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ABSTRACT 

 

Intrinsic hydrogenated microcrystalline silicon thin films prepared by VHF-

PECVD and HW-CVD methods under different deposition conditions have been 

investigated using steady state photoconductivity method (SSPC), photothermal deflection 

spectroscopy (PDS) and dual beam photoconductivity (DBP) method, and transmission 

spectroscopy. Absorption spectra of the investigated thin films were measured in a wide 

energy region using PDS and DBP. A procedure, for the firs time, was used to calculate 

fringe free absolute absorption coefficient of thin films from DBP yield spectrum and 

simultaneously measured transmission signal. The results were found to be in agreement 

with those of PDS above the bandgap energy. However, there are differences between 

below the bandgap energy in the spectra of both methods. The differences are discussed to 

be consistent with the underlying physics of these methods.  

For some of investigated thin films there are remaining fringes in the α(hν) spectra 

measured using both methods. This is a strong indication of inhomogeneity present in the 

films in growth direction. DBP measurements were also performed for ac monochromatic 

light incident from substrate side in order to investigate the effect of inhomogeneous 

microstructure of the material on the absorption spectrum. It is found that some films have 

remaining fringes on their spectra for back ac measurements both for VHF-PECVD and 

HW-CVD grown thin films, whereas there is no remaining fringes observed for front ac 

measurements or vice versa. These findings are discussed to be an indication of 

inhomogeneity in growth direction which is already reported from TEM and Raman study.  

   Sub-bandgap absorption coefficients α(0.8 eV) were correlated with the silane 

concentration, which is main parameter to change the microstructure of these films. It is 

found that the thin films that deposited in the transition region, where a transition from a 

fully amorphous growth to full microcrystalline growth occurs, have smaller absorption 

coefficients indicating that the thin films deposited at transition region have less defect 

density. However, thin films deposited at the highly crystalline region have the highest 

defect density due to etching effect of H during the deposition. These results are also 

consistent with reported ESR studies.  



ÖZ 
 

VHF-PECVD ve HW-CVD metodları ile büyütülmüş katkısız mikrokrokristal 

silisyum ince filmler, durağan hal ışıl iletkenlik, ışıl ışın saptırma izgegözlem (PDS)ve iki 

demetli ışıl iletkenlik (DBP) methodları kulanılarak incelenmiş ve malzemenin 

mikroyapısının elektronik ve optik özeliklerine etkisi anlaşılmaya çalışılmıştır. Bu 

malzemelerin soğurma spekturumları geniş bir enerji aralığında elde edilmiştir. İki demetli 

ışıl iletkenlik (DBP) methodundan girişim saçaksız mutlak soğurma katsayisi izgesinin 

elde edilebilmesi için bir method, literatürde ilk kez, denenmiş ve elde edilen sonuçlar 

bağımsız olarak PDS deney düzeneğinden elde edilenlerle karşılaştırılmıştır. PDS ve DBP 

metodlarından  elde edilen soğurma katsayısı izgesinin bant enerjisine kadar uyumlu 

olduğu gözlenmiş bant enerjisinin altında meydana gelen fark ise iki methodun farklı 

fiziksel temelere sahip olusuyla acıklanmıstır. 

 İncelenen fılmlerin bazıları için her iki metot ile elde edilen izgelerinde kalıcı 

saçaklar gözlenmiş olup bu saçakların varlığı malzemenin homojen olmayan yapısına 

bağlanmıştır. Bu etkiyi dahada derinlemesine incelemek için DBP deneyleri alışılagelmiş 

şeklinden hariç olarak, tekrenk ışık alttabaka cam (substrate) tarafından gelecek şekildede 

yapılmıştır. Bazı filmler için ön taraf ölçümlerinde saçak kalırken bazılarında da durum 

bunun tam tersidir. Elde edilen sonuçlar bu malzemelerin büyütme doğrultusunda 

kaydadeger sayılabilecek bir farklılık gösterdiği sonucuna işaret etmektedir.  

 Elde edilen bant içi sogurma degerleri, 0,8 eV için malzemenin mikroyapısını 

belirleyen temel parametre olan silane gazı konsantrasyonu ile ilişkilendirilmiştir. Eldeki 

veriler mikrokristal silisyum için bu film büyütme metodlarında, amorf fazdan 

mikrokristal faza geçişin gözlendiği kritik silane gazı konsantrasyon degeri civarında 

büyütülen filmlerin soğurma katsayılarının en düşük olduğunu göstermiştir. Bu degerler 

geçiş bolgesinde buyutulen ince fılm malzemelerde en az seviyede elektronık kusur 

bulundğunu göstermektedir. Buna karsılık, düşük silane gazı konsantrasyonlarında  

büyütülen ince filim malzamlerde cok yüksek yogunluklarda elektronik kusurlar oldugu 

anlaşılmıştır. Bu bulgular literatürde yayınlanan  ESR sonuçları ile de uyumludur. 
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CHAPTER 1 
 

INTRODUCTION 
 

Intrinsic hydrogenated microcrystalline silicon (µc-Si:H) has recently become a 

very attractive material for thin film solar cells since, it is fully compatible  with the 

existing thin film technology used for amorphous silicon based solar cells [1-3]. Thin 

films µc-Si:H materials can be deposited at low substrate temperatures on very cheap 

substrates and on large areas using plasma enhanced chemical vapor deposition methods 

(PECVD) [1, 4] and  hot-wire chemical vapor deposition HW-CVD [5-7]. Intrinsic 

microcrystalline silicon thin films have also extended spectral response of crystalline 

silicon in the infrared region [2]. In addition to above advantages, much progress has been 

made to improve fabrication methods in order to achieve high deposition rates and high 

electronic quality. 

Hydrogenated microcrystalline silicon, contrary to crystalline silicon, does not 

have homogenous structure. Its microstructure is much more complicated compared to 

crystalline and amorphous silicon. It is a composition of crystalline grains, grain 

boundaries, amorphous regions and voids in various amounts. Hydrogenated 

microcrystalline silicon was first deposited by Veprek and Marecek [8] in 1968. Here they 

used a special kind of plasma deposition technique. The deposition temperature was 600 

¡C.   Thereafter its first fabrication, deposition of µc-Si:H  layers were reported using  

radio frequency glow discharge [9,10], using silane (SiH4) as a source gas strongly diluted 

with hydrogen  in order to induce formation of microcrystalline silicon rather than 

amorphous silicon. In these early works the deposition rates were well below 1 Å/s.  

Having an indirect bandgap, µc-Si:H has a relatively low absorption coefficient, 

compared to  that of amorphous silicon, in the visible region of solar spectrum. Therefore 

correspondingly ticker layers needed to achieve sufficient absorption and photogeneration.  

In addition to above reason, grain boundaries present in microcrystalline silicon were 

considered as an obstacle for electronic transport. Due to poor lifetime of electronic 

charge carriers and low deposition rates, several years passed for the first attempt of thin 



film silicon solar cells consisting of µc-Si:H  as a photovoltaically active layer [2]. Finally, 

in 1991 preliminary results were reported by Lucovsky et al. [11] and Faraji et al. [12]. 

Thereafter, entirely microcrystalline p-i-n and n-i-p type-silicon solar cells were reported 

[13, 14]. Meanwhile, significantly high deposition rates were achieved using very high 

frequency PECVD [15, 16, 1] , RF-PECVD [17] and Hot wire CVD [18, 6,4] methods. 

Intrinsic µc-Si:H thin film layers, fabricated by a variety of techniques,  have been  

investigated widely as a potential material for optoelectronic thin film devices such as 

thin-film transistor, position sensors, color sensors, and especially for solar cells 

application. Microcrystalline silicon is also used in a tandem concept with amorphous 

silicon to form so called micromorph solar cells [19]. Recent recorded efficiency is about 

10% and 14% for single junction and tandem junction solar cells, respectively [20]. Pilot 

production of large area modules has already been started by a Japanese company [5,2]. 

Thus, the potential of hydrogenated microcrystalline silicon for optoelectronic 

applications has gradually become important.  

 The most important feature of µc-Si:H is its microstructure. The volume fraction 

and spatial distribution of amorphous and crystalline phases throughout the material is an 

important parameter for its electronic and optical properties.   It is well known from the 

first studies [21] that hydrogen dilution is an important parameter in determining the 

microstructure whatever deposition process is used such as VHF PECVD (Very High 

Frequency Plasma Enhanced Chemical Vapor Deposition) or HW CVD (Hot Wire 

Chemical Vapor Deposition).  If hydrogen dilution is zero, the resulting layers are fully 

amorphous. If hydrogen is added to plasma, the layer quality is marginally altered but the 

layer remains amorphous until a threshold concentration is reached. If hydrogen 

concentration is further increased, at a certain value of SC (SC=[SiH4]/([Sih4]+[H2])), the 

formation of crystalline regions begins. Then with the increasing SC, the crystalline 

volume fraction increases, and microcrystalline silicon layers wrapped by the amorphous 

tissue like regions are obtained. Several methods are used to characterize the structural 

properties of microcrystalline silicon thin films.  

 One of the most used technique to characterize structural properties of µc-Si:H thin 

films is Raman spectroscopy [1,21,23-26]. The technique is based on inelastic scattering 

of photon in the media because of interaction of photons and phonons (lattice vibrations). 
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The experiments are usually done in the back scattering geometry, where incident beam is 

perpendicular to the sample surface. A light beam of an Argon laser (λ0=488 nm) or a 

HeNe laser of wavelength of 647 nm is often used for excitation [6,27]. Typical Raman 

peak of c-Si is symmetric and located at 520 cm-1 with a width (full width at half 

maximum) of about 3.5 cm-1.  As for a-Si:H films , a broad distribution  is centered at 480 

cm-1 with a typical width of about 60 cm-1. The spectra of fully microcrystalline silicon 

thin films are asymmetric and located at 518 cm-1 with a width of 12 cm-1. It has a tail 

extending towards low phonon frequencies. The tail is attributed to the presence of   

amorphous phase in the material. With increasing silane concentration the spectrum 

changes from a fully crystalline to almost fully amorphous phase. Between these two 

spectra, the spectra of films are superposition of these two peaks with different 

contribution. However, the Raman spectra can not provide a unique measure of the 

structure since the Raman cross sections and optical absorption coefficients of the 

amorphous and crystalline phases are generally different and may depend on the size of 

the crystallites, grain boundaries and strain in the crystallites [26, 27].  However, a semi-

quantitative measure for the volume fraction of crystallites is generally evaluated from 

Raman spectra. The ratio of the scattering intensity of the crystalline phase to the total 

scattering intensity is used for such a measure where the area of the peaks determined 

from Gaussian fits to the spectra. 

 X-ray diffraction (XRD) is another measurement technique used for structural 

characterization of µc-Si:H thin films [28].  Crystalline silicon has diffraction patterns 

with sharp peaks at diffraction angels (2Θ) 28.4°, 47.3° and 56.1° for the <111>, <220> 

and <311> planes respectively. As for amorphous silicon, the peaks are broad. First peak 

is at about 27° and the second is at 52°. To determine the crystalline volume fraction of the 

films, the integrated intensities of the amorphous and crystalline peaks can be used with 

calibration of crystalline and amorphous powder spectra [27]. The crystalline peaks are 

broadened with increasing silane concentration. Finally, the amorphous phase dominates 

the spectra.  

TEM is widely used as a characterization technique to obtain information about 

microstructure of µc-Si:H thin films.  The TEM investigation of µc-Si:H thin films shows 

 3



that with the increasing hydrogen dilution crystalline volume fraction  increases [1,28, 

29]. At high SC, crystalline growth starts near the substrate surface and results in a 

columnar growth. The size of crystalline grains depends on deposition conditions. These 

crystalline regions are not perfectly crystalline but exhibit a large amount of twin defects 

[28].  The space between these grains is filled either by an amorphous network or by 

voids. The amorphous volume fraction is low. With increasing silane concentration, the 

volume fraction of crystalline phase decreases. The size of crystalline grains decrease and 

amorphous phase dominates the structure.  The structural composition of microcrystalline 

silicon is highly sensitive to deposition parameters. Therefore, electronic and optical 

properties of microcrystalline silicon thin films are highly sensitive to deposition 

parameters such as silane concentration and substrate temperature. The main parameter is 

the SC, which changes electronic, optical and structural properties of the material. Having 

such a complicated structure, defect states present in the material has been a subject of 

ongoing research. 

An important property of a photoactive material is its absorption coefficient 

spectrum. Microcrystalline silicon exhibits extended spectral response of crystalline 

silicon in infrared region and has absorption coefficient higher than that of crystalline 

silicon in the visible region [30,31]. Higher optical absorption is generally attributed to 

light scattering because of rough surface of µc-Si:H [32]. It might also be due to 

absorption of amorphous region, especially above 1.8 eV, present in the material since µc-

Si:H is  a composition of crystalline region , amorphous region and voids. Absorption 

enhancement bellow 1.8 eV down to 1.2 eV is attributed, in addition to light scattering 

[32], to strain effect in the grain and grain boundaries [33].  The absorption below 1.2 eV 

is called sub-bandgap absorption and is due to defect states present in the bandgap. 

Therefore, sub-bandgap absorption can be correlated with defect density present in the 

material.  

 These defect states on the surface and in the bulk of µc-Si:H  are due to its 

inhomogeneous microstructure.  These are due to broken Si bonds and unsatisfied bond in 

amorphous regions and also grain boundaries between crystalline regions. These defects 

are electronically active and play an important role in device performance. Several 
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methods have been used to characterize the defects such as electron spin resonance (ESR), 

steady state photoconductivity, dark conductivity, and optical absorption measurements. 

Electron Spin Resonance (ESR) has widely been used to investigate defect states 

present in  µc-Si:H. ESR is a powerful tool to probe defect  states providing that they are 

paramagnetic. Many groups have performed ESR studies and several signals (g-values-

gyromagnetic ratio) have been identified [34-37,24]. However, compared to a-Si:H , 

identification of such defects is less understood because of complicated structure of   µc-

Si:H. The g-value is defined as g=hν/µBB. Here h is the Planck constant, ν is the 

microwave frequency at resonance, B is magnetic field at resonance and µB is the Bohr 

magneton. The resonance at 2.0052 is attributed to Si dangling bonds. The g value found 

for µc-Si:H is smaller than the g-value of a-Si:H [37]. When compared to polycrystalline 

silicon the spin densities are smaller which indicates an excellent hydrogen passivation. 

Another resonance is observed at g=1.996-1.998 and attributed to conduction electrons in 

the crystalline regions in the material. The third resonance is observed at 2.0043 and not 

identified yet.  

 Dark conductivity and steady state photoconductivity is widely used to obtain 

information about the nature of defects, transport, position of Fermi level, and 

recombination kinetics of photogenerated carriers in microcrystalline silicon thin films 

[34,29,38,39]. Intrinsic microcrystalline silicon has a slightly n-type conduction character 

[34]. In general, the dark conductivity tends to decrease with increasing silane 

concentration [29]. However, the conductivity versus reciprocal temperature curves can 

not be fit with a single activation energy [38]. 

 Optical absorption measurements are also of great importance for characterization 

of optical properties of the photovoltaic materials. Photothermal deflection spectroscopy 

(PDS), originally established for amorphous silicon   [40-42] has widely been used to 

measure absolute optical absorption coefficient spectrum of µc-Si:H thin films [6,43] in 

the visible and near infrared region. However, it suffers from substrate absorption effect 

since its contribution dominates the spectrum below 1.2 eV. Therefore, it is difficult to 

obtain accurate absorption coefficient below the bandgap energy of µc-Si:H using this 

techniques and it becomes rather difficult to compare different materials prepared with 

different deposition conditions. Alternatively photoconductivity techniques such as 
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constant photocurrent method (CPM), both in standard [44] and absolute mode [45] have 

been used to obtain absorption spectrum of  µc-Si:H thin films [46]. However, in CPM 

technique, since low generation rate of monochromatic light is used, the lifetime of 

electrons is almost constant and therefore only occupied defect states below the Fermi 

level can be detected.   

Another photoconductivity-based technique which has been extensively used for a-

Si:H is dual beam photoconductivity method (DBP) [47-49]. The major advantage of DBP 

over CPM is that different bias light intensities can be used to detect more gap states since 

DBP has an intensity dependence on bias light intensity in the sub-bandgap region. 

Therefore by changing bias light intensity, additional information can be obtained about 

defect states in the gap of material. No study has been reported using DBP on µc-Si:H thin 

films until our recently reported study [50] where DBP yield spectrum was directly 

normalized to PDS results measured on the same sample. It was reported that DBP and 

PDS are complementary methods to investigate optical and electrical properties of 

microcrystalline silicon thin films.  

As stated above µc-Si:H has a complicated structure and the parameters that lead 

to best device performance  remains less understood. An extensive research has been 

carried out to better characterize the preparation of the intrinsic µc-Si:H  that lead the best 

device performance depending on deposition parameters. However, there are many open 

questions to understand its physical properties and underlying physics involved.  

 

1.1 Thesis Objectives 

 

Since hydrogenated microcrystalline silicon is one of the most promising materials 

for large area solar cell application due to its unique properties, it is crucial to characterize 

material properties such as optical absorption spectra and defect states that present in the 

bandgap. This is important for describing best deposition parameters that leads best device 

performance.  

 The objective of this thesis is to obtain reliable absorption coefficient spectrum of 

intrinsic µc-Si:H thin films over a wide range of energy especially in the sub-bandgap 

region and to learn the effect of  inhomogeneous structure  of material  on the absorption 
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coefficient spectra of the intrinsic µc-Si:H. Since absorption coefficient in the sub-

bandgap is related to the defects states present in the gap of material, it is important to use 

a convenient characterization technique that is sensitive to the bulk defects states.  

 In this thesis, DBP method will be used to obtain absorption coefficients in a wide 

energy region, especially in the sub-bandgap energies, which are related to defect states 

present in the bandgap of µc-Si:H. For the first time, the interference fringe free absolute 

absorption coefficient spectrum is going to be calculated from the relative DBP yield 

spectrum and simultaneously measured transmission signal using procedure based on the 

Ritter-Weiser formula [51]. Then the resulting    absolute absorption coefficient spectrum 

will be compared with that independently obtained from the PDS measurements. Finally, 

the absorption coefficients at sub-bandgap energy region will be taken as a comparison 

criterion to understand the effect of deposition conditions, especially the silane 

concentration and crystalline volume fraction, on the electronic and optical properties of 

intrinsic µc-Si:H thin films deposited by two different methods, VHF-PECVD and HW-

CVD. 
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CHAPTER 2 
 

EXPERIMENTAL 
 

2.1 Sample Preparation 
 

 There are many deposition systems that used for deposition of µc-Si:H thin films. 

Intrinsic µc-Si:H thin films used in this study are deposited using very high frequency 

plasma enhanced chemical vapor deposition (VHF-PECVD) [29] and hot-wire chemical 

vapor deposition (HW-CVD) [6] methods in Jülich Research Center, Germany.  

 In PECVD, the most common configuration is a parallel plate capacitor structure. 

The plasma is electrically excited with an a.c. signal. The excitation frequency is either the 

standard value of 13.56 MHz, radio frequency,   (RF-PECVD) or between 13.56-110 

MHz, very high frequency, (VHF-PECVD). In plasma deposition, electrons impacts with 

SiH4 molecules and results in a dissociation process and the created SiH3 radicals are 

considered to be the most important species for microcrystalline deposition [52]. 

 HW-CVD also called catalytic chemical vapor deposition (Cat-CVD) [53,54] is a 

relatively new deposition technology and relies on the catalytic decomposition of silane or 

silane/hydrogen mixture at a resistively heated filament. In the HW-CVD, tungsten or 

tantalum is usually used as filament. In this system, gases are decomposed to radicals at 

the surface of the filament that has a temperature higher than 1500 °C. The resulting 

radicals diffuse to and are deposited on the substrate.   The production of radicals in 

HWCVD is very high compared to PECVD, which leads to a high deposition rate. 

 The deposition rate, crystalline volume fraction, optical and electrical properties of 

deposited thin films is strongly dependent on the deposition parameters such as plasma 

excitation frequency, substrate temperature and hydrogen dilution [7].  The crystalline 

volume fraction obtained from Raman and XRD measurements depending on silane 

concentration and schematic diagram showing the microstructure of µc-Si:H is presented 

in Figure 2.1 and Figure 2.2, respectively. 

 

  



                     
 
 
 
Figure 2.1 Crystalline volume fraction of µc-Si:H films as a
function of SC; Raman: • , XRD: ◊ [111], ∆ [220], ๐ [311] After ref
[28] 

 

 

 
 
Figure 2.2 Schematic diagram showing the prominent microstructural characteristics of 
µc-Si:H. After ref [28] 
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Table 2.1 Deposition parameters and thickness of µc-Si:H thin films used in this study  

 

 
VHF-PECVD Thin Films 

Sample name Silane 
Concentration (SC) 

Thickness (T)  
(µm) 

Substrate 
Temperature (TS) 

(oC) 
00c338 4.96 0.70 200 

00c341 3.69 0.62 200 

00c345 6.25 0.78 200 

00c348 4.32 0.60 200 

00c354 3.06 0.40 200 

HW-CVD Thin Films 

Sample name Silane 
Concentration (SC) 

Thickness (T)  
(µm) 

Substrate 
Temperature (TS) 

(oC) 
01c320 4 0.68 220 

01c328 2.5 0.73 220 

01c341 5 0.68 185 

02c003 6 0.73 215 

02c004 5 0.74 215 

02c020 7 0.88 220 

02c077 4.5 0.59 220 

02c084 2 0.52 210 
 
 
 
At lower SC’s crystalline volume fraction is very low and amorphous phase dominates the 

structure. As the silane concentration decreases, crystalline regions increase. Then the 

structure becomes a mixture of crystalline grains and surrounding amorphous tissues. For 

the lowest SC’s, highly crystalline intrinsic films are grown in a columnar structure. 

Between the grains, defects are present due to etching effect of the higher hydrogen 

dilutions.  
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Intrinsic µc-Si:H samples were deposited using both methods on a borosilicate 

glass with thickness varying between 0.4 µm to 0.9 µm. Coplanar metal electrodes were 

then evaporated on the   µc-Si:H layer with a length of 0.5 cm and width of 0.5 mm using 

Silver or Chromium metals.  Coplanar sample were used to measure dark and steady state 

photoconductivity and DBP spectrum. For PDS measurement, µc-Si:H thin film on glass 

substrate is used without any need for contacts. The intrinsic µc-Si:H sample used in this 

thesis are listed in Table 2.01 

 

2.2 Characterization Techniques 

 

In this section, experimental techniques that used in this thesis such as steady state 

photoconductivity, dual beam photoconductivity, and photothermal deflection 

spectroscopy and transmission spectroscopy will be explained in detail. Finally, the 

procedure that is used to obtain absolute absorption coefficient spectrum for dual beam 

photoconductivity method will be given. 

2.2.1 Steady State Photoconductivity 

 Steady state photoconductivity experiments are performed in a homemade steel 

box as shown in Figure 2.3. An Osram 250 W ENH lamp was used as whit light source. 

The lamp is cooled by a fan. Interference filters-800, 750, 690 nm- were used to obtain 

monochromatic light. An RG-610 bandpass filter was also used to obtain higher 

generation rates. Neutral density filters, which transmit 0.1%, 1%, 10%, and 50% of 

incoming light beam, were used to adjust intensity of monochromatic light to lower the 

flux values. Applied voltage was kept in the ohmic regime. A Keitley 6517A electrometer 

was used to measure dark and photo current. A calibrated silicon p-i-n photodiode having 

a 14.5 mm2 active area was used for calibration of incident monochromatic light.  

 For a sample in coplanar geometry photoconductivity, σph, can be derived using 

Ohm’s law. 

Vtl
dI ph

ph =σ    ( )1)( −Ωcm                              ( )1.2     
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 Figure. 2.3.  Schematic diagram of experimental setup of steady state 
photoconductivity system.  After ref. [55] 
re Iph is photocurrent, d is separation of electrodes, V is applied voltage, t is the 

kness of the sample and l is the length of the electrodes. On the other hand, 

toconductivity is written as follows, 

                          

pqnq pnph µµσ +=                                            1)( −Ωcm ( )2.2  

 

re µn and µp are extended state mobility of free electrons and holes, n and p are the 

ber of free electrons and holes per cm3 in their respective extended states. Intrinsic 

i:H films shows slightly n-type conduction, therefore, only electron dominated 

duction is measured in the samples. Using measured photoconductivity, σph becomes 
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                                   nq nph µσ ≅                                                   1)( −Ωcm ( )3.2  

 

Free majority carrier density n is created by the generation rate of monochromic light as: 

 

nGn τ=     ( )3−cm                                                ( )4.2  

  

where G is generation rate and τn is lifetime of free electrons. Finally, one of the most 

important information about the photogenerated electrons, µnτn , can be obtained from the 

measured photoconductivity. 

qG
phσ

µτ =  ( )12 −Vcm                            ( )5.2  

 
 
µnτn-product is also called “photosensitivity” of the material.  

The G of electrons is expressed as follows. 

 

( ) ( )[ ]
t

tRFG α−−−
=

exp11
         ( )13 −− scm                          ( )7.2  

 

where R is reflection from film surface, α is the absorption coefficient at given 

wavelength of monochromatic light, t is the thickness of the film and F is the incident flux 

calibrated  using  a p-i-n photodiode, as in Eq. 2.8. 

  

( ) ( )
qhAQE

hI
hF ph

)( ν
ν

ν =     ( )12 −− scm                               ( )8.2  

 
where Iph (hν) is corresponding photocurrent measured by p-i-n photodiode at photon 

energy hν, A is the area of the detector, QE(hν) is the quantum efficiency of pin 

photodiode at energy hν, and q is the electron charge.  
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 Steady state photoconductivity has a non-integer power low dependence on light 

intensity or on generation rate. 

 
γσ Gph ∝      ( ) 1−−Ω cm                                 ( )9.2  

and 
( )1−∝ γµτ G     ( )12 −Vcm                             ( )10.2  

  
where γ is the exponent and related to recombination kinetics of light generated electron-

hole pairs in the material.  Steady state photoconductivity gives information about 

recombination kinetics of carriers as well. For bimolecular recombination kinetics as in 

crystalline silicon, γ=0.5 and electrons in the conduction band recombine directly with 

holes in the valance band. For 0.5<γ≤1.0 recombination occur via recombination centers 

in the bandgap, which is called monomolecular recombination kinetics. 

 

2.2.2 Dual Beam Photoconductivity Spectroscopy 

 

The dual beam photoconductivity (DBP) technique [47-50] is based on 

measurement of ac photoconductivity as a function of energy of incident monochromatic 

light. In DBP technique two light beams are used: a uniformly absorbed dc pump beam  

(bias light) and a monochromatic ac light chopped at a frequency of 13 Hz. Generation 

rate of ac light, g(hν), is small compared to generation rate of dc pump beam, G(hν), thus 

g(hν) << G(hν). The use of high generation dc bias light is to keep free carrier lifetime 

constant, thus the electron and hole quasi-Fermi levels are kept constant during the 

measurements. This means that occupation statistics of the defect states is not changing 

during the DBP measurements. 

 Photoconductivity for a sample in coplanar geometry is defined previously as in 

2.3.  The contribution of hole transport is negligible, since the mobility –lifetime product 

of holes can be neglected as compared to that of electrons.  
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nq nph µσ =                                                            ( )11.2  

 Eq. 2.11 can be written in the following form for ac photoconductivity, σph(a.c), using the 

relation between free electrons and generation rate of ac light: η(a.c)=τng(hν)  since the 

number of electrons can be written in terms of lifetime and generation rate such that 

n=τnG, so 

 

( )ντµσ hgqca nnph =.).(                                        ( )12.2  

 

Using the expression given in Eq. 2.7 for generation rate and expanding the exponential 

term in the first order in energy region where the condition of uniform absorption of light 

is satisfied such that αt<<1, photoconductivity can be written as in Eq. 2.13. It must be 

kept in mind that this equation is valid only if absorption coefficient and thickness product 

(αt) is smaller than unity.  

 

( ) )())(1)(( νανντµσ hhRhFqac acnnph −=                           ( )13.2  

 

Assuming that reflectance, R(hν), is constant over the energy region that measurements 

carried out, together with photoconductivity divided by incident flux gives normalized 

photoconductivity, which is called DBP yield spectrum, YDBP(hν) 

           ( ) ( )
( ) ( ) )()]1([ ναναµτ

ν
σ

ν hChRq
hF
ac

hY
ac

ph
DBP =−∝=                   (2.14)      

where  

                                    [ ])1( RqC nn −= τµ     

 

As stated at the beginning of this section, dc bias light is used to keep µnτn product to be 

constant, so α(hν) is proportional to the DBP yield by only a constant, therefore 

 

( ) DBPYh ∝να                                               ( )15.2  
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 or     

 ( ) DBPCYh =να                                            ( )16.2  

 

where C is a constant. DBP method does not provide absolute absorption coefficients 

since it is a relative measurement method. Equation 2.15 implies that DBP yield is 

proportional to absorption coefficient. In general, DBP spectrum is normalized to absolute 

absorption coefficient spectrum obtained from transmission and reflection measurement 

T&R [56] or from photothermal deflection spectroscopy PDS [50] in order to obtain 

absolute absorption coefficients at lower energies. DBP yield spectrum also exhibits 

interference fringes due to thickness of the films. These interference fringes are generally 

removed using fast Fourier transform (FFT) procedure [57]. However, a significant error 

can be introduced in this procedure for determining fringe free spectrum. At the end of 

this section, a procedure based on Ritter-Weiser formula will be discussed in order to 

obtain fringe free absolute absorption coefficients from DBP yield spectrum. The method 

has already been used for CPM [45] but there have been no attempt to use it for DBP. We 

will show that the procedure can appropriately be used in the DBP method. Then, the 

calculated spectrum will be compared to that obtained by PDS method. 

The dual beam photoconductivity system is shown in Figure 2.4. A Quartz 

Tungsten Halogen (QTH) lamp is placed in an Oriel 66182 model lamp housing as a white 

light source and controlled by a 300 W Radiometric power supply. An Oriel 

monochromator having 0.2 nm sensitivity was used with a 600-lines/mm grating and was 

controlled by a Oriel monochromator driver. A set of red light emitting diodes (LED) was 

used to provide the dc bias light. A chopper blade was mounted near the entrance slit of 

monochromator to chop white light and controlled by a chopper controller. The chopping 

frequency was 13 Hz. A filter driver having three long pass filters with wavelength of 500 

nm, 700 nm, 900 nm, and a single crystalline silicon with wavelength of 1100 nm was 

placed at the exit slit of monochromator in order to cut-off second and high order 

wavelength refraction peaks and controlled by an Oriel filter driver to change filters. Flux 

is calibrated by means of a pyroelectric detector. A homemade sample holder was used 

with BNC connections to hold samples and pyroelectric detector.  External dc bias voltage  
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applied using A Keitley 6517A Electrometer and current, both dark and photocurrent, was 

measured using the same Electrometer.  A SR830 lock in amplifier was used to measure 

a.c. signal. All system was placed on an Oriel optical table in a closed box to provide a 

dark room.  

 An improved computer program, written in Objectbench software, is used to 

control the experimental system and for data acquisition. A Keithley IEEE 488 card was 

used to provide General Purpose Interface Bus (GPIB) protocol. SR830 lock-in amplifier, 

monochromator driver and filter driver are connected to IEEE 488 card.  Having placed 

the sample on the sample holder, the computer program was called to start measurements. 

It starts with initializing lock-in amplifier and monochromator. Program allows adjusting 

initial energy, energy step and number of measurements for each energy. The bandpass 

filters are changed at certain energy. In DBP measurement the raw current and phase were 

measured for each energy value and averaged current values were divided by flux and 

recorded to data file with the phase of the signal. The computer program used for DBP 

measurements, flux measurements and transmission measurements is given in Appendix 

A. 

 

2.2.2.1 Flux Calibration 

 

A Quartz Tungsten Halogen (QTH) lamp is used in DBP system. It does not have a 

flat flux spectrum. Therefore, flux calibration is necessary. A pyroelectric detector was 

used for calibration of flux spectrum. Pyroelectric detectors are thermal type infrared 

detectors. The responsivity of pyroelectric detector is not depending on wavelength of the 

light. They are sensitive in a range of 0.1 µm-100 µm of the optical spectrum.  

 The raw flux spectrum of Quartz Tungsten Halogen (QTH) lamp measured using a 

pyroelectric detector is presented in Figure 2.5.   Before performing each measurement, 

flux calibration was carried out in order to eliminate possible flux change of the lamp with 

time. Then the flux data were used for normalization of DBP spectrum and transmission 

spectrum.  
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Figure 2.5. Flux spectrum of Quartz Tungsten Halogen (QTH) lamp obtained 
using pyroelectric detector. 

 

2.2.2.2 Transmission Spectrum 

 

Transmission spectrum was obtained placing the pyroelectric detector just behind 

the films. A typical transmission spectrum of a µc-Si:H thin film is presented  in Figure  

2.6. In the high-energy region of the spectrum, absorption is very high so transmission 

goes to zero at these values. Then it gradually increases with decreasing energy since 

absorption of investigated films decrease sharply in this energy region. The appearing 

fringes are due to interference of light in the film resulting from reflection of light in the 

film-substrate interface. The first interference peak is observed when the wavelength of 

incident light is comparable to the film thickness. For thicker films, interference fringes 

appear in the lower energy values. Transmission data were used to calculate the film  
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Figure 2.6. Transmission spectrum of a µc-Si:H thin film. 

 

thickness using two energy values corresponding to two peaks in the transmission 

spectrum in the low energy region and refraction index of silicon. In addition, the 

transmission spectrum was used to calculate fringe free absolute absorption coefficient 

spectrum of these films as will be discussed in the last section of this chapter. 

 

2.2.2.3 Dual Beam Photoconductivity Spectrum 
 
 
 The experimental setup and physical principle of dual beam photoconductivity 

spectrum was discussed at the beginning of this chapter. Dual beam photoconductivity is 

based on relative measurement of the ac photoconductivity and does not result in absolute  
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Figure 2.7. A typical raw and normalized photocurrent spectra of a  µc-Si:H thin films 
measured by DBP method. 

 

 

absorption coefficient spectrum. A typical raw and normalized photocurrent spectra for 

the µc-Si:H thin films measured by DBP at energies from 0.64 to 2.5 eV are  shown in the 

Figure 2.7. The relative flux data is used to normalize raw photocurrent spectrum. The 

normalized photocurrent spectrum, DBP yield spectrum (YDBP(ac)=σph(ac)/Flux), is 

proportional to the absorption spectrum if only certain assumptions of DBP are satisfied. 

First, constant µτ product of majority carrier electrons must be satisfied. This condition is 

controlled by calculating Idc / Iac ratio where Idc is dc photocurrent arising from applied dc 

bias light and Iac is ac photocurrent is measured by the Lock-in amplifier. For high 

generation rate of dc bias light, Idc / Iac is much higher than unity which implies that quasi- 
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Figure 2.8. Intensity dependence of ac photocurrent on the ac monochromatic light.

 

 

Fermi levels of free carriers are fixed by dc bias light and are not altered by ac light. 

However, this condition is not satisfied for low generation rate of dc bias light especially 

in the high-energy region of the spectrum. In the case of low generation rate of dc bias 

light, the section of the photocurrent spectrum that satisfy Idc/Iac>=10 were taken as the 

reliable photocurrent spectrum. The linearity of ac photoconductivity on the intensity of ac 

light is also double-checked using the neutral density filters. In Figure 2.8, ac 

photoconductivity versus intensity is shown for different energies. It is seen that the 

exponent γ of ac photoconductivity is unity at all energies, which indicates that µnτn 

product of electrons are kept constant during the measurements. That is the most 

important requirement of DBP method to be satisfied.   The second condition is uniform 

absorption of light. Since absorption coefficient of microcrystalline silicon thin films is  
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Figure 2.9. Dual beam photoconductivity yield YDBP of an intrinsic µc-Si:H film  
for high and  low bias light intensities. 

 

typically in the order of 103  cm-1 in the high-energy region of the spectrum and thickness 

of the investigated films are in the order of 0.4-0.9 µm, αt (αt=103x0.9x10-4≪1) is smaller 

than unity. Therefore, uniform absorption condition is satisfied.                                                                   

An example of DBP yield spectrum, YDBP, including interference fringes measured 

at high and low bias light intensities are shown in Figure 2.9. It is clearly seen that DBP 

yield spectrum exhibits a dependence on dc bias light intensity in the low energy region.  

Since the use of bias light is to control the quasi-Fermi levels and the µnτn product 

of electrons, the occupation of defect states can be changed by varying bias light intensity. 

Therefore, by increasing bias light intensity more defect states above the Fermi level are 

occupied and transition from these occupied states to conduction band can be probed in 

dual beam photoconductivity spectrum. This is called as the intensity dependence of dual 
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beam photoconductivity.  As it can be seen from the Figure 2.9, the deviation of spectra 

for different bias light intensities begins at bandgap energy. Therefore, intensity of bias 

light has no effect on the YDBP above bandgap energy. However, below the bandgap 

energy, the YDBP spectrum is not unique and depends on bias light intensity. The deviation 

in the spectrum below the bandgap energy is correlated to the occupation of defect states 

in the midgap. Thus, YDBP spectrum does not result in absolute absorption coefficient 

below the bandgap. It rather reflects the effect of electron occupied defect states present in 

the bandgap of the material. This feature of DBP will be used to understand the defect 

states present in the bandgap of intrinsic µc-Si:H thin films deposited under different 

conditions. 

 

2.2.3 Photothermal Deflection Spectroscopy 

 

 Photothermal deflection spectroscopy (PDS) [40-42] is based on measurement of 

generated heat as light absorbed by the material of interest. The physical principal of PDS 

is straightforward. Sample is illuminated with a chopped monochromatic light. Due to 

absorption, the temperature of the film changes and results in a temperature gradient in 

deflection medium (CCl4), which has a temperature-sensitive refraction index. A laser 

beam grazing sample surface experience a periodic deflection synchronous with 

modulated light. The amplitude and phase of the deflected laser beam is measured using a 

position sensitive detector. The signal is proportional to the absorbed light power, thus 

absorption coefficient, α(hν).  

 The experimental setup for PDS is presented in Figure 2.10.  As a deflection 

medium CCl4 is generally used since it has extremely low absorption in the photon energy 

range of 0.4-2.3 µm [42]. It also does not alter the properties of silicon based thin films. 

The experimental setup must be well aligned and placed in the optical table in order to 

avoid effect of vibrations.  The probe beam should be as close to the film surface as 

possible. The deflecting medium should be as clean as possible since particulates in the 

deflecting medium can results in a significant noise. The optical paths should be enclosed 

to eliminate effect of air currents. The probe beam should be well focused on the sample.  
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A PDS setup was established as one goal of this thesis. A 20 mW HeN laser was 

used as laser probe beam. A 1% neutral density filter is placed in front of laser in order to 

attenuate laser beam intensity.  A position sensitive detector was used to detect deflecting 

laser beam. The remaining instruments such as Lock-in amplifier, monochromator, white  

light source, lamp housing, and filters are the same since both systems shares the same 

setup due to lack of additional instruments. A convex lens having a focal length of 5 cm 

was placed in front of the monochromatic light beam so as to focus light in the sample. 

Another convex lens having a focal length of 10 cm is placed in the way of laser beam to 

focus laser beam just in front of the sample where monochromatic light focused on the 

sample. The monochromatic light beam, laser beam and sample holder is well aligned. A 

computer program written in Objectbench was used for data acquisition.  A few 

experiments were done for both optimization of experimental setup and computer 

program. PDS and DBP setups share the same instruments such as monochromator, lock-

in amplifier and lamp housing. In this thesis the focus was mainly on DBP measurements. 

Therefore, PDS measurements were not performed by us but done in Jülich Research 

Center, Germany. 

 

2.3 Evaluation of Fringe Free Optical Absorption Coefficients Spectrum from DBP 

Yield Spectrum. 

 

 Interference fringes in the absorption spectrum and transmission spectrum of thin 

films were usually averaged in order to obtain the real spectrum [58].  In this section, a 

procedure to obtain fringe free absolute absorption coefficient spectrum will be presented 

for DBP method. First noted by Ritter and Weiser [51], A/T is free of fringes, since 

maxima and minima of transmittance and absorptance   takes place nearly in the same 

photon energy of the spectrum for homogeneous samples, and used to calculate absolute 

absorption coefficient spectrum as carried out for “absolute’ constant photocurrent method 

(CPM) [45]. Transmittance (T) and reflectance  (R) for a film with an absorption 

coefficient α and refractive index n on a non-absorbing substrate having a refraction index 

ns are given as follows [51]  
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where 1 and 2 refer to film-air and film-substrate interface respectively and t is the film 

thickness, k=λα/4π, β=2πnt/λ, λ is the wavelength of light, and δ is the phase of the 

complex Fresnel coefficient.  Interference effect is due to the phase angle β. On the other 

hand, sum of absorbance, reflectance, and transmittance is equal to unity.  
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Using Equations 2.17, 2.18, and 2.19 A/T can be derived as follows 
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The first term is free of interference fringes since it is independent of β. The interference 

fringes are due to second term. However, for thin films of interest, the second term can be 

neglected since it is much smaller than first term. The ratio of first term to the second one, 

as calculated in the original paper of Ritter and Weiser, is 66 for λ=d=1 µm, n=3.5, ns=1.5 

(glass) and αd«1. Omitting the second term and neglecting k2/n2 in the first term  
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Since t and R2 are constant in equation 2.21, the only problem remains is setting A/T in 

absolute scale. To do this, we follow procedure that used for “absolute” CPM method 

[45]. First step is setting transmission spectrum in absolute scale. The transmittance 
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maximum Tmax of a nearly nonabsorbent thin film on a nonabsorbent thick substrate is 

depend only optical refraction index ns [59] of the substrate and is given as follows.   
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Refraction index of Corning glass 7059 is 1.5, so Tmax is approximately 0.92. Therefore, 

setting Tmax of transmission spectrum to 0.92 transmission spectrum is now in absolute 

scale.  The next step is setting A/T in absolute scale. To do this we chose a reference 

energy Ex in the high photon energy region   of the absolute transmission spectrum where 

transmission spectrum and reflection spectrum is free of interference fringes. In general 

Tx=0.05 is a good choice since transmission spectra of our films are free of interference 

fringes at this point, where we take reflectance as Rx=0.41 when sample illuminated from 

film side and Rx=0.26 when sample illuminated from substrate side. These values are 

taken for amorphous silicon, however, we will see that using these values our calculated 

absolute absorption spectra are in agreement with those of PDS. Using the value of Tx and 

Rx and relation Ax+Tx+Rx=1 we have the value of Ax in absolute scale at reference energy 

Ex. So once we set the value of absorptance to Ax at reference energy Ex, we obtain whole 

absorptance spectrum in absolute scale. Then the final step is using absolute A/T spectrum 

in Ritter-Weiser formula as given in equation 2.21. To compare the results of this method 

on a real absorption spectrum, YDBP spectrum of a µc-Si:H thin film  normalized to that of 

PDS is shown in Figure 2.11a. It is seen that normalization is done by eye at energies 

where YDBP is proportional to absorbance (1.4-1.6 eV). Due to interference fringes, it is 

difficult to obtain reliable α(hν) values at lower energies. To eliminate these fringes, a fast 

Fourier transform procedure is commonly used in the literature [57], then a better 

normalization can be done to absolute α(hν) spectrum of PDS or T&R. However, fringe 

removing procedure for thin films less then 1 µm introduces a large error into shape and 

magnitude of the spectrum. It then results in inaccurate normalization of YDBP. 

Furthermore, eliminating fringes completely from the spectrum can also result in loss of 

some important information that raw  YDBP spectrum carries about the sample. 
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 In this thesis, contrary to the old approach used in the literature [57], we have used 

the fringe free calculation procedure explained above from the raw YDBP spectrum and 

simultaneously measured transmission signal of the same sample. The result of the 

calculation procedure is shown in Figure 2.11b for the same sample together with the 

α(hν) spectrum of PDS. Here, there is no normalization procedure of fringe free YDBP 

spectrum carried out to that of PDS. Both spectra were independently measured by two 

different methods and the α(hν) spectra were calculated using the same procedure. It is 

clearly seen that the α(hν) spectra overlap quite well at higher energies but differences 

exist at lower energy part. This will be explained in detail through the thesis.  
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Figure 2.11 a) YDBP spectrum normalized to PDS directly. In the inset, the transmission of 
the film is shown.  b) Calculated fringe free absolute  α(hν) spectrum of DBP and PDS 
measured independently. 
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CHAPTER 3 
 
 

EXPERIMENTAL RESULTS IN INTRINSIC HYDROGENATED 
MICROCRYSTALLINE SILICON THIN FILMS 

 
 
3.1 Introduction 

  

Intrinsic hydrogenated microcrystalline silicon thin films are important 

candidate for large area photovoltaic and solar cells applications. Therefore, its optical 

and electronic properties must be appropriately characterized in order to understand the 

physics involved in this material. In this thesis, intrinsic µc-Si:H thin films prepared by 

VHF-PECVD and HW-CVD methods were characterized using the methods of steady 

state photoconductivity (SSPC), photothermal deflection spectroscopy (PDS), and dual 

beam photoconductivity method. In SSPC measurements, mobility-lifetime product 

(µnτn) of majority carriers, electrons, was obtained. The µnτn –product is one of the 

major properties of photoactive materials and it must be appropriately measured. In 

PDS measurements, absolute absorption coefficient spectrum from 2.5 eV down to 0.6 

eV was obtained. The α(hν) spectrum must be known to use the material as absorber 

layer in solar cells, which must fit the solar spectrum. In DBP measurements, 

photoconductivity yield spectrum was measured. Then the resulting DBP yield 

spectrum and transmission spectrum was used to calculate absolute α(hν) spectrum for 

the first time in this thesis. 

 

3.2. Steady State Photoconductivity Results of Intrinsic µc-Si:H Thin Films 

 

 Steady state photoconductivity is a complex process of free carrier generation 

across the bandgap, recombination of free carriers through the defect states and 

transport of free carriers at the mobility edge. Therefore, it involves the absorption 

coefficient of material, density and nature of recombination centers and mobility of 

free carriers at the extended states.   The well-known non-integer power-law 

dependence on generation rate of steady state photoconductivity is an important 

physical feature. It provides information about recombination kinetics between 

electrons and holes. The mobility-lifetime product, µτ, of electrons can also be derived 



from steady state photoconductivity. The mobility-lifetime product of electrons is an 

important parameter for device applications. 

  The measured photoconductivity and calculated µτ product versus 

generation rate are shown in Figure 3.1 and Figure 3.2 for intrinsic µc-Si:H thin films 

deposited by VHF-PECVD and HW-CVD methods, respectively. The 

photoconductivity versus generation rate obeys the well-known non-integer power-law 

dependence rule, σph∝G γ. The exponent γ is in the same order for both type of films. It 

is between 0.8 - 1.0, indicating a continuous distribution of recombination centers 

present in the material. The steady state photoconductivity is dominated by the 

majority carriers, electrons, transport for these intrinsic hydrogenated microcrystalline 

silicon thin films. Since the µnτn- product of electrons is much higher than that of holes 

(µnτ n≫ µpτp).  Therefore the investigated thin films exhibit slightly n-type character.  

The  µnτ n- products decreases as generation rate increase, with its characteristic power 

law  µτ ∝ Gγ-1, implying that more defect states act as recombination centers with 

increasing generation rate.  In Figure 3.3 photoconductivity and µτ-product of PECVD 

and HW-CVD deposited µc-Si:H thin films are presented together. The µnτ n- products 

of VHF-PECVD grown thin films have almost factor of ten higher values than those of 

HW-CVD grown thin films for the samples deposited with SC’s from 3.7% to 7.0%. 

For both type of investigated µc-Si:H thin films, there is no functional dependency 

found on silane concentration. However, the film deposited for the lowest SC has the 

lowest µnτ n- product indicating an increased defect density present in the material, 

which mainly decreases the lifetime τn of electrons. 
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Figure 3.1 (a) σph versus generation rate for intrinsic µc-Si:H films prepared using 
VHF-PECVD method. b) µnτn-product versus generation rate of the same intrinsic 
µc-Si:H thin films 
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Figure 3.2 (a) σph versus generation rate for intrinsic µc-Si:H films prepared using 
HW-CVD method. b) µnτn-product versus generation rate of the same intrinsic µc-
Si:H thin films 
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Figure 3.3 Summary of σph (a) and µnτn –product (b) versus generation rate of  µc-
Si:H thin films deposited by VHF-PECVD and HWCVD techniques. 
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3.3 Sub-Bandgap Absorption Spectra of intrinsic µc-Si:H thin films 

 

 Optical absorption spectrum of thin films is an important parameter to 

characterize optical and electronic properties of the materials. The measurements of 

optical absorption especially in the sub-bandgap region is very important since 

absorption in that region is related to defect states present in the materials.     As the 

deposition condition changes, the microstructure of the µc-Si:H thin films changes 

substantially. This affects the resulting optical and electronic properties of deposited 

thin films. In order to obtain reliable α(hν) spectrum of intrinsic µc-Si:H thin films, 

especially in the sub-bandgap region,  is one of the crucial subject of ongoing research. 

In this section, experimental optical absorption spectra of intrinsic microcrystalline 

silicon thin films measured using PDS and DBP methods will be given separately for 

VHF-PECVD and HW-CVD grown thin films. PDS measurements were performed in 

Jülich Research Center, Germany.  

 

3.3.1 VHF-PECVD Grown Thin Films  

  

An example of DBP yield spectrum for high bias and low bias light intensities 

together with transmission spectrum is presented in Figure 3.4a and Figure 3.4b, 

respectively, for a intrinsic microcrystalline silicon thin film deposited using VHF-

PECVD with SC=4.3%. As seen from Figure 3.4, the maxima and minima of 

transmission and DBP yield spectra occur at the same photon energies. For low bias 

light, DBP spectrum results in lower values than high bias DBP spectrum only at sub-

bandgap energies as seen in Figure 3.4a. The deviation is related to occupation of 

defect states in the bandgap as explained in Chapter 2. At the low bias light condition, 

DBP probes the distribution of defect states, which is very close to that in the dark 

condition below the Fermi level. When intensity of bias light is increased, more defect 

states above the Fermi level are occupied. This will result in an increase in the number 

of transition from these occupied states into the conduction band, therefore the YDBP 

values in the lower energy region increase as seen in Figure 3.4a. YDBP at high bias 

light contains more information since the occupation of defect states determines this 

increase at  
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Figure 3.4 a) DBP Yield spectrum measured with high and low bias light intensities
for a µc-Si:H thin film deposited SC=4.3%. In the inset, phase of both measurements
are shown. b) Transmission spectrum of the same sample. 
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lower energies. For both cases, DBP yield spectrum is directly proportional to the 

absorptance and thus absorption coefficient. There are also interference fringes on the 

spectrum due to multiple reflections of the incoming light. The aim is to obtain 

absorption coefficient spectrum from the YDBP spectrum without interference fringes. 

Generally, the fringes have been removed using fast Fourier transform method [57] 

and resulting fringe free YDBP spectrum is normalized to absolute α(hν) values 

obtained from T&R or from PDS measurements [47,49]. Then, the α(hν) values at 

lower energies, obtained by setting YDBP to absolute scale, are used to compare the 

level of defect states present in the material. It is frequently discussed in the literature 

that fast Fourier transforms process introduces artificial errors in the spectrum for films 

less than 1 µm and absolute α(hν) obtained from T&R measurement is not reliable for 

such thin films (< 1 µm).   Therefore fringe free normalization of YDBP always 

introduces a significant degree of errors and accuracy is questioned. In this thesis, for 

the first time, the fringe free absolute α(hν) spectrum is directly calculated from DBP 

yield spectrum and transmission spectrum shown in Fig. 3.4b measured on the same 

sample using a procedure based on the Ritter-Weiser formula as explained in the 

Chapter 2.  

 In the Figure 3.5a, DBP yield spectrum for high and low bias light intensity and 

raw spectrum of PDS signal are shown. As clearly seen from the figure, the maxima 

and minima of both spectra are at the same energy points. However, for some samples 

a shift in maxima and minima of both methods are observed since sometimes the 

thickness of investigated films can show a variation on the substrate. In the inset of the 

Figure 5a, transmission spectra obtain for both methods are also presented. It is seen 

that transmission spectra obtained for both methods are also identical. In the Figure 

3.5b, absolute α(hν) spectrum calculated from PDS and DBP measurements and 

simultaneously measured transmission signals for the same sample are presented. In 

the inset of the figure, the phase of PDS and DBP signal are also shown. For the PDS 

spectrum, a deviation begins below the bandgap energy since in that region absorption 

arising from substrate dominates the PDS spectrum. The absorption due to substrate 

can be monitored in the phase of PDS signal and a correction process is carried out to 

get rid of the substrate contribution in the absorption spectrum. But in general, phase 

of PDS signal is noisy in the lower energy region. Therefore, the accuracy of this  
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Figure 3.5 a) Raw PDS and YDBP signals of a µc-Si:H thin film. In the inset
transmission spectra of both methods are shown. b) Absolute α(hν) spectra of PDS
and DBP measurements and that of c-Si and s-Si:H for comparison. In the inset, the
phase of PDS and DBP are illustrated. 
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correction is not very well especially below 1.0 eV. The phase corrected absolute 

absorption spectrum of PDS for the same sample is also presented in the same figure.  

Similarly, the fringe free α(hν) spectrum calculated from YDBP spectrum for 

high and low intensities of bias light are also shown in the Figure 3.5b using the same 

procedure explained in chapter 2. As seen from figure3.5b, the absorption spectra 

obtained from both methods are in agreement above bandgap energy. At lower 

energies, PDS spectrum deviates because of substrate effect. Phase corrected spectrum 

of PDS reflects the noise of phase in that region. On the other hand, DBP spectrum in 

that region is a smooth curve and is relatively noise free when compared to PDS 

spectrum. However, as discussed in chapter 2, the DBP spectrum below the bandgap 

energy does not reflect true absorption coefficient of investigated thin films; rather it 

has an intensity dependence on bias light and reflects the occupation of defect states in 

the bulk of the material In addition, absolute α(hν) spectrum of µc-Si:H obtained in 

this study is also compared with those of a-Si:H and c-Si. It is seen that the 

α(hν)spectrum of µc-Si:H is consistent with data reported in the literature as compared 

to its amorphous and crystalline counterpart.  

Another important feature of these methods is the phase of the signal. Phase of 

DBP and PDS signal is presented in the inset of Figure 3.5b. As seen from the figure, 

phase of PDS and DBP signals begin to change at about 1.2 eV. The shift in the phase 

of PDS signal is due to substrate absorption. On the other hand, the shift in the DBP 

signal can be attributed to recombination kinetics of defect states present in the band 

gap since DBP method is insensitive to substrate absorption.  In addition, the use of 

bias light results in a change in the occupation of defect sates from that in the dark 

condition. This additional defect kinetics is different from the defects in the extended 

states, which dominates at the high photon energy region of α(hν) spectrum.   Small 

modulations in the phase of DBP signal as well as PDS signal are also important as 

seen in the inset of Fig. 3.5b. The degree of modulations in the phase varies. For some 

sample the modulation in the phase become significantly large. These modulations can 

be considered as indication of an inhomogeneous absorption of light due to 

inhomogeneity present in the material.  

To investigate inhomogeneity of the material in growth direction, DBP 

measurements were also performed for ac monochromatic light incident form substrate 

side for the same sample while keeping the remaining condition to be the same as for  
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Figure 3.6 a) YDBP spectra measured for ac light incident from film side and
substrate side for intrinsic µc-Si:H film deposited by VHF-PECVD method with
SC=4.3%. In the inset, transmission spectrum of the same sample is shown. b)
Calculated α(hν) spectra  of the same sample for both front and back ac illumination
cases. In the inset, phase of both measurement signals are shown.  
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conventional measurement geometry (ac light incident to film side). The transmission 

spectrum was also measured for both front and back ac illumination and was found to 

be identical for both cases. The results are shown in Figure 3.6a and Figure 3.6b for 

raw YDBP and calculated α(hν) spectra, respectively. In the insets, corresponding 

transmission signals and phase of DBP measurements are illustrated. As clearly seen 

from Figure 3.6a, no difference between the raw YDBP spectra of front and back ac 

illumination DBP measurements can be distinguished. There are no significant 

differences either in the modulation depth of fringes of DBP yield spectra or in the 

phase of both measurements. This is an indication of homogeneous absorption. This 

can also be confirmed after fringe free calculation of absorption spectrum. There is no 

fringes remain on absolute absorption spectrum of this sample as seen in Figure 3.6b. 

This indicates that light is uniformly absorbed throughout the material. However, this 

is not observed in all the samples. In addition, there is also important difference in the 

α(hν) spectra at low energies, where DBP back ac illumination gives slightly higher 

α(hν) values. This indicates that DBP back ac illumination probes slightly higher 

defective layer, which cause high α(hν) values at low energies even though high-

energy part of α(hν) spectrum is almost identical.   

Some films exhibit remnant fringes on the α(hν) spectrum. As an example of 

this situation, the results of DBP of a VHF-PECVD grown thin film deposited with 

SC=6.25% is shown in the Figure3.7. The raw YDBP spectra and corresponding α(hν) 

spectra measured for ac light coming from film side and substrate side is presented in 

the Figure 7a and Figure 7b, respectively. The depth of fringes in the raw spectrum 

measured for ac light incident from film side is slightly higher than that of measured 

for ac light incident from substrate side. Both measurements were performed for the 

same intensity of dc bias light to provide the same volume generation rate.  The only 

difference between both measurements is direction of light. There remain fringes after 

calculation of fringe free absorption spectra in the both spectrum as shown in Fig. 

3.7b. For a uniformly absorbing sample, no fringe remains after fringe free calculation 

as reported by Ritter-Weiser [51]. The remaining fringes can be considered as a 

indication of inhomogeneous absorption in the material as discussed elsewhere for a-

Si:H [60, 61]. The phase of DBP signal for both measurements is also shown in the 

inset of the Figure 3.7b.  An indication of inhomogeneous light absorption can also be  
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Figure 3.7 a) YDBP   spectra of a intrinsic µc-Si:H thin film deposited using VHF-
PECVD with SC=6.25% for ac light incident from substrate side and film side. In
the inset, transmission spectrum of the sample is shown.  b) Calculated absolute
α(hν) spectra of both DBP front and back ac illumination measurements. In the
inset, phase of DBP signal are shown 
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monitored in the phase of signal of both measurements. The phase signal of both 

measurements exhibits small modulations. However, the modulation depth of phase 

signal for front ac illumination measurement is much higher. A defective layer closer 

to the surface of the material could results in such effect in the absorption spectrum of 

the material. Such kind of fringe patter left on the fringe free calculated α(hν) 

spectrum and modulation in the phase of signal is an indication of the inhomogeneity 

present in the material. This could be on the surface, at the interface or throughout the 

bulk of the film or combination of all which can be understood from the calculated 

α(hν) spectrum.  

The results of other intrinsic µc-S:H thin films prepared using VHF-PECVD 

have been obtained using  a similar procedure and the α(hν) spectrum calculation were 

carried out. These results are shown in the Figure 3.8, Fig 3.9, Fig 3.10, and Fig 3.11 

for the intrinsic µc-Si:H thin films deposited with SC’s 3.06%, 3.7 %, 4.3%, 4.9% and 

6.25% respectively.  For each sample, first part of figure (a) shows raw data of PDS 

and DBP methods and the corresponding transmission spectra are shown in the inset. 

In the second part of the figure (b), calculated absorption spectra of both methods are 

given and their phase are shown in the inset of the figure. 

As a summary of the results of PDS and DBP indecently measured on the same 

sample, it can be said that the α(hν) spectra obtained using the both methods at high 

photon energy part agree very well. However, there exist differences between PDS and 

DBP at sub-bandgap energies. PDS data is very high due to dominating substrate 

absorption. After phase correction process to eliminate the substrate absorption, the 

α(hν) values decrease substantially. The PDS phase corrected spectrum and DBP low 

bias light spectrum can be compared for different µc-Si:H thin films to understand the 

effect of the microstructure.  

In Figure 3.12, the α(0.80 eV) values obtained from the phase corrected PDS 

and low bias light DBP spectra are shown as a function of the silane concentration 

(SC). It is seen that more scatter exist in PDS data due to the noise in the phase of PDS 

at lower energies, which affects the phase corrected PDS spectrum. However, DBP 

data show a clear dependence on the SC’s. At the lowest SC’s, the α(0.80 eV) values 

are high due to increased defects in the material. This is also observed in ESR 

experiments [1,24,62,63]. Similarly, high α(0.80 eV) values observed in PDS and DBP 
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Figure 3.8 a) Raw PDS and YDBP spectra measured at high and low bias light
intensities. In the inset, corresponding transmission spectra are given for a µc-Si:H
sample deposited with SC=3.06 %. b) The calculated α(hν) spectra of PDS, phase
corrected PDS, and those of DBP measurements. In the inset, the phase of PDS and
DBP are given. 
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Figure 3.9 a) Raw PDS and YDBP spectra measured at high and low bias light
intensities. In the inset, corresponding transmission spectra are given for a µc-Si:H
sample deposited with SC=3.69 %. b) The calculated α(hν) spectra of PDS, phase
corrected PDS, and those of DBP measurements. In the inset, the phase of PDS and
DBP are given. 
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Figure 3.10 a) Raw PDS and YDBP spectra measured at high and low bias light 
intensities. In the inset, corresponding transmission spectra are given for a µc-Si:H 
sample deposited with SC=4.96%. b) The calculated α(hν) spectra of PDS, phase 
corrected PDS, and those of DBP measurements. In the inset, the phase of PDS and
DBP are given. 
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Figure 3.11 a) Raw PDS and YDBP spectra measured at high and low bias light
intensities. In the inset, corresponding transmission spectra are given for a µc-Si:H
sample deposited with SC=6.25 %. b) The calculated α(hν) spectra of PDS, phase
corrected PDS, and those of DBP measurements. In the inset, the phase of PDS and
DBP are given. 
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Figure 3.12 Comparison of the α(hν) values at sub-bandgap energy 0.8 eV 
independently measured by PDS and DBP front ac illumination for intrinsic µc-Si:H 
thin films deposited by VHF-PECVD. Lines are guide to eye. 

 

indicate that material has higher defect density for lower SC’s. As SC increases, the 

α(0.80 eV) decreases and gives a minimum around SC=5%. This value of SC 

corresponds to a transition from a microcrystalline to fully amorphous growth. As SC 

increases further, α(0.80 eV) values tends to increase again due to increased ratio of 

defective amorphous phase. The results in Figure 3.12 indicates that the µc-Si:H thin 

films deposited in the transition region have the lowest  defect density.  

The differences between PDS and DBP curves are also consistent as the nature 

of both techniques is taken into account. PDS is an absolute absorption measurement 

technique. As light is absorbed, a transition occurs from the occupied states into empty 

states above the dark Fermi level. These transitions result in a periodic heat in the 

material, which cause a modulated temperature gradient in the ambient thus a 

modulated change in the refraction index of ambient.  The change in the refraction 

index is detected as a deflection in the probe beam, which is used to calculate the 

α(hν) spectrum of the material of interest. After phase correction of PDS spectrum, 

PDS give absolute α(hν) spectrum of the material in a wide energy region. However, 
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in DBP low bias light condition, only distribution of occupied defect states close to 

that in the dark condition is probed. Only transition of electrons from these occupied 

defect states into conduction band is measured by DBP photocurrent spectrum, 

transition into empty states between conduction band and the dark Fermi level are not 

probed since these transitions do not result in free electrons, neither in photocurrent, 

but trapped electrons. For this reason, a significant amount of the transition is not 

probed in DBP method. Therefore, DBP values, for low bias light condition, are 

approximately two times lower than the corresponding values in the PDS spectrum.  

 

3.3.2 HW-CVD Grown Thin Films 

 

 Similar quality intrinsic µc-Si:H films were  also prepared using the Hot-wire 

CVD method for similar range of SC’s. The resulting microstructure is altered 

accordingly, which leads to a change in the electronic and optical properties of the 

materials. The investigation of the effect of SC on the optical absorption spectrum is 

extended to HW-CVD grown thin films. PDS and DBP methods were used to obtain 

reliable α(hν) spectrum of HW-CVD grown thin films.  

 An example of DBP yield spectrum for high and low intensities of dc bias light 

together with the PDS raw spectrum are shown in the Figure 3.13a for an intrinsic 

microcrystalline silicon thin film deposited with SC=2.5%. The phase of PDS and 

DBP signal are shown in the inset of Figure 3.13b. The corresponding transmission 

spectrum is shown in the inset of in Fig 3.13a. As seen from the figure, there exist a 

shift between the peak of PDS spectrum and YDBP spectrum. The same shift is 

observed in the transmission peaks of both methods as well. This is due to nonidentical 

samples taken from different part of substrate. However, for each method, measured 

signal and its corresponding transmission signal have peak points at the same energies 

as seen from the given figures.  

The calculated fringe free absolute α(hν) spectrum of the same sample 

measured by PDS and DBP are shown in the Figure 3.13b. However, for this sample, 

the spectra of DBP for low and high bias light condition overlap over the entire energy 

region and difference between two spectra is indistinguishable at lower energies since 

α(hν) values at lower energies are very high.  As seen from Figure 3.13b, the PDS and 

DBP spectra shows a good overlap down to bandgap energy. The deviation in the PDS  
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Figure 3.13 a) Raw PDS and DBP Yield spectra of a µc-Si:H thin film deposited by
HW-CVD method with SC=2.5%. In the inset, simultaneously measured
corresponding transmission signal of PDS and DBP methods are shown. b)
Corresponding absolute α(hν) spectra independently obtained from PDS and DBP
measurements. In the inset the phase of PDS and DBP measurements are shown. 
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Figure 3.14 a) Raw PDS and DBP Yield spectra of a µc-Si:H thin film deposited by
HW-CVD method with SC=2.5%. In the inset, simultaneously measured
corresponding transmission signal of PDS and DBP methods are shown. b)
Corresponding absolute α(hν) spectra independently obtained from PDS and DBP
measurements. In the inset the phase of PDS and DBP measurements are shown. 
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spectrum below this energy is due to substrate effect as discussed before for VHF-

PECVD grown thin films and a phase correction has been carried out. 

To investigate the effects of inhomogeneity present in the material, DBP 

measurements were also performed for ac light incident from substrate side. The 

intensity of bias light was the same for both measurements to provide the same volume 

generation rate. The only difference between two experiments is direction of the ac 

illumination.  YDBP measured for front and back ac illumination are shown in Figure 

3.14a together with that of uncorrected PDS measurement. The corresponding 

transmission and phase data are shown in the inset of Figure 3.14a and Figure 3.14b, 

respectively. The data measured for light incident from substrate side is labeled as 

substrate side. As seen from the Figure 3.14a, there is no difference between front and 

back ac illumination DBP measurements. The corresponding transmission spectra are 

also identical. The calculated absolute α(hν) spectra of these measurements are shown 

in the Figure   3.14b. It is clearly seen that there remain no fringes in both spectra. The 

DBP spectra measured for film side and substrate side agree very well and overlap 

with that measured on the PDS method. This indicates that light is uniformly absorbed 

throughout the material. However, as discussed for the PECVD grown thin films, this 

is not always the case for µc-Si:H thin films deposited by HW-CVD method.  

To illustrate an example of inhomogeneous absorption of light, sub-bandgap 

absorption result of PDS and DBP is given in Figure 3.15a, for a HW-CVD grown 

sample deposited for SC=4%. In the inset transmission of both methods are shown. 

The peaks of both spectra are located at same energy points and they are identical. The 

calculated fringe free absolute α(hν) spectrum derived from YDBP for low and high 

bias light condition together with that of PDS are shown in the Figure 3.16b. In the 

inset of the figure, the phase of PDS and DBP are shown. As seen from the figure, the 

PDS and DBP data show a good overlap over the entire photon energy region except 

below the bandgap. The deviation in the PDS spectrum in that region is due to 

substrate effect as discussed before. The phase corrected PDS spectrum exhibits a 

significant scattering since the phase of PDS signal is very noisy in the low energy 

region. However, the DBP spectrum at low photon energies is a smooth curve and 

relatively noise free. The DBP spectrum obtained for low bias light condition has 

lower values below the bandgap energy as expected.  
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Figure 3.15 a) Raw PDS and DBP Yield spectra of a µc-Si:H thin film deposited by
HW-CVD method with SC=2.5%. In the inset, simultaneously measured
corresponding transmission signal of PDS and DBP methods are shown. b)
Corresponding absolute α(hν) spectra independently obtained from PDS and DBP
measurements. In the inset, the phase of PDS and DBP measurements are shown. 
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At the low bias light condition, DBP probes the distribution of occupied defect 

states, which is very close to that present in the dark condition. This reflects the effect 

of occupied defect states bellow the dark Fermi level, which is controlled by the 

deposition conditions and microstructure. An increase in the α(hν) spectrum at lower 

energies is obtained for HW-CVD grown films as intensity of bias light increase as 

observed in VHF-PECVD grown thin films. Furthermore, there is a small fringe 

pattern left on the calculated fringe free α(hν) spectrum as seen in Figure 3.15b. 

Again, this is an indication of inhomogeneous microstructure of sample detected by 

front ac illumination DBP method. In order to see the effect of the inhomogeneity, 

DBP with back ac illumination is also carried out. The YDBP spectra of the same 

sample for front and back ac light illumination are shown in the Figure 3.16a. There is 

a significant difference between spectra measured for ac light coming from substrate 

side and film side, whereas transmission spectra for both cases are almost identical as 

shown in the inset of Figure 3.16a.  The depths of fringes are comparable while the 

location of maxima and minima of fringes are shifted with respect to each other. The 

peaks of interference fringes for front ac DBP measurement are in agreement with the 

peaks of transmission spectrum and located at the same energy points as expected. 

However, there is a significant shift in the DBP back ac illumination spectrum with 

respect to that of transmission spectrum. This is a strong indication of inhomogeneous 

layer at film-substrate interface. The small modulation in the phase for both cases is 

clearly seen in the inset of Figure 3.16b. The corresponding absolute α(hν) spectra 

calculated for both front and back ac illumination DBP measurements are shown in the 

Figure 3.16b together with that of PDS. As seen in the figure, the PDS and DBP front 

ac illumination spectra are in agreement and free of interference fringes. However, 

DBP spectrum measured for back ac illumination exhibits fringes in it. The remaining 

fringes are a strong indication of highly inhomogeneous layer at the film-substrate 

interface. This causes high recombination of photogenerated carriers and decrease 

photoresponse. However, this is not the case for all the HW-CVD deposited samples 

investigated in this study. Some of other investigated samples also have differences for 

spectra of film side and substrate side measurements but no one has such an enormous 

distinction. 
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Figure 3.16 a) DBP yield spectra of a a µc-Si:H thin film deposited by HW-CVD
method with SC=4% for front and back ac illumination, which is shifted vertically
for clarity together with raw PDS spectrum. In the inset, corresponding transmission
signals of DBP front and back ac illuminations are shown. b) Calculated α(hν)
spectra of DBP measurements for both front and back ac illuminations and that of
PDS independently measured on the same sample. In the inset, phase of DBP and
PDS are shown 
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The results for other HW-CVD deposited intrinsic µc-Si:H thin films are given in the 

Figure 3.17, Figure 3.18, Figure 3.19, Figure 3.20, Figure 3.21 and Figure 3.22 for 

films deposited with SC’s 2%, 4.5%, 5% (for substrate temperature of 185), 5% (for 

substrate temperature of 215), 6%, 7%, respectively. Each figure is consisting of four 

parts and is labeled as a, b, c, d and will be presented in two pages. In the (a) part of 

the each figure YDBP for low and high bias light condition is shown together with raw 

signal of PDS. The corresponding transmission measurements of both methods are 

shown in the inset. The part (b) of the each figure is presented at lower part on the 

same page and shows the absolute α(hν) spectrum of PDS with and without phase 

correction together with DBP spectrum for low and high bias light. In the second page 

the (c) and (d) part of each figure is presented. In the (c) part, YDBP spectra for ac light 

incident from film side and from substrate side are shown. The corresponding absolute 

α(hν) spectra are shown in the (d) part of each figure.  
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Figure 3.17 . a) Raw PDS and DBP Yield spectra of a µc-Si:H thin film deposited by
HW-CVD method with SC=2%. In the inset, simultaneously measured
corresponding transmission signal of PDS and DBP methods. b) Corresponding
absolute α(hν) spectra independently obtained from PDS and DBP measurements.
In the inset the phase of PDS and DBP measurements are shown. 
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Figure 3.17 c) DBP yield spectra of a a µc-Si:H thin film deposited by HW-CVD
method with SC=4% for front and back ac illumination, which is shifted vertically for
clarity together with raw PDS spectrum. In the inset the transmission of the sample is
shown. d) Calculated α(hν) spectra of DBP measurements for both front and back ac
illuminations and that of PDS independently measured on the same sample. In the
inset phase of DBP and PDS are shown. 
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Figure 3.18 a) Raw PDS and DBP Yield spectra of a µc-Si:H thin film deposited by
HW-CVD method with SC=4.5%. In the inset, simultaneously measured
corresponding transmission signal of PDS and DBP methods. b) Corresponding
absolute α(hν) spectra independently obtained from PDS and DBP measurements.
In the inset, the phase of PDS and DBP measurements are shown. 
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Figure 3.18 c) DBP yield spectra of a a µc-Si:H thin film deposited by HW-CVD
method with SC=4.5% for front and back ac illumination, which is shifted vertically
for clarity together with raw PDS spectrum. In the inset the transmission of the sample
is shown. d) Calculated α(hν) spectra of DBP measurements for both front and back ac
illuminations and that of PDS independently measured on the same sample. In the
inset, phase of DBP and PDS are shown. 
 

 

 61



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P
D

S
 a

nd
 Y

ie
ld

D
B

P
 S

ig
na

ls
(a

.u
.)

 

10-9

-8

10-7

10-6

-5

-4

-310

10

10

10

PDS
DBP Low Bias 

SC=5%

0.8 1.2 1.6 2.0

Tr
an

sm
is

si
on

(a
.u

.)

0.2

0.4

0.6

0.8
DBP
PDS

HW-CVD µc-Si:H Thin film

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

α
 (c

m
-1

)

10-1

0

101

2

3

410

10

10

10

PDS Phase Corrected
PDS 

DBP High Bias 

SC=5%

HW-CVD µc-Si:H Thin film

Energy (eV)

0.8 1.2 1.6 2.0

Ph
as

e(
0 )

-40

-20

0

E(eV)

PDS
DBP

E(eV)

DBP High Bias 

(b)

(a)

 
 
Figure 3.19 a) Raw PDS and DBP Yield spectra of a µc-Si:H thin film deposited by 
HW-CVD method with SC=5% for substrate temperature of 185 oC . In the inset, 
simultaneously measured corresponding transmission signal of PDS and DBP
methods. b) Corresponding absolute α(hν) spectra independently obtained from PDS 
and DBP measurements. In the inset, the phase of PDS and DBP measurements are 
shown.   
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Figure 3.19 c) DBP yield spectra of a a µc-Si:H thin film deposited by HW-CVD
method with SC=5% (Substrate temperature is 185 oC) for front and back ac
illumination, which is shifted vertically for clarity, together with raw PDS spectrum.
In the inset, the transmission of the sample is shown. d) Calculated α(hν) spectra of
DBP measurements for both front and back ac illuminations and that of PDS
independently measured on the same sample. In the inset, phase of DBP and PDS are
shown. 
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Figure 3.20 a) Raw PDS and DBP Yield spectra of a µc-Si:H thin film deposited by
HW-CVD method with SC=5% for substrate temperature of 215 oC . In the inset,
simultaneously measured corresponding transmission signal of PDS and DBP
methods. b) Corresponding absolute α(hν) spectra independently obtained from PDS
and DBP measurements. In the inset, the phase of PDS and DBP measurements are
shown. 
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Figure 3.20 c) DBP yield spectra of a a µc-Si:H thin film deposited by HW-CVD
method with SC=5% (Substrate temperature is 215 oC) for front and back ac
illumination, which is shifted vertically for clarity together with raw PDS spectrum.
In the inset, the transmission of the sample is shown. d) Calculated α(hν) spectra of
DBP measurements for both front and back ac illuminations and that of PDS
independently measured on the same sample. In the inset, phase of DBP and PDS
are shown. 
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Figure 3.21 a) Raw PDS and DBP Yield spectra of a µc-Si:H thin film deposited by
HW-CVD method with SC=6%. In the inset, simultaneously measured
corresponding transmission signal of PDS and DBP methods. b) Corresponding
absolute α(hν) spectra independently obtained from PDS and DBP measurements.
In the inset, the phase of PDS and DBP measurements are shown. 
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Figure 3.21 c) DBP yield spectra of a a µc-Si:H thin film deposited by HW-CVD
method with SC=4.5% for front and back ac illumination, which is shifted vertically
for clarity, together with raw PDS spectrum. In the inset the transmission of the
sample is shown. d) Calculated α(hν) spectra of DBP measurements for both front
and back ac illuminations and that of PDS independently measured on the same
sample. In the inset, phase of DBP and PDS are shown. 
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Figure 3.22 a) Raw PDS and DBP Yield spectra of a µc-Si:H thin film deposited by
HW-CVD method with SC=7%. In the inset, simultaneously measured
corresponding transmission signal of PDS and DBP methods. b) Corresponding
absolute α(hν) spectra independently obtained from PDS and DBP measurements.
In the inset, the phase of PDS and DBP measurements are shown 
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Figure 3.22 c) DBP yield spectra of a a µc-Si:H thin film deposited by HW-CVD
method with SC=7% for front and back ac illumination, which is shifted vertically
for clarity, together with raw PDS spectrum. In the inset, the transmission of the
sample is shown. d) Calculated α(hν) spectra of DBP measurements for both front
and back ac illuminations and that of PDS independently measured on the same
sample. In the inset, phase of DBP and PDS are shown. 
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 As a summary of sub-bandgap absorption spectroscopy on intrinsic 

hydrogenated microcrystalline silicon thin films deposited using HW-CVD, it can be 

concluded that PDS and DBP spectra are in agreement in the high photon energy 

region when DBP measurements are carried out for front ac illumination. The existing 

differences between the results of both methods in the lower energy region is either 

due to substrate effect in the PDS method or intensity dependence of DBP spectrum on 

the bias light, as discussed in the previous section for VHF-PECVD deposited thin 

films. The phase corrected PDS spectrum and the DBP spectrum measured for the low 

bias light condition reflects the defects states present in the bulk of the material. 

Therefore, α(hν) values at 0.8 eV can be taken as a measure of defect states present in 

the material, as previously done for PECVD deposited thin films.  

              SC (%)
2 4 6 8

α PDS(0.8 eV)

α DBP (0.8 eV)

α
  (

cm
-1

 )

 
   
Fig 3.23 Comparison of the α(hν) values at sub-bandgap energy 0.8 eV
independently measured by PDS and DBP front ac illumination for intrinsic
µc-Si:H thin films deposited by HW-CVD. Lines are guide to eye. 

The α(0.80 eV) values measured using PDS and DBP low bias light as a 

function of silane concentration (SC) is presented in the Figure 3.23. For PDS, data 

was taken from the phase corrected spectrum to eliminate substrate contribution. 

Similar to PECVD deposited thin films, there exists a systematic difference between 

PDS and DBP curves. The α(0.80 eV) values measured using DBP for low intensity of 
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dc bias light is a factor of two lower than that of PDS. The reason of this fact, as 

previously discussed, is that PDS probes all the transition, whereas DBP only probes 

the transitions to conduction band. Similar characteristic dependence on SC is 

observed for both techniques.  α(0.8 eV) decreases with increasing silane 

concentration. It takes its lowest value at around 5-6%, and then exhibits a tendency to 

increase with increasing silane concentration.  The minima occur at about so-called 

transition region were a transition from the microcrystalline to fully amorphous phase 

takes place. The results of sub-bandgap absorption spectroscopy manifest that the 

intrinsic hydrogenated microcrystalline silicon thin films deposited in the transition 

region have lowest defect density. Therefore, it can be expected that thin films 

deposited with a silane concentration in that region will results in better device 

performance. This fact has already been confirmed in the literature both for µc-Si:H 

based solar cells prepared using the HW-CVD and PECVD deposited thin films [1,4, 

62-64].  

 

3.4 Conclusion 

  

 In this chapter, the steady state photoconductivity, dual beam photoconductivity 

(DBP) and photothermal deflection spectroscopy (PDS) methods were used to 

investigate electronic and optical properties of µc-Si:H thin films prepared using VHF-

PECVD and HW-CVD method. From steady state photoconductivity measurements, it 

is found that for the investigated thin films σph versus generation rate obeys the well-

known non-integer power-law. The exponent γ was found to be similar for both 

PECVD and HW-CVD deposited thin films and changes between 0.6 and 1.0, and 

shows no dependence on the silane concentration. The value of exponent γ indicates 

that a continuous distribution of defect states present in these structurally 

inhomogeneous materials.   The calculated µnτ n- product of electrons for PECVD 

deposited thin films was found to be about a factor of ten higher than that of HW-CVD 

deposited thin films, which indicates that better device quality thin films were prepared 

in the VHF-PECVD process.  Since the photoconductivity measurements give limited 

information about the nature of the defect states present in these materials, sub-

bandgap absorption of thin films were also measured independently using two 

different experimental methods, in order to obtain deeper information about these 
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defect states present in these materials. By using PDS and DBP, optical absorption of 

the investigated thin films was obtained in a wide energy region. The calculation of 

fringe free absolute α(hν) spectrum from DBP yield spectrum was done for the first 

time in this study. It is found that for almost all sample the results are in agreement 

with the absolute α(hν) spectrum obtained from PDS. The results of both methods 

show a good agreement in the high-energy region down to bandgap energy. However, 

there exist differences between two methods below the bandgap energy. PDS suffers 

from the substrate effect since absorption in the substrate becomes significant at lower 

energies and dominates the spectrum, while DBP is insensitive to substrate absorption 

and is relatively noise free in the sub-bandgap region. However, DBP does not result in 

the absolute α(hν) spectrum below the bandgap energy, since it has a dependence on 

the bias light intensity. DBP only probes the transition from the empty states into the 

conduction band whereas PDS probes all the transitions. So in the sub-bandgap region 

DBP results in lower α(hν) values than those measured by PDS, but both values reflect 

the defects present in the bulk of material. The α(0.80 eV) values of phase corrected 

PDS spectra and those of DBP low bias light was used to obtain information about 

defect states present in the material. It is found that the thin films deposited for silane 

concentration in the so-called transition region has the lowest defect density.  

 Since µc-Si:H is structurally inhomogeneous, the DBP measurements, in 

addition to conventional measurement geometry, were also carried out for ac 

monochromatic light incident form substrate side. It is found that, for some samples, 

light is not uniformly absorbed due to the inhomogeneity of the material in the growth 

direction. The degree of inhomogeneity depends on the deposition condition. The 

investigations showed that the degree of inhomogeneity is not systematic and 

variations exist. More investigation is necessary on this important issue present for µc-

Si:H thin films.      

  

 72



CHAPTER 4 
 
 

DISCUSSION AND CONCLUSION 
 

Intrinsic µc-Si:H has recently becomes a very attractive material for electronic 

applications, especially photovoltaics due to its unique properties. It has extended spectral 

response of a-Si:H in the high energy region and that of crystalline silicon in the low 

energy region of solar spectrum. In addition, it is cost-effective, compatible with existing 

thin film technology presently used for a-Si:H based solar cells and does not suffers from 

light induced metastability (Staebler-Wronski effect), which is an obstacle for a-Si:H in 

photovoltaics applications. One of the most interesting properties of intrinsic µc-Si:H is its 

complicated microstructure which strongly depends on the deposition conditions. 

Electronic and optical properties of intrinsic µc-Si:H strongly depend on its 

microstructure, which is mainly controlled by silane concentration. Much effort has been 

paid for electronic and optical characterization of this material. However, it is still less 

understood that what leads the best device performance.  In this thesis, intrinsic µc-Si:H  

thin films prepared by VHF-PECVD and HW-CVD techniques have been investigated in 

detail to understand the electronic and optical properties as a function of changes in 

microstructure . Steady state photoconductivity (SSPC), Photothermal deflection 

spectroscopy (PDS),dual beam photoconductivity (DBP), and transmission spectroscopy 

were used to investigate electronic and optical properties of these materials.  

 Steady state photoconductivity measurements were performed to understand 

transport and recombination kinetics of photogenerated carriers in the material. The 

photoconductivity versus generation rate obeys the well-known non-integer power-low 

(σph∝Gγ). The value of exponent γ was found to be between 0.6-1.0 and similar for both 

types of films. The obtained values of exponent γ indicate that the material has a 

continuous distribution of defect states present in its bandgap and photogenerated 

electrons and holes recombine through these defect states. The calculated µnτ n- product of 

electrons for PECVD deposited thin films was found to be almost a factor of ten higher 

than that of HW-CVD deposited thin films, which implies that better device quality thin 

films were prepared in the VHF-PECVD process. There is no functional dependence 



found on silane concentration for both type of investigated µc-Si:H thin films However, 

the film deposited for the lowest SC has the lowest µnτ n- product, which indicates the 

increased defect density present in the material, which mainly decreases the lifetime τn of 

electrons. 

 Since steady state photoconductivity provides limited information about defect 

states present in the material, sub-bandgap absorption spectra of these materials are also 

measured to get deeper insight about the defects present in the material. Optical absorption 

of µc-Si:H thin films were measured in a wide photon energy range using PDS and DBP 

independently. The transmission spectrum of the films was also measured in the both 

systems. Transmission spectrum is used to obtain thickness of the samples and also to 

calculate fringe free α(hν) spectra of the samples. From PDS measurements, absolute 

optical absorption of thin films can be obtained. However, for DBP, this was not the case. 

DBP is based on relative measurement of ac photoconductivity and does not result in the 

absolute absorption spectrum. Up to this study, DBP yield spectrum has been normalized 

to PDS spectrum or T&R data in order to set relative spectrum of DBP   in absolute scales. 

This is a difficult task since it necessitates another measurement method to be used to 

obtain α(hν) spectrum in absolute scale. Furthermore, DBP raw spectrum has fringes due 

to multiple reflections in the sample. These interference fringes are generally averaged. 

However, this procedure will introduce a significant amount of error in the α(hν) 

spectrum.  In addition, this averaging procedure cause a loss of information since 

appearing fringes in the raw spectrum of the DBP is not only due to interference of light 

but also due to inhomogeneity of materials [60, 61]. For the first time, in this thesis, we 

used a procedure, based on Ritter-Weiser formula [51], to get rid of interference fringes on 

the raw spectra of DBP as explained in Chapter 2. Using this procedure only those fringes 

arising form interference of light removed and those arising from inhomogeneity of   

material remains in the spectrum and gives information about the material. In addition, 

absolute α(hν) spectrum is calculated using the DBP yields spectrum and simultaneously 

measured transmission spectrum. The obtained results were found to be in agreement, 

with those of PDS in high-energy region for all investigated samples. For VHF-PECVD 

thin films, the absolute α(hν) spectra of both methods shows a good overlap above the 1.2 

eV, whereas there are differences for some of HW-CVD films, which can be attributed to 
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the nonidentical structure of films. In the low photon energy region, PDS spectra deviate 

due to dominating substrate absorption.  The phase corrected α(hν) spectrum of PDS is 

used to eliminate substrate contribution.  The accuracy of this procedure, however, is not 

very high since phase of PDS signal is also noisy in the low energy region of the 

spectrum. DBP spectrum, on the other hand, is relatively noise free since it is insensitive 

to substrate absorption. However it does not result in absolute absorption coefficient 

below the bandgap energy since it has a dependence on the bias light intensity. It rather 

reflects the occupation of defect states present in the bandgap of the material. DBP low 

bias light measurement probes the occupation of defect states very close to that in the dark 

condition. By increasing bias light intensity more defect states in the bandgap are 

occupied therefore more transition occurs, which results in an increase in the photocurrent 

and in the α(hν) spectrum at lower energies only. 

 At lower energies, the α(hν) values of DBP low bias condition and phase corrected 

PDS can be used to obtain information about defect states present in the material. It is 

found that the α(hν) values of DBP is smaller then those of PDS. This is consistent with 

the nature of both methods. PDS probes all transition to conduction band or to the empty 

states in the bandgap. However, DBP probes only transition to conduction band since 

transition to empty states above Fermi level does not result in photocurrent. Therefore, 

apparent absorption measured by DBP below the bandgap energy is smaller than that 

measured by PDS. However, α(hν) values measured by both methods reflect the defect 

states present in the bulk of the materials. Therefore, absorption in the sub-bandgap region 

can be used to compare different materials or the materials for different deposition 

condition.  

 The measured α(0.8 eV) values were used to investigate the effect microstructure, 

which is mainly controlled by silane concentration, on the defect density present in the 

materials. Form the α(0.8 eV) values versus silane concentration, Figures given in chapter 

3, it is found that the curves has the same characteristics both for VHF-PECVD and HW-

CVD deposited thin films .The films deposited for lowest silane concentration have the 

higher α(0.8 eV) since those films are highly crystalline and contains high defect density 

as also measured by ESR.  With increasing silane concentration, α(0.8 eV) values 

decrease and give minima at about 5%. This value of SC corresponds to so-called 
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transition region, which means a transition from microcrystalline to fully amorphous 

growth. As silane concentration further increases, α(0.8 eV) tends to increase for both 

VHF-PECVD and HWCVD film. As a result, it can be concluded that the films deposited 

in the transition region have the lowest defect density and will results in the best device 

performance. This finding is consistent with ESR studies and confirmed by many groups 

[64,1,65,4,62,63]. However, SC is not directly reflect the microstructure of µc-Si:H since 

the composition of microstructure is also depends on the other deposition conditions such 

as substrate temperature and pressure. Therefore, the crystalline volume fraction IC
RS

, 

derived from Raman spectra, is a representation of the changing microstructure to 

compare different films. In the Figure 4.1 the α(0.8 eV) values of PDS and DBP for both 

HWCVD and PECVD films are shown as a function of ICRS .At the highest ICRS, α(0.8 eV) 

values are higher, indicating that high crystalline films are more defective as also 

confirmed by ESR measurements [24]. As IC
RS decreases, α(0.8 eV) decreases and gives a 

minimum around 0.5 for HWCVD films, and around 0.6 for VHF-PECVD films. This 

region is the transition region to amorphous growth region for both type films. As IC
RS 

decreases further, the α(0.8 eV) values tend to increase due to the effects of defective 

amorphous phase in the material. The results in Figure 4.1 indicate that lowest defect 

density films are prepared at the transition region to amorphous growth. Therefore, solar 

cells fabricated using these materials, as an absorber layer, should result in the highest 

solar cell efficiencies. These findings have recently been confirmed by the reported results 

on the solar cells prepared by VHF-PECVD [1] and HWCVD [4] methods. 

 Furthermore, the discussion about the defect states inferred from the α(0.8 eV) 

values measured by PDS and DBP requires more explanation. Even though at highly 

crystalline growth region sub-bandgap absorption coefficient at 0.8 eV indicates that thin 

films are more defective and ESR measurements also confirms this findings. However, in 

ESR measurements mainly three different paramagnetic defects are detected with 

g=2.0052, g=1.996-1.998, and g=2.0043. The first one is attributed to Si dangling bonds, 

the second one is attributed to conduction electrons and the last one is not identified yet. 

In DBP, defects probed are not only the defect states detected by ESR but also those are 

non-paramagnetic defects, which are also called charged defect states. These defect states 

originate from doubly occupied Si dangling bonds  (negatively charged) and unoccupied 
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Si dangling bonds (positively charged), which are main determining defect in most 

intrinsic a-Si:H films and affect DBP spectra at high and low bias light intensities [49]. It 

is known from ESR study that similar defects both in a-Si:H and µc-Si:H are present. 

Therefore, it could be a possible reason that DBP measurements are also influenced by the 

non-paramagnetic (charged) defect states. However, in a complicated microstructure of 

such type intrinsic µc-Si:H  non-paramagnetic and ESR active paramagnetic defects are 

not fully understood yet. The simplest fundamental ESR method also has not identified 

one of the defect signals at g=2.0043 yet. In the future, more understanding on the 

microstructure and resulting defects will be advanced and theoretical models will be 

developed. These experimental results will help in constructing future models for the 

intrinsic characterization of the intrinsic µc-Si:H thin films. 
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Figure 4.1 The effect of microstructure characterized by the crystalline volume
fraction IC

RS on the sub-bandgap absorption coefficient α(0.8 eV) for both HW-
CVD and VHF-PECVD µc-Si:H thin films. 

 Furthermore, DBP method has also been used to investigate the inhomogeneity 

problem of the µc-Si:H thin films. To investigate the effect of inhomogeneity in the α(hν) 

spectra of µc-Si:H thin films, DBP measurements were also performed for ac light 

incident through the  substrate side. DBP back ac illumination shows that for some films 
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highly defective layer exist in the film-substrate interface which manifest itself as 

remaining fringes in the α(hν) spectrum. It is also found that some films exhibit remnant 

fringes in the front ac illumination DBP spectrum. It implies that an inhomogeneous 

defect layer present near the film surface or through the bulk of the film. However, this is 

not a systematically observed in all the samples.   

In conclusions, DBP method, for both front and back ac illumination, provide very 

useful information in understanding the optical and electronic properties of intrinsic µc-

Si:H thin films and inhomogeneity present throughout the material. Reliable absolute 

α(hν) spectrum is obtained for intrinsic µc-Si:H thin films and correlated with those 

independently measured from PDS method. 

 

4.1 Future Proposed Research 

 

In this thesis, intrinsic hydrogenated microcrystalline silicon thin films deposited 

different techniques have been investigated using photothermal deflection spectroscopy 

and dual beam photoconductivity method. A procedure for calculation of α(hν) spectrum 

from DBP yield spectrum is used and it is found that results are in agreement with those of 

PDS. However for films have a thickness less than 0.5 µm the accuracy of calculation 

method becomes less since transmission spectrum in the high-energy region is not free of 

interference fringes. A more sensitive calculation procedure is a open subject for research. 

Investigated thin films exhibit an inhomogeneous absorption of light, which manifest 

themselves as remnant fringes in the spectrum.   More investigation are needed to 

understand the effect of inhomogeneous structure of the material on the α(hν) spectrum of 

the materials. The phase of DBP signal is also serve information about the nature of the 

defects present in the material. Therefore, a detailed study is necessary to understand the 

underlying correlation between the phase of signal and   the nature of the material. A huge 

amount of information is hidden in the intensity dependence of DBP on the bias light 

since it contains information about statistics of occupation of defect states in the bandgap. 

A detailed numerical and theoretical model remains to be studied in order to obtain 

information about defect states in the bandgap of these materials.   
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APPENDIX A 

 

COMPUTER PROGRAM USED FOR DBP MEASUREMENTS 

 

The computer program used for DBP measurements was written in Objectbench software. 

The program firs written by D. Akdas [55] in the previous thesis study on this system and 

improved during this thesis study.  It used to control lock-in amplifier, monochromator driver, 

filter driver and for data acquisition between computer and lock-in amplifier.  The commands 

are written in regular fonts and explanations are written in italic fonts.  

start: the main loop 

graphcomment$="Comments about the graph " 

sensflag=0:timeflag=0.3:oldflag=0.3 

dir$="D: \" Defines the directory that data willl be stored 

input "sample name",sampname$: filecomment$=sampname$ 

rem *********************************** 

input "data file name",dbs$ 

format #1,energy["energy=","eV"],average["average    current=","A"],avgdevia["angle=",""],- 

ratio["dc/ac=",""],absorp["absorp. coeff.=",""] 

format #2,energy["energy=","eV"],curr[" current=","a"],avgdevia["angle=",""] 

format #3,energy["energy=","eV"],Logaverage["average 

current=","A"],avgdevia["angle=",""],Logratio["dc/ac=",""],Logabsorp["absorp. coeff.=",""] 

open #1, file= dir$+dbs$+".dat",desc$,overwrite 

rem open #1, file= dbs$+".dat",desc$,overwrite 

open #2, file= "v"+dbs$+".dat",desc$,overwrite 

open #3, file= "graph_f.dat",desc$,overwrite 

open #3, graph= "dualbeam",overwrite 

open #3, screen  

The files  to store data and to use screen are defined 

rem *********************************** 

input "first value of energy",start  Initial values are defined 

input "step value for energy",step 

input "input number of measurements for each energy",n 

input "enter dc current dueto bias light(format 1e-5 )",dcac   

rem ****************************************** 



rem ****************************************** 

gosub fluxRead Flux file will be read and will be used  to normalize raw current 

rem********************************************* 

Lock-in amplifier will be initialized  

gpibwrite(8,"OUTX 1,OVRM 1"):gpibwrite(8,"*RST"):gpibwrite(8,"*CLS"): 

gpibwrite(8,"FMOD 0"):gpibwrite(8,"DDEF 1,1,0"):gpibwrite(8,"DDEF 2,1,0"): 

gpibwrite(8,"ICPL 0"):gpibwrite(8,"ISRC 2"):gpibwrite(8,"OFSL 3") 

gpibwrite(8,"IGND 1"):rem gpibwrite(8,"SENS 23"):gpibwrite(8,"SYNC 1") 

gpibwrite(8,"OFLT 9"):gpibwrite(8,"AGAN"):gosub delay4:gosub delay4 

gpibwrite(8,"ARSV"):gosub delay4:gosub delay4:gpibwrite(8,"APHS") 

gosub delay4:gosub delay4:gosub delay4:gpibwrite(8,"RMOD 1") 

gosub delay4:gosub delay4:gosub delay4: 

rem  

energy=start    the initial energy value is defined 

 

wl=6200/energy: fark=(2.5-start) : fark=fark/(0.02) : bbb$=str$(fark) : z=val(mid$(bbb$,1,2)) 

loop:               the main loop of the measurement 

sum=0: dvsum=0: r=0: z=z+1 

rem ********************************** 

loopa: 

r=r+1    

The value of CH1 and CH2 will be read  

gpibwrite(8,"OUTR? 1") : a$=gpibread$(8) :  gpibwrite(8,"OUTR? 2") : j$=gpibread$(8) 

curr=val(mid$(a$,1)) : standdev(r)=curr : ? "current=",curr," A" : devia=val(mid$(j$,1)) 

angldev(r)=devia : ? devia : sum=sum+curr : dvsum=dvsum+devia 

 

rem ************** 

write #2 The value of CH1 and CH2 wil be stored for temporary use  

if timeflag=0.3 then gosub delay3msec  Here the appropriate delay is set  

if timeflag=1 then gosub delay1sec 

if timeflag=3 then gosub delay3sec 

if timeflag=10 then gosub delay10sec 

if timeflag=30 then gosub delay30sec 

rem ************************* 
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if r<n then goto loopa For each energy value n data will be read 

average=sum/n : avgdevia=dvsum/n  The current and phase averaged  

rem ************************************* 

b$=str$(wl) : wv=val(mid$(b$,1,5)) : realw=2*wv 

ratio=dcac/average  the value of dc current over ac current is calculated 

absorp=average/y(z)  the average raw current is divided to flux value to normalize it  

Logabsorp=0.43429489*log(absorp)  To show data on the screen in log scale 

Logaverage=0.43429489*log(average) To show data on the screen in log scale 

Logratio=0.43429489*log(ratio) To show data on the screen in log scale 

Write  #1    The raw current, phase, dc over ac ratio and normalized current is stored 

 write #3    The data is written on the screen in log scale 

if z=94 then goto bitti  

Monochromator will be set to next energy value (wavelenght) 

energy=energy-step 

wl=6200/energy : c$=str$(wl) : wk=val(mid$(c$,1,5)) : filterw=2*wk 

kf=wk-wv : d$=str$(kf) : kw=0.5*kf : f$=str$(kw) : wt=val(mid$(f$,1,3)) 

i$=str$(wt) : kg=0.3*kf : g$=str$(kg) : wy=val(mid$(g$,1,3)) : h$=str$(wy) 

rem ------------------------------- 

if energy=1.86 then gosub ttl   Filters willl be changed 

if energy=1.36 then gosub ttl  Filters willl be changed 

if energy=1.0 then gosub ttl  Filters willl be changed 

gosub delay2 

gpibwrite(14,"C") : gpibwrite(14,"E") 

if energy>=0.9 then gosub shortw   

if energy<0.9 and energy>0.8 then gosub midw 

if energy<=0.8 then gosub longw 

gosub delay 

rem ******************** 

The fallowing delay is used to wait for saturation of signal after monochromator changed the 

next energy value 

if timeflag=0.3 then gosub delay1sec : if timeflag=0.3 then gosub delay1sec 

if timeflag=1 then gosub delay1sec : if timeflag=1 then gosub delay1sec 

if timeflag=1 then gosub delay1sec : if timeflag=3 then gosub delay3sec 

if timeflag=3 then gosub delay3sec : if timeflag=3 then gosub delay3sec 
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if timeflag=3 then gosub delay3sec : if timeflag=10 then gosub delay10sec 

if timeflag=10 then gosub delay10sec : if timeflag=10 then gosub delay10sec 

if timeflag=10 then gosub delay10sec : if timeflag=10 then gosub delay10sec 

if timeflag=30 then gosub delay30sec : if timeflag=30 then gosub delay30sec 

if timeflag=30 then gosub delay30sec : if timeflag=30 then gosub delay30sec 

if timeflag=30 then gosub delay30sec 

gosub bosoku 

 

xxx=1  The value of ac current will be read to set lock-in amplifier to the  appropriate 

sensitivity and time constant 

lopsens: 

gpibwrite(8,"OUTR? 1") : a$=gpibread$(8) 

gpibwrite(8,"OUTR? 2") : j$=gpibread$(8) 

curr=val(mid$(a$,1)) : ? "current=",curr," A" 

devia=val(mid$(j$,1)) : average=average+curr 

xxx=xxx+1 

if xxx<6 goto lopsens 

average=average/5  

gosub delay : gosub delay 

Lock-in amplifier will be set to the appropriate sensitivity and time constant will be set 

depending on the value of signal 

if 4.9e-7<=average and average<1e-6 then gosub sensita :  

if 1.9e-7<=average and average<4.9e-7 then gosub sensitb 

if 9e-8<=average and average<1.9e-7 then gosub sensitc 

if 4.5e-8<=average and average<9e-8 then gosub sensitd 

if 1.5e-8<=average and average<4.5e-8 then gosub sensite 

if 8e-9<=average and average<1.5e-8 then gosub sensitf 

if 4e-9<=average and average<8e-9 then gosub sensith 

if 1.5e-9<=average and average<4e-9 then gosub sensitk 

if 7.5e-10<=average and average<1.5e-9 then gosub sensitl 

if 3.5e-10<=average and average<7.5e-10 then gosub sensitm 

if 1.5e-10<=average and average<3.5e-10 then gosub sensitn 

if 7.5e-11<=average and average<1.5e-10 then gosub sensito 

if 3.5e-11<=average and average<7.5e-11 then gosub sensitp 

 86



if 1.5e-11<=average and average<3.5e-11 then gosub sensitr 

if 7.5e-12<=average and average<1.5e-11 then gosub sensits 

if 3.5e-12<=average and average<7.5e-12 then gosub sensitt 

if 1.5e-12<=average and average<3.5e-12 then gosub sensitab 

if 6.5e-13<=average and average<1.5e-12 then gosub sensitac 

if 2.5e-13<=average and average<6.5e-13 then gosub sensitad 

if 8e-14<=average and average<2.5e-13 then gosub sensitae 

if 1e-14<=average and average<8e-14 then gosub sensitaf 

if  average<=1e-14 then gosub sensitag 

if sensflag>=15  then gosub tflag300msec : if sensflag=14 then gosub tflag1sec 

if sensflag=13 then gosub tflag3sec : if sensflag<13 and sensflag=>10  then gosub tflag10sec 

if sensflag<10   then gosub tflag30sec 

if sensflag>=15  and oldflag<>timeflag then gosub tcons300msec 

if sensflag=14 and oldflag<>timeflag then gosub tcons1sec 

if sensflag=13 and oldflag<>timeflag then gosub tcons3sec 

if sensflag=12 and oldflag<>timeflag then gosub tcons10sec 

if sensflag=11 and oldflag<>timeflag then gosub tcons10sec 

if sensflag=10 and oldflag<>timeflag then gosub tcons10sec 

if sensflag<10  and oldflag<>timeflag then gosub tcons30sec 

rem ***************************** 

if timeflag=0.3 then gosub delay1sec : if timeflag=0.3 then gosub delay1sec 

if timeflag=1 then gosub delay1sec : if timeflag=1 then gosub delay1sec 

if timeflag=1 then gosub delay1sec : if timeflag=1 then gosub delay1sec 

if timeflag=1 then gosub delay1sec 

if timeflag=3 then gosub delay3sec : if timeflag=3 then gosub delay3sec 

if timeflag=3 then gosub delay3sec : if timeflag=3 then gosub delay3sec 

if timeflag=3 then gosub delay3sec : if timeflag=3 then gosub delay3sec 

if timeflag=10 then gosub delay10sec : if timeflag=10 then gosub delay10sec 

if timeflag=10 then gosub delay10sec : if timeflag=10 then gosub delay10sec 

if timeflag=10 then gosub delay10sec : if timeflag=10 then gosub delay10sec 

if timeflag=30 then gosub delay30sec : if timeflag=30 then gosub delay30sec 

if timeflag=30 then gosub delay30sec : if timeflag=30 then gosub delay30sec 

if timeflag=30 then gosub delay30sec : if timeflag=30 then gosub delay30sec 

if timeflag=30 then gosub delay30sec :  
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if z<=93 then goto loop 

bitti: 

gosub delay 

? "Wait 30 seconds to finish the experiment" 

gosub delay 

gosub back    Monochromator will be set to the initial energy value 

close #1 : close #3 : stop 

read dbs$+".dat",d : print d.time$ 

if not yesnobox("Okey?") then goto start 

stop 

bosoku: 

gpibwrite(8,"OUTR? 1") : abc$=gpibread$(8) : gpibwrite(8,"OUTR? 2") : jbc$=gpibread$(8) 

return 

ttl: 

gpibwrite(8,"AUXV 1,1.4") : gpibwrite(8,"AUXV 1,0.8") 

return 

sensita: : gpibwrite(8,"SENS 26") : sensflag=26 : return 

sensitb: : gpibwrite(8,"SENS 25") : sensflag=25 : return 

sensitc: : gpibwrite(8,"SENS 24") : sensflag=24 : return 

sensitd: : gpibwrite(8,"SENS 23") : sensflag=23 : return 

sensite: : gpibwrite(8,"SENS 22") : sensflag=22 : return 

sensitf: gpibwrite(8,"SENS 21") : sensflag=21 : return 

sensith: gpibwrite(8,"SENS 20") : sensflag=20  return 

sensitk: gpibwrite(8,"SENS 19") : sensflag=19 : return 

sensitl: gpibwrite(8,"SENS 18") : sensflag=18 : return 

sensitm: gpibwrite(8,"SENS 17") : sensflag=17 : return 

sensitn: gpibwrite(8,"SENS 16") : sensflag=16 : return 

sensito: gpibwrite(8,"SENS 15") : sensflag=15 : return 

sensitp: gpibwrite(8,"SENS 14") : sensflag=14 : return 

sensitr: gpibwrite(8,"SENS 13") : sensflag=13 return 

sensits: gpibwrite(8,"SENS 12") : sensflag=12 return 

sensitt: gpibwrite(8,"SENS 11") : sensflag=11 : return 

sensitab: gpibwrite(8,"SENS 10") : sensflag=10 : return 

sensitac: gpibwrite(8,"SENS 9") : sensflag=9 : return 
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sensitad: gpibwrite(8,"SENS 8") : sensflag=8 return 

sensitae: gpibwrite(8,"SENS 7") : sensflag=7 return 

sensitaf: gpibwrite(8,"SENS 6") : sensflag=6 return 

sensitag: gpibwrite(8,"SENS 5") : sensflag=5 return 

shortw: gpibwrite(14,"V100,S") : gosub delay : gpibwrite(14,"G+"+d$+",S"): return 

midw: gpibwrite(14,"V100,S") : gpibwrite(14,"G+"+d$+",S") : return 

longw: gpibwrite(14,"V100,S") : gpibwrite(14,"G+"+d$+",S") : return 

rem ********************************* 

tflag300msec: timeflag=0.3 : return 

tflag1sec: timeflag=1 : return 

tflag3sec: timeflag=3 : return 

tflag10sec: timeflag=10 : return 

tflag30sec: timeflag=30 : return 

tcons300msec: gpibwrite(8,"OFLT 9") return 

tcons1sec: oldflag=timeflag : gpibwrite(8,"OFLT 10") return 

tcons3sec: oldflag=timeflag : gpibwrite(8,"OFLT 11") : return 

tcons10sec: oldflag=timeflag : gpibwrite(8,"OFLT 12") : return 

tcons30sec: oldflag=timeflag :gpibwrite(8,"OFLT 13") return 

back: gpibwrite(14,"V120,S") : gpibwrite(14,"G-7208,S") :return 

rem --------------------------------- 

delay0: t=time delay01:if time-t<500 then goto delay01 : return 

delay: t=time delay0a1:if time-t<1000 then goto delay0a1 : return 

rem -------------------------------------- 

delay3msec: t=time : delay111:if time-t<1000 then goto delay111: return 

delay1sec: t=time : delay1sa:if time-t<1000 then goto delay1sa 

 return 

delay3sec: t=time : delay1:if time-t<3000 then goto delay1 :  return 

delay10sec: t=time : delay133:if time-t<10000 then goto delay133 :  return 

delay30sec: t=time : delay1a1:if time-t<30000 then goto delay1a1 : return 

delay4: t=time : delay5:if time-t<6000 then goto delay5 : return 

delay2:  t=time: delay5ed:if time-t<3 then goto delay5ed :  return 

delayshort: t=time : delayshrt:if time-t<10000 then goto delayshrt :  return 

delaymidle: t=time : delaymid:if time-t<60000 then goto delaymid :  return 

delaylong: t=time : delayl:if time-t<150000 then goto delayl :return 
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arabek: t=time : delayl123:if time-t<6000 then goto delayl123 :return 

fluxRead: flux file is to be read into y variable  

dim y(94) : m=0 : read "D:\data2004\fx\Fx27july.dat",oku 

k=0 : okut: k=k+1 : y(k)=oku(k,3) :rem print "y(",k,")",y(k) 

if k<94 then goto okut : return 
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APPENDIX B 

 

COMPUTER PROGRAM FOR CALCULATION OF α(hν) SPECTRUM 

 

This program was written in Objectbench software and is used to calculate absolute 

absorption coefficient from DBP yield spectrum. It calculates the absorption coefficient based 

on the procedure discussed in Chapter 2.  

 

filecomment$="Comments about the data" 

input "data file name",dbs$ : input "tickness of the film",d  

format #1,energy["energy","eV"],alfa["absolute alfa","cm^-1 "], abstr["absolute tr", " "] 

open #1,file="C:\folder name\"+dbs$+".dat",desc$,overwrite 

format #2, energy["energy","eV"],absalfa["absolute alfa","cm^-1 "], abstr["absolute tr", " "] 

open #2,file="alfatr.dat",desc$,overwrite 

format #3, energy["energy","eV"],alfalog["absolute alfa","cm^-1 "], abstr["absolute tr", " "] 

open #3,file="g123.dat",desc$,overwrite 

open #3, graph= "alfa tr",overwrite 

Rxf=0.41: Tx=0.08 

gosub troku 

gosub dbpoku 

maxbul: 

dim z(94) : temp=0 : trmax=0 : k=0 : kars:  

k=k+1 

t(k)=oku(k,4) 

if t(k)>trmax then gosub degistir 

if k<boyut then goto kars 

absolutetr: 

k=0 : trfark=1000 : tx=0.08 

kkk2: 

k=k+1 

t(k)=t(k)*0.92/trmax : fark=abs(t(k)-tx)  

if fark<trfark then gosub exbul 

if k<boyut then goto kkk2 

Ax=1-Tx-Rxf 



gosub absoltealfa 

gosub alfahesapfront 

gosub dosyayaz  

stop 

alfahesapfront: r2=0.10 : dim alfa(boyutdbp) 

k=0 :  

hh: 

k=k+1 

alfa(k)=(1/d)*(ln(0.5*((1-r2)*(1+Alf(k)/T(k))+sqrt((1-r2)*(1-

r2)*(1+Alf(k)/T(k))*(1+Alf(k)/T(k))+4*r2)))) 

if k<boyutdbp then goto hh 

return 

degistir: 

trmax=t(k)  

return 

troku: 

m=0 

read "*.*",oku  

boyut=oku.rows  

input akl$ 

dim t(boyut) 

dim z(boyut) 

k=0 

okut: 

k=k+1 

t(k)=oku(k,4) 

rem print k,t(k) 

if k<boyut then goto okut 

return 

dbpoku: 

read "C:\OB\Data\ *.*",okudbp  

boyutdbp=okudbp.rows  

input akl$ 

dim A(boyutdbp) 
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k=0 

okut23: 

k=k+1 

A(k)=okudbp(k,5) 

if k<boyutdbp then goto okut23 

return 

exbul: 

trfark=fark 

ex=k 

return 

absoltealfa: 

dim Alf(boyutdbp) 

k=0 

c=ex 

okut23c: 

k=k+1 

Alf(k)=A(k)*Ax/A(c) 

if k<boyutdbp then goto okut23c 

return 

dosyayaz: 

k=0 

kkk123: 

k=k+1 

energy=okudbp(k,1) 

absalfa=Alf(k) 

abstr=t(k) 

alfa=alfa(k) 

write #1 

alfalog=log(alfa(k)) 

write #2 

write #3 

if k<boyutdbp then goto kkk123 

return 
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