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ABSTRACT 
 

Transdermal drug delivery is gaining importance due to the extensive research 

in genetics and resulting increase of protein and peptide based drugs in the market.   In 

order to develop materials to be used in iontophoretic transdermal drug delivery 

systems, various forms of silk fibroin (SF) and blending agents as hyaluronic acid (HA) 

have been tested for their feasibility as a potential drug reservoir.  For this purpose 

different forms of silk such as raw silk, degummed silk fibroin, insolubilized freeze-

dried fibroin, membranes of fibroin in pure and blended with HA were investigated for 

their adsorption capacities of timolol maleate, which is used as the model drug.  It was 

found that silk fibroin and derivatives have considerable adsorption capacities for 

timolol maleate with 0.35 mmol per gram, comparable with commercial membranes.  

The insolubilization of the membranes was required for drug loading and delivery in 

aqueous media.  Membrane insolubility was achieved by post treatment, manipulation 

of drying conditions, and blending with different agents.  Configurational changes of 

fibroin protein and interactions between silk fibroin and hyaluronic acid were 

investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, 

and X-ray diffraction analyses.  Insoluble fibroin glutaraldehyde membranes were 

produced.  The obtained insoluble membranes were investigated for drug delivery 

performance in a custom-made diffusion cell under passive diffusion and iontophoretic 

conditions.  It was demonstrated that the silk fibroin glutaraldehyde films could be 

successfully used for controlled drug delivery.  It was found that current densities of 1.5 

and 3 mA/cm2 were suitable to accomplish controlled delivery of the drug in a pulsatile 

manner.  The results of this study are expected to be useful in controlled transdermal 

delivery of positively charged drug molecules. 
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ÖZ 

 
Genetik bilimindeki kapsamlı araştırmalar ve bunun sonucu olarak protein ve 

peptit içerikli ilaçların piyasadaki miktarının artmasıyla  deri yoluyla ilaç iletimi önem 

kazanmaktadır.  İyontoforetik deri yoluyla ilaç iletim sistemleri geliştirmek amacıyla 

ipek fibroininin çeşitli formlarının ve hyaluronik asit ile karıştırılmış fibroinin 

potansiyel ilaç deposu olarak kullanılabilirlikleri test edilmiştir.  Bu amaçla ipeğin pek 

çok formunun, örneğin ham ipek, pişirilmiş ipek fibroini, dondurulup kurutularak 

çözünmeyen hale getirilmiş fibroin, saf ve hyaluronik asit ile karıştırılmış fibroin 

membranlarının model ilaç olarak kullanılan timolol maleat`ı adsorplama kapasiteleri 

incelenmiştir.  İpek fibroin ve türevlerinin ticari membranlarla kıyaslanabilir ve kayda 

değer düzeyde timolol maleat adsorpsiyon kapasitelerine sahip oldukları saptanmıştır.  

Sulu ortamda ilaç yüklenmesi ve iletimi için membranların çözünmez olması 

gerekmektedir.  Membranın çözünmezliği sonradan işleme metodları, kurutma 

koşullarının ayarlanması ve farklı kimyasallarla karıştırma suretiyle sağlanmıştır.  

Fibroin proteinin şekilsel değişiklikleri ve ipek fibroini ile hyaluronik asit arasındaki 

etkileşim Fourier transform kızılötesi spektroskopisi, taramalı elektron mikroskobu ve 

X-ışını kırınımı analizleriyle incelenmiştir.  Çözünmeyen fibroin glutaraldehit 

membranları ve metanol ile işlenmiş fibroin membranları üretilmiştir.  Elde edilen 

çözünmez membranların pasif difüzyon ve iyontoforetik koşullar altında ilaç iletim 

performansları özel yapım difüzyon hücresi kullanılarak incelenmiştir.  İpek fibroin 

glutaraldehit ve metanol ile işlenmiş fibroin filmlerin kontrollü ilaç iletimi için 

başarıyla kullanılabileceği gösterilmiştir. İlacın darbeli tarzda kontrollü iletimi 

başarılmıştır.  
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CHAPTER 1                                                                      

INTRODUCTION 

 

Controlled delivery of drugs is a vast research topic studied by many scientists 

and researchers throughout the world.  In traditional drug delivery, concentration of the 

drug exhibit peaks, which may go beyond maximum desired level and waste the drug 

material or even, be toxic.  The desired level is between the minimum efficient and 

maximum desired level [1]. 

 

The recent researches in genetics study suggest that more drugs based on 

proteins and peptides will be in the market in the near future [2].   Though these drugs 

will be more efficient than those of today’s, and will be tailored to the specific needs of 

the patient, the only drug delivery route is the intravenous route for protein based drugs.   

This means the average patient will have to have several injections daily.   Injection is 

not convenient since it produces a sudden peak in blood drug concentration, is 

accompanied by pain, brings infection risk, and does not fit the pace of life of the 21st 

century individual. 

 

The aim of this study is to develop a drug loading reservoir from silk fibroin 

which could be used under passive and iontophoretic conditions.  Chapter 2 covers the 

subject of transdermal delivery.  In Chapter 3, preparation of soluble/ insoluble 

matrices, under different treatment conditions and blending agents as hyaluronic acid 

(HA), and glutaraldehyde (GTA) were explained.  Chapter 4 reviews previous studies in 

transdermal delivery, iontophoresis and studies on timolol maleate adsorption and 

delivery.  Procedures of SF matrix preparation, adsorption of TM and iontophoretic 

experiments are explained in Chapter 5. The results are given in Chapter 6.  

 

Transdermal route is one of the routes of drug delivery to the body.  

Transdermal drug delivery offers significant potential for the non-invasive delivery of 

drugs.  The skin provides a large, accessible surface area, in addition to avoiding the 

hepatic first-pass effect and chemical degradation in the hostile environment of the 

gastrointestinal tract [3].  Transdermal drug delivery systems employ a carrier that 



 

supplies the therapeutic agent to the organism continuously at the desired level, while 

the human skin is practically built to protect the body from outer effects and foreign 

materials.  To overcome this barrier, various chemical, physical and electrical methods 

have been developed to help drug molecules penetrate the skin.  One of these methods 

is the iontophoretic method which incorporates a drug reservoir containing charged 

drug molecules, where the molecules are driven into the body by application of 

electrical current.  The transdermal iontophoretic delivery is gaining popularity as a 

new and convenient method.   

 

The positively charged silk fibroin, which has an isoelectric point around 4 is 

promising for controlled adsorption and desorption of positively charged drug 

molecules.  It is known that silk fibroin derived from Bombyx mori cocoon is being 

developed and utilized for purposes besides traditional textile material.  It is used as 

surgical sutures, food additives, and in cosmetics.  Its superior properties like 

biocompatibility, high thermal-stability, and microbial resistance had it proposed for 

purposes such as wound protection, substrate for cell culture, enzyme immobilization, 

soft contact lenses with high oxygen permeability, and drug release agents [4].  Fibroin 

can be easily made up to into various forms [5], like film, membrane, gel, powder, and 

fiber [6].  In this research potential of silk fibroin as a drug reservoir was investigated.  

Films and fibers were subject to drug uptake experiments and membranes were tested 

for drug transport through them.  Effect of current application on the diffusion rate and 

responsiveness of delivery to current is investigated.   
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CHAPTER 2                                                                       

TRANSDERMAL DRUG DELIVERY 

2.1. Controlled Drug Delivery 
 

Oral administration of drugs may deactivate the drug molecules or have toxic 

effects.  The concentration of the drug in the blood may exceed the maximum desired 

level, which results in side effects that can harm the metabolism and the drug material is 

wasted.  Oppositely, after a period of time, the concentration of the drug falls below the 

minimum effective level, which results in the wasting of the drug without making any 

effect as seen in Figure 2.1.a.  Also some of the drugs such as protein based drugs, and 

timolol, go under first-pass metabolism in the intestinal tract or liver [7].  An ideal drug 

delivery system possesses two elements: the ability to target and controlled release.  

Targeting will ensure a high efficiency of the drug and even more important it will 

reduce side effects.  Drugs that are supposed to kill cancer cells can also kill healthy 

cells when delivered to them1.  The reduction or even prevention of side effects can also 

be achieved by controlled release.  This case is shown in Figure 2.1.b where drug level 

in blood is kept at the right value. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Drug level in blood for traditional (a) and controlled (b) drug delivery 

                                                 
1As one example where targeting can be important, in the UK alone there are 44,000 skin carcinoma 

cases per year, of which 2000 are fatal [3]. 
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2.2. Methods of Transdermal Delivery 
 

Human skin is virtually impermeable to molecules, exclusively to high molecular 

weight and non-lipophilic ones, since it basically evolved to protect the body from 

exterior effects.  The uppermost layer, which is the stratum corneum, poses the greatest 

resistance to penetration, with its distinctive architecture and its unique nature of 

interstitial lipoidal environment [8]. 

 

Transdermal therapeutic systems have found wide application and gained 

considerable commercial success in recent years, winning the competition with other 

controlled drug release systems such as peroral (osmotic minipumps), parenteral 

(nanoparticles and nanocapsules), subcutaneous (implants), intracavitary (inrauterine 

inserts and various suppositoria), buccal, etc [1].  Transdermal drug delivery is a viable 

administration route for potent therapeutic agents which cannot withstand the hostile 

environment of the gastrointestinal tract and/or are subject to considerable first-pass 

metabolism by the liver [9].  The transdermal route can also permit the noninvasive 

delivery of peptide-based pharmaceuticals, if the delivery can be improved by chemical 

enhancers, iontophoresis, or other means [10].  The methods of transdermal delivery 

fall into two main categories.  The first, which is the traditional delivery method, is the 

passive diffusion.  The other methods are active in that they employ some kind of 

physical or chemical phenomenon in order to enhance the permeation of the drug into 

the body. 

 

2.2.1. Passive Diffusion 

 

Also referred to as transdermal permeation or simple diffusion, passive diffusion is 

one of the established drug delivery routes such as topical applications, ointments, and 

patches applied without any enhancing mechanisms.  Passive diffusion offers limited 

possibilities, since human skin limits daily dosage delivered at around 10 mg from an 

acceptable sized patch [11].  Concentration gradient is the driving force for delivery in 

passive diffusion.  Nicotine patches as an aid for smoking cessation is the most widely 
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known of “passive” patches.  Other transdermal delivery applications in use are small 

lipophilic drug molecules such as clonidine, estradiol, fentanyl, nitroglycerin, 

scopolamine and testosterone [12].   

 

2.2.2. 

2.2.3. 

2.2.4. 

Phonophoresis 

 

Phonophoresis uses an ultrasound wave to suddenly disrupt the molecular 

structure of the stratum corneum (horny layer) of the skin and drives the drug molecules 

through the skin.  Following disruption, stratum corneum restores its original 

configuration rapidly; however it was observed that some foreign molecules and 

bacteria may also penetrate along with the drug molecules.  This is unacceptable.  

Bruising is also another common after effect which is unpleasant for the patients.  

These drawbacks slashed the early hopes for phonophoresis [11].   

 

Electroporation 

 

Sometimes used simultaneously with iontophoresis, electroporation is the 

reversible permeabilization of the cell membrane.  In the case of dermal delivery, 

stratum corneum is electroporated.  Cells are exposed to a very brief and high voltage 

which opens the cell membrane pores temporarily.  Although the exact mechanism of 

access by electroporation remains unknown, it has been successfully applied for the 

transfection of DNA and macromolecules such as peptides, proteins, and other gene-

based compounds [11].  Use of electroporation has been suggested for cancer 

chemotherapy, delivery of peptides, polysaccharides, oligonucleotides, and genes [13]. 

 

Iontophoresis 

 

Iontophoresis is a noninvasive and painless means of delivering various drugs 

into the body [14].  Transdermal administration of drugs through the skin is assisted by 

electrical energy in the iontophoretic method.  Iontophoresis concerns small amounts of 

physiologically acceptable electric current to drive charged drug molecules into the 

body using an electrode with the same charge of the drug, producing electrostatic 

repulsion.  Skin is a permselective membrane with negative charge at physiological pH 

of 7.4 [15].  So the counterions are usually cations and electro-osmotic flow occurs 
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(causing a net convective flow) from anode to cathode, thus enhancing the flux of 

positively charged drugs. Currently the US military is trying to develop a wristwatch 

sized iontophoresis device that will enable monitoring of the conditions of the soldiers 

in the battlefield from the satellite, and deliver the required drugs and vitamins etc by a 

signal sent to the device [11]. 

 

In Figure 2.2.1 iontophoretic delivery system as applied to a patient is seen.  In 

Figure 2.2.2: a) Negative electrode b) Positive electrode on top of the patch c) 

Positively charged drug molecules delivered to the blood circulation.  A bulk fluid flow 

accompanies this flow, which is called electro-osmosis.  In this thesis (and most of the 

literature), the term iontophoresis is employed so as to include the electro-osmosis 

phenomenon too [16].   
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iontophoresis in our study were not high, as understood by slow depletion of the 

battery. 

 

It should be noted that patch is the membrane between the skin and the drug 

solution here; not the drug reservoir itself.  This is the same case with the SFGTA 

membranes of our study.  The mentioned desired properties like biocompatibility, 

ability to control release of the drug (i.e.  its permeability to the drug should be lower 

than that of the skin’s), and low electrical resistance apply to our membrane which is 

not drug loaded.  This is opposite of what is expected from a drug reservoir patch, 

which delivers the drug stored in itself.  When the drug is delivered through the patch, 

the drug reservoir matrix or liquid solution is placed on top of the patch.  In the case of 

delivery from the patch, the drug is loaded on the patch itself.  Both cases are 

investigated in our study. 

 

2.2.4.1 Previous Studies in Iontophoresis: Transdermal Patches, Ion 

Exchange Membranes 

 

Controlled transdermal iontophoresis by ion-exchange fiber have been studied 

[7, 18].  When the membrane acts as an ion-exchange fiber, there are mobile ions like 

Na+ or Cl- introduced into the system.  These mobile ions remove the charged drugs 

bound to the ion exchange groups of the fiber.  The advantage of the ion-exchange is 

that it enables greater control over the delivery than systems that deliver from a drug 

solution with the membrane placed in between.  In this study, several drugs, most of 

which are cations (TM is not included), have been loaded onto ion-exchange fibers and 

their delivery investigated.  Mathematical modeling of the delivery has been performed 

by classical transport equations after making some sound assumptions and 

simplifications.   Lipophilicity and hydrophilicity of the drug are other factors in drug 

delivery.  Among the drugs studied in this study [18] tacrine and propranolol are 

lipophilic while nadolol is relatively hydrophilic.  As a comparison, TM is a hydrophilic 

compound.  The equilibrium distribution of the drug between the fiber and the solution 

phases results from both electrostatic and hydrophobic interactions.  The chemical 

partition coefficient measures the tendency of the drug to pass to the hydrophobic fiber.  

As a result, it is proven that changing the (ion-exchange) fiber properties and the 
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external solution can control delivery.  The external solution mentioned is the bathing 

solution for which the drug delivery is investigated.  This is not the same with our 

system but the rule of salt concentration effect applies to our receptor solution too since 

the mobile ions’ concentration is important there.  This phenomenon of ionic strength is 

a parameter in the delivery of TM. 

 

Influence of ionic strength in the adsorption and dissolution medium have also 

been investigated [19, 20, 21].  The membrane used was poly(acrylic acid) grafted 

poly(vinylidene fluoride) (PAA-PVDF).  The cation exchange process of the 

propranolol-HCl was found to be effected by ionic strength.  It was found that the low 

molecular weight drugs’ delivery performance diminishes by increase in ionic strength; 

on the contrary, high MW drugs’ deliveries were enhanced.  Spectroscopic analysis of 

timolol concentration was carried out.  Timolol was also investigated for comparison 

with propanolol-HCl. 

 

Transdermal iontophoresis of tacrine loaded onto a commercially available ion-

exchange fiber which was tested in vivo on human volunteers using silver/silverchloride 

(Ag/AgCl) electrodes [22] and the reliability of in vitro studies have been questioned 

using excised skin membranes by observing the release of levodopa and metaraminol 

using ion-exchange fibers [23].  Effect of pH and ion-exchange groups was found to 

have a great effect on the deliveries of these drugs.  It was stated that studies performed 

using excised calf skin may not properly simulate the real in vivo delivery results since 

the epidermis layer of the excised skin is usually absent or damaged.  This leaves back 

only the stratum corneum, which is stated not to govern delivery for most of the time 

and consequently the patch itself is controlling delivery.  This can be misleading and 

even dangerous.   

 

2.2.5. Selection of Electrodes 

 

The reason for choosing Ag/AgCl electrodes is that these electrodes do not 

cause pH shifts as the Platinum (Pt) electrodes do [22, 7].  On the other hand, Pt 

electrodes can be used for changing pH when desired.  Commercially available 

electrodes were used in our study. The phosphate buffered saline containing 6.22 g/l 

NaCl favours the electrode reactions in addition to making the solution isosmotic [24].  
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CHAPTER 3                                                              

DRUG RESERVOIR MATRIX: PREPARATION OF INSOLUBLE 

SILK MATRIX 

3.1. Silk Fibroin 
 

Silk is produced by arachnids (spiders) and insects as a building material for 

cocoons, webs etc.  [25].  In Figure 3.1.a the cultivated larvae of the moth Bombyx mori 

(domestic silkworm) is in the process of producing the type of silk that is of interest to 

us in our research.  After the cocoon is finished (Figure 3.1.b), a handful of cocoons are 

reeled to make the well-known silk thread as seen in Figure 3.1.c.
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[29, 30, 31], except proline [32].  The highly repetitive sections are composed of 

glycine, alanine and serine (approx.  85% in total) in a rough 3:2:1 ratio and the amino 

acid sequence is expressed roughly as Gly-Ala-Gly-Ala-Gly-Ser [33].  Freddi et al. has 

studied the dissolution of silk fibroin in a solvent [31].  For time zero in the dissolution, 

amino acid percentage given is that of native silk fibroin.  A portion of the amino acid 

sequence of silk fibroin produced by Bombyx mori has been identified [30].  The 

crystalline region of silk fibroin is reported to compose mainly of the repetitive element 

Gly-Ala-Gly-Ala-Gly-Ser, and in the amorphous domain of silk fibroin is found the 

amino-acid sequence Thr-Gly-Ser-Ser-Gly-Phe-Gly-Pro-Tyr-Val-Ala-Asp-Gly-Gly-

Tyr-Ser-Arg-Arg-Glu-Gly-Tyr-Glu-Tyr-Ala-Trp-Ser-Ser-Lys-Ser-Asp-Phe-Glu-Thr. 

 

Table 3.1 Amino-acid content, g/ 100 g fibroin  

Amino acid Mukhamedzhanova et al.[29] Li et al.[30] Freddi et al.[31] 
Lys 0.51 0.63 0.33 
His 0.30 ND 0.20 
Arg 1.00 0.95 0.62 
Asp 2.43 2.75 1.65 
Thr 1.25 1.09 0.96 
Ser 13.18 9.91 11.48 
Glu 2.09 1.30 1.37 
Pro 0.53 ND 0.67 
Gly 33.34 35.08 43.68 
Ala 26.61 30.75 29.34 
Val 2.62 4.26 2.23 
Ile 0.87 1.59 0.66 
Leu 0.67 1.05 0.58 
Tyr 11.42 8.03 5.30 
Phe 1.2 1.24 0.73 
Met NR 1.37 0.10 
Cys NR ND 0.10 
ND: Not detected NR: Not reported 

 

 

Figure 3.2.a shows the polypeptide chains forming antiparallel β pleated sheets 

in which the chains extend parallel to the fiber axis.  Bombyx mori silk contains at least 

two major fibroin proteins, light (25 kDa) and heavy (325 kDa) chains [34]; while 

various figures are reported for the average molecular weight like 350 kDa [5].  

Actually, it was reported that upon dissolution, native fibroin which possesses light (25 

kDa) and heavy (350 kDa) chains, decomposes to a mixture of polypeptides of various 
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sizes [28].  This is significant information considering the N termini of the chains play 

important role in intermolecular interactions.  The variety of the amino acids supplies 

many reaction sites such as amino, carboxyl, phenol, and imidazole groups [5].  Lysine 

residues and N-terminal of chains are the primary source of amino groups.  Free amino 

groups are also found on the histidine, arginine, and tryptophan amino acids [35].  

These groups have significant potential for any probable interactions such as crosslinks 

or electrostatic interactions. It is reported that silk fibroin has many hydroxyl residues 

e.g., Ser 10.6 mol%, Tyr 5.0 mol%, and Thr 0.9 mol% although carboxyl and amino 

group content was actually low (3.9 mol%) based on the amino acid composition of silk 

fibroin [36]. 

 

 

 

 

 

 

 

 

Figure 3.2 β pleated structure of silk fibroin a) Face view b) Side view 

 

The Gly side chains extend perpendicular from one surface while its Ala or Ser side 

chains extend from the other surface (Figure 3.2.b).  Hydrogen bonds lie within the 

plane of the sheet.  These polypeptide chains are almost fully extended, so silk fibers 

are only slightly extensible, though strong.  However the β sheets interact with each 

other only through weak Van der Walls forces [29], rendering the fibroin flexible.  

Along with the pleated β sheet structure, there are also amorphous regions in the fibroin 

in which bulky residues of Tyr, Val, Arg and Asp occur.  The amorphous region 

enhances extensibility while diminishing elasticity [25].   The silk film cast from 

aqueous solution consists of two structures: the α-form (or silk fibroin I) and the β-form 

(or silk fibroin II) [37]. 

 

Recently, several researchers have investigated the silk fibroin (SF) as one of 

promising resources of biotechnology and biomedical materials due to its unique 
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properties including good biocompatibility, good oxygen and water vapor permeability, 

biodegradability, and minimal inflammatory reaction [6], microbial resistance [4], 

blood compatibility [26].  Some of these functionalities of fibroin were attributed to the 

amorphous and not the crystal region of fibroin and a fractal approach was developed to 

explain penetration of water vapor into regenerated silk fibroin [26].  This region is 

responsible for the elasticity of silk compared to fibers of similar tensile integrity, and 

although US Pharmacopeia lists silk as non-biodegradable since it does not “lose most 

of its tensile strength within 60 days”, it is actually degradable over longer periods by 

the proteolytic degradation mechanism [34].  SF in regenerated forms has been used as 

surgical sutures, food additives, and cosmetics, and using of SF has been proposed for 

many purposes such as drug delivery (controlled release [34], a carrier of controlled 

release medicine [30]), soft contact lenses with high oxygen permeability, wound 

protection, substrate for cell culture, and enzyme immobilization [4].  Silk fibroin-based 

wound dressing was developed that could accelerate healing and could be peeled of 

without damaging newly formed skin; and it was also reported that silk fibroin 

membrane can be used to preferentially remove water from a mixture of water and 

alcohol [27].  Fibroin has also certain nutrient value to humans [5].  Uses of silk as burn 

wound dressings, templates for osteogenic tissue formation were listed in a study that 

investigated a silk-fiber matrix as a suitable material for tissue engineering anterior 

cruciate ligaments (for knee joints) [38].  It is an interesting point that hyaluronic acid is 

a major component of the synovial fluid which lubricates the knee joints.  The 

interactions of SF and HA can draw interest from this aspect too.  Silk fibroin is 

reported to have been blended with cellulose, PVA, polyurethane, cellulose acetate, 

chitosan, sodium polyglutamate, polyethyleneglycol (PEG) [39], sodium alginate, and 

S-carboxymethyl keratin [40]. 

 

Silk fibroin contains disulfide crosslinks among its heavy and light chains; 

however these do not normally participate in intramolecular reactions [41].  Cysteine 

residues of the silk fibroin may be attempted for such a modification, though there are 

few studies about this in literature [42]. 

 

Silk fibroin has high versatility that it can be processed into foams, films, gel, 

powder, fibers and meshes with good strength [5, 34].  Pulverized fibroin has also been 
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commercialized [43].  SF powder has been used in the production of hydroxyapatite-SF 

nano-composite sol for the purpose of producing artificial bone or dental roots [44]. 

3.2. Methods of Silk Fibroin Matrix Preparation 
 

Silk fibroin films prepared by casting the aqueous protein solution and drying at 

25 oC as seen in Figure 3.3 are soluble in water.  Such films have a micro phase-

separated structure consisting of crystal and amorphous regions [45].  These films 

should be fixed with physical or chemical crosslinking.  Bifunctional agents such as 

glutalaldehyde are usually used for crosslinking.  However, unreacted glutalaldehyde 

remaining in the structure is cytotoxic.   

 

Figure 3.3 Scheme for the molecular shape of SF molecules in solution and solid state 
for aqueous system 

 

Crystallization by immersing in aqueous ethanol or methanol (Figure 3.4) is another 

widely used method to induce structural change from random coil to β-sheet structure 

[46].  Degree of crystallinity increases up to 11%2.  Methanol treatment was applied to 

fibroin membranes for varying intervals of 3 to 60 minutes and their oxygen 

permeabilities were investigated.  Films were cast from 1% silk solution, dried at 25 oC 

and 65% relative humidity (RH), immersed in 1:1 methanol-water solution, and again 
                                                 
2 It should be noted that, in literature it is also reported that β sheets are not necessarily in crystalline form 

[35].  That is to say, there might not be a linear quantitative relation between the crystallinity of the 

samples and their β sheet percentage. 
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conditioned at 7 days at 25 oC and 65% RH [45].  It is stated that the amorphous region 

of silk is responsible for oxygen permeation and duration of methanol treatment can 

affect this permeation behavior [47].  Zhang has used a unique and peculiar physical 

treatment technique to achieve anti-parallel β-sheet structure, which involves stretching, 

compressing and standing under high humidity [5].  The starting solution concentration 

is also of critical importance for the structure of the fabricated films (see Figure 3.5). 

 

 

 

 

 

 

 

Figure 3.4 Conformation change of SF in solid state by immersion in methanol (Green 
boxes represent long-range ordered crystallite) 

 

Undegraded native fibroin solution from cocoons was prepared in literature by 

this method: after reeling by standard methods by machine, degumming was performed 

in 50 times (v/w) boiling aqueous 0.05% Na2CO3 solution.  Then the purified fibroin 

was dissolved in 15 times standard Ajisawa’s reagent (CaCl2, EtOH, water, 1:2:8 mole 

ratio) [28].  This is the universally accepted dissolution method which is also used in 

our study and elsewhere [49].  Ajisawa’s and other salt solutions used to dissolve silk 

are referred to as chaotropic solutions (LiSCN, LiBr, NaSCN, and CaCl2).  The 

degradation of fibroin and resulting molecular weights of the protein by various 

treatments have been investigated, and it was found that the CaCl2 treatment does not 

cause appreciable degradation, so it is used in this study.  Removal of sericin in hot 

alkaline solution causes some degradation of the heavy chain of silk, so it should be 

performed at same time and temperature every time.  This could be checked by SDS-

PAGE (polyacrylamide gel electrophoresis method employing polyacrylamide gel with 

sodium dodecyl sulfate buffer) analysis or alternatively rheologic methods.  It is also 

noted that the solution of intact (undegraded) fibroin has a strong tendency to gel and so 

it is advised that it is dialyzed just prior to use, which was experienced and practiced in 

our study.   
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Figure 3.5 The relation between conformation, quenching or casting temperature and 
(starting) concentration of silk fibroin, B.  mori [37] 

 

Formic acid has also been employed as a solvent for the dissolution of silk 

fibroin instead of the ternary solvent of CaCl2/EtOH/water [6, 35].  It has been stated in 

literature that dissolution of SF is desired when is used for purposes other than textile, 

like film, porous membrane, gel, and powder.  Aqueous solution of concentrated neutral 

salts like calcium chloride have a tendency to become unstable and precipitation of SF 

is possible due to low solubility (such a phenomenon has been observed in our 

experiments as a small precipitate during dialysis stage).  Another advantage of 

dissolution in formic acid is that when SF is going to be blended with other polymers, 

solubility of the blending agent in the concentrated salt solution is usually problematic.  

This is not the case with formic acid, which has been reported to be a good co-solvent 

for blending applications.  In our case, blending of the two components SF and HA will 

be performed in aqueous medium employing their solutions in water.  In the mentioned 

study, solutions of SF in formic acid and water have been studied, and also a film was 

also cast from the formic acid solution of SF.  Although methanol treatment has been 

applied to the solution, it is understood that this was not applied to the cast film.  

Formic acid dissolution is found to create an effect similar to methanol treatment on the 

cast film.  This effect is the conversion of the amorphous structure to a β-pleated 

crystalline structure, bringing insolubility in water.  Structural characteristics and 

crystallinity have been investigated by XRD and Ft-Ir.  DTA and DSC have also been 
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employed [6].  Solubility of the silk in water was not tested for the film, however it is 

discussed that in water fibroin molecules aggregate and entangle each other since SF is 

composed mostly of hydrophobic amino acids.  On the contrary, SF in formic acid is 

reported to be free of aggregates and entangled structures.  This is attributed to the 

charge repulsion effect between fibroin molecular chains since SF is positively charged 

in acid.  In this study it is suggested that aqueous SF solution is not transparent and 

unstable.  It is true that the solution is likely to become unstable when not handled with 

care; even so the aqueous SF solutions prepared by us were clear, transparent and stable 

at storage intervals shorter than one week. 

 

Effect of processing temperature on the morphology of silk membranes and also 

methanol treatment was investigated [40].  Various processing methods used are casting 

followed by air-drying or freeze-drying, mechanical shearing, compression, the 

Langmuir-Blodgett technique, and bubble blowing.  Molecular conformation of the 

resulting membrane can be controlled by the processing conditions such as solution 

concentration, solution temperature, quenching temperature, drying rate/ temperature/ 

and time, the presence of an electric field, pH, the presence of certain enzymes and the 

type of solvent.  Increased drying temperature effect was discussed above.  Effect of 

decreasing pH is the precipitation of the protein as β pleats.  The random coils and α 

forms open (unfold), enabling the rebuilding of the hydrogen bonds between amino acid 

chains.   Among these parameters, we manipulated composition and drying conditions 

in this study.  Effect of electric field was examined by XRD at desorption (delivery) 

stage of the research, which caused crystallization of the membranes.  Silk was taken 

from the gland of the silkworm in this study and also regenerated silk was used.  After 

degumming, dissolution, and dialysis by standard methods, the membranes were cast 

onto Petri dishes and dried at 30 oC in air for 48 h.  Subsequently, the membranes were 

treated with a 75 vol% aqueous methanol solution for 15 minute and dried.  The 

resulting membranes were 15 µm thick.  Films made of regenerated fibroin did not 

exhibit the small particles or the irregular morphology; however they exhibited grains 

and nanofibrils in their morphology.  It is found that higher processing temperature 

leads the amorphous structure in the membranes to convert to β-pleated structure.  This 

structure produces morphology with aggregated fibrils. 
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3.3. Previous Studies with Silk Fibroin 
 

3.3.1. SFGTA Blends 

 

Sufficient mechanical strength is required for most of the applications 

mentioned at the previous section.  Nevertheless the silk fibroin is prone to get brittle in 

its dry state.  The brittleness can be a drawback for the use of fibroin membrane as a 

patch in transdermal drug delivery [50].  SF was blended with other polymers in order 

to overcome the drawback of SF itself by improving mechanical properties [6].  For this 

purpose, improvements in physical properties of fibroin-based biomaterials have been 

sought by blending with other agents, including chitosan, sodium alginate, poly(vinyl 

alcohol) (PVA), and cellulose, of which PVA was found to be effective [50,4].  When 

blended with PVA, fibroin is said to make up a hydrogel with excellent moisture 

adsorbing and desorbing properties and elasticity [27].  SF/PVA blends were also used 

for enzyme immobilization [48].  In our study, blending the fibroin with hyaluronic acid 

(HA) can eliminate this disadvantage.  If a cross-linking agent is used, it is in interest 

that this agent does not ruin the biocompatibility of the membrane.  HA is similar to 

PVA in that both are well-known biocompatible materials which are soluble in water 

and have a high water retention capacity.   

 

Porous composite membranes of regenerated silk fibroin and PVA were 

prepared for use as an immobilization matrix for glucose oxidase, as a glucose 

biosensor.  Polyetyleneglycol (PEG) has been added to the casting solution to decrease 

mass-transfer resistance and obtain a porous structure [50].  Porous blend gels of silk 

fibroin-poly(vinyl alcohol) were prepared by freeze drying technique [4].  Same authors 

have also applied freeze drying and freeze-thaw techniques to aqueous solutions of SF 

to prepare porous films in a previous study.  Parameters that affect the properties and 

structure of the film are concentration, freezing temperature, and the number of freeze-

thaw cycles.  The air dried gels were found to have an higher crystallinity and 

mechanical strength, while the freeze-dried gels have a more porous structure.  As the 

freezing temperature was lower, the crystallinity increased.  This may contribute to 

insolubility in water, though no mention of the solubility phenomenon is made in the 

study.  More than 50 % PVA addition was required to improve strength.  The gels are 

composed of wall-like material defining separated compartments. 
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 Silk fibroin-poly(ethylene glycol) conjugate films were developed and their 

structure and mechanical properties were examined [51].  In order to dissolve 

degummed SF, a concentrated aqueous solution of LiBr (9 M) was employed in the 

mentioned study and then the solution was dialysed against water.  PEG and SF were 

reacted in the aqueous solution containing 0.1 M sodium borate as modifier.  After the 

reaction took place, the eluate of SF-PEG was collected, unreacted materials and 

modifier removed accordingly, and solution was brought to 1% (w/v).  The membranes 

were cast on polyethylene films.  An SF film having a β-sheet structure was prepared 

by immersing the film in a 50% (v/v) methanol-water mixture for 4 h at room 

temperature and drying the immersed SF film at ambient relative humidity at room 

temperature (methanol treatment).  DSC tests were performed.  Circular dichromism 

(Cd) spectra results indicate a random coil conformation with small amounts of β-sheet 

and helix structures for the SF film.  The methanol treated SF film exhibits only an 

endothermic peak at DSC, while the untreated film has an exothermic peak at 228 oC 

attributed to the transition from random coil to β-sheet. 

 

3.3.2. 

3.3.3. 

Freeze-Dried SF 

 

In literature porous silk fibroin material has been prepared by a freeze-drying 

method [52], and its enzymatic degradation was investigated [30].  This method 

produces porous, spongy structures with a high surface area.  SF was also blended with 

PVA and freeze-dried as mentioned above.  

 

SF Film with Glutaraldehyde 

 

SF membranes are usually fixed by crosslinking with glutaraldehyde (GTA).  

Although the exact mechanism of protein cross-linking with glutaraldehyde is not yet 

clearly defined, certainly the ε-amino groups of the lysine residues and the N-terminal 

amino groups of the proteins are involved and there is not an absolute method to 

determine the degree of crosslinking for GTA [53].  Lysine residues make up of 0.5-0.6% 

of the amino group composition of SF (Table 3.1).  Seves et al. fixed silk fabric samples 

with a 2.5% GTA solution [43].  GTA crosslinking of dermal sheep collagen was 
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performed and compared with the new method of successive epoxy and carbodiimide 

cross-linking [54].  Enzymes are usually immobilized in protein materials such as the silk 

fibroin using GTA, however methanol treatment was reported to yield better results in 

terms of the immobilized enzyme sensitivity [48].  The reason for using GTA films for 

drug loaded films and membranes without drug in this study was that TM dissolves in 

polar solvents such as ethanol or methanol.  GTA crosslinking provide our membranes 

sufficient mechanical strength for iontophoretic experiments.  Another alternative could 

be using heat treatment method.  This could be applied to incorporate drugs into an 

insoluble film structure.  Heat treatment has some disadvantages.  The films acquire 

wrinkles and even small cracks due to very rapid drying.  Fabricated structure is not 

perfectly standardized. Same standardization problem can be observed for methanol 

treatment. 

 

 

3.3.4. Other Studies with Silk Fibroin 

  

Permeabilities of ions such as KCl, K2SO4, K2HPO4, MgCl2, CaCl2, and 

MgSO4, across silk fibroin membrane were measured as a function of concentration of 

external solution in the system of silk fibroin membrane-electrolyte solution.  The SF 

films are known to have amphoteric properties with the positive and negative charged 

groups they bear [55, 56].  Silk fibroin membrane was also investigated for fluoracil 

drug [57].  The weak acid and base groups are amino and carboxyl groups respectively.  

The silk fibroin membrane is reported to have an isoelectric point about pH 4.5.  This 

dictates that our fabricated SFGTA membranes act as cation exchanger at the subject 

pH of 7.4.  Silk fibroin has a positive charge at this pH.  Transport of pharmaceuticals 

through the membrane was investigated in the pH range from 3.0 to 9.0.  The positively 

charged pharmaceutical was excluded from the membrane below the isoelectric point 

[58]. 

 

3.4. Hyaluronic Acid 
 

Natural polysaccharides, such as chitin, chitosan, cellulose, hyaluronic acid, 

have recently been re-evauluated and found to be useful resources and functional 
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materials.  The homopolymers of were polysaccharides inadequate to meet the diverse 

demands for materials, so they are blended with other polymers [59].  Hyaluronic acid 

(HA) is a linear acidic polysaccharide consisting of alternating units of D-GlcA and D-

GlcNAc: [ 4)-β-D-GlcpA-1 3)-β-D-GlcpNAc-(1 ]n, (Figure 3.6).  Alternating 

disaccharide units of N-acetyl-d-glucosamine and d-glucuronic acid are joined by 

alternating β-(1–3) glucuronidic and β-(1–4) glucosaminidic bond [60].  It is a major 

component of the extracellular matrix of connective tissue and is found in high 

concentrations in umbilical cord, vitreous body of the eye, and in synovial fluid.  HA is 

quite distinct from other glycosaminoglycans.  All carry sulphate groups and their 

polysaccharide chains are relatively short (<100 kDa).  To the contrary, it is the only 

non-sulfated glycosaminoglycan (GAG) in the extracellular matrix [61].  This means 

the primary structure of HA contains neither sulphate groups nor peptide as it is not 

covalently bound to proteins [62].  Although it consists of a single polysaccharide chain 

like other glycosaminoglycans, HA usually has a high molecular weight (105–107 

g/mol) depending on the length of the chains [63].   

 
Figure 3.6 Chemical structure of hyaluronic acid [64] (arrow indicates carboxyl group) 

 

HA possesses a high density of potential hydrogen-bonding sites, but in addition, it 

is a strongly polyanionic molecule due to Na+ or K+ ions complexed between 

polysaccharide strands.  It is a weak polyacid, as only one charge can be present for 

each density for two residues in its repeating unit [65].  HA can adopt a number of 

distinct double helical conformations in a variety of packing arrangements as a function 

of its hydration, ionic environment and temperature [66].  A typical HA strand is shown 

in Figure 3.7.  This strand adopts secondary structure in aqueous solution, and because 

of the hydrogen bonding which gives stiffness to its chain, it behaves as expanded 

random coil with a diameter of 500 nm.  The chain becomes entangled already at low 

concentrations in the order of 1 g/l [67].  
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Figure 3.7 Structure of HA in its native form [70] 

 

The attention devoted to HA in the biomaterials field has been motivated based 

upon its specific chemical properties.  It can be functionalized with reactive groups, 

undergo cross-linking reactions and produce materials in the form of hydrogels [68].   

 

Its immunoneutrality makes HA an excellent building block for biomaterials to be 

employed for drug delivery systems [69].  Since HA is biocompatible and 

biodegradable, it has been popularly used as temporal scaffolds for tissue engineering 

or drug delivery devices for therapeutic agents.  HA was cross-linked to form a three-

dimensional chain network (hydrogel) after chemically modifying HA with cross-

linkable functional groups.  A wide variety of polyfunctional cross-linking agents were 

used to form the hydrogel structure [71].  HA has been used as, a viscoelactic 

biomaterial for medical purposes, in cosmetics thanks to its high water retention 

capacity, and in drug delivery systems thanks to its biodegradability [72].  Polymer-

drug conjugates for controlled release, crosslinking into hydrogels, and surface coating 

uses of HA was also summarized [61]. 

 

3.5. Previous Studies with Hyaluronic Acid 
 

Prestwich et al (1998) [73] gives short but valuable insight about the drug delivery 

uses of HA after providing some general information about HA.  The uses of HA in 

drug delivery started as and adjuvant for ophthalmic drug delivery and etc.   
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Table 3.2 Some of the related companies with HA or HA-derived products on the 
market [73] 

Company Product 

Anika HA-N-acylurea derivatives for surgical 

applications, treatment of osteoarthritis, 

bone fracture healing 

Hyal Pharmaceuticals Corp. Combining HA with existing drugs: such 

as diclofenac 

Seikagaku Corp. HA-enzyme conjugates 

Telios Pharmaceuticals, Inc. HA hydrogels for tissue engineering 

 

HA is reported to have been blended with PVA for ophthalmic use, and with 

carboxymethylcellulose (carbodiimide crosslinked) for a bioabsorbable film for 

prevention of postsurgical adhesions, for wound-healing applications with collagen.  It 

is understood that HA blends are proposed to be used for coatings in microspheres, 

which can be used for transcmucosal drug delivery (such as in nasal sprays).  Several 

drug delivery uses of HA are listed in Table 3.2.  HA was used as a drug reservoir as 

well.  Lim et al [74] have prepared microspheres of HA and chitosan and evaluated the 

in vitro drug release properties and mucoadhesion of them.  Bioadhesion is desired in 

drug administration through mucosal routes but not necessarily for dermal delivery. 

 

HA has been also used as an attractive building block for new biocompatible 

and biodegradable polymers with applications in drug delivery.  One study concerns the 

production of a crosslinked hydrogel [61].  Poly(ethylene glycol)-proiondialdehyde 

homobifunctional reagent is blended with HA (which is converted to its adipic 

dihydrazide (ADH) form).  Drug loading onto this hydrogel was performed by in-situ 

polymerisation.  This is achieved by dissolving the drug molecules in water or ethanol 

and then simply adding the casting solutions.  (This method is same with the drug 

loading method used for the SF-GTA films in the current study.) The drug release was 

studied by cutting the drug-loaded hydrogel into small pieces to fit in the cuvette of the 

UV spectrophotometer.  It was observed that the drugs were released to the PBS 

solution in the first ten minutes, following a first order kinetics. 
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The release of peptides and proteins from hydrated hyaluronic acid ester and 

partially esterified hyaluronic acid membranes have been investigated [75,76].  

Although our research does not concern protein delivery, it is worth noting what affects 

the release of proteins to make comparisons.  The fundamental motivation of choosing a 

model drug having similar properties with proteins was explained above.  Since these 

molecules are inherently larger, they are highly dependent on porosity, cross-linking, 

pore size etc.  This is evident by the abrupt change in release behaviour over narrow 

ranges of esterification.  It is noted that constant or zero-order release of therapeutic 

agents is desirable, while for some drugs pulsatile release is desired.  These studies 

concern the development of implantable controlled release matrices.  One important 

criterion for these matrices is biodegradability in order to rule out the need for surgical 

removal. 

 

A scaffolding material for tissue regeneration has been investigated [69].  This 

is a porous matrix of hyaluronic acid (HA) and collagen prepared by a freeze-drying 

technique.  Collagen to HA ration is 8:2.  HA used has molecular weight of 120-150 

kDa.  Experimental section of this study gives information about the preparation and 

characterization of an HA blend matrix.   

 

Negatively charged HA has also been used for the coating of nanospheres for 

ocular drug delivery [77].  Sodium hyaluronate used had a molecular weight higher than 

106 g/mol similar to the figure of our study.  There is no cross-linking associated with 

coating, instead the nanospheres are coated by (1) chain entanglement of HA, (2) 

adsorption of HA, and (3) electrostatic interactions of HA and a cationic surfactant.  

Similar electrostatic interactions of the cationic and anionic substance are established in 

our study. 

 

3.6. Insoluble Matrix Preparation 
 

A probable route of interaction between HA and SF can be among the carboxyl 

group of the HA with the amino group of SF.  This reaction can result in the formation 

of amide bonds.  The carboxyl group can react with the amino group especially at low 

pH medium, where the carboxyl group is at its anion state (COO-).  The stoichiometric 
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ratio of the amino groups and carboxyl groups were calculated.  The optimum ratio of 

HA to SF is around 5 to 10 %.  This is explained in detail in section 3.7. 

 

3.7. Preparation of Silk Fibroin/Hyaluronic Acid Solution 
 

 In order to have an insoluble SF/HA film, it must be assured that the two 

molecules are incorporated effectively.  The sites of modification on hyaluronic acid are 

the carboxyl and alcohol groups.  Carboxyl groups of HA can be reduced (anions of 

carboxyl groups) and the amino groups of the silk fibroin can be oxidized (for example 

by reacting with an organic acid) (cations of amino or imino groups).  This reaction 

scheme eliminates the need for a cross-linking agent such as glutaraldehyde. 

 

 

 

 

 

 

 

 
Figure 3.8 Carboxyl-amino interaction in the chitosan-alginate polyelectrolyte complex 

 

Such an interaction is observed when amine groups of chitosan interact strongly 

with carboxyl groups of alginate, forming a complex (Figure 3.8).  Due to the 

protonation amino group on chitosan and ionization of carboxylic acid group on 

alginate, the stability of the formed complex is influenced by environmental parameters, 

such as pH and ionic strength [78].  When no cross-linking agent is employed for the 

production of the polyion complex, this is an advantage over the blends that have been 

produced by making use of cross-linking agents such as formaldehyde, dimethylolurea, 

dimethylolethylene urea that are not biocompatible. 
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CHAPTER 4                                                                       

LOADING AND DELIVERY OF MODEL DRUG TIMOLOL 

 

Timolol maleate (TM) is a β-adrenergic blocking agent used in the management 

of hypertension and etc.  It is known to undergo extensive first-pass hepatic 

metabolism, which makes it a potential candidate for transdermal drug delivery.  The 

maleate salt of timolol has a formula weight of 432.5 g.  The TM used in this study is in 

two forms:  first is timolol maleate purchased from Sigma, and a 0.5% eyedrop solution 

of timolol.  TM has an empirical formula C13H24O4N4O3S.  C4H4O4. TM is widely used 

in iontophoretic studies [79], and it was also loaded on patches [80]. 

 

Stamatialis et al. (2002) have studied controlled transport of timolol maleate 

through artificial membranes under passive and iontophoretic conditions [16].  The 

membranes that have been investigated are commercially available membranes, which 

range from microporous to mesoporous.  The mesoporous membranes showed no 

difference of transport rate with current rates.  So, they are not suitable.  It was 

understood that the molecular weight cut-off values are not a reliable way of evaluating 

membranes’ transdermal delivery performance.  The dense membranes are supposed to 

have a poor transport performance.  However, it is of concern to investigate whether 

there will be any changes in structure when current is applied, or the drug molecules 

stuck in the film will be mobilized by swelling and the current application.  The most 

suitable type was the microporous membrane that enabled control of TM transport by 

current application.  This membrane has a resistance lower than skin.  The type of the 

transport cell is not same with the diffusion cell, which was employed in our research.  

Adsorption to the membranes has also been investigated by dipping the membranes in a 

solution of TM, since adsorption can be undesirable for the purpose of use as a 

membrane in between.  This subject was discussed in Chapter 5. 

 

Timolol uptake and release by imprinted soft contact lenses made of N,N-

diethylacrylamide and methacrylic acid (MAA) has been studied [79].  This is 

interesting since SF is reported to be suitable for use in soft contact lenses with high 
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oxygen permeability.  Molecular imprinting method was employed for the production 

of the weakly cross-linked membrane.  That is, TM was introduced into the medium 

while creating the membrane, in order to leave behind pores perfectly tailored for 

timolol.  The adsorption of TM in this study gives valuable insight about the 

mechanism of adsorption of TM.  Adsorption of TM has been fit to Langmuir isotherm.  

The factors affecting adsorption was investigated.  These are pH, and interaction of 

timolol by carboxylic groups of the polymer MAA (which can be manipulated by 

changing composition).  Timolol interaction with carboxylic groups of MAA is 

expected to be ionic since timolol was positively charged in the loading experiments 

(pKa of protonated timolol is 9.2), and/or through hydrogen bonding with the amino, 

ether and hydroxyl groups of timolol structure (Figure 4.1).  This information suggests 

that the TM may interact with carboxylic groups of the hyaluronic acid. 

 

 

Figure 4.1 Structure of timolol maleate salt. 

 

The imprinted gels exhibited a better performance in adsorption tests.  This is 

related to the fact that they are weakly cross-linked compared to the unimprinted gel.  It 

could be stated that cross-linking reduces adsorption capacity, especially when there is 

too much of it.   

 

The isoelectric point of the membrane is of critical importance in the delivery of 

a cationic drug like TM.  The isoelectric point of the SF membrane is around pH 4.0 

[57].  The isoelectric point dictates that above pH 4.0, the membrane will act as a 

cation-exchanger and below pH 4.0 it will act as an anion-exchanger.   Below the 

isoelectric point, cations tend to be excluded from the membrane.  So, in order to 

control the rate of drug delivery pH can be manipulated as well as the current density.  

Changing the composition of the polyion complex could control the delivery behavior.  
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As the composition is changed, the responses of the patch to pH and current density 

changes could be altered. 
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CHAPTER 5                                                                  

EXPERIMENTAL 

5.1. Preparation of Silk Fibroin Solution by Ajisawa’s Solution 
 

In order to cast silk fibroin films from aqueous solutions, the preparation of the 

aqueous solution is handled first.  Silk fibroin aqueous solution is prepared by the 

universally applied Ajisawa’s method as mentioned in Chapter 3.  This method is 

reported not to cause considerable degradation of the silk structure and can be used 

safely [28].  The aqueous solution of the silk fibroin obtained by this method is prone to 

get unstable (gelling) and it is preferred that it is prepared just prior to use.  Preparation 

of silk fibroin is given in Figure 5.1. 

 

The cocoon silk of Bombyx mori was obtained in reeled form from Bursa 

Institute for Silkworm Research.  In order to assure complete removal of sericin; silk 

was processed three times in boiling 0.5 wt % Na2CO3 solution (98-100 oC) for 1 hour 

[6].  In order to avoid the water vapour bubbles to be confined in the silk structure and 

then burst out, large beakers (2 L) were used.  The sample was rinsed with water at the 

end of each batch without squeezing, at the last run squeezed by hand, and dried at 

ventilated oven at 35 oC on a watch glass.  The silk was now degummed (free from any 

sericin) and consisted of only fibroin protein. 

 

1.5 g of the purified fibroin was dissolved in 20 times (weight/volume) ternary 

solvent CaCl2-ethanol-water (mole ratio=1:2:8) at 78 oC for 2 hours with shaking in 

water bath.  It was observed that less than 15 times solvent is insufficient to provide the 

physical mixing.  This solution was dialyzed for 3 days at 4 oC in cellulose tubing with 

a molecular weight cut-off value of 12000 against deionized water to remove CaCl2 and 

ions.  Dialysis water was changed frequently.  Fibroin molecules in aqueous solution 

aggregate and entangle each other by hydrophobic interactions because most of the 

amino acids in silk chain are hydrophobic [6], giving silk a random coil structure in 

water. 
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(sericin 
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Aqueous fibroin 

solution ready 

(2.5% w/v) 

Figure 5.1 Preparation of silk fibroin solution 

  

 In order to check the removal of calcium, silver chloride precipitation test was 

applied to the dialysis water.  After the dialysis ended, dialysis bag was taken and 

precipitate of silk was filtered.  It was observed that the filtering of the precipitate is 

useful in preventing the agglomeration of fibroin molecules during the rotary 

evaporator step.  In the presence of the precipitate, it is possible that agglomeration is 

enhanced by the seeding effect of the precipitate for the crystallisation of the protein 

molecules.  The clear silk solution was concentrated to 10% (w/w) at the rotary 

 29



 

evaporator at 43 oC (Buchi evaporator, set T to 47-48 oC), revolutions per minute to 60 

rpm.  The ideal method for concentrating is slow evaporation because elevating the 

temperature to accelerate evaporation causes the agglomerated particles to be formed in 

the solution.  Although it was reported that the solution can be concentrated by hanging 

the dialysis tube in air, in an air-ventilated room at room temperature [43], it was 

experienced by us that this would lead to gelling of the solution.  Extended periods 

cause the solution become unstable and cooling can not prevent this.  Actually, gelling 

of the solution was observed even at low temperatures like 4 oC after one month.  For 

this reason, slow evaporation was not employed.  Slow evaporation by hanging the 

dialysis bag at cool environment (like 10 oC) can prevent any occurrence of gelling.  An 

alternative to eliminate the evaporation step can be to avoid the dilution of the silk in 

Ajisawa’s solution and designing the final solution to have the desired concentration.  

All the same, this might cause an unstable solution. 

 

5.2. Preparation of Drug Loading Reservoirs 
 

The matrices to be used in delivery tests were prepared from different forms of 

silk fibroin and blends with hyaluronic acid and glutaraldehyde.  All of these fabricated 

matrices are shown in Figure 5.2.   
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Figure 5.2 Block diagram describing various forms of SF and SF/HA blends produced 
in this study. 
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5.2.1. Preparation of Different Forms of SF 

 

Silk fibroin films have been cast in different forms.  Pure silk fibroin (SF) films, 

SF/hyaluronic acid blend films, and SFGTA blend films were produced.  These films 

were dried at varying conditions.  In addition, some pure SF films were subjected to 

post treatment in 50 % aqueous methanol.  Different forms like freeze-dried fibroin 

have also been prepared.  For the first membrane composition, which is actually pure 

fibroin, the 10% SF solution was cast on a glass Petri dish and dried at 30 oC in air for 

48h.   

 

Some applications of hyaluronic acid were listed in section 3.5.  In order to 

produce a polymer matrix of silk fibroin and hyaluronic acid, the aqueous solutions of 

the both materials were mixed at varying proportions.  The aqueous solutions were 

dilute, the silk solution was 10 % (w/v) while the hyaluronic acid solution was 1 %.  

The resulting matrices were tested for solubility in water.   

 

5.2.1.1 Methanol Treated SF Films 
 

After the casting of the silk fibroin membrane, it can be treated with methanol, 

which is known to lead to crystallinity of the structure [6].  The silk fibroin is in random 

coil form in aqueous medium of neutral pH.  Placing the films in a 1:1 ratio aqueous 

methanol solution changes the conformation to an arranged state of the β sheets.  An 

immersion time longer than 3 minutes is sufficient for the film to become insoluble in 

water [45].  A change to β-pleated structure enables the formation of hydrogen bonds 

between the adjacent fibroin chains, thus making the film insoluble in water.  The films 

used for methanol treatment experiments were water-soluble films cast in ambient or 20 
oC temperature.  The solution was 50 % aqueous methanol solution. Immersion periods 

of 3, 6 and 10 minutes were applied.  After the films were placed in small beakers, first 

methanol and then water was added.  Films were rinsed with deionized water after 

treatment and left for drying at ambient temperature. 
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5.2.1.2 Heat Treated SF Films 
 

For the heat-treated SF films, aqueous fibroin solution was used without 

concentrating.  The heat treatment is known to cause the β sheet transformation to 

occur.  The temperature of drying was 45 oC.  Relative humidity was not controlled and 

the samples were dried at the ventilated oven for one day.  The samples acquired some 

cracks attributed to the rapid drying.  There were also ordered crinkles, which were 

parallel to each other.  These samples were pretty brittle.  Heat-treated films were 

insoluble in water.  

 

5.2.2. 

5.2.3. 

Preparation of SF/HA Films 

 

Our goal was to form an insoluble biocompatible matrix which has adsorption 

capacity for positively charged drug molecules. The agent HA is a good candidate for 

this purpose.  10 % SF solution was used.  1 % HA solution was prepared by slowly 

adding HA to deionized water while stirring vigorously.  HA used in this study has a 

average molecular weight of 1.63 x 10-6 Dalton (Fluka).  The compositions of the 

fabricated membranes and their solubility are listed in Table 6.2.  The compositions of 

the fabricated films were designed to cover the full composition range. The pH values 

of the two blending agents were between 6-6.5.  The mixing of two agents was 

achieved by using magnetic stirrer in the casting container which is the Petri dish.   

 

SF Film Crosslinked with Glutaraldehyde 

 
In order to obtain SF films with good mechanical properties to be handled in the 

diffusion experiments, SF films were crosslinked with glutaraldehyde (GTA).  For this 

purpose, aqueous SF solution was used without further concentrating.  Films were cast 

on Petri dishes of 60 mm diameter to contain a total of 0.4 g fibroin and 0.4 ml of 25% 

GTA solution, and dried at ambient temperature for 3 days.  The thickness of the 

membranes was measured from SEM images.  They were 90-110 µm thick. 

 

For the preparation of drug loaded SFGTA films, same procedure was applied; 

with the exception that drug solution is mixed to the film during casting.  The amount 
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of drug solution added was in the range of 40 to 150 µl.  In order to prepare the 

membrane for diffusion experiment, a round shaped membrane with a diameter of 13 

cm is cut from the mother film in the Petri dish.  The mother film is soaked with 10 ml 

of water for 10 minutes to make it flexible and prevent cracking during membrane 

cutting.  After the membrane is cut, it is rinsed with water and placed in the diffusion 

cell.  Some of the loaded drug can be dissolved during this stage. 

 

5.2.4. Freeze-Dried SF 

 

Freeze-dried films were prepared in order to obtain high surface area and 

insolubility. Aqueous fibroin solution was directly used without concentrating.  The 

freeze drier was operated between -45 and -50 oC.  The pressure was not controlled and 

randomly assigned by the device itself, changing around minus 250-300 mm Hg.  This 

form is denoted SFFD.  The product of the freeze drying was usually slightly soluble in 

water.  The freeze-dried sponge of fibroin was subjected to methanol treatment prior to 

adsorption experiments to ensure complete insolubility.  This is denoted SFFD-MT.  

The SEM images of samples were taken.  These were compared with the literature 

images [30].  The sponge samples for SEM were prepared with care since the sponge is 

very susceptible to the touch and can easily deform. 

 

There was another sponge produced in this way: first the SF solution was 

poured in a Petri dish of 60 mm diameter and then placed in the cryostat for freezing.  

Temperature reached steady-state at -35 oC and samples were frozen at this temperature 

for one hour.  Samples were stored at -18 oC in deep-freeze until they were freeze-dried 

at the same conditions listed above.   

 

5.3. Characterization of the Membranes 
 

The microstructures of the membranes were examined by SEM.  Results were 

extracted about the porosity, homogeneity, and surface morphology from images.  For 

crystallinity of the membrane, X-ray diffractometer (XRD) was used.  Fourier 

transform infrared spectroscopy (Ft-Ir) was used to understand the chemical interaction 
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among SF and the blending agent HA [82].  Ft-Ir absorption bands for specific groups 

in the structure were analysed.   

 

5.3.1. 

5.3.2. 

Solubility Tests 

 

The solubility tests were performed by dipping the samples in deionized water 

and observing the state of the films visually for three days.  Some of the samples were 

directly subjected to the adsorption tests which counted as a solubility test, and the 

samples which were dissolved were quickly noted and eliminated from the adsorption 

tests.   

 

Analysis Methods 

 

The scanning electron microscope (SEM) images were taken from the surface 

and cross-section of the samples by Philips XL 30S FEG.  The images were used for 

assessment of porosity, homogeneity of blending agents (existence of separate phases), 

and configuration of the protein structure.  Measurement of thickness and pore size 

were made.  The X-ray diffraction (XRD) analysis gives us insight about the 

crystallinity of the samples.  XRD analysis was carried out by Philips X’Pert Pro.  This 

information can be interpreted by comparing the amorphous or crystalline samples, as 

well as any increase in crystallinity deserves attention.  It should be noted that the 3 

minute and 6 minute methanol treated films were ground to powder form for XRD 

analysis while 10 minute treated film was analysed directly.  In order to confirm the 

crystallization of fibroin in methanol, X-ray diffractograms of methanol treated films 

kept in aqueous methanol for increasing intervals of time were compared.  The Fourier 

transform infrared (Ft-Ir) spectroscopy is a powerful method to investigate the chemical 

bonds and interactions within a sample.  Samples in membrane form were subject to Ft-

Ir analysis by Shimadzu FTIR-8601. 

 

5.4. Adsorption Experiments 
 

Different samples prepared by different methods were tested for capability of 

adsorbing the model drug timolol maleate (TM).  Samples were placed in dilute 
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solutions of TM changing between 2.5 and 5 mM.  The samples were cut from the 

films, freeze-dried sponges, raw silk and degummed silk.  The ultraviolet (UV) 

absorbance value is directly related to concentration of the adsorbed or released drug.  

The calibration curve for TM absorbance is given in Figure.A1 in Appendix A.  In this 

study absorbance value is used for the measurement of concentration.  It was required 

that the samples were insoluble in water since in case of presence of dissolved particles, 

the reliability of UV spectroscopy analysis would be reduced.  The samples were kept 

in the adsorption medium of timolol maleate solution for 3 days at the shaker-incubator 

at 35 oC and 100 rpm.  pH of solution was kept constant at 6.5 by phosphate buffer.  

Just prior to dipping in the timolol maleate solution, samples were soaked for a short 

time in buffer solution in order to let them absorb water.  This method makes it possible 

to exclude the sorption and consider only adsorption.  The   samples taken from the 

adsorption medium were diluted by deionized water or buffer solution to reduce the 

concentration to the range of analysis by UV.  Then the absorption at this concentration 

was corrected to actual value by multiplying with the dilution factor, subtracted from 

the original concentration of the stock solution.  Difference gave the amount adsorbed.  

Results were normalized to per gram basis to make a comparison between different 

samples and the literature results.  “Per gram” basis is more convenient than other 

options like “per unit area” basis since a comparable measurement of areas is not 

possible.   

 

5.5. Iontophoretic Experiments 
 

In order to test the performance of drug delivery from and through the 

membranes fabricated, the iontophoretic setup has been established.  The main parts of 

this setup is the diffusion cell, the Iomed iontophoretic drug delivery device as the 

power supply, the UV visible spectrophotometer with the flow cell installed, peristaltic 

pump, and the tubings, connections etc.  The schematic of the custom-made diffusion 

cell employed is given in Figure 5.3.  The design of the cell owes inspiration to Franz 

diffusion cells [83].  This cell consists of two polytetrafluoroethylene (PTFE) parts 

joined end to end and an o-ring in between, with the membrane fixed in the middle and 

sealed with two gaskets.  Silver/silverchloride electrodes were placed in the upper and 

lower compartments respectively.  The cathode (Ag) is on the upper side and anode 
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(AgCl) on the lower side.  The design of the system enables in-situ analysis of the 

amount of drug delivered to the receptor solution.  This was achieved by employing a 

receptor solution chamber which is not very large.  Diameter is 13 mm which gives an 

active membrane area of 1.327 cm2.  The total volume of the receptor chamber has a 

volume of 4.2 ml.  This design ensures an undisturbed laminar flow in the receiver side.  

Vigorous mixing was not desirable since this would cripple the in-situ analysis of the 

drug delivery.   

 

The drug solution used in the experiments was the eye drop of timolol (Timosol 

by Bilim İlaç), which is a 0.5% aqueous solution, equivalent to 0.68 mg TM per mL of 

drug, or the stock solution of TM (Sigma) prepared again at 0.5%.  The volume of the 

injected drug solution was in the range of 40 µl to 1 ml.   
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is sucked in from the PBS container.  The sample then flows through the receptor cell 

below the membrane and is sent to the flow-cell installed in the ultraviolet-visible 

spectrophotometer for analysis of TM concentration. Measured concentration data were 

recorded continuously at the computer. The sample was collected at the effluent 

container after leaving the flow-cell. 

 
Figure 5.4 Iontophoresis experiment set-up
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CHAPTER 6                                                                  

RESULTS 

6.1. Characterization of the Membranes 
 

6.1.1. Effect of Post Treatment on the Structure of Silk Fibroin 

 

The silk fibroin films cast from the aqueous solution were dried at varying 

conditions. The films cast at 20 oC and 45 percent relative humidity (RH) were soluble. 

Post-treatment with methanol was used to some of these membranes.  Heat treated films 

were prepared by casting and drying at 45 oC.  It is understood that unless an attempt 

was made to induce porosity in the structure, all fabricated SF films have dense 

structure. 

 

Insolubilization is required for loading drug on membranes and the delivery 

experiments in aqueous media.  Methanol treatment and heat treatment were used for 

this purpose on silk membranes.  All of the obtained insoluble matrices are listed in 

Table 6.1.  It was observed 3 minutes was long enough to make the films insoluble.  

Though both of the methanol (SFMT) and heat treated (SFHT) films possess crystalline 

structure, in literature grainy structure of SF films dried at high temperature is also 

mentioned [40].  This was also observed in this study.  Methanol and heat treated films 

were similar in physical appearance and their outcomes in analyses.  Some of heat 

treated films acquired cracks and wrinkles due to rapid drying.  Figure 6.1 compares the 

morphology of methanol treatment and heat treatment on SF.  The heat treated 

membranes also have a cross-section with varying porosity, which is attributed to the 

quick evaporation of the water content.  The methanol treated film was dense.  

 

It was observed that if the films were insoluble in water then they would not 

interact with water no matter how long they were exposed to water.  In case of soluble 

films, it was observed that the samples were dissolved at the very first minutes of 

exposure.  Some of the samples were dissolved partially.  XRD analysis is useful in 

explaining if the insolubility of any subject membrane was brought about by actually 
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electrostatic interactions formed between or within the blended agents, or by 

configuration change which is dependent on drying conditions and factors like pH and 

ionic strength. 

Table 6.1 Insoluble Samples 

Sample Insolubilization achieved by 

Blend membrane w/ comp.  10% HA 90% 

SF 

Interaction justified by OH stretching 

Blend membrane w/ comp.  15% HA 85% 

SF 

Interaction justified by OH stretching 

Methanol treated SF film Configuration change to β pleated 

structure 

Heat treated SF film Configuration change to β pleated 

structure 

SF film cross-linked w/ glutaraldehyde Crosslinking 

Methanol treated SF freeze-dried sponge Configuration change to β pleated 

structure 
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formation and vaporization taking place simultaneously. The membranes acquired 

macropores of 1 to 4 µm. 

 

A high surface area is required to have a high drug adsorption capacity.  In order 

to increase surface area, freeze drying of the aqueous solution of fibroin was performed.  

A spongy structure was obtained.  Freeze-dried samples consist of a mixture random 

coil and β-pleated structure.  This was understood by partial solubility of the freeze-

dried sponge. Methanol treatment for 10 minutes in 50 % aqueous solution was applied 

in order to achieve insolubility.  Adsorption tests yielded comparable results with 

literature in terms of adsorbed drug per gram of material.  The freeze-dried sponge can 

be placed in between two layers of other membrane and used as a drug reservoir in 

iontophoresis.  As seen in Figure 6.2.a and Figure 6.2.b, the structure was porous with a 

high surface area.  Methanol treatment has turned the structure to a more porous form.  
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igure 6.2 a) SEM image of freeze-dried SF sponge.  Magnification: 2000x. b) 
agnification: 650x.  c) After methanol treatment.  Magnification: 2000x. d) First 

rozen then freeze-dried SF.  Magnification: 250x.   
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The freeze dried SF sponge seen in Figure 6.2.c consists of regions with low and 

high porosity.  The samples have the well defined wall like structures and separate 

compartments. The samples could be compared with the literature samples of freeze 

dried SF by Li et al.[30], and the sheet-like structure was similar with the freeze-dried 

SF by Tsukada et al. [52].  Sample seen in Figure 6.2.d were first frozen and then 

freeze-dried.  Hence it had very low density and it was weak. 

 

To observe the effect of duration of metha l treatment, three identically formed 

films were treated in methanol and for 3, 6, a

results are given in Figure 6.3.  In Figure 6.3.a,

was not complete.  This film was also insolubl

order structure makes it insoluble.  This is in 

minutes is reported to be sufficient to make film

that insolubilization can be achieved by increase 

) 
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Figure 6.3 X-Ray diffractograms of SF films trea
MT 3 min) b) for 6 minutes (SF-MT 6 min) c) fo
treated SF film dried at 45 oC.  
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The XRD of SF-MT 3 minute depicted in Figure 6.3.a is highly irregular and noisy.  In 

comparison, the SF-MT 6 minute (Figure 6.3.b) is more ordered and yields twice higher 

intensities. 

 

The crystalline peaks and increase in intensities are visible in at XRD result of 

SF-MT 10 minute Figure 6.3.c.  An interval of 10 minutes converts the structure to 

crystalline.  The sample was perfectly crystalline, yielding a peak at 16.85 2θ degree 

with an intensity of 471.  When X-ray results of SFMT 10 minute (Figure 6.3.c) and 

heat treated SF film dried at 45 oC (Figure 6.3.d) were compared, similar effects on the 

crystal structure of the films were observed.  The heat treated SF film yields an XRD 

pattern similar to the other crystalline structures.  The insolubility property and the 

crystal structure finding are consistent with the literature (47, 37, 40).   
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e 6.4 Ft-Ir spectra of a) silk film and b) methanol treated silk film. 

 been mentioned that the films cast from the aqueous solution are soluble and 

t of random coil and α structures.  In Chapter 3 it was stated that starting 

ntration and casting temperature is important for the structure of the fabricated 

 When casting temperature is below 40 oC, an aqueous solution yields an SF film 

-form and random coil, which is obviously soluble.  Treating in 50% aqueous 

nol for several minutes convert the silk fibroin to β pleated structure.  The 

uration change by methanol treatment can be detected by Ft-Ir spectra results of 

43



 

SF and SFMT films as given in Figure 6.4.  The characteristic peak of amide I and 

amide II bands are between 1620-1660 cm-1 and 1530-1540 cm-1 respectively [83, 82, 

85].  When SF and SFMT were compared, it was observed that the peaks attributed to 

both amide bonds were trimmed. That is to say, the absorbance peaks at the two amide 

bonds were lowered to the same intensity and became one broad peak. 

 

6.2. Formation of SF Film 
 

6.2.1. SF/HA Films 

 

The weight ratios of SF and HA and solubilities of films formed are given in 

Table 6.2. 

 
Table 6.2 Weight ratios of the two components in the polymer matrices.   

Hyaluronic acid Silk fibroin Solubility 
0 100 Soluble 
10 90 Insoluble 
15 85 Insoluble 
25 75 Soluble 
30 70 Soluble 
50  50 Soluble 
70  30 Soluble 
75  25 Soluble 
100 0 Soluble 
 

These films fall into two main categories: soluble and insoluble.  The solubility 

case might not necessarily mean that there was no interaction in the structure.  The 

stoichiometric balance amount of HA can cross-link with SF and excess HA would be 

free and dissolve in water.  However, there were no distinctive morphological 

differences between the soluble and insoluble films.  All were dense and for the most 

part non-porous.  All of the films below were around 10 µm thick.  When the two 

solutions were mixed, their mixture became white although both of the blending 

solutions were transparent.  Turbidity is a consequence of intense light scattering with 

colloidal dispersion [6].  Then our protein polysaccharide mixture of SF and HA was 

not perfectly homogeneous [86]. 
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Figure 6.6 SEM image of cross-section of insolu
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Figure 6.7 X-Ray diffractograms of a) 10% HA
insoluble film (smoothed). 
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Similar results are reported in literature.  Kim et al. [86] have produced polyion 

complex composite membranes consisting of sodium alginate/chitosan.  The 

complexation occurs between the amino and carboxyl groups of the ionic polymers 

involved in this study.  It is stated that as the polyion complex formation proceeded, the 

O-H stretching peak at 3380 cm-1 became narrower, which is attributed to an increase in 

intermolecular interaction such as hydrogen bonding between sodium alginate and 

chitosan.  Coating achieved by electrostatic interactions between a cationic substance 

and HA was also mentioned earlier (Section 3.5) [77].  It is known that the presence of 

COOH groups in HA promote the formation of hydrogen bonds with components of the 

biological substrate in the body (mucoadhesiveness) [74].   

 

 It is also known that blending with other polymers like sodium alginate and 

chitosan can change conformation of silk [33].  The results for insoluble films could 

also be questioned in this aspect.  

 

6.3. Glutaraldehyde Cross-Linked SF Film 
 

The SFGTA film has very dense, non-porous and transparent structure.  The 

film looks virtually impenetrable in the SEM images.  SFGTA films have crystalline 

structure. 

6.4. Adsorption Experiments 
 

One aim of this study is to investigate the potential of SF drug reservoirs to be 

employed in iontophoretic delivery.  The second stage of this effort is to adsorb the 

drug molecules onto the films.  In order to investigate the TM adsorption capacity, 

membranes were placed in 10 ml aqueous solutions of timolol of various concentrations 

[79].  The pH of the solution was adjusted to 6.5-7.  Samples were equilibrated for 3 

days and after that, amount adsorbed was found from the difference in concentration of 

timolol in the initial and final solutions.  UV spectrophotometer was used to measure 

the TM concentration in the final solution.  The composition of the membrane that 

gives the maximum adsorption of timolol maleate was determined. 
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Figure 6.8 Ft-Ir spectra of a) HA film b) 10% HA, 90% SF soluble film c) 10% HA, 
90% SF insoluble film d) SF film 
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Figure 6.9 Results of adsorption experiment. Equilibrium concentrations. 

 

Adsorption tests were carried out for the two different freeze-dried sponges, raw 

silk, 10% HA insoluble film, and degummed silk.  All the samples adsorbed TM in the 

first day and released around 20 percent of the adsorbed amount.  This is a general trend 

observed in all the drug uptake experiments.  The average adsorbed amount around 0.2-

0.35 mmol per gram is depicted in Figure 6.9.  This amount was comparable with 

literature results where commercially available membranes were used [16], which was 

mentioned in section 2.2.4.  It was reported that TM had ionic interaction with carboxyl 

groups of the methacrylic acid [79].  Same interaction takes place in this study between 

timolol and carboxylic acid groups of hyaluronic acid. Blending the silk fibroin with 10 

% HA has increased drug loading capacity. 

 

6.5. Diffusion Experiments 
 

For the iontophoresis experiments silk fibroin membranes with good mechanical 

properties were needed.   Mechanical strength was required in order to handle the films 

in the diffusion cell.  For this purpose silk fibroin membrane crosslinked by 

glutaraldehyde were used in the experiments.   
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6.5.1. Passive Diffusion Experiments 

 

The passive diffusion experiments were performed in the iontophoretic setup 

with the same buffer solutions and under the same conditions with exception that no 

current application was present. 

6.5.1.1 SFGTA Films 

6.5.1.1.1 Drug loaded SFGTA Films 

 

Figure 6.10 Passive drug delivery for SFGTA drug loaded film.  I=0. 

 

The passive diffusion results of the drug-loaded with 150 µl eye drop SFGTA 

membrane showed that the rate of diffusion was related to the concentration gradient.  

This membrane contained 0.236 millimoles of TM.  Flowrate was 4.87 ml/minute.  As 

the drug in the matrix was depleted rate slowed down as depicted in Figure 6.10.  It was 

observed that passive diffusion was unable to mobilize the drug molecules present in 

the membrane. 

6.5.1.1.2 Blank SFGTA Films 

 

When SFGTA membranes were used for passive delivery, they allowed 

diffusion of very low amounts of drug which was hardly measurable. 
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6.5.2. Active Diffusion Experiments 

 

In the active diffusion experiments, current was applied to the system after an 

initial passive diffusion interval of between 20and 30 minutes passed.  This passive 

diffusion interval serves as a basis and is visible in the absorbance results.  The current 

application was performed at three levels: 1, 2, and 4 milliamperes (mA).  When 

divided to the active membrane area of 1.327 cm2, these currents correspond to current 

densities of 0.75, 1.5, and 3 mA/ cm2 respectively.  The absorbance results of the active 

diffusion experiments at three current levels were compared with each other and the 

passive condition (I=0). 

 

In the following figures, (a) shows the absorption data for the delivery of drug 

and (b) shows the duration and magnitude of the current applied on the same time scale.  

Duration of current application is called a “pulse” in this text.  The applied dose in the 

iontophoretic delivery is the current level multiplied with the current application 

interval.  This dose was usually 80 mA minutes, which is the maximum amount 

deliverable at one run by Iomed power supply.  When current was 4 mA, this dose is 

given in 20 minutes.  When current is lowered, duration of current application extends.  

For instance, when current is reduced by half to 2 mA, duration doubles to 40 minutes.   

 

6.5.2.1 SFGTA Films 

6.5.2.1.1 Drug loaded SFGTA Films 

 

Drug loaded with 150 µl eye drop SFGTA membrane was washed with 

deionized water (DW) for 10 minutes prior to experiment.  The thicknesses of the films 

were 100 µm.  Flowrate was 4.5 ml/minute. The membrane contains 0.236 millimoles 

of TM.  There was an initial peak in drug absorption depicted in Figure 6.11.  This 

could be related to the initial washing of the membrane by the buffer flowing down in 

the receptor compartment.  After the gradual reduction in passive diffusion, the first 

pulse with I=1 mA was given for 40 minutes.  Sharp increase and following decrease 
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was observed in drug release.  Then gradual reduction with a similar trend prevailed.  

The diffusion rate and course were similar with the passive diffusion but when the 

current was applied, a response was suddenly received.  Then the diffusion went back to 

the same track which was similar to passive diffusion. 
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Figure 6.11 a) Iontophoretic drug delivery for SFGTA drug loaded film.  b) Current 
application course with I=1 mA. 

 

It was understood that current application has mobilized some of the drug 

molecules which were adsorbed or trapped in the membrane.  This tells us that the 

current application has an enhancing effect on transport.  However, it was not possible 

 52



 

to control the delivery in an on/off fashion.  Another membrane piece was cut from the 

same film and this time subjected to two different current levels of 2 and 4 mA 

respectively (Figure 6.12).  Flowrate was 4.3 ml/minute. The results of this experiment 

support the above suggestions.  Application of current at 2 mA level produced a quick 

response of diffusion increase.  When another current was applied at the higher value of 

4 mA, there was no or very slight response.  It is understood that in order to see a 

prominent increase in diffusion some accumulation of adsorbed or trapped drug 

molecules should take place.  The fact that the magnitude of the response is not closely 

related to the level of current applied support the suggestion of “enhancing/mobilizing” 

effect of current.  The drug molecules might have been cross-linked by GTA and 

therefore majority of them may be immobilized.  For Figure 6.11 and Figure 6.12, drug 

release was very low and these figures depict the poor performance of drug loaded 

membranes.  These figures report absorbance data obtained over duration of 

experiment. 
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Figure 6.12 a) Iontophoretic drug delivery for SFGTA drug loaded film.  b) Current 
application course of two current applications of I=2 and 4 mA. 

 

Figure 6.12 shows the drug delivery for SFGTA membrane loaded with 150 µl 

eye drop, having identical properties with membrane whose results were given in 

Figure 6.11.  The membrane contains 0.236 millimoles of TM.  It is understood that 

washing the drug loaded film prior to cutting does not release an amount of drug that 

will affect diffusion behaviour since this run produced an higher initial peak which 

indicates that drug in the membrane was not removed by washing. 

 

6.5.2.1.2 Blank SFGTA Films 

 

These films were produced identically with other SFGTA films.  The 

thicknesses of the films are between 90-110 µm.  Their behavior under current 

application and responsiveness has been investigated.  Drug loading was 1 ml from the 

stock solution which contains equivalent drug to the eye drop. This makes 1.572 

millimoles of TM.  The dose of the delivery was 80 mA minutes for all the three pulsed 

type experiments.  In all the experiments, there was a 20 minutes (1200 sec) of passive 

initial section.   
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Figure 6.13 Iontophoretic drug delivery experiment for SFGTA membrane.  Pulsed 
current application of I=4 mA a) Delivery of drug b) Current application course. 

 

In Figure 6.13, it is seen that after pulse was given at 4 mA, the released drug 

concentration showed a sharp increase.  Flowrate was 2.83 ml/minute.  After pulse 

ended, delivery level made a steep fall, but not to the initial value.  Delivery even 

increased for sometime and then decreased.  Around 80 minutes were given to the 

system to come to a stable course.  Then pulses were given in a regular fashion for 20 

minutes and 20 minutes was allowed to pass without current.  One cycle was a total of 

40 minutes.  All of these cycles produce eminent responses in the delivery.  As the drug 

in the receptor compartment was depleted, the peaks get smaller in magnitude and total 
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area under the curves was similarly reduced.  A good control of delivery by current 

application was achieved. 
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Figure 6.14 Iontophoretic drug delivery experiment for SFGTA membrane.  Pulsed 
current application of I=2 mA a) Delivery of drug b) Current application course. 

 

The amount of released drug for 2 mA pulsed current application was given in 

Figure 6.14.  Flowrate was 3.37 ml/minute.  After pulse ends, delivery level continued 

to increase gradually.  After more than one hour, released drug concentration was 

nearly steady and then pulses were given in a regular fashion for 40 minutes and 

another 40 minutes was allowed to pass without current, making a cycle of 80 minutes.  

Again pulses produce visible responses in the delivery.  The peaks differed slightly in 
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magnitude, yet total areas under the curves were approximately same.  This is 

reasonable considering the change in drug concentration in the receptor was slower 

compared to 4 mA case.  Current application could control amount of drug released. 
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Figure 6.15 Iontophoretic drug delivery experiment for SFGTA membrane.  Pulsed 
current application of I=1 mA a) Delivery of drug b) Current application course. 

 

The result of release experiment with 1 mA pulses is given in Figure 6.15.  

Flowrate was 3.09 ml/minute.  The system gave sluggish response with smaller 

amplitude compared to 4 and 2 mA cases.  There is a 20 minutes interval between the 

pulses.  This time pulses produce responses with increasing magnitude.  This is related 

to the gradual increase in the permeability of the membrane.   
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Three experiments at 4, 2, and 1 mA current levels are combined in Figure 6.16.  

It is suggested that there is a threshold value for the permeabilization of the membrane.  

When current was 4 mA, this threshold value was exceeded after first pulse was given.  

For 2 mA, threshold value was exceeded after two pulses.  Drug depletion does not 

have a considerable effect on diffusion rate in this case.  For the case when current was 

1 mA, threshold value was not exceeded during the course of the experiment and there 

was a gradual process of permeabilization.   
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Figure 6.16 Iontophoretic drug delivery for SFGTA membranes pulsed current 
application values of 1, 2, and 4 mA.   

 

In order to achieve controlled delivery of the drug in a pulsatile manner, current 

levels of 2 and 4 mA (current densities 1.5 and 3 mA/cm2) are sufficient.  Table 6.3 lists 

the amount of dosage application for three different current levels.  Dosage is obtained 

by multiplying current and application interval.  It was observed that the entire drug 

injected to the donor compartment passed to the receiver blank buffer solution for the 4 

mA case.  When current was lowered to 2 mA, 68 % delivery was obtained.  Lowering 

current level further to 1 mA resulted in a low drug release of 3.95 %.  2 mA is the 

threshold value for permeabilization of the membrane to take place and enable 

controlled drug release.  On the other hand, there is not a quantitative relation between 
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dosage and delivery.  It is understood that current level governs the permeability of the 

membrane. 

 

Table 6.3 Dose applications and corresponding drug release for iontophoretic 
experiments 

Current 

level 

(mA) 

Total 

duration 

(minute) 

Total 

dose 

(mA 

minute)

Drug loading 

(millimoles) 

Drug 

delivered 

(millimoles) 

Percent 

delivered 

Percent 

retained 

4 180 720 1.47 1.528 103.94 0 

2 200 400 1.47 1.000 68 32 

1 260 260 1.47 0.058 3.95 96.15 
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Figure 6.17 X-Ray diffractogram of methanol treated (10 min) SF film after 
iontophoretic experiment.   

 

The XRD results show that the electric field applied in iontophoretic experiment 

converts the silk structure to a more crystalline state indicated by an increase in the 

intensity of peaks.  This could be observed when XRD results of methanol treated films 

 59



 

before and after iontophoretic experiments, Figure 6.3 and Figure 6.17 are compared.  

Electric field application causes an increase of crystallinity in the structure.   

 

 

 

 

 

 

 
Figure 6.18 X-ray diffractograms of SFGTA film a) 
iontophoresis 
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CONCLUSIONS 

 

In this study, various forms of silk fibroin (SF) and SF with blending agents 

such as hyaluronic acid (HA) have been tested for their feasibility as a potential drug 

reservoir.  These were developed for use in iontophoretic transdermal drug delivery 

systems.  Different forms of silk and silk fibroin, such as raw silk, degummed SF, 

insolubilized freeze-dried SF, SF blended with HA were investigated for their 

adsorption capacity of timolol, which was used as the model drug.  The observed drug 

uptake capacities were close to those of commercial membranes in the market.  Fibroin, 

freeze-dried SF, and SF/HA films were compared to raw silk for drug loading capacity.  

Insolubilization of membranes by post treatment, manipulation of drying conditions, 

and blending with different agents were successfully achieved.  Configurational 

changes of fibroin protein and interactions between SF and HA were investigated by Ft-

Ir and XRD analyses.  The obtained insoluble membranes were investigated for drug 

delivery performance in a custom-made diffusion cell under passive diffusion and 

iontophoretic conditions.  It was demonstrated that the silk fibroin glutaraldehyde and 

methanol treated fibroin films could be successfully used for controlled drug delivery.  

There is a threshold value for permeabilization of the membrane. It was found that 

current densities 1.5 and 3 mA/cm2 were suitable to accomplish controlled delivery of 

the drug in a pulsatile manner.  The results of this study should be useful in controlled 

transdermal delivery of positively charged drug molecules.  

 61



 

 

REFERENCES 
 

1 A.E.  Vasil’ev, I.I.  Krasnyuk, S.  Ravikumar, V.N.  Tokmakhchi, Drug 
synthesis methods and manufacturing technology, Transdermal Therapeutic 
Systems For Controlled Drug Release (A Review), Pharmaceutical Chemistry 
Journal, Vol.  35, No.  11, 2001 

2 Fletcher K., Drug delivery: strategies and technologies, PSTT Vol.  1, No.  2, 
1998 

3 Yogeshvar N.  Kalia , Aarti Naik , James Garrison, Richard H.  Guy, Modeling 
transdermal drug release, Advanced Drug Delivery Reviews 48 (2001) 159–172 

4 Mingzhong Li, Shenzhou Lu, Zhengyu Wu, Ke Tan, Norihiko Minoura, 
Shigenori Kuga, Structure and properties of silk fibroin–poly(vinyl alcohol) gel, 
International Journal of Biological Macromolecules, 30, 2002 

5 Yu-Qing Zhang, Biotechnology Advances, Natural silk fibroin as a support for 
enzyme immobilization, vol.  16, Nos.  5/6, 961–971, 1998  

6 In Chul Um, HaeYong Kweon, Young Hwan Park, Sam Hudson, Structural 
characteristics and properties of the regenerated silk fibroin prepared from 
formic acid, International Journal of Biological Macromolecules, 29 (2001) 91–
97 

7 Jaskari T., Vuorio M., Urtti A., Manzanares J.  A., Hirvonen J., Controlled 
transdermal iontophoresis by ion-exchange fiber, Journal of Controlled Release, 
67 (2000) 179–190 

8 Ebtessam A.  Essa, Michael C.  Bonner, Brian W.  Barry, Iontophoretic 
estradiol skin delivery and tritium exchange in ultradeformable liposomes, 
International Journal of Pharmaceutics 240 (2002) 55–66 

9 Yogeshvar N.  Kalia , Richard H.  Guy, Modeling transdermal drug release, 
Advanced Drug Delivery Reviews 48 (2001) 159–172 

10 Banga A.  K., Chien Y.  W., Hydrogel Based Iontotherapeutic Delivery Devices 
for Transdermal Delivery of Peptide/Protein Drugs, Pharmaceutical Research, 
Vol.  10, No.  5, 1993 

11 Barry B.  W., Is transdermal drug delivery research still important today?, DDT 
(Drug delivery tech.), Vol.  6, No.  19, 2001 

12 Banga A.  K., Transdermal Iontophoretic Drug Delivery, Drug Delivery 
13 Banga A.K., Prausnitz M.R., Tibtech, Assessing the potential of skin 

electroporation for the delivery of protein- and gene-based drugs, Vol.  16, 
October 1998 

14 Anthony F.  Coston, John K.-J.  Li, Iontophoresis: Modeling, Methodology, and 
Evaluation, Cardiovascular Engineering: An International Journal, Vol.  1, No.  
3, September 2001 

15 Richard H.  Guy , Yogeshvar N.  Kalia , M.  Begona Delgado-Charro, Virginia 
Merino , Alicia Lopez , Diego Marro, Iontophoresis: electrorepulsion and  
electroosmosis, Journal of Controlled Release 64 (2000) 129–132 

16 Ruey-Yih Lin, Yih-Chien Ou, Wen-Yih Chen, The role of electroosmotic flow 
on in-vitro transdermal iontophoresis, Journal of Controlled Release 43 (1997) 
23–33 

17 D.F.  Stamatialis, H.H.M.  Rolevink, G.H.  Koops, Controlled transport of 
timolol maleate through artificial membranes under passive and iontophoretic 
conditions, Journal of Controlled Release, 81 (2002) 335–345 

 62



 

18 Jaskari T., Vuorio M., Kontturi K., Manzanares J.  A., Hirvonen J., Ion-
exchange fibers and drugs: an equilibrium study, Journal of Controlled Release, 
70 (2001) 219–229 

19 Tarvainen T., Svarfvar B., Akerman S., Savolainen J., Karhu M., Paronen P., 
Jarvinen K., Drug release from a porous ion-exchange membrane in vitro, 
Biomaterials, 20 (1999) 2177–2183 

20 Akerman S., Viinikka P., Svarfvar B., Jarvinen K., Nasman J., Urtti A., Paronen 
P., Transport of drugs across porous ion exchange membranes, Journal of 
Controlled Release, 50 (1998) 158–166 

21 Akerman S., Svarfvar B., Kontturi K., Nasman J., Urtti A., Paronen P., Jarvinen 
K., Influence of ionic strength on drug adsorption onto and release from a 
poly(acrylic acid) grafted poly(vinylidene fluoride) membrane, International 
Journal of Pharmaceuticals, 178 (1999) 67–75 

22 Kankkunen T., Sulkava R., Vuorio M., Kontturi K., Hirvonen J., Transdermal 
iontophoresis of tacrine in vivo, Pharmaceutical Research, Vol.  19, No.  5, 2002 

23 Tarja Kankkunen , Inkeri Huupponen , Katri Lahtinen , Mats Sundell , Kenneth 
Ekman , Kyosti Kontturi , Jouni Hirvonen, Improved stability and release 
control of levodopa and metaraminol using ion-exchange fibers and transdermal 
iontophoresis, European Journal of Pharmaceutical Sciences 16 (2002) 273–280 

24 Jouni Hirvonen , Lasse Murtomaki , Kyosti Kontturi, Experimental verification 
of the mechanistic model for transdermal transport including iontophoresis, 
Journal of Controlled Release 56 (1998) 169–174 

25 D.Voet, J.G.Voet, Biochemistry, New York: John Wiley and Sons, c1995 
26 Hirai Y., Ishikuro J., Nakajima T., Some comments on the penetration of water 

vapour into regenerated silk fibroin, Polymer 42 (2001) 5495–5499 
27 Yu-Qing Zhang, Applications of natural silk protein sericin in biomaterials, 

Biotechnology Advances, 20 (2002) 91–100 
28 Yamada H., Nakao H., Takasu Y., Tsubouchi K., Preparation of undegraded 

native molecular fibroin solution from silkworm cocoons, Materials Science and 
Engineering C 14 (2001) 41–46 

29 Mukhamedzhanova M.  Yu., Takhtaganova D.B., Pak T.S., Properties of 
concentrated solutions of fibroin and its derivatives, Chemistry of Natural 
Compounds, Vol.  37, No.  4, 2001 

30 Mingzhong Li, Masayo Ogiso, Norihiko Minoura, Enzymatic degradation 
behavior of porous silk fibroin sheets, Biomaterials 24 (2003) 357–365 

31 G.  Freddi, G.  Pessina, M.  Tsukada, Swelling and dissolution of silk fibroin 
(Bombyx mori) in N-methyl morpholine N-oxide, International Journal of 
Biological Macromolecules 24 (1999) 251–263 

32 Lim V.  I., Steinberg S.  V., A novel structural model for silk fibroin: αLαRβ-
structure, FEBS Letters, Vol.  131 No.  2, pp.  203–207, 1981 

33 Xin Chen, Zhengzhong Shao, Nebojsa S.  Marinkovic, Lisa M.  Miller, Ping 
Zhou, Mark R.  Chance, Conformation transition kinetics of regenerated 
Bombyx mori silk fibroin membrane monitored by time-resolved Ft-ir 
spectroscopy, Biophysical Chemistry 89 2001 25–34 

34 Altman G, H., Diaz F., Jakuba C., Calabro T., Horan R.  L., Chen J., Lu H., 
Richmond J., Kaplan D.  L., Silk-based biomaterials, Biomaterials 24 (2003) 
401–416 

35 Balköse D., Doğal ve değiştirilmiş ipek fibroininin kimi fizikokimyasal 
özelliklerinin incelenmesi (Doçentlik tezi), Ege Üniversitesi, 1982 

 63



 

36 T.  Furuzono, K.  Ishihara, N.  Nakabayashi, Y.  Tamada, Chemical 
modification of silk fibroin with 2-methacryloyloxyethyl phosphorylcholine.  II.  
Graft-polymerization onto fabric through 2-methacryloyloxyethyl isocyanate 
and interaction between fabric and platelets, Biomaterials 21 (2000) 327–333 

37 Jun Magoshi, Yoshiko Magoshi, Mary A.  Becker, Masao Kato, Zhang Han, 
Toshihisa Tanaka, Shun-ichi Inoue, Shigeo Nakamura, Crystallization of silk 
Fibroin from solution, Thermochimica Acta 352–353 (2000) 165–169 

38 Gregory H.  Altman, Rebecca L.  Horan, Helen H.  Lu, Jodie Moreau, Ivan 
Martin, John C.  Richmond, David L.  Kaplan, Silk matrix for tissue engineered 
anterior cruciate ligaments, Biomaterials 23 (2002) 4131–4141 

39 Kweon H.Y., Park S.H., Yeo J.H., Cho C.S., Preparation of semi-
interpenetrating polymer networks composed of silk fibroin and poly(ethylene 
glycol) macromer, Journal of Applied Polymer Science, Vol.  80, 1848–1853 
(2001) 

40 Putthanarat S., Zarkoob S., Magoshi J., Chen J.A., Eby R.K., Stone M., Adams 
W.W., Effect of processing temperature on the morphology of silk membranes, 
Polymer 43 (2002) 3405–3413 

41 Kazunori Tanaka, Naoki Kajiyama, Kiyohide Ishikura, Shou Waga, Aiko 
Kikuchi, Kohei Ohtomo, Takashi Takagi, Shigeki Mizuno, Determination of the 
site of disulfide linkage between heavy and light chains of silk fibroin produced 
by Bombyx mori, Biochimica et Biophysica Acta 1432 (1999) 92–103 

42 Xiao Zheng Shu, Yanchun Liu, Fabio Palumbo, Glenn D.  Prestwich, Disulfide-
crosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the 
extracellular matrix for in vitro cell growth, Biomaterials 24 (2003) 3825–3834 

43 Seves A., Romano M., Maifreni T., Sora S., Ciferri O., The microbial 
degradation of silk: a laboratory investigation, International Biodeterioration & 
Biodegradation 42 (1998) 203–211 

44 R.  Nemoto, S.  Nakamura, T.  Isobe, M.  Senna, Direct Synthesis of 
Hydroxyapatite-Silk Fibroin Nano-Composite Sol via a Mechanochemical 
Route, Journal of Sol-Gel Science and Technology, 21, 7–12, 2001 

45 Minoura N., Tsukada M., Nagura M., Fine structure and oxygen permeability of 
silk fibroin membrane treated with methanol, Polymer, 1990, Vol.  31, February 

46 Editor-in-Chief: Salamone J.  C., Polymeric Materials Encyclopedia, CRC 
Press, New York, 1996 

47 Minoura N., Tsukada M., Nagura M., Physico-chemical properties of silk 
fibroin membrane as a biomaterial, Biomaterials 1990, Vol.  11 August 

48 Liu H., Zhang Z., Zhang X., Qi D., Liu Y., Yu T., Deng J., A phenazine 
methosulphate-mediated sensor sensitive to lactate based on entrapment of 
lactate oxidase and horseradish peroxidase in composite membranes of 
poly(vinyl alcohol) and regenerated silk fibroin, Electrochimica Acta, Vol.  42, 
No.  3, pp.  349–355, 1997 

49 Cheng Qiong, Peng Tuzhi, Yang Liju, Silk Fibroin/cellulose acetate membrane 
electrodes incorporating xanthine oxidase for the determination of Fish 
freshness, Analytica Chimica Acta, 369, 1998  

50 Liu H., Deng H., Sun K., Qi D., Deng J., Liu Y., Yu T., Structure and properties 
of regenerated silk fibroin and poly(vinyl alcohol) and biosensing of glucose via 
Meldola blue dispersed in polyester ionomer as an electron transfer mediator, 
Fresenius Journal of Analytical Chemistry, (1997) 357: 812–816 

 64



 

51 Gotoh Y., Tsukada M., Baba T., Minoura N., Physical properties and structure 
of poly(ethylene glycol)-silk fibroin conjugate films, Polymer, Vol.  38 No.  2, 
pp.  487–490, 1997 

52 Tsukada M., Freddi G., Minoura N., Allara G., Preparation and application of 
porous silk fibroin materials, Journal of Applied Polymer Science, Vol.  54, 
507–514, 1994 

53 Eliana Leo, Maria Angela Vandelli, Riccardo Cameroni, Flavio Forni, 
Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde: 
Involvement of the drug in the cross-linking process, International Journal of 
Pharmaceutics 155 (1997) 75–82 

54 Raymond Zeeman, Pieter J.  Dijkstra, Pauline B.  van Wachem, Marja J.A.  van 
Luyn, Marc Hendriks, Patrick T.  Cahalan, Jan Feijen, Successive epoxy and 
carbodiimide cross-linking of dermal sheep collagen, Biomaterials 20 (1999) 
921–931 

55 Jianyong C., Tanioka A., Minoura N., Sen-I Gakkaishi, Membrane potential of 
weak amphoteric polymer membrane composed of silk fibroin, Vol.  49, No.  9, 
1993 

56 Jianyong C., Tanioka A., Minoura N., Sen-I Gakkaishi, Ion permeabilities 
across silk fibroin membrane, Vol.  50, No.  1, 1994 

57 Chen J., Minoura N., Osaki T., Tanioka A., Effects of pH on the transport of 5-
fluorouracil across a fibroin membrane, Transaction, Vol.  56, No.  6, 2000 

58 Chen J., Minoura N., Tanioka A., Transport of pharmaceuticals through silk 
fibroin membrane, Polymer, Vol.  35, No.  13, pp.  2853–2856, 1994 

59 T.  Koyano, N.  Koshizaki, H.  Umehara, M.  Nagura, N.  Minoura, Surface 
states of PVA/chitosan blended hydrogels, Polymer 41 (2000) 4461–4465 

60 K.Y.  Cho, T.W.  Chung, B.C.  Kim, M.K.  Kim, J.H.  Lee, W.R.  Wee, C.S.  
Cho Release of ciprofloxacin from poloxamer-graft-hyaluronic acid hydrogels 
in vitro, International Journal of Pharmaceutics 260 (2003) 83–91 

61 Yi Luo , Kelly R.  Kirker , Glenn D.  Prestwich, Cross-linked hyaluronic acid 
hydrogel films: new biomaterials for drug delivery, Journal of Controlled 
Release 69 (2000) 169–184 

62 Francesca Maccari, Francesca Tripodi, Nicola Volpi, High-performance 
capillary electrophoresis separation of hyaluronan oligosaccharides produced by 
Streptomyces hyalurolyticus hyaluronate lyase, Carbohydrate Polymers (2004) 

63 Michael Jahn, John W.  Baynes, Gerhard Spiteller, The reaction of hyaluronic 
acid and its monomers, glucuronic acid and N-acetylglucosamine, with reactive 
oxygen species, Carbohydrate Research 321 (1999) 228–234 

64 Seon Jeong Kim , Chang Kee Lee , Young Moo Lee , In Young Kim , Sun I.  
Kim, Electrical / pH-sensitive swelling behavior of polyelectrolyte hydrogels 
prepared with hyaluronic acid–poly(vinyl alcohol) interpenetrating polymer 
networks, Reactive & Functional Polymers 55 (2003) 291–298 

65 Seon Jeong Kim, Seoung Gil Yoon, Young Moo Lee, Hee Chan Kim, Sun I.  
Kim, Electrical behavior of polymer hydrogel composed of poly(vinyl alcohol)–
hyaluronic acid in solution, Biosensors and Bioelectronics 19 (2004) 531–536 

66 Deriu A., Cavatorta F., Micheli T.  D., Rupprecht A., Langan P., The 
distribution of water in highly ordered fibres of hyaluronic acid, Physica B 234–
236 (1997) 215–216 

67 Jamal Alyoussef Alkrad, Yahya Mrestani, Dieter Stroehl, Siegfried Wartewig, 
Reinhard Neubert, Characterization of enzymatically digested hyaluronic acid 

 65



 

using NMR, Raman, IR, and UV–Vis spectroscopies, Journal of Pharmaceutical 
and Biomedical Analysis 31 (2003) 545–550 

68 Yong Doo Park, Nicola Tirelli, Jeffrey A.  Hubbell, Photopolymerized 
hyaluronic acid-based hydrogels and interpenetrating networks, Biomaterials 24 
(2003) 893–900 

69 Park S.N., Park J.C., Kim H.O., Song M.  J., Suh H., Characterization of porous 
collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide cross-linking, Biomaterials, 23 (2002) 
1205–1212 

70 Glenn D.  Prestwich , Dale M.  Marecak , James F.  Marecek , Koen P.  
Vercruysse , Michael R.  Ziebell, Controlled chemical modification of 
hyaluronic acid: synthesis, applications, and biodegradation of hydrazide 
derivatives, Journal of Controlled Release 53 (1998) 93–103 

71 Mee Ryang Kim, Tae Gwan Park, Temperature-responsive and degradable 
hyaluronic acid / Pluronic composite hydrogels for controlled release of human 
growth hormone, Journal of Controlled Release 80 (2002) 69–77 

72 Si-Nae Park, Hye Jung Lee, Kwang Hoon Lee, Hwal Suh, Biological 
characterization of EDC-crosslinked collagen–hyaluronic acid matrix in dermal 
tissue restoration, Biomaterials 24 (2003) 1631–1641 

73 G.  D.  Prestwich, K.  P.  Vercruysse, Therapeutic applications of hyaluronic 
acid and hyaluronan derivatives, PSST Vol.  1, No.  1, 1998 

74 S.T.  Lim , G.P.  Martin , D.J.  Berry , M.B.  Brown, Preparation and evaluation 
of the in vitro drug release properties and mucoadhesion of novel microspheres 
of hyaluronic acid and chitosan, Journal of Controlled Release, 66 (2000) 281–
292 

75 Simon L.D., Stella V.J., Charman W.N., Charman S.A., Mechanisms 
controlling diffusion and release of model proteins through and from partially 
esterified hyaluronic acid membranes, Journal of Controlled Release 61 (1999) 
267–279 

76 Simon L.D., Charman W.N., Charman S.A., Stella V.J., Protein transport across 
hydrated hyaluronic acid ester membranes: Evaluation of ribonuclease A as a 
potentially useful model protein, Journal of Controlled Release 45 (1997) 273–
285 

77 S.  Barbault-Foucher , R.  Gref , P.  Russo , J.  Guechot , A.  Bochot, Design of 
poly-ε-caprolactone nanospheres coated with bioadhesive hyaluronic acid for 
ocular delivery, Journal of Controlled Release 83 (2002) 365–375 

78 Mi F.  L., Sung H.  W., Shyu S.  S., Drug release from chitosan-alginate 
complex beads reinforced by a naturally occurring cross-linking agent, 
Carbohydrate Polymers 48 (2002) 61–72 

79 N.  Kanikkannan, J.  Singh, P.  Ramarao, In vitro transdermal iontophoretic 
transport of timolol maleate: effect of age and species, Journal of Controlled 
Release 71 (2001) 99–105 

80 Riitta Sutinen , Petteri Paronen, Arto Urtti, Water-activated, pH-controlled 
patch in transdermal  administration of timolol I.  Preclinical tests, European 
Journal of Pharmaceutical Sciences 11 (2000) 19–24 

81 H.  Hiratani, C.  Alvarez-Lorenzo, Timolol uptake and release by imprinted soft 
contact lenses made of N,N-diethylacrylamide and methacrylic acid, Journal of 
Controlled Release 83 (2002) 223–230 

 66



 

82 Tsujino M., Isobe T., Senna M., Preparation of silica-silk fibroin-polyurethane 
composite films via a sol-gel route, Journal f Sol-Gel Science and Technology 
19, 785–789, 2000 

83 Venter J.  P., Müller, A comparative study of an in situ adapted diffusion cell 
and an in vitro Franz diffusion cell method for transdermal absorption of 
doxylamine 

84 In Chul Um, HaeYong Kweon, Kwang Gill Lee, Young Hwan Park, The role of 
formic acid in solution and crystallization of silk protein polymer, International 
Journal of Biological Macromolecules, 33 (2003) 203–213 

85 Tsuboi Y., Ikejiri T., Shiga S., Yamada K., Itaya A., Light can transform the 
secondary structure of silk protein (rapid communication), Applied Physics A 
73, 637–640, 2001 

86 S.L.  Turgeon , M.  Beaulieu , C.  Schmitt , C.  Sanchez, Protein–polysaccharide 
interactions: phase-ordering kinetics, thermodynamic and structural aspects, 
Current Opinion in Colloid and Interface Science 8 (2003) 401–414 

87 Sang-Gyun Kim, Gyun-Taek Lim, Jonggeon Jegal, Kew-Ho Lee, Pervaporation 
separation of MTBE (methyl tert-butyl ether) and methanol mixtures through 
polyion complex composite membranes consisting of sodium alginate/chitosan, 
Journal of Membrane Science 174 (2000) 1–15 

 

 

 

 

 

 

 67



 

APPENDIX A 

Correlation between Timolol Maleate Concentration and UV 

Absorbance 
 

UV Analysis: Full spectrum analysis was performed for TM solution and it was 

observed TM had yielded absorption at 294 nm wavelength.  A calibration curve for 

analysis of TM at UV spectrophotometer (Shimadzu UV-1601) was obtained by 

analyzing known concentrations of TM at a wavelength of 294 nm.   
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Figure A1. Calibration curve for TM concentration at 294 nm 
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APPENDIX B 

Formulas of Amino acids in Silk Fibroin 
 

The most abundant amino acids found in silk fibroin chain are given below. 
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With a thiol group (containing sulphur): 

Cysteine 
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APPENDIX C 

Structure of Alpha Helix 
 

In the α helix, every fourth AA forms an H-bond between a carbonyl- and an 

imino group.  Side chains point away from the helix. 
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APPENDIX D  

Smoothing by MathCAD 
 

Smoothing of data was performed using MathCAD 7 Professional by median 

smoothing method.  This method returns an m-element vector created by smoothing vy 

with running medians.  Span value is set to 7. 

 
 

 

 A4


	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	TRANSDERMAL DRUG DELIVERY
	Controlled Drug Delivery
	Methods of Transdermal Delivery
	Passive Diffusion
	Phonophoresis
	Electroporation
	Iontophoresis
	Previous Studies in Iontophoresis: Transdermal Patches, Ion 

	Selection of Electrodes


	DRUG RESERVOIR MATRIX: PREPARATION OF INSOLUBLE SILK MATRIX
	Silk Fibroin
	Methods of Silk Fibroin Matrix Preparation
	Previous Studies with Silk Fibroin
	SFGTA Blends
	Freeze-Dried SF
	SF Film with Glutaraldehyde
	Other Studies with Silk Fibroin

	Hyaluronic Acid
	Previous Studies with Hyaluronic Acid
	Insoluble Matrix Preparation
	Preparation of Silk Fibroin/Hyaluronic Acid Solution

	LOADING AND DELIVERY OF MODEL DRUG TIMOLOL
	EXPERIMENTAL
	Preparation of Silk Fibroin Solution by Ajisawa’s Solution
	Preparation of Drug Loading Reservoirs
	Preparation of Different Forms of SF
	Methanol Treated SF Films
	Heat Treated SF Films

	Preparation of SF/HA Films
	SF Film Crosslinked with Glutaraldehyde
	Freeze-Dried SF

	Characterization of the Membranes
	Solubility Tests
	Analysis Methods

	Adsorption Experiments
	Iontophoretic Experiments

	RESULTS
	Characterization of the Membranes
	Effect of Post Treatment on the Structure of Silk Fibroin

	Formation of SF Film
	SF/HA Films

	Glutaraldehyde Cross-Linked SF Film
	Adsorption Experiments
	Diffusion Experiments
	Passive Diffusion Experiments
	SFGTA Films
	Drug loaded SFGTA Films
	Blank SFGTA Films


	Active Diffusion Experiments
	SFGTA Films
	Drug loaded SFGTA Films
	Blank SFGTA Films




	CONCLUSIONS
	REFERENCES

