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ABSTRACT 

 

BIOKINEMATIC ANALYSIS OF HUMAN ARM 

 

Theory of Machines and Mechanisms is one of the main branches of science 

including many sub-branches such as biomechanics, human machine systems, 

computational kinematics, mechatronics, robotics, design methodology, dynamics of 

machinery, gearings and transmissions, cams and linkages, micro machines, nonlinear 

oscillations, reliability of machines and mechanisms etc. In this large area of interest, 

this study can be matched with the sub groups biomechanics, robotics, computational 

kinematics and design methodology. The main concern of the thesis is the 

biokinematics of the human arm. In the process of design, a suitable tool for the 

kinematics of human arm is investigated as quaternions along with examples. Moreover, 

the history of the formulas of Dof is presented as 38 equations with the unique key 

controlling parameters that are used in the design of new Cartesian and serial platform 

type robot manipulators. Structural syntheses of new manipulators are considered. 

Simple serial platform structural groups in subspace λ=3, and general space λ=6 are 

presented along with examples. Furthermore, type synthesis of human arm is 

accomplished with the new proposed parallel manipulator for the shoulder, elbow and 

wrist complex. Finally, computational kinematics of the serial human wrist manipulator 

and the geometrical kinematic analysis of the orientation platforms of the new parallel 

manipulator design for the human arm are accomplished. 
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ÖZET 

 

İNSAN KOLUNUN BİOKİNEMATİK ANALİZİ 

 

Ana bilim dallarından biri olan Makina ve Mekanizmalar Teorisi, birçok alanı 

kapsamaktadır. Bu alanlardan en önemlileri, biomekanik, insan-makina sistemleri, 

sayısal kinematik, mekatronik, robotik, dizayn metodolojisi, makina dinamiği, dişliler 

ve aktarma organları, kamlar ve linkler, mikro mekanizmalar, lineer olmayan titreşimler 

ve mekanizma güvenilirliği olarak özetlenebilir. Bu kadar geniş bir alan içerisinde, ilgili 

çalışma biomekanik, robotik, sayısal kinematik ve dizayn metodolojisiyle 

ilişiklendirilebilinir. Tezin ana konusu, insan kolunun biokinematik analizidir. Dizayn 

süreci içerisinde, insan kolunun kinematik analizinde kullanılacak önemli bir araç olan 

quaternionlar, örneklerle incelenmiştir. Yapısal sentez formullerinin tarihi araştırılmış, 

38 farklı denklemde açıklamalarıyla birlikte gösterilmiştir. Bu formuller yeni Kartezyen 

ve seri platform tipli robot manipulatörlerin dizaynında kullanılmıştır. Yeni tasarlanan 

robot manipulatörlerin yapısal sentezi yapılmış, seri platform robot manipulatörlerinin 

alt uzay λ=3 te ve uzay  λ=6 daki yapısal grupları gösterilmiştir. İnsan kolunun kategori 

sentezi tamamlanmış, omuz, dirsek ve bilek kompleksi için yeni bir parallel robot 

manipulatör önerilmiştir. Son olarak seri insan bilek manipulatörünün sayısal 

kinematiği ile birlikte, yeni paralel manipulatörün oryantasyon platformlarının 

geometrik kinematik analizi yapılmıştır. 
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CHAPTER 1 

 

INTRODUCTION 

 

 Kinematic analysis of robot manipulators can be carried out by using many 

tools, such as screw theory, quaternions, biquaternions, rotation and transformation 

matrices etc. Each has its own advantages and disadvantages when compared in 

different tasks; for instance, pure rotation motions can be easily and precisely analysed 

by quaternion operators, while rotation matrices yield computational errors and lack 

computational efficiency. On the other hand, quaternions can not be used solely in the 

analysis of translation motions, where transformation matrices are capable. As a result 

of the fact, it is very important to select the right tool for the desired application for the 

ease of use. From this point of view, the first step of the scientific investigation was 

assigned to find the best promising tool for the analysis of human arm motion. 

 

 

Figure 1.1. Human Shoulder, Elbow, and Wrist Complex 
(Source: CMBBE’99) 

 

After a detailed research on human shoulder, elbow, and wrist complex,        

(Fig. 1.1), it was appeared that nearly all of the joints of the complex have limited 

spherical motions; therefore, analysis of rotations has taken a great priority. So that, due 
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to their precision, computational speed and efficiency in rotations, quaternions were 

selected as the tool for motion analysis of the human arm, (Fig. 1.2). 

 

 

Figure 1.2. Rotation by a Quaternion Operator 
(Source: ARTEMMIS) 

 

 The investigation was continued by the study of quaternion algebra and 

operators for rotations. However, it was seen that, regular sequential rotation method of 

quaternions can not simulate the exact human motion. Thus, for one step ahead to reach 

the natural motion of human, a new rotation sequence by quaternions was developed 

and named modular method. The new method was applied to the serial 2-DoF, 3-DoF 

and 4-DoF spherical wrist and compared by the traditional sequential method to prove 

the results. Including a new representation of quaternion rotation operator, the modular 

method was proposed in IFToMM International Workshop of Computational 

Kinematics, CK2005 Italy. 

 Later in time, another important concept in the design of robot manipulators was 

started to be investigated; that is, structural synthesis. Being one of the most important 

steps in design, structural synthesis provides the calculation of the desired degrees of 

freedom of the robot manipulators. Over 250 years, starting by Euler, many 

formulations have been created to fulfil the calculations for different types of robots; 

also, in each period new parameters have been introduced. 

After collecting all of the information from a deep history about structural 

synthesis, the first time in literature, a compact table including all of the structural 
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formulas of the related years and authors were introduced with the definitions of 

parameters that are used in the formulations. Using the collected information and table 

as a guideline, a new structural formula for Cartesian robot manipulators was proposed 

and nine new Cartesian robot manipulators were constructed with respect to the new 

formulation. Parallel to this study, structural synthesis of serial platform type 

manipulators with lower and higher kinematic pairs according to their structures was 

also examined. Serial platform manipulators were created according to the development 

of the platforms and closed loops by the new interpretation of the Alizade formula. Also 

structural groups of serial platform manipulators in subspace 3λ =  and space 

6λ = were tabulated in two separate tables, (Fig. 1.3). The complete work about 

structural synthesis was accepted by IFToMM Journal of Mechanism and Machine 

Theory (MMT40-129). 

 

 

Figure 1.3. One of the Structural Groups of Serial Platform Manipulators in 3λ =  
 

The last part of the investigation was the design of a new manipulator with 

variable general constraints that mimics human shoulder, elbow and wrist complex. The 

manipulator was designed with two orientation platforms in space 6λ = and one 

spherical platform in subspace 3λ = . After its structural synthesis was completed, and 

the animations were carried out, geometrical kinematic analysis of its orientation 

platforms was accomplished. 
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CHAPTER 2 

 

HISTORY OF DEVELOPMENT 

 

2.1. Background 

 

Hypercomplex numbers, quaternions, give a wide field of applications in the 

area of computational kinematics. First applications, which quaternions have been 

found more than 150 years ago, were the description of motion of the rigid body 

(Hamilton 1866, WEB_1 2005). Hypercomplex numbers allow simplifying the practical 

calculations in a drastic way. At the same time they are applied to such problems of 

modern computational kinematics (Porteous 1921, Martinez et al. 2000). From 

geometric point of view, a quaternion is the quotient of two directed lines in space, or 

operator, which changes one directed line into another. Sir W.R. Hamilton (Britannica 

1886) describes that, if motion in one direction along a line is treated as positive, motion 

in the opposite direction along the same line is negative. 

In the computational kinematics of a rigid system, we have to consider one set of 

rotations with regard to the axes that are fixed in the system. Using usual methods, we 

have a problem of complexity. Each quaternion formula is a preposition in spherical 

trigonometry and the singular quaternion operator q ( ) q-1 turns any directed line, 

conically, through a definite angle about a definite axis (Hamilton 1866). 

The topological geometry in spatial kinematics is discussed in (Porteous 1921), 

and the representation of spherical displacements and motions are described by the 

rotation group of unit quaternions. 

Angeles (1988) introduced the theory of vector and scalar invariants of a rotation 

tensor as a function of time of a spherical motion. Nixravesh et al. (1985) introduced the 

method which is based on a sequence of matrix computation, and identities for relating 

a representation of spherical motion with their corresponding velocity and acceleration 

vectors. Larochelle (2000) used planar quaternions to create synthesis equations for 

planar robots, and created a virtual reality environment that could promote the design of 

spherical manipulators. Martinez et al. (2000) presented quaternion operators for 

describing the position, angular velocity and angular acceleration for a spherical motion 
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of a rigid body with respect to the reference frame. Liu et al. (2003) described the 

physical model of the solution space for the spherical 3-DoF serial wrists, the 

classification of the reachable and dexterous workspace, and the atlases of the work 

spaces. 

When an end effector of the spherical 3-DoF serial wrist reaches the tools, it will 

work as a spherical four-bar mechanism with 1-DoF. Several discussion of the design of 

spherical four-bar mechanisms widely studied in the literature and in the last one was 

the study of Alizade et al. (2005) that applied superposition method for linearization of 

nonlinear synthesis equations in the problem of analytical synthesis described by five 

precision points. 

Structural synthesis problem is the first step in the design of new robot 

manipulators and the fundamental concept in robot design. The mobility of robotic 

mechanical system describes the number of actuators needed to define the location of 

end-effectors. It is important that the mobility or the degrees of freedom of robot 

manipulators (M>1) indicates the number of independent input parameters to solve the 

problem of all the configuration of robots or a kinematic chain with several actuators. If 

mobility of the kinematic chain is equal to zero (M=0) and can not be split into several 

structural groups, we will get a simple structural group. Combining the simple structural 

groups with actuators, we can get serial or parallel robot manipulators. IFToMM 

terminology defines “manipulator that controls the motion of its end-effector by means 

of at least two kinematic chains going from the end-effector towards the frame” as 

parallel manipulator. In parallel manipulators, two platforms can not be connected by 

kinematic pairs to each others. 

Serial platform manipulators control the motion of the platforms by means of at 

least two platforms, which are connected by kinematic pairs, and other kinematic chains 

going from the platforms towards the frame. Several connections of the links in series 

for gripping and the controlled movement of objects are called serial manipulators. 

Combination of serial and parallel manipulators gives hybrid robot manipulators. 

Complex robot manipulators consist of independent loops with variable general 

constraint (λ=2, 3, 4, 5, 6). 

The history of works about the number of independent loops was done by L. 

Euler (Courant 1996). Then in the second half of the XIX century, the first structural 

formulas of mechanisms were created (Chebyshev 1869, Sylvester 1874, Grübler 1883, 

Somov 1987, Gokhman 1889). As shown in Table 2.1, in the mobility equations we can 
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find concepts of the number of independent loops (L), degrees of freedom or mobility of 

mechanisms (M), the loop motion parameters (λ), the number of joints (j), number of 

moving links (n), number of mobility of kinematic pairs (f), independent joint 

constraints (s), number of passive mobilities (jp), and the number of overclosing 

constraints (q). To describe and compare the structural formulas and the parameters in 

structural analysis and synthesis of robotic mechanical system, the unique key 

controlling parameters are used as shown in Table 2.1. 

Furthermore, the concepts of the structural formulas and simple structural groups 

were developed in the first half of the XX century (Koeings 1905, Assur 1952, Muller 

1920, Malushev 1923, Kutzbach 1929, Kolchin 1932, Artobolevskii 1939, Dobrovolskii 

1939). As shown in Table2.1, some new concepts in the problem of structural analysis 

and synthesis of mechanisms had been reached as number of screw pairs (Sc), simple 

structural groups with zero mobility (M=0), number of kinematic pairs with i class (pi, 

where i is the number of joint constraint), number of links with variable length (nv), 

variable general constraint (λK), and the family of the elementary closed loop (dK =6-

λK). 

During the second half of the XX century, the productive results to find general 

methods for determination of the mobility of any mechanisms had been obtained 

(Moroshkin 1958, Voinea et al. 1959, Paul 1960, Rössner 1961, Boden 1962, Ozol 

1962, Waldron 1966, Manolescu 1968, Bagci 1971, Antonescu 1973, Freudenstein et 

al.1975, Hunt 1978, Herve 1978, Gronowicz 1981, Davies 1981, Agrawal et al. 1987, 

Dudita et al. 1987, Angeles et al. 1988, Alizade 1988, McCarthy 2000). In the 

calculation of mechanism mobility, the following new parameters were used (Table 2.1) 

: rank of linear independent loop equations or the order of the equivalent screw system 

of the closed loop (r), relative displacements of the joint (m), number of independent, 

scalar, differential loop-closure equations (λK), the rank of the coefficient matrix (r(j)), 

finite dimensional vector space (d(v)), new formula of the number of independent loops 

(L=jB-B-cb, where jB is the total number of joints on the platforms, and cB is the total 

number of branches between moving platforms and B is the number of moving 

platforms), serial open chains connecting to ground or total number of robot legs (cl), 

and the degree of constraint of the platform (U). It should be noted that, branches are 

the kinematic chains that connects mobile platforms to each other, and legs are the 

kinematic chains that connects mobile platforms to the fixed frame. 



 7 

In the beginning of XXI century, further developments of robotic science has 

arisen the interest in scientific investigations. New parameters in the structural formulas 

describing the real physical essences should be created in the new investigations and be 

more suitable for the use in practice in new subjects. In this direction, there are several 

studies (Huang 2003, Alizade et al. 2004, Gogu 2005, Alizade et al. 2006). In the 

calculation of degrees of freedom of mechanisms, the new parameters are used in the 

structural formulas, as a new formulation of the number of independent loops (L=c-B) 

and new formulation for simple structural groups    (Êfi=λ(c-B)), where c=cb+cl+ch, ch 

is the number of hinges between moving platform, and c is the total number of 

connections. Also note that, hinges are the revolute pairs that connect mobile platforms 

to each other. For describing and comparing structural formulas and parameters in 

structural analysis and synthesis of robotic mechanical system the unique key 

controlling parameters are used as shown in Table 2.1. 

The basis of structural synthesis of manipulators are based on the principles of 

truss kinematical unchanging. Determination of indivisible groups as simple structural 

groups and creating different new manipulators by using their combination had been 

done by striving to systematize investigation methods of manipulators. 

 Firstly Assur (1982) developed the concept of the open chain and utilized this 

concept for plane structure classification. Secondly, the problem of structural synthesis 

and analysis was investigated by Malushev (1929). The problem of structural synthesis 

for spatial mechanisms was introduced by Artobolevskii (1939). The task of structural 

synthesis was solved by using method of developing closed loops. The classes of 

structural groups are defined by the number of links of the closed loops and the order is 

equal to the number of legs. 

According to the method of structural synthesis that is given by Baranov (1952), 

spatial and plane structural groups have been created from corresponding trusses, and 

class of simple structural groups are defined by the number of closed loops. Kolchin 

(1960) has introduced concept of passive constraints to account for existence of the 

paradoxical mechanisms. That concept has not presented any means for identifying the 

geometric conditions that determine the general constraints. 
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Table 2.1. Formulas for Structural Analysis and Synthesis 

 Equations Authors Commentary 

1 1L j l= − +  

l is the number of links; j is the number of joints 

L. Euler, 
1752 

L is the number of 
independent loops; 

2 

3 2 1 0

1
0 1

2
3 1

m

m

m m

l j

j j l

j l l n l

− − =

< − < +

> − = = −

 
P. L. Chebyshev,  

1869 

Eq. for planar mech. with 1 
DoF  

mj  is the number of moving 

joints 

ml = n is the number of 

moving links 

3 
3 2 4 0

1

l j

j n

− − =

= −
 

J. J. Sylvester,  
1874 

Eq. for planar mech. with 1 
DoF 

4 

1

) 3 2 3

) 3 2 4 0

) 2 3 0

) 3 2 4 0

) 5 6 7 0

6( 1) 5

a M l j

b l j q

c l j

d l j q C

e H l

or M l p

= − −

− − + =

− − =

− − + − =

− + =

= − −

 

q is the number of overclosing constraints  

1p  is the one mobility joints 

C is the number of cam pairs 
H is the number of helical joints 

M. Grübler, 
1883, 1885 

M is mobility of 
mechanisms. DoF depends 
from the rank of functional 

determinant (r=3, 2) 
a) DoF for planar mech. 

b) Eq. for kinematic chains 
with revolute R and 
prismatic P pairs 

c) Eq. for plane mech. just 
with prismatic P pairs 

d) Eq. for kinematic chains 
with revolute, prismatic and 

cam pairs 
e) DoF of spatial mech. with 

helical joints 

5 

) ( 1)( 1) 2

) ( 1)( 1) 2

) ( 1) 5

5 7, 6, 1,

1

u

i

u p

a l

b l q K

c M l f j L q

l L

K j

λ ν

λ ν

ν λ ν

− − + =

+ + − − + =

= − + − − +

= + = = −

= −

∑
∑

∑

 

pj  is the passive mobilities in the joints 

if  is the mobility of kinematic pairs 

P.O. Somov,  
1887 

a) Eq. for plane (λ=3) and 
spatial (λ=6) mech. (M=1) 
b) Eq. for plane and spatial 

mech. (M=1) 
c) Somov’s universal 
structural formula 

λ  is the number of 
independent parameters 
describing the position of 

rigid body (general constraint 
parameter) 

6 

) ( 1) 1a l Sλ − − =  

( ) iS i fλ= −∑  is the total number of 

independent joint constraints 

) 1

) ( ) 1

ib f L

c j L S

λ

λ

− =

− − =

∑
 

Kh. I. Gokhman,  
1889 

a) Eq. for plane and spatial 
mech. (M=1) 

b) Loop mobility criterion 
(M=1) 

c) Eq for mech. (M=1) 
Eqs. (a) and (c) gives Euler’s 

equation 

7 6M n S= −  
G. Koeings,  

1905 

Mobility Eq. for spatial 
mech. 

(similar to Gokhman Eq.) 

8 3 2 0n j− =  
L. V. Assur, 

 1916 
Eq. for simple structural 

groups 

9 

( 1) ( 1) 0

( 1)
s

s

S l

M n S

λ λ λ

λ λ

− − + + =

= − −
 

sS  is the number of screw pairs 

R. Muller, 
1920 

Eq. for kinematic chains with 
screw pairs 

(Similar to M. Grubler Eq.) 
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Table 2.1 (cont.). Formulas for Structural Analysis and Synthesis 

 Equations Authors Commentary 

10 

5

1

6( 1) i v

i

M l ip q n
=

= − − + −∑  

ip  is the kinematic pairs with i class 

i = number of joint constraint 

A. P. Malushev,  
1923 

Universal Somov-
Malushev’s mobility Eq. 

vn  is the number of links 

with variable length 

11 
1

1

( 1)

( 1) ( )

j

i

i

j

i

i

M l j f

M l i f

λ

λ λ

=

=

= − − +

= − + −

∑

∑
 

K. Kutzbach,  
1929 

Other form of universal 
mobility Eq. 

12 
23( 1) 2( )M l P R K p= − − + + −  

 
P is the number of prismatic pairs 
R is the number of revolute pairs 

N. I. Kolchin,  
1932-1934 

Structural formula for planar 
mechanisms. 

K is the number of higher 
pairs with pure roll or pure 
slippage 

2p  is the number of higher 

pair with rolling and slipping 

13 
1 1

6
j L

j K

i K

M n S d q
= =

= − + +∑ ∑  

6K Kd λ= −  is the family of the elementary 

closed loop or the number of independent 
constraints in the loops 

I. I. Artobolevskii, 
1935 

Other form of universal 
mobility Eq. First time in 
mobility Eq., it is used 

variable general constraint as 
variable number of 

independent close loops 
family. 

Kλ  is the variable general 

constraint 

14 

1

1

( )

2,....,6

i

i

M n i p q
λ

λ λ

λ

−

=

= − − +

=

∑
 

V. V. Dobrovolskii, 
1939 

Other form of universal 
structural formula 

15 

)

)

1,...,5 2,...,6

)

i

i

i

i

a M ip r

b M ip L

i

c L j n

λ
λ

λ

λ

= −

= −

= =

= −

∑

∑ ∑
 

U. F. Moroshkin, 
1958 

a) Structural Eq. of system 
with the integrable joining 
b) Eq. of the DoF with 

variable general constraint 
c) Number of independent 

close loops  

r λ=  is the rank of linear 
independent loop 

16 
1 1

j L

i K p

i K

M f r j
= =

= − −∑ ∑  

1

j

i

i

f
=
∑  is the total number DoF of joints with 

revolute, prismatic and helical joints; 

R. Voinea and 
M. Atanasiu,  

1959 

Mobility Eq of a complex 
mechanisms 

1≤rK≤6 is the rank of screw 
system 

17 1L j l= − +  
B. Paul,  
1960 

Using formula #1, it was 
created topological condition 
of criterion for the degree of 
constraint of plane kinematic 

chains 

18 
1

6( 1)
j

i

i

M f j l
=

= − − +∑  
W. Rössner ,  

1961 

The mobility Eq. taking into 
consideration Euler’s 

formula 
 # 1 
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Table 2.1 (cont.). Formulas for Structural Analysis and Synthesis 

 Equations Authors Commentary 

19 
1

6( 1) 3( 1)
j

i

i

M f j l j l
=

= − − + − − +∑  
H. Boden, 

1962 

Mobility Eq., consisting from 
the planar and the spatial 

loops 

20 

1

1

) 6

) 3

) 2( 1)

) 2

j

i

i

j

i

i

a M f L q

b M f L q

c M l j q

d M j L q

=

=

= − +

= − +

= − − +

= − +

∑

∑
 O. G. Ozol,  

1962 

a), b), and c) mobility Eq.s 
for variable general 

constraint, as λ=6, 3, 2 with 
excessive constraints 
d) mobility Eq. for 

cylindirical mechanisms 
(λ=2) 

21 M F r= −  
F is the relative freedom between links 

K. J. Waldron,  
1966 

Mobility Eq of closed loop 
r is the order of the 

equivalent screw system of 
the closed loop 

22 
5

1

(6 ) (6 )i

i r

M i p d L
= +

= − − −∑  
N. Manolescu,  

1968 

Mobility Eq. with the 
parameter of the family of 
the elementary closed loop. 

23 

5

1 1

6( 1) (6 )
L

i K

i K

p

M l i f d

q j

= =

= − − − + +

+ −

∑ ∑

∑ ∑
 

C. Bagci, 
 1971 

Mobility Eq. to calculate 
DoF of motion in a 

mechanism similar to Eq. # 

13 by adding parameter pj  

24 
5

1

(6 )( 1) ( )a a i

i

M d l i d p
=

= − − − −∑  
P. Antonescu, 

 1973 

Mobility formulas with 
different values for the 
motion coefficient λ 

(formula #14) 

25 

1 1

1 1

1

1

)

)

)

)

2 , 3, 4 , 5, 6

E L

i K

i K

j L

i K

i K

E

i

i

j

i

i

a M m

b M f

c M m L

d M f L

λ

λ

λ

λ

λ

= =

= =

=

=

= −

= −

= −

= −

=

∑ ∑

∑ ∑

∑

∑

 

E is the total number of independent 
displacement variable 

im  is the relative displacements of the joints 

if  is the relative joint motion when im  

correspond in 1:1 with DoF in joints  

F. Freudenstein, 
 R. I. Alizade,  

1975 

Mobility Eq.s without 
exception 

a) and b) mobility Eq.s are 
used for mechanisms which 
contain mixed independent 
loops with variable general 

constraint. 
c) and d) Mobility equations 
of mechanisms with the same 

number of independent, 
scalar loop closure equations 
in each independent loop. 

Kλ  is the number of 

independent, scalar, 
differential loop closure 

equations 

λ is the DoF of space where 
the mechanism operates 

26 
1

( 1)
j

i

i

M l j fλ
=

= − − +∑  
K. H. Hunt, 

 1978 
Mobility Eq. coming from 

Eq. 25d using Eq 1 

27 
1

( 1) ( )
j

i

i

M l fλ λ
=

= − − −∑  
J. M. Herve,  

1978 

Mobility formula based on 
the algebraic group structure 

of the displacement set 
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Table 2.1 (cont.). Formulas for Structural Analysis and Synthesis 

 Equations Authors Commentary 

28 

1

1 1

L L

K Kj

K j K

M Fλ
−

= = +

= −∑ ∑ ∑  

KjF  is the mobility of the joints that is common 

between any two loops K and j, and the mobility 
of the joints in the L loops can be counted once 
or twice 
 

A. Gronowicz,  
1981 

Mobility Eq. for multi loop 
kinematic chains 

29 

 

1

j

i

i

M f r
=

= −∑  
T. H. Davies,  

1981 

Mobility equations similar to 
Eq. # 15a 

r is the rank of the coefficient 
matrix of constraint 

equations 

30 

1

2

1
2

1 1 1 1

2

1

1
( 2)

2

1
( 3 2)

2

NL L L

K Kj i i ni

K K j K i

N

i i ni

i

M F n n F

n n F

λ
−

= = = + =

=

= − + + − +

+ − +

∑ ∑∑ ∑

∑

%
% %

 

V. P. Agrawal, 
 J. S. Rao,  

1987 

Mobility Eq. to any general 
mechanism with constant or 
variable general constraints 
with simple or multiple joints 

1
N , 

2
N is the total number of 

internal and external multiple 
joints respectively 

in% , niF%
; in , niF is the 

number of links and the 
mobility of simple joints 

forming the i th internal and 
external multiple joints 

respectively. 

31 

1 1

1

)

) ( 1)

j L

e e

i K

i K

L

e

K comj comj

K j

a M f

b M L f

λ

λ

= =

=

= −

= − −

∑ ∑

∑ ∑
 

comjL  is the number of loops with common joint 

j 
e

comjf  is the active degree of mobility of the j th 

common joint 

F. Dudita, 
D. Diaconescu,  

1987 

Eq. of a elementary or a 
complex (multi loop) 

mechanisms 
e

if is the active mobilities in 

i th joint 
e

Kλ is the dimension of the 

active motion space 

32 

( )

( ) ( ) ( )

M nullity J

nullity J d v r J

=

= −
 

J is the Jacobian matrix; r(J) is the rank of the 
Jacobin matrix; d(v) is the finite dimensional 
vector space v 

J. Angeles, 
C. Gosselin,  

1988 

The mobility Eq. by using 
the Jacobian matrix of a 

simple or multi loop closed 
kinematic chain without 

exception 

33 

1

1

1

)

) ( )

) ( )

) ( )

B b

E

i B b

i

j

i B b

i

j

i B b

i

p

p

a L j B c

b M m j B c q j

c M f j B c q j

d f j B c

λ

λ

λ

=

=

=

= − −

= − − − + −

= − − − + −

= − −

∑

∑

∑

 

B is the number of mobile platform;
B
j  is the 

total number of joints on the mobile platforms 

R. I. Alizade,  
1988 

a) A new formula of number 
of independent loops 
b) and c) are structural 
formulas as a function of 
number of branches, 
platforms and sum of 

mobility of kinematic pairs 
and other parameters 

d) Eq. for simple structural 
groups (λ=6,5,4,3,2) 

bc is the total number of 

branches between mobile 
platforms 
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Table 2.1 (cont.). Formulas for Structural Analysis and Synthesis 

 Equations Authors Commentary 

34 1

( )
lc

i

i

M fλ λ
=

= − −∑  

( )ifλ −  is the degree of constraint of the 

platform 

J. M. McCarthy,  
2000 

Mobility Eq. of a parallel 
manipulator 

35 
1

(6 )( 1)
j

i

i

M d l j f q
=

= − − − + +∑  
Z. Huang, 
Q .C. Li, 
2003 

Structural formula for 
parallel mechanisms 

36 

, ,

1

1

2

) ( )

) ( )

)
l b l B b

j

i

i

j

i

i

c c c c j c

a M f c B

b f c B

c L c B

λ

λ

=

=

= + = −

= − −

= −

= −

∑

∑  

Rasim Alizade, 
 Cagdas Bayram,  

2003 

a) MobilityEq. of 
mechanisms  

b) Eq.’s for simple 
structural groups. 

c) New formula of the 
number of independent 

loops 
c  is the sum of legs and 

branches, 

lc is the total number of 

legs, connecting  mobile 
platforms to ground 

37 1 1

j l

i j p

i j

M f S S
= =

= − +∑ ∑  

pS  and jS  are spatialities of mobile platform and 

legs respectively 

Grigore Gogu,  
2005 

Mobility Eq. for parallel 
mechanisms 

38 
1 1

1

) ( 3) ( ) ( )

) ( )

l l
c c

l l p

l l

j

i p

i

l

l b h

b M d D f q j

a M B c f q j

c c c c

λ

λ

λ
= =

=

= + + − + + −

= − + + −

−

= + +

∑ ∑

∑

 

D is number of dimensions of vectors in 
Cartesian space 
 
di is number of dimensions of vectors in 
Subspace 

Rasim Alizade,  
Cagdas Bayram, 
Erkin Gezgin, 

2005 

a) Mobility Eq. for robotic 
systems with independent 

loops with variable 
general constraint 
b)A new structural 

formula of mobility loop-
legs equation for parallel 

Cartesian platform 
manipulators. 

λ is the general constraint 
parameters of simple 

structural group 

h
c is the number of hinges 
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The problem of general constraint parameter was done by Voinea et al. (1960) as 

the rank of the matrix of coefficients of the unknowns in a system of equations 

describing the angular velocities of the relative helicoidal movements. Ozol (1963) took 

a straight point in the theory of structural synthesis by the topological property of 

mechanisms. 

 The methods of structural synthesis were based on graph theory to find the set of 

kinematic chains and mechanisms (Crossley 1966, Dobrjanskyi 1966, Buchsbaym 1967, 

Freudenstein 1967, Dobrjanskyi et al.1967, Manolescu 1973). The problems of 

structural analysis and synthesis of plane and spatial structural groups of higher classes 

were done by Djoldasbekov et al. (1976). Determination of structural groups by using 

the principles of dividing joints and the method of developing joints were done by 

Dobrovolskii (1939), and Kojevnikov (1979). The structure theory of parallel 

mechanisms based on the unit of single-open chains was done by Yang (1983,1985), 

and the type synthesis of spatial mechanisms on the basis of spatial single loop was 

introduced by Alizade et al. (1985). The concept of dual graphs and their applications to 

the automatic generation of kinematic chains was done by Sohn et al. (1986). 

 A computer-aided method for structural synthesis of spatial manipulators by 

using method of developing mobile platforms and branches was done by Alizade et al. 

(2004), and Alizade (1988). Class of the structural group is defined by the number of 

mobile platforms, kind is defined by the set of joints on the mobile platforms, type of 

the structural group is determined by the number of branches between mobile platforms, 

and order describes the number of legs that connect mobile platforms to the ground. A 

computer-aided method for structural synthesis of planar kinematic chains was 

introduced by Hwang et al. (1986), and the concept of loop formation which cancels the 

necessity of the test for isomorphism was also introduced by Rao et al. (1995). 

 According to the structural synthesis of parallel mechanisms based on the unit of 

single-open chains, a class of 3 DoF (3 translation motion), 5 DoF (3 translation and 2 

rotation), and 6 DoF (3 translation and 3 rotation) parallel robot manipulators were 

analyzed by Yang et al. (2001, 2002) and Shen et al. (2005). 

 On the biomechanics side, ISB (International Society of Biomechanics) 

proposed a definition on joint coordinate system for the shoulder, elbow, wrist and hand 

(Wu et al. 2004). For each joint in the complex, a standard for the local axis system in 

each movable bone or segment is generated. Stanisic et al. (2001) proposed a dexterious 

humanoid shoulder mechanism that can be used as a simple shoulder joint. In the 
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investigation, kinematic equations of the mechanism are studied as well as its singular 

configurations. Okada et al. developed three degrees of freedom cybernetic shoulder 

that mimics the biological shoulder motion, has high mobility and has sensitive 

compliance. 

  Bosscher et al. (2003) proposed a novel mechanism to implement multiple 

collocated spherical joints that has a large range of motion. Bonev et al. (2005) 

presented the singularity loci of spherical parallel mechanisms. Gosselin et al. (1994) 

developed a high performance three degrees of freedom orienting device. When 

compared to its predecessors, the mechanism is the least singular one. 

As mentioned above, the history approaches the same problems in different 

points of views. Although they have some distinctions, all investigations improve its 

area of interest one step ahead and provide information for future investigations. 

 

2.2. Research Statement 

 

In the path of computational kinematics, rotation matrices have proved much in 

many applications that are related to the position analysis of the rotating rigid bodies. 

However, having lack of computational efficiency, their usage has dramatically 

decreased in the applications, where rapid calculations are needed. Nowadays, as an 

alternative solution, quaternions are mostly being used for their fewer addition and 

multiplication operation requirements. In this investigation, discussing the quaternion 

algebra, not only a new method but also a new representation of quaternion operator for 

transformation will be introduced to the rotations by using quaternions, and the results 

are analyzed in the kinematics of a spherical wrist manipulator. 

 

 

Figure 2.1. Primitive Human-like Robots 
(Source: HONDA) 
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 The parallel robot manipulators have precise positioning capability, good 

dynamic performance and high load carrying capacity. However, the 6 DoF parallel 

structures have poor workspace and the direct kinematic solution gives high coupling 

degree between independent loops. On the other hand, it is needed to design the given 

translation and rotation motion of mobile platform. Analysis of research topics 

mentioned in the history show that the systematic study of mobility equations of 

mechanical systems have been described from different points of view, but systematic 

study of structural synthesis is relatively weak. This investigation enunciates a new 

structural formula of mobility and new method of designing robot manipulators, the 

mobile platform that can generate general motion in space, and also generate constraint 

motion in subspaces. In the meantime, the structural synthesis of serial platform 

manipulators is identified according to the new equations for simple serial platform 

structural groups. General guidelines are presented with 9 new robot manipulators and 

tables of serial platform structural groups for designing new several serial platform 

manipulators. 

 As the developing technology gives us many possibilities, the world is near to 

the robots that mimic totally human motions. Due to the fact that, their mechanical 

designs and control system managements are not an easy task, for the current progress, 

most of the investigations have been done for the individual complexes; such as, human 

arm, leg, spine and neck. So that, future applications can combine all, and built a whole 

human-like system (Fig. 2.1). However, when compared to other areas, works on the 

biokinematics and robot prostheses are not sufficient. In this investigation, a new and 

alternative robot manipulator with variable general constraints that mimics human 

shoulder, elbow and wrist complex is proposed with its structural synthesis. 

Geometrical kinematic analysis of one of its orientation platforms is performed. By 

using the animation software, simulations are carried out for workspace purposes. 
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CHAPTER 3 

 

QUATERNION ALGEBRA 

 

 William Rowan Hamilton searched for thirteen years for a system for the 

analysis of three-dimensional space. This search came to end in 1843 in four-

dimensional space with his discovery of hyper-complex numbers of rank 4, named 

quaternions, one of the main systems of the vector analysis. 

 In general, quaternions are four dimensional numbers that have one scalar and 

one vector part. The vector part is obtained by adding the elements i, j and k to the real 

numbers which satisfy the following relations: 

 

                                                          2 2 2 -1= = = =i j k ijk                                         (3.1) 

 

Eq. (3.1) shows the main rule of Hamilton for dealing operations on the vector part of 

the quaternions. All of his concepts and ideas were developed in the light of this rule. 

 

3.1. Preliminaries 

 

 Quaternions can be represented mainly by two alternative ways. As the name 

already suggests, they can be considered as the row of four real numbers that is 

represented by; 

 

                                                             0 1 2 3( , , , )q q q q q=                                             (3.2) 

 

where, 0 1 2, ,q q q  and 3q  are simply real numbers or scalars. Also, they can be denoted 

by scalar and vector parts as, 

 

                                                                   0q q= + q                                                   (3.3) 
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where, 0q  is some scalar and q  is an ordinary vector in 3R . Eq. (3.3) can be extended 

to, 

 

                                                       0 1 2 3q q q q q= + + +i j k                                           (3.4) 

 

As seen in Eqs. (3.3-3.4), quaternions can be represented as the sum of scalar 

and vector, which is not defined in ordinary linear algebra. So that, it is important to 

express the operation procedures of the quaternions. 

 

3.2. Quaternion Addition and Equality 

 

Let us take two quaternions 0 1 2 3q q q q q= + + +i j k and 0 1 2 3p p p p p= + + +i j k . 

These quaternions are equal if and only if they have exactly the same components, that 

is; 

 

                                       

0 0

1 1

2 2

3 3

p q

p q
p q

p q

p q

= 
 = 

= ⇔  
= 

 = 

                                                 (3.5) 

 

In the addition case, the sum of two quaternions p q+ is described by adding the 

corresponding components of both quaternions, Eq. (3.6). 

 

                       0 0 1 1 2 2 3 3( ) ( ) ( ) ( )p q p q p q p q p q+ = + + + + + + +i j k               (3.6) 

 

Due to the fact that there is no difference between the addition of quaternions and the 

row of four real numbers, quaternion addition satisfies the field properties that are 

applied to the addition. 

The addition of two quaternions is again a new quaternion, so the set of 

quaternions are closed under addition, Eq. (3.7). 
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0 1 2 3

p q r

r r r r r

+ =

= + + +i j k
                                          (3.7) 

 

Also each quaternion has a negative or additive inverse where each component of the 

corresponding quaternion is negative, Eq. (3.8). 

 

                                                         0 1 2 3r r r r r− = − − − −i j k                                        (3.8) 

 

Moreover, there exists a zero quaternion, in which each component of the quaternion is 

“0”, and the sum of any quaternion with the zero quaternion is again itself, Eq. (3.9). 

 

                                                       

0

1

2

3

0

0
0

0

0

p

p
p

p

p

r p r

= 
 = 

= ⇔  
= 

 = 
+ =

                                               (3.9) 

 

Finally, note that, the quaternion addition is commutative and associative, Eq. (3.10). 

 

                                                        
( ) ( )

p q q p

p q r p q r

+ = +

+ + = + +
                                      (3.10) 

 

3.3. Quaternion Multiplication 

 

 When compared with the addition, quaternion multiplication is more 

complicated, except the multiplication by a scalar. Similar to the addition, 

multiplication of a quaternion by a scalar quantity is described by a quaternion, in which 

components of the corresponding quaternion is multiplied by the scalar Eq. (3.11). 

 

                                                 
0 1 2 3

Aq p

p Ap Ap Ap Ap

=

= + + +i j k
                                    (3.11) 

 

On the other hand, if a quaternion is multiplied by another quaternion, more detailed 

procedure should be followed. 
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 In the product of two quaternions, the fundamental rule of Hamilton, Eq. (3.1), 

should be satisfied. Eq. (3.1) can be opened as: 

 

                                                              

2 2 2 -1= = =i j k

ij = k = -ji

jk = i = -kj

ki = j = -ik

                                           (3.12) 

 

and the product of two quaternions will be, 

 

                                    

0 1 2 3 0 1 2 3

2
0 0 0 1 0 2 0 3 1 0 1 1

2
1 2 1 3 2 0 2 1 2 2

2
2 3 3 0 3 1 3 2 3 3

( )( )pq p p p p q q q q

p q p q p q p q p q p q

p q p q p q p q p q

p q p q p q p q p q

= + + + + + +

= + + + + +

+ + + + +

+ + + + +

i j k i j k

i j k i i

ij ik j ji j

jk k ki kj k

                   (3.13) 

 

When Eq. (3.12) and (3.13) are combined, 

 

                                             

0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3

2 0 2 1 2 2 2 3

3 0 3 1 3 2 3 3

pq p q p q p q p q

p q p q p q p q

p q p q p q p q

p q p q p q p q

= + + +

+ − + −

+ − − +

+ + − −

i j k

i k j

j k i

k j i

                                 (3.14) 

 

and Eq. (3.14) is regrouped, 

 

                               
0 0 1 1 2 2 3 3

0 1 2 3 0 1 2 3

2 3 3 2 3 1 1 3 1 2 2 1

( )

( ) ( )

( ) ( ) ( )

pq p q p q p q p q

p q q q q p p p

p q p q p q p q p q p q

= − + +

+ + + + + +

+ − + − + −

i j k i j k

i j k

                (3.15) 

 

From this point, we should recall the cross and dot product of two vectors in three 

dimensional space. Let us take two vectors 1 2 3( , , )a a a=a and 1 2 3( , , )b b b=b , then the dot 

product of two vectors will be, 

 

                                                    1 1 2 2 3 3. ( , , )a b a b a b=a b                                              (3.16) 
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and the cross product will be, 

 

                                                   

1 2 3

1 2 3

2 3 3 2

3 1 1 3

1 2 2 1

( )

( )

( )

a a a

b b b

a b a b

a b a b

a b a b

× =

= −

+ −

+ −

i j k

a b

i

j

k

                                               (3.17) 

 

Using Eqs. (3.15), (3.16),and Eq. (3.17) the product of two quaternions becomes, 

 

                                           0 0 0 0pq p q p q= − + + +p.q q p p×q                                 (3.18) 

 

where, p and q are the vector parts of the quaternions consecutively. 

 As it can be easily seen from above equations, multiplication results of 

quaternions are still quaternions, and the fundamental rule of Hamilton violate the 

commutative rule. As a result, it can be said that, quaternions are closed under the 

multiplication and the product of quaternions are non commutative, Eq. (3.19). 

 

                                          
0 1 2 3

0 1 2 3

q q q q qAp q

s s s s sqr s

qr rq

= + + +=   
⇒   

= + + +=   
≠

i j k

i j k                             (3.19) 

 

Also quaternion product is associative and distributive over addition, Eq. (3.20). 

 

                                                          

( ) ( )

( )

( )

pq r p qr

p q r pq pr

p q r pr qr

=

+ = +

+ = +

                                           (3.20) 

 

Note that the identity for quaternion multiplication is a quaternion that has real 

part “1” and vector part “0”, and the product of any quaternion with the identity is again 

itself, Eq. (3.21). 
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                                           (3.21) 

 

3.4. Conjugate of the Quaternion 

  

Although it is simple, conjugate is a very important algebraic concept of the 

quaternions. The conjugate of quaternion q is usually denoted by ( )K q , and it is given 

by, 

 

                                                     0

0 1 2 3

( )K q q

q q q q

= −

= − − −

q

i j k
                                    (3.22) 

 

Due to the fact that, the vector parts of a quaternion and its conjugate differ only 

in sign, product and sum of the quaternion and its conjugate are results in scalar 

quantity, Eq. (3.23). 

 

                                                 
2 2 2 2

0 1 2 3

0

( ) ( )

( ) ( )

2

qK q K q q

q q q q

q K q K q q

q

= 
 

= + + + 

+ = + 
 

= 

                                 (3.23) 

 

As additional information, conjugate of the product of two quaternions is equal 

to the product of the individual conjugates in reverse order Eq. (3.24). 

 

                                                          ( ) ( ) ( )K pq K q K p=                                          (3.24) 

 

3.5. Norm of the Quaternion 

 

 As Eq. (3.23) describes, product of the quaternion and its conjugate results in the 

scalar quantity, which is the square of another important algebraic concept of the 

quaternions, called the norm of a quaternion. 
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The norm of a quaternion is usually denoted by ( )N q or q and can be referred as 

the length of q . The norm is defined as, 

 

                                                             ( ) ( )N q K q q=                                             (3.25) 

 

Using Eq. (3.18), Eq. (3.25) can be extended to, 

 

                                               

2
0 0

0 0 0 0

2
0

2 2 2 2
0 1 2 3

2

( ) ( )( )

( ). ( ) ( )

.

N q q q

q q q q

q

q q q q

q

= − +

= − − + + − + −

= +

= + + +

=

q q

q q q q q ×q

q q           (3.26) 

 

As additional information, norm of the product of two quaternions is equal to the 

product of the individual norms, Eq. (3.27). 

 

                                                          ( ) ( ) ( )N pq N p N q=                                          (3.27) 

 

Also note that, if the norm of a quaternion is unity, the components of the 

corresponding quaternions must have absolute values less than or equal to 1. Such 

quaternions are called as unit quaternions. 

 

3.6. Inverse of the Quaternion 

 

 Dealing with the conjugate and the norm concepts, now we can show that every 

non-zero quaternion have a multiplicative inverse. The inverse of a quaternion usually 

denoted by 1q− and by the definition of inverse, product of a quaternion with its inverse 

should result in unity Eq. (3.28). 

 

                                                            1 1 1q q qq− −= =                                                (3.28) 

 

If we multiply them with ( )K q by post and pre multiplication, Eq. (3.28) becomes, 
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                                                     1 1( ) ( ) 1q qK q K q qq− −= =                                       (3.29) 

 

Since 2( ) ( ) ( )qK q K q q N q= = we get the inverse quaternion as: 

 

                                                            1

2

( )

( )

K q
q

N q

− =                                                    (3.30) 

 

Note that if q is a unit quaternion ( ( ) 1N q = ), than the inverse of the quaternion 

will be its conjugate as: 

 

                                                       1( ) 1 ( )N q q K q−= ⇔ =                                        (3.31) 
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CHAPTER 4 

 

STRUCTURAL SYNTHESIS OF SERIAL PLATFORM 

MANIPULATORS 

 

4.1. Structural Formula 

  

An important class of robotic mechanical system consists of parallel platform 

manipulators, serial platform manipulators, multiple serial chains, and hybrid robotic 

mechanical systems. One or more grippers can be connected to one or several platforms. 

That system will describe one or more gripper robotic system. All platform robotic 

mechanical systems constructed from the actuators and simple structural groups consist 

of one or more platforms, legs, branches and hinges. Usually actuators are connected to 

legs. For these robotic mechanical systems loop mobility equations have been used 

(Freudenstein et al. 1975, Alizade 1988, Alizade et al. 2004). New method of structural 

synthesis of robot manipulators connects the simple structural groups to actuators and 

moving platform. Therefore, if the platform moves in Cartesian system coordinates, 

simple structural groups will be constructed in the orthogonal planes separately. For 

these robotic mechanical systems a new loop-legs mobility equation is used. In this 

section, the mobility of these systems is determined. The structural synthesis of serial 

platform manipulators is based on the structural synthesis of parallel platform 

manipulators that was described by Alizade et al. (2004). 

Moving platforms that are supported by lc  legs, bc  branches, and hc hinges, will 

have the total number DoF of joints of the legs as
1

lC

li

i

f
=
∑ , branches as

1

bC

bi

i

f
=
∑ , and the 

hinges as
1

hC

hi

i

f
=
∑ , respectively. The total number of legs, branches and hinges is given as:                         

 

                                                  
hl b cc c c += +                                                     (4.1) 

 

and, the total number DoF of joints of all legs, branches and hinges would be: 
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1 1 1 1

b l hC C CC

ci bi li hi

i i i i

f f f f
= = = =

= + +∑ ∑ ∑ ∑                                      (4.2) 

 

All branches, legs and hinges of the manipulators create independent loops as 

1b bL c B= − + , 1l lL c= −  and h hL c= , respectively, The number of independent loops 

in closed kinematic chains as shown by Alizade et al. (2004) can be introduced as: 

 

                                           b l h b l hL L L L c c c B c B= + + = + + − = −                           (4.3) 

 

Using Eqs (4.1―4.3) we can formulate the following: 

 

• Total number of connection chains is the sum of the number of branches’, legs’, 

and hinges. 

• Number of independent loops in closed branches’ kinematic chains is the 

difference of the number of branches and platforms plus one. 

• Number of independent loops in closed legs’ kinematic chains is one less of the 

number of legs. 

• Two platforms that are connected by a hinge will create independent loop. 

• Number of independent loops in a closed kinematic chain is the difference of the 

number of the connection chains and platforms. 

Rejoining the moving platforms of these branches, legs, and hinges to form 

separate B platforms in a space with λB DoF, is the same as removing L=c-B 

independent loops from the system to form kinematic chains with
1 1

jC

ci i

i i

f f
= =

=∑ ∑ . Using 

structural formula (Alizade 1988) we can describe the mobility loop equation in the 

following form:  

                       

                                      

1

1

1

( )

( )

( )

j

i B b p

i

C

ci p

i

C

ci p

i

M f j B c q j

f c B q j

B f q j

λ

λ

λ λ

=

=

=

= − − − + −

= − − + −

= + − + −

∑

∑

∑

                            (4.4) 



 26 

where, BB Mλ =  is the sum of mobilities of all platforms in the unconstrained space or 

subspace, and 
1

( )
c

i c

i

f Mλ
=

− =∑  is the sum of constraints imposed by the legs, branches 

and hinges. 

 Each leg, branch, and hinge separately introduces an insufficient ( 0)cif λ− < , 

sufficient ( 0)cif λ− = , or a redundant ( 0)cif λ− > kinematic chain. Sum of degrees of 

freedom of all platforms and the degrees of constraint that is imposed by kinematic 

chains describe the mobility of serial platform and parallel platform manipulators. 

 Mobility loop equation, Eq. (4.4), for robotic systems with independent loops 

with variable general constraint could be described as follows: 

 

                                                
1

( )
C

ci p

i

M B c f q jλ
=

= − + + −∑                                       (4.5) 

 

where, 2,3, 4,5,6λ = . 

 Different new platform manipulators could be designed in subspaces 2,3, 4,5λ =  

and in general space 6λ = . 

 The aim of the new method of structural synthesis is: 

• Using Eq. (4.5) we can describe the simple structure groups (M = 0) for 

subspaces 2,3, 4,5λ = and for general space 6λ = ,as shown in Alizade et al. 

(2004). A classification of sets of lines linearly dependent on one, two, three, 

four and five given lines has been introduced by McCarthy notation in 

McCarthy (2000). 

• Simple structural groups can be connected to the general moving platform and 

the actuators that are positioned in the orthogonal Cartesian planes. 

• Each actuators will moved (or rotated if it is possible) along the orthogonal 

Cartesian coordinate system. 

Now, our problem is to describe a new structural formula for platform 

manipulators which operates in Cartesian space or subspace and its legs consist of 

simple structural groups and actuators operates in orthogonal planes.  

 Euclidian space geometry introduces that any three vectors that are not on the 

same plane define a space with dimension D=3, also any two non-zero independent 
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vectors define a plane with dimension d=2, and in the end, one vector define a line 

passing through origin of coordinate system d=1.  

Let the number of independent parameters describing the structural groups of 

three legs 3lc = that are placed in three orthogonal planes isλ . The general moving 

platform and the actuators, positioned along orthogonal axis, are connected by simple 

structural groups with general constraint parameters 3, 4,5,6λ = . Each simple structural 

group creates the legs and introduces the plane or line with one or two dimensions, thus 

the total number of leg dimensions are
1

lC

l

l

d
=
∑ , where d =1 or d =2. The dimension of 

constraint of the general moving platform that is imposed by dimensions of each leg can 

be written as
1

( )
lC

l

l

d D
=

−∑ . Thus, the motion of the general moving platform in Cartesian 

orthogonal system will be in the following form: 

 

                                                 
1

( )( 3)
lC

p l

l

d Dm λ
=

−= + +∑                                          (4.6) 

 

The mobility of legs of the general moving platform is: 

 

                                                 
1

( )
lC

l l l p

l

f q jM λ
=

− + −=∑                                          (4.7) 

 

where lλ is the general leg constraint, lf is DoF of leg kinematic pairs. 

 As a result, the mobility of parallel Cartesian platform robot manipulators 

consists of the motion of the general moving platform pm , and the mobility of legs lM  

moving in orthogonal planes. 

 

                                                          p lM m M+=                                                    (4.8) 

 

Combining the Eq.(4.6―4.8) we can describe the new structural formula for the 

mobility loop-legs equations as follows: 

                                     
1 1

( ) ( )( 3)
l lC C

l l l p

l l

M d D f q jλλ
= =

− + − + −= + +∑ ∑                          (4.9) 
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Example 1: Let us design three parallel Cartesian platform manipulators, where the 

motion of the general moving platform has translational motions Pz, Py-Pz, and Px-Py-

Pz, respectively. 

 

A) For the first orthogonal robot manipulator we will take three simple structural groups 

RRR from the subspace 3λ = , one linear actuator moving along z-axis, and for 

symmetry two links rotating around x- and y-axes (Table 4.1.1). In each orthogonal 

plane, simple structural groups will be connected to the general moving platform, 

actuator and two rotation links. Using mobility loop-legs equation, Eq. (4.9), we can 

calculate the mobility of the type PRR-[RRR]-2RRR parallel orthogonal robot 

manipulator as: 12, 30, 0, 3, (3,3,4), (1,1,2), .
lp l l f Mq j dλ λ = == = = = = ∑  By using Eqs, (4.6) 

and (4.7) the motion of the general moving platform and the mobility of legs will be 

1pm = and 2lM = , respectively. 

 

B) For the second orthogonal robot manipulator, we will take three simple structural 

groups [ 14, 6, 0, 3n p M λ= = = = ] which will be connected to the general moving 

platform, two linear actuators along y and z-axes, and for symmetry one link rotating, 

around x-axis (Table 4.1.2). Using the same procedure, we can calculate the structural 

parameters of the type 2PR(RRR)[RR-RR-RR]-(RRR)RR parallel orthogonal robot 

manipulator as: 3, 2, 1.p lM m M= = =  Note that the mobility of each leg will be 

calculated from two loops as: lM =[(4-3)+(3-4)]+[(4-3)+(3-4)]+[(4-3)+(3-3)]=1 

 

C) For the third orthogonal manipulator, we will follow the same steps in Example 1.B 

except three actuators will be used along the x, y, and z-axes (Table 4.1.3). The 

structural parameters for 3PR(RRR)[RR-RR-RR] parallel orthogonal manipulator will 

be 3, 3, 0.p lM m M= = =  
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Table 4.1. New Parallel Cartesian Robot Manipulator Types 
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Table 4.1 (cont.). New Parallel Cartesian Robot Manipulator Types 
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Table 4.1 (cont.). New Parallel Cartesian Robot Manipulator Types 

 
† 

                                                 
† Ml=-3 comes from the passive degrees of freedom jp=3 
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Example 2: Let us design two parallel Cartesian platform manipulators. In the first, the 

motion of the general moving platform has three rotational motions Rx, Ry, Rz and one 

translational motion on the line in x-y plane (Pxy). In the second, the motion of the 

general moving platform has one rotational motion Rz and three translational motions 

Px, Py and Pz. 

 

A) For the first orthogonal robot manipulator, we will take three simple structural 

groups RRRR from the subspace 4λ = , and three linear actuators moving along x, y and 

z-axes (Table 4.1.4). In each orthogonal plane, simple structural groups will be 

connected to the general moving platform and actuators. Using mobility loop-legs 

equations, Eq. (4.9), Eq. (4.7) and Eq. (4.6), we can calculate the structural parameters 

of the type 3PRRR[RRR] parallel orthogonal robot manipulator as: 

4, 4, 0.p lM m M= = =  Note that, to reach the given motion of the general moving 

platform we need to add one more actuator. 

 

B) For the second orthogonal robot manipulator we will take three simple structural 

groups RCR from the subspace 4λ = , which will be connected to the general moving 

platform, and three rotational actuators in x, y and z-axes (Table 4.1.5). Using the same 

procedure, we can calculate the structural parameters of the type 3RRC[RRR] parallel 

orthogonal robot manipulator as: 4, 4, 0.p lM m M= = =  We need additional one 

actuator to reach the given motion of the general moving platform. 

 

Example 3: Let us design a parallel Cartesian platform manipulator, where the motion 

of the general moving platform has three rotational motions Rx, Ry, Rz and three 

translational motions Px, Py and Pz. First, we will take three simple structural groups 

STR from the space 6λ = , and three linear actuators moving along x, y and z-axes 

(Table 4.1.6). In each orthogonal plane, simple structural groups will be connected to 

the general moving platform and actuators. Using mobility loop-legs equations, Eq. 

(4.9), Eq. (4.7) and Eq. (4.6), we can calculate the structural parameters of the type 

3PRT[SSS] parallel orthogonal robot manipulator as: 9, 6, 3.p lM m M= = =  Note that, 

to reach the given motion of the general moving platform we need to add six more 

actuators. Also, to get rid of excessive mobility ( 6, 6, 0)p lM m M= = = , we can 
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connect each 6λ = structural group directly to the x, y and z-axes (Table 4.1.6-4.1.7-

4.1.9). 

A Side Note: Due to the fact that, using the same analogy, in all our trials with 5λ =  

structural groups, the legs of the parallel Cartesian platform manipulators are converted 

to 6λ = structural groups, and the motion of the manipulators is transformed into Rx, 

Ry, Rz, Px, Py and Pz (Table 4.1.6-4.1.7-4.1.8-4.1.9). So that investigation for 

5pm = with 5λ = structural groups will be continued in future. 

 

4.2. Structural Synthesis and Classification of Simple Serial Platform 

Structural Groups 

 

Serial platform kinematic chains means that, at least two platforms are 

connected by hinge kinematic pairs (and, therefore, zero number of branches as well) 

and all legs are going from the mobile platforms to the frame. 

 The problem of creating simple structural groups for plane and spatial serial 

platform kinematic chains is considered by developing platforms and closed loops. 

Simple serial platform structural group is the one that can not be split into several other 

structural groups with smaller number of links. A simple serial platform structural group 

has the mobility equal to zero (M=0), thus the number of input parameters is zero. 

 The plane simple structural groups can be created by lower and higher kinematic 

pairs, and the spatial structural groups can be created by hinge, revolute, spheric and 

slotted spheric kinematic pairs. Using exchangeability of kinematic pairs we can 

describe different structure of simple structural group (the hinge joint between mobile 

platforms is not changed) 

 For creating simple structural platform structural groups, mobility loop equation, 

Eq. (4.5), could be described as follows: 

 

                                                      0)(
1

=+− ∑
=

c

i

cifcB λ                                              (4.10) 

 

where hl ccc += , as 0=bc . 

 Simple structural group, Eq. (4.9), for subspace λ=3, and for general space λ=6 

can be introduced respectively as: 
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                                                       )(6
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 The additional conditions of structural synthesis of serial platform kinematic 

chains can be introduced as following equalities and inequalities: 

 

             
2););63);/)

6,3);2);)

≥+=≤≤=
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Bgcccfjecjjd

LjLjccjcbBccLa

hlBll

hBlhl       (4.13) 

 

 Using objective functions (4.10―4.12) and additional equality and inequality 

constraint conditions (4.13), computer software of structural synthesis of simple serial 

platform structural groups has been created. Results of plane and spatial simple serial 

structural groups are presented in the following Tables 4.2 and 4.3. 

The algorithm of structural synthesis of serial platform simple structural groups 

can be summarized step by step as follows: 

• Take subspace λ=3, or general space λ=6. 

• Select values for B and jB (Eq. 4.13e, and 4.13g) 

• Select value for hinge joints ch and calculate the number of legs cl (Eq. 4.13b) 

• Calculate the number of independent loops L (Eq. 4.13a) 

• Calculate the number of joints j with one DoF (Eq. 4.13c) 

• Place the joints on legs (Eq. 4.13d) and selected hinge joints ch between mobile 

platforms. 

• Using the principle of exchangeability of kinematic pair, replace the joints with 

one DoF with higher and other kinematic pairs. 

• The mobility of manipulator is equal to the number of actuators (Eq. 4.5) added 

to the legs of simple serial platform structural group. 

The simple serial platform structural groups in subspace λ=3 and in general space λ=6 

have been introduced by serial platform kinematic chains with open loops Bo, closed 

loops Bc, and mixed open and closed loops Bo+Bc, as shown in Table 4.2 and Table 4.3, 

respectively. 
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Table 4.2. Simple Structural Groups of Serial Platform Manipulators in Subspace λ=3 
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Table 4.3. Simple Structural Groups of Serial Platform Manipulators in Subspace λ=6 
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Figure 4.1. 6 DoF Spatial Serial Platform Robot Manipulator 
 

Example: Designing a spatial robot manipulator with 6 DoF and two grippers placed on 

two mobile platforms. Select from Table 4.3 simple serial platform structural group 

with cl=6, and ch=1, which consist of two mobile platforms B=2, and one hinge joint 

ch=1, thus hl ccc += =7 and joints on triangular platform 1Bj =3, and on pentagonal 

platform 2Bj =5, and Bj = 1Bj + 2Bj =8. The number of joints of simple structural group 

is Ê fi = 30. Six actuators will be placed on six legs and spherical, prismatic, and 

revolute pairs are used in this structure. Using Eq. (5) gives, 
1

( )
C

ci

i

M B c fλ
=

= − +∑ = (2-

7)6 + 36 = 6. The structure of serial platform robot manipulator is introduced in Fig.4.1. 

 
 

4.3. Structural Synthesis of Parallel Cartesian Platform Robot 

Manipulators 

 

Kinematic chain shown in Table 4.4.1 is referred as a simple Cartesian structural 

group. Simple Cartesian structural group can be obtained by successive coupling of the 

three simple structural groups in the orthogonal planes to the general moving platform. 

Thus, simple Cartesian structural group is one of the orthogonal parallel groups that can 

not be split into several orthogonal parallel structural groups with smaller member of 

links. A simple Cartesian structural group has zero number of mobility (Eq. 4.9), that is 

number of input links equals to zero. 
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Such structural group can be reached from Eq. (4.14) if and only if the motion of 

the general moving platform pm =0 and the leg mobility lM =0: 

 

                                             
1 1

( ) ( ) 0( 3)
l lC C

l l l

l l

d D f λλ
= =

− + − =+ +∑ ∑                          (4.14) 

                                                       
1

( ) 0( 3)
lC

l

l

d Dλ
=

− =+ +∑                                     (4.15) 

                                                             
1

( ) 0
lC

l l

l

f λ
=

− =∑                                               (4.16) 

 

 The kinematic chain shown in Table 4.4.1 is the first simple Cartesian structural 

group that was constructed in each orthogonal plane by simple structural group RRR, 

with the general constraint parameter 3lλ = , and the number of dimension d=1. 

 The result of the generation principle of parallel Cartesian platform robot 

manipulators is shown in Table 4.4. Every Cartesian robot manipulator was generated 

by the successive joining of orthogonal simple structural groups with the actuators on 

the orthogonal frames. Table 4.4.2, 4.4.4, and 4.4.7 shows Cartesian robots with 

mobility of legs lM =1,2,3 (Eq. 4.16), motion of the general moving platform pm =0 

(Eq. 4.15), and mobility of robot manipulator M =1,2,3, (Eq. 4.14), respectively. 

 The generation of a parallel Cartesian platform robot manipulator with one 

motion of the general moving platform pm =1 can be generated by three kinematic 

chains as was shown in Table 4.4.3, 4.4.5, and 4.4.8. The mobilities of legs are lM =0,1 

and 2, and the mobilities of manipulators areM =1,2, and 3 respectively. 

 Table 4.4.6, and 4.4.9 indicate the two motions of the general moving platform 

pm =2 with other parameters as lM =0,1 and M =2,3. The generation of the Cartesian 

robot manipulator with three motion of the general moving platform pm =3, mobility of 

legs lM =0, and the mobility M =3 with three linear actuators moving along the 

orthogonal axes were shown in Table 4.4.10. 

 In the end, the generation of the variations of actuators for simple structural 

group RRR ( 3λ = ) in the orthogonal planes gives five parallel Cartesian platform robot 

manipulators (Table 4.4.5, 4.4.6, 4.4.8, 4.4.9, and 4.4.10) 
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Table 4.4. Variations of Actuators for Simple Structural Group RRR (λ =3) of Parallel 

Cartesian Platform Robot Manipulators 
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CHAPTER 5 

 

TYPE SYNTHESIS OF HUMAN ARM 

 

 As a definition, type synthesis is a process, where a given task to be produced by 

a mechanism is analysed to find the type that will best perform it, as a linkage, a cam 

mechanism, a gear train, or their combinations. So that, before designing the 

mechanism, we need to specify our task clearly. As a result, in the design of a 

manipulator that will mimic human arm motion, the complete structure of the arm 

should be investigated. 

The bones of the human arm start from the shoulder to the wrist Fig. (5.1). In the 

first section, humerus creates the upper arm, and in the second section two parallel 

bones ulna and radius create the lower arm.  

 

 

Figure 5.1. Structure of Human Arm 

(Source: Encarta) 

 

The nearly spherical head of the humerus stays in the cavity of the scapula, 

where it creates the shoulder joint. The shoulder joint is a ball and socket type joint that 
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gives the full circular motion to the arm. The end of the humerus joins the bones of the 

lower arm at the elbow to form a revolute joint that permits the forearm to bend up and 

down. Also, to give the twist motion to the forearm, the radius can rotate over the ulna. 

Note that clavicle is a slender f-shaped bone that connects the upper arm to the trunk of 

the body and holds the shoulder joint away from the body to allow for greater freedom 

of movement. 

 

5.1. The Clavicle 

 

The clavicle forms the anterior portion of the shoulder girdle. It is a long bone, 

curved somewhat like the italic letter f, and placed nearly horizontally at the upper and 

anterior part of the thorax, immediately above the first rib Fig. (5.2). 

 

 

Figure 5.2. Clavicle 

(Source: Sports Injuries) 

 

The clavicle is designed to support the shoulder by the help of scapula, acting 

like a support that helps to align the shoulder with the rest of the chest. It has three 

rotational motions, as it is connected to the thorax with 3-DoF ball and socket type joint. 

The rotations are represented in detail in Fig. (5.3) and (5.4). 
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Figure 5.3. Clavicle Rotations (t: Thorax, c: Clavicle Coordinate Systems) 

(Source: ISB) 

 

 

Figure 5.4. Clavicle Rotations in Detail 

(a: Elevation and Depression, b: Protraction and Retraction 

c: Backward and Forward Rotation) 

(Source: D. M. Thompson) 
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After the detailed investigation of the clavicle motions, three degrees of freedom 

parallel orientation manipulator is selected for the mechanism that will mimic the 

human clavicle Fig. (5.5). 

 

 

Figure 5.5. 3-DoF Orientation Platform 

 

 The parallel manipulator consists of two platforms (base and mobile), mainly 

connected by a spherical pair that forms the rotational center of the orientation platform. 

For the actuation purposes three linear actuators are connected to each platform by 

spherical pairs. The advantage of this configuration is the fact that, the platform 

actuation is so simple and the singularities in its desired workspace are overcome. Note 

that, although the platform works in the space λ=6, it is constrained by the main 

spherical joint and works as a spherical mechanism, so that it has three rotations around 

the Cartesian axes. The mobility calculation of the moving  platform can be carried out 

as; 
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24 6(4 1 0) 0 3
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=

∑
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5.2. The Humerus 

 

The humerus is the longest bone in the arm that begins from the shoulder to the 

elbow Fig. (5.6). The head of the humerus articulates with the glenoid cavity of the 

scapula at the shoulder joint that is also called glenohumeral joint Fig. (5.6). It is a ball 

and socket type joint, which allows a wide range of circular movement. 

 

 

Figure 5.6. Humerus and the Shoulder Joint 

(Source: Staticfiles) 

 

Although it seems, shoulder joint is enough for the analysis of the motion of the 

humerus, it is not the case. Also, the motion of the scapula should be included in the 

analysis. Detailed representations of the both the motions of scapula and the humerus 

are given in Fig. (5.7), (5.8) and (5.9). 
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Figure 5.7. Scapula Rotations (s: Scapula, c: Clavicle Coordinate Systems) 

(Source: ISB) 

 

 

Figure 5.8. Scapula Rotations in Detail 

(a:Tipping, b: Upward and Downward Rotation 

c: Winging) 

(Source: D. M. Thompson) 
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Figure 5.9. Humerus Rotations Relative to Scapula, Y-X-Y Sequence 

(s: Scapula, h: Humerus Coordinate Systems) 

(a: Plane of  Elevation, b: Negative Elevation, c: Axial Rotation) 

(Source: ISB) 

 

 The figures show that, the motion of the humerus is so complex by the addition 

of scapula motions. As a result, to fulfil the desired motion, a manipulator that has a 

spherical motion capability with large workspace without singularities should be chosen 

for the imitation. From this point of view, the optimized version (Gosselin 1994) of the 

spherical parallel manipulator that is patented by R.I. Alizade in Russian patent 

“1144875” in subspace λ=3 is selected, Fig (5.10). 

 

 

Figure 5.10. Agile Eye, Optimized3-DoF Spherical Parallel Platform 
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 When compared with the non-optimized versions, agile eye has the largest 

workspace that is free from the singularities. Being a spherical parallel manipulator, it 

has one platform and three legs, where in each leg there exist three revolute pairs, one 

of each is a revolute actuator. The speciality of the manipulator is the fact that all of the 

revolute joint directions in each leg intersect in one point, where the rotation center is 

staying. In addition to its larger workspace, the agility of the manipulator is high when 

compared to its alternatives as orientation platforms. So that it is suitable for the 

humerus manipulator. The mobility calculation of the platform can be carried out as: 

 

                                               
1

( )

9 3(3 1 0) 0 0

3

j

i B b p

i

M f j B c q jλ
=

= − − − + −

= − − − + −

=

∑
                               (5.2) 

 

5.3. The Radius and the Ulna 

 

The radius and the ulna create the lower portion of the arm Fig. (5.11). These are 

the two bones placed in the forelimb in parallel to each other. 

 

 

Figure 5.11. Radius and Ulna 

(Source: Staticfiles) 
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The main function of the radius is to act as the main supporting bone of the 

forelimb. It articulates both with the humerus to form the elbow joint, and with the 

carpal bones to form the main joint of the wrist. Also, the radius can rotate over the ulna 

to give the twist motion to the wrist, as stated before. When compared in structure, it is 

shorter than the ulna, which serves as a point for muscle attachment. The motions of the 

bone couples include one degree of freedom motion in the elbow that is used to bend 

the forearm up and down, and one degree of freedom motion in the wrist that gives the 

hand its axial rotation, Fig. (5.12). 

 

 

Figure 5.12. Radius and Ulna Rotations 

(Source: Orthopedic Center) 

 

 Due to the simplicity of the motions, and the workspace, the manipulator that 

will mimic the forearm is selected to be an orientation platform with two degrees of 

freedom, Fig. (5.13). 

 

 

Figure 5.13. 2-DoF Orientation Platform 
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 Similar to the previous example, the manipulator in λ=6 has two platforms (base 

and moving), but this time connected by two revolute actuators. The motion is carried 

out by these actuators, where one of the actuators controls the elbow motion, while the 

other controls the wrist twist. Other legs around the platforms are used for both rigidity 

of the manipulator, and the constraint for the wrist twist, as human wrist cannot rotate in 

one full circle. The mobility calculation of the manipulator can be carried out as: 

 

                                                
1

( )

23 6(4 1 0) 0 3

2

j

i B b p

i

M f j B c q jλ
=

= − − − + −

= − − − + −

=

∑
                              (5.3) 

 

5.4. Combined Manipulator for Human Arm 

 

By the combination of the proposed mechanisms, we end up with a new 

manipulator with variable general constraints that mimics human shoulder, elbow and 

wrist∗ complex, Fig. (5.14). Variability comes from the different subspace and spaces of 

the individual manipulators, as λ=6, and λ=3. 

 

 

Figure 5.14. New Manipulator with Variable General Constraints that Mimics Human 

                       Shoulder, Elbow and Wrist Complex 

 

                                                 
∗ Note that the proposed human arm manipulator just gives the axial motion of the wrist. Individual serial 
mechanisms for the wrist will be investigated in the following chapter. 
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The mobility calculation of the new combined manipulator can be carried out as: 

 

                                              
1 1

56 (6 3 3 2 6 3) 0 6

8
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CHAPTER 6 

 

KINEMATICS OF HUMAN WRIST MANIPULATOR 

 

6.1. Quaternions as a Product of Two Lines 

 

As it is stated before, the fundamental i, j, k of quaternions furnishs a set of six 

quantities, three distinct space units and their combination by multiplication.  

 

2 2 2 1= = = = −i j k ijk                                             (6.1) 

 

Using Eq. (6.1), a directed line in space comes to be represented as ix+jy+kz, while the 

product of two lines is the quaternion: 

 

                                             

1 1 1 2 2 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

( )( )

( ) ( )

( ) ( )

q x y z x y z

x x y y z z y z z y

z x x z x y y x

= + + + +

= − + + + −

+ − + −

i j k i j k

i

j k

%

                            (6.2) 

 

 

Figure 6.1. Multiplication of Two Lines 

 

Suppose the lines r , 1r and 2r to be each at unit length. If θ be the angle between 

the two unit vectors 1r and 2r , and 3r is the line that is perpendicular to each of them, we 

have, 
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θCosrrzzyyxxrr 2121212121 =++=⋅                               (6.3) 

 

where, 

 

121 == rr  and θCoszzyyxx =++ 212121                           (6.4) 

 

Also, 

 

3 1 2 1 2 1 2 1 2 1 2 1 2 1 2( ) ( ) ( )r r r y z z y z x x z x y y x= × = − + − + −i j k                (6.5) 

θθ SinSinrrrr .12121 ==×                                      (6.6) 

 

If we write 1 as a length of unit vector r(x, y, z) Eq. (6.6) becomes, 

 

θSinzyxrr .222
21 ++=×                                      (6.7) 

 

If we use Eq. (6.5) and (6.6), we get, 

 

                                  
2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2

2 2 2 2

( ) ( ) ( )

( )( )

r r y z z y z x x z x y y x

Sin x y zθ

× = − + − + −

= + +
            (6.8) 

 

The components of Eq.(6.8) are, 

 

                                                         
1 2 1 2

1 2 1 2

1 2 1 2

( )

( )

( )

y z z y xSin

z x x z ySin

x y y x zSin

θ

θ

θ

− =

− =

− =

                                           (6.9) 

 

By using Eq. (6.2), (6.3) and (6.9), product of two unit lines can be expressed as; 

 

                                             q Cos xSin ySin zSinθ θ θ θ= − + + +i j k%                           (6.10) 
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Thus, the quaternion (6.10) as a product of two lines becomes 

 

                                                   ( )q Cos x y z Sinθ θ= − + + +i j k%                                (6.11) 

 

or, 

 

                                                         )(~ kdjcibaq +++=                                        (6.12) 

 

where, 

 

                                                                

a Cos

b xSin

c ySin

d zSin

θ

θ

θ

θ

= −

=

=

=

                                                 (6.13) 

 

The conjugate of q~may be written as, 

 

                                              1 ( )q Cos x y z Sinθ θ− = − − + +i j k%                                  (6.14) 

 

or, 

 

                                                        1 ( )q a b c d− = − − −i j k%                                        (6.15) 

 

Now the product of two quaternions can be at once expressed as a third quaternion; 

 

                                              
1 2

( )( ' ' ' ')

q q q

a b c d a b c d

A B C D

=

= + + + + + +

= + + +

i j k i j k

i j k

% % %

                      (6.16) 

 

where the components of (6.16) are 

 

                                        
;'''';''''

;'''';''''

cbbcdaadDbddbcaacC

dccdbaabBddccbbaaA

−++=−++=

−++=−−−=
          (6.17) 
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It should be noted that for the later use, a new quaternion operator can be 

introduced for rotations according to Eq. (6.11) and (6.14) as, 

 

qrq ~)(~ 1−                                                    (6.18) 

 

where, θθ SinmCosq ˆ~ +−= , m̂ is the unit normed vector that passes through origin and 

θθ SinmCosq ˆ~ 1 −−=−  is the conjugate of unit quaternion q~ . 

The quaternion operator Eq. (6.18) rotates any vector r that passes through origin, by 

2θ around m̂ axis and can be reformed as, 

 

1)( −qrq                                                   (6.19) 

 

If and only if, θθ SinmCosq ˆ+= and θθ SinmCosq ˆ1 −=− . 

Let us now proof transformation from the view of the quaternion operator in Eq. 

(6.18) to the view of the quaternion operator in Eq. (6.19). 

Multiplying the quaternion q~  and the conjugate quaternion 1~ −q by (-1), the 

result will be, 

 

                               
1
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q
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=
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%

%
                  (6.20) 

 

Multiplying the quaternion operator in Eq. (6.18) by (-1) and using Eq. (6.20), 

the result becomes, 

 

111 (...)~)1(...)(~)1(]~(...)~)[1( −−− =−−=− qqqqqq                        (6.21) 

 

Similarly, multiplying the quaternion operator in Eq. (6.19) by (-1) makes the equation, 
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qqqqqq ~(...)~)1(...)()1(](...))[1( 111 −−− =−−=−                      (6.22) 

 

Two quaternion operators in Eq. (6.21) and (6.22) are equal, if it satisfies the following 

conditions: 

 

                                                       
θθ

θθ

SinmCosqq

SinmCosqq

ˆ~
ˆ~

1

1

+−=−=

−−=−=
−

−

                                    (6.23) 

 

Eq. (6.23) describes an important new definition in quaternion algebra. 

 

Definition: 

Two quaternion operators will be equal, if quaternion and its conjugate in former 

quaternion operator are equal to the negative conjugate and its negative quaternion in 

later quaternion operator respectively. 

 

6.2. Rigid Body Rotations by Using Sequential Method by Quaternion 

Operators 

 

 

 

Figure 6.2. Sequential Rotations of 1r  
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Fig. (6.2) shows a vector ir  that passes through successive rotations about im by 

θi (i=1, 2…n). These rotations can be carried out by a quaternion operator in Eq. (6.18) 

or (6.19). 

Now, let 
2

ˆ
2

i
i

i
i SinmCosq

θθ
+=  a unit quaternion and thus the quaternion 

operator in Eq. (6.19) is chosen. 

Any 1+ir can be found by using the equation, 

 

1

1 )( −
+ = iiii qrqr                                              (6.24) 

 

and generalizing the case in Eq. (6.24), 

 

11
1

1
2

1
111211 .......)(....... −−

−
−−

−+ = nnnnn qqqqrqqqqr                        (6.25) 

 

It has been shown that rigid body rotations can be modeled in sequential method 

by quaternion operators, Eq. (6.25), and it should be noted that sequential model is 

closer to the traditional motion of robot manipulators. 

 

6.3. Rigid Body Rotations by Using New Modular Method by 

Quaternion Operators 

 

Fig. (6.3) interprets a new method for rotations of a rigid body by using 

quaternion operators. In this new method, 1r  and all im ’s except nm  is rotated around 

the nm axis by θn and new vectors are reached as, 
1
1r  and im

1 (i=1,2,……n-1) and this 

procedure is continued until nr1 is being reached. 

Now, let us introduce a unit quaternion 
2

ˆ
2

1* ki

k
k

i SinmCosq
θθ −+=  

where ipk −+= 1 , (i=1,2,…..n), where p = number of total rotations and a quaternion 

operator 1** )( −qrq . 

Any ir1 can be found by using the equation, 
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1**

1 )( −= ii

i
qrqr                                                   (6.26) 

 

and any i

jm can be found by using the equation, 

 

1*1* )( −−= i

i

ji

i

j qmqm                                                (6.27) 

 

 

Figure 6.3. Modular Method Rotations 

 

and generalizing the case in Eq. (6.26) and (6.27), 

 

1*1*
1

1*
2

1*
11

*
1

*
2

*
1

*
1 .......)(....... −−

−
−−

−= nnnn

n qqqqrqqqqr                       (6.28) 

 

The sequential Eq. (6.25) and modular Eq. (6.28) methods of rigid body 

rotations by quaternion operators are identical; however, modular method is closer to 

the human motion of robot manipulators. 

 

Theorem: 

If im  (i=1, 2…n) be unit vectors which pass through origin of fixed coordinate 

system and )( imi
R θ , (i=1, 2…n), (n≥2) be rotation operators about  im  axes by iθ  
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angles, and these rotations are applied to an 1r  vector in )( 1θim
R to )( nmi

R θ order, 

solution vector is assumed to be 1+nr  vector, where subscript shows the operation 

numbers. When these rotation operations are applied to an 2r  vector and also to im  (i= 

1,….,n-1) rotation axes at the same time, but in reverse order from nθ  around the nm , 

we get 1
2r  and 1

im (i=1,….,n-1). If we apply the same procedure to the resulting vectors, 

finally we end up with nr2 . Solutions of these two different set of operations, 1+nr and nr2 , 

are exactly the same if and only if 1r  and 2r  are equal. 

 

Proof: 

In the first case, rotation operators )( imi
R θ are applied to vector 1r  respectively 

as fallows, 

 

            112 )(
1

rRr m θ= , 223 )(
2

rRr m θ= ,………………………, nnmn rRr
n

)(1 θ=+       (6.29) 

 

Using quaternion operators, Eq. (6.29) can be shown as, 

 

11
1

1
2

1
111211 .......)(....... −−

−
−−

−+ = nnnnn qqqqrqqqqr                        (6.30) 

 

If n=2, Eq. (6.30) is reduced to, 

 

 1
2

1
11123 )( −−= qqrqqr                                          (6.31) 

 

Using Eq. (6.31) where we set 1m = 1 2 3m i m j m k+ +  and 2 1 2 3m n i n j n k= + + , we 

reached by sequential method analytical expression of rigid body rotations with respect 

to two axes as equations shown in Appendix A.                                                                                                                                                                                                                     

In the second case, first mi (i=1,2….,n-1) axes and 2r are rotated around nm  by the angle 

nθ and we get 1
2r  and 1

im (i=n-1,….,1). We continued this process until we reach nr2 . 

These operations are summarized by using quaternion operators as, 

 

* * * * * 1 * 1 * 1 * 1
2 1 2 1 2 1 2 1....... ( ) .......n

n n n nr q q q q r q q q q− − − −
− −=                        (6.32) 
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If n=2, Eq. (6.32) is reduced to, 

 

1*
2

1*
11

*
1

*
2

2
2 )( −−= qqrqqr                                         (6.33) 

 

Using Eq. (6.33) where we set 1m = 1 2 3m i m j m k+ + , and 2 1 2 3m n i n j n k= + + , we 

reached by modular method analytical expression of rigid body rotations with respect to 

two axes as Fig. (6.4). 

As it was shown in Appendix A, equations, 
1 1

( )3 2 1 1 1 2r q q r q q
− −

=  and 

2 * * * 1 * 1
2 2 1 2 1 2( )r q q r q q− −=  are identical. 

As a result, the sequential and modular methods of rigid body rotations by 

quaternion operators are identical. 

 

6.4. Spherical Wrist Motion through Quaternions 

 

Suppose 2-DoF spherical manipulator is given as Fig. (6.4), and it is desired to 

find the position of the gripper, 2z , after its rotation, first around 1z  by 1θ , and then 

around 0z  by 2θ . 

 

 

Figure 6.4. Position Vectors of a Spherical Serial Wrist with 2-DoF 
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Applying the first sequential method, the position of the gripper after the first rotation 

can be calculated as, 

 

  1 1
2 1 2 1( )z q z q−=                                                  (6.34) 

 

where,  

 

2
ˆ

2
1

1
1

1

θθ
SinzCosq +=                                         (6.35) 

 

and the final position will be, 

 

  1
2

1
22

2
2 )( −= qzqz                                              (6.36) 

 

where,  

 

2
ˆ

2
2

0
2

2

θθ
SinzCosq +=                                       (6.37) 

 

Combining Eq. (6.34÷6.37) we get, 

 

1
2

1
1212

2
2 )( −−= qqzqqz                                        (6.38) 

 

If the desired method will be the modular method, to find the final position of 

the gripper, both 1z and 2z  will be rotated first around 0z  by 2θ  to find *1
2z and *1

1z  as, 

 

                                                1*
11

*

1
*1
1 )( −= qzqz , 1*

12

*

1
*1
2 )( −= qzqz                             (6.39) 

 

where,  
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2
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1

θθ
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To reach the final position, *1
2z  should be rotated around *1

1z  by 1θ  and 2
2z will be, 

 

                                                        1*
2

*1
2

*

2
*2

2
2
2 )( −== qzqzz                                        (6.41) 

 

where, 

 

                                                       
2

ˆ
2

1*1
1

1*

2

θθ
SinzCosq +=                                      (6.42) 

 

Note that, both Eq. (6.38) and (6.42) will give the same result for the final 

position of the gripper. 

The same procedure can be applied to more complex systems as 3-DoF spherical 

manipulator in Fig. (6.5). 

 

 

Figure 6.5. Position Vectors of a Spherical Serial Wrist with 3-DoF 
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By sequential method the final position of the gripper 3z will be, 

 

1
3

1
2

1
13123

3
3 )( −−−= qqqzqqqz                                           (6.43) 

 

where, 
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If the modular method is the case to reach the final position of the gripper, 

following equations should be used: 
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Note that, both Eq. (6.43) and (6.45) will give the same result for the final 

position of the gripper. 

Further analysis can be applied to the systems with higher degrees of freedom as 

in Fig. (6.6). 

By sequential method the final position of the gripper 4z will be, 

 

                                                  4 1 1 1 1
4 4 3 2 1 4 1 2 3 4( )z q q q q z q q q q− − − −=                                    (6.46) 
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Figure 6.6. Position Vectors of a Spherical Serial Wrist with 4-DoF 

 

where, 
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                                       (6.47) 

 

If the modular method is the case to reach the final position of the gripper, 

following equations should be used: 
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               (6.48b) 

 

Again, note that, both Eq. (6.46) and (6.48) will give the same result for the final 

position of the gripper. 

 

6.5. Workspaces of the Spherical Wrists 

 

 By using the computed equations of the 2-DoF, 3-DoF and 4-DoF spherical 

wrists, the workspaces of the grippers are analysed Fig. (6.7), (6.8), and (6.9). 

 

 

 

Figure 6.7. Workspace of a Spherical Serial Wrist with 2-DoF 
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Figure 6.8. Workspace of a Spherical Serial Wrist with 3-DoF 

 

 

 

Figure 6.9. Workspace of a Spherical Serial Wrist with 4-DoF 
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CHAPTER 7 

 

GEOMETRICAL ANALYSIS OF THE HUMAN 

CLAVICLE AND ELBOW MANIPULATOR 

 

7.1. Geometrical Analysis of Spatial 3-DoF Orientation Mechanism in 

λ=6 

 

Now, the first part, proposed for the clavicle, of the new manipulator design with 

variable general constraints that mimics human shoulder, elbow and wrist complex will 

be analysed with respect to the geometrical approach Fig. (7.1-7.2). 

 

 

Figure 7.1. Orientation Platform (Red) of the New Manipulator Design 

 

 

Figure 7.2. Orientation Platform (Closed View) 
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Eq.(7.1) shows the simple equation of a sphere with radius “r” whose center is 

fixed at the origin Fig.(7.3) and the Eq. (7.2) shows the case when the center is away 

from the origin 1 1 1( , , )x y z  Fig. (7.3). 

 

2 2 2 2x y z r+ + =                                                 (7.1) 

2 2 2 2
1 1 1( ) ( ) ( )x x y y z z r− + − + − =                                   (7.2) 

 

 

Figure 7.3. Sphere with Radius “r” whose Center is Fixed at the Origin 

 

 

Figure 7.4. Sphere with Radius “r” whose Center is Away from the Origin 
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Now let us consider the generalized mechanism in Fig. (7.5). We will set the 

origin point of the Cartesian coordinate system as the rotation center of the mechanism 

where z axis is perpendicular to the upper platform in the initial configuration. 

To start to analyse the workspace of the first point 1D  we will draw the vector 

from the origin to the point 1D . From this point we can describe the workspace of 1r as a 

sphere “A” whose equation is, 

 

1 1 1

2 2 2 2

1D D D
x y z r+ + =                                         (7.3) 

 

In second operation, we will pass to the leg 1d . By using the constructional 

parameters we can easily find the coordinates of 1O 1 1 1( , , )x y z . Due to the limitation of 

the leg 1d  the work space of the vector will be the volume between the spheres B and C. 

We can show this in equation as, 

 

1 1 1

2 2 2 2

1 1 1 1

1 1min 1max

( ) ( ) ( )
D D D
x x y y z z d

d d d

− + − + − =

= →
                        (7.4) 

 

By the same analogy, we can write other 4 equations for the other legs, 
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D D D
x x y y z z d

d d d

− + − + − =

= →
                              (7.6) 

3 3 3

2 2 2 2

3D D D
x y z r+ + =                                               (7.7) 
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3 3 3 3

3 3min 3max

( ) ( ) ( )
D D D
x x y y z z d

d d d

− + − + − =

= →
                               (7.8) 

 



 69 

 

Figure 7.5. Generalized Orientation Mechanism 

 

At this point we have 6 equations with 9 unknowns, of which 6 of them are 

independent and 3 of them are dependent with respect to the Eq. (7.3), (7.5) and (7.7), 

remaining 3 equations comes from the construction parameters of the upper platform 

Fig. (7.6). 
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Figure 7.6. Construction Parameters of Upper Platform (a, b, c) 

 

By using the fixed lengths, a, b, and c, 

 

1 2 1 2 1 2

2 2 2 2( ) ( ) ( )
D D D D D D
x x y y z z a− + − + − =                         (7.9) 

2 3 2 3 2 3

2 2 2 2( ) ( ) ( )
D D D D D D
x x y y z z c− + − + − =                        (7.10) 

1 3 1 3 1 3

2 2 2 2( ) ( ) ( )
D D D D D D
x x y y z z b− + − + − =                        (7.11) 

 

Now from the 9 equations Eq. (7.3÷7.11), we can easily start to compute the 

unknowns , ,
i i iD D Dx y z (i=1, 2, 3). 

From the Eq. (7.3), (7.5) and (7.7), we will get, 

 

1 1 1

2 2 2

3 3 3

2
1

2
2

2
3

D D D

D D D

D D D

z r x y

z r x y

z r x y

= ± − −

= ± − −

= ± − −

                                          (7.12) 

 

by using the transformations in Eq. (7.13), equation sets can be rewritten as, 
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expanding the equations, 

 

2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

3 3 3 3 3 3 1 1 1 1 1 1 3

2 2 2 2 2 2

1 1 1 2 2 2 1 2 1 2

2 2 2

2 2 2

2 2 2

2 2 2

x y z x y z x x y y z z d

x y z x y z x x y y z z d

x y z x y z x x y y z z d

x y z x y z x x y y

+ + + + + − − − =

+ + + + + − − − =

+ + + + + − − − =

+ + + + + − − −

% % % %% %

% % % %% %

% % % %% %

% % % % % % % %% %
2

1 2

2 2 2 2 2 2 2

1 1 1 3 3 3 1 3 1 3 1 3

2 2 2 2 2 2 2

2 2 2 3 3 3 2 3 2 3 2 3

2 2 2

2 2 2

z z a

x y z x y z x x y y z z b

x y z x y z x x y y z z c

=

+ + + + + − − − =

+ + + + + − − − =

% %

% % % % % % % %% % % %

% % % % % % % %% % % %

        (7.15) 

 

using Eq. (7.3), (7.5) and (7.7), and arranging the terms, 
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                 (7.16) 

 

For simplifying purposes, new parameters can be used as, 
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                                 (7.17) 

 

and using equation set (7.12), 
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                  (7.18) 

 

Squaring both sides and arranging, 
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and, in the end, after the combinations of the known values, our final equation sets, that 

has 6 independent variables will be, 

 

2 2
1 1 2 1 3 1 4 1 5 1 1

2 2
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     (7.20) 

 

  As we have six independent equations and six unknowns, there exists a unique 

solution for the position of the platform with respect to the given parameters. So that, 

solving the Eq. (7.20) by numerical methods and get the positions of the corners, any 

position and orientation of the center of the orientation platform can be found by using 

the input parameters. 

 

7.2. Geometrical Analysis of Spatial 2-DoF Orientation Mechanism in 

λ=6 

 

 Unlike the 3-DoF orientation mechanism, geometric analysis of the manipulator 

proposed for the ankle joint is relatively simple Fig (7.7) and (7.8), as the control of the 

platform is carried out by two actuators separately. 

 In Fig. (7.9), on the closed view of the platform base, two revolute actuators A, 

and B can easily be seen. As it is mentioned, revolute actuator A is responsible for the 

position of the platform and the other revolute actuator is responsible for the orientation 

of the platform. 
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Figure 7.7. 2-DoF Orientation Platform (Red) of the New Manipulator Design 

 

 

Figure 7.8. 2-DoF Orientation Platform (Closed View) 

 

 

Figure 7.9. 2-DoF Orientation Platform (Base) 
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Figure 7.10. Generalized 2-DoF Orientation Platform 

 

 Now, consider the manipulator in Fig (7.10) will be rotated by the angle θ 

around z axis by using revolute actuator A in clock wise direction, and rotated by the 

angle α around the floating y axis. Note that in this operation, the platform of the 

shoulder is taken as a fixed frame. Due to the fact that, the center of the upper platform 

(D), will always remain on the circle with radius r, the last position of the platform will 

be, 

 

                                                               

( )

( )

0

x rSin

y rCos

z

θ

θ

=

=

=
                                            (7.21) 

 

and the final orientation will be the angle α. 

 



 76 

Let us now prove the positions by the help of the rotation matrices. As seen in 

Fig. (7.10) the first position of the center point of the upper platform is D(0,r,0) and the 

final position is Df(0,r,0). By using the rotational sequences, 

 

                                                   ( , ) ( , )f R z R y DD θ α= −                                      (7.22) 

 

Expanding and evaluating the Eq. (7.22), 
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 
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              (7.23) 

 

So, the results of Eq. (7.23) prove the geometrical interpretation for the final 

position of the platform Eq. (7.21). By using these equations any of the positions of the 

platform can be computed with respect to the given parameters. 
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CHAPTER 8 

 

CONCLUSION 

 

 It has been shown in this study that, rigid body rotations can be carried out by 

using two different techniques through quaternion algebra with different quaternion 

operators. The advantage is the fact that, it is very simple procedure to use quaternions 

in rotation sequences when compared with the rotation matrices or other alternative 

tools; thus, this means fewer operations and less computational time. Analysis of the 

results through kinematics of spherical human wrist manipulators has proved that the 

theory is applicable practically as well as theoretically. Also it has been shown that 

sequential model is closer to the traditional motion of robot manipulators, while the new 

proposed modular method is closer to the human motion of robot manipulators. 

Moreover, in this study, a new structural formula for spatial parallel 

manipulators having one general moving platform, working in Cartesian space with 

three legs that are placed in orthogonal planes introducing simple structural groups in 

subspaces λ=3, 4 and general space λ=6, and connected to actuators and to the general 

moving platform is introduced. History of formulas DoF is presented as 38 equations 

with the unique key controlling parameters. 9 new parallel Cartesian platform robot 

manipulators are introduced by applying new mobility loop-legs equation. Structural 

synthesis of serial platform manipulators and parallel Cartesian platform manipulators 

are considered. Simple serial platform structural groups in subspace λ=3, and general 

space λ=6 are presented along with examples. 

Finally, after the type synthesis of human arm is completed with the illustrations 

of the human arm, a new manipulator with variable general constraints that mimics 

human shoulder, elbow and wrist complex is proposed with its structural synthesis. The 

manipulator has two orientation platforms in space 6λ = and one spherical platform in 

subspace 3λ = . At the end of the study, geometrical kinematic analysis of the 

orientation platforms of the new manipulator design for the human arm is accomplished. 
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APPENDIX B 

 

Q-BASIC CODE FOR THE CREATION OF THE STRUCTURAL 

GROUPS OF SERIAL PLATFORM MANIPULATORS 

 

DO 

CLS 

INPUT “Select the subspace 3 or 6”, s 

REDIM s(B) 

REDIM c(2) 

REDIM L(2) 

REDIM j(2) 

REDIM a(2) 

REDIM B(2) 

c(1)=B-1 

c(2)=B 

IF s=3 THEN 

 FOR i=1 to B 

  s(i)=3 

 NEXT i 

ELSE 

 PRINT “Select the platform structures 3,4,5,6:” 

 FOR i=1 to B 

  PRINT “B(“;i;”):”; 

  INPUT “ “, s(i) 

 NEXT i 

END IF 

Jb=0 

FOR i=1 to B 

 Jb=jb+s(i) 

NEXT i 

cl(1)=jb-(2*c(1)) 
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cl(2)=jb-(2*c(2)) 

L(1)=cl(1)+c(1)-B 

L(2)=cl(2)+c(2)-B 

j(1)=s*L(1) 

j(2)=s*L(2) 

a(1)=INT((j(1)-c(1))(cl(1)) 

B(1)=j(1)-c(1)-(a(1)*cl(1)) 

a(2)=INT((j(2)-c(2))(cl(2)) 

B(2)=j(2)-c(2)-(a(2)*cl(2)) 

CLS 

PRINT “Subspace or space=”;s 

PRINT “Number of platforms=”;B 

PRINT “Structure of platforms”; 

FOR i=1 to B 

 PRINT s(i); 

NEXT i 

PRINT “*****” 

PRINT “by using” ;c(1); "hinges…" 

PRINT “total number of legs=”;cl(1) 

PRINT “total number of joints=”;j(1) 

PRINT “in each leg there should be ”;a(1);”joints” 

PRINT “remaining” ;B(1) ; ” joints can be placed to any leg” 

IF B>=4 THEN 

 PRINT “*****” 

PRINT “by using” ;c(2); "hinges…" 

PRINT “total number of legs=”;cl(2) 

PRINT “total number of joints=”;j(2) 

PRINT “in each leg there should be ”;a(2);”joints” 

PRINT “remaining” ;B(2) ; ” joints can be placed to any leg” 

IF (a(1)-INT((-B(2))/(B(2)+1)))>=s THEN PRINT “warning: impossible configuration” 

END IF 

INPUT “Do you want to exit (y/n)”,exit$ 

LOOP until exit$=”y” 
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APPENDIX C 

 

MOTION ANALYSIS OF NEW CARTESIAN ROBOT 

MANIPULATORS 

 

 

Figure C.1. Raw Motion Analysis 
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Figure C.2. Raw Motion Analysis 
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Figure C.3. Raw Motion Analysis 
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Figure C.4. Raw Motion Analysis 
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Figure C.5. Raw Motion Analysis 
 

 



 95 

 

Figure C.6. Raw Motion Analysis 
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Figure C.7. Raw Motion Analysis 
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Figure C.8. Raw Motion Analysis 
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Figure C.9. Raw Motion Analysis 
 

 


