say {U i } is a  δ- cover of  F. ( A collection of sets with maximum diameter δ 

that covers F ). 

 

                      s
δΗ (F) = inf     s

i
iU∑

∞

=1
: {U i }      is a δ- cover of  F                     (2.1) 

 

Where F is a subset of  IR n , s  is a non-negative number. Thus we look at all 

covers of F by sets of diameter at most  δ and seek to minimize the sum of the  

s th powers of the diameters, as it is seen in Figure 2.3.  
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Figure 2.3. A set F and two possible δ- covers for F. 

 

 The infimum of s
iU∑ over all such δ-covers {U i } gives s

δΗ (F). As δ 

decreases, the class of permissible covers of F is reduced. Therefore, the infimum 
s
δΗ (F) increases, and approaches a limit as  δ → 0.  

 

                                                  sΗ (F) = 
οδ→

lim s
δΗ (F)                                                   (2.2) 

 
sΗ (F) is called the s- dimensional Hausdorff measure of  F. 

 

2.3.1.1. Characteristics of Hausdorff Measure 

 

• sΗ (Ø) = 0 

• sΗ (E) ≤ sΗ (F) , E is contained in F  

• sΗ ( U
∞

=1i

F i ) =  ∑
∞

=

Η
1i

s ( F i ) , if  {F i } is any countable collection of disjoint Borel 

sets.  

• nΗ (F) = C n vol n (F) , i.e. for subsets of  IR n , n-dimensional Hausdorff measure 

is, to within a constant multiple, just n-dimensional Lebesgue measure, namely 

the usual n-dimensional volume. 
0Η (F) : number of points in F. 
1Η (F) : the lenght of a smooth curve, F. 
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2Η (F) : (4/π) ×  area (F) , F being a smooth surface. 
3Η (F) : (6/π) ×  vol (F) 
mΗ (F) : C m ×  vol m (F)  if  F is a smooth m-dimensional submanifold of  IR n (i.e. m-

dim surface) 

 

2.3.1.2. Properties of Hausdorff Measure 

 

Open Sets : If  F⊂  IR n is open, then  dim Η F = n. Since F contains a ball of positive n-

dimensional volume. 

 

Smooth Sets : If  F is a smooth (i.e. continuously differentiable) m- dimensional 

submanifold (i.e. m- dimensional surface ) of  IR n then dim Η F = m. 

In particular, smooth curves have dimension 1 and smooth surfaces have dimension 2. 

Monotonicity : If E ⊂  F then dim Η E ≤ dim Η F.  

This is immediate from the measure property that Η S (E) ≤ Η S (F) for each s. 

 

Countable Stability : If  F1 , F 2  ... is a countable sequence of sets then 

dim Η
∞
=1iU  F i  = sup ∞≤≤i1 { dim Η F }. 

Certainly, dim Η
∞
=1iU  F i ≥ dim Η F j  for each  j from the monotonicity property. On the 

other hand, if  s> dim Η F i  for all i , then Η S (F i ) = 0  so that Η S ( ∞
=1iU  F i ) = 0, giving 

the opposite inequality. 

 

Countable Sets : If  F is countable then  dim Η F = 0 . For if   F i  is a single point, 

0Η ( F i ) = 1 and   dim Η F i = 0  so by countable stability  dim Η
∞
=1iU  F i = 0. 

 

Proposition (2) 

 

Let F⊂  IR n  and suppose that f : F→ IR m satisfies a Hölder condition 

f(x) – f(y) ≤ c yx − α , x,y ∈F 

Then dim Η f(F) ≤ (1/α)dim Η F 
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Corollary 

If   f : F→ IR m is a  bi-Lipschitz transformation, then   dim Η f(F) = dim Η F 

 

This corollary reveals a fundamental property of Hausdorff dimension: 

Hausdorff dimension is invariant under bi- Lipschitz transformations. 

Which is remiscent to if the topological invariants of two sets differ then there can not 

be a homeomorphism (continuous one–to–one mapping with continuous inverse) 

between the two sets. 

In topology, two sets are regarded as the same if there is a homeomorphism 

between them. One approach to fractal geometry is to regard two sets as the same if 

there is a bi- Lipschitz mapping in between. 

 

Proposition :  

A set  F ⊂  IR n with  dim Η F<1 is totally disconnected . 

 

Net Measures : 

For the sake of simplicity ; let F be a subset of the interval  [0,1). A binary interval is an 

interval of the form   [r2 k− , (r+1)2 k− ]    

where  k = 0,1,2...  ;   r = 0,1..., 2 k -1. 

M S
δ (F) = inf{∑ S

iU : { U i } is a δ-cover of  F  by binary intervals } 

M S (F) = 
0

lim
→δ

M S
δ (F)    (Net Measures)  

Η S (F) ≤ M S (F) ≤ 2 1+S Η S (F)    

 

It follows that the value of  s  at which  M S (F) jumps from  ∞  to  0  equalls the 

Hausdorff dimension of F, i.e. both definitions of measure give the same dimension.  

 For certain purposes, net measures are much more convenient than Hausdorff 

measures. This is because two binary intervals are either  disjoint or one of them is 

contained in the other, allowing any cover of binary intervals to be reduced to a cover of 

disjoint binary intervals. 
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2.3.1.3. Scaling Property 

 

                                                       sΗ (λF) = λ s sΗ (F)                                               (2.3) 

 

where λF = {λx : x∈F} , i.e. the set F is scaled by factor λ . 

 

Proposition (1) 

 

Let F⊂  IR n  and f : F→ IR m  be a mapping such that 

 

f(x) – f(y) ≤ c yx − α , x,y ∈F for constants  c>0 and α >0 . Then for each  s : 

 

                                                   α/sΗ (f (F)) ≤ C α/s sΗ (F)                                         (2.4) 

 

Case  

α = 1 gives Lipschitz mapping 

else, Hölder condition of exponent α.. Any differentiable function with bounded 

derivative is necessarily Lipschitz as a consequence of the mean value theorem. If f is 

an isometry, i.e.  

 

f(x) – f(y)  = yx − , then sΗ (f (F)) = sΗ (F) . 

 

Hausdorff measures are translation and rotation invariant. 
sΗ (F + z) = sΗ (F) , where   F + z = {x + z : x∈F} . 
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2.3.1.4. Hausdorff Dimension 

 

 
 

Figure 2.4. Medida Hausdorff Dimension Graph 

 

                                 dim Η F =  inf {s:Η S (F) = 0} = sup{s:Η S (F) = ∞}                  (2.5)                         

 

                          ∞  ,  if     s < dim H F 

    Η S (F) =                                                  

                          0  ,   if     s > dim H F 

 

Think of  s as a variable between  0 ≤ s ≤ n, it was shown in Figure 2.4. For a 

very simple example, let F be a flat disc of unit radius in  IR 3 . From familiar properties 

of length, area and volume,  
1Η (F) = length (F) ∞ ;  

0 < 2Η (F) = (4/π) ×  area (F) < ∞ ; 
3Η (F) = (6/π) ×  vol (F) = 0 . 

 

Thus dim Η F = 2    with Η S (F) = ∞  if  s < 2 

                                       Η S (F) = 0  if  s > 2 
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2.3.1.5. Alternative Definitions of Dimension 

 
Fundamental to most definitions of dimension is the idea of measurement at 

scale δ, we measure  a set in a way that ignores irrregularities of size less then  δ, and 

see how these measurements behave as  δ 0→ . 

Our measurement, M δ (F) might be the number of steps required by a pair of 

dividers set at length  δ  to traverse F. A dimension of  F  is then determined by the 

power low  (if any)  obeyed by   M δ (F)  as  δ 0→ . (See Figure 2.5) 

If  M δ (F) ~ cδ S− , c and s being constants, we may say that  F  has dimension  s  with  c  

regarded as the s-dimensional length of  F. 

 

Taking logarithims, 

 

log M δ (F)≅ log c – s log δ 

                                                    s = 
0

lim
→δ

 
δ

δ

log
)(log

−
FM

                                                 (2.6) 

                       

 

Figure 2.5. Power Law Assumption M δ (F) ~ cδ S−  
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There are no hard and  fast rules for  deciding whether a quantity may reasonable 

be regarded as a dimension. In general, one looks for some sort of scaling behaviour, a 

naturalness of the definition in the particular context and properties typical of 

dimensions such as: 

 

Monotonicity : If E ⊂  F then dim Η E ≤ dim Η F .  

Stability : dim Η (E∪ F) = max (dim Η E , dim Η F) . 

Countable Stability : dim Η
∞
=1iU  F i  = sup ∞≤≤i1 { dim Η F }. 

(Of the union of finite sets, the dimension of the union is the supremum of the set within 

the union). 

Geometric Invariance : dim Η f (F) = dim Η F  if  F  is a transformation of    IR n such as 

a translation , rotation, similarity or affinity. 

Lipschitz Invariance : dim Η f (F) = dim Η F  if  F  is a  bi- Lipschitz transformation. 

(Before and after the transformation, dimension stays the same ). 

Countable Sets : dim Η F = 0 if  F  is finite or countable. 

Open Sets : If  F  is  an open subset of  IR n , then  dim Η F = n .  

Smooth Manifolds : dim Η F = m   if  F is a smooth  m- dimensional manifold .  

 

Caution : 

Diffrent definitions of dimension could produce different results. 

Note : All the usual dimensions are Lipschitz invariant, and therefore, geometrically 

invariant. 

 

 The Hausdorff dimension is essential to define for arbitrary subsets of metric 

scales by a process involving an infimum and supremum. On the other hand it is very 

difficult to calculate this almost wonderful fractal dimension. Therefore there is a need 

of using another fractal dimension. The box-counting dimension is one of the 

dimensions, which seems to be easy to calculate. This dimension will be used in this 

thesis and detailed application will be given in chapter 3.  
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2.3.1.6. Box-Counting Dimension  

 
Box-counting dimension is also known as Kolmogorov entropy, entropy 

dimension, capacity dimension, logarithmic density and information dimension. 

 

Definition :  

F : Non- empty bounded subset of   IR n . 

N δ (F) : The smallest number of sets of diameter at most  δ  which can cover  F. The 

lower and upper box-counting dimensions of   F  are:  

 

         
δ

δ
δ log

)(log
lim)(dim 0 −

= →

FN
FB                 (2.7)     

  

 

        
δ

δ
δ

log
)(log

lim)(dim 0
−

= →
FN

FB                 (2.8) 

 

If these are equal, we refer to the common value as the box-counting dimension, or box-

dimension of   F. 

 

    
δ

δ

δ log
)(log

lim)(dim
0 −

=
→

FN
FB                  (2.9) 

 

N δ (F)  is any of the following: 

 

i. The smallest number of closed balls of radius δ  that cover  F. 

ii. The smallest number of cubes of side  δ  that cover  F. 

iii. The number of   δ-mesh cubes  that intersect  F. 

iv. The smallest number of sets of diameter at most  δ  that cover  F. 

v. The largest number of disjoint balls of radius  δ  with centers in  F. 
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2.3.1.7. Minkowski Content 

 

Recall  δ-parallel body   F δ  of   F  

F δ  = {x∈  IR n : yx − ≤ δ  for some  y∈F} 

We know consider the rate at which the n-dimensional volume of   F δ  shrinks as  

δ 0→ . In IR 3 , if  F  is a single point then  F δ  is a ball of  vol(F δ ) = 4/3π δ 3 , if  F  is a 

segment of length “l” then F δ  is a sausage-like with  vol(F δ ) ~ πl δ 2 . If   F  is a flat set 

of area  a then  F δ  is  a thickening of  F  with  vol(F δ ) ~ 2aδ. In each case  vol(F δ ) ~ 

cδ S−3  where the integer  s  is the dimension of   F, so that exponent of  δ  is indicative of 

the dimension. The coefficient  c  of  δ S−3  is known as the Minkowski Content of  F  , 

which is a measure of length , area or volume of the set as appropriate. If  F  is a subset 

of  IR n , and for some  s  vol n ( F δ )/ δ Sn−  tends to a positive finite limit as δ 0→ , then it 

makes sense to regard  F  as  s  dimensional. 

For example, for the case  F  being a point and  F δ  a ball then  

                                                        

3 = 3 – s     ⇒   s = 0                      δ
}↑
−S3  

                                                                 

                                                 4/3π δ 3  

 

Note : 

Box dimension is sometimes referred to as Minkowski dimension. 

 

2.3.1.8. Properties of Box-Counting Dimension 

 

i. A smooth m-dimensional submanifold of   IR n  has    dim B F = m 

ii. dim B  and dim B  are monotonic 

iii. dim B  is finitely stable , i.e. dim B (E∪ F) = max { dim B E , dim B F}   

though dim B  is not . 
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iv. dim B  and dim B  are Lipschitz invariant .Box dimensions behave just 

like Hausdorff dimensions under bi- Lipschitz  and Hölder 

transformations . 

 

Problems :  

Let  F   denote the closure of   F  (i.e. the smallest closed subset of   IR n  containing  F ) 

 

dim B F = dim B F 

dim B F = dim B F . 

 

Consequence : 

If  F  is a dense subset of an open region of  IR n  then  dim B F = dim B F = n   

For example,  Let  F  be the (countable ) set of rational numbers between  0 and 1. Then  

F  is the entire interval  [0,1], so that   dim B F = dim B F =1 

Thus countable sets can have non-zero box dimension. Moreover, the box-

counting dimension of each rational number regarded as a one point set is clearly zero, 

but the countable union of these singleton sets has dimension 1. Consequently, it is 

genarally not true that  

 

      dim B
∞
=1iU F i  = sup i dim B F i                           (2.10) 

 

This severely limits the usefulness of  box-dimension. Small (countable) set of 

points can wreak havoc with the dimension. 

Fractal dimensions conserve the knowledge display in the preasymptotics. It is 

an unavoidable expansion of quantitative measurement concerning “degree of 

raughness” and “degree of emptiness”. Moving beyond pure mathematics, the use of 

fractal dimension soon faced its own fresh “anomalies”. 

From this point, a particular analysis exhibited many arguments involving the 

concept of dimension can be rephrased to be very attentive to the important information 

demonstrate in the preasymptotics  but ruined by asymptotics. It can be shown 

especially the case for the heuristics to clarify negative dimensions. When it is positive, 

it is ordinary measure of degree of roughness. When it is negative, it presents an 
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interesting innovation, in other words, a numerical measure of the “degree of 

emptiness”. It will be proper to give examples in order to explain this situation. In the 

plane, the intersection of  line and point, or of two points, are said to be, respectively, of 

dimensionas -1 and -2. Surprising but true, such negative values can actually be 

obtained experimentally, “(Gilbert 1982)”. 

 

2.3.1.9. Relation to Hausdorff Dimension 

 

          H S
δ (F) ≤ N δ (F) δ S                                 (2.11) 

 

                1 < Η S (F) = 
0

lim
→δ

H S
δ (F)                             (2.12) 

 

log N δ (F) + s log δ > 0 , if  δ  is sufficiently small. Thus; 

 

        
δ

δ
δ log

)(log
lim 0 −

≤ →

FN
s                            (2.13) 

 

so                  dim Η F ≤ dim B F ≤ dim B F                                                     (2.14) 

  

Interpretations : 

 

       
δ

δ

δ log
)(log

lim)(dim
0 −

=
→

FN
FB                  (2.15) 

 

means  N δ (F) ~ δ S−  for small  δ, where   s = dim B F. Or better put,  

 

                                         N δ (F) δ S →∞  if    s < dim B F   and,                     (2.16) 

                                              N δ (F) δ S →0   if    s > dim B F.                   (2.17) 

             N δ (F) δ S  = inf      ∑
i
δ S  : {U i }  is a  (finite)  δ- cover of  F                  (2.18) 
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Note : 

Box dimensions may be thought of as indicating the efficiency with which a set may be 

covered by small sets of equal size, whereas Hausdorff dimension involves  coverings 

by sets of small but perhaps widely varying size. 

 

Example : 

 

Let  F  be the middle third Cantor set : 

 

 
 

Figure 2.6. The Middle Third Cantor Set 

 

 

dim B F = dim B F = log 2/log 3 

 

N δ (F) ≤ 2 k    if   3 k− < δ ≤ 3 1+−k  

 

                             dim B F = 
0

lim
→δ δ

δ

log
)(log

−
FN

≤ 
∞→k

lim 13log
2log
−k

k

 = 
3log
2log                  (2.19) 

 

Also dim B F ≥ log 2/log 3 

Thus, at least for the Cantor set, dim Η F = dim B F, as it is demonstrated in Figure 

2.6. In addition to these explanations, Hausdorff dimension and box-counting dimension 

have their own properties and they are comparable in Table 2.1. below.  
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Table 2.1. Comparison of Hausdorff  and Box-Counting Dimension Properties  

                         “~ “means dim B  is finitely stable but dim B  is not. 

 

 

 

2.4. Self-Similarity  
  

An object can be said to be self-similar if it looks approximately the same on any 

scale. A self-similar object is precisely or nearly similar to a part of itself. In a way, a 

curve can be expressed to be self-similar if, every piece belonging to the curve, there is 

more and more much smaller piece that is similar to the whole curve. For instance, a 

side of the Koch snowflake is self-similar; it can be divided into two halves, each of 

which is similar to the whole, “(Hata 1985)”.  

Many objects in the real world are self similar, such as coastlines. They are 

statistically self-similar, because each part of them exhibits the same statistical 

properties at many scales. Self-similarity is a typical property of fractals, as it is 

mentioned in introduction part. In a different field of science, for example, for the 

design of computer networks, it also has significant results, because typical network 

traffic should have the self-similarity property .  
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2.5. Brownian Motion Self-Affinity 

 
A fractal could be described as  self-affine, if the scaling is done by different 

amounts in the x and y directions. By way of rescaling window, as it is seen in Figure 

2.7. the self-affinity could be exihibited, “(Marques 1999)”. 

 

 

 
 

Figure 2.7. The Rescaling Window of a Measurement 

 

Natural fractals can possess dissimilar scaling behaviours in different directions 

and therefore different local fractal dimensions may be required to characterize their 

complexity. These are multi fractals and possessing self-affinity. A particular case of 

self-affinity is the self-similarity, which implies isotropic transformation. For the time 

series, self-affine signals have to scale time and amplitude differently in order to retain 

its self-similar properties. The property self-affinity can be defined as wildness. 
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Theorem 

Self-similarity is valid for all fractals nevertheless self-affinity comprise multi-fractals . 

 

2.5.1. The Fractional Brownian Motion (fBM) 

 
The fractional Brownian motion was introduced by Mandelbrot and van Ness 

(1968), who already mentioned the phenomena in hydrology or fluctuations in solids as 

processes to be estimated by the fBm, “(Dieker 2004)”. In fact, the essential thinks were 

the experimental results of Hurst for improving the fBm as an interpretation for this 

phenomena and his finding is essential for a lot of natural time-series and this given 

relation was legitimate : 

 

(R/S) ∝  ∆t H−  

 

where R is the maximum range (= max - min) of the summed differences of the time 

series and S the standard deviation. H is referred to as the Hurst parameter or the 

parameter of self-similarity, “(Hutchinson 1981)”. Mandelbrot and van Ness (1968) 

defined the fractional Brownian motion as follows: 
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where Г(x) is the gamma function and B H (0,ω) b 0 . Mostly this initial condition is 0, 

“(Scheffer and Filho 2001)”.  

 

2.5.2. An Essential Codimension, Hurst  (Hölder) Exponent  

 
As it is mentioned above, H  is a codimension or Hölder (Hurst) exponent, 

discovered by the mathematician, H.E. Hurst, is now could be expressed as the 

“roughness exponent” by metallurgists. H.E. Hurst is a hydrologist, worked on a 

project, concerning the Nile river in the 1960s. His comparing method of the inflow and 

outflow of the Nile over many years was the most suitable statistical model of 

classifying series of data in connection with correlations between past and future events 
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and including different time scales. Re-scaled range analysis is the skeleton of its 

statistical measurement, which shows the degree of non-randomness intrinsic in a 

system. Two situations can be observed according to changing Hurst exponent values. 

A series of data are persistent if the Hurst exponent is calculated of value greater than 

0.5 and anti-persistent under the condition, the Hurst exponent is less than 0.5. The 

fractal dimension, namely the Hausdorff dimension D, of a system with Hurst exponent 

H, can be calculated through this simplest equation; 

 

                                                                 D = 2-H                             (2.20) 

 

2.5.3. Combination of Fractional Brownian Motion and Hurst 

Exponent  

 
In order to retain the self-similar properties of the Brownian motion trace the 

axes need to be scaled differently. As it is recognized from the Figure 2.8. below the 

time coordinate and the spatial coordinate were scaled in different manners. The first 

one was scaled up four times as long as the other one was scaled only by a factor two.  

 

 

Figure 2.8. The Scaling Relationship 
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By sliding a window of length TS over the trace the mean absolute separation in 

B(t) may be calculated by averaging the absolute difference, ∆B, for each slide step. 

The scaling relationship between the mean absolute separation along the fBm trace and 

the time of the separation is expressed as 

 

                                                       H
SH TB ∝∆                                        (2.21) 

 

 

Figure 2.9. Scaling t by a Factor 1/n. 

 

It demands a scaling of B H (t)  by a factor 1/n H . In other words, this  scaling 

property, concerning the relationship between fractional Brownian motion and the Hurst 

exponent in order to spend a zooming facility by mean of self affinity, it is clear in 

Figure 2.9, “(Hasfjord 2004)”. 

So that estimating the box counting dimension of a Brownian motion trace, the 

trace needs to be covered with boxes. On the other hand, due to the self- affine nature of 

the trace, the trajectory would not be self-affine and the height and base of the boxes 

needs to be scaled differently.  
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2.6. Multi-Fractals 

 
 This section provides a general introduction to multifractality. Chaotic, 

turbulent-like systems that belonging in different physical systems, have a chance to be 

explained through multifractal property. Multifractality is usually presented as 

intensive, scalar variables of nicely specified physical definition and chaotic structure. 

Generally, multifractality is proved by its statistical characteristic and it is demonstrated 

as a multiscaling, power-law behaviour. As mentioned earlier in the part of  “self-

affinity”, natural fractals can possess dissimilar scaling behaviours in different 

directions and therefore different local fractal dimensions may be required to 

characterize their complexity. 
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CHAPTER 3 

 

EXAMINATION OF TIME SERIES VIA FRACTAL 

GEOMETRY 

 
Simple deterministic non-linear systems can lead  to complex behaviour, which 

is statistically indistinguishable from that produced by a completely random process. 

One obvious outcome of this is that it may be possible to depict clearly complex signals 

using simple non-linear models. This gives the chance to develop a variety of novel 

techniques for the manipulation of such chaotic time series. In some situations, fractal 

geometry calculations are able to attain highly good performance.  

Customarily, the darkness of the science “uncertainty” has been modelled using 

probabilistic methods, it means that it was done by combining both random variables 

and processes in the same model. On the other hand in this thesis the concept of the 

fractal geometry, especially fractal dimension calculation to measure the complexity of 

ECG time series of observed data, obtained from various sensors, is used. 

 

3.1. A View to Non-linear Time Series in the Field of Fractals 

 
Mathematicians, scientists and engineers realized that uncertainty could also be 

produced in certain proper conditions by purely deterministic mechanisms. This 

phenomenon was revealed to be known as “chaos” and is primarily due to the capacity 

of many nonlinear dynamical systems to rapidly amplify an insignificant amount of 

uncertainty about the initial state of a system into an almost total lack of knowledge of 

its state at a later time. 
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3.2. Applications of Fractals and Fractal Geometry 

 
Because of being chaotic, time series could not be modelled by common non-

linear dynamics techniques. On the other hand all the areas, where these techniques are 

in use, are convenient to apply the fractal geometry measurements. For instances, 

diagnostic monitoring of engineering systems such as turbines, generators, gear-boxes. 

These all undergo complex deterministic vibrations and it is often important to detect as 

early as possible slight changes in their operating behaviour which indicate some 

malfunction such as a shaft, turbine blade or gear tooth beginning to crack. Similarly 

many biological systems exhibit highly deterministic nonlinear oscillations, e.g. the 

heart beat ECG, circadian rhythms, certain EEG (Electroencephalogram) signals etc. 

In many different branches it is possible to meet these techniques. For example, 

agglomerated properties of populations can in some circumstances show strongly 

deterministic features. Apart from obvious applications such as forecasting the 

transmission and development of epidemics, there is also interest developing and 

validating models of ecological systems and their interaction with man.  

Substantial effort can also be exhibited in applying these techniques to financial 

and economic data such as foreign exchange rates and stock market indices. It appears 

as though the behaviour of such systems has more structure than can be explained by 

traditional linear stochastic models.  

As it is explained ebove fractals and fractal geometry have different various 

scientific fields to apply. In addition to these explanations some areas, in which fractals 

and fractal geometry used exactly, should be expressed in a detailed manner in order to 

demonstrate the significance of this new method, using fractals and fractal geometry. 

 

3.2.1. Medical Applications of Fractals  

 
As a matter of fact, medicine is direct area to use fractals and fractal geometry. 

Direct because, almost the nature all of the creatures seems to be fractal and therefore 

can be explained only through fractal geometry, where the Euclidean geometry remains 

inappropriate to describe them. Such as histopathology, which is concerned with the 

study of the morphological changes in cells and tissues during disease.  These changes 
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take place at the microscopic or submicroscopic degree.  Histopathology assists to 

clarify histological images to make a diagnosis and selection of treatment.   

The analysis and description of such complex and not symmetrical morphologies 

is hard because of being qualitative and subjective. Fractal geometry  can get rid of 

these problems by  providing new approaches to objective measurement and 

understanding of shape complexity and it can enable  to model and understand many 

physical and natural process that previously were considered irregular and 

patternless. Here in this level it is meaningful to mention about autocorrelation, because 

time series, which is expressed as complex, is used in this thesis and autocorrelation 

function was utilized in order to find the correlation dimension to analyze its 

complexity. 

 

3.3. Autocorrelation  

 
Autocorrelation function is a time dependent function, which is identical, 

considering its time shifted replica, for all values of  t. In other words, the 

autocorrelation function measures the average magnitude of the correlation of two 

points separated in time with a lag t. This function has a maximum at  t = 0 which 

shows clearly that a function is most similar to itself when it has not been time-shifted, 

“(Web_2 1993)”. When there is no correlation in the time series then the expectation 

value of correlation function is zero.  

Autocorrelation function is computed by the formula: 
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xi represents i th  element of the series, τ is time delay (Optimal time lag) and N is equal 

to length of the series. τ is determined from the shape of the correlation function, as the 

position of its first decrease under 1/e or 1/10, “(Miksovsky and Raidl 2001)” and this 

value is used to find the embedded dimension in phase space, which gives the 

correlation dimension value. 
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3.3.1. Autocorrelation of Fractal Functions 

 
This theme is almost the backbone of this thesis, because the functions related to 

autocorrelation are directly the main way in order to estimate the fractal dimension by 

means of power law relations. 

As it was remarked, quantities varying with time often turn out to have fractal 

graphs. One way in which their fractal nature is often manifested is by a power-law 

behaviour of correlation between measurements seperated by time h.  

A measure of the correlation between  f  at times seperated by h is provided by 

the autocorrelation function 
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It could be seen that C(h) is positive if fhtf −+ )(  and  ftf −)(   tend to have 

opposite sins. If there is no correlation, C(h)= 0.  

Autocorrelations provide several methods of estimating the dimension of the 

graph of a function or signal  f . The autocorrelation function  C(h) or equivalently, the 

mean-square change in signal in the time  h  over a long period could be computed, and 

so 
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If the power-law behaviour 
schhCC 24)()0( −≅−  

 

is observed for small h, it might be expected that the box dimension of graph  f   to be  s. 

In other words, 
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if this limit exists. 

It should be known about  C(0)-C(h)  for small  h; typically this depends on the 

behaviour of its transform S(ω)  when ω  is large. The situation of greatest interest is 

when the power spectrum obeys a power law  S(ω) ~ c /ωα  for large  ω, in which case 

 

 )()0( hCC − ~ bh 1−α  

 

for small  h, for some constant  b.  

 

Comparing these equations 

 
schhCC 24)()0( −≅−           and         )()0( hCC − ~ bh 1−α    ; 

 

suggests that graph  f  has box dimension  s  where   4-2s = α-1, or   s = 
2
1 (5-α). Thus it 

is reasonable to expect a signal with a 1/ωα  power spectrum to have a graph of 

dimension  
2
1 (5-α), “(Falconer 1990)”.  

 

3.4. The Purpose of Existence of Fractional Dimensions 

 
Fractal analysis is a proper way to apply to a variety of research fields to 

characterize highly irregular and nonstationary data. Showing a time series fractal 

properties, its self-similarity can be described by the fractal dimension value D. For  the 

fractal dimension estimation usually a complex  rectification procedure is demanded.  
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3.5. Fractal Analysis of Time Series 

 
In this thesis also the correlation method was used to find the fractal dimension. 

Actually it seems something different from examined two fractal dimension calculation 

methods, whereas the main idea is almost the same. Other fractal dimension calculation 

methods, exactly the box-counting method and roughly the Hausdorff method are also 

examined. In the lightening of these examinations it is clear that fractal analysis can 

bring a new insight to other signal processing methods, concerning reliable system 

characterization under changing external conditions. 

 

3.5.1. Correlation Method 

 
Gaussian probability density functions give the facility to describe the 

investigated time series as stochastic processes by means of  consequential time-series 

analysis methods. Moreover, through calculating the power spectral density functions 

by the commonly used FFT algorithm, it could be supposed that the time series is 

stationary. These assumptions are quite restrictive and they are rarely met in real life. 

Fractal analysis methods do not make such assumptions and in addition to do this, they 

can supply different kinds of solutions to the emerging difficulties. Here the major steps 

of the analysis are outlined. It can be approximated by the correlation function that we 

have already encountered. Instead of analyzing what happens when we shrink covering 

sets, this function measures the distance between each pair of points in a space and then 

counts all the pairs which fall within a specified radius. (See Figure 3.1.) When we 

expand the radius to include all the points of interest, we have a good idea about the 

structure of the space.    
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Figure 3.1. Correlation Dimension Designation 
 

 

Obtaining of correlation dimension is applying the same idea as the Hausdorff 

dimension. But there is an exception due to using circles instead of squares. Let R be 

the radius of the circle and let N(R) be the number of pixels that were occupied within 

the radius of the circle. The correlation dimension is then defined by: N(R) ~ RC where 

C is the correlation dimension. Taking the logarithm of both sides will give an equation 

that matches the form of the equation for a line: logN = C logR so that with several 

different size of circles and plotting logN versus logR the slope of the line will express 

the correlation dimension, “(Ringler and Roth 2002)”.  

 

3.5.2. Hausdorff Method 

 
To determine the Hausdorff dimension of a space, we must then determine 

whether this measurement diverges to infinity as we shrink d, that is, as we make our 

collection of covering sets smaller and smaller. It happens that there is a unique value 

for s where this value will not diverge, and that determines the Hausdorff dimension.  
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dim Η F =  inf {s:Η S (F) = 0} = sup{s:Η S (F) = ∞} 

 

                          ∞  ,  if     s < dim H F 

    Η S (F) =                                                 Think of  s as a variable between  0 ≤ s ≤ n .  

                          0  ,   if     s > dim H F 

 

(See Figure 2.5. in Chapter 2) 

 

Obviously, but unfortunately, direct calculation of the Hausdorff dimension is 

often intractable. There is no formula, Hausdorff measure of a set can be considered as a 

measure that covers this set using balls of different diameter. This the similar idea to 

that of the box-counting dimension, however in the case of the Hausdorff measure the 

balls covering the set vary in diameter.  

Hausdorff dimension has the advantage of being defined for any set, and is 

mathematically convenient, as it is based on measures, which are relatively easy to 

manipulate. A major disadvantage is that in many cases it is hard to calculate or to 

estimate by computational methods. Therefore in this thesis, the Hausdorff dimension 

was calculated using the formula D H  = 2- H, including the Hurst exponent H, through 

the package software “Fractan” (From Institute of Mathematical Problems of Biology 

RAS). 

 

3.5.3. Box-Counting Method 

 
Fractal dimensions are important quantities in characterizing the geometric 

structure of strange sets. In particular, they provide measures of the arbitrarily fine scale 

structure of invariant sets generated by chaotic processes. From a practical point of 

view, they also provide an estimate of the minimum number of degrees of freedom 

needed to describe the dynamical evolution of these chaotic systems. One of the 

simplest and most intuitive definitions of the fractal dimension of a strange set is the 

box-counting dimension D B . 
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Given a fractal set in a d-dimensional Euclidean space, D B  gives the scaling 

between the number of d-dimensional ε  boxes needed to cover the set completely, and 

the boxes’ size ε , “(So et al. 1999)”. 

 

                                                     D B  = 
0

lim
∈→ )/1ln(

))(ln(
ε
εN                                                 (3.2) 

 

Direct application of these geometric definitions to chaotic dynamical systems is 

difficult, since as ε  decreases it becomes impossible to determine all theε  boxes 

visited by a given trajectory from a finite amount of data. This problem is especially 

severe for the box-counting dimension, because it can depend heavily on regions 

infrequently visited by a typical trajectory. 

 

3.6. Box-counting Dimension Calculation 

 
 A time series is plotted through a small code in matlab, using the data of 

observed specimen. This signal is recorded according to a sampling interval, concerning 

the starting and ending times in seconds until reaching at the proper sample size. This 

method could be applied to various kind of signals. For instance an ECG signal in 

Figure 3.2. was held to demonstrate the usage of box-counting method in order to 

estimate the dimension of the signal. In Figure 3.2., x-axis shows the sampling time in 

seconds and the y-axis shows the unit in milivolts. 
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Figure 3.2. An ECG Time Series 

 

For this ECG time series  

•   sampling interval is 1/180 second  

•   starting time is taken to be 0.31 seconds  

•   ending time is taken to be 11.6822... seconds  

•   units for this time series are in millivolts  

•   sample size is 2048  

 

 

 
Figure 3.3. ECG Signal in bmp Form 
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Recorded ECG signal was converted into the “bmp” form, as it is seen in Figure 

3.3., in order to use fractal dimension calculator. [From Bar-IIan University] This fractal 

dimension calculator uses box-counting method, as it is given in the definition, the 

signal was covered with boxes of the same size. 

During this stage, it is very significant to care about how to make the covering, 

because the whole signal should be covered without any dislocation. If there exist some 

occupying failures for the signal, the calculated box-counting dimension loses indirectly 

its accuracy. In other words, being less or more boxed of the signal, change the value of 

the dimension, because number of boxes affects clearly the estimation of dimension, it 

can be seen from the box-counting dimension formula in a direct manner. On the other 

hand there are some confusions, thinking about  the efficiency of the boxcovering. Also 

the cover-style can play a role in changing of the value of dimension. It means that 

different boxing types create different box numbers. This change results from the 

lacunas, occuring in the boxes. Counting the boxes without caring about the emptiness 

in them is the same approach as counting money without caring about the value of 

banknotes and this reason points at also mis-computation of the box-counting 

dimension. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. After Covering ECG Time Series With Boxes 
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This example gave a covering as it is seen in Figure 3.4. At this measurement 

865 boxes size of  7 were obtained. In order to make accurate measurement, different 

box sizes were used. According to changing box sizes  various number of boxes were 

calculated and it was demonstrated in Table 3.1. 

 

 

Table 3.1. Box Sizes and Counted Boxes 

 

Box-size 1 2 4 6 7 8 25 59 60 86 127

Box # 10627 4294 1771 1065 868 772 173 42 39 22 11 

 

 

These data given above in the table were used to be able to plot a regression line. 

Taking the general fractal dimension formula, the logarithmic N(E) values and the 

logarithmic E values have a linear relationship, if we consider these values in a 

coordinate system. The formula of fractal dimension  D B  is below; 

 

                                                       D B  =  
E
EN

log
)(log                                                    (3.3) 

 

The linear relationship takes place in the coordinate system, showing the 

logarithmic N(E) values on the y-axis and the logaritmic E  values on the x-axis. 

(Plotted regression line can be seen in Figure 3.5.). The regression line results from this 

linear relationship, in other words if there is a linear relationship, there is also the 

facility to find the optimal box number to calculate the box-counting dimension.   

In this step, data coming from the package program, including box sizes and box 

numbers, were used in order to calculate the box-counting dimension. This program 

provides data in different box-sizes and box-numbers. These data  were composed with 

a well-known method, named “Simple Linear Regression” especially “Least Square 

Method”, which is an useful and popular technique in the field of statistics, to find the 

box-counting dimension via the slope of the regression line.  
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3.6.1. Determination of Regression Equation 

 
A proper way to express the relationship between two group of variables is, 

building a line, including all data. 

Its primitive mathematical formula is; 

 

                                                                   y = a + bx                                                  (3.4) 

 

On the other hand statistics has developed this formula and defined in a different 

form. In order to obtain the predicted regression line equation, firstly the error term of 

the model should be examined and it was given in the formula below.  

 

                                                          e = y - β 0 - β 1 x                                                   (3.5) 

 

For all observations, square of this term could be defined so 
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For the least square method, b 0  and b1  are the predicted values of  β 0  and  β 1 , 

which give the smallest value to the result of the equation above. If this equaton will be 

derivatized according to β 0  and  β 1 , and then calculated, concerning it will be equal to 

zero, the predicted value of β 1  will be equal to  b1 , which can be expressed as, 
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and the predicted value of  β 0  will be b 0 , which is equal to this formula. 

 

                                                             xbyb 10 −=                                                     (3.8) 
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The equation of the regression line, that is the best fit to data, could be described as, 

 

                                                             xbby 10ˆ −=                                                      (3.9) 

 

where ŷ  is the predicted value of  y, “(İkiz et al. 2000)”.  

Estimation of regression equation requires some simple calculations, for 

instance, ∑ xy , ∑ x , ∑ y , ∑ 2x , 2)(∑ x , x , y  should be  done necessarily to 

construct the equation, through finding 0b  and 1b  values. (These calculations were 

made through excel program) As another step, plotting the regression line is the quality 

of being absolutely essentialnes, because of demostrating, how to fit the choosen points 

in pairing of box-size and box-number to the regression line. On the other hand the box-

counting dimension could be found without plotting the regression line. This reasoning 

results from the simple box-counting dimension equation, according to the fact that the 

expected value of the equation exhibits the idea, which is that the slope of the regression 

line could give the box-counting dimension. In the lightening of this expression, the 

box-counting dimension value can be obviously seen from the regression equation, 

because it is a linear equation and the value of 1b  gives the slope of  the regression line, 

exactly being equal to the value of box-counting dimension. It can be seen also from the 

mathematical form of fractal dimension formula. 
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Figure 3.5. The Regression Line Plot 

 

In order to be able to use the package program, the signal should be converted 

into bmp form, because this program permits to process signals only in this form. It 

does not allow any colored format except from the black-white. By way of this program 

the signal was covered with boxes. Box sizes were randomly selected and box numbers 

were automatically computed. Tables were organized, including defined box sizes and 

box numbers, belonging them to simplify seeing data together. Unfortunatelly these 

measurement results could not be used concerning the box-counting dimension formula, 

because logarithmic values should be calculated, in order to obtain accurate box-

counting dimension value. 

 

3.7. Demonstration of Accuracy of Fractal Dimension Methods 

 
Actually, the main idea of this thesis is showing the situation of ECG time series 

in different states with a numerical value by way of three kinds of fractal dimension 

method for an easy comparison. On the other hand it is the fact that there is the need of 

proving the accuracy of these methods. Therefore a sinusoidal wave was examined 

using correlation, Hausdorff and box-counting dimensions, in the lightening of  the 

knowledge that this sinusoidal wave should have the value of nearly one as dimension, 

because of having low degree of roughness. (The sinusoidal wave is seen in Figure 3.6.) 
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Figure 3.6. Sinusoidal Wave (Sample size: 1215) 
 

 

 
Figure 3.7. The Autocorrelation Function Graph of  Sinusoidal Wave 

 

The autocorrelation function graph of sinusoidal wave was plotted as it is seen 

from the Figure 3.7. and the optimal time lag has the value of 256. This optimal time lag 

is the key of finding the embedded dimension in the phase space and also proportionally 

to find the correlation dimension. 
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Figure 3.8. The Correlation Dimension Graph of  Sinusoidal Wave 

 

 

In Figure 3.8. D represents the correlation dimension and  n  represents the 

embedded dimension. Correlation dimension value is 1,551 and embedded dimension 

value is 2. The correlation dimension value could be seen, where the embedded 

dimension value makes the maximum on the y axis. 

 

 

 
 

Figure 3.9. The Hurst Exponent and the Hausdorff Dimension Graph of  Sinusoidal 

                       Wave 

 

 

Figure 3.9. shows the Hurst exponent value, it is calculated from the slope of the 

line and its value is 1,0122. Hausdorff dimension value could be found using the 

equation “D = 2- H” and it is equal to 0,9878. 
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Table 3.2. Calculated Box Sizes and Box Numbers of Sinusoidal Wave 
 

Box size 1 8 14 24 42 61 86 104 130 163 198 256

Box 

number 1143 185 100 62 36 24 17 12 11 10 5 4

 

 

Logarithmic values of box sizes and box numbers, as it is seen in Table 3.2., 

were utilized to compute the regression equation. 

 

Regression Equation 
 
y = 7,2358-1,0092x 
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Figure 3.10. The Regression Line Graph of  Sinusoidal Wave 
 

Logarithmic values of box sizes were demonstrated on the x-axis and 

logarithmical box numbers on the y-axis in Figure 3.10. The slope of this regression line 

gives the box-counting dimension, it could be recognized also from its own formula and 

it is equal to 1,0092. 

According to these results, two techniques indicate high degree of accuracy apart 

from correlation dimension, because the value of sinusoidal wave dimension should be 
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nearly one, concerning that the line has the Euclidean dimension value of one. 

Hausdorff and box-counting dimension methods gave almost accurate values, where the 

correlation dimension value is quite high.  

In this chapter, some of the dimension calculation techniques for the detection of 

fractals from experimental time series  have been introduced, unavoidably containing 

measurement and intrinsic noise, after giving short theoretical backgrounds for the 

methodologies. Although these methods will be shown to be useful in detecting hidden 

nonlinear structures in real world data, it should not be ruled out that no single 

technique is adequately powerful to inspect fractals with 100% confidence. Therefore in 

this thesis three different kinds of fractal dimension calculation techniques were used in 

order to reach at most accurate comparing facility. 
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CHAPTER 4 

 

FRACTAL DIMENSION MEASUREMENTS AND 

APPLICATIONS 

 
The heart can be thought as a system, although it is not a mechanical structure. It 

has its own dynamics, concerning the flow of the blood by way of muscle pumps. Like 

mechanical systems, the heart performance could be observed through signals, which is 

called ECG. From this point it is clear that to bring some approaches about dimension 

measurements of  ECG signals in order to set a new criterion to estimate the 

performance of any system. Therefore in this chapter four states of three persons were 

examined, according to ECG signals.  

These three persons were selected from the same age and height. They are in the 

range 23-25 years of age and 1.80-1.90 meter of height. Person-2 and person-3 are 

assistans at the university and the third person is a student. They are nonsmokers and 

carry on a systematic, healthy life. In addition, they have not any diagnosed disease. 

Three sensors were used to obtain the ECG signals, two of them were tied on the inside 

of the elbows and the other one on the inside of the wrist. Normal ECG measurements 

were made from six points and more detailed signals can be obtained. Another 

disadvantage is that measurements are noisy in unwanted manner. 

Measurements in state-1 were made under normal conditions, exactly the 

persons were calm during measurements. On the other hand for state-2, persons were 

expected to walk in order to realize the effect of movement. The walk was getting 

rapider than the state-2, while making new measurements for the third state. Finally, 

three persons’ ECG signals were extracted during running in order to set the state-4. 

These measurements were made for three persons for two applications. First application 

was made taking the circa 5 efficient second period, for aproximatelly 1000 samples of 

size of ECG signals and the second was made for the whole of the measured ECG 

signals. The size of the signals in application-2 are different from each other, they also 

were given above ECG signal graphs as information. Totally 24 signals were obtained 

and these signals were processed to compute/calculate fractal dimensions. The idea of 

comparing fractal dimensions is the lightening of using three different dimension 
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calculation methods, namely Hausdorff dimension method, Correlation dimension 

method, Box-counting dimension method. 

 

4.1. Explanations of Graphs for Estimation of Correlation and 

Hausdorff Dimensions 

 
As it was mentined earlier the behaviour of time series could be analyzed by 

means of autocorrelation. In other words, autocorrelation provides the consideration, 

how data points are correlated in a strong manner with a time lag. This time lag falls to 

1/e, which is called the correlation time. It is expexted that the samples to be forcefully 

correlated each other with the time lag. 0 and 1 values are very significant, handling the 

autocorrelation function, for a zero lag autocorrelation equals to one, whereas it almost 

equals to zero at large time lags. (Autocorrelation function graphs were demonstrated in 

Appendix C). Correlation time plays a consequential role in the way of finding the 

correlation dimension and it can be thought as a bridge between correlation function and 

correlation dimension. Optimal time lag, obtained from autocorrelation function is also 

the time lag in embedding space, which is the way of finding embedded dimension and 

correlation dimension. From this view, correlation dimension is a measure of how 

correlated are the data points. 

Hausdorff dimension is the second parameter in order to compare fractal 

dimensions. Nevertheless there are some difficulties in calculating this dimension 

because of lack of explicit formula. Therefore here the Hurst exponent was used to 

determine the Hausdorff dimension via calculation of this simple equation “D H  = 2 –

H”. Hurst exponent is the result of the Rescaled Range (R/S) statistic analysis. The R/S 

statistic is calculated for 10 equally spaced values of the time step t and for 50 

logarithmically spaced values of the lag k. The slope of the line of best fit through these 

points gives the Hurst exponent value. 

After short recalling these explanations, the analysis of ECG signals, belonging 

to person-1 for four states were examined here in order to determine the correlation 

dimension and the Hausdorff dimension.  
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4.2. Correlation Dimension, Hausdorff Dimension and Box-counting 

Methods Applications 

 
In the third chapter detailed information about Hausdorff dimension, correlation 

dimension and box-counting dimension calculations were given. This part of this 

chapter deals with the applications of these techniques for the first person, concerning 

four states.  

 

4.2.1. Application-1 for Correlation and Hausdorff Dimensions 

 

4.2.1.1. Person -1 & State -1 (Normal) 

 

• Sample size: 1038 

• Sampling interval: 1/200 seconds 

• Sampling duration: 5.185 seconds 

• X-axis: Time in seconds 

• Y-axis: Amplitude in milivolts 

 

 

 
Figure 4.1. ECG Signal of Person-1 & State-1 (Application-1) 
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Figure 4.1. shows the ECG signal of person-1 & state-1 (Application-1). This 

signal seems to be deterministic as it is recognized that it repeats itself in a periodic 

manner. On the other hand it is the fact that the ECG signals are not completly 

deterministic. 

 

 

 
Figure 4.2. Correlation Dimension Graphic of Person-1 & State-1 (Application-1) 

 

 

In Figure 4.2. D represents correlation dimension on the y-axis and n represents 

the embedded dimension on the x-axis. Correlation dimension value is 3.462, where the 

embedded dimension value is 4. Correlation dimension value is not too low, it also 

could be followed from autocorrelation function graphic, it rarely drops under 0 value. 

 

 

 
Figure 4.3. Hurst Exponent H and Hausdorff Dimension D of Person-1 &  

                               State-1 (Application-1) 
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Hurst exponent computation is demonstrated in Figure 4.3. and the H value is 

0.7246, automatically from the equation it is easy to find the Hausdorff dimension at the 

value of 1.2754. 

 

4.2.1.2. Person-1 & State -2 (Walk) 

 

• Sample size: 1089 

• Sampling interval: 1/200 seconds 

• Sampling duration: 5.44 seconds 

• X-axis: Time in seconds 

• Y-axis: Amplitude in milivolts 

 

 

 
 

Figure 4.4. ECG Signal of Person-1 & State-2 (Application-1) 

 

 

ECG Signal of Person-1 & State-2 (Application-1) in Figure 4.4. is something 

different as it is compared to ECG Signal of Person-1 & State-1 (Application-1). It can 

be realized that movements begin, concerning the undulation of the signal.  
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Figure 4.5. Correlation Dimension of Person-1 & State-2 (Application-1) 

 

 

Correlation Dimension as D and embeded dimension as n  were represented in 

Figure 4.5. As numerical values, correlation dimension has the value of 4.031 and 

embedded dimension 5. It is clear that the correlation dimension value increases in this 

state, the autocorrelation graphic exhibits also this increase, because the values of 

correlation never drop under 0. 

 

 

 
 

Figure 4.6. Hurst Exponent H and Hausdorff Dimension D of Person-1 &  

                               State-2 (Application-1) 
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The H value is 1.0482 as it was computed in Figure 4.6. and D H  is 0.9518 

according to this value. Hausdorff dimension value decreases in the second state 

contrast to correlation dimension value. 

 

4.2.1.3. Person-1 & State-3 (Rapid walk) 

 

• Sample size: 1000 

• Sampling interval: 1/200 seconds 

• Sampling duration: 4.995 seconds 

• X-axis: Time in seconds 

• Y-axis: Amplitude in milivolts 

 

 
 

Figure 4.7. ECG Signal of Person-1 & State-3 (Application-1) 

 

 

Although this ECG Signal of Person-1 in Figure 4.7. has been measured after 

rapid walk, it seems almost the same as the signal in state-1. It also looks periodic and 

normal, like in the first state. On the other hand it is obvious that the behaviour of the 

signal begins to change near the last samples. 
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Figure 4.8. Correlation Dimension of Person-1 & State-3 (Application-1) 

 

 

In Figure 4.8. D, symbolizing the correlation dimension, was measured as the 

value of  3.863, giving the embedded dimension n at the value of 5. Correlation 

dimension value is not low. Autocorrelation function graphic values drop rarely under 

0. 

 

 

 
 

Figure 4.9. Hurst Exponent H and Hausdorff Dimension D of Person-1 &  

                               State-3 (Application-1) 
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According to Hurst exponent value, which was computed from Figure 4.9., 

Hausdorff dimension was calculated as 1.3824, where H was 0.6176. 

 

4.2.1.4. Person-1 & State-4 (Run) 

 

• Sample size: 1004 

• Sampling interval: 1/200 seconds 

• Sampling duration: 5.015 seconds 

• X-axis: Time in seconds 

• Y-axis: Amplitude in milivolts 

 

 

 
 

Figure 4.10. ECG Signal of Person-1 & State-4 (Application-1) 

 

 

ECG Signal of Person-1 & State -4 (Application-1) in Figure 4.10. shows the 

period again but more frequently. In other words these perios are rather short, 

comparing normal state. 
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Figure 4.11. Correlation Dimension of Person -1 & State-4 (Application-1) 

 

 

Correlation Dimension of Person-1 & State-4 has the value of 2.373, which is 

represented as D in Figure 4.11. against the embedded dimension value of 3, 

represented as n. Correlation dimension value decreases, concerning other three 

situations. Looking at the autocorrelation function graphic (See Appendix A) it can be 

easily realized, because the autocorrelation values have a decreasing trend. 

 

 

 
 

Figure 4.12. Hurst Exponent H and Hausdorff Dimension D of Person-1 &  

                               State-4 (Application-1) 
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As it is seen from the Figure 4.12. Hurst exponent and Hausdorff dimension 

values were computed. H = 0.8445, D H  = 2 – H = 1.1555. Hausdorff dimension value 

keeps decreasing in the fourth state like the correlation dimension value. 

 

4.2.2. Application-1 for Box-counting Dimension 

 

4.2.2.1. Person-1 & State-1 (Normal) 

 
Table 4.1. Calculated Box Sizes and Box Numbers of ECG Signal of Person-1 &  

                       State-1 (Application-1) 

 

Box size 1 7 23 52 91 120 140 167 186 205 228 251 256 

Box 

number 7453 564 119 40 20 12 10 6 6 6 6 4 4 

 

 

Regression Equation 

 

ŷ = 8,97 – 1,36x 
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Figure 4.13. The Regression Line Graph of Person-1 & State-1 (Application-1) 
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4.2.2.2. Person-1 & State-2 (Walk) 

 
Table 4.2. Calculated Box Sizes and Box Numbers of ECG Signal of Person-1 &  

                       State-2 (Application-1) 

 
Box size 1 16 32 53 96 138 174 206 226 246 256 

Box 

number 4817 132 56 29 12 8 6 5 5 5 5 

 

 

Regression Equation 

 

ŷ = 8,41 + 1,26x 
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Figure 4.14. The Regression Line Graph of Person-1 & State-2 (Application-1) 
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4.2.2.3. Person-1 & State-3 (Rapid Walk) 

 
Table 4.3. Calculated Box Sizes and Box Numbers of ECG Signal of Person-1 &  

                       State-3 (Application-1) 

 
Box size 1 7 31 55 86 117 149 180 211 238 256 

Box 

number 7016 564 81 41 27 16 9 8 6 6 6 

 

 

Regression Equation 

 

ŷ = 8,82 – 1,29x 
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Figure 4.15. The Regression Line Graph of Person-1 & State-3 (Application-1) 
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4.2.2.4. Person-1 & State -4 (Run) 

 
Table 4.4. Calculated Box Sizes and Box Numbers of ECG Signal of Person-1 &  

                       State-4 (Application-1) 

 
Box size 1 8 16 25 36 47 74 102 135 170 207 234 251 256 

Box 

number 7988 612 232 129 74 52 22 16 9 6 6 6 4 5 

 

 

Regression Equation 

 

ŷ = 9,16 – 1,39x 
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Figure 4.16. The Regression Line Graph of Person-1 & State-4 (Application-1) 
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4.2.3. Application-2 for Correlation and Hausdorff Dimensions 

 

4.2.3.1. Person-1 & State-1 (Normal) 

 

• Sample size: 11238 

• Sampling interval: 1/200 seconds 

• X-axis: Time in seconds 

• Y-axis: Amplitude in milivolts 

 

 

 
 

Figure 4.17. ECG Signal of Person-1 & State-1 (Application-2) 

 

 

This application was made for further sample numbers and it looks more 

crowded than the other application measurements as seen in Figure 4.17. This is normal 

states signal but there are some movements during 4500-5500 sampling, resulting from 

persons arm actions in this period. 
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Figure 4.18. Correlation Dimension Graphic of Person-1 & State-1 (Application-2) 

 

 

Correlation dimension D and embedded dimension n could be seen from Figure 

4.18. Their measured values are 5,251 and 6. Correlation dimension value is quite high 

and looking at the autocorrelation function graphic (See Appendix C) the reason of 

being high dimensional could be understood. 

 

 

 
Figure 4.19. Hurst Exponent H and Hausdorff Dimension D of Person-1 &  

                               State-1 (Application-2) 

 

 

Hurst exponent and Hausdorff dimension values were calculated according to 

ECG Signal of Person-1 & State-1 as it is demonstrated in Figure 4.19. Hausdorff 

Dimension value is 0,9388, where H equals to 1,0610. 
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4.2.3.2. Person-1 & State-2 (Walk) 

 

• Sample size: 4789 

• Sampling interval: 1/200 seconds 

• X-axis: Time in seconds 

• Y-axis: Amplitude in milivolts 

 

 

 
 

Figure 4.20. ECG Signal of Person-1 & State-2 (Application-2) 

 

 

ECG Signal of Person-1 & State-2 tends to have partly undulation, shown in 

Figure 4.20. Because of movements of person-1 this undulation occured and therefore 

ECG signal looks not periodic. 
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Figure 4.21. Correlation Dimension of Person-1 & State-2 (Application-2) 

 

 

In this measurement correlation dimension value was quite high as it is 

recognized in Figure 4.21. It has the value of 6,148. In addition to this high dimension 

value, aotocorrelation values are also high, close to one. 

 

 
 

Figure 4.22. Hurst Exponent H and Hausdorff Dimension D of Person-1 &  

                                State-2 (Application-2) 

 

 

In Figure 4.22. Hurst exponent graphic was demonstrated and according to 

calculations results values are; H = 0,8669 and D H  = 1,1331.  
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4.2.3.3. Person-1 & State-3 (Rapid walk) 

 

• Sample size: 3000 

• Sampling interval: 1/200 seconds 

• X-axis: Time in seconds 

• Y-axis: Amplitude in milivolts 

 

 

 
 

Figure 4.23. ECG Signal of Person-1 & State-3 (Application-2) 

 

 

ECG Signal of Person-1 & State -3 in Figure 4.23. shows an abnormal behaviour 

between 1000 and 1200 samples. It can result from surroundings conditions or 

physiology of Person-1, because in the first application this behaviour did not occur in 

the same state. 
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Figure 4.24. Correlation Dimension of Person-1 & State-3 (Application-2) 

 

 

Correlation dimension value decreases again but does not reach at too low 

values and it is exhibited in Figure 4.24. Embedded dimension n has the value of  8, 

while correlation dimension D was taking the value of 5,627 and autocorrelation values 

never drop under 0, they are near 1. 

 

 

 
 

Figure 4.25. Hurst Exponent H and Hausdorff Dimension D of Person-1 &  

                               State-3 (Application-2) 
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H and D H  values were computed in Figure 4.25., taking the values H= 1,1846 

and D H = 0,8154. The Hausdorff dimension value decreases, concerning the two first 

states. 

 

4.2.3.4. Person-1 & State-4 (Run) 

 

• Sample size: 2004 

• Sampling interval: 1/200 seconds 

• X-axis: Time in seconds 

• Y-axis: Amplitude in milivolts 

 

 

 
 

Figure 4.26. ECG Signal of Person-1 & State-4 (Application-2) 

 

 

Although ECG Signal of Person-1 & State -4 was measured after run, this signal 

looks so regular that it seems like the signal in normal state. It shows a frequently 

periodic behaviour, given in Figure 4.26. 
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Figure 4.27. Correlation Dimension of Person-1 & State-4 (Application-2) 

 

 

By way of finding the embedded dimension n at the value of 5, correlation 

dimension D was computed as 4,620, demonstrated in Figure 4.27. Correlation 

dimension value decreases, handling other three states. It could be also recognized from 

the autocorrelation function graphic, because rarely autocorrelation values drop under 0. 

 

 

 
 

Figure 4.28. Hurst Exponent H and Hausdorff Dimension D of Person-1 &  

                                State-4 (Application-2) 

 

 

Figure 4.28. shows the Hurst exponent H and Hausdorff dimension D H  of 

Person-1 & State-4 of Application-2, with values; H = 0,7437 and D H = 1,2563. 
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4.2.4. Application-2 for Box-counting Dimension 

 

4.2.4.1. Person-1 & State-1 (Normal) 

 
Table 4.5. Calculated Box Sizes and Box Numbers of ECG Signal of Person-1 &  

                       State-1 (Application-2) 

 

Box size 1 17 37 53 65 79 90 143 206 256 

Box 

number 20816 277 76 43 31 22 19 9 6 6 

 

 

Regression Equation 

 

ŷ = 9,86 – 1,520x 
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Figure 4.29. The Regression Line Graph of Person-1 & State-1 (Application-2) 
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4.2.4.2. Person-1 & State-2 (Walk) 

 
Table 4.6. Calculated Box Sizes and Box Numbers of ECG Signal of Person-1 &  

                       State-2 (Application-2) 

 
Box size 1 39 75 119 143 163 186 200 222 256 

Box 

number 12804 63 27 12 9 8 6 6 6 4 

 

 

Regression Equation 

 

ŷ = 9,46 – 1,449x 
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Figure 4.30. The Regression Line Graph of Person-1 & State-2 (Application-2) 
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4.2.4.3. Person-1 & State-3 (Rapid Walk) 

 
Table 4.7. Calculated Box Sizes and Box Numbers of ECG Signal of Person-1 &  

                       State-3 (Application-2) 

 

Box size 1 26 74 115 141 171 200 221 238 256 

Box 

number 10585 140 29 12 9 7 6 6 5 4 

 

 

Regression Equation 

 

ŷ = 9,35 – 1,423x 
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Figure 4.31. The Regression Line Graph of Person-1 & State-3 (Application-2) 
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4.2.4.4. Person-1 & State-4 (Run) 

 
Table 4.8. Calculated Box Sizes and Box Numbers of ECG Signal of Person-1 &  

                       State-4 (Application-2) 

 
Box size 1 32 68 105 146 173 196 214 231 256 

Box 

number 12533 93 26 15 8 6 6 6 6 6 

 

 

Regression Equation 

 

ŷ = 9,39 – 1,428x 
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Figure 4.32. The Regression Line Graph of Person-1 & State-4 (Application-2) 
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4.3. Comparison of the Results 

 
These dimension values of three persons in four states were exibited according 

to two applications. In application-1 the results were not consistent to each other. While 

some values were decreasing, some were increasing as it is seen in Table 4.9. This 

problem occurred not only depending on changing persons, but also handling the 

dimension kinds. Therefore another application was made through changing the sample 

size. 

 

 

Table 4.9. Comparison of Three Fractal Dimensions for All Persons in Four States  

                      for Application-1 

 

Person-1   
Correlation 
Dimension 

Hausdorff 
Dimension 

Box-counting 
Dimension 

  State-1 3,462   1,275  1,36  
  State-2 4,031   0,951  1,26  
  State-3 3,863   1,382  1,29  
  State-4 2,373   1,155  1,39  

Person-2          
  State-1 6,831   1,606  1,37  
  State-2 5,125   1,641  1,40  
  State-3 6,170   1,416  1,42  
  State-4 6,243   0,978  1,42  

Person-3         
  State-1 3,698   1,535  1,33  
  State-2 3,313   0,894  1,27  
  State-3 2,788   1,027  1,29  
  State-4 3,365   1,443  1,38  

 

 

As it is demonstrated below in table 4.10., new obtained values were more 

consistent than the earlier. Almost all values, concerning the dimension classification 

were catching the harmony. In order to recognize the harmonic trend it is obvious to 

plot the variation analysis graphs, because from numerical values it is difficult to see it 

clearly. On the other hand these results provide making decision about that the 

dimension values do not decrease or increase related to the changing states 

proportionally. 



 

 76

Table 4.10. Comparison of Three Fractal Dimensions for All Persons in Four States  

                        for Application-2 

 

Person-1   
Correlation 
Dimension 

Hausdorff 
Dimension 

Box-counting 
Dimension 

  State-1 5,25   0,93  1,52  
  State-2 6,14   1,13  1,44  
  State-3 5,62   0,81  1,42  
  State-4 4,62   1,25  1,42  

Person-2          
  State-1 6,79   1,46  1,45  
  State-2 8,06   1,38  1,57  
  State-3 7,40   1,08  1,58  
  State-4 6,21   1,35  1,57  

Person-3         
  State-1 4,40   1,47  1,42  
  State-2 5,46   1,27  1,46  
  State-3 5,04   0,82  1,38  
  State-4 4,17   1,29  1,43  

 

 

4.4. Dimension vs. States Analysis of Application-1 
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Figure 4.33. Correlation Dimension vs. States Graph of Three Persons for Application-1 
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Figure 4.34. Hausdorff Dimension vs. States Graph of Three Persons for Application-1 
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Figure 4.35. Box-counting Dimension vs. States Graph of Three Persons  

                                  for Application-1 
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4.4.1. Comparison of Dimension vs. States Analysis Results of 

Application-1  

 
According to dimension vs. states analysis graphs of application-1, as it was 

mentioned in comparison of numerical results, there was a disharmony between 

measured values. Dimension vs. states analysis graph of correlation dimension shows 

this disharmony in a good manner in Figure 4.33. Anyway  it was not expected that the 

measured data were highly carrelated in eachother, concerning the correlation function 

graphs, because almost in all states correlation function values reached at the value zero, 

which means that the correlation is weak there. However person-2 shows a good 

correlation and it can be understood also from numerical results, because measured 

values are quite high. Persons’ Hausdorff dimension values are not harmonic seing the 

paths in figure 4.34. It means that Hausdorff dimension measurements did not give any 

reasonable result. On the other hand box-counting dimension values of person-1 and 

person-3 reach at the consistence in second, third and fourth states, as it is seen in 

Figure 4.35. According to this demonstration it is obvious that box-counting dimension 

gives more accurate results rather than Hausdorff dimension. 

 

4.5. Dimension vs. States Analysis of Application-2 
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Figure 4.36. Correlation Dimension vs. States Graph of Three Persons for Application-2 
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Figure 4.37. Hausdorff Dimension vs. States Graph of Three Persons for Application-2 
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Figure 4.38. Box-counting Dimension vs. States Graph of Three Persons  

                                  for Application-2 
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4.5.1. Comparison of Dimension vs. States Analysis of Application-2 

 
According to this application the balance of the harmony between persons 

changes in all dimension types. Looking at Figure 4.36. correlation dimension 

measurements catch the consistency, all paths were arranged in a parallel manner. It is 

also the scale of that the data points are highly correlated and correlation function value 

is nearly one in four states. Again person-2 has the most correlation. In this application 

Hausdorff dimension measurements seem more consistent than the box-counting 

measurements. These values reach consistency in the second state and this consistence 

remains until the end of the measurement, as it is seen in the Figure 4.37. On the other 

hand contrast to first application box-counting dimension values create strange 

structures in Figure 4.38., which are not consequential. 
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CHAPTER 5 

 

CONCLUSIONS 

 
This thesis has probed into detection and diagnosis through examining ECG 

signals of three distinct persons in different four states. These signals were inspected 

according to three dimension calculation methods, correlation, Hausdorff and box-

counting dimensions. In calculating correlation dimension, autocorrelation function 

provided assistance and also its graphs were used to see how correlated are the data with 

each other. On the other hand, because of the difficulty with the computation of the 

Hausdorff dimension, the Hurst exponent was utilized in finding the Hausdorff 

dimension values. During calculation of box-counting dimension data, box-sizes and 

box-numbers were obtained automatically via a software package, but there was the 

need for calculation of regression equation, because the slope of the regression line 

gives the box-counting dimension. All these correlation, Hausdorff and box-counting 

dimension calculations were made twice and grouped into two, named application-1 and 

application-2. 

These applications differ according to sample size. In the first application 1000 

data were chosen, whereas in the second application the whole set was taken. The 

classification was not restricted to only two groupings. Measurements and comparisons 

also were sorted according to the persons and dimensions. They were shown as well as 

graphical comparisons, such as tables, demostrating measured dimension values. After 

comparison of the results, it was noticed that fractal dimension all by itself is not 

adequate to make certain decisions about the system performance, because fractal 

dimension values do not range always systematically. Occasionally, some dimension 

method calculation results show independence with each other, whereas others appear 

with harmonious results. At the beginning of this thesis, it was expected that the fractal 

dimension values will be almost the same, because the formula of these methods are 

alike, concerning the power law behaviour. Because any minor change in the signal, 

varies the complete fractal dimension value, therefore it can be also expressed as a 

disadvantage utilizing these methods. 
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In addition to this disadvantage, according to the results, it is recognized that 

dimension values do not proportionally decrease or increase related to the changing 

states. It may very well be due to the fact that the number of people involved in the 

experiments is not sufficient to further prove any point. Experiments were done for 

three persons in distinct four states. If this experiment had been applied for more 

persons, the results could have been consistent with the states. 

It is recognized that the Hausdorff dimension calculation seems to give the best 

result among the used methods because it covers the whole set. This characteristic of the 

coverage results from covering the set using balls of different diameters, instead of 

using coverings of the same size as in the box-counting method. Therefore, it could be 

commented that the box-counting method has some disadvantages at accurate 

dimension calculation of an image. Using boxes of the same size means that the 

coverage has some lacunas there, each box can not occupy any part of the image of the 

same size (Definition and calculation of Lacunarity were expressed in Appendix B). 

Counting all boxes as the same quality, results in some calculation errors. In other 

words, it can also be expressed as counting money without caring about the banknote 

values.  

As for the correlation dimension values, it is obvious that the results are quite 

high in values, in handling the result of a sinusoidal wave. But it could be also useful in 

order to see the correlation between data points. Hausdorff and box-counting dimension 

values are alike in some states but correlation dimension values differ. On the other 

hand it is also possible that correlation dimension has its own range in the boundaries of 

fractal dimension. 

Altough these kinds of fractal dimension methods have some disadvantages, this 

approach is a way to compare time series under changing work conditions, concerning 

the machinery, especially material science. In this thesis ECG signals were used to show 

that this method is universal. Taking fractal dimension measurements from many 

healthy specimens may bring a range, called healthy fractal range, in order to separate 

the faulty set.  
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APPENDIX A 

 

FRACTAL GEOMETRY DEFINITIONS 

 
R n : n – dimensional Euclidean Space. (R 2 = Euclidean plane) 

E, F, U : Sets, which will generally be subsets of R n  

E⊂F : E is a subset of the set F 

x⊂E : The point x belongs to the set E 

{x:condition} : The set of x for which “condition” is true 

 

Z : Integers (Z + : Positive integers) 

Q : Rational Numbers 

R + : Positive Real Numbers 

C : Complex Numbers 

 

B r (x) = {y : xy − ≤ r} : The closed ball of center x and radius r 

B 0
r (x) = {y : xy − < r} :The open ball 

 

Closed ball : Closed ball contains its bounding sphere 

Open ball : Does not contain. In R 2 , a ball is a disc, in R1 , a ball is just an interval 

{x : a≤x≤b} for a<b, [a,b] : Closed interval 

{x : a<x<b} for a<b, (a,b) : Open interval 

{x : a≤x<b} for a<b, [a,b) : Half - open interval 

 

Coordinate Cube of side 2r, center x = (x1 ,..., x n ) 

{y = (y1 ,..., y n ) : ii xy − ≤ r  for  i = 1, ... , n} 

A cube in  R 2  is a square and in R1  is an interval 

 

δ – Parallel Body : A δ , of a set A, that is the set of points within distance δ of A thus  

A δ = {x : yx − ≤ δ for some y in A} 
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Figure A.1. A set  A and its δ-parallel body  A δ  

 

Disjoint Sets : A ∪  B = Ø 

 

A\B , The Difference : Consists of points in A but not B 

 

The Compliment of A : IR n \A  

 

Product of A&B : Cartesian Product, denoted by AXB. If  A⊂  IR n and B⊂  IR m  then 

AXB⊂  IR mn+  

 

Countable Sets : Infinite set A is countable if its elements can be listed in the form  x1 , 

x 2 ...with every element of A appearing at a specific place in the list . The sets Z and Q 

are countable but  IR is uncountable.  

 

Supremum sup A : A being any set of real numbers , sup A  is the least number  m 

such that  x≤m for every  x in A, or sup A is ∞ if no such number exists. 

 

Infimum inf A : is the greatest number  m such that  m≤x for all x in A , or  inf A = -∞ . 
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Intuitively, supremum and infimum are thought of as the maximum and minimum of the 

set A itself. 

Sup Bx∈ (A) : Supremum of A , which may depend on x, as  x  ranges over the set B . 

 

Diameter A : The greatest distance apart of pairs of points in A .Thus  

A = sup{ yx − : x,y ∈A}. 

 

Bounded Set : A set is bounded if it has finite diameter . 

 

Open and Closed Sets : A set is open if and only if its complement is closed . The 

union of any collection of open sets is open, as is the case in intersection .The same 

goes for the closed sets . 

 

Closure of  A , Α  : The intersection of all the closed sets containing a set A . 

 

Interior of A , int(A) : The union of all the open sets contained in A . The cosure of A 

is thought of as the smallest  closed set containing A , and the interior as the largest 

open set contained in A .  

 

Boundary ∂A of A :  ∂A = Α  \ int(A) 

 

Dense Subset : A set B is a dense subset of A if B⊂  A⊂ Β , i.e. if there are points of  B 

arbitrarily close to each point of  A . 

  

Compact Set :  A set is compact if any collection of open sets which covers A (i.e. with 

union containing A ) has a finite sub collection which also covers A .It is enough to 

think of a compact sub set of  IR n  as one that is both closed and bounded . 

 

Connected Sets : A subset A of  IR n is connected if  there do not exist open sets U and 

V such that U∪V contains A with A∩U and A∩V disjoint and non-empty . Intuitively , 

we think of  a set A as connected if it consists of just one “piece” . The largest 

connected subset of A containing a point x is called the “connected component of x “. 
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Totally Disconnected Sets : The connected component of each point consists of just 

that point. 

 

Borel Sets : Borel sets are the smallest collection of subsets of IR n with the following 

properties : 

 

• Every open set and every closed set is a borel set . 

• The union of every finite or countable collection of borel sets is a Borel set , and 

the intersection of every finite or countable collection of Borel sets is a Borel set . 

 

Roughness presents everywhere and  helps to illustate why mathematical fractals 

are of extensive applicable pertinence and why fractal geometry is not about to activate 

of fuzzy challenges .  

Fractal geometry has an independent life in a way of its own and it can be 

introduced as a “virtual discipline” in other words one cannot belive that fractal 

geometry as a “regular” discipline . One could express  fractal geometry by describing 

its methds of operation as an creative “method” .  

Once more , fractal geometry has one center in mathematics and in varied 

discoveries that scale-invariant roughness exist everywhere (both natural and synthetic 

structures ) but can be treated quantitatively , if fractality will not be describe as an 

already almost banal form of structure .  

A scale-invariant roughness recognition is necessary to perform in two parallel 

and mutually area : These are new tools of statistics and data analysis and use of those 

tools if they are proper , beyond the  boundaries of ordinary disciplines . 

The original fractal toolbox was begun with accomodated versions of down-to 

earth findings and mathematicall tools . Historically , the first was the “power law” 

probability distribution  Pr{U>u}~ uα , for which  α  is a critical exponent . This 

distribution had largely stayed on the margins of statistics, “(Federer 1969)”.  
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APPENDIX B 

 

LACUNARITY 

 
The fractal dimension takes a consequential position among the several features 

of fractals . As a problem , just measuring the fractal dimension is not enough when the 

fractal dimension do not be powered with any other information , it can cause an impact 

that two differently appearing surfaces with the same value of  “D” could not be 

seperated from each other . Except quantitativ dimension and emptiness measurement , 

one needs another criterium , fractal lacunarity . Topological and dimensional identical 

fractals may “look” very different . The holes or “lacunas” that are a obvious 

characteristic of fractality may be different in each situation .  In this way , the term 

called lacunarity “Λ” was put in use by Mandelbrot, which can express the quantity of 

an image . The usage of lacunarity provides the determination of gaps or lacuna in the 

pattern . We can declare this term as it is shown below ; 

 

                                                       Λ =E[(M/E(M))-1]²                                             (B.1) 

 

where “M” is the mass of the fractal set, and “E(M)” is the expected mass. The mass 

“M” of a fractal set is dependent on the lenght “L” of the measuring device-governed by 

the power law 

 

                                                                   M(L) = KL D                                              (B.2) 

 

Where “K” is a constant. The lacunarity, thus, is a function of “L”. Let “P(m,L)” be the 

possibility that there are”m” points within a box of side “L”. Then “P(m,L)” is 

normalized, as below for all “L” 

                                                               ∑
=

N

m
LmP

1
),(  = 1                                             (B.3) 
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where “N” is the number of possible points within the box. Let the total number of 

points in the images is “M”. Then the number of boxes with “m” points inside the box is 

“(M/m)P(m,L)”. Λ(L) = [M²(L) – [M(L)]²] / [M(L)]²     This formula can be extracted as 

lacunarity, “(Purkait and Chakravorti 2003)” . 

Anyway , apart this comparison role , lacunarity has a different potential , should 

discuss it . Actually , in early years , fractals were believed as mental pictures of how 

they look like . Concerning the shape of fractals or how look they , a lot of scientists 

surprised which tools to use to seek confirmation of fractality and determine further 

study . Unfortunatelly there was a big problem , only looking at fractals did not work , 

because low-lacunarity fractals can look nonfractal , so scientists could be leaded  to be 

mis-identified . It is not the aim to build a list of natural fractals , whereas the main 

concern is that anonymous fractals are studied with unsuitable tools , and they 

potentially lead to confusion , instead of assisting . 
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APPENDIX C 
 

AUTOCORRELATION FUNCTION GRAPHS 

 
In this Appendix autocorrelation graphs of Person-1 in four states were given 

according to two applications. In graphs, on the x axis s represents the time lag in 

milliseconds and on the y axis B represents the correlation between data points. 

 

 

 
Figure C.1. Autocorrelation Function Graphic of Person-1 & State-1 (Application-1) 

 

 

 
 

Figure C.2. Autocorrelation Function Graphic of Person-1 & State-2 (Application-1) 
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Figure C.3. Autocorrelation Function Graphic of Person-1 & State-3 (Application-1) 

 

 

 
Figure C.4. Autocorrelation Function Graphic of Person-1 & State-4 (Application-1) 
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Figure C.5. Autocorrelation Function Graphic of Person-1 & State-1 (Application-2) 

 

 

 
 

Figure C.6. Autocorrelation Function Graphic of Person-1 & State-2 (Application-2) 
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Figure C.7. Autocorrelation Function Graphic of Person-1 & State-3 (Application-2) 

 

 

 
Figure C.8. Autocorrelation Function Graphic of Person-1 & State-4 (Application-2) 

 

 

 

 

 

 

 

 

 
 

 


