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ABSTRACT 
 
 

Lime mortars are among the binding agents used in binding masonry units such as 

brick and stone in many historic buildings. Their physical, mechanical strength and 

durability properties, raw material compositions can play significant roles in structural 

behaviour of historic buildings. Their production technologies may be also different 

according to their specific use in the structural layout. Therefore, the characteristics of 

lime mortars are of particular interest in the evaluation of structural characteristics of 

the historic buildings. Besides, determination of characteristics of the lime mortars is 

also important for the production of intervention mortars to be used in the restoration of 

historic buildings. 

In this study, lime mortars used in the walls and domes of some historic Ottoman 

baths in Seferihisar-Urla region near İzmir were analyzed in order to understand their 

characteristics for the purpose of conservation of these buildings. It is also aimed to 

investigate characteristics of the lime mortars in relation to their specific use in the 

structural elements of the walls and domes. Therefore, several laboratory studies were 

carried out on the collected mortar samples. Their basic physical and mechanical 

properties, raw material compositions, pozzolanic activity of aggregates used in the 

mortars, soluble salts in the mortars, their mineralogical and chemical compositions, 

and microstructural and hydraulic properties were determined. In addition, basic 

physical properties and pozzolanic activity of bricks used in the construction of domes 

were also determined in order to evaluate their contribution to the structural stability of 

the domes. 

Stone masonry mortars used in the walls and brick masonry mortars used in the 

domes of the Ottoman baths are lime mortars. Lime ratios of the stone masonry mortars 

are relatively higher than those of the brick masonry mortars. Some differences have 

been identified in the aggregates used in the mortars. Particle size distributions of the 

aggregates used in each mortar are almost the same. Fine aggregates used in each 

mortar have similar mineralogical and chemical compositions with their coarse 

aggregates. However, the fine aggregates have higher pozzolanic activity than their 

coarse aggregates due to high contents of amorphous materials, silicon dioxide and 

aluminium oxide in their compositions. Either of high-calcium lime and lime containing 

silica at high ratios was used as binding material in the stone and brick masonry 
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mortars. All brick masonry mortars and some of the stone masonry mortars have 

hydraulic properties owing to the use of pozzolanic aggregates and lime containing 

silica at high ratios. These pozzolanic aggregates have good adhesion with the lime used 

in these mortars. Hydraulic lime mortars used in all domes have higher mechanical 

strength properties than non-hydraulic lime mortars used in the walls built of stone. 

Such differences in the stone and brick masonry mortars have been explained with a 

mortar technology developed consciously in relation to the difference in structural 

behaviour of the wall and dome. Even though the bricks used in the domes have poor 

pozzolanicity, they are tightly adhered to the lime mortar. This contributes to the 

structural strength of the domes. 

All these results indicate a lime mortar technology developed according to the use 

of the lime mortars in structural layout and its traditional character peculiar to the 

Ottoman baths in Seferihisar-Urla region.  

The first part of the study defines its subject and aim, limits and method. The 

second part deals with the subject of lime mortars in respect to their general 

characteristics and production process. In the third part, method of the study composed 

of sampling and experimental study is presented. In the fourth part, the results of the 

experimental studies are evaluated and discussed in respect to results of the related 

studies in the literature. The fifth part is devoted to the conclusions of the study. 
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ÖZ 
 
 

Kireç harçları, tarihi yapılarda taş, tuğla gibi yapı malzemelerini bir arada tutan 

bağlayıcı malzemelerdendir. Harçların fiziksel ve mekanik özellikleri ile ham madde 

kompozisyonları yapıların strüktürel davranışlarında etkilidir. Kireç harçlarının ham 

madde özellikleri ve üretim teknolojileri, yapılarda kullanıldıkları strüktürel elemanlara 

göre farklı özellikler gösterebilir. Bundan dolayı bu harçlar, tarihi yapıların strüktürel 

özelliklerinin değerlendirilmesinde önemli bir yere sahiptir. Ayrıca, kireç harçlarının 

özelliklerinin belirlenmesi, tarihi yapıların korunması çalışmalarında kullanılacak olan 

onarım harçlarının hazırlanması açısından son derece önemlidir. 

Bu çalışmada, İzmir’e yakın yerleşmelerde bulunan Seferihisar-Urla bölgesindeki 

bazı Osmanlı dönemi hamamlarının kubbe ve duvarlarında kullanılan kireç harçlarının 

özellikleri, bu tarihi yapıların korunması amacına yönelik olarak incelenmiştir. 

Harçların özelliklerinin, kullanıldıkları duvar ve kubbelerin strüktürel özellikleri ile 

ilişkisini ele alan bir yaklaşım ile incelenmesi amaçlanmıştır. Bu kapsamda, yapılardan 

toplanan harç örnekleri laboratuvar çalışmaları kapsamında incelenmiştir. Harçların 

temel fiziksel ve mekanik özellikleri, ham madde kompozisyonları, harçlarda kullanılan 

agregaların puzolanik aktiviteleri, harçlardaki çözünen tuzlar, harçların mineralojik ve 

kimyasal özellikleri, mikroyapıları ve hidrolik özellikleri belirlenmiştir. Ayrıca, 

kubbelerde kullanılan tuğlaların temel fiziksel ve puzolanik aktiviteleri, kubbelerin 

strüktürel dayanımlarının sağlanmasındaki etkisini değerlendirmek amacı ile 

belirlenmiştir. 

Hamamların duvar ve kubbelerinde kullanılan harçlar, kireç harçlarıdır. Duvar 

harçlarındaki kireç oranları, kubbe harçlarındaki kireç oranlarından biraz yüksektir. 

Harçlarda kullanılan agregaların farklı özellikler gösterdiği tespit edilmiştir. Her bir 

harç örneğinde kullanılan agregalar, benzer tane büyüklüğü dağılımı göstermektedirler. 

Harçlardaki ince taneli agregalar, iri taneli agregalar ile benzer mineralojik ve kimyasal 

kompozisyona sahiptirler. Buna karşılık, ince taneli agregalar, yüksek oranlarda amorf 

malzeme, silisyum dioksit  ve alüminyum oksit içerdikleri için iri taneli agregalardan 

daha yüksek puzolanik özelliğe sahiptirler. Harçlarda bağlayıcı malzeme olarak saf 

kireç ve yüksek oranlarda silisyum içeren kireç kullanılmıştır. Puzolanik agrega ve 

yüksek oranlarda silisyum içeren kireç kullanımından dolayı kubbelerde kullanılan kireç 

harçlarının tümü ve duvarlarda kullanılan kireç harçlarının bazıları hidrolik kireç 
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harçlarıdır. Bu harçlardaki puzolanik agregalar ile kirecin birbirleri ile iyi bir şekilde 

bağlandığı tespit edilmiştir. Kubbelerde kullanılan hidrolik kireç harçları, duvarlarda 

kullanılan hidrolik olmayan kireç harçlarından daha yüksek mekanik özelliklere 

sahiptirler. Kubbe ve duvar harçlarında gözlenen bu farklılık, alt ve üst yapı 

elemanlarının farklı strüktürel davranışına bağlı olarak bilinçli bir şekilde üretilen harç 

yapım tekniği ile açıklanabilir. Kubbelerde kullanılan tuğlalar düşük puzolanik özelliğe 

sahip olmalarına rağmen kireç harçları ile iyi bir şekilde bağlanmaktadır. Bu durum, 

kubbelerin strüktürel dayanımlarının sağlanmasında etkilidir. 

Bu sonuçlar, hamamlardaki kireç harçlarının kullanıldıkları yapı elemanlarının 

özelliklerine göre bilinçli bir şekilde üretildiği ve bunun Seferihisar-Urla bölgesinde yer 

alan hamam yapılarına özgü geleneksel bir harç yapım tekniği olduğunu göstermektedir. 

Birinci bölümde çalışmanın konusu, amacı, kapsamı ve metodu belirtilmiştir. 

İkinci bölümde, kireç harçlarının genel özellikleri ve üretim aşamaları verilmiştir. 

Üçüncü bölümde, harç örneklerinin yapılardan toplanması ve deneysel çalışmalardan 

oluşan çalışma metodu tanımlanmıştır. Dördüncü bölümde, deneysel çalışmaların 

sonuçları değerlendirilmiş ve bunlar literatürde yer alan benzer çalışmaların sonuçları 

kapsamında tartışılmıştır. Beşinci bölümde, çalışmadan elde edilen başlıca sonuçlara yer 

verilmiştir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 vii



TABLE OF CONTENTS 
 

 
LIST OF FIGURES ..............................................................................................................xi 
LIST OF TABLES.............................................................................................................xvii 
 
 
Chapter 1. INTRODUCTION................................................................................................ 1 
 
         1.1. Subject and Aim ............................................................................................ 1 
         1.2. Limits of the Study ........................................................................................ 3 
         1.3. Method of the Study ...................................................................................... 4 
 
 
Chapter 2. LIME MORTARS................................................................................................ 5 

 
         2.1. Functions and Properties of a Mortar in Masonry......................................... 6 
         2.2. Characteristics of Lime as a Binding Material .............................................. 7 
         2.3. Production of Lime and Preparation of Lime Mortars .................................. 8 
       2.3.1. Types of Limestone Used for the Production of Lime ........................ 9 
      2.3.2. Calcination of Limestone..................................................................... 9 

      2.3.2.1. Factors Influencing the Characteristics of Quicklime .......... 11 
      2.3.3. Hydration (Slaking) of Quicklime ..................................................... 13 

      2.3.3.1. Factors Influencing the Characteristics of Lime .................. 14 
      2.3.3.2. Classification of Limes......................................................... 16 

      2.3.4. Characteristics of Aggregates Used in Lime Mortars........................ 18 
      2.3.4.1. Classification of Aggregates................................................. 19 

      2.3.5. Lime Mortar Preparation.................................................................... 20 
      2.3.6. Hardening of Lime Mortars ............................................................... 21 

      2.3.6.1. Hardening by Carbonation ................................................... 22 
                   2.3.6.1.1. Factors Influencing the Carbonation Reaction ..... 23 
      2.3.6.2. Hardening by Hydraulic Set ................................................. 25 

 
 
Chapter 3. EXPERIMENTAL METHODS......................................................................... 26 
                            

        3.1. Sampling...................................................................................................... 26 
        3.2. Experimental Study ..................................................................................... 35  

                         3.2.1. Determination of Basic Physical Properties of Mortars and 
       Bricks................................................................................................ 35 

      3.2.2. Determination of Basic Mechanical Properties of Mortars .............. 36 
       3.2.2.1. Determination of Uniaxial Compressive Strength of 
                    Mortars ................................................................................ 36 
       3.2.2.2. Determination of Tensile Strength of Mortars .................... 39 
       3.2.2.3. Determination of Modulus of Elasticity of Mortars ............ 42 

      3.2.3. Determination of Soluble Salts in Mortars ....................................... 43 
       3.2.3.1. Determination of Percent Soluble Salts in Mortars............. 43 
       3.2.3.2. Qualitative Determination of Anion Parts of Soluble Salts. 44              

      3.2.4. Determination of Raw Material Compositions ................................. 44 

 viii



     3.2.4.1. Determination of Lime-Aggregate Ratios of Mortars ........... 44 
     3.2.4.2. Determination of Particle Size Distributions of 
                  Aggregates............................................................................. 45 

    3.2.5. Determination of Pozzolanic Activity of Aggregates and Bricks....... 45 
    3.2.6. Determination of Mineralogical and Chemical Compositions, and  
              Microstructural Properties of Lime Binders, Aggregates and  
              Mortar Matrices .................................................................................. 46 
    3.2.7. Determination of Hydraulicity of Mortars by TGA............................ 46 

 
 
Chapter 4. RESULTS AND DISCUSSION ........................................................................ 48 
 

         4.1. Basic Physical Properties of Mortars and Bricks ....................................... 48 
         4.2. Basic Mechanical Properties of Mortars .................................................... 51 

       4.2.1. Uniaxial Compressive Strength of Mortars ..................................... 52 
       4.2.2. Tensile Strength of Mortars ............................................................. 53 
       4.2.3. Modulus of Elasticity of Mortars..................................................... 54 

         4.3. Analysis of Soluble Salts in Mortars.......................................................... 54 
         4.4. Raw Material Compositions of Mortars..................................................... 55 

       4.4.1. Lime-Aggregate Ratios of Mortars.................................................. 55 
       4.4.2. Particle Size Distributions of Aggregates Used in Mortars ............. 57 

         4.5. Pozzolanic Activity of Aggregates and Bricks........................................... 64 
         4.6. Mineralogical and Chemical Compositions and Microstructural  
                Properties of Lime Binders, Aggregates and Mortar Matrices .................. 66 

       4.6.1. Mineralogical and Chemical Compositions and Microstructural 
                 Properties of Lime Binders .............................................................. 66 
       4.6.2. Mineralogical and Chemical Compositions and Microstructural  
                 Properties of Aggregates.................................................................. 74 

        4.6.2.1. Mineralogical and Chemical Composition and 
                     Microstructural Properties of Coarse Aggregates .............. 74 
        4.6.2.2. Mineralogical and Chemical Compositions and  
                     Microstructural Properties of Fine Aggregates .................. 80 

       4.6.3. Mineralogical and Chemical Compositions and Microstructural  
                 Properties of Mortar Matrices.......................................................... 86 

         4.7. Hydraulicity of Mortars by TGA................................................................ 98 
         4.8. Relation between Pozzolanicity of Aggregates, Mechanical Strength  
                Properties and Hydraulicity of Mortars.................................................... 103 
         4.9. Mortar-Brick Interface ............................................................................. 106 

 
 
Chapter 5. CONCLUSIONS.............................................................................................. 108 
 
 
REFERENCES .................................................................................................................. 110 
 
 
APPENDIX A     EXPERIMENTAL METHODS............................................................ 118 
APPENDIX B     BASIC PHYSICAL PROPERTIES OF MORTARS............................ 119 
APPENDIX C     BASIC MECHANICAL PROPERTIES OF MORTARS..................... 121 
 

 ix



APPENDIX D     LIME/AGGREGATE RATIOS OF MORTARS AND PARTICLE  
     SIZE DISTRIBUTIONS OF AGGREGATES ..................................... 125 
APPENDIX E     SOLUBLE SALTS IN MORTARS ...................................................... 126 
APPENDIX F      POZZOLANIC ACTIVITY OF AGGREGATES AND BRICKS....... 127 
APPENDIX G     CHEMICAL COMPOSITIONS OF COARSE AND  
     FINE AGGREGATES .......................................................................... 129 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 x



LIST OF FIGURES 
 
 
Figure  2.1       Schematic overview of the lime production and lime mortar preparation. ... 8 

Figure  2.2       Drawing illustrating a flare kiln .................................................................. 11 

Figure  2.3       Drawing illustrating a continuous kiln ........................................................ 11 

Figure  3.1       Plan of the Seferihisar Bath, showing where stone masonry mortar  
 samples (Se.s.) were collected..................................................................... 28 

Figure  3.2       View from the east and north elevations of the Seferihisar Bath, showing  
 where stone masonry mortar samples (Se.s.) were collected...................... 28 

Figure  3.3       Plan of the Düzce Bath in Seferihisar, showing where stone masonry 
 mortar samples (Se.Dü.s.) and brick masonry mortar samples (Se.Dü.b.) 

were collected.............................................................................................. 29 

Figure  3.4       View from the southeast and southwest elevations of the Düzce Bath in  
Seferihisar, showing where stone masonry mortar samples (Se.Dü.s.) 
and brick masonry mortar samples (Se.Dü.b.) were collected.................... 30 

Figure  3.5       Stone masonry mortar sample (Se.Dü.s.) taken from the Düzce Bath........ 30 

Figure  3.6       Brick masonry mortar sample (Se.Dü.b.) taken from the Düzce Bath........ 30 

Figure  3.7       Plan of the Ulamış Bath in Seferihisar, showing where stone masonry 
 mortar samples (Se.Ul.s.) and brick masonry mortar samples (Se.Ul.b.)  

were collected.............................................................................................. 31 

Figure  3.8       View from the southwest elevation of the Ulamış Bath in Seferihisar,  
 showing where stone masonry mortar samples (Se.Ul.s.) were collected .. 31 

Figure  3.9       View from the northwest elevation of the Ulamış Bath in Seferihisar,  
 showing where brick masonry mortar samples (Se.Ul.b.) were collected .. 31 

Figure  3.10     Stone masonry mortar sample (Se.Ul.s.) taken from the Ulamış Bath ....... 32 

Figure  3.11     Brick masonry mortar sample (Se.Ul.b.) taken from the Ulamış Bath ....... 32 

Figure  3.12     Plan of the Hersekzade Bath in Urla, showing where stone masonry 
 mortar samples (Ur.He.s.) and brick masonry mortar samples (Ur.He.b.) 

were collected.............................................................................................. 32 

Figure  3.13     View from the southeast elevation of the Hersekzade Bath in Urla, 
showing where stone masonry mortar samples (Ur.He.s.) were collected . 33 

Figure  3.14     View from of the southeast elevation of the Hersekzade Bath in showing 
 Urla, where brick masonry mortar samples (Ur.He.b.) were collected....... 33 

Figure  3.15     Plan of the Kamanlı Bath in Urla, showing where stone masonry 
 mortar samples (Ur.Ka.s) and brick masonry mortar samples (Ur.Ka.b.) 

were collected.............................................................................................. 34 

Figure  3.16     View from the northwest elevation of the Kamanlı Bath in Urla,  
 showing where stone masonry mortar samples (Ur.Ka.s) were collected .. 34 

Figure  3.17     Cubic specimens of the mortar samples, which were used for the  
 uniaxial compressive strength test............................................................... 37 

 xi



Figure  3.18     Load-stroke graph of the mortar sample of Ur.He.s., which was obtained 
 after uniaxial compressive strength test was carried out............................. 38 

Figure  3.19     Images showing how uniaxial compressive strength test was carried out. 
 Image A shows the situation in which the sample is placed between two 
 compression platens prior to loading. Image B shows the situation 
 in which the compression test is carried out ............................................... 39 

Figure  3.20     Cylindrical specimen drilled from the mortar sample of Se.Dü.b............... 40 

Figure  3.21     Images showing how diametrical loading was applied on a cylindrical 
 specimen to determine its tensile strength. Image A shows the situation 
 prior to loading and image B shows the situation after the loading. This 

sample presents a correct type of failure occurred along the axis of its 
 diameter....................................................................................................... 41 

Figure  3.22     Load-stroke graph of the mortar sample of Ur.He.b., which was obtained 
 after diametrical loading was carried out on the cylindrical specimen ....... 42 

Figure  3.23     Stress (F/A)-strain (stroke/lo) curve of the stone masonry mortar sample 
of Ur.He.s. ................................................................................................... 43 

Figure  4.1       Porosity and density values of stone masonry mortars ............................... 49 

Figure  4.2       Porosity and density values of brick masonry mortars................................ 49 

Figure  4.3       Porosity and density values of bricks used in the domes ............................ 50 

Figure  4.4       Porosity values of brick masonry mortars and bricks used in the domes...... 51 

Figure  4.5       Density values of brick masonry mortars and bricks used in the domes ..... 51 

Figure  4.6       Soluble salt content (%) in stone masonry mortars ..................................... 55 

Figure  4.7       Soluble salt content (%) in brick masonry mortars ..................................... 55 

Figure  4.8       Lime-aggregate ratios of stone masonry mortars ........................................ 56 

Figure  4.9       Lime-aggregate ratios of brick masonry mortars ........................................ 56 

Figure  4.10     Particle size distribution curves of the aggregates used in stone masonry  
 mortars......................................................................................................... 57 

Figure  4.11     Particle size distribution curves of the aggregates used in brick masonry  
 mortars......................................................................................................... 58 

Figure  4.12     Stereo microscope images of the aggregates used in the mortar sample of 
Se.s., which were grouped according to the particle sizes of >1180 µm, 
1180-500 µm, 500-250 µm and 250-125 µm by sieve analysis.................. 59 

Figure  4.13     Stereo microscope images of the aggregates used in the mortar samples  
of Se.Dü.s. and Se.Dü.b., which were grouped according to the particle  
sizes of >1180 µm, 1180-500 µm, 500-250 µm and 250-125 µm by  
sieve analysis............................................................................................... 60 

Figure  4.14     Stereo microscope images of the aggregates used in the mortar samples  
of Se.Ul.s. and Se.Ul.b., which were grouped according to the particle  
sizes of >1180 µm, 1180-500 µm, 500-250 µm and 250-125 µm by 
sieve analysis............................................................................................... 61 

 xii



Figure  4.15     Stereo microscope images of the aggregates used in the mortar samples  
of Ur.He.s. and Ur.He.b., which were grouped according to the particle  
sizes of >1180 µm, 1180-500 µm, 500-250 µm and 250-125 µm by  
sieve analysis............................................................................................... 62 

Figure  4.16     Stereo microscope images of the aggregates used in the mortar samples  
of Ur.Ka.s. and Ur.Ka.b., which were grouped according to the particle  
sizes of >1180 µm, 1180-500 µm, 500-250 µm and 250-125 µm by  
sieve analysis............................................................................................... 63 

Figure  4.17     Pozzolanic activity measurements of fine aggregates (less than 53 µm) .... 65 

Figure  4.18     Pozzolanic activity measurements of coarse aggregates ............................. 65 

Figure  4.19     Pozzolanic activity measurements of bricks used in domes........................ 66 

Figure  4.20     Stereo microscope image of the white lump in the stone masonry mortar 
 sample of Ur.He.s........................................................................................ 67 

Figure  4.21     Stereo microscope image of the white lump in the stone masonry mortar 
 sample of Se.Ul.s......................................................................................... 67 

Figure  4.22     Stereo microscope images of the white lumps in the brick masonry  
 mortar sample of Se.Ul.b............................................................................. 67 

Figure  4.23     XRD pattern, EDX spectrum and elemental composition (%) of the  
 white lump composed of high-calcium lime (Ur.Ka.s.) .............................. 68 

Figure  4.24     XRD pattern, EDX spectrum and elemental composition (%) of the  
 white lump composed of high-calcium lime (Se.Dü.s.) .............................. 68 

Figure  4.25     XRD pattern, SE (secondary electron) images of micritic calcite crystals  
in the white lump, EDX spectrum and elemental composition (%) of the 
white lump composed of high-calcium lime (Se.s.).................................... 69 

Figure  4.26     XRD pattern, SE images of the white lump, SE image (20.000×) of  
 micritic calcite crystals in the white lump, EDX spectrum and  
 elemental composition (%) of the white lump composed of  

high-calcium lime (Ur.He.s.)....................................................................... 70 

Figure  4.27     BSE (back-scattered electron) image and elemental composition (%) of 
micritic calcite crystals in the white lump composed of high-calcium 
lime (Ur.He.b.) ............................................................................................ 70 

Figure  4.28     EDX spectrum and elemental composition (%) of the white lump  
 composed of lime containing silica at high ratios (Se.Dü.b.) ..................... 71 

Figure  4.29     XRD pattern, SE image and elemental composition (%) of micritic 
calcite crystals in the white lump composed of lime containing silica at 
high ratios (Ur.Ka.b.) .................................................................................. 71 

Figure  4.30     XRD pattern, SE image, EDX spectrum and elemental composition (%)  
 of the white lump composed of lime containing silica at high ratios 

(Se.Ul.s.)...................................................................................................... 72 

Figure  4.31     SE images (2.000× and 5.000× respectively) of micritic calcite crystals  
 in the white lump, EDX spectrum and elemental composition (%) of  
 the white lump composed of lime containing silica at high ratios  

(Se.Ul.b.) ..................................................................................................... 73 

 xiii



Figure  4.32     SE images and EDX spectrum of calcium-silicate-hydrate (C-S-H) 
 formations in the white lump composed of lime containing silica at high 

ratios (Se.Ul.b.) ........................................................................................... 73  

Figure  4.33     XRD patterns of the coarse aggregates used in the stone masonry mortar  
 of Ur.He.s. and brick masonry mortar of Ur.He.b ...................................... 74 

Figure  4.34     XRD patterns of the coarse aggregates used in the stone masonry mortar  
 of Ur.Ka.s. and brick masonry mortar of Ur.Ka.b ...................................... 75 

Figure  4.35     XRD patterns of the coarse aggregates used in the stone masonry mortar  
 of Se.Dü.s. and brick masonry mortar of Se.Dü.b ...................................... 75 

Figure  4.36     XRD patterns of the coarse aggregates used in the stone masonry mortar  
 of Se.Ul.s. and brick masonry mortar of Se.Ul.b ........................................ 76 

Figure  4.37     XRD pattern of the coarse aggregates used in the stone masonry mortar  
 of Se.s .......................................................................................................... 76 

Figure  4.38     BSE image (1500×) and EDX spectrum of the quartz crystals................... 77 

Figure  4.39     BSE image (1000×) and EDX spectrum of feldspar crystals ...................... 77 

Figure  4.40     BSE image (2000×) and EDX spectrum of iron-rich crystals..................... 77 

Figure  4.41     SE images, EDX spectrum and elemental composition (%) of the  
 calcareous aggregate used in the stone masonry mortar of Ur.He.s ........... 78 

Figure  4.42     SE images, EDX spectrum and elemental composition (%) of the  
 calcareous aggregate used in the stone masonry mortar of Ur.He.s ........... 79 

Figure  4.43     SE images of fossils in the calcareous aggregate used in the stone  
 masonry mortar of Ur.He.s.......................................................................... 79 

Figure  4.44     SE images of microstructures of the white lump composed of lime 
containing silica at high ratios (A), the one composed of high-calcium  
lime (B), and calcareous aggregates (C, D) ................................................ 80 

Figure  4.45     XRD patterns of the fine aggregates used in the stone masonry mortar  
 of Ur.He.s. and brick masonry mortar of Ur.He.b ...................................... 81 

Figure  4.46     XRD patterns of the fine aggregates used in the stone masonry mortar  
 of Ur.Ka.s. and brick masonry mortar of Ur.Ka.b ...................................... 81 

Figure  4.47     XRD patterns of the fine aggregates used in the stone masonry mortar  
 of Se.Dü.s. and brick masonry mortar of Se.Dü.b. ..................................... 82 

Figure  4.48     XRD patterns of the fine aggregates used in the stone masonry mortar  
 of Se.Ul.s. and brick masonry mortar of Se.Ul.b ........................................ 82 

Figure  4.49     XRD pattern of the fine aggregates used in the stone masonry mortar  
 of Se.s. ......................................................................................................... 83 

Figure  4.50     SE images of microstructure of pozzolanic fine aggregates  
(less than 53µm).......................................................................................... 84 

Figure  4.51     XRD patterns of the mortar matrices of the stone masonry mortar  
 of Ur.He.s. and brick masonry mortar of Ur.He.b. ..................................... 86 

Figure  4.52     XRD patterns of the mortar matrices of the stone masonry mortar  
 of Ur.Ka.s. and brick masonry mortar of Ur.Ka.b. ..................................... 87 

 xiv



Figure  4.53     XRD patterns of the mortar matrices of the stone masonry mortar  
 of Se.Dü.s. and brick masonry mortar of Se.Dü.b. ..................................... 87 

Figure  4.54     XRD patterns of the mortar matrices of the stone masonry mortar  
 of Se.Ul.s. and brick masonry mortar of Se.Ul.b. ....................................... 88 

Figure  4.55     XRD pattern of the mortar matrices of the stone masonry mortar of Se.s.. 88 

Figure  4.56     Stereo microscope image showing good adhesion of the aggregates with  
 lime (Se.Ul.b.).. ........................................................................................... 89 

Figure  4.57     Stereo microscope image showing good adhesion of the aggregates with  
 lime (Se.Ul.s.).............................................................................................. 89 

Figure  4.58     Stereo microscope image showing good adhesion of the aggregates with  
 lime (Se.Dü.b.).. .......................................................................................... 89 

Figure  4.59     Stereo microscope image showing poor adhesion of the aggregates with  
 lime (Se.Dü.s.)............................................................................................. 89 

Figure  4.60     Stereo microscope image showing good adhesion of the aggregates with  
 lime (Ur.He.b.).. .......................................................................................... 89 

Figure  4.61     Stereo microscope image showing good adhesion of the aggregates with  
 lime (Ur.He.s.)............................................................................................. 89 

Figure  4.62     Stereo microscopic image showing good adhesion of the aggregates with  
 lime (Ur.Ka.b.)... ......................................................................................... 90 

Figure  4.63     Stereo microscopic image showing poor adhesion of the aggregates with  
 lime (Ur.Ka.s.)............................................................................................. 90 

Figure  4.64     Stereo microscope image showing poor adhesion of the aggregates with  
 lime (Se.s.)................................................................................................... 90 

Figure  4.65     BSE image (120×) showing good adhesion of the aggregates with the  
 mortar matrix (Ur.He.b)... ........................................................................... 90 

Figure  4.66     BSE image (120×) showing good adhesion of the aggregates with the  
 mortar matrix (Ur.He.s)............................................................................... 90 

Figure  4.67     BSE image (80×) showing good adhesion of an aggregate (A) with the 
 mortar matrix (M) (Se.Ul.s.)... .................................................................... 91 

Figure  4.68     Detailed BSE image (500×) of the left-handed image, showing how well  
 the aggregate (A) was adhered to the mortar matrix (M)............................ 91 

Figure  4.69     BSE image (80×) showing good adhesion of an aggregate (A) with the 
 mortar matrix (M) (Se.Ul.b.) ....................................................................... 91 

Figure  4.70     Detailed BSE image (500×) of the left-handed image, showing how well  
 the aggregate (A) was adhered to the mortar matrix (M)............................ 91 

Figure  4.71     BSE image (650×) showing poor adhesion of the aggregates with the  
 mortar matrix (Se.Dü.s.).............................................................................. 91 

Figure  4.72     BSE image (120×) showing good adhesion between aggregate (A)  
 and mortar matrix (M) (Se.Dü.b.) ............................................................... 92 

Figure  4.73     BSE image (800×) of the interface (I) between the agregate (A) and the 
mortar matrix (M) (Se.Dü.b.) ...................................................................... 92 

 xv



Figure  4.74     BSE images (350×) and elemental composition (%) of the aggregate (A), 
 interface (I) and lime matrix (M) of the stone masonry mortar of 
 Ur.He.s. ....................................................................................................... 93 

Figure  4.75     BSE image (6500×) of the pore sizes of the mortar matrix of the brick 
 masonry mortar of Ur.He.b ......................................................................... 93 

Figure  4.76     BSE image (1500×) and elemental composition (%) of the mortar matrix  
 of the brick masonry mortar Se.Dü.b. ......................................................... 94 

Figure  4.77     BSE image (1500×) and elemental composition (%) of the mortar matrix  
 of the brick masonry mortar of Ur.He.b...................................................... 94 

Figure  4.78     BSE image (1500×) and elemental composition (%) of the mortar matrix  
 of the stone masonry mortar Ur.He.s .......................................................... 94 

Figure  4.79     BSE image, EDX spectrum and elemental composition (%) of the mortar 
 matrix of the stone masonry mortar of Se.Ul.s. .......................................... 95 

Figure  4.80     BSE image, EDX spectrum and elemental composition (%) of the mortar 
 matrix of the brick masonry mortar of Se.Ul.b. .......................................... 95 

Figure  4.81     SE images of possible hydraulic reaction products within the mortar 
 matrices of lime containing silica at high ratios mortars. ........................... 96 

Figure  4.82     BSE images  showing micro cracks in the mortar matrices. ....................... 97 

Figure  4.83     BSE images, EDX spectrum and elemental composition (%) of the  
 calcite crystals precipitated within the pore.. .............................................. 98 

Figure  4.84     TGA-drTGA graph of the stone masonry mortar of Ur.He.s. and brick  
 masonry mortar of Ur.He.b ....................................................................... 100 

Figure  4.85     TGA-drTGA graph of the stone masonry mortar of Ur.Ka.s. and brick  
 masonry mortar of Ur.Ka.b ....................................................................... 101 

Figure  4.86     TGA-drTGA graph of the stone masonry mortar of Se.Ul.s. and brick  
 masonry mortar of Se.Ul.b. ....................................................................... 101 

Figure  4.87     TGA-drTGA graph of the stone masonry mortar of Se.s. and brick  
 masonry mortar of Se.Dü.b. ...................................................................... 102 

Figure  4.88     Inverse hydraulicity (CO2/H2O) versus CO2 % of stone and brick  
masonry mortars. ....................................................................................... 103 

Figure  4.89     Pozzolanic activity measurements of the coarse aggregates versus 
hydraulicity (CO2/H2O) of stone and brick masonry mortars.. ................. 104 

Figure  4.90     Pozzolanic activity measurements of the fine aggregates versus  
hydraulicity (CO2/H2O) of stone and brick masonry mortars.. ................. 104 

Figure  4.91     Compressive strength values versus hydraulicity (CO2/H2O) of stone  
and brick masonry mortars. ....................................................................... 105 

Figure  4.92     Tensile strength values versus hydraulicity (CO2/H2O) of stone and  
brick masonry mortars............................................................................... 105 

Figure  4.93     Stereo microscopic image showing adhesion between brick and lime  
mortar used in domes, EDX spectra and elemental compositions (%)  
of the brick (I) and its part into which lime penetrated (II)....................... 107 

 

 xvi



LIST OF TABLES 
 
 

Table   3.1       Definition of the collected mortar samples.................................................. 27 

Table   4.1       Compressive strength values of stone and brick masonry mortars.............. 52 

Table   4.2       Tensile strength values of stone and brick masonry mortars....................... 53 

Table   4.3       Modulus of elasticity values of stone and brick masonry mortars .............. 54 

Table   4.4       Elemental compositions of coarse aggregates used in the mortars.............. 78 

Table   4.5       Elemental compositions of fine aggregates used in the mortars.................. 83 

Table   4.6       Structurally bound water (H2O) percents, carbon dioxide (CO2) percents 
                        and CO2/H2O ratios of stone masonry mortars............................................ 99 

Table   4.7       Structurally bound water (H2O) percents, carbon dioxide (CO2) percents 
                        and CO2/H2O ratios of brick masonry mortars .......................................... 100 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 xvii



Chapter 1 
 

INTRODUCTION 
 
 

1.1. Subject and Aim  
 

In conservation studies of historic buildings, interventions should be carried out 

with the aim of safeguarding their authentic values such as aesthetic, historical, social 

and cultural values1. These values include not only their architectural characteristics 

such as form, design, function and location characteristics, but also their structure and 

material characteristics. Characteristics of the building materials are of particular 

importance in conservation studies since they provide information on traditional 

material characteristics and evaluation of structural behaviour of the historic buildings. 

Therefore, material conservation plays the fundamental role in conservation studies of 

the historic buildings. This requires an interdisciplinary collaboration that deals with the 

types and characteristics of original building materials, their conservation problems and 

determination of compatible intervention materials that would be used in restoration 

studies. 

Conservation of original building materials with minimum intervention in the 

restoration studies of historic buildings was defined by international charters and 

documents as one of the basic principles of contemporary conservation approaches. 

Among them, the Venice and Burra Charters are the most important ones that point out 

the importance of conservation of the original materials. The Venice Charter exposed 

the fact that historic monuments should be safeguarded for future generations in their 

full authenticity as works of art and historical evidence2. The 9th article of this charter 

has a remarkable importance in emphasizing the conservation of the original materials 

together with aesthetic and historic values of monuments. In the 10th article, special 

emphasis is given to the use of traditional techniques and materials in conservation 

studies. It is also pointed out that modern techniques and materials may be used in some 

circumstances as long as their efficacy is proved by scientific data and experience. 

                                                 
1 The Nara Document on Authenticity, http://www.international.icomos.org/naradoc_eng.htm 
2 The Venice Charter, http://www.international.icomos.org/e_venice.htm 
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Likewise, the Burra Charter contributed to the development of the scope of the material 

conservation principles defined by the Venice Charter3.  

Even though the aforementioned charters were accepted in Turkey, restoration 

studies have been carried out without regarding the material conservation principles 

defined in these charters. Original building materials are generally renewed without 

understanding their material characteristics and identification of their deterioration 

problems, and modern building materials are frequently used without testing their 

compatibility with the original materials. Among them, cement-based mortars are the 

ones used most frequently in many restoration studies of historic buildings in Turkey. 

However, their use in restoration studies is completely in disagreement with the material 

conservation principles recommended by the Venice and Burra Charters. 

Use of cement-based mortars in restoration studies is not advisable since they are 

different from historic lime mortars in terms of physical and mechanical properties, and 

chemical and raw material compositions. Since cement mortars are rigid materials 

having a high compressive strength, they can create high local stresses that can lead to 

serious damage in adjacent original building materials such as brick, stone and mortar. 

Furthermore, thermal expansion of the cement-based mortars is higher than that of lime 

mortars (Schaffer 1972). This accelerates deterioration of the lime mortars. In addition, 

the cement-based mortars have high contents of soluble salts. Therefore, they can lead 

to serious problems caused by re-crystallization of soluble salts (Schaffer 1972). 

Moreover, since such mortars are less permeable than lime mortars, they retain moisture 

and can not provide the evaporation of masonry. Therefore, evaporation takes place 

through the porous original building materials. This causes crystallization of soluble 

salts in the original building materials, which induces severe deterioration problems 

(Schaffer 1972, Peroni et al. 1981, Kent 1995, Steward et al. 1994, Hughes et al. 1998, 

Holmes and Wingate 1997). For such reasons, the cement-based mortars are not suitable 

intervention mortars to be used in the restoration of historic buildings and their use 

should be strongly avoided. Therefore, determination of appropriate intervention 

mortars that would be used in the restoration of the historic buildings gains special 

importance.  

Within this context, the problem in this study is defined as the use of incompatible 

mortars in restoration of historic buildings in Turkey. Therefore, the subject of this 

                                                 
3 The Burra Charter, http://www.icomos.org/australia/burra.html 
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study is the determination of the characteristics of lime mortars used in walls and domes 

of some historic Ottoman baths in Seferihisar-Urla region near İzmir. Aim of this study 

is to provide basic data about the lime mortar characteristics for the purpose of 

conservation of these historic buildings. It is also aimed to investigate the characteristics 

of the lime mortars in relation to their specific use in the structural elements of the walls 

and domes. Special emphasis is given to the investigation of basic physical, mechanical, 

microstructural and hydraulic properties of the mortars, their raw material compositions, 

mineralogical and chemical compositions of the raw materials for the purpose of the 

production of new intervention mortars compatible with the original ones. 

Determination of lime mortar characteristics for the conservation of historic 

buildings became an important subject in the second half of the 20th century due to 

extensive damage of cement-based mortars in the historic buildings. Therefore, several 

scientific researches have been carried out on characterization of historic lime mortars 

and determination of intervention mortars compatible with them. These researches were 

compiled by Hansen et al. in a bibliography which provides an extensive source 

regarding lime mortars (Hansen et al. 2003). However, researches carried out about the 

related subject in Turkey are very scarce. These are the ones carried out by Akman et 

al., Aktaş, Tunçoku, Güleç, Satongar, Güleç and Tulun, İpekoğlu et al. and Böke et al. 

(Akman et al. 1986, Aktaş 1988, Tunçoku 1993, Güleç 1992, Satongar 1994, Güleç and 

Tulun 1996, Tunçoku 2001, İpekoğlu et al. 2003, Böke et al. 2004a, Böke et al. 2004b). 

Therefore, this thesis gains special importance for its contribution to the present 

researches related with investigation of lime mortar characteristics for the purpose of 

conservation of historic buildings in Turkey. 

 

1.2. Limits of the Study 
 

Historic buildings whose mortars were examined in this study were selected 

according to a series of criteria such as same function, similar construction period and 

location, and their authentic values. Therefore, the historic buildings were limited with 

the five Ottoman baths in Seferihisar-Urla region near İzmir. These baths, dated back to 

the 15th and 16th centuries, are Düzce Bath, Seferihisar Bath and Ulamış Bath in 

Seferihisar, and Hersekzade Bath and Kamanlı Bath in Urla. These Ottoman baths are 

important historic buildings of their periods and in their locations since they have been 
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mostly preserved with all their authentic values without any extensive interventions. 

Thus, their original building materials have been mostly preserved. Moreover, these 

baths show almost similar characteristics with respect to their traditional construction 

techniques and building materials. However, these historic baths are in danger of 

becoming demolished since any studies have not been conducted yet for their 

conservation. Therefore, these historic Ottoman baths were studied in two concurrent 

master theses for the purpose of their conservation. While this Master’s thesis 

investigates the characteristics of the lime mortars used in these baths, their construction 

techniques and materials were examined in another Master’s thesis (Reyhan 2004). 

In the construction of the Ottoman baths, mortars were used in stone masonry 

walls and brick masonry superstructures of domes and vaults. Therefore, the mortars 

collected have been defined according to their specific use in the structural layout as 

stone masonry mortars collected from the walls and brick masonry mortars collected 

from the domes. This criterion has provided the examination of their material 

characteristics in relation to the structural characteristics of the walls and domes where 

the mortars were used.  

 

1.3. Method of the Study 
 

Method of the study is composed of sampling and experimental study. Sampling 

covers the collection of mortar samples from the walls and domes of the selected baths 

in order to carry out laboratory studies for the determination of their material 

characteristics. Experimental study covers a series of laboratory studies in order to 

determine basic physical and mechanical properties of mortars, their raw material 

compositions, pozzolanic activity of aggregates used in the mortars, soluble salts in 

mortars, their mineralogical and chemical compositions, microstructural and hydraulic 

properties. Moreover, determination of basic physical and pozzolanic activity properties 

of bricks used in the construction of domes and microstructural examination of  

mortar-brick interfaces were also included. Results of these laboratory studies were then 

evaluated, discussed and compared with the results of analyses of other lime mortars 

used in some historic buildings of the Byzantine, Seljuk and Ottoman periods. 
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Chapter 2 
 

LIME MORTARS 
 
 

Mortar is a composite building material which consists of binder and filling 

material. It is used as a bonding agent for bedding and jointing masonry units, and 

rendering masonry surfaces (Cowper 2000, Davey 1961). 

Several kinds of mortars were used in construction of historic structures. Mud is 

known to have been the oldest mortar which was used for laying sun-dried bricks. It 

consisted of sand, silt and clay particles as the binder and was used usually with 

chopped straw or reeds (Davey 1961). Gypsum mortar was used for bedding stonework 

in ancient Egypt. It acted as not only a bonding material, but also a lubricating film that 

allowed large stone blocks to set in their right positions by sliding them (Davey 1961). 

Asphaltic mortars had been used for bedding fired bricks. By the time, their use was 

replaced by hydrated lime mortars sometimes containing clay, bitumen, ashes, or other 

materials (Davey 1961).  

Among the historic mortars, lime mortar is the most widely used historic building 

material which is primarily composed of lime as the binder and aggregates as the filling 

material. The earliest documented use of lime in buildings dated back to 4000 B.C. by 

the use of plastering in pyramids in Egypt (Boynton 1966, Cowper 2000). By the 

remains of a limekiln, it was approved that lime burning had been practiced in 

Mesopotamia in 2450 B.C. (Davey 1961). Romans were the ones who had successfully 

improved the use of lime mortars in masonry structures. They had discovered that when 

lime was mixed with pozzolanas (reactive aggregates), it hardened under water. This 

had led to the development of a durable and a strong material called Roman concrete 

which allowed the construction of magnificent structures with great interior spans 

(Cowan 1997, Davey 1961).  

The present chapter deals with lime mortars in respect to their production process. 

First, functions and properties of mortar in masonry are described. Then, characteristics 

of lime used as a binding material are given. Finally, process of lime production and 

preparation of lime mortars are mentioned in detail including respectively types of 

limestone used for production of lime, calcination of limestone, hydration (slaking) of 
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quicklime, characteristics of aggregates used in lime mortars, preparation of lime 

mortars and hardening of lime mortars. 

 

2.1. Functions and Properties of Mortar in Masonry 
 

Mortar has certain functions as a bonding agent in masonry. First of all, the mortar 

in a structural element should provide a uniform bedding surface for masonry units so 

that load is spread evenly over them. Secondly, the most important function of the 

mortar is that it should bind the masonry units into a monolithic mass and help them to 

resist forces occurred in masonry. Therefore, it should have sufficient strength to hold 

the masonry units together and to spread loads evenly together with the masonry units 

(Davison 1976, Allen et al. 2003). Furthermore, the mortar should seal the joints against 

rain penetration (Allen et al. 2003). Besides, it should ensure adequate durability to 

resist severe damages of atmospheric conditions such as frost action and wetting-drying 

cycles due to changes in temperature, humidity and wind (Davison 1976). Last of all, 

the mortar should be capable of drawing moisture out of a wall and providing a good 

surface for evaporation. Therefore, the mortars are preferred to be more porous and 

permeable than the masonry units (Holmes and Wingate 1997).  

Mortar mixture should have some certain properties prior to its hardening in order 

to achieve its aforementioned functions in masonry. The primary ones are plasticity, 

workability and water retentivity properties. The plasticity of the mortar can be defined 

as the property which enables the mortar to have a satisfactory workability and 

contributes to water retentivity (Cowper 2000). Workability is the ability of the mortar 

to be smooth and mouldable. Good workability provides good workmanship that 

enables the mortar to be spread over the masonry units easily under the influence of a 

trowel, to flow into all crevices of the masonry units, and to correct any dimensional 

irregularities of the masonry units to form an even bed. However, poor workability 

makes the mortar become stiff and useless as the water evaporates. The workability is in 

fact the combination of several factors including plasticity, consistency and cohesion 

(Davison 1976, Holmes and Wingate 1997).  

Water retentivity is the ability of the mortar to retain its water against the 

absorption of masonry units so that the mortar retains its workability. When mortar is 

spread over the masonry units, it starts to lose water through the absorption of the 
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masonry units and by evaporation to the air from the surface of the joints. The former 

improves the bonds between the masonry units and the mortar. However, if water in the 

mortar is lost quickly, the mortar becomes less workable and poor quality. For this 

reason, it is important that sufficient amount of water be retained in the mortar to ensure 

good workability and a good bond with the masonry units (Davison 1976, Holmes and 

Wingate 1997).  

It is of particular importance that hardened mortar should not be stronger than 

masonry units to be bounded and should be sufficiently resilient to accommodate small 

structural movements, shrinkage and expansion of masonry (Davison 1976,  

Allen et al. 2003). This is owing to the fact that soft mortars are capable of tolerating 

small deformations occurred in the masonry. For instance, stresses and strains 

developed in the masonry can be relieved by many fine cracks occurred within lime 

mortars. These fine cracks are then sealed by a successive mechanism where free lime is 

converted into calcium carbonate by rain water permeating the masonry (Davison 1976, 

Holmes and Wingate 1997). Thus, the lime mortars have a distinct property of  

self-healing which contributes to the survival of masonry throughout years. Unlike lime 

mortars, cement-based mortars used in contemporary masonry are not capable of 

absorbing stresses in this manner. Therefore, large cracks occur and provide open paths 

for rain penetration (Davison 1976, Holmes and Wingate 1997). This can lead to serious 

problems caused by re-crystallization of soluble salts (Schaffer 1972). 

 

2.2. Characteristics of Lime as a Binding Material 
 

Lime used as a binding material for building purposes has certain characteristics 

that can be presented as follows (Holmes and Wingate 1997): 

• Lime is a sticky material that provides good adhesion to masonry surfaces. 

• Lime acquires good workability to lime-based building materials. It imparts 

plasticity and increases the water carrying capability of the lime-based building 

materials. 

• Lime has self-healing ability which is the property of developing fine cracks 

rather than individual large cracks when buildings are subjected to small 

movements. This property depends on the plasticity characteristic of the lime. 
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• Lime-based building materials have the ability of breathability which is the 

property of handling moisture movements through masonry. Therefore, lime-

based materials can enable the masonry to dry out easily. This protects building 

materials from condensation problems that can give rise to salt crystallization.  

• Lime-based building materials improve comfort conditions due to the property of 

low thermal conductivity which enables surface temperatures within buildings to 

remain warmer in cool climates and cooler in warm climates. 

• Lime is a durable material that enables the structure to survive for longer years. 

• Lime provides soft texture that acquires comfortable feeling and good appearance 

to lime surfaces. 

Due to its favourable characteristics, lime has been used as a binding material in 

building materials for thousands of years. It has a wide variety of uses in the structural 

elements such as foundations, walls, floors, vaults and domes, and in many finishes 

including paints, plasters, renders and decorative work such as cornices and  

hand-modelled stucco. 

 

2.3. Production of Lime and Preparation of Lime Mortars  
 

Lime is produced through chemical reactions of calcination of limestone and 

slaking of quicklime. When limestone is heated, calcium carbonate is converted into 

calcium oxide known as quicklime. Then, the quicklime is slaked with water for the 

formation of lime (Cowper 2000, Boynton 1966) (Figure 2.1).  

Lime mortar is composed of lime and aggregates. Such mortar can harden either 

by carbonation reaction or hydraulic set. In the carbonation reaction, the lime mortar 

hardens by a slow reaction of lime with carbon dioxide gas in the atmosphere. 

Hydraulic set takes place when lime is combined with silicates and aluminates in the 

presence of water (Cowper 2000, Boynton 1966) (Figure 2.1).  

 

 

Figure 2.1 Schematic overview of the lime production and lime mortar preparation. 
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2.3.1

arbonate are magnesium 

limes

 marble is a type of limestone composed of calcium carbonate, it is not 

a suitable material for producing lime since it has large grains that can not slake easily 

 

2.3.2

e” or “unslaked lime” (Eckel 1928, 

Boynton 1966, Holmes and Wingate 1997). This process is called calcination of 

limestone and its overall reaction is as follows: 

 

CaCO3         CaO     +  CO2

. Types of Limestone Used for the Production of Lime 
 

Limestone that provides the raw material of lime is a sedimentary rock whose 

principal constituent is calcium carbonate (CaCO3). Since pure limestone is rarely found 

in nature, limestone always contains some impurities in small or large quantities such as 

magnesium oxide (MgO), silicon dioxide (SiO2), aluminium oxide (Al2O3), iron oxide 

(Fe2O3), sulphur and alkalies (Eckel 1928, Davey 1961). Therefore, limestones are 

generally classified according to the contents of the calcium carbonate and the 

impurities as high-calcium limestones, magnesium limestones and dolomitic limestones. 

Limestones containing 90 % and more of calcium carbonate are called high-calcium 

limestones, the ones containing 10 % and more of magnesium c

tones and those containing magnesium carbonate over 25 % are called dolomitic 

limestones (Gay and Parker 1932, Holmes and Wingate 1997). 

There are certain types of limestones used for the production of lime. These are 

oolitic limestones, dolomitic and magnesian limestones, clayey (argillaceous) 

limestones, calcareous tufa and travertine, some carboniferous (mountain) limestones, 

and some metamorphic limestones (Eckel 1928, Davey 1961, Holmes and Wingate 

1997). Although

(Torraca 1988). 

. Calcination of Limestone  
 

When limestone is heated at around 900°C in a 100 % CO2 atmosphere at  

760 mmHg pressure, calcium carbonate (CaCO3) is dissociated through the release of 

carbon dioxide gas (CO2) and the formation of calcium oxide (CaO) which is a white 

solid material known as “quicklime”, “lump lim

⎯⎯⎯ →⎯ °C900

  Calcium       Calcium  Carbon 
 carbonate     oxide  dioxide 
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Calcination temperature depends on chemical composition of limestone. While the 

calcination temperature of high-calcium limestone is at around 900°C, the one of 

magnesium limestone is at around 600-700°C (Eckel 1928). During the calcination 

process, limestone loses 44 % of its weight due to the release of carbon dioxide gas. 

This causes quicklime to have a porous microstructure. Quicklime with very small 

particle sizes and high specific surface areas is the most desirable end product in order 

to have a high reactivity (rate of slaking) with water in the following slaking process 

(Potgieter et. al. 2002). After the calcination process is over, quicklime should not be 

exposed to air since it has a tendency to react with moisture present in the atmosphere 

and subsequently to reconvert back into calcium carbonate through the reaction with 

carbo

 Lime burners were 

highl

as burnt for 1.5 or 2 days 

and c

week for a limestone layer to pass from the top to the bottom of the kiln. The quicklime 

n dioxide gas in the atmosphere (Boynton 1966, Holmes and Wingate 1997, 

Potgieter et. al. 2002).  

Calcination of limestone takes place in limekilns. They were often built inside a 

hill from which limestones were quarried so that limestone could be fed into the 

limekilns with minimum labour (Davey 1961). This also provided easily charging of the 

limekiln with limestones, to supply fuel and to draw out quicklime (Eckel 1928). Wood 

and charcoal were the fuels used in ancient times (Davey 1961).

y skilled people who worked unusual hours. In Roman period, inmates and 

criminals were often sent to work at limekilns (Krumnacher 2001). 

Flare (intermittent) kiln and continuous (running) kiln were the two basic types of 

traditional limekilns used for calcination of limestone. In flare kilns, where intermittent 

burning took place, quicklime did not come into direct contact with fuel, but with only 

heat and flames (Figure 2.2). In order to load the kiln, a rough arch of limestone lumps 

was built over a framework or hearth of iron bars and further limestones were added to 

fill the kiln completely (Davey 1961). After the limestone w

ooled for an equal length of time, quicklime was removed from the bottom of the 

kiln prior to the addition of new limestones (McKee 1971).  

In running kilns where loading and burning were continuous, limestones and fuel 

were charged into the kiln in alternate layers (Figure 2.3). These alternate layers of 

limestone and fuel (coal) were piled up to the top of the kiln and fire was started at the 

bottom. As the lower layers of limestone became calcined, quicklime was drawn out 

from the bottom of the kiln. Meanwhile, further layers of fuel and limestone were 

deposited in the top of the kiln in order to fill the limekiln successively. It took about a 
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produced was not as pure, as white and as evenly burnt as the one burnt in a flare kiln 

since ashes of the fuel could not be removed from the quicklime. This prevented the 

even burning and reduced the quality of the quicklime (Davey 1961). 

 

  

 Figure 2.2 Drawing illustrating a  
 flare kiln (Source: Davey 1961).      continuous kiln (Source: Davey 1961). 

 

ere is the 

isadvantage of quicklime to become over-burnt (Ashurst and Dimes 1990).  

2.3.2.1. Factors Influencing the Characteristics of Quicklime 

ssure acquired in limekilns, carbon dioxide 

concentration in limekilns, fuel quality). 

 

     Figure 2.3 Drawing illustrating a    

Ring (chamber) kiln and Rotary kiln are the modern types of kilns used for both 

lime and Portland cement burning. In these kilns, oil and gas are used as fuel and 

calcination of limestone takes place at high temperatures. Therefore, th

d

 

 

Major factors that influence the characteristics of quicklime are chemical 

composition of limestone, physical characteristics of limestone (surface area, pore size 

distribution, crystallite size, etc.) and calcination conditions (calcination temperature, 

retention time, rate of calcination, pre

Chemical composition of limestones: Chemical composition of limestone 

directly influences the characteristics of quicklime produced. When pure limestone is 

heated, quicklime with high percent of calcium oxide is produced. However, calcination 

of a magnesian limestone produces quicklime consisting partially of calcium oxide and 
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magnesia (Eckel 1928, Holmes and Wingate 1997). Moreover, argillaceous limestones, 

which naturally contain active clays such as silica, alumina and ferric oxide, can 

produce quicklime containing active compounds of calcium-aluminates-silicates. These 

compounds are the ones that will further acquire lime to have a hydraulic property 

(Cowper 2000, Eckel 1928, Davey 1961).  

osity and 

speci

ination of the interior of the large limestone particles (Boynton 1966, 

Hassibi 1999).  

d a 

decrease in the surface area and chemical reactivity of the quicklime (Gillot 1967).  

 

Physical characteristics of limestones: Physical characteristics of limestone 

influence the physical characteristics of quicklime. When porous limestone is heated, 

the produced quicklime mostly has high values of porosity, total cumulative volume and 

specific surface area. On the other hand, when a dense limestone with less porosity is 

heated, the produced quicklime has a dense structure, low values of por

fic surface area, and high pore radius average (Moropoulou et al. 2001). 

Sizes of limestones influence the calcination temperature and their retention time 

in a limekiln. Calcination develops from the outer surface towards the inside of the 

limestone particles. Therefore, heat penetration into the limestone particles varies 

according to their particle sizes. The calcination of small limestones proceeds rapidly 

since they provide a great surface area for heat transference. However, the calcination of 

larger ones proceeds slower and this process often requires high temperatures in order to 

provide the calc

 

Calcination conditions: Calcination temperature plays a significant role in the 

characteristics of quicklime produced. This will in turn influence the properties of lime 

to be produced. The temperature of around 900°C is the most appropriate calcination 

temperature since quicklime produced at this temperature has the greatest surface area, 

highest porosity and highest reactivity (Cowper 2000, Davey 1961, Boynton 1966). 

However, calcination temperature lower than 900°C causes less reactive quicklime 

called under-burnt quicklime containing cores of uncalcined carbonate due to 

incomplete calcination. On the other hand, when a limestone is heated at a temperature 

higher than 900°C, quicklime occurred at the end of this process may become  

hard-burnt (Holmes and Wingate 1997). If the calcination is carried out at considerably 

high temperatures of around 1400°C, dead-burnt quicklime having a low porosity  

(8-12 %) is obtained (Swallow and Carrington 1995). This leads to densification, an
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Retention time of quicklime in a limekiln is the other factor influencing the 

characteristics of quicklime. Long retention time in the limekiln can cause quicklime to 

become either hard-burnt or dead-burnt. On the other hand, short retention time in the 

limekiln can cause less reactive quicklime containing cores due to the incomplete 

calcination (Potgieter et. al. 2002).  

Fuel used in limekilns influences the reactivity of quicklime. Traditional lime was 

high-quality since wood and charcoal, which acquired the temperature of about 900°C, 

was used as fuel in traditional limekilns (Davey 1961). Wood produces relatively low 

flame temperature, long flames and steam, which provides reactive quicklime  

(Cowper 2000). However, by the middle of the 19th century, use of oil, gas and carbon 

dust as fuel in limekilns caused the production of much heat. Therefore, calcination 

temperature increased and the quicklime became less reactive (Wingate 1985, 

Moropoulou et al. 2001).  

 

2.3.3. Hydration (Slaking) of Quicklime 
 

When quicklime (CaO) reacts with water, calcium hydroxide (Ca (OH)2) known as 

lime is produced. This process is called hydration or slaking. The terms of hydration 

and slaking are technically synonyms. However, they are differentiated with the end 

products they produce. Hydration involves only required water and produces dry 

powder called “hydrated lime” whereas, slaking involves some excess water and yields 

wet hydrated lime in the form of plastic paste. Such lime is called “slaked lime”, “lime 

putty” or “lime paste” (Elert et al. 2002). It contains about 30-40 % of free water 

surrounding the hydrated lime particles (Boynton 1966). 

 During the hydration of quicklime, water is absorbed by quicklime, a great deal of 

heat is evolved and lime paste expands in volume. This expansion results in breaking up 

the entire mass into a fine powder (Boynton 1966). Chemical reaction involved in the 

hydration of quicklime is as follows: 

 

CaO    +    H2O        Ca(OH)2     +     heat↑ 
     Quicklime      Water              Lime 

 

Hydration should be carried out very slowly and carefully since reaction between 

lime and water raises temperature of the water to almost boiling temperature. Therefore, 
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quicklime should be added by a shovel into a tank containing water. Enough water 

should be used to avoid coagulation of particles which considerably reduces the 

plasticity of the lime (Boynton 1966, Ashurst and Ashurst 1998).  

During the hydration of quicklime, surface area and volume of lime increase 

(Eckel 1928, Boynton 1966). Expansion rate is influenced by the characteristics of the 

quicklime. High calcium quicklime expands 3.5 times in volume if slaked entirely. On 

the other hand, air-slaked quicklime expands only about 1.7 times of its original 

volume. Impure quicklimes present less expansion depending on the amount of 

impurities (Eckel 1928). 

 

2.3.3.1. Factors Influencing the Characteristics of Lime 
 

Characteristics of lime are influenced by various parameters such as characteristics 

of quicklime (surface area, porosity, pore size distribution, crystallite size, impurity, 

calcination conditions), water quality, water/lime ratio, slaking temperature, slaking 

time, agitation rate and aging of lime putty. 

 

Characteristics of quicklime: Characteristics of quicklime produced in the 

previous calcination process are the most important factors influencing the 

characteristics of lime. Pure quicklime with high porosity slakes rapidly due to its high 

water permeability. The end product is a high calcium lime. However, quicklime 

containing calcium-aluminates-silicates produces hydraulic lime. Such quicklime slakes 

much slower than high calcium quicklime since the impurities may give rise to 

formation of slag (waste product) which fills the pores and makes the surface 

impervious to water (Eckel 1928, Davey 1961, Boynton 1966). Moreover, quicklime 

containing high amounts of magnesia slakes slowly with less evolution of heat and less 

expansion in volume (Eckel 1928). Furthermore, powdered quicklime slakes more 

rapidly than lumps and produces lime composed of fine particles (Boynton 1966). 

However, hard-burnt quicklime, and quicklime exposed to air-slaking and  

re-carbonation slake slowly (Holmes and Wingate 1997, Potgieter et. al. 2002).  

 

Water quality: Water quality is an important factor influencing the characteristics 

of lime. Water of high purity is preferred in order to avoid soluble salts. Water 
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containing sulfates and sulfites can cover the surface of the lime particles and prevent 

water penetration into pores. This can lead to incomplete slaking. On the other hand, 

some chemicals such as chlorides and sugars have a favourable effect on the slaking 

process (Boynton 1966, Hassibi 1999, Holmes and Wingate 1997). However, chlorides 

cause serious deterioration problems in the long term due to dampness caused by 

hygroscopic salts and subsequent salt crystallization (Boynton 1966, Hassibi 1999, 

Holmes and Wingate 1997). 

 

Lime/water ratio: The amount of water required for slaking process depends on 

the characteristics of quicklime. High calcium lime requires more water than the lime 

containing impurities (Eckel 1928). In the slaking process, ratios of calcium oxide and 

excess water generally range from 1:2.5 to 1:6 (Boynton 1966, Hassibi 1999). In order 

to produce dry hydrate, one part of quicklime by weight is mixed with about 0.5-0.75 

part of water (Boynton 1966, Holmes and Wingate 1997). On the other hand, 

inadequate water content can lead to localized overheating (above 200°C), which causes 

the hydrated lime to become burnt and may even result in dehydration process  

(Boynton 1966). 

 

Slaking temperature: During slaking of quicklime, heat is generated. Therefore, 

slaking temperature should be under control. This temperature depends on the 

characteristics of quicklime and lime to be produced. Hydration should be performed at 

boiling temperature or slightly less, and slaking at about 71-93°C (Boynton 1966). 

Excessively high temperatures reduce plasticity of lime since fine lime particles could 

coagulate (Cowper 2000).  

 

Slaking time: High reactive lime hydrates completely in 2-3 minutes. Hydration 

of moderate reactive limes takes place in 5-10 minutes. Low reactive limes, hard-burnt 

limes and magnesium limes hydrate completely in 15-30 minutes (Boynton 1966, 

Hassibi 1999). 

 

Agitation rate: Agitation during slaking has a favourable effect on the slaking rate. 

It prevents localized overheating, increases dispersion of lime particles and provides 

high temperature during slaking (Boynton 1966). It was also found that high stirring 

speed mostly results in a great deal of lime putty. On the other hand, little agitation 
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results in hot and cold spots due to uneven slaking temperature (over 100°C). This leads 

to a decrease in surface area of lime particles. Agglomeration of lime particles and cold 

spots can cause unhydrated calcium oxide particles (Boynton 1966, Hassibi 1999).  

 

Aging of Lime Putty: Aging of lime putty by storage under water for a period of 

time as long as possible has been regarded as an important phase in improving the 

quality of lime since ancient times. Upon aging, portlandite (calcium hydroxide) crystal 

size reduces and platelike portalandite crystals occur due to dissolution of prism faces 

and secondary crystallization of sub-micrometer large portlandite crystals. This leads to 

an increase in surface area. As a result, more water can penetrate into newly formed 

large portlandite crystals. This gives rise to the evolution of lime putty with high 

workability, plasticity and water retention (Navarro et al. 1998, Cazalla et al. 2000).  

Romans were aware of favourable effects of aged lime. Roman laws dictated that 

lime was not to be used until it had been slaked for three years (EHDBL 1997). Even 

presently in Denmark, local regulations state that lime which will be used for the repair 

of historic churches must be at least five years old (Holmes and Wingate 1997).  

 

2.3.3.2. Classification of Limes 
 

A formal classification of lime according to its ability to set under water was 

firstly introduced by Louis Vicat at the beginning of the 19th century (Vicat 2003,  

Eckel 1928, Cowper 2000). This classification was based on the proportions of the 

constituents of calcium oxide and impurities present within the limes, and the way the 

limes hardened. This classification is as follows:  

• Non-hydraulic limes  

o Fat limes 

o Lean limes 

o Magnesian limes 

• Hydraulic limes 

o Feebly hydraulic limes 

o Moderately hydraulic limes 

o Eminently hydraulic limes 
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Non-hydraulic limes contain calcium carbonate over 90 %. Such limes slake 

rapidly, evolve much heat during slaking and expand greatly in volume with a high 

degree of plasticity (Eckel 1928). They hold much water in their pastes and retain water 

against the absorption of masonry units. This derives from the property of these limes to 

be fatter than hydraulic limes, which provides good workability for lime mortars 

(Holmes and Wingate 1997). Non-hydraulic limes are classified according to impurities 

they contain. Fat limes (rich or high-calcium limes) contain calcium oxide over 95 %. 

The rest of 5 % is composed of impurities such as silica, alumina, and iron oxide. Lean 

limes known as poor limes contain impurities more than 5 % (Vicat 2003, Eckel 1928). 

Magnesian limes are produced from magnesian limestones having magnesium 

carbonate content over 30 %. Such limes are less plastic, slake very slowly, and develop 

little heat and less expansion in volume (Eckel 1928). They can give early set, provide 

good workability, are much stronger than high calcium limes and carry more aggregates 

(Eckel 1928, Boynton 1966, Holmes and Wingate 1997). However, late hydration of 

MgO can lead to poor soundness by pitting and popping (Ramachandran et al. 1964, 

Holmes and Wingate 1997).  

Hydraulic limes are produced by either calcination of limestones naturally 

containing clay or of mixtures of clays and pure limestones. Such limes are classified 

according to the amount of active clay materials they contain. Feebly hydraulic limes 

contain active clay materials less than 12 %, moderately hydraulic limes contain  

12-18 % and eminently hydraulic limes contain 18-25 %. Such limes slake more slowly 

and expand less in volume with a small increase in comparison to non-hydraulic limes 

(Vicat 2003, Cowper 2000). 

Non-hydraulic and hydraulic limes can also be distinguished from each other by a 

value called hydraulic index (Eckel 1928, Cowper 2000). This is the ratio of 

percentages of silica and alumina to the percentages of lime and expressed as follows:  

 

Hydraulic Index = 
(%)Lime

(%)Alumina(%)Silica +  

 

d good hydraulic limes exhibit a hydraulic 

dex between 0.2 and 0.4 (Cowper 2000). 

Fat limes present a hydraulic index less than 0.1, feebly hydraulic limes give a 

hydraulic index in the range of 0.1-0.2 an

in
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2.3.4. Characteristics of Aggregates Used in Lime Mortars 

rainers, which enables the mortar to resist frost damage 

to so

anic materials which can slow the hardening of mortar 

(Hol

mortar will be of low quality (Davey 1961,  

Holm

 

Lime is never used alone as mortar since evaporation of water during its hardening 

causes contraction in volume. This contraction leads to deep cracks. Therefore, lime is 

mixed with aggregates in order to be used as mortar. The aggregates have an important 

role on the performance of mortars by acting as a filling material that prevents shrinkage 

and consequent cracking while drying (Eckel 1928, Davey 1961, Holmes and Wingate 

1997). The addition of aggregates is also necessary to impart strength, hardness and a 

certain degree of porosity that will facilitate the carbonation process (SLCHS 1995). 

The aggregates also act as air ant

me degree (SLCHS 1995).  

Aggregates used in lime mortars can be either quarried aggregates or river and sea 

sand. The latter can be used as aggregates only if they are well washed in order to 

remove impurities (Davey 1961). Aggregates quarried should also be rinsed in order to 

remove salts, and clay or org

mes and Wingate 1997). 

Physical characteristics of aggregates directly influence the workability and 

performance of a mortar. For mortar with good strength, angular and sharp-edged 

aggregates are preferred to round ones since the former provides the highest specific 

surface area for the best adherence with lime (Davey 1961, Holmes and Wingate 1997). 

Range of particle sizes of the aggregates is another critical factor. The aggregates should 

be composed of a wide range of particle sizes which are equally and evenly distributed 

so that spaces between larger grains will be filled with smaller ones. If the aggregates 

are not well-graded, the 

es and Wingate 1997).  

Mineralogical compositions of aggregates are also critical to the performance of 

mortar. Aggregates with high contents of quartz minerals might make little contribution 

to the early setting of mortar. Aggregates containing feldspars and schists may 

contribute to a degree of slightly pozzolanic reaction and to the future strength of the 

mortar. Some mortars contain carbonate aggregates such as crushed limestones and 

calcareous sand. These porous aggregates provide a porous structure which resists decay 

from frost and salt crystallization and improves the process of carbonation. These 
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carbonate aggregates are also capable of improving internal bonding of the mortar 

(Holmes and Wingate 1997, SLCHS 1995). 

 

e ones that do not undergo any chemical reaction with 

lime.

rates and 

calci

ity of opal with lime is derived from its 

amor

eir mineralogical compositions and burning 

temperatures (Davey 1961, Lea 1940, Baronio et al. 1997, Charola and Henriques 

2.3.4.1. Classification of Aggregates 
 

Aggregates used in lime mortars are classified as inert aggregates and pozzolanic 

aggregates. Inert aggregates are th

 Unlike the inert aggregates, pozzolanic aggregates are active aggregates 

containing reactive silicates and aluminates that can readily react with lime in the 

presence of water (Davey 1961).  

Pozzolanic aggregates are not cementitious by themselves but contain some 

compounds of silica and alumina. When such compounds react with lime, stable 

insoluble compounds of cementitious properties such as calcium-silicate-hyd

um-aluminates-hydrates are produced. These compounds make up a network of 

fibrous crystals or gelatinous amorphous material (gel), which enables lime mortar to 

produce hydraulic set and to impart great strength (Cowper 2000, Lea 1940).  

Pozzolanic aggregates are classified as natural and artificial pozzolanas  

(Cowper 2000, Lea 1940). Natural pozzolanas are generally of volcanic origin but also 

include some certain diatomaceous earths. Pozzolanas of volcanic origin are composed 

of reactive silicates, and contain glassy and crystalline particles. However, all volcanic 

ashes do not have pozzolanic property and some of them can be used as inert aggregates 

(Lea 1940). Diatomaceous earths are mainly comprised of opal which is an amorphous 

form of hydrous silica (Lea 1940). Reactiv

phous character and its structure which allows pores to absorb alkali solutions into 

all parts of the aggregate. Therefore, amorphous silica contributes to the hydraulic 

properties of lime mortars (Diamond 1976). 

Artificial pozzolanas are mainly obtained by heat treatment of natural materials 

such as clays, certain siliceous rocks, and ground fuel ash (fly-ash) (Lea 1940). Burning 

of certain clays at temperatures between 600°C and 900°C destroys the crystallographic 

structure of clay minerals. This leads to an amorphous mixture of silica and alumina that 

can react with calcium hydrate. Reaction produces more or less hydraulic components 

depending on the amount of clays, th
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1999

les acted as inert aggregates and only the finer ones act as active 

pozz

er followed by the 

layer of brick and tuff, in the upper parts lightweight concrete, which was composed of 

, was used (Cowan 1977).  

 

2.3.5

onal lime-pozzolana mortar was 

comp

irely prevented 

). Lightly-burnt (at ~600°C) and finely-ground clays contribute to the best 

reactivity (Holmes and Wingate 1997).  

Traditional use of pozzolanas in lime mortars was in a relativley coarse state. 

Coarser partic

olanas. Activity of all pozzolanas was increased by grinding them finely  

(Lea 1940). 

Use of lime mortars containing pozzolanic aggregates developed dramatically 

during the Roman period and resulted in astonishing changes in construction techniques 

(Cowan 1977). In fact, the most important use of pozzolana with lime was in the form 

of a mixture of lime, pozzolana and broken bricks and tiles. This technology produced a 

strong and a durable material called “Roman Concrete” or “opus caementitium”  

(Cowan 1977). Roman concrete together with brickwork enabled the construction of 

strong vaults and domes with enormous spans providing excellent and magnificent 

structures such as Pantheon, Baths of Caracalla, and Basilica of Constantine  

(Davey 1961). In the dome of Pantheon, a rational concrete technology was developed. 

While the lowest parts of the dome were built in crushed-brick lay

lightweight aggregate of tuff and pumice

. Lime Mortar Preparation 
 

Lime-aggregate ratio is mainly composed of 1 part of lime paste to 2-4 parts of 

aggregates (Eckel 1928). In aged-lime mortars, low binder/aggregate ratio of 1:4 is 

preferred since higher ratios can induce cracks that can be due to high water retention of 

small plate-like portlandite crystals in aged lime putties. Unlike aged lime mortars,  

non-aged lime mortars require high binder/aggregate ratio of 1:3 and do not present this 

kind of crack development (Cazalla et al. 2000). Traditi

osed of 1 volume of lime putty to 2 volumes of unground pozzolana, 3-4 volumes 

of aggregates (about 1:3.5:8-12 by weight) (Lea 1940). 

Sand-carrying capacity of lime is very important. It depends on plasticity of lime, 

size of hydrated lime particles, amount of impurities in lime, and average size and 

particle size distribution of aggregates used. Shrinkage will be almost ent
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when

 provides the mixture to mature well. The coarse stuff is stored in 

plast

d-carrying 

capa

ing cohesion and 

rength of mortars (Cowper 2000, Sickels 1981). Moreover, hair was added if the 

nd ceilings (Davey 1961). 

 

2.3.6

 strength by slow 

ombination with carbon dioxide gas in the atmosphere. Hydraulic set occurs when lime 

he presence of water.  

 

 aggregate particles are in direct contact with one another. The spaces among the 

aggregates will then be filled with fine particles of lime (Cowper 2000).  

There are certain mixing methods that enable lime and aggregates to mix firmly. 

Hot lime technology is a method in which aggregates are mixed with lime during 

slaking of lime. This method has a distinct advantage in that introduction of aggregates 

to the lime during the slaking process is believed to enhance the covering of all 

aggregates with lime in such a good way that this cannot be achieved by conventional 

mixing procedures (Holmes and Wingate 1997, Ashurst and Ashurst 1998). Besides, 

storage of the lime putty mixed with aggregates as wet coarse stuff is the other mixing 

procedure which

ic bins with air-tight lids as long as possible (Ashurst and Dimes 1990,  

EHDBL 1997). 

Beating or ramming lime-aggregate mixture is required to ensure that aggregates 

and lime are thoroughly united by filling the voids between them. This technique also 

provides high plasticity, reduces the amount of water required for plasticity and 

workability, and drive off excessive moisture. High plasticity provides more workable 

lime mortar, better bond between the mortar and masonry unit, and great san

city. However, since hydraulic mortars set under water and acquire a rapid set, they 

should not be beaten or worked after the initial set occurred (Cowper 2000).  

Some organic or synthetic additives were assumed to have been used in some 

historic lime mortars. Additives such as egg white, blood, fig juice, rye dough, hogs’ 

lard, curdled milk, casein, fats, oils and etc. were predicted to have been used for 

improving workability, extending and retarding setting time, increas

st

mortar was to be used for rendering walls a

. Hardening of Lime Mortars 
 

Lime mortars harden by two different reactions as carbonation and hydraulic set. 

Carbonation is the reaction in which non-hydraulic lime gains

c

is combined with silicates and aluminates in t
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2.3.6

into calcium carbonate by absorbing carbon dioxide gas in the 

atmosphere. This follows  

(Moorehead 1986): 

CO2 + H2O  H2CO3    (1) 

her until all calcium hydroxide is converted into calcium carbonate 

or un

sonry 

with a depth of 10-12 mm. inside the joint (Holmes and Wingate 1997). Therefore, lime 

mortar in the interior of the masonry may never harden completely (Eckel 1928). 

 

.1. Hardening by Carbonation  
 

Non-hydraulic lime mortars harden by carbonation reaction composed of 

conversion of lime 

reaction proceeds in two phases formulated as 

Ca (OH)2 + H2CO3  CaCO3 + 2H2O + 74kj↑ (2) 

 

Carbonation takes place after the fresh mortar has partially dried as a result of 

water loss through evaporation and absorption by porous masonry units  

(Cazalla et al. 2000). Subsequently, carbonation starts with the penetration of carbon 

dioxide gas in the atmosphere through large capillaries from the surface of the mortar. 

At first, carbon dioxide dissolves in the water within small capillaries and water 

becomes acidic with the formations of H+, HCO3
- and CO3

-2 ions (1). Subsequently, 

calcium hydroxide particles are dissolved in the acidified solution and Ca+2 ions are 

formed. Afterwards, reaction between the ions of Ca+2 and CO3
-2 forms calcium 

carbonate which precipitates and expands into larger pores (2). This carbonation 

reaction continues eit

til all water in the capillaries is evaporated by heat generated during the reaction 

(Moorehead 1986).  

Carbonation is a slow process lasting for months or even many years. It takes place 

inside the pores of the mortar and causes an increase of 35 % in weight corresponding 

to an increase of 11.8 % in volume in comparison with lime (Moorehead 1986). 

Therefore, total pore volume decreases and the mortar tends to become less permeable 

to the carbon dioxide gas as the carbonation reaction proceeds (Moorehead 1986). 

Besides, carbon dioxide absorption takes place only through the surface of the ma
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2.3.6

entration, thickness of the mortar, 

calcium hydroxide concentration, use of aged-lime putty and climatic factors (relative 

humi

 is retarded when the mortar is entirely 

saturated with water since diffusion of carbon dioxide in water is much slower than in 

the a

concentration may result in generation of 

excessive heat, which can lead to premature drying of the mortar. This can stop the 

carbo

roxide reduce the carbonation rate 

.1.1. Factors Influencing the Carbonation Reaction 
 

Carbonation reaction is influenced by several factors such as moisture content, 

permeability of mortar, carbon dioxide gas conc

dity, temperature, wind speed and rain water). 

 

Moisture content: Moisture content is critical for carbonation reaction since it 

plays a significant role in the diffusion of carbon dioxide gas within lime mortar 

(Cazalla et al. 2000, Van Balen and Van Gemert 1994). A minimum amount of water in 

which the carbon dioxide gas will be dissolved is required for the carbonation reaction. 

The optimum water content is the one required for the maximum adsorption on the pore 

surface before extensive capillary condensation occurs (Van Balen and Van Gemert 

1994). When 50 % of the pore volumes of mortar are filled with water, the reaction rate 

is assumed to be maximum (Moorehead 1986). At such moisture content, it is assumed 

that smaller capillaries rather than larger ones are filled with water so that the larger 

pores are able to diffuse carbon dioxide gas inside the mortar and water vapour to 

evaporate. On the other hand, carbonation

ir (Van Balen and Van Gemert 1994).  

 

Carbon dioxide gas concentration: Increase in carbon dioxide gas concentration 

leads to a considerable increase in carbon dioxide concentration in the pore volumes 

where the carbonation reaction takes place. As a result, solution of the carbon dioxide 

gas in water is increased. Therefore, the reaction proceeds rapidly. However, rapid 

carbonation at 100 % carbon dioxide 

nation reaction (Moorehead 1986). 

 

Calcium hydroxide concentration: Carbonation reaction depends on the amount 

of lime that will react with carbon dioxide diffusion in the mortar (Van Balen and Van 

Gemert 1994). Higher proportions of calcium hyd
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since

ill penetrate into the pores where the chemical reaction 

occurs. Thus, low permeability slows down the carbonation reaction. Addition of 

aggre

f carbon dioxide gas. Thus, increasing the thickness 

reduces the carbonation rate. Carbonation proceeds longer if the thickness of porous 

mort

ars 

develop their structural function in a short period of time. Moreover, carbonation of 

smal

nd speed influencing the mass transfer 

idity of the ambient air. The optimum 

drying of fresh mortar is favoured by low relative humidity, strong wind speed and high 

temperature (Van Balen and Van Gemert 1994).  

 lime mortars containing high calcium hydroxide concentration necessitate more 

time for complete carbonation (Moorehead 1986).  

 

Permeability of the mortar: Decrease in permeability of mortar reduces the 

carbon dioxide gas content that w

gates generally increases porosity of mortar and enhances the diffusion of carbon 

dioxide gas (Moorehead 1986).  

 

Thickness of the mortar: Carbonation reaction proceeds from the outside towards 

the inside of the mortar. Therefore, diffusion of carbon dioxide and carbonation time 

depends considerably on the thickness of the mortar. Increase in thickness leads to an 

increase in the diffusion path o

ars is more than 25 mm., and the one of dense and impermeable mortars is more 

than 5 mm. (Moorehead 1986).  

 

Use of Aged-Lime Putty: Aged-lime putty contributes to rapid and extensive 

carbonation. This is attributed to small platelike calcium hydroxide crystals in aged lime 

putties which are very reactive due to their high surface areas. Therefore, lime mort

l platelike portlandite crystals in aged lime putties lead to the formation of small 

and interlocked calcite crystals that provide a resistant mortar (Cazalla et al. 2000).  

 

Climatic factors: Climatic factors such as relative humidity, temperature, wind 

speed and rain water influence the water content of lime mortar by wetting and drying. 

Increase in relative humidity has a favourable effect on the carbonation reaction 

(Cazalla et al. 2000). Higher temperatures generally increase the chemical reactions but 

reduce the solubility of carbon dioxide gas and hydrated lime. Therefore, optimum 

carbonation rate is found to be at about 20°C (Van Balen and Van Gemert 1994). 

Drying of the lime mortar is influenced by the wi

coefficient by temperature and relative hum
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2.3.6

d of cementitious 

prop

nal render in baths, 

ater storage tanks and damp climates, and for sealing the spaces between roofing tiles 

 prevent the penetration of rain water (Davey 1961, Cowan 1977). 

 
 
 

.2. Hardening by Hydraulic Set 
 

Hydraulic lime mortars are produced either by using hydraulic lime or by 

intentional addition of pozzolanas (natural or artificial) to non-hydraulic lime  

(Lea 1940, Charola and Henriques 1999). In hydraulic lime mortars prepared with 

hydraulic lime, hydraulic compounds of calcium silicate hydrates and calcium 

aluminate hydrates are formed due to the reaction of calcium alumina silicates with 

water. In hydraulic lime mortars prepared using non-hydraulic lime together with 

pozzolanas, hydraulic compounds of calcium silicate hydrates and calcium aluminate 

hydrates are formed due to the pozzolanic reaction between lime and pozzolanas in the 

presence of water. These hydraulic compounds are stable, insoluble an

erties. They are the ones that provide a rapid hardening for the mortar and acquire 

great strength properties to it (Akman 1986, Davey 1961, Lea 1940).  

Since hydraulic lime mortars could set under water in the absence of carbon 

dioxide, are waterproof and of high durability, they were of great importance in ancient 

times (Davey 1961, Cowan 1977). Such mortars were extensively used in foundations 

in waterlogged grounds, drainage systems, bridges, locks, as an exter

w

to
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Chapter 3 

man baths located in 

Seferihisar-Urla region near İzmir were analysed in order to determine their production 

to investigate the relation between their properties and structural 

characteristics of the structural elements where they were used.  

 

cons

work. Each of the mortar samples 

was labelled according to the abbreviations starting with the name of town where the 

bath was located, and respectively following up with the bath name and the type of the 

mortar indicating its use in the masonry (Table 3.1). 

 

 
EXPERIMENTAL METHODS 

 
 

Mortars used in walls and domes of five historic Otto

technologies and 

3.1. Sampling  
 

The Ottoman baths whose mortars used in their walls and domes would be 

analysed are Düzce Bath, Seferihisar Bath and Ulamış Bath located in Seferihisar, and 

Hersekzade Bath and Kamanlı Bath located in Urla. These baths, which dated back to 

the 15th and 16th century, show almost similar characteristics with respect to their 

truction techniques and building materials (Reyhan 2004). Walls are comprised of 

stone masonry containing mostly rubble stones. Domes and vaults were built in 

brickwork in which bricks were laid up on thick (3-6 cm.) mortar joints (Reyhan 2004).  

Sampling was carried out from partially demolished parts of the walls and domes 

where mortar samples could be easily taken from exposed mortar joints by a chisel and 

hammer. Stone masonry mortar samples were collected from the external parts of the 

mortar joints of outdoor masonry since indoor masonry was plastered with lime plaster. 

The samples were taken from the parts of the walls, which were not subjected to 

deterioration problems. Brick masonry mortar samples were collected from the mortar 

joints at the upper parts of the domes built in brick
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Tab of the collected mortar samples. le 3.1 Definition 

Sample Definition  

Se.s. Stone masonry mortar from the north wall of the Seferihisar 
Bath 

Se.Dü.s. Stone masonry mortar from the southeast wall of the Düzce 
Bath 

Se.Ul.s. Stone masonry mortar from the southwest wall of the Ulamış 
Bath 

Ur.He.s. Stone masonry mortar from the southwest wall of the 
Hersekzade Bath 

Ur.Ka.s. Stone masonry mortar from the southeast wall of  the 
Kamanlı Bath 

Se.Dü.b. Brick masonry mortar from the dressing-hall dome of the 
Düzce Bath 

Se.Ul.b. Brick masonry mortar from the caldarium dome of the Ulamış 
Bath 

Ur.He.b. Brick masonry mortar from the caldarium dome of the 
Hersekzade Bath 

Ur.Ka.b.  masonry mortar from  ium dome of theBrick  the caldar  
Kamanlı Bath 

Se: Seferihisar Town    Ur: Urla Town 

   He: Hersekzade Bath  Ka: Kamanlı Bath 
Se: Seferihisar Bath    Ul: Ulamış Bath 
 
s: stone masonry mortar    
b: b

 
Dü: Düzce Bath  

rick masonry mortar  
 

 

Seferihisar Bath, which is a 16th-century-Ottoman bath, is located at the centre of 

Seferihisar (Reyhan 2004). Stone masonry mortar samples (Se.s.) were collected from 

its 76-cm-thick north wall from a height of approximately 150 cm. (Figures 3.1 and 

3.2). Brick masonry mortar samples could not be taken from the dome of this bath since 

it was plastered with Horasan plaster and cement-based mortar over it. 
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Figure 3.1 Plan of the Seferihisar Bath, showing where stone masonry mortar samples (Se.s.) 
were collected. 
 

Figure 3.2 View from the east and north elevations of the Seferihisar Bath, 
stone masonry mortar samples (Se.s.) were collected. 

 

Se.s. 
h: ∼150cm 

. 

 

Se.s
 
showing where 
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Düzce Bath located in Düzce Village in Seferihisar dated back to the 16th century 

(Reyhan 2004). Stone masonry mortar samples (Se.Dü.s.) were collected from the 

southeast exterior wall, approximately 75 cm. in thickness from 100 cm. above the 

existing ground (Figures 3.3, 3.4 and 3.5). Brick masonry mortar samples (Se.Dü.b.) 

were collected from the demolished parts of the dome of the dressing hall (Figures 3.4 

and 3.6). This dome with its approximate span of 660 cm. and thickness of 35 cm. was 

built in 3.5-cm.-thick brick units and 5-cm.-thick mortar joints (Reyhan 2004).   

 

 

 Se.Dü.s. 
h: ∼100cm 

 
Figure 3.3 Plan of the Düzce Bath in Sef
masonry mortar samples (Se.Dü.s.) and br
collected. 
 

 

 

 

Se.Dü.b.
 

erihisar (Reyhan 2004), showing where stone 
ick masonry mortar samples (Se.Dü.b.) were 
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Figure 3.4 View from the southeast and so
showing where stone masonry mortar sam
(Se.Dü.b.) were collected. 

 

 

   Figure 3.5 Stone masonry mortar sample
   (Se.Dü.s.) taken from the Düzce Bath. 

 

 

Ulamış Bath, dated back to the 

Seferihisar (Reyhan 2004). Stone maso

its 70-cm.-thick southwest exterior wall

ortar joints being 6 cm. in thickness (

cm. and its thickness is 30 cm. approxim

ground (Figures 3.7, 3.8 and 3.10). Bric

from the caldarium dome constructed 

m

 

Se.Dü.b.
. 

uthwest elevations of the Dü
ples (Se.Dü.s.) and brick m

 
      Figure 3.6 Brick ma

    (Se.Dü.b.) taken from

16th century, is located 

nry mortar samples (Se.U

 from approximately 120 

Figures 3.9. and 3.11). Sp

ately (Reyhan 2004). 

k masonry mortar samples

with brick units being 4
Se.Dü.s
 
zce Bath in Seferihisar, 
asonry mortar samples 

 
sonry mortar sample  
 the Düzce Bath. 

in Ulamış Village in 

l.s.) were taken from 

cm. above the existing 

an of this dome is 235 

 (Se.Ul.b.) were taken 

 cm. in thickness and 
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Figure 3.7 Plan of the Ulamış Bath in Seferihisar (Reyhan 2004), showing where stone 
masonry mortar samples (Se.Ul.s.) and brick masonry mortar samples (Se.Ul.b.) were 
collected. 
 

Se.Ul.b.
Se.Ul.s. 
h: ∼120cm 

.

Figur
wher

e 3.8 View from the southw
e stone masonry mortar sampl

 
 

Figure 3.9 View from the northw
where brick masonry mortar sampl

 

Se.Ul.s
 
est elevation of the Ulamış Bath in Seferihisar, showing 

es (Se.Ul.s.) were collected. 

est elevation of the 
es (Se.Ul.b.) were colle
Se.Ul.b.
 
Ulamış Bath in Seferihisar, showing 
cted. 
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   Figure 3.10 Stone masonry mortar sample  
   (Se.Ul.s.) taken from the Ulamış Bath. 

   Figure 3.11 Brick masonry mortar sample  
   (Se.Ul.b.) taken from the Ulamış Bath. 

 

 

 

rla (Reyhan 2004). Stone masonry mortar samples (Ur.He.s.) were collected from the 

demolished upper parts of the southwest w asonry 

s appro ately 290 cm. in diameter and 42 

cm. 

Hersekzade Bath, which is a 15th-century- Ottoman bath, is located at the centre of

U

all (Figures 3.12 and 3.13). Brick m

mortar samples (Ur.He.b.) were collected from the demolished parts of the caldarium 

dome (Figure 3.14.). This dome, which wa xim

in thickness, was built in 3-cm.-thick brick units and 4-cm.-thick mortar joints 

(Reyhan 2004).  

 

 

Ur.He.b. 

Ur.He.s. 

Figure 3.12 Plan of the Hersekzade Bath in Urla (Reyhan 2004), showing where stone 
masonry mortar samples (Ur.He.s.) and brick masonry mortar samples (Ur.He.b.) were 
collected. 
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Figure 3.13 View from th
stone masonry mortar sam
 
 

Figure 3.14 View from th
rick masonry mortar samp

manlı Bath is lo

15th century (Reyhan 20

the demolished parts of 

thickness of 32 c

and 3.5 cm

 

b
 

Ka

its 80-cm-thick southeas

(Figures 3.15 and 3.16).

m. was

. respectively

 

Ur.He.s.
 
e southeast elevation of the Hersekzade Bath in Urla, showing where 
ples (Ur.He.s.) were collected. 

.

e southeast elevatio
les (Ur.He.b.) wer

cated at the Kam

04). Stone m

asonry m

the tepidarium d

ason

t wall from appr

 Brick m

 constructed with

 (Reyhan 2004).  
Ur.He.b
 
n of the Hersekzade Bath in Urla, showing where 
e collected. 

anlı site of Urla. This bath dated back to the 

ortar samples (Ur.Ka.b.) were collected from 

ome. This dome with its span of 295 cm. and 

k and mortar whose thicknesses are 3 cm. 

ry mortar samples (Ur.Ka.b.) were taken from 

oximately 200 cm. above the existing ground 

 bric
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.

 

 
Figure 3.15 Plan of the Kamanlı Bath in Urla (Reyhan 2004), showing where stone masonry 
mortar samples (Ur.Ka.s) and brick masonry mortar samples (Ur.Ka.b.) were collected. 

 
 

.

 
Figure 3.16 View from the northwest elevatio
stone masonry mortar samples (Ur.Ka.s) were
 

 

 

Ur.Ka.s
Ur.Ka.s. 
h: ∼200cm
n of the Kaman
 collected. 
Ur.Ka.b
 

lı Bath in Urla, showing where 
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3.2

imental study includes determination of the following properties of mortars 

and bricks, which were carried out by a series of laboratory tests presented in  

Appendix A: 

sic Ph sical Bricks 

 Basic Mechanical Properties of Mortars 

o Tensile strength 

of soluble salts 

 Raw Material Compositions of Mortars 

o Particle size distributions of aggregates  

• 

ic centimetres (g/cm3). Porosity 

 the ratio of the pore volume to the bulk volume of the sample, and is usually 

expressed in per cent (%).  

. Experimental Study 
 

Exper

• Ba y Properties of Mortars and 

o Bulk density 

o Porosity 

•

o Uniaxial compressive strength 

o Modulus of elasticity 

• Analysis of Soluble Salts in Mortars 

o Percent soluble salts in mortars 

o Anion parts 

•

o Lime-aggregate ratios of mortars 

Pozzolanic Activity of Aggregates and Bricks 

• Mineralogical and Chemical Compositions and Microstructural Properties of 

Lime Binders, Aggregates and Mortar Matrices  

• Hydraulicity of Mortars by TGA 

 

3.2.1. Determination of Basic Physical Properties of Mortars and 
Bricks 

 

Basic physical properties of bulk densities and porosities of mortars and brick 

masonry units used in domes were determined by using RILEM standard test methods 

(RILEM 1980). Bulk density is defined as the apparent density which is the ratio of the 

mass to its bulk volume. It is expressed in grams per cub

is
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Measurement of bulk density and porosity was carried out on three samples of 

each mortar and on two samples of each brick. First of all, the samples were dried in an 

oven at 60°C at least for 24 hours in order to allow moisture to be released from the 

samples. Subsequently, they were weighed by a precision balance (AND HF-3000G) to 

determine their dry weights (Mdry). After the dry weights were recorded, the samples 

were left under distilled water in a vacuum oven (Lab-Line 3608-6CE Vacuum Oven) 

so that they were entirely saturated with water. Afterwards, their hydrostatic weighing 

was carried out separately in distilled water by using the precision balance and the 

measured weights were recorded as Archimedes weight (March). Then, saturated weights 

(Msat) were measured. As a result, bulk densities (D) and porosities (P) of the mortar 

 (gr/cm ) = Mdry / (Msat - March) 

P 

Uniaxial compressive strengths of mortars were measured by Shimadzu AG-I 

Mechanical Test Instrument which performed automatic compression testing (ISRM 

1981, Ulusay et al. 2001). Uniaxial compressive strength test was carried out on at least 

thr c ng relatively free from cracks (Figure 3.17). These cubic 

and brick samples were calculated by using the following formulas: 
3D

   (%) = [(Msat - Mdry) / (Msat - March)] × 100 

where; 

Mdry  : Dry weight (g) 

Msat  : Saturated weight (g) 

March  : Archimedes weight (g) 

Msat - Mdry : Pore volume (g) 

Msat - March : Bulk volume (g) 

 

3.2.2. Determination of Basic Mechanical Properties of Mortars 
 

Determination of basic mechanical properties is generally evaluated by measuring 

uniaxial compressive strengths, tensile strengths and modulus of elasticity of mortars. 

These measurements provide the necessary information regarding strength and rigidity 

properties of the mortars. 

 

3.2.2.1. Determination of Uniaxial Compressive Strength of Mortars 
 

ee ubic specimens bei
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specim machine (Discoplan-TS 372). 

Subsequently, they were dried in an oven at 60°C for at least 24 hours. The cubic 

specimens with thicknesses varying between 20 cm. and 55 cm. could be prepared since 

narrow mortar joints only allowed collecting specimens of such sizes. Even though 

cylindrical specimens with minimum dimensions of 30×75 mm. were required to 

conduct the mechanical test, cubic specimens were used since it was very difficult and 

often impossible to obtain entirely cylindrical specimens from the mortars that were 

easily broken into pieces while drilling the specimens.  

 

ens were prepared by using a cutting 

Figure 3.17 Cubic specimens 
compressive strength test. 

Shimadzu AG-I Mechan

and recorded test results using

of force magnitude, force unit

hardness of the mortars. Maxi

speed as 1 mm/min. This tes

would be applied for a length

test procedure was done, cubic

was fixed and the other 

(Figure 3.19). It was ensured 

contact with the loading plate

with the platens. The instru

loading, and presented the rel

was automatically displayed o

. . 

 

 

Se.Ul.b
 
of the mortar samples, which were used for 

ical Test Instrument automatically compute

 a software system. A test procedure includin

 and test speed was configured initially acc

mum force magnitude was configured as 15

t speed provided a continuous compression

 of 1 mm. per one minute. After the configu

 specimens were placed between two loading

was mobile to provide the compress

that surfaces of the specimens which would

ns were uniform in order to provide a uni

ment recorded strokes under continuous 

ationship between the strokes and load by a 

n the test condition monitor. This graph was 
Ur.Ka.s
 
the uniaxial 

d, displayed 

g the setting 

ording to the 

 kN and test 

 loading that 

ration of the 

 platens; one 

ion loading  

 be in direct 

form contact 

compression 

graph which 

composed of 
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a curve whose peak point gave the maximum force (F) under which the specimen failed 

(Figure 3.18). As a result, uniaxial compressive strengths represented by “σ” were 

calculated by using this graph with the following formula (ISRM 1981, Ulusay et al. 

001): 

σ = F / A 

w

2

 

here; 

F : Failure load (kN) 

A : Area onto which loading was applied (mm2) 

 

0

4

6

Lo
ad

 (

8

10

kN
)

2

0 1 2 3 4 5 6 7 8

Stroke (mm)

 
Figure 3.18 Load-stroke graph of the mortar sample of Ur.He.s., which was obtained after 
uniaxial compressive strength test was carried out. 
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igure 3.19 
ows the si

F
sh
loading. Ima

 

 

3.2.2.2. D
 

Tensil

using Shim

testing whi

1981, Ulusa

least 54 mm

 

A

 

 
B
 
Images showing how uniaxial compressive strength test was carried out. Image A 
tuation in which the sample is placed between two compression platens prior to 
ge B shows the situation in which the compression test is carried out. 

etermination of Tensile Strength of Mortars 

e strengths of lime mortars were determined with Brazilian Test Method by 

adzu AG-I Mechanical Test Instrument. Brazilian Test Method is a type of 

ch determines tensile strength indirectly under diametrical loading (ISRM 

y et al. 2001). Even though this method required cylindrical specimens of at 

. in diameter and 27 mm. in height, the cylindrical specim ns of such e
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dimensions could not be obtained by an electrical core driller since these mortars were 

asily broken into pieces due to their composite nature. Te herefore, only cylindrical 

ecimens of 25 mm. in diameter and 1.25 mm. in thickness could be prepared  

 

sp

(Figure 3.20). 

 
Figure 3.20 Cylindrical specimen drilled from the mortar sample of Se.Dü.b. 

pecimens being 

rel e niaxial compressive strength test, a test 

rocedure was configured initially, including the setting of force magnitude, force unit 

an

ximum force (F) under which the 

specimens failed. As a result, tensile strengths represented by σt were calculated by 

using this graph with the following formula (ISRM 1981, Ulusay et al. 2001): 

0.636 : Constant 

D  : Diameter of the sa  (mm) 

t    : Thickness of the sample (mm) 

 

 

 Tensile strength test was carried out on at least two cylindrical s

ativ ly free from cracks. Similar to the u

p

d test speed. Maximum force magnitude was configured as 2.5 kN and test speed as  

0.1 mm/min. Cylindrical specimens were placed between two loading platens in such a 

way that their lateral surfaces were in contact with the platens (Figure 3.21). It was 

ensured that samples failed along the axis of their diameters during the loading  

(Figure 3.21). Strokes under continuous loading were automatically recorded and 

presented by a graph which was displayed on the test condition monitor (Figure 3.22). 

Peak point of the curve in this graph gave the ma

σt = 0.636×F / D×t 

where; 

F  : Failure load (kN) 

mple
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Figure 3.21 Imag

of failure occurre
 

 

to determine its
loading and imag

 

A

 

 

 

B

 
es showing how diametrical loading was applied on a cylindrical specimen 

ple before 
correct type 

d along the axis of its diameter. 

tensile strength. Image A shows the positioning of the sam
e B shows the situation after loading. This sample presents a 
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3.2.2.3. Determination of Modulus of Elasticity of Mortars 

Modulus of Elasticity (Young’s Modulus), which defines the rigidity of a material, 

is the

 / ε = ( F/A) / ( l/lo)  

F Failur

ied (mm2) 

ange in thickness of the sample along its vertical axis (mm) 

 

Modulus of elasticity of stone and brick masonry mortars were calculated using 

ength 

test (ISRM 1981, Ulusay et al. 2001). Stress (σ) is the ratio of force to the area where 

the f

ure 3.22 Load-stroke graph of the ortar sample of 
metrical loading was carried out on the cylindrical speci

 

 rate of change of strain as a function of stress. It provides required information 

about how well a material can resist deformation under the action of external forces 

(Airapetov 1986). The modulus of elasticity (E) is formulated as follows: 

E = Stress / Strain = σ

where; 

: e load (kN) 

A : Area onto which force was appl

l : Ch

lo : Initial thickness of the sample (mm) 

slopes of stress-strain curves obtained from the results of uniaxial compressive str

orce is applied. Strain (ε) corresponds to the change in thickness of cube mortar 

samples under the action of the applied force. The relation between the stress and strain 

is expressed by a graph below (Figure 3.23). Slope of the curve (tanθ) gives the 

modulus of elasticity of that material (Figure 3.23). 
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where; 
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. Determination o
 

Soluble salts present 

deterioration problems. An

 

3.2.3.1. Determination
 

Percent soluble salts

meter (Black 1965). For 

dissolved in 50 ml distille

m

of soluble salts within the s

 

Soluble Salts

A  = Salt concentratio

EC = Electrical

 (mS/cm

640 = Constant 

Vsol  = Volume of the so

Msam = Weight of the sa
 θ 
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0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

stroke / l0  
in (stroke/lo) curve whose slope (tanθ) gives modulus of elasticity 

 conductivity meter (WTW MultiLine P3 pH/LF). Percentage 

 x Vsol) / 1000] x [100 / Msam] 

f Soluble Salts in Mortars 

in mortar samples were determined in order to evaluate their 

ion parts of the soluble salts were determined qualitatively. 

 of Percent Soluble Salts in Mortars  

 in mortars were determined by an electrical conductivity 

this analysis, 1.00 g of finely-ground mortar sample was 

d water. After this solution was filtered, its conductivity was 

ample was calculated using the following formula: 

n (mg/lt) = 640 x EC  

 conductivity measured by electrical conductivity meter  

 = mmho/cm) 

 

lution (ml) 

mple (mg) 



3.2.3.2. Qualitative Determination of Anion Parts of Soluble Salts 
 

After the percent of soluble salts in mortars were calculated, anion parts of the 

soluble salts were determined by spot test (Black 1965, Arnold 1983, Teutonico 1988). 

Principle anions such as sulphate (SO4
⎯2), chloride (Cl⎯), nitrate (NO3⎯), carbonate 

(CO3
⎯2), and phosphate (PO4

⎯3) which might have been present in the solutions were 

determined. 

 

3.2.4. Determination of Raw Material Compositions 
 

aggregates were 

determined in order to define raw material compositions of mortars. 

 

ith distilled water, 

ried in an oven, and then weighed (Magg). Acid soluble and insoluble ratios were 

alculated with the following formula:  

Insoluble %  = [(Msam – Magg) / Msam] × 100 

Acid Soluble %    = 100 – Insoluble % 

where; 

Msam : Weight of the mortar sample 

Magg : Weight of the aggregates  

Acid soluble ratio is not the exact ratio corresponding to lime ratio since both lime 

nd calcareous aggregates that could be used in the mortars were dissolved in the 

Lime-aggregate ratios and particle size distributions of the 

3.2.4.1. Determination of Lime-Aggregate Ratios of Mortars 
 

Ratios of lime as the binder and aggregates as the filling material in mortars were 

determined by treatment of mortar samples with dilute hydrochloric (HCl) acid 

(Jedrzejevska 1981, Middendorf and Knöfel 1990). Two samples of 50-60g in weight 

from each mortar were prepared, dried and weighed (Msam) by a precision balance. 

Then, the mortar samples were left under the solution of dilute hydrochloric acid (5 %) 

until all carbonated lime (CaCO3) in the samples entirely dissolved. Aggregates 

remaining insoluble were filtered through a filter paper, rinsed w

d

c

 

a
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solution of dilute hydrochloric acid. Therefore, lime/aggregate ratio was calculated by 

e formula as follows: 

Aggregate %   = (100 × Insoluble %) / [((Acid Soluble % × M.W.Ca(OH)2) /     

      M.W.Ca(CO3)) + Insoluble %] 

Lime %           = 100 – Aggregate % 

where; 

M.W.Ca(CO3) : Molecular weight of Ca(CO3) which is 100. 

M.W.Ca(OH)2 : Molecular weight of Ca(OH)2 which is 74. 

.2.4.2. Determination of Particle Size Distributions of Aggregates 
 

Particle size distributions of the aggregates were determined by sieve analysis in 

rder to group these aggregates into various size ranges and to determine relative 

roportions of each size range (Teutonico 1988). In the first place, the aggregates were 

eved through a series of sieves (Retsch mark) having the sieve sizes of 53µm, 125µm, 

50µm, 500µm, 1180µm by using an analytical sieve shaker (Retsch AS200). 

ubsequently, each of the particles retained on each sieve was weighed respectively and 

ach of their percentages was calculated. Lastly, their cumulative percentages were 

calculated.  

Aggregates separated from lime were examined visually by a zoom stereo 

microscope (Olympu icrographic system 

and computer. Images of the aggregates with particle sizes of >1180µm, 1180-500µm, 

500-

 of saturated calcium hydroxide solution of 40 ml. was measured. Then, 

.00g of sample was added into this solution. Subsequently, this mixture was kept under 

th

 

3

o

p

si

2

S

e

s SZ40) equipped with video camera, photo m

250µm and 250-125µm were taken in order to determine their physical properties 

in terms of their shapes and colours. 

  

3.2.5. Determination of Pozzolanic Activity of Aggregates and Bricks 
 

Pozzolanic activity of fine aggregates (less than 53µm), and coarse aggregates and 

bricks ground to the fineness of less than 53µm were determined by electrical 

conductivity measurements (Luxan et al. 1989). In this analysis, first of all, electrical 

conductivity

1

constant stirring for a time period of 120 seconds. Afterwards, its conductivity was 
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measured. Reaction took place between the sample and calcium hydroxide led to a 

diffe

 Mortar 
Mat

hilips X-Pert 

ro X-ray Diffractometer. The analyses were performed on carbonated lime scrubbed 

from mortar samples, and aggregates and mortar matrices which were ground to the 

fineness of less than 53µm. 

Chemical compositions and microstructural properties of lime binder, aggregates 

and mortar matrices were determined by Philips XL 30S-FEG Scanning Electron 

Microscope (SEM) equipped with X-Ray Energy Dispersive System (EDS). SEM-EDS 

analysis was performed on the lime binder, aggregates and mortar matrices, which were 

ground to the fineness of less than 53µm and then pressed into pellets, in order to 

determine their chemical compositions. 

 

 

3.2.7. Determination of Hydraulicity of Mortars by TGA 
 

Thermogravimetric analysis (TG/DTG) was performed on total mortar samples by 

using

in finely-

rence in the electrical conductivity measurements of the initial and final saturated 

calcium hydroxide solutions. The samples leading to a difference in the electrical 

conductivity of more than 1.2 mS/cm presented good pozzolanicity (Luxan et al. 1989).  

 

3.2.6. Determination of Mineralogical and Chemical Compositions, and 
Microstructural Properties of Lime Binders, Aggregates and

rices  
 

Lime binder obtained from soft carbonated lime particles in the form of white 

lumps in mortars, aggregates, and mortar matrices composed of lime and fine 

aggregates mixed firmly were analyzed in order to determine their mineralogical 

compositions, chemical compositions and microstructural properties. 

Mineralogical compositions of lime binder, aggregates and mortar matrices were 

determined by X-ray Diffraction (XRD) analysis performed by using a P

P

 Shimadzu TGA-21 thermogravimetric analyzer in order to determine hygroscopic 

water, structurally bound water and carbon dioxide contents, and to evaluate 

hydraulicity of the mortars. The thermogravimetric analysis was carried out in static 

nitrogen atmosphere at a temperature range of 30-1000°C with a controlled heating rate 

of 10°C/min. This analysis determined precise measurements of weight losses 
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grou

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

nd mortar samples of 10-20 mg as they were heated up to 1000°C. During this 

heating, TGA instrument recorded loss of hygroscopic (adsorbed) water (< 120°C), loss 

of structural water bounded to hydraulic components (200°C – 600°C) and loss of 

carbon dioxide gas due to decomposition of carbonates (> 600°C).  
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Chapter 4 
 

RESULTS AND DISCUSSION 
 
 

Results of experimental study, which were performed on stone and brick masonry 

mortars, and bricks used in domes, have been given in this chapter. Densities and 

porosities of mortars, their mechanical properties and raw material compositions, 

pozzolanic activities of aggregates used in the mortars, soluble salts in the mortars, their 

mineralogical and chemical compositions, microstructural properties and hydraulic 

roperties were described and discussed. Besides, basic physical properties and 

pozzolanic activity of the bricks used in the construction of the domes were also 

included in order to evaluate their role together with the mortar in structural stability of 

the domes.  

 

4.1. Basic Physical Properties of Mortars and Bricks 
 

Physical properties of mortars depend on several factors such as lime/aggregate 

ratios, particle size distribution of aggregates, characteristics of lime used, 

characteristics and shapes of aggregates used, water content and mortar preparation 

chniques (Cowper 2000, Eckel 1928, Davey 1961, Boynton 1966, Holmes and 

ortars 

 mortar technology. 

ensity and porosity values of stone masonry mortar samples collected from the 

studied Ottom

p

te

Wingate 1997). Therefore, determination of density and porosity values of the m

is one of the important parameters in characterization of

D

an baths were between 1.50-1.84 g/cm3 and 26.82-41.85 % by volume 

respectively (Figure 4.1). Density values of brick masonry mortars ranged between 

1.40-1.72 g/cm3 and their porosity values were in the range of 31.85% and 43.46 % by 

volume (Figure 4.2). All these values were in the same ranges with several historic lime 

mortars whose density values varied between 1.10-1.90 g/cm3 and porosity values 

between 28-57 % (Papayianni and Karaveziroglou 1993, Tunçoku 1993, Franzini et al. 

2000, Tunçoku 2001, Moropoulou et al. 2003, Moropoulou et al. 2004a).  
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Density and porosity of  used in walls and brick 

masonry mortars used in ildi were in the same ranges. While the 

brick masonry mortars were slightly porous than the stone masonry mortars in the baths 

of Ulamış and Kamanlı, the stone masonry m  presented slightly higher porosity 

values than the brick maso rs in the ba  Düzce and Hersekzade.  

Physical properties of bricks used in historic buildings depend on several factors 

such as mineralogical com , preparatio niques, firing temperature and etc. 

Bricks as masonry units w e mortars in the construction of 

ma y historic buildings since they are porous and have good compatibility with the lime 

mort

Figure 4.2 Porosity and density values of brick masonry mortars. 

 values  stone masonry mortars

domes of each bu ng 

ortars

nry morta ths of

positions n tech

ere extensively used with lim

n

ars. Therefore, structural behaviour of the domes depends on physical and 

mechanical properties of both bricks and lime mortars (Moropoulou et al. 2002b). Thus, 

density and porosity values of bricks should be determined in order to evaluate 

structural behaviour of the domes. 
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Density values of bricks used in the domes of the examined baths ranged between 

1.67-1.80 g/cm3 and their porosity values ranged between 29.45 % and 35.96 %  

(Figure 4.3). These values were in the same ranges of bricks used in historic structures 

(Livingston 1993, Tunçoku 1993, Baronio et al. 1997). However, bricks used in some 

historic buildings could have considerably low density values and high porosity values. 

cks used in the dome of Hagia Sophia in 

İstanbul were 1.5 g/cm3 and 45 % respectively (Moropoulou et al. 2002b). Likewise, 

brick

For instance, density and porosity of bri

s used in the superstructures of some Anatolian Seljuk buildings had density values 

ranging between 1.20-1.60 g/cm3 and porosity values in the range of 36-57 %  

(Tunçoku 2001). Use of such porous and light bricks in the superstructure could be 

attributed to its structural requirements in order to be resistant against earthquake 

stresses (Moropoulou et al. 2002b).  
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Figure 4.3 Poro nsity values of bricks used in the domes. 
 

 

Brick masonry morta icks, whic re used in the construction of the 

domes of the studied baths, presented density and porosity values in the same ranges 

(Figures 4.4 and 4.5). Whe e  mortars and bricks used in each 

building were compared with  the mortars except for the 

mort

sity and de

rs and br h we

n the porosity valu

each other, it was found that

s of the

ar of Se.Ul.b. presented slightly higher porosity values than the bricks used  

(Figure 4.4). As the mortars and bricks used in the domes had similar density and 

porosity values, the domes could be regarded as light and porous superstructures.  
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Figure 4.4 Porosity values of brick masonry mortars and bricks used in domes. 
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4.2. Basic Mechanical 
 

One of the most important function of m hat it binds the masonry units into 

a monolithic mass and he o resist ccurred in masonry. Therefore, it 

should have sufficient strength to hold the m nits together and to spread loads 

evenly together with the m nits (Davison 1976, Airapetov 1986, Holmes and 

Wingate 1997). For this re ngth cha cs of the mortars can be regarded 

as important factors influenci ce of historic masonry structures. 

 the mortars collected from the walls 

and domes of the examined Ottoman baths were determined.  

deformation under externally applied loads which lead to internal elastic forces 

ure 4.5 Density values of brick masonry mortars and bricks used in domes. 

Properties of Mortars 

ortar is t

lps them t forces o

asonry u

asonry u

ason, stre racteristi

ng the structural resistan

Within this context, basic mechanical properties of

Basic mechanical properties are frequently studied by compressive and tensile 

strength tests. Strength is described as the ability of a material to resist elastic 
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(Airapetov 1986). Ultimate strength of a building material is the main strength 

characteristic corresponding to the highest stress which the material subjected to static 

(gradually applied) load can resist before breaking. The ultimate compressive and 

tensile strength are the primary strengths which should be resisted by building materials 

irapetov 1986). Besides, modulus of elasticity of the mortars are necessary for the 

evaluation of their estimated elastic behaviour that helps them to resist deformation 

under the actio

 

4.2.1. Uniaxial Compressive Strength of Mortars 
 

Stone masonry mortars used in the walls of the studied baths had compressive 

strengths values ranging between 4.2 MPa and 17.4 MPa Brick masonry mortars used in 

domes presented compressive strength values in the range of 8.8 MPa and 21.0 MPa 

(Table 4.1). While all brick masonry and some of the stone masonry mortars (Se.Ul.s. 

and Ur.He.s.) had relatively high compressive strengths values, rest of the stone 

masonry mortars of Se.Dü.s. and Ur.Ka.s. had lower values of 5.3 MPa and 4.2 MPa 

respectively tha

 

and brick masonry mortars. 

Sample Compressive Strength

(A

n of external forces (Airapetov 1986). 

n the rest.  

Table 4.1 Compressive strength values of stone 

 (MPa.) 
Se.s. * 
Se.Dü.s.   5.3 
Se.Ul.s. 17.4 
Ur.He.s.   9.7 
Ur.Ka.s.   4.2 
Se.Dü.b. 16.1 
Se.Ul.b. 21.1 
Ur.He.b. 10.5 
Ur.Ka.b.   8.8 
*: not determined 

 

Compressive strength values of stone and brick masonry mortars of the Ottoman 

baths were in similar ranges with the ones of several historic lime mortars  

(Livingston 1993, Tunçoku 2001). Livingston recorded compressive strength values of 

more than 9 MPa for hydraulic mortars with pozzolanic aggregates and less than 9 MPa 

for non-lime containing silica at high ratios mortars (Livingston 1993). Having regard to 
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this, since compressive strength values of all brick masonry and some stone masonry 

mortars (Se.Ul.s. and Ur.He.s.) were more than 9 MPa, their values were in the same 

ranges with lime containing silica at high ratios mortars with pozzolanic aggregates. 

 

4.2.2. Tensile Strength of Mortars 
 

Tensile strength values of stone masonry mortars of the examined baths ranged 

between 0.7 MPa and 1.4 MPa (Table 4.2). However, brick masonry mortars presented 

considerably high tensile strength values being in the range of 1.0 MPa and 1.5 MPa. 

These values were in almost similar ranges with historic lime mortars having tensile 

strength values in the range of 0.5 MPa and 2 MPa (Moropoulou et al. 1996, 

Moropoulou et al. 2000a, Moropoulou et al. 2002a). Livingston recorded tensile 

strength values more than 0.7 MPa for hydraulic mortars with pozzolanic aggregates 

and less than 0.7 MPa for non-lime containing silica at high ratios mortars (Livingston 

993). Having regard to this, all brick masonry mortars had tensile strength values of 1 

MPa an ha over the lowest range of the tensile strength values 

given for hydraulic morta ith pozzolanic aggreg

 

ble 4.2 T  strength values f ston  masonry rs. 

1

d more t n this  was  which

rs w ates. 

Ta ensile  o e and brick morta

Sample
 

Tensile Strength 
(MPa) 

Se.s. * 
Se.Dü.s. * 
Se.Ul.s. 1.4 
Ur.He.s. 0.8 
Ur.Ka.s. 0.7 
Se.Dü.b. 1.1 
Se.Ul.b. 1.5 
Ur.He.b. 1.1 
Ur.Ka.b. 1.0 
*: not determined 

 

Use of the lime mortars in domes with higher tensile strength than the lime mortars 

e it is 

the combination of compression and tension (Airapetov 1986, Ünay 2001). Due to the 

geom

used in walls could be explained with the structural behaviour of the wall and dome. 

State of stress in a masonry wall is primarily compression while in a masonry dom

etry of the dome, both compressive stresses along its meridian lines and 
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circumferential tensile forces in the lower parts of the hemisphere occur so that its 

structural resistance is provided (Ünay 2001, Fielden 2001). The structural resistance of 

the

e of 

1246.5 MPa. Brick masonry mortars presented modulus of elasticity values ranging 

between 264.4 MPa. and 1617.6 MPa. These values were mostly lower than modulus of 

e  

MPa (Schafer and Hildsdorf 1993, Papayianni and Stefanidou 1997, Papayianni 1997, 

Tunçoku 2001, Moropoulou et al. 2000a, Moropoulou et al. 2002a). These low modulus 

of elasticity values are probably due to the method used. 

 
Table 4.3 Modulus of elasticity values of stone and brick masonry mortars. 

Sample
 

Modulus of Elasticity
(MPa) 

 dome depends both on its geometry and strength properties of materials used  

(Ünay 2001). Therefore, lime mortars having high tensile strength properties may have 

been used consciously in the construction of the domes of the baths. 

 

4.2.3. Modulus of Elasticity of Mortars 
 

Stone masonry mortars sampled from the five Ottoman baths in Seferihisar-Urla 

region showed modulus of elasticity values ranging between 110.5 MPa. and  

1246.5 MPa (Table 4.3). Among them, the mortar of Se.Ul.s. had the highest valu

lasticity values of several historic lime mortars, which were in the range of 600-3000

Se.s. * 
Se.Dü.s.   186.5 
Se.Ul.s. 1246.5 
Ur.He.s.   425.8 
Ur.Ka.s.   110.5 
Se.Dü.b.   966.7 
Se.Ul.b. 1617.6 
Ur.He.b.   493.1 
Ur.Ka.b.   264.4 
*: not determined 

 

4.3. Analysis of Soluble Salts in Mortars 
 

Determination of soluble salts in mortars is important to understand their 

deterioration problems. Brick and stone masonry mortar samples had low soluble salt 

contents ranging between 0.30 % and 0.78 % (Figures 4.6 and 4.7). Main anion parts of 
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soluble salts in the mortar samples were determined to be chloride (Cl⎯). These values 

show that the lime and aggregates used in the mortars contain little amount of soluble 

salts.  
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Figure 4.6 Soluble salt content (%) in stone masonry mortars. 
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Figure oluble salt content (%) in brick masonry mortars. 

 

4.4. Raw Material Compositions of Mortars 
 

Binder-aggregate ratios and particle size stributions of the aggregates were 

determined in order to describe raw material compositions of mortars. 

 

4.4.1. Lime-Aggregate Ratios of Mortars 
 

Ratio of lime and aggregates used in mortars is an important parameter influencing 

physical, mechanical and durability characteristics of the mortars. While lime provides 

4.7 S

di
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the binding material, aggregates act as a filling material that prevents shrinkage and 

consequent cracking during the drying of the mortars, and impart strength, hardness and 

a certain degree of porosity to the mortars (Eckel 1928, Davey 1961). The lime and 

aggregates should be in the right proportion so that the mortar with good workability, 

durability and strength roduced (Cowper 2000, Eckel 1928).  

Stone and brick m sonry mortars collected from the examined Ottoman baths 

presented various lime/aggregate ratios ranging between 1:4 and 2:3 by weight  

(Figures 4.8 and 4.9). These ratios were in similar ranges with lim /aggregate ratios of 

2 nce cal e stone maso .He.s. 

were determined by XRD and SEM analyses, lime/aggregate ratio of this mortar is 

smaller than their exact ratios. This is because both lime and calcareous aggregates were 

dissolved in dilute HCl solution while separating the aggregates from the lime binder. 

 

 is p

a

e

several historic lime mortars (Moropoulou et al. 1995, Papayianni 1997, Bakolas et al. 

1998, Moropoulou et al. 2000a, Moropoulou et al. 2000b, Tunçoku 2001, Moropoulou 

002a). Si careous aggregates in th nry mortar sample of Ur
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Sample Lime/aggregate 
ratio 

Se.s. 2:3 
Se.Dü.s. 2:3 
Se.Ul.s.    1:3,5 
Ur.He.s. 1:2 
Ur.Ka.s. 2:3  

 

Sample Lime/aggregate 
ratio 

Se.Dü.b.    1:2,5 
Se.Ul.b.    1:2,5 
Ur.He.b. 1:4 
Ur.Ka.b. 2:3  

  Figure 4.8 Lime-aggregate ratios of stone  
  masonry mortars. 

   Figure 4.9 Lime-aggregate ratios of brick  
   masonry mortars. 

 

one masonry mortars presented high lime percent ranging between 32 % and  

43 % except for the mortar of Se.Ul.s which had a lower binder percent of 22 %  

(Figure 4.8). However, brick masonry mortars except for the one of Ur.Ka.b. were 

composed of lower percent of lime in the range of 20 % and 28 % when compared with 

the stone masonry mortars (Figure 4.9). These values differed from lime percents of 

St
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mortars used in some Anatolian Seljuk buildings where brick masonry mortars 

contained higher ratios of lime binder than stone masonry mortars (Tunçoku 2001). 

 

4.4.2. Particle Size Distributions of Aggregates Used in Mortars 

Particle size distributions of aggregates are critical in the properties of the mortars. 

The aggregates should be composed of a wide range of particle sizes which are equally 

and evenly distributed so that spaces between larger grains are filled with smaller ones. 

O

 

b almost tributions with 0 and 

4.11). The aggregates with particle sizes greater than 1180 µm composed the largest 

fraction of the total aggregates. This largest fraction ranged between 44 % and 64 % in 

stone masonry mortars, and 38-67 % in brick masonry mortars. Fine aggregates whose 

particle sizes were less than 125 µm comprised the fraction ranging between 0.84 % and 

5 % within the total aggregates. Since calcareous aggregates used in the stone masonry 

mortar sample of Ur.He.s. were dissolved in dilute HCl solution, exact ratios of such 

aggregates could not be included in the particle size distributions of its aggregates.  

 

 

therwise, the mortar will be of low quality (Davey 1961, Holmes and Wingate 1997).  

Aggregates used in stone and brick masonry mortars of the five historic Ottoman

aths had similar particle size dis  each other (Figures 4.1
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Figure 4.10 Particle size distribution curves of the aggregates used in stone masonry mortars. 
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Figure 4.11 Particle size distribution curves of the aggregates used in brick masonry mortars. 
 

Stereo micro aled that agg  brick 

m ry mortars were mostly emi-round (Figures 4.12-4.16). However, they differed 

from each other in terms of colour. The ones used in the stone masonry mortars of Se.s., 

Se.Dü.s. and Ur.Ka.s. were mainly glassy, and had brown and grey colour. In the 

mortars of Se.Ul.s., Se.Ul.b. and Se.Dü.b., the aggregates were dull and greyish and 

white in colour. The mortars of Ur.He.s., Ur.He.b. and Ur.Ka.b. had aggregates being 

dull and white, grey and light brown in colour (Figures 4.12-4.16). These were more 

porous and lighter than the rest.  
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Figure 4.12 Stereo microscope images of the aggregates used in the mortar sample of Se.s., 
which were grouped according to the particle sizes of >1180 µm, 1180-500 µm, 500-250 µm 
and 250-125 µm by sieve analysis. 
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Figure 4.13 Stereo microscope images of the aggregates used in the mortar samples of 
Se.Dü.s. and Se
1180-500 µm, 500-

.Dü.b., which were grouped according to the particle sizes of >1180 µm, 
250 µm and 250-125 µm by sieve analysis. 

 60



Particle 
size 

Aggregates of Se.Ul.s. Aggregates of Se.Ul.b. 

>1
18

0µ
m

 

  
  

11
80

-5
00

 µ
m

 

  

50
0-

25
0 

µm
 

  

  

25
0-

12
5 

µm
 

 

 

 

 
 
Figure 4.14 samples of 
Se.Ul.s. and Se.Ul.b., which were grouped according to the particle sizes of >1180 µm, 1180-
500 µm, 500-250 µm and 250-125 µm by sieve analysis. 

 Stereo microscope images of the aggregates used in the mortar 
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Figure 4.15 Stereo microscope images of the aggregates used in the mortar samples of 
Ur.He.s. and Ur.He.b., which were grouped according to the particle sizes of >1180 µm, 
1180-500 µm, 500-250 µm and 250-125 µm by sieve analysis. 
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Figure 4.16 Stereo microscope images of the aggregates used in the mortar samples of 
Ur.Ka.s. and Ur.Ka.b., which were grouped according to the particle sizes of >1180 µm, 
1180-500 µm, 500-250 µm and 250-125 µm by sieve analysis. 

 63



All the aggregates from each particle size had similar properties in terms of colour 

within a single mortar sample (Figures 4.12-4.16). Furthermore, in terms of stone and 

brick masonry mortars used in each bath, aggregates used in the mortars of  

Ur.He.s.-Ur.He.b. and Se.Ul.s.-Se.Ul.b. had the same colour with each other  

(Figures 4.14 and 4.15). However, in each bath of Düzce and Kamanlı, aggregates used 

in the stone and brick masonry mortars have different colour properties (Figures 4.13 

and 4.16). When the aggregates used in each stone and brick masonry mortars of the 

baths were compared with each other, it was observed that the aggregates of the mortars 

of Se.s., Se.Dü.s. and Ur.Ka.s., the ones of the mortars of Se.Ul.s., Se.Ul.b. and 

Se.Dü.b., and the aggregates of the mortars of Ur.He.s., Ur.He.b. and Ur.Ka.b. had same 

colour properties with each other (Figures 4.12-4.16). Therefore, it could be deduced 

that the aggregates of the each three group may be of the same source. 

 

4.5. Pozzolanic Activity of Aggregates and Bricks 
 

Pozzolanic activities of aggregates influence physical, mechanical and 

microstructural properties of lime mortars. Aggregates with pozzolanic activity may 

contribute to a degree of pozzolanic reaction with lime, which might acquire hydraulic 

properties to the lime mortars and provide high strength properties to them (Lea 1940, 

Moropoulou et al. 2000b). Besides, bricks with pozzolanic activity can give rise to a 

degree of pozzolanic reaction with the lime mortar. Such reaction can produce hydraulic 

reaction products at the i e mortar, which improves 

their adhesion. 

Pozzolanic activity m m vealed the results that fine aggregates of all 

ce f 

r

an 1.2 mS/cm (Figure 4.17). This e accepted as the lowest limit 

of good pozzolanicity (Luxan et al. 1989). Although all fine aggregates had good 

pozz

nterface between the bricks and lim

easure ents re

mortars had good pozzolanicity. Differen in electrical conductivity measurements o

calcium hydroxide solutions before and afte  they were mixed with the fine aggregates 

was more th  was the valu

olanicity, the ones of the stone masonry mortar samples of Se.s., Se.Dü.s. and 

Ur.Ka.s. showed the lowest pozzolanicity values of 1.3 mS/cm (Figure 4.17). These 

pozzolanic activity values of the fine aggregates are relatively higher than those of the 

ones used in some Anatolian Seljuk buildings (Tunçoku 2001). 

 

 64



0

1

2

3

4

5

6

7

m
S/

cm
Pozzolanic activity 1,3 1,3 5,7 6,3 1,3 6,2 6,2 6,2 6,0

Se.s. Se.Dü.s. Se.Ul.s. Ur.He.s. Ur.Ka.s. Se.Dü.b. Se.Ul.b. Ur.He.b. Ur.Ka.b. 

 
Figure 4.17 Pozzolanic activity measurements of fine aggregates (less than 53 µm). 

 

Coarse aggregates except for the ones used in the mortars of Se.s., Se.Dü.s. and 

Ur.Ka.s. had good pozzolanicity with the values ranging between 1.3 mS/cm and 1.9 

activity values were lower than their 

fine aggregates, such aggregates could be accepted as good pozzolanas. However, the 

coarse aggregates of the three mortar samples of Se.s., Se.Dü.s. and Ur.Ka.s. had poor 

pozzolanicity due to their pozzolanicity values of 0.7 mS/cm and 0.8 mS/cm which 

were less than 1.2 mS/cm (Figure 4.18). These three mortar samples were the ones 

whose fine aggregates had the lowest pozzolanic activity values among the fine 

aggregates.  

 

mS/cm (Figure 4.18). Although their pozzolanic 
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Figure 4.18 Pozzolanic activity measurements of coarse aggregates. 

 

Pozzolanic activity measurements of bricks used in the construction of the domes 

revealed the results that they had poor pozzolanicity since their pozzolanicity values 

ranged between 0.5 mS/cm and 0.8 mS/cm (Figure 4.19). In spite of this, there could be 

pozzolanic reactions between the bricks and lime mortar. 

 65



0

1

2

3

4

5

6

7

m
S/

cm
Pozzolanic activity 0,5 0,5 0,4 0,8

Se.Dü.brick Se.Ul.brick. Ur.He.brick Ur.Ka.brick 

 
Figure 4.19 Pozzolanic activity measurements of bricks used in domes. 

 

4.6. Mineralogical and Chemical Compositions and Microstructural 
Properties of Lime Binders, Aggregates and Mortar Matrices 

 

ea 1940, Boynton 1966, Holmes and Wingate 1997). Microstructural properties of the 

lime such as its particle size influence plasticity and carbonation of the lime mortar 

(Navarro et al. 1998, Cazalla et al. 2000). Chemical compositions and microstructural 

properties of aggregates also influence the physical, mechanical and hydraulic 

properties of the lime mortars (Cowper 2000, Lea 1940, Holmes and Wingate 1997). 

Therefore, mineralogical and chemical compositions, and microstructural properties of 

the lime binders, aggregates and mortar matrices were included in this section.  

 

4.6.1. Mineralogical and Chemical Compositions and Microstructural 
Properties of Lime Binders 

Small, white, round and soft fragments called white lumps could be considered to 

present the binding materials used in the mortars (Bruni et al. 1997).  Mortar samples 

of Se.Dü.s., Ur.Ka.b., Ur.He.s., Ur.Ka.s. and Se.s. were the ones where the white lumps 

could be easily observed (Figure 4.20). However, rest of the mortars (Se.Dü.b., Se.Ul.s., 

Se.Ul.b. and Ur.He.b.) had white lumps being less in amount and with very small sizes 

(Figures 4.21 and 4.22). Therefore, required carbonated l uld be scrubbed 

from these four mortar samples in order to determine their alog ompositions. 

nalyzed 

Mineralogical and chemical compositions of lime binders and aggregates are 

important parameters that influence physical and mechanical properties of lime mortars 

(L

 

re

ime co  not 

miner ical c

Only chemical compositions of the white lumps within these mortars could be a

by SEM-EDS analysis.  
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Figure 4.20 Stereo microscope image of the 
white lump in the stone masonry mortar 
sample of Ur.He.s. 

 Figure 4.21 Stereo microscope image of the   
 white lump in the stone masonry mortar  
 sample of Se.Ul.s. 

 

Figure 4.22 Stereo microscope images of the white lumps in the mas ortar sample 
of Se.Ul.b. 

by 

RD and SEM-EDS analysis. XRD patterns of the white lumps indicated only calcite 

eaks. The white lump of the mortar of Ur.Ka.s. was determined by SEM-EDS analysis 

 be composed of calcium oxide (CaO) with an approximate proportion of 100 %. 

herefore, the lime used in this mortar could be considered to be almost pure lime 

igure 4.23). EDS analysis of the white lumps taken from the mortar samples of 

e.Dü.s., Se.s. and Ur.He.s. recorded high amounts of calcium oxide  ranging between 

3 % and 97 % (Figures 4.24, 4.25 and 4.26). These results showed that lime used in 

ese mortars could be regarded as high-calcium lime (Eckel 1928, Cowper 2000). On 

e other hand, EDS analysis of the white lumps taken from the mortar samples of 

e.Ul.s., Se.Ul.b., Se.Dü.b. and Ur.Ka.b., revealed the results that they contained high 

proportions of silicon dioxide (SiO2) ranging between 11 % and 28 % (Figures  

4.28-4.31). High proportions of silicon dioxide in these white lumps could be derived 

 brick onry m

 

Mineralogical and chemical compositions of white lumps were determined 

X

p

to

T

(F

S

9

th

th

S
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from siliceous limestone from which the lime was produced. Even though SEM-EDS 

analysis recorded silicon dioxide, their presence could not be detected in the XRD 

analyses. This might be due to the fact that silicon dioxide being present in these white 

lumps was not in a crystal structure but in an amorphous state. Therefore, any minerals 

including silica could not be detected in their XRD patterns. However, SEM images 

indicated the presence of calcium-silicate-hydrate (C-S-H) formations in the white 

lumps with high proportions of silicon dioxide (Figure 4.32). Therefore, such white 

lumps may be composed of lime having hydraulic character. Furthermore, mortars 

containing white lumps with high proportions of silicon dioxide had higher mechanical 

 than the ones containing white lumps composed of high-calcium lime (Tables 

4.1 and 4.2). This may be due to the hydraulic character of the lime binder with high 

proportions of silicon dioxide, which could acquire hydraulic character to these mortars 

(Eckel 1928, Cowper 2000). 
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3 XRD pattern, EDX spectrum  
 and elemental composition (%) of the white   

   lump composed of high-calcium lime   
   (Ur.Ka.s.). 

   Figure 4.24 XRD pattern, EDX spectrum  
   and elemental composition (%) of the white  
   lump composed of high-calcium lime  
   (Se.Dü.s.). 

 

Microstructural investigations carried out by SEM revealed that white lumps 

composed of high calcium lime consisted of micritic calcite crystals (Figures 4.25, 4.26 

and 4.27). However, white lumps composed of lime containing silica at high ratios 

consisted of calcite crystals having different crystal structures (Figures 4.29-4.32). 

 

 

   Figure 4.2
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e 4.25 XRD pattern, SE (secondary electron) images of micritic calcite crystals in the 
p, EDX spectrum and elemental composition (%) of the white lump composed of 

high-calcium lime (Se.s.). 
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Figure 4.26 XRD pattern, SE images of the white lump, SE image (20.000×) of micritic 
calcite crystals in the white lump, EDX spectrum and elemental composition (%) of the white 
lump composed of high-calcium lime (Ur.He.s.). 
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Si  1.3 
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Figure 4.27 BSE (back-scattered electron) image and elemental composition (%) of micritic 
calcite crystals in the white lump composed of high-calcium lime (Ur.He.b.). 

 70



 

 

 
 
 
Oxide  %
Al2O3 3.6 
SiO2 19.2 
CaO 77.2 
Total 100.0  

 Figure 4.28 EDX spectrum and elemental composition (%) of the white lump 

 

 

 composed of lime containing silica at high ratios (Se.Dü.b.). 
 

0 10 20 30 40 50 6

o2Theta

0

C: Calcite (86-2334)
C

C
C

C C C C

C
C

C
C

 

 
   (5000×) 

 

 
 
 
 
Oxide

 
 

 %
Al2O3 3.0 
SiO2 23.6 
CaO 73.4 
Total 100.0  

 Figure 4.29 XRD pattern, SE image and elemental composition (%) of micritic 
 calcite crystals in the white lump composed of lime containing silica at high ratios 
 (Ur.Ka.b.). 
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Figure 4.30 XRD pattern, SE image, EDX spectrum and elemental composition (%) of the 
white lump composed of lime containing silica at high ratios (Se.Ul.s.). 
 

 

 

 

 

MgO 4.1

 

 

 72



  
 
 
Oxide  %
A 3
S 11
CaO 85.1 
Total 100.0  

igure 4.31 SE images (2.000× and 5.000× respectively) of micritic calcite crystals in the 
white
containing silica at high ratios (Se.Ul.b.). 

l2O3 .7 
iO2 .2 

F
 lump, EDX spectrum and elemental composition (%) of the white lump composed of lime 
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Figure 4.32 SE images and EDX spectrum of calcium-silicate-hydrate (C-S-H) formations in the 
white lump composed of lime containing silica at high ratios (Se.Ul.b.). 
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4.6.2. Mineralogical and Chemical Compositions and Microstructural 
Properties of Aggregates 

 compositions, and microstructural 

properties of coarse aggregates and fine aggregates less than 53 µm used in stone and 

brick masonry mortars of the Ottoman baths were included in this section.  

 

4.6.2.1. Mineralogical and Chemical Composition and Microstructural 
Properties of Coarse Aggregates 

 

XRD patterns of coarse aggregates indicated that they were composed of quartz 

s 4.33-4.38), potassium feldspars (Figures 4.33-4.37 and 4.39) and albite as the 

primary minerals, and muscovite, hematite (Figures 4.34, 4.35, 4.37 and 4.40), illite and 

kaolinite as the secondary minerals. Although the coars  

of Se.s., Se.Dü.s. and Ur.Ka.s. had pozzolanic activ oa  indicating the 

presence of amorphous materials was not observed en 2 ° in their XRD 

patterns (Figures 4.34, 4.35 and 4.37). This may b in ittle amount of 

 

In this section, mineralogical and chemical

(Figure

e aggregates except for the ones

ity, br d band

betwe 0-30

e expla ed by l

amorphous materials contained in their compositions.  
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Figure 4.33 XRD patterns of the coarse aggregates used in the stone masonry mortar of 
Ur.He.s. and brick masonry mortar of Ur.He.b. 
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Figure 4.34 XRD patterns of the coarse aggregates used in the stone masonry mortar of 
Ur.Ka.s. and brick masonry mortar of Ur.Ka.b. 
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Figure 4.35 XRD patterns of the coarse aggregates used in the stone masonry mortar of 
Se.Dü.s. and brick masonry mortar of Se.Dü.b. 
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Figure 4.36 XRD patterns of the coarse aggregates used in the stone masonry mortar of 
Se.Ul.s. and brick masonry mortar of Se.Ul.b. 
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Figure 4.37 XRD pattern of the coarse aggregates used in the stone masonry mortar of Se.s. 
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Figure 4.38 BSE image (1500×) and EDX spectrum of the quartz crystals. 
 

 

  
Figure 4.39 BSE image (1000 ) and EDX spectrum of feldspar crystals. 
 

×

 
 

Figure 4.40 BSE image (
 

EDS analyses in

silicon dioxide (53.6-8

of iron oxide, sodium o

results of aggregates su
77

 
2000×) and EDX spectrum of iron-rich crystals. 

dicated that coarse aggregates contained high proportions of 

0.6 %) and aluminium oxide (9.7-19.1 %), and mostly low ratios 

xide and potassium oxide (Table 4.4). The chemical composition 

pported their mineralogical compositions determined by XRD. 



Table 4.4 Elemental compositions of coarse aggregates used in the mortars. 

Elemental Composition (%) Coarse 
aggregates Na2O MgO Al2O3 SiO2 K2O Fe2O3
Se.s.c-agg. 2.4 4.5 15.0 64.1 2.6 11.4 
Se.D 5 ü.s.c-agg. 2.7 5.3 19.1 53.6 2.8 16.
Se.Ul.s.c-agg. 2.0 7.2 2.6 17.7 66.5 4.0 
Ur.He.s.c-agg.  4.4 1.5 15.0 .5 68 5.2 5.3
Ur.Ka.s.c-agg.      1.5 2.0 9.7 78.7 1.9 6.2 
Se.Dü.b.c-agg.      2.1 2.7 15.9 69.0 3.2 7.1 
Se.Ul.b.c-agg.  0     2.1 2. 17.4 69.2 3.8 5.5
Ur.He.b.c-agg.      0 4.3 1.1 14.9 72.3 5.4 2.
Ur.Ka.b.c-agg.      1.7 1.9 9.7 80.7 1.7 4.3 

 

SEM analyses indi  that  mas mortar of Ur.He.s. contained two types 

gregate e first e cont  cal xide h a per nt of 44.5 

 oxide with a percent of 33 (Figure 4.41). The other one was rich in 

calcium oxide (57 %), silicon dioxide (24 %) and aluminium oxide (11 %)  

(Figure 4.42). SEM images indicated the presence of fossils in this aggregate  

(Figure 4.43). Both of these calcareous aggregates differed from lime used in this 

mortar with their microstructures (Figure 4.44). 

  

cated stone onry 

of calcareous ag s. Th  on ained cium o  wit ce

and magnesium
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Figure 4.41 SE images, EDX spectrum and elemental composition (%) of the calcareous 
aggregate used in the stone masonry mortar of Ur.He.s. 
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Figure 4.42 SE images, EDX spectrum and elemental composition (%) of the calcareous 
aggregate used in the stone masonry mortar of Ur.He.s. 
 

  
(2000×) 

 
(3500×) 

(2500×) 

 
(5000×) 

Figure 4.43 SE images of fossils in the calcareous aggregate used in the stone masonry mortar of 
Ur.He.s. 
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Figure 4.45 XRD patterns of the fine aggregates used in the stone masonry mortar of Ur.He.s. 
and brick masonry mortar of Ur.He.b. 
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Figure 4.46 XRD patterns of the fine aggregates used in the stone masonry mortar of Ur.Ka.s.  
and brick masonry mortar of Ur.Ka.b. 
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Figure 4.47 XRD patterns of the fine aggregates used in the stone masonry mortar of Se.Dü.s. 
and brick masonry mortar of Se.Dü.b. 
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Figure 4.48 XRD patterns of the fine aggregates used in the stone masonry mortar of Se.Ul.s. 
and brick masonry mortar of Se.Ul.b. 
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Figure 4.49 XRD pattern of the fine aggregates used in the stone masonry mortar of Se.s. 
 

SEM-EDS analysis indicated that fine aggregates with high pozzolanic activity 

contained high proportions of silicon dioxide ranging between 82.5-92.5 % and 

aluminium oxide ranging between 5.64-17.15 % (Table 4.5). The silicon dioxide and 

es of He.s., He.b. and Ka.b. were higher than 

ates of Ul.s., Ul.b. a silicon dioxide and 

aluminium oxide, the fine aggregates contained sodium oxide, potassium oxide and 

m gnesium oxide in less proportion (Table 4.5). Only the fine aggregates (Se.s., 

Se.Dü.s. and Ur.Ka.s.) having the lowest pozzolanic activity contained iron oxide 

ranging between 11.49 % and 16.32 % (Table 4.5). Amount of silicon dioxide and 

aluminium oxide in these fine aggregates is also lower than the one of the pozzolanic 

aggregtaes. Low pozzolanic activity of these fine aggregates may be explained by the 

presence of high amounts of iron oxide and less amount of silicon dioxide and 

aluminium oxide.  
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a

Table 4.5 Elemental compositi

Eleme

fine aggregates used in the mortars. 

al Composition (%) Fine aggregates 
(less than 53µm) Na2O MgO Al  Fe2O3O3 SiO2 K2O2
Se.s.f-agg. 2.3 4.0 15.8 60.3 2.0 15.6 
Se.Dü.s.f-agg. 2.4 3.7 17.2 58.4 2.0 16.3 
Se.Ul.s.f-agg. 1.0 * 10.0 87.1 1.9 * 
Ur.He.s.f-agg. 1.3 1.0 6.7 89.6 1.4 * 
Ur.Ka.s.f-agg. 1.4 2.4 13.8 69.1 1.8 11.5 
Se.Dü.b.f-agg. 0.7 * 8.7 89.2 1.4 * 
Se.Ul.b.f-agg.  0.8 1.3 12.9 82.5 2.4 * 
Ur.He.b.f-agg. 1.1 * 5.6 92.5 0.8 * 
Ur.Ka.b.f-agg. 1.0 * 8.0 90.0 1.0 * 
*: not detected 
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Figure 4.50 shows SEM images of microstructures of fine aggregates. Porous and 

non porous fine aggregates were observed in the SEM images (Figure 4.50-A, B, C). 

Porous aggregates have small size of pores ranging between 1 and 4 micron (Figure 

4.50-D). The crystals were composed of blade edges (Figure 4.50-E, F).  This provided 

large specific surface area (Figure 4.50-G, H) so that the fine aggregates were tightly 

adhered to the lime and high amounts of pozzolanic reaction products were produced.  

All the coarse aggregates belonging to each stone and brick mortar sample had 

almost similar mineralogical and chemical compositions, and colour properties with 

r  

ials than their coarse es. 

Am inium o fine aggregates is also higher 

than the one of their coarse aggregates. This indicates why these fine aggregates had 

higher pozzolanic activity than their coarse aggregates. Considering these results, the 

pozzolanic fine aggregates could be present in the same source with the coarse 

aggregates. This is different from pozzolanic fine aggregate usage in mortars of some 

Seljuk buildings since these fine aggregates obtained from a different source were added 

in the coarse aggregates (Tunçoku 2001). 

Having regard to mineralogical and chemical compositions, and colour properties 

of aggregates, three different aggregate types were identified in the mortars. The first 

aggregate type is primarily composed of quartz, albite, muscovite and potassium 

i s 

s

Se.Ul.b and Se.Dü.b. The second aggregate t primarily of quartz, albite and 

potassium feldspar minerals, has high proportions of silicon dioxide and aluminium 

oxide and is white, grey and light brown in colour. Such aggregates were used in the 

mortars of Ur.He.s., Ur.He.b. and Ur.Ka.b. The third aggregate type composed of 

primarily quartz, albite, hematite and potassium feldspar minerals has high amounts of 

iron oxide and is brown and grey in colour. The aggregates of this type were used in the 

stone masonry mortars of Se.s., Se.Dü.s. and Ur.Ka.s. These results indicate that while 

source of the first aggregate type can be in Seferihisar region, source of the second 

aggregate type is probably in Urla region. The third aggregate type can be from a source 

near to these two towns. Moreover, the first and second aggregate types are the ones 

 

their fine aggregates. In spite of these simila ities, most of the fine aggregates are richer

in amorphous mater  aggregates observed in XRD analys

ount of silicon dioxide and alum xide in the 

feldspar minerals, has high proportions of s licon dioxide and aluminium oxide and i

 type were used in the mortars of Se.Ul.s, grey and white in colour. Aggregates of thi

ype consists 

whose coarse and fine aggregates have good pozzolanicity. 
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4.6.3. Mineralogical and Chemical Compositions and Microstructural 
Properties of Mortar Matrices  

 

Mineralogical compositions of the mortar matrices composed of lime and fine 

aggregates were determined by XRD analysis in order to observe possible hydraulic 

reaction products occurred among pozzolanic fine aggregates and lime. Calcite and 

quartz as the primary minerals, and muscovite and albite as the secondary minerals were 

observed in their XRD patterns (Figures 4.51-4.55). Calcite originated from the 

carbonated lime, and other minerals of quartz, muscovite and albite from the fine 

aggregates. The hydraulic reaction products between lime and pozzolanic aggregates 

were not observed in the XRD patterns. This may be due to overlapping of principal 

peaks of calcite and the hydraulic reaction products. 
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Figure 4.51 XRD patterns of the mortar matrices of the stone masonry mortar of Ur.He.s. and 
brick masonry mortar of Ur.He.b. 

 

 86



0 10 20 30 40 50 6

o2T

0

heta

Ur.Ka.s.C: Calcite (86-2334)
Q: Quartz (85-0796)

C

C
Q C

C C
C

C C

Q Q

 

C
C

C  Q C

0 10 20 30 40 50 60

o2Theta

Ur.Ka.b.C: Calcite (86-1762)
Q: Quartz (79-1906)

C

C
CC

C

Figur

C

C C
 C C

CQ QQ

C

 
e 4.52 XRD patterns of the mortar matrices of the stone masonry mortar of Ur.Ka.s. and 

brick masonry mortar of Ur.Ka.b. 
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Figure 4.53 XRD patterns of the mortar matrices of the stone masonry mortar of Se.Dü.s. and 
brick masonry mortar of Se.Dü. . b
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Figure 4.54 XRD patterns of the mortar matrices of the stone masonry mortar of Se.Ul.s. and 
brick masonry mortar of Se.Ul.b. 
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Figure 4.55 XRD pattern of the mortar matrices of the stone masonry mortar of Se.s. 

 

Aggregates of stone and brick masonry mortars except for the ones of Se.s., Ka.s. 

and Dü.s. were firmly embedded in mortar matrices (Figures 4.56-4.71). This may be 

due to well mixing process of aggregates with lime and pozzolanic properties of 

Q

aggregates. This consequently provided good adhesion of the aggregates with lime.  
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     Figure 4.56 Stereo microscope image  
     showing good adhesion of the aggregates  
     with lime (Se.Ul.b.). 

     Figure 4.57 Stereo microscope image  
     showing good adhesion of the aggregates  
     with lime (Se.Ul.s.). 

  

 

     Figure 4.58 Stereo microscope image  
     showing good adhesion of the aggregates  
     with lime (Se.Dü.b.). 

     Figure 4.59 Stereo microscope image  
     showing poor adhesion of the aggregates  
     with lime (Se.Dü.s.). 

 

 

     Figure 4.60 Stereo microscope image  
     showing good adhesion of the aggregates  
     with lime (Ur.He.b.). 

     Figure 4.61 Stereo microscope image  
     showing good adhesion of the aggregates  
     with lime (Ur.He.s.). 
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     Figure 4.62 Stereo microscope image  
     showing good adhesion of the aggregates  
     with lime (Ur.Ka.b.). 

     Figure 4.63 Stereo microscope image  
     showing poor adhesion of the aggregates  
     with lime (Ur.Ka.s.). 
 

 

 
     Figure 4.64 Stereo microscope image showing  
     poor adhesionof the aggregates with lime (Se.s.). 

 
 
 

  
Figure 4.65 BSE image (120×) showing good 
adhesion of the aggregates with the mortar 

Figure 4.66 BSE image (120×) showing good 

matrix (Ur.He.b). 
adhesion of the aggregates with the mortar 
matrix (Ur.He.s). 
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A 

M 

A 

M
 Figure 4.67 BSE image (80×) showing good   
 adhesion of an aggregate (A) with the mortar   
 matrix (M) (Se.Ul.s.). 

 Figure 4.68 Detailed BSE image (500×) of  
 the left-handed image, showing how well the   
 aggregate (A) was adhered to the mortar   
 matrix (M). 

 

 

 

M A

M 

 Figure 4.69 BSE image (80×) showing good   
dhesion of an aggregate (A) with the mortar   

 Figure 4.70 Detailed BSE image (500×) of  
 the left-handed image, showing how well the   
 aggregate (A) was adhered to the mortar   
 matrix (M). 
 
 

 a
 matrix (M) (Se.Ul.b.). 

 
   Figure 4.71 BSE image (650×) showing poor adhesion  
   of the aggregates with the mortar matrix (Se.Dü.s.). 
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Microstructural characteristics and chem mpositions of interfaces observed 

in lime mortars having good-adhered aggregates (1180–53 micron) with lime were 

determined by SEM-EDS analyses (Figure 4.72 and 4.73). SEM analyses indicated that 

these interfaces were thin irregular boundaries (up to 50 micron) being free from pores 

and cracks (Figure 4.73). SEM-EDS analyses recorded calcium (Ca), silica (Si) and 

alumina (Al) elements in these interfaces (Figure 4.74). From the aggregates towards 

the mortar matrix, calcium content increased while silica and alumina contents 

decreased (Figure 4.74). In the mortar matrices with fine aggregates, calcium reached its 

highest content. Higher silica and alumina contents at the interfaces than the mortar 

matrices could be due to pozzolanic reactions occurred among the lime and pozzolanic 

aggregates. This most probably imparted high strength pro ties to th ortars (Lea 

1940, Moropoulou et al. 2000b, Moropoulou et al. 2002a).

 

ical co

per ese m

  

  
120×) ( (800×) 

Figure 4.72 BSE image showing good 
adhesio
m

Figure 4.73 BSE image of the interface (I) 

 

n between the aggregate (A) and  
ortar matrix (M) (Se.Dü.b.). 

between the aggregate (A) and mortar matrix (M) 
(Se.Dü.b.). 
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Al     8.5
Si   25.6
K     3.2
Ca     8.1
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    2.9 

(I) and lim

Al     3.8 
Si   14.5 
Cl     0.9 
Ca   25.1 
Total 100.0  

Figure 4.74 BSE images (350×) and elemental composition (%) of the aggregate (A), interface 
e matrix (M) of the stone masonry mortar of Ur.He.s. 

 

Microstructural properties of mortar matrices with fine aggregates (less than 53 

micron) were determined by SEM analysis. The mortar matrices showed homogeneous 

microstructure with their fine pores whose sizes ranged between 2 µm and 10 µm 

(Figure 4.75). It was determined by phase analysis of SEM images that the fine pores 

commonly formed 31-43 % of the whole matrices (Figures 4.76, 4.77 and 4.78). These 

homogenous microstructures of the mortar matrices indicated a well mixing process of 

the lime with the pozzolanic fine aggregates.  

 

 
Figure 4.75 BSE image (6500×) of the pore sizes of the mortar matrix of the brick masonry 
mortar of Ur.He.b. 
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Figure 4.77 BSE image (1500×) and elemental composition (%) of the mortar matrix 
of the brick masonry mortar of Ur.H

      

 
 
 
 
 

 
 

Oxide

  

  %
Al2O3 9.3  
SiO2 40.1  
CaO 44.9  
MgO 5.7  
Total 100.0  

Figure 4.78 BSE image (1500×) and elemental composition (%) of the mortar matrix 
of the stone masonry mortar of Ur.He.s. 
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SEM-EDS analysis indicated that mortar matrices had calcium oxide contents 

ranging between 34 % and 56 %, silicon dioxide contents between 31 % and 58 %, and 

aluminium oxide contents between 5 % and 10 % (Figures 4.76-4.80). Silica in the 

mortar matrices containing high-calcium lime could be derived from pozzolanic fine 

aggregates (less than 53µm) containing silica. However, high silica in the other mortar 

matrices could be attributed to the presence of silica in their lime binders and also 

pozzolanic fine aggregates (less than 53µm) containing silica.  

 

 
 

 

 
Oxide   %
Al2O3 7.3  
SiO2 58.4
CaO 34.3
Total 100.0 

Figure 4.79 BSE image, EDX spectrum and elemental composition (%) of the mortar matrix of 
the stone masonry mortar of Se.Ul.s. 

 

 

  

 
Oxide   %
Al2O3 6.3  
SiO2 52.5
CaO 41.2
Total 100.0 

Figure 4.80 BSE image, EDX spectrum and elemental composition (%) of the mortar matrix of 
the brick masonry mortar of Se.Ul.b. 

 

SEM analysis recorded images of gel formations in mortar matrices of all brick 

masonry mortars and some stone masonry mortars (Se.Ul.s. and Ur.He.s.) (Figure 4.81). 

This may indicate the presence of hydraulic reaction products (C-S-H, C-A-H, etc.) 
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occurred among lime and pozzolanic aggregates. However, XRD analysis could not 

detect any peaks of the hydraulic reaction products in the mortar matrices. This was 

most probably due to the fact that main peaks of hydraulic reaction products were 

overlapped with main peaks of calcite (Lewin 1981). Therefore, only calcite peaks 

could be recorded in the XRD patterns of these mortar matrices.  

 

(20.000×) (20.000×) 

(50.000×) (50.000×) 

  
(50.000×) (65.000×) 

Figure 4.81 SE images of possible hydraulic reaction products within the mortar matri
lime containing silica at high ratios mortars. 

ces of 
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SEM images indicated that there were very fine cracks (1-5 micron) in mortar 

atrices with fine aggregates (less than 53µm) (Figure 4.82). This could be derived 

om the property of lime mortars being capable of producing many fine cracks which 

lerate stresses and strains occurred in masonry (Davison 1976). Within these fine 

racks and pores, fine calcite crystals were observed in SEM images (Figure 4.83). 

hese fine calcite crystals were thought to precipitate either by a successive dissolution 

f carbonated lime or by carbonation of free lime by humid atmosphere of the bath and 

in water permeating the masonry (Davison 1976, Holmes and Wingate 1997). This 

 

m

fr

to

c

T

o

ra

could indicate self-healing ability of the lime mortars, which contributes to survival of 

the masonry throughout years. 

 
(500×) 

 
(200×) 

Figure 4.82 BSE images showing micro cracks in the mortar matrices. 
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(2500×) 
 
 
 

 
Element  %
C 20.2 
O 50.1 
Na 2.1 
Al 2.7 
Si 7.0 
Ca 17.9 
Total 100.0  

Figure 4.83 BSE images, EDX spectrum and elemental composition (%) of the calcite crystals 
precipitated within the pore. 
 

4.7. Hydraulicity of Mortars by TGA  
 

Thermogravimetric analyses (TGA) were carried out in order to evaluate hydraulic 

character of mortars. Percentages of weight losses at temperatures between 200ºC and 

600ºC, and temperatures over 600ºC were determined. Weight loss at the temperatures 

between 200ºC and 600ºC was mainly due to loss of structurally bound water (H2O) of 

hydraulic reaction products (C-S-H, C-A-H, etc.) (Bakolas et al. 1998, Moropoulou et 

al. 2000b). Weight loss at the temperatures over 600ºC was mainly attributed to the 

2) during the decomposition of calcium carbonates  

(Bakolas et al. 1998, Moropoulou et al. 2000b).  

at high ratios mortars, CO2 content was less than 30 % and H2O 

release of carbon dioxide gas (CO

Thermal analysis results of several lime mortars from different periods revealed 

the results that non-lime containing silica at high ratios mortars commonly contained 

CO2 over 30 % and structurally bound water (H2O) lower than 3 %. However, in lime 

containing silica 
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conte

lts indicated that all brick masonry and some stone 

ma onry mortars (Ur.He.s. and Se.Ul.s.) could be regarded as lime containing silica at 

high ratios mortars. The hydraulic character of these mortars could be mainly attributed 

to hydraulic reactions took place among pozzolanic coarse and fine aggregates and lime 

in the presence of water. Even though stone masonry mortar of Se.Dü.s. contained high 

calcium lime and aggregates with poor pozzolanicity, it had hydraulic character due to 

its 2/H2O ratio being less than 10 (Table 4.6). Its hydraulic character could be due to 

organic matter that may be present in this mortar.  

Table 4.6 Structurally bound water (H2O percents, carbon dioxide (CO2) percents  
and CO2/H2O ratios of stone masonry mortars. 

Sample H2O 
(%) 

CO2
(%) 

CO

nt more than 3 % (Maravelaki-Kalaitzaki et al. 2002, Moropoulou et al. 2002a, 

Moropoulou et al. 2000b). Having regard to these results, hydraulicity of lime mortars 

was commonly evaluated by the ratio of CO2/H2O. This ratio varied between 1 and 10 

for lime containing silica at high ratios mortars and between 10 and 35 for non-lime 

containing silica at high ratios mortars (Moropoulou et al. 2003, Maravelaki-Kalaitzaki 

et al. 2002a, Moropoulou et al. 2000b). The hydraulicity of the lime mortars 

corresponds to low ratio of CO2/H2O. Therefore, it could be deduced that there is an 

inverse relationship between the hydraulicity (CO2/H2O) and CO2 %.  

Stone masonry mortars of Se.s. and Ur.Ka.s. contained structurally bound water of 

1.5 % and 3 % and carbon dioxide 30 % and 33 % respectively (Table 4.6, Figures 4.85 

and 4.86). Their CO2/H2O ratios were over 10 (Table 4.6). Therefore, these two stone 

masonry mortars could be regarded as non-lime containing silica at high ratios mortars. 

However, rest of the stone masonry mortars and all brick masonry mortars had higher 

percents of structurally bound water ranging between 3-5 %, lower percents carbon 

dioxide ranging between 11-23 % and CO2/H2O ratios being less than 10 (Table 4.7, 

Figures 4.84-4.87). These resu

s

 CO

 

) 

2/ H2O 
 

Se.s. 1.55 29.67 19.14 
Se.Dü.s. 2.01 17.36  8.63 
Se.Ul.s. 2.03 12.27  6.04 
Ur.He.s. 2.11 12.76  6.05 
Ur.Ka.s. 3.15 32.56 10.34 

 

 

 

 99



 

 

 

 

2  
(%) 

CO2
(%) 

CO2/ H2O 
 

Table 4.7 Structurally bound water (H2O) percents, carbon dioxide (CO2) percents  
and CO2/H2O ratios of brick masonry mortars. 

Sample H O 

Se.Dü.b. 4.94 20.08 4.07 
Se.Ul.b. 4.37 11.09 2.54 
Ur.He.b. 4.88 19.83 4.06 
Ur.Ka.b. 2.86 23.47 8.21 
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Figure 4.85 TGA-drTGA graph of the stone masonry mortar of Ur.Ka.s. and 
brick masonry mortar of Ur.Ka.b. 
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Figure 4.86 TGA-drTGA graph of the stone masonry mortar of Se.Ul.s. and 

rick masonry mortar of Se.Ul.b. b
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The inverse relationship between hydraulicity (CO2/H2O) and CO2 % is generally 

axis ). Mortars 

(Mo

cc e.s. and 

er erefore, such mortars were 

mas

raph due to their high percents of CO2 but low percents of H2O (Figure 4.88). Thus, 

 

Figure 4.87 TGA-drTGA graph of the stone masonry mortar of Se.s. and 
k masonry mortar of Se.Dü.b. 

expressed by a graph in which the ratio of CO2/H2O was recorded on the ordinate (y) 

 and the corresponding CO2 % on the abscissa (x) axis (Figure 4.88

having hydraulic character are concentrated at the bottom left part of this graph 

ropoulou et al. 2003, Maravelaki-Kalaitzaki et al. 2002, Moropoulou et al. 2000b). 

ording to this, all brick masonry and some stone masonry mortars (Ur.HA

Se.Ul.s.) were concentrated at the bottom left part of the graph since they showed low 

cents of COp 2 but high percents of H2O (Figure 4.88). Th

included within the area of lime containing silica at high ratios mortars. However, stone 

onry mortars of Se.s. and Ur.Ka.s. were concentrated at the upper right part of the 

g

they were defined as non-lime containing silica at high ratios mortars. 

 102



25

0

5

0 5

10

15

C
O

2 /
 H

2O

20

10 15 20 25 30 35

CO2 (%)

Se.s.

Se.Ul.s.

Ur.Ka.b.

Ur.He.s.

ig nry 
ortars. 

4.8
tr and Hydraulicity of Mortars 

stre 40). Pozzolanic reaction, which takes place 

hyd ium-silicate-hydrates (C-S-H) and  

pro

or 0b). Within this context, pozzolanicity of aggregates used in the 

me m

sed os mortars and their compressive and tensile 

or

 

 

Se.Dü.b.Ur.He.b.
Se.Ul.b.

Se.Dü.s.
Ur.Ka.s.

Non-hydraulic 
lime mortars 

Hhydraulic  
lime mortars

 
ure 4.88 Inverse hydraulicity (COF 2/H2O) versus CO2 % of stone and brick maso
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. Relation between Pozzolanicity of Aggregates, Mechanical 
ength Properties S

 

Pozzolanic aggregates used in lime mortars are known to improve their mechanical 

ngth and hydraulic properties (Lea 19

among the pozzolanic aggregates and lime in the presence of water, can produce 

raulic reaction products such as calc

calcium-silicate-hydrates (C-A-H). Such products are the ones that acquire hydraulic 

perties to the lime mortars and provide high strength properties to them (Lea 1940, 

opoulou et al. 200M

lime mortars of the Ottoman baths, mechanical strength and hydraulic properties of the 

ortars were evaluated in this section. li

As seen in Figures 4.89, 4.90, 4.91 and 4.92, pozzolanic activities of aggregates 

 in lime containing silica at high ratiu

strength values were higher than those of non-lime containing silica at high ratios 

tars. This could indicate that pozzolanic aggregates imparted hydraulic character to m

the lime mortars and the hydraulic character improved their mechanical strengths. 
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ls and domes 

tech

er

or gures 4.91 and 4.92). Such difference in stone and brick masonry mortars 

the 

ompressive stresses along its meridian lines and circumferential tensile forces in the 

Figure 4.92 Tensile strength values versus hydraulicity (CO2/H2O) of stone and brick masonry 
mortars. 

Hydraulic and mechanical properties of lime mortars used in the wal

of the five Ottoman baths were compared with each other to find if their production 

nologies changed depending on the properties of the structural elements where they 

e used. It was found that all brick masonry mortars having hydraulic properties w

presented higher compressive and tensile strength values than the stone masonry 

tars (Fim

could be attributed to the difference in structural behaviour of the structural elements of 

wall and dome. The wall works in compression. However, in the dome both 

c

Hhydraulic  
lime mortars 

Non-hydraulic  
lime mortar 

Hhydraulic  
lime mortars Non-hydraulic  

lime mortars 
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lower parts of the hemisphere are formed (Ünay 2001, Fielden 2001). Therefore, the 

e should be able to resist both of these stresses in order to provide its structuraldom  

pro

ortars of high mechanical strength properties could be used deliberately in the 

 

When mortar is spread over the masonry units, it starts to lose water through the 

join

(Davison 1976).  

Ott

nal t lime mortar and bricks were tightly adhered to each other 

.5-3 mm thickness was detected. SEM-EDS analysis indicated that this part contained 

way ed in the water of the mortar penetrated into the bricks through 

that

e formed due to chemical reactions among the brick constituents and calcium 

 e mortar to the brick  

adh the structural resistance of the 

omes of the examined baths.  

 

 

resistance. This considerably depends on the geometry of the dome and strength 

perties of materials used (Ünay 2001). Therefore, lime containing silica at high ratios 

m

construction of the domes of the Ottoman baths. 

4.9. Mortar-Brick Interface 
 

absorption of the masonry units and by evaporation to the air from the surface of the 

ts. The former improves adhesion bonds between the masonry units and the mortar 

Within this context, interface between lime mortar and bricks used in domes of the 

oman baths were examined by both stereo microscopic observations and SEM 

ysis. It was found thaa

(Figure 4.93). Furthermore, along the bricks nearer to the mortar side, a dark band in 

1

calcium oxide at an average ratio of 8.3 % (Figure 4.93). This could be explained in a 

 that lime dissolv

their pores and the subsequent carbonation of calcium hydroxide created a physical 

adhesion between the mortar and the bricks (Armelao et al. 2000). It was also assumed 

 at the interface and in the pores of the brick, a thin layer of calcium silicates could 

b

hydroxide (Armelao et al. 2000). The final products of calcium silicates were assumed 

contribute to the strong adhesion of the limto

(Armelao et al. 2000). Consequently, this could be considered to contribute to the good 

esion of the bricks with the lime mortar and so to 

d
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Chapter 5 
 

CONCLUSIONS 

 

aths in Seferihisar-Urla region near İzmir have been carried out to understand the 

to be used in their restoration. 

mo

hig

hi ydraulic lime mortars used in the walls. Such difference can be 

 a common source were used in the mortars and their particle size 

from

ith each other. However, the fine aggregates have higher proportions of amorphous 

2 3

eir coarse aggregates. Therefore, the fine aggregates have higher pozzolanic activity 

all 

ompressive and tensile strength values. In non-hydraulic lime mortars used in the 

 poor pozzolanicity, 

a m

e 

r 

te ic ones used in 

 

Characterization of lime mortars used in the walls and domes of some Ottoman 

b

mortar characteristics which will be necessary for the production of intervention mortars 

Mortars used in the walls and domes of the examined Ottoman baths are lime 

rtars whose lime/aggregate ratios range between 1:4 and 2:3.  

All brick masonry mortars used in the domes are hydraulic lime mortars having 

her mechanical strength properties than those of the stone masonry mortars most of 

ch are non-hw

explained with the structural behaviour of the dome derived from its geometry. 

Aggregates from

distributions are almost the same. Fine and coarse aggregates in each mortar were used 

 the same source since their mineralogical and chemical compositions are similar 

w

materials and are richer in silicon dioxide (SiO2) and aluminium oxide (Al O ) than 

th

than their coarse aggregates in all mortars.  

Due to the use of pozzolanic aggregates and lime containing silica at high ratios, 

brick masonry mortars are hydraulic lime mortars. Therefore, they have high 

c

walls, high-calcium lime and aggregates having poor pozzolanicity were used. 

Even though bricks used in the construction of the domes have

they are so tightly adhered to the lime mortar that they have formed a superstructure like 

onolithic mass. This could be considered to contribute to the structural stability of 

domes. th

Determination of characteristics of lime mortars provides preliminary information 

the production of intervention mortars to be used in restoration of the examined fo

Ottoman baths. Therefore, further studies should be carried out to produce the 

rvention mortars. Source of the aggregates especially the pozzolanin
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the original lime mortars should be investigated in the region where the studied baths 

located. In case it is not found, possible aggregate sources should be investigare ated in 

logical and chemical compositions of the 

u used as the binding 

ate 

in order to 

etermine the compatible ones with those of the original mortars in terms of physical 

It should be particularly important to consider that cement should never be used as 

e binding material or even as additive in the intervention mortars since it contains 

luble salts, has high thermal expansion and makes the mortar less porous and more 

orig

articular importance in the conservation of historic buildings for the production of 

mo lay a significant role in structural behaviour of the historic 

 

 
 

 

the same region and compatibility of minera

nd aggregates should be examined. Properties of lime to be fo

material in the mortars should be determined. New mortars in various lime/aggreg

ratios should be produced. Then, the produced mortars should be tested 

d

and mechanical properties.  

th

so

rigid than the original lime mortars. Therefore, its use can lead to deterioration of 

inal building materials. 

This study has shown that determination of lime mortar characteristics is of 

p

intervention mortars compatible with the original lime mortars. In addition, the lime 

rtar characteristics can p

structures. 
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APPENDIX B 
 

BASIC PHYSICAL PROPERTIES OF MORTARS 
 
 

Table B.1 Density and porosity values of stone masonry mortars. 

Sample Dry  
weight 

Saturated 
weight 

Archimedes 
weight 

Density Porosity 

  (g) (g) (g)  (g/cm3)  (%) 
Se.s.1 40.54 52.02 24.80 1.49 42.17 
Se.s.2 43.01 54.61 26.21 1.51 40.85 
Se.s.3 52.63 65.85 32.01 1.56 39.07 
Se.s.       1.52 40.70 
Se.Dü.s.1 20.86 26.80 12.72 1.48 42.19 
Se.Dü.s.2 28.71 36.59 17.71 1.52 41.74 
Se.Dü.s.3  31.05 39.51 19.18 1.53 41.61 
Se.Dü.s.    1.51 41.85 
Se.Ul.s.1  27.02 30.66 16.25 1.88 25.26 
Se.Ul.s.2  21.99 25.27 13.22 1.82 27.22 
Se.Ul.s.3 24.88 28.7 15.05 1.82 27.99 
Se.Ul.s.       1.84 26.82 
Ur.He.s.1 30.94 39.31 18.32 1.47 39.88 
Ur.He.s.2 40.35 48.14 22.30 1.56 30.15 
Ur.He.s.3 41.50 53.07 24.70 1.46 40.78 
Ur.He.s.    1.50 36.94 
Ur.Ka.s.1 77.85 92.89 46.53 1.68 32.44 
Ur.Ka.s.2 75.43 91.02 45.67 1.66 34.38 
Ur.Ka.s.3 51.62 61.05 31.18 1.73 31.57 
Ur.Ka.s.       1.69 32.80 
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Table B.2 Density and porosity values of brick masonry mortars. 

Sample Dry  
weight 

Saturated 
weight 

Archimedes 
weight 

Density Porosity 

  (g) (g) (g)  (g/cm3)  (%) 
Se.Dü.b.1 40.31 48.15 22.69 1.58 30.79 
Se.Dü.b.2 32.87 42.27 19.8 1.46 41.83 
Se.Dü.b.3 43.26 56.54 25.78 1.41 43.17 
Se.Dü.b.    1.48 38.60 
Se.Ul.b.1 66.03 79.38 39.8 1.67 33.73 
Se.Ul.b.2 49.10 58.53 29.59 1.70 32.58 
Se.Ul.b.3 27.15 31.54 16.53 1.81 29.25 
Se.Ul.b.    1.72 31.85 
Ur.He.b.1 39.27 48.02 23.21 1.58 35.27 
Ur.He.b.2 40.27 48.54 23.64 1.62 33.21 
Ur.He.b.3 27.08 33.38 16.23 1.58 36.73 
Ur.He.b.    1.59 35.07 
Ur.Ka.b.1 61.17 81.15 36.53 1.37 44.78 
Ur.Ka.b.2 67.80 88.4 40.31 1.41 42.84 
Ur.Ka.b.3 35.39 46.08 21.08 1.42 42.76 
Ur.Ka.b.       1.40 43.46 

 
 
 
 

Table B.3 Density and porosity values of bricks used in domes. 

Sample  
Dry 

weight 
Saturated 

weight 
Archimedes 

weight 
Density 

  
Porosity 

  
  (g) (g) (g)  (g/cm3)  (%) 

Se.Dü.brick.1 19.96 23.16 11.94 1.78 28.52 
Se.Dü.brick.2 12.33 14.77  7.68 1.74 34.41 
Se.Dü.brick    1.76 31.47 
Se.Ul.brick.1 54.53 68.12 33.62 1.58 39.39 
Se.Ul.brick.2 65.67 77.80 40.52 1.76 32.54 
Se.Ul.brick    1.67 35.96 
Ur.He.brick.1 113.63 132.46 69.09 1.79 29.71 
Ur.He.brick.2 114.43 134.50 69.46 1.76 30.86 
Ur.He.brick.    1.78 30.29 
Ur.Ka.brick.1 74.72 86.43 45.48 1.82 28.60 
Ur.Ka.brick.2 94.63 110.79 57.48 1.78 30.31 
Ur.Ka.brick.    1.80 29.45 
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APPENDIX C 
 

BASIC MECHANICAL PROPERTIES OF MORTARS 
 
 

Table C.1 Uniaxial compressive strength values of stone masonry mortars. 

Sample Length 
(mm) 

Width 
(mm) 

A 
(mm2) 

P 
(kN) 

Compressive strength 
(MPa) 

Ur.He.s.1 37.54 21.56 809.36 8.20 10.13 
Ur.He.s.2 22.44 32.86 737.38 6.00 8.14 
Ur.He.s.3 33.9 25.29 857.33 8.70 10.15 
Ur.He.s.4 23.35 17.94 418.90 4.90 11.70 
Ur.He.s.5 21.89 24.18 529.30 4.50 8.50 
Ur.He.s.     9.72 
Ur.Ka.s.1 36.94 35.24 1301.77 4.82 3.70 
Ur.Ka.s.2 23.7 22.55 534.44 2.50 4.68 
Ur.Ka.s.3 25.48 23.44 597.25 2.50 4.19 
Ur.Ka.s.     4.19 
Se.Dü.s.1 28.16 26.56 747.93 4.95 6.62 
Se.Dü.s.2 26.78 27.72 742.34 2.53 3.41 
Se.Dü.s.3 21.53 21.86 470.65 2.70 5.74 
Se.Dü.s.     5.25 
Se.Ul.s.1 19.85 20.08 398.59 2.76 6.92 
Se.Ul.s.2 16.91 15.76 266.50 7.45 27.95 
Se.Ul.s.     17.44 

 
 

Table C.2 Uniaxial compressive strength values of brick masonry mortars. 

Sample Length 
(mm) 

Width 
(mm) 

A 
(mm2) 

P 
(kN) 

Compressive strength 
(MPa) 

Ur.He.b.1 20.59 19.66 404.80 5.23 12.92 
Ur.He.b.2 23.53 24.56 577.90 6.22 10.76 
Ur.He.b.3 32.98 31.77 1047.77 8.13 7.76 
Ur.He.b.     10.48 
Ur.Ka.b.1 22.04 22.57 497.44 4.70 9.45 
Ur.Ka.b.2 25.59 26.67 682.49 5.50 8.06 
Ur.Ka.b.     8.75 
Se.Ul.b.1 17.42 16.89 294.22 5.63 19.14 
Se.Ul.b.2 13.51 13.66 184.55 4.52 24.49 
Se.Ul.b.3 18.32 18.69 342.40 6.60 19.28 
Se.Ul.b.     20.97 
Se.Dü.b.1 23.65 22.23 525.74 10.11 19.23 
Se.Dü.b.2 23.91 23.09 552.08 5.00 9.06 
Se.Dü.b.3 22.9 24.29 556.24 10.50 18.88 
Se.Dü.b.4 24.49 25.21 617.39 7.10 11.50 
Se.Dü.b.5 17.14 19.04 326.35 7.10 21.76 
Se.Dü.b.     16.08 
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Table C.3 Tensile strength values of stone masonry mortars. 

Sample Diameter 
(mm) 

Width 
(mm) 

P  
(kN) 

Tensile strength 
(MPa) 

Se.Ul.s.1 25 12.5 0.59 1.20 
Se.Ul.s.2 25 12.5 0.65 1.33 
Se.Ul.s.3 25 12.5 0.76 1.55 
Se.Ul.s.    1.36 
Ur.He.s. 25 12.5 0.35 0.81 
Ur.Ka.s. 25 12.5 0.36 0.73 

 
 
 
 

Table C.4 Tensile strength values of brick masonry mortars. 

Sample Diameter 
(mm) 

Width 
(mm) 

P  
(kN) 

Tensile strength  
(MPa) 

Se.Dü.b.1 25 12.5 0.53 1.08 
Se.Dü.b.2 25 12.5 0.58 1.18 
Se.Dü.b.    1.13 
Ur.He.b.1 25 12.5 0.44 0.90 
Ur.He.b.2 25 12.5 0.61 1.24 
Ur.He.b.    1.07 
Ur.Ka.b.1 25 12.5 0.55 1.12 
Ur.Ka.b.2 25 12.5 0.45 0.92 
Ur.Ka.b.3 25 12.5 0.39 0.81 
Ur.Ka.b.    0.95 
Se.Ul.b.1 25 12.5 0.83 1.69 
Se.Ul.b.2 25 12.5 0.60 1.22 
Se.Ul.b.3 25 12.5 0.75 1.53 
Se.Ul.b.    1.48 
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Table C.5 Modulus of elasticity values of stone masonry mortars. 

Sample Stroke 
(mm) 

Load 
(kN) 

∆Stroke
(mm) 

∆Load 
(kN) 

∆Load/∆Stroke 
(kN/ mm) 

Modulus of 
elasticity 

(MPa) 
Ur.He.s.1 0.012 0.00392 0.007 0.0019 0.271  
 0.005 0.00202     
Ur.He.s.2 0.012 0.00668 0.008 0.00464 0.580  
 0.004 0.00204     
Ur.He.s.     0.426 425.81 
Ur.Ka.s.1 0.009 0.000887 0.004 0.000537 0.134  
 0.005 0.00035    134.30 
Ur.Ka.s.2 0.029 0.00214 0.01 0.00087 0.087  
 0.019 0.00127     
Ur.Ka.s.     0.111 110.50 
Se.Ul.s.1 0.0201 0.00954 0.0077 0.00886 1.151  
 0.0124 0.00068     
Se.Ul.s.2 0.0239 0.00973 0.0105 0.00672 0.640  
 0.0134 0.00301     
Se.Ul.s.3 0.0375 0.01190 0.0058 0.01071 1.847  
 0.0317 0.00119     
Se.Ul.s.4 0.0305 0.01700 0.0086 0.0116 1.349  
 0.0219 0.00540     
Se.Ul.s.     1.247 1246.51 
Se.Dü.s.1 0.0114 0.00138 0.004 0.000746 0.186  
 0.0074 0.000634     
Se.Dü.s.      186.50 
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Table C.6 Modulus of elasticity values of brick masonry mortars. 

Sample Stroke 
(mm) 

Load 
(kN) 

∆Stroke
(mm) 

∆Load 
(kN) 

∆Load/∆Stroke 
(kN/ mm) 

Modulus of 
elasticity 

(MPa) 
Ur.He.b.1 0.013 0.00499 0.008 0.004732 0.592  

 0.005 0.000258     
Ur.He.b.2 0.023 0.00767 0.017 0.00671 0.395  

 0.006 0.00096     
Ur.He.b.     0.493 493.12 
Se.Ul.b.1 0.0101 0.0089 0.0056 0.00699 1.248  

 0.0045 0.00191     
Se.Ul.b.2 0.0275 0.00855 0.0043 0.00565 1.314  

 0.0232 0.0029     
Se.Ul.b.3 0.0071 0.00991 0.0046 0.00784 1.704  

 0.0025 0.00207     
Se.Ul.b.4 0.00484 0.00849 0.00327 0.00721 2.2  

 0.00157 0.00128     
Se.Ul.b.     1.618 1617.63 

Se.Dü.b.1 0.0141 0.0059 0.0039 0.00375 0.962  
 0.0102 0.00215     

Se.Dü.b.2 0.0399 0.0281 0.0143 0.0171 1.196  
 0.0256 0.011     

Se.Dü.b.3 0.0271 0.00875 0.0064 0.00539 0.842  
 0.0207 0.00336     

Se.Dü.b.4 0.022 0.0196 0.009 0.0078 0.867  
 0.013 0.0118     

Se.Dü.b.     0.967 966.67 
Ur.Ka.b.1 0.0757 0.00815 0.0306 0.00603 0.197  

 0.0451 0.00212     
Ur.Ka.b.2 0.0689 0.00457 0.009 0.00264 0.293  

 0.0599 0.00193     
Ur.Ka.b.3 0.0206 0.0049 0.0128 0.004444 0.347  

 0.0078 0.000456     
Ur.Ka.b.4 0.0085 0.00119 0.003 0.00066 0.220  

 0.0055 0.00053     
Ur.Ka.b.     0.264 264.39 
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APPENDIX D 
 

LIME/AGGREGATE RATIOS OF MORTARS AND 
PARTICLE SIZE DISTRIBUTIONS OF AGGREGATES 

 
 
Table D.1 Lime/aggregate ratios and particle size distributions of aggregates used in  
stone masonry mortars. 

Aggregate size distribution (%) Sample Lime 
(%) 

Aggregate
(%) ≥1180µm 500µm 250µm 125µm 53µm <53µm 

Se.s.1 42.41 57.59 34.26 13.54 6,43 2.46 0.57 0.40 
Se.s.2 43.73 56.27 36.70 11.65 5.45 1.86 0.35 0.35 
Se.s.  43.07 56.93 35.48 12.59 5.94 2.16 0.46 0.38 
Se.Dü.s.1 39.03 60.97 39.61 14.77 4.34 1.24 0.51 0.39 
Se.Dü.s.2 36.09 63.91 40.18 16.98 4.57 1.27 0.57 0.45 
Se.Dü.s.  37.56 62.44 39.89 15.88 4.46 1.26 0.54 0.42 
Se.Ul.s.1 22.32 77.68 50.15 15.94 5.55 4.16 1.30 0.43 
Se.Ul.s.2 22.13 77.87 48.90 17.25 6.39 2.62 1.74 0.79 
Se.Ul.s.  22.23 77.77 49.52 16.60 5.97 3.39 1.52 0.61 
Ur.He.s.1 35.65 64.35 35.30 21.49 6.38 2.60 1.99 1.15 
Ur.He.s.2 29.00 71.00 40.68 17.49 7.53 3.21 1.79 0.53 
Ur.He.s.  32.33 67.67 37.99 19.49 6.95 2.90 1.89 0.84 
Ur.Ka.s.1 42.17 57.83 24.07 15.37 10.41 6.90 0.76 0.46 
Ur.Ka.s.2 42.76 57.24 26.39 14.31 9.50 6.11 0.63 0.18 
Ur.Ka.s.  42.47 57.53 25.23 14.84 9.96 6.50 0.70 0.32 
 
 
 
 
Table D.2 Lime/aggregate ratios and particle size distributions of aggregates used in  
brick masonry mortars. 

Aggregate size distribution (%) Sample Lime 
(%) 

Aggregate 
 (%) ≥1180µm 500µm 250µm 125µm 53µm <53µm

Se.Dü.b.1 26.34 73.66 42.42 17.70 5.92 3.35 3.00 1.58 
Se.Dü.b.2 29.56 70.44 41.20 15.66 5.66 3.22 2.78 1.87 
Se.Dü.b. 27.95 72.05 41.81 16.68 5.79 3.29 2.89 1.72 
Se.Ul.b.1 28.82 71.18 46.41 11.33 4.98 3.67 4.10 0.79 
Se.Ul.b.2 27.89 72.11 49.15 11.20 4.44 3.05 3.46 0.92 
Se.Ul.b. 28.35 71.65 47.78 11.27 4.71 3.36 3.78 0.86 
Ur.He.b.1 20.27 79.73 50.54 19.45 6.76 2.08 0.84 0.32 
Ur.He.b.2 19.72 80.28 54.60 16.38 6.45 2.02 0.90 0.17 
Ur.He.b. 19.99 80.01 52.57 17.92 6.60 2.05 0.87 0.25 
Ur.Ka.b.1 40.66 59.34 19.04 19.54 9.61 5.30 4.57 2.03 
Ur.Ka.b.2 41.00 59.00 25.72 17.40 8.59 4.22 2.35 0.96 
Ur.Ka.b.  40.83 59.17 22.38 18.47 9.10 4.76 3.46 1.49 
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APPENDIX E 
 

SOLUBLE SALTS IN MORTARS 
 
 

Table E.1 Percent soluble salts in stone masonry mortars. 

Sample Conductivity 
(µS/cm) 

Salinity  
(%) 

Se.s. 145 0.46 
Se.Dü.s. 97 0.31 
Se.Ul.s. 245 0.78 
Ur.He.s. 163 0.52 
Ur.Ka.s. 115 0.37 

 
 
 

Table E.2 Percent soluble salts in brick masonry mortars. 

Sample Conductivity 
(µS/cm) 

Salinity 
(%) 

Se.Dü.b. 124 0.40 
Se.Ul.b. 113 0.36 
Ur.He.b. 97 0.31 
Ur.Ka.b. 118 0.38 

 
 
 

Table E.3 Anion parts of soluble salts in stone masonry mortars. 

Soluble salts Sample 
SO B4PB

⎯2
P
 Cl⎯ NO B3 B⎯ CO B3 PB

⎯2
P
 PO B4PB

⎯3
P
 

Se.s. - + - - - 
Se.Dü.s. - - - - - 
Se.Ul.s. - - - - - 
Ur.He.s. - + - - - 
Ur.Ka.s. - - - - - 

 
 
 

Table E.4 Anion parts of soluble salts in brick masonry mortars. 

Soluble salts Sample 
SO B4PB

⎯2
P
 Cl⎯ NO B3 B⎯ CO B3 PB

⎯2
P
 PO B4PB

⎯3
P
 

Se.Dü.b. - - - - - 
Se.Ul.b. - - - - - 
Ur.He.b. - - - - - 
Ur.Ka.b. - - - - - 
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APPENDIX F 
 

POZZOLANIC ACTIVITY OF AGGREGATES AND 
BRICKS 

 
 

Table F.1 Pozzolanic activity measurements of coarse aggregates used in stone 
and brick masonry mortars. 

Sample Electrical 
conductivity 
of Ca(OH)B2 B 

(mS/cm) 

Electrical 
conductivity  

of Ca(OH)B2 B mixed 
with coarse 
aggregate 
(mS/cm) 

Difference in 
conductivity 

(mS/cm) 

Se.s.c-agg. 9.13 8.46 0.67 
Se.Dü.s.c-agg. 9.06 8.39 0.67 
Se.Ul.s.c-agg. 9.15 7.74 1.41 
Ur.He.s.c-agg. 9.31 7.60 1.71 
Ur.Ka.s.c-agg. 9.06 8.24 0.82 
Se.Dü.b.c-agg. 9.20 7.31 1.89 
Se.Ul.b.c-agg. 9.20 7.69 1.51 
Ur.He.b.c-agg. 9.31 8.05 1.26 
Ur.Ka.b.c-agg. 9.16 7.89 1.27 

 
 
 
 

Table F.2 Pozzolanic activity measurements of fine aggregates used in  
stone and brick masonry mortars. 

Sample Electrical 
conductivity 
of Ca(OH)B2 B 

(mS/cm) 

Electrical 
conductivity of 
Ca(OH)B2B mixed 

with fine aggregate
(mS/cm) 

Difference in  
electrical 

conductivity 
(mS/cm) 

Se.s.f-agg. 8.63 7.30 1.33 
Se.Dü.s.f-agg. 6.62 5.28 1.34 
Se.Ul.s.f-agg. 6.52 0.835 5.68 
Ur.He.s.f-agg. 6.45 0.177 6.27 
Ur.Ka.s.f-agg. 8.20 6.90 1.30 
Se.Dü.b.f-agg. 6.50 0.320 6.18 
Se.Ul.b.f-agg. 6.60 0.386 6.21 
Ur.He.b.f-agg. 6.40 0.207 6.20 
Ur.Ka.b.f-agg. 6.35 0.310 6.04 
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Table F.3 Pozzolanic activity measurements of bricks used in domes. 

Sample Electrical 
conductivity 
of Ca(OH)B2 B 

(mS/cm) 

Electrical conductivity 
of Ca(OH)B2 B mixed with 

brick 
(mS/cm) 

Difference in 
conductivity 

(mS/cm) 

Se.Dü.brick 9.25 8.80 0.45 
Se.Ul.brick 9.20 8.71 0.49 
Ur.He.brick 9.22 8.79 0.43 
Ur.Ka.brick 9.30 8.49 0.81 
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APPENDIX G  
 

CHEMICAL COMPOSITIONS OF COARSE AND FINE 
AGGREGATES 

 
 

Table G.1 Chemical compositions of coarse aggregates used in stone masonry mortars. 

Elemental Composition (%) Coarse 
aggregate Na B2 BO MgO Al B2 BOB3 B SiOB2 B K B2BO Fe B2 BOB3 B 

Se.s.c-agg-1 2.38 4.70 15.88 63.5 2.93 10.6 
Se.s.c-agg-2 2.26 4.08 13.63 64.01 2.75 13.26 
Se.s.c-agg-3 2.40 4.66 15.58 64.73 2.21 10.42 
Se.s.c-agg. 2.35 4.48 15.03 64.08 2.63 11.43 
Se.Dü.s.c-agg-1 2.34 5.08 18.93 54.28 3.01 16.36 
Se.Dü.s.c-agg-2 3.19 5.7 19.32 52.18 2.65 16.96 
Se.Dü.s.c-agg-3 2.55 5.18 19.01 54.33 2.7 16.23 
Se.Dü.s.c-agg. 2.69 5.32 19.09 53.60 2.79 16.52 
Se.Ul.s.c-agg-1 1.55 2.00 18.19 67.53 4.23 6.50 
Se.Ul.s.c-agg-2 2.24 2.96 17.48 66.25 3.74 7.33 
Se.Ul.s.c-agg-3 2.07 2.88 17.43 65.9 3.94 7.79 
Se.Ul.s.c-agg. 1.95 2.61 17.70 66.56 3.97 7.21 
Ur.He.s.c-agg-1 4.65 1.53 15.24 69.06 4.60 4.92 
Ur.He.s.c-agg-2 4.49 1.77 15.08 67.25 5.51 5.9 
Ur.He.s.c-agg-3 4.21 1.07 14.66 69.32 5.58 5.15 
Ur.He.s.c-agg. 4.45 1.46 14.99 68.54 5.23 5.32 
Ur.Ka.s.c-agg-1 1.00 1.34 9.07 79.31 1.86 7.42 
Ur.Ka.s.c-agg-2 1.74 2.37 9.94 79.69 1.81 4.43 
Ur.Ka.s.c-agg-3 1.79 2.21 10.19 76.98 2.06 6.78 
Ur.Ka.s.c-agg. 1.51 1.97 9.73 78.66 1.91 6.21 
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Table G.2 Chemical compositions of coarse aggregates used in brick masonry mortars. 

Elemental Composition (%) Coarse 
aggregate Na B2 BO MgO Al B2 BOB3 B SiOB2 B K B2BO Fe B2 BOB3 B 

Se.Dü.b.c-agg-1 1.54 2.24 15.75 69.22 3.13 8.12 
Se.Dü.b.c-agg-2 2.39 3.08 16.12 68.71 3.18 6.52 
Se.Dü.b.c-agg-3 2.33 2.79 15.81 68.98 3.36 6.73 
Se.Dü.b.c-agg. 2.09 2.70 15.89 68.97 3.22 7.12 
Se.Ul.b.c-agg-1 1.63 1.59 17.51 69.24 3.95 6.09 
Se.Ul.b.c-agg-2 2.33 2.13 17.16 69.96 3.79 4.62 
Se.Ul.b.c-agg-3 2.38 2.2 17.46 68.36 3.81 5.79 
Se.Ul.b.c-agg. 2.11 1.97 17.38 69.19 3.85 5.50 
Ur.He.b.c-agg-1 4.65 1.22 14.82 70.86 5.04 3.41 
Ur.He.b.c-agg-2 4.2 1.18 15.11 71.70 5.35 2.47 
Ur.He.b.c-agg-3 4.17 0.99 14.75 74.24 5.85 - 
Ur.He.b.c-agg. 4.34 1.13 14.89 72.27 5.41 1.96 
Ur.Ka.b.c-agg-1 1.72 1.99 9.85 80.21 1.48 4.75 
Ur.Ka.b.c-agg-2 1.54 1.63 9.73 80.99 1.84 4.27 
Ur.Ka.b.c-agg-3 1.82 2.13 9.49 80.71 1.87 3.98 
Ur.Ka.b.c-agg. 1.69 1.92 9.69 80.64 1.73 4.33 

 
 
 
 

Table G.3 Chemical compositions of fine aggregates (less than 53µm) used in  
stone masonry mortars. 

Elemental Composition (%) Fine  
aggregate  Na B2 BO MgO Al B2 BOB3 B SiOB2 B K B2BO Fe B2 BOB3 B 

Se.s.f-agg.1 2.37 4.02 15.11 60.67 1.82 16.01 
Se.s.f-agg.2 2.24 4.00 16.43 59.89 2.23 15.22 
Se.s.f-agg. 2.31 4.01 15.77 60.28 2.03 15.62 
Se.Dü.s.f-agg.1 2.54 3.83 17.11 58.72 1.85 15.94 
Se.Dü.s.f-agg.2 2.16 3.59 17.18 58.13 2.24 16.69 
Se.Dü.s.f-agg. 2.35 3.71 17.15 58.43 2.05 16.32 
Se.Ul.s.f-agg.1 0.81 * 9.66 87.72 1.81 * 
Se.Ul.s.f-agg.2 1.08 * 10.47 86.45 2.00 * 
Se.Ul.s.f-agg. 0.95 * 10.07 87.09 1.91 * 
Ur.He.s.f-agg.1 1.63 1.16 7.25 88.39 1.56 * 
Ur.He.s.f-agg.2 0.94 0.84 6.14 90.79 1.3 * 
Ur.He.s.f-agg. 1.29 1.00 6.70 89.59 1.43 * 
Ur.Ka.s.f-agg.1 1.82 2.72 13.6 66.53 2.09 13.24 
Ur.Ka.s.f-agg.2 0.96 2.08 14.06 71.72 1.43 9.74 
Ur.Ka.s.f-agg. 1.39 2.40 13.83 69.125 1.76 11.49 
*: not detected 
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Table G.4 Chemical compositions of fine aggregates (less than 53µm) used in brick 
masonry mortars. 

Elemental Composition (%) Fine  
aggregate  Na B2 BO MgO Al B2 BOB3 B SiOB2 B K B2BO Fe B2 BOB3 B 

Se.Dü.b.f-agg.1 0.70 * 8.87 88.99 1.45 * 
Se.Dü.b.f-agg.2 0.74 * 8.49 89.33 1.44 * 
Se.Dü.b.f-agg. 0.72 * 8.68 89.16 1.45 * 
Se.Ul.b.f-agg.1 0.71 1.26 12.97 83.05 2.01 * 
Se.Ul.b.f-agg.2 0.87 1.37 12.88 82.03 2.85 * 
Se.Ul.b.f-agg.  0.79 1.32 12.93 82.54 2.43 * 
Ur.He.b.f-agg.1 1.17 * 6.17 91.87 0.78 * 
Ur.He.b.f-agg.2 1.00 * 5.11 93.02 0.87 * 
Ur.He.b.f-agg. 1.09 * 5.64 92.45 0.83 * 
Ur.Ka.b.f-agg.1 0.99 * 8.16 89.75 1.1 * 
Ur.Ka.b.f-agg.2 0.98 * 7.76 90.31 0.95 * 
Ur.Ka.b.f-agg. 0.99 * 7.96 90.03 1.03 * 
*: not detected 
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