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encouragement during my graduate study. His strong enthusiasm and wide scope

in mathematics has a great impact on me. The characteristic style and the at-

mosphere that he has created in our studies gave me many wonderful memories.

I would also like to thank Assoc.Prof.Dr. Alpay Kırlangıç and Asst.Prof.Dr.
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ABSTRACT

The edge coloring problem is one of the fundamental problem on graphs

which often appears in various scheduling problems like the file transfer problem

on computer networks. In this thesis, we survey old and new results on the

classical edge coloring as well as the generalized edge coloring problems. In

addition, we developed some algorithms and modules by using Combinatorica

package to color the edges of graphs with webMathematica which is the new

web-based technology.
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ÖZ

Bilgisayar ağlarındaki dosya transfer problemleri gibi birçok farklı zaman-

lama probleminde de sık sık ortaya çıkan çizgelerdeki en temel problemlerden

biri kenar boyama problemidir. Bu tezde, genelleşmiş kenar boyama problem-

lerinde bugüne kadar elde edilen eski ve yeni sonuçları araştırdık. Buna ek olarak

web tabanlı yeni bir teknoloji olan webMathematica ile çizgelerin kenarlarını

boyamak için Combinatorica yazılımını kullanarak bazı algoritmalar ve modüller

geliştirdik.
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Chapter 1

INTRODUCTION

A graph is an abstract structure which consists of vertices and edges;

each edge joins two vertices called ends of the edge. It can be used to represent

various combinatorial or topological structures that can be modelled as objects

and connections between those objects. A graph structure is very suitable for

representing relationships between objects in the abstract, and a large number

of combinatorial problems can be modelled as problems on the graph structure.

Consider the following simple example. Suppose that there are several

boys and girls, and each girl favors some of the boys. We want to make a date-

matching in which every girl is assigned to one of her favorite boys. Consider a

graph in which boys and girls correspond to vertices and a vertex corresponding

to a girl is joined by edges to vertices corresponding to boys whom the girl favors.

(See Figure 1.1.) We can then make the desired date-matching by finding a set

M of edges called a matching satisfying that each vertex corresponding to a girl

is an end of an edge in M , and no two edges in M share a common end. In Figure

1.1, the edges in a matching M are indicated by solid lines, and the remaining

edges are indicated by dotted lines. This problem is called the date-matching

problem, and it can be solved by using a concept of a matching of graphs, as

above. There are a numerous number of situations to which the graph theory

can be validly applied like this example.

Partitioning a set of objects into some classes according to certain rules is

a fundamental process in mathematics, and it appears in many actual situations.

A conceptually simple set of rules tells us for each pair of objects whether or

not they are allowed to belong to the same class. Of course, graph theory has a

powerful tool to deal with such a situation, a concept of graph coloring. In the

sense of not only applicative interest but theoretical interest, the graph coloring

theory is one of the most attractive field of graph theory indeed.



Figure 1.1: A date-matching problem

The Theory of Graph Coloring has existed for more than 150 years. From

its modest beginning of determining whether a geographic map can be colored

with four colors, the theory has become central in Discrete Mathematics with

many contemporary generalizations and applications. Historically, graph coloring

involved finding the minimum number of colors to be assigned to the vertices /

edges / regions so that adjacent vertices / edges / regions must have different

colors.

We start in Chapter 2 by giving the basic and standard terminologies and

notations on graph theory which will be used in this thesis. In Chapter 3, we

introduce the edge coloring problem. In Section 3.1, we present an historical

account of the development of the theory of edge-coloring from Tait’s (1880)

paper to the classical work of Vizing and recent ones by others. In the next

Section, we define edge coloring and chromatic index of a graph, then in Section

3.3, we introduce the concept of Line Graph. Chromatic Index for Common

Graph Families is given in Section 3.4. In Section 3.5, we give the definitions of

Chromatic Incidence. We present proofs of the fundamental theorems of König

and Vizing in Section 3.6 and 3.7. Chromatic Index for Multigraphs is given

in Section 3.8. Then, in Section 3.9, we introduce the Edge Coloring Problem

for Planar Graphs. Edge Game Coloring of Graphs are defined in Section 3.10.

Finally, in Chapter 4, we describe some web-based interactive examples on edge

coloring with webMathematica.
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Chapter 2

PRELIMINARIES

In this chapter, we provide the necessary background and motivation for

this study on the edge-coloring of graphs. Further explanation of these terms

can be found in any of the standard texts in graph theory [2, 6, 9]. We start in

Section 2.1 by giving some definitions of standard graph-theoretical terms used

throughout the remainder of the thesis. We next define common graph families

in graph theory in Section 2.2. Then, in Section 2.3 we introduce the Eulerian

and Hamiltonian Graphs. Finally, in Section 2.4 we define the NP-Complete

Problem. Definitions which are not included in this section will be introduced as

they are needed.

2.1 Concepts of Graphs

A graph G = (V,E) consists of two sets: a non-empty finite set V and

a finite set E. The elements of V are called vertices (or points or nodes) and

the elements of E are called edges (or lines). Each edge is identified with a pair

of vertices. The set V (G) is called the vertex set of G, and the set E(G) is

called the edge set of E(G). If e = {u, v} ∈ E(G) then we say that e joins u

and v. The vertices u and v are called the ends of the edge uv. The order of

a graph, denoted by n(G), is the number of vertices, and the size of a graph,

denoted by m(G), is the number of edges. Graphs are finite or infinite according

to their order; however the graphs we consider are all finite. If a graph allows

more than one edge (but yet a finite number) between the same pair of vertices in

a graph, the resulting structure is a multi-graph. Such edges are called parallel

or multiple edges. An edge that joins a single endpoint to itself is known as a

loop. Graphs that allow parallel edges and loops are called pseudographs. A

simple graph is a graph with no parallel edges and loops.

A graph H is called a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

A subgraph H of G is said to be an induced subgraph of G if each edge of

G having its endpoints in V (H) is also an edge of H. A subgraph H of G is a



spanning subgraph of G, if V (H) = V (G). A directed graph (or digraph) is

a graph each of whose edges is directed.

We say that two vertices u and v of a graph G are adjacent if there is

an edge uv joining them, and the vertices u and v are then incident with such

an edge. Similarly, two distinct edges e and f are adjacent if they have a vertex

in common. An independent set of edges in a graph G is a set of edges, each

two of which are not adjacent. The edge independence number β1(G) of G

is the maximum cardinality among the independent sets of edges of G.

Let G be a graph and v ∈ V . The number of edges incident at v is

called the degree of the vertex v in G and denoted by deg(v). A loop at v

is to be counted twice in computing the degree of v. A vertex of degree 0 is

called an isolated vertex. A graph G is regular if all the vertices of G are

of equal degree. If every vertex of G has degree r, then G is called r-regular.

δ(G) = min{deg(v)|v ∈ V } denotes the minimum degree of G. Similarly,

∆(G) = max{deg(v)|v ∈ V } denotes the maximum degree of G. The degree

sequence of a graph is the sequence formed by arranging the vertex degrees

in increasing order. Although each graph has a unique degree sequence, two

structurally different graphs can have identical degree sequences.

Proposition 1. If G is a graph with n vertices, then for any vertex v,

0 ≤ deg(v) ≤ n − 1.

Proposition 2. A simple graph G must have at least one pair of vertices whose
degrees are equal.

Let G be a simple graph. Then, the complement of a graph G, denoted

by G, is the graph with the same vertex set as G, and where distinct vertices x

and y are adjacent in G if and only if they are not adjacent in G.

2.2 Common Graph Families

A simple graph G is said to be complete if every pair of distinct vertices

of G are adjacent in G. It is denoted by Kn. A simple graph with n vertices

can have at most n(n−1)
2

edges. Kn has the maximum number of edges among

all simple graphs with n vertices. Thus, for a simple graph G with n vertices we

have 0 ≤ m(G) ≤ n(n−1)
2

. Figure 2.1 represents K1, K2, K3, K4 and K5.
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Figure 2.1: Complete Graphs

A graph is bipartite if its vertex set can be partitioned into two nonempty

subsets X and Y such that each edge of G has one end in X and the other in Y .

The bipartite graph G with bipartition (X,Y ) is denoted by G(X,Y). A simple

bipartite graph G(X,Y ) is complete if each vertex of X is adjacent to all the

vertices of Y . If G(X,Y ) is complete with |X| = m and |Y | = n, then G(X,Y )

is denoted by Km,n. A complete bipartite graph of the form K1,n is called a star.

A walk in a simple graph G is a sequence v0e1v1...vk−1envn of vertices

and distinct edges such that consecutive vertices in the sequence are adjacent.

The walk is closed if v0 = vn and is open otherwise. A path is a walk with no

repeated vertex. Pn denotes a path on n vertices. The length of a walk or path

is its number of edges. A cycle is a closed walk of length at least three in which

the vertices are distinct except the first and the last. Cn denotes a cycle on n

vertices. A cycle is odd or even according as its length is odd or even. The graph

obtained from Cn−1 by joining each vertex to a new vertex v is called wheel. Wn

denotes a wheel on n vertices. A graph is said to be acyclic if it has no cycles.

A tree is a connected acyclic graph.

Theorem 3. A graph is bipartite if and only if, it contains no odd cycles.

A graph is connected if it has a u−v path for each pair of vertices u and

v; otherwise it is disconnected. A vertex of a connected graph is a cut-vertex

if its removal produces a disconnected graph. If e is an edge of a given graph

G = (V,E) we use the notation G − e to indicate the graph obtained from G by

removing the edge e. Similarly, if v is a vertex of G, we use the notation G − v

to indicate the graph obtained from G by removing the vertex v together with

all the edges incident to v.

5



2.3 Matchings and Factors

A matching in a graph is a set of edges such that every vertex of the

graph is on at most one in the set. Thus, a set of independent edges in G is a

matching.

Definition 4. A matching M in a graph G is maximal if there is no matching
M ′ in G so that M 6⊆ M ′.

Definition 5. A matching M in a graph G is maximum if there is no matching
M ′ in G so that |M | < |M ′|.

It is obvious that all maximum matchings are maximal. But the converse is not

true.

Definition 6. A factor of a graph G is a spanning subgraph of G. A k-factor
of G is a factor of G that is k-regular. Thus a 1-factor of G is a matching that
includes all the vertices of G. For this reason, a 1-factor of G is called a perfect

matching of G.

2.4 Eulerian and Hamiltonian Graphs

Euler initiated the study of Graph Theory in 1736 with the famous seven

bridges of Königsberg problem. The town of Königsberg straddled the Pregel

River with a total of seven bridges connecting the two shores and two islands.

The problem was to start from any one of the four land areas, take a stroll across

the seven bridges and get back to the starting point without crossing any bridge

a second time. This problem can be converted into one concerning the graph

obtained by representing each land area by a vertex and each bridge by an edge.

Afterwards Euler proved that a tour of all edges in a connected, undirected graph

without repetition is possible if and only if the degree of each vertex is even. Such

graphs are known as Eulerian Graphs. The Königsberg bridge problem will have

a solution provided that this obtained graph is Eulerian. But this is not the case,

since it has vertices of odd degrees.

Definition 7. An Eulerian path is a complete tour of all the edges of a graph
without repeating any edges. A closed Eulerian path is called an Eulerian cycle.
An Eulerian graph is a graph that has an Eulerian cycle.

The first theorem of graph theory was due to Leonhard Euler. This theorem

connects the degrees of vertices and the number of edges of a graph.

Theorem 8. (Euler’s Theorem) Let G be a connected graph. G is an Eulerian
graph if and only if the degree of each vertex is even.

6



Theorem 9. For any graph G which has n vertices and m edges, the sum of the
degrees of the vertices equal to twice the number of edges. Thus,

n
∑

i=1

deg(vi) = 2m

Note that in any graph the sum of all the vertex-degrees is an even number, since

each edge contributes exactly 2 to the sum.

Corollary 10. In a graph, the number of vertices of odd degrees is even .

Definition 11. A path between two vertices in a graph is a Hamiltonian path if
it passes through every vertex of the graph. A closed Hamiltonian path is called
a Hamiltonian cycle in the graph. A Hamiltonian graph is a graph that has a
Hamiltonian cycle.
Theorem 8 provides a simple test for determining whether or not a graph is
Eulerian. No such test is known and none is thought to exist to determine
whether or not a graph is Hamiltonian.

2.5 NP-Complete Problem

Definition 12. A decision problem is a problem that requires only a positive
or negative answer regarding whether some element of its domain has a particular
property.

Definition 13. A decision problem belongs to the class P if there is a polynomial-
time algorithm to solve the problem. A decision problem belongs to the class

NP if there is a way to provide evidence of the correctness of a positive answer
so that it can be confirmed by a polynomial-time algorithm.

Definition 14. A problem is said to be NP-hard if an algorithm for solving it
can be translated into one for solving any other NP-problem. It is much easier
to show that a problem is NP than to show that it is NP-hard. A problem which
is both NP and NP-hard is called an NP-complete problem.

7



Chapter 3

EDGE COLORINGS

3.1 History of Edge Coloring

The edge-coloring problem is to color all edges of a given graph with the

minimum number of colors so that no two adjacent edges are assigned the same

color. In this chapter, we historically review the edge-coloring problem which

was appeared in 1880 in relation with the four-color problem. The problem

is that every map could be colored with four colors so that any neighboring

countries have different colors. It took more than 100 years to prove the problem

affirmatively in 1976 with the help of computers. The first paper dealing with the

edge-coloring problem was written by Tait in 1880. In this paper Tait proved that

if the four-color conjecture is true, then the edges of every 3-connected planar

graph can be properly colored using only three colors. Several years later, in

1891 Petersen pointed out that there are 3-connected, cubic graphs which are

not 3 colorable. The minimum number of colors needed to color edges of G is

called the chromatic index χ′(G) of G. Obviously χ′(G) ≥ ∆(G), since all edges

incident to the same vertex must be assigned different colors. In 1916, König

has proved his famous theorem which states that every bipartite graph can be

edge-colored with exactly ∆(G) colors, that is χ′(G) = ∆(G). In 1949, Shannon

proved that every graph can be edge-colored with at most 3∆(G)
2

colors, that is

χ′(G) ≤ 3∆(G)
2

. In 1964, Vizing proved that χ′(G) ≤ ∆(G) + 1 for every simple

graph. [8]

According to the rapid progress of computers, the research on computer

algorithms has become active with emphasis on the efficiency and complexity, and

efficient algorithms have been developed for various graph problems. However,

Holyer [11] proved that the edge coloring problem is NP-complete, and hence it is

very unlikely that there is a polynomial time algorithm for solving the problem.

Hence a good approximation algorithm would be useful.

We now give a simple example of an application of the edge coloring.

Consider a computer network consisting of several computers connected to some

8



of the others through communication lines. Suppose that every computer can

communicate with at most one other computer in a time unit. We want to make

a time schedule such that every computer communicates to all of its neighbors,

and to minimize the number of the total necessary time units. Consider this

problem by using an edge coloring, as follows. We first regard the network as

a graph by replacing each computer with a vertex, and each communication

line with an edge. We next find an edge coloring of the resulting graph with

the minimum number of colors. Each color represents a time unit at which the

corresponding communication line is used. Therefore, the number of used colors

is the total number of necessary time units.

Today this example is known as one of the most basic one in the graph

coloring theory. A large number of papers dealing with edge coloring have been

published. Many of them focus to obtain a small upper bound on the number of

necessary colors for colorings, or develop efficient algorithms to solve the coloring

problems, that is, to find a coloring such that the number of used colors is as

small as possible.

3.2 The Minimization Problem for Edge Coloring

Definition 15. An edge coloring of a graph G is a function f : E(G) → C,
where C is a set of distinct colors. For any positive integer k, a k-edge coloring

is an edge coloring that uses exactly k different colors. A proper edge coloring

of a graph is an edge coloring such that no two adjacent edges are assigned the
same color. Thus a proper edge coloring f of G is a function f : E(G) → C such
that f(e) 6= f(e′) whenever edges e and e′ are adjacent in G.

Definition 16. The chromatic index of a graph G, denoted χ′(G), is the
minimum number of different colors required for a proper edge coloring of G.
G is k-edge-chromatic if χ′(G) = k.

Theorem 17. For any graph G,

∆(G) ≤ χ′(G) ≤ 2∆(G) − 1

Proof. An obvious lower bound for χ′(G) is the maximum degree ∆(G) of any
vertex in G. This is of course, because the edges incident one vertex must be
differently colored. It follows that ∆(G) ≤ χ′(G). The upper bound can be found
by using adjacency of edges. Each edge is adjacent to at most ∆(G) − 1 other
edges at each of its endpoints. Thus,

1 + (∆(G) − 1) + (∆(G) − 1) = 2∆(G) − 1

colors will always suffice for a proper edge coloring of G.

9



Definition 18. The set of all edges receiving the same color in an edge coloring
of G is called a color class. Alternatively a k-edge coloring can be thought of as
a partition (E1, E2, ..., Ek) of E(G), where Ei denotes the (possibly empty) subset
of E(G) assigned color i. If a coloring ξ = (E1, E2, · · · , Ek) is proper, then each
Ei is a matching. Therefore χ′(G) may be regarded as the smallest number of
matchings into which the edge set of G can be partitioned. This interpretation
of χ′(G) will be helpful in the proof of certain useful results.

Theorem 19. Let G be a graph with m edges and let m∗(G) be the size of a
maximum matching. Then,

χ′(G) ≥ d
m

m∗(G)
e.

Proof. Consider coloring of the edges with using q = χ′(G) colors α1, α2, · · · , αq

and let Ei denote the set of edges with color αi. We have

m = |E1| + |E2| + · · · + |Eq| ≤ qm∗(G)

Hence, q ≥ m

m∗(G) and χ′(G) ≥ d m

m∗(G)e.

3.3 Line Graphs

Definition 20. L(G) is a graph whose vertices are the edges of G, such that
edges with a common endpoint in G are adjacent in L(G). This graph, L(G) is
called the line graph of G.

Some simple properties of the line graph L(G) of a graph G are presented as
follows:

1. G is connected if and only if L(G) is connected.

2. If H is a subgraph of G, then L(H) is a subgraph of L(G).

3. If e is an edge of G joining u and v, then the degree of e in L(G) is the
same as the number of edges of G adjacent to e in G.
Hence deg(e) = deg(u) + deg(v) − 2.

4. It is relatively easy to determine the number of vertices and edges of the
line graph L(G) in terms of quantities in G. The order of L(G) is equal to
the size of G. In counting the number of edges in L(G), we have to examine
only the vertices in G, with the degree more than 1. Each edge of L(G)
corresponds to a pair of adjacent edges in G. Let v = {1, 2, · · · , n} be the
vertex set of G, and let di be the degree of vertex i. If di > 1, any two of
the di edges that are incident at vertex i can be chosen in C(di, 2) ways.
Two edges e and e′ of G that are incident at vertex i correspond to two
vertices in L(G) joined by an edge. Let the degrees of the vertices of G be
d1, d2, ..., dn. Thus the total number of edges in L(G) is:

10



m(L(G)) =
n

∑

i=1

(

di

2

)

=
d1!

2!(d1 − 2)!
+

d2!

2!(d2 − 2)!
+ ... +

dn!

2!(dn − 2)!

=
d1(d1 − 1)

2
+

d2(d2 − 1)

2
+ ... +

dn(dn − 1)

2

=
[d2

1 + d2
2 + ... + d2

n] − [d1 + d2 + ... + dn]

2

=
1

2
[

n
∑

i=1

d2
i ] − m(G)

Theorem 21. The line graph of the star K1,n is the complete graph Kn.

Theorem 22. The line graph of cycle is a cycle.

Theorem 23. The line graph of a graph G is a path if and only if G is a path.

Proof. Let G be the path Pn on n vertices. Then clearly L(G) is the path Pn−1

on n − 1 vertices.

Conversely, let L(G) be a path. Then no vertex of G can have degree greater
than 2. Because, if G has a vertex v of degree greater than 2, the edges incident
to v would form a complete subgraph of L(G) with at least three vertices. Hence
G must be either a cycle or a path. But G cannot be a cycle, because the line
graph of a cycle is a cycle.

A line graph can be used to convert an edge coloring problem into a vertex

coloring problem. This observation appears to be of little value in computing

chromatic indices, however, since chromatic numbers are extremely difficult to

evaluate in general [2].

Theorem 24. The chromatic index of a graph G equals the chromatic number
of its line graph L(G).

Proof. From the definitions it is immediate that χ′(G) = χ(L(G)), where L(G)
is the line graph of G.
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3.4 Chromatic Index for Common Graph Families

Proposition 25. Complete Graphs:

χ′(Kn) =







n − 1, if n is even;

n, if n is odd.

Proof. Since Kn is regular of degree n − 1, χ′(Kn) ≥ n − 1.

Case 1: n is even. We now show that χ′(Kn) ≤ n − 1 by exhibiting a proper
(n− 1)-edge coloring of Kn. Label the n vertices of Kn as 0, 1, ..., n− 1. Draw a
circle with center at 0 and place the remaining n−1 numbers on the circumference
of the circle so that they form a regular (n − 1)-gon (see Figure 3.1). Then the
n
2

edges (0, 1), (2, n − 1), (3, n − 2), · · · , (n
2
, n

2
+ 1) form a 1-factor of Kn. These

n
2

edges are thick edges of Figure 3.1. Rotation of these edges through the angle
2π

2n−1
in succession gives (n−1)-edge disjoint 1-factors of Kn. This would account

for n
2
(n− 1) edges, or all the edges of Kn. Each 1-factor can be assigned a color.

Thus χ′(Kn) ≤ n − 1. This proves the result in Case 1.

1
2

0

3

4

5

6

n-1

n-2

n-3

n-4

n-5

n/2+3

n/2+2

n/2+1 n/2

n/2-1

n/2-2

Figure 3.1: Graph for proof of Proposition 25.

Case 2: n is odd. Take a new vertex and make it adjacent to all the n vertices
of Kn. This gives Kn+1. By Case 1, χ′(Kn+1) = n. The restriction of this
edge coloring to Kn yields a proper n-edge coloring of Kn. Hence χ′(Kn) ≤ n.
However, Kn cannot be edge colored properly with n− 1 colors. This is because
the size of any matching of Kn can contain no more than n−1

2
edges and hence

n−1 matchings of Kn can contain no more than (n−1)2

2
edges. But Kn has n(n−1)

2

edges. Thus, χ′(Kn) ≥ n, and hence χ′(Kn) = n.

12



Proposition 26. Path Graphs:

χ′(Pn) = 2, for n ≥ 3.

Proposition 27. Cycle Graphs:

χ′(Cn) =







2, if n is even;

3, if n is odd.

Proposition 28. Trees:

χ′(T ) = ∆(T ), for any tree T.

Figure 3.2: A proper edge 3-coloring of a tree.

Proposition 29. Wheel Graphs:

χ′(Wn) = n − 1, for n ≥ 4.

Figure 3.3: A proper edge 6-coloring of a wheel.

A 3-regular graph is also called a cubic graph. The best known cubic

graph is the Petersen Graph (see Figure 3.4). The Petersen Graph is 3-regular

with chromatic index 4. It is also not Hamiltonian. We will see now that these

properties are connected.

13



Figure 3.4: Petersen Graph.

Theorem 30. Let G be a 3-regular graph with chromatic index 4. Then G is not
Hamiltonian.

Proof. Since G is 3-regular then it must have an even number of vertices. Suppose
G is Hamiltonian, then any Hamiltonian cycle of G is even, so we can color its
edges properly with 2 colors, say red and blue. Now each vertex is incident with 1
red edge, 1 blue edge and 1 uncolored edge. The uncolored edges form a 1-factor
of G, so we can color all of them with the same color, say green. Thus, G must be
3-edge-colorable, which is impossible. Therefore, G cannot be Hamiltonian.

3.5 Chromatic Incidence

The next few definitions pertain to all edge-colorings, not just to proper ones [9].

Definition 31. For a given edge coloring of a graph, color i is incident on
vertex v if some edge incident on v has been assigned color i. Otherwise, color

i is missing at vertex v.

Definition 32. The chromatic incidence at v of a given edge coloring f is the
number of different edge-colors incident on vertex v. It is denoted by ecrv(f).

Definition 33. The total chromatic incidence for an edge coloring f of a
graph G, denoted by ecr(f), is the sum of the chromatic incidences of all the
vertices. That is,

ecr(f) =
∑

v∈VG

ecrv(f)

The following four statement are immediate consequences of the definitions.

Proposition 34. Let f be any edge coloring of a graph G. Then for every v ∈ VG,

ecrv(f) ≤ deg(v)

Corollary 35. Let f be any edge coloring of a graph G. Then
∑

v∈V (G)

ecrv(f) ≤
∑

v∈V (G)

deg(v)

14



Proposition 36. An edge coloring f of a graph G is proper if and only if for
every vertex v ∈ V (G)

ecrv(f) = deg(v)

Corollary 37. An edge coloring f of a graph G is proper if and only if

∑

v∈V (G)

ecrv(f) =
∑

v∈V (G)

deg(v)

3.6 Edge Coloring of Bipartite Graphs

The edge coloring problem for bipartite graphs can be used to model a

time table problem: assume that, given a set of teachers and a set of classes,

it is known which classes and how many hours each teacher must teach, then

construct a time table to minimize the schooltime. Represent teachers and classes

as vertices of a graph. When a teacher must teach a class h hours, join the vertices

corresponding to the teacher and the class by h multiple edges. The edges colored

with a same color correspond to classes that can be held simultaneously. Thus

the timetable to minimize the schooltime corresponds to an edge coloring of the

graph with the minimum number of colors.

Definition 38. In a graph G with an (possibly improper) edge coloring, a
Kempe i-j edge-chain is a component of the subgraph of G induced on all
the i-colored and j-colored edges.

The following two lemmas establish facts about the chromatic degree that

are used for the characterization of bipartite graphs. They involve edge colorings

that are not assumed to be proper. The first lemma makes use of the properties

of an Eulerian graph.

Lemma 39. Let G be a connected graph with at least two edges that is not an
odd cycle graph. Then G has an edge 2-coloring such that both colors are incident
on every vertex of degree at least 2.

Proof. Case 1: G is Eulerian.
If G is a cycle, then by the hypothesis of the theorem it must be of even length. In
such a case it is easy to verify that G has an edge 2-coloring having the required
property. If G is not a cycle, then it must have a vertex v0 of degree at least 4.
Let v0, e1, v1, e2, v2, e3, · · · , em, v0 be an Euler Cycle and let

E1 = {ei | i is odd} and E2 = {ei | i is even } (3.1)

Then (E1, E2) is an edge 2-coloring in which at every vertex both colors are rep-
resented because in the Euler Cycle considered every vertex including v0 appears
as an internal vertex.
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Case 2: G is not Eulerian.
In this case G must have an even number of odd vertices. Now construct an
Eulerian Graph G′ by adding a new vertex v0 and connecting it to every vertex
of odd degree in G. Let v0, e1, v1, e2, v2, e3, · · · , em, v0 be an Eulerian Cycle in
G′. If E1 and E2 are defined as in 3.1, then (E1, E2) is an edge 2-coloring of
G′ in which both colors are represented at each vertex of G. It may be now be
verified that (E1

⋂

E,E2

⋂

E) is an edge 2-coloring of G in which both colors are
represented at each vertex of degree at least 2.

Lemma 40. Let f be an edge k-coloring of a graph G with the largest possible
total chromatic incidence. Let v be a vertex on which some color i is incident at
least twice and on which some color j is not incident at all. Then the Kempe i-j
edge-chain K containing vertex v is an odd cycle.

Proof. By Lemma 39, if the Kempe i-j edge-chain K incident on vertex v were
not an odd cycle, then we could rearrange the edge colors i and j within K so
that the chromatic incidence of the coloring of K would be 2 at every vertex.
The edge coloring for G thereby obtained would have higher chromatic incidence
at vertex v at least equal chromatic incidence at every other vertex of G. This
would contradict the premise that the edge coloring f has the maximum possible
total chromatic incidence.

In 1916, König [12], while studying the factorization of the determinants

of matrices, proved his famous theorem which can be stated as follows:

Theorem 41. (König’s Theorem) Let G be a bipartite graph. Then,
χ′(G) = ∆(G).

Proof. By the way of contradiction, suppose that χ′(G) 6= ∆(G). Then by Theo-
rem 17, ∆(G) < χ′(G). Next, let f be an edge ∆(G)-coloring of graph G for which
the total chromatic incidence ecrG(f) is maximum. Since f is not a proper edge
coloring, by Proposition 34 there is a vertex v such that ecrv(f) < deg(v). Thus
some color occurs on at least two edges incident on v. But there are ∆(G) − 1
other colors and at most ∆(G) − 2 other edges incident on v, which means that
some other color is not incident on vertex v. It follows by Lemma 40, that graph
G contains an odd cycle, which contradicts the fact that G is bipartite.

3.6.1 Edge Colorings of Regular Bipartite Graphs

König’s edge coloring theorem is directly equivalent to the special case of

regular bipartite graphs (since any bipartite graph of maximum degree ∆(G) is

a subgraph of a ∆(G)-regular bipartite graph). Rizzi [17] gave the following very

elegant short argument for the k-edge-colorability of k-regular bipartite graphs.
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Let G be a counterexample with fewest edges. So G has no perfect match-

ing. Choose an edge e = uv. Then we can extend the graph G−u−v to a k-regular

bipartite graph H by adding at most k − 1 new edges. As H has fewer edges

than G, H has a k-edge coloring. Since less than k new edges have been added,

there is a color M that uses none of the new edges. Then M ∪ {e} is a perfect

matching in G, a contradiction.

3.7 Vizing’s Theorem

Definition 42. Let G be a graph, and let f be a proper edge k-coloring of a
subset S of the edges of G. Then f is blocked if for each uncolored edge e,
every color has already been assigned to the edges that are adjacent to e. Thus,
f cannot be extended to any edge outside subset S.

Lemma 43. Let i and j be two of the colors used in a proper edge coloring of a
graph G. Then every Kempe i-j edge-chain K is a path (open or closed).

Proof. Every vertex of Kempe chain K has degree at most 2 (since the edge
coloring is proper), and by Definition 38, K is a connected subgraph.

Theorem 44. (Vizing’s Theorem) Let G be a simple graph. Then there exists a
proper edge coloring of G that uses at most ∆(G) + 1 colors.

Proof. To construct such an edge coloring, start by successively coloring edges
using any method until the coloring is blocked or complete. If the set of uncolored
edges is empty, then the construction is complete. Otherwise, there is some edge
e with endpoints u and v that remains uncolored. It will be shown that by
recoloring some edges, the blocked coloring can be transformed into one that can
be extended to edge e. The process can then be repeated until all edges have
been colored.

Since the number of colors exceeds ∆(G), it follows that at each vertex at least
one of the colors is missing. Let c0 be a color missing at vertex u, and c1 a color
missing at vertex v. Color c1 cannot also be missing at vertex u, since if it were,
edge e would not have remained uncolored. (For the same reason, color c0 must
occur at vertex v.)

So let e1 be the c1-edge-incident on vertex u, and let v1 be its other endpoint.
Next, let c2 be a color missing at v1. If c2 is also missing at vertex u, then
the color of the edge e1 can be changed from c1 to c2, thereby permitting the
assignment of color c1 to edge e, as illustrated in Figure 3.5.

If color c2 does occur at vertex u, then let e2 be the c2-edge incident on vertex u,
let v2 be its other endpoint, and let c3 be a color missing at vertex v2. Continue
iteratively in this way so that at the j th iteration, ej is the cj-edge incident on
vertex u, vj is its other endpoint, and cj+1 is the color missing at vertex vj. Let
m be the smallest j such that vertex vm has a missing color cm+1 such that cm+1
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Figure 3.5: Extending an edge coloring to edge e by recoloring edge c1.

is also missing at vertex u or is one of the colors in the list c1, c2, ..., cm. (Such
an m exits, since the set of colors is finite.)

Case 1: Color cm+1 is missing at both vertex vm and vertex u. (Color Shift)

Then perform the following color shift: for j = 1, ...,m change the color of edge
ej from cj to cj+1. This releases color c1 from edge e1 so that it can be reassigned
to edge e. The color shift is illustrated in Figure 3.6. Notice that it maintains a
proper edge coloring because, by the construction, color cj+1 was missing at both
endpoints of edge ej before the shift.
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Figure 3.6: Case 1: Color shift to free color c1 for edge e.

Case 2: Color cm+1 = ck, where 1 ≤ k ≤ m. (Swap and Shift)

Let K be the Kempe c0 − ck edge-chain incident on vertex vm. By definition of
m, K includes the c0-edge incident on vm, but there is no ck-edge incident on
vertex vm. By Lemma 43, Kempe chain K is a path, and one end of this path
is vertex vm. There are three subcases to consider, according to where the other
end of the path is. In each of the three subcases, the two colors are swapped so
that a Case 1 color shift can then be performed.

Case 2a: Path K reaches vertex vk.

Then swap colors c0 and ck along path K. As a result of the swap, color ck no
longer occurs at vertex u. This configuration permits a Case 1 color shift that
releases color c1 for edge e. The swap and shift are illustrated in Figure 3.7.
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Figure 3.7: Case 2a: Swap and shift.

Case 2b: Path K reaches the vertex vk−1.

Then swap colors c0 and ck along path K. As a result of the swap, color c0 no
longer occurs at vertex vk−1. Thus, edge ek−1 can be recolored c0, as in Figure
3.8, so that color ck−1 no longer occurs at vertex u. A Case 1 shift can now be
performed to release color c1 for edge e.
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Figure 3.8: Case 2b: Swap, recolor edge e1, and then shift.

Case 2c: Path K never reaches vertex vk−1 or vertex vk.

Since color c0 does not occur at vertex u, and since color ck occurs at u only on
the edge from vk, it follows that path K does not reach vertex u. Then swap
colors c0 and ck along path K, so that color c0 no longer occurs at vertex vm.
Now perform a Case 1 color shift that releases color c1 for edge e, as in Figure
3.9.
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Corollary 45. Let G be a simple graph. Then either χ′(G) = ∆(G) or
χ′(G) = ∆(G) + 1.

3.7.1 The Classification Problem

Vizing’s Theorem for simple graphs gives us a basic way of classifying

graphs into two classes. A graph G is said to be of Class 1 if χ′(G) = ∆(G),

and of Class 2 if χ′(G) = ∆(G) + 1. We have already seen that even complete

graphs, even cycle graphs, and bipartite graphs are of Class 1, and that odd cycle

graphs and odd complete graphs are of Class 2. More generally, every regular

graph of odd order is of Class 2. It is not true, however, that every regular graph

of even order is of Class 1; the Petersen Graph, for example, is Class 2. However

the general problem of deciding which graphs belong to which class is unsolved.

It seems natural to expect that the more edges a graph has, the more

likely it is to be of Class 2. This idea is made precise in the following result,

which gives a sufficient condition for a graph to be of Class 2. This elementary

result was proved by Beineke and Wilson [3].

Theorem 46. Let G be a graph with n vertices and m edges. If

m > ∆(G) · b
1

2
nc,

then G is of Class 2.

Proof. Let G be a graph with n vertices and m edges and m > ∆(G) · b 1
2
nc.

Assume that G is of Class 1. Then χ′(G) = ∆(G). Let a ∆(G)-edge coloring of
G be given. Then any ∆(G)-coloring of the edges of G partitions the set of edges
into ∆(G) independent subsets. But the number of edges in each independent
subset cannot exceed b1

2
nc, since otherwise two of these edges would be adjacent.

It follows that m ≤ ∆(G) · b 1
2
nc,giving the required contradiction.

Definition 47. A graph G is called overfull if m > ∆(G)b
1

2
nc.

Corollary 48. Every overfull graph is of Class 2.

Proof. By the definition of overfull graph and Theorem 46, it is obvious.

Hilton [10] conjectured that a graph G of order n with ∆(G) > n
3

is of

Class 2 if and only if G contains an overfull subgraph H with ∆(G) = ∆(H).

Corollary 49. Every regular graph of odd order is of Class 2.
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Corollary 50. If H is a regular graph of even order, and if G is any graph
obtained from H by inserting a new vertex into any edge of H, then G is of
Class 2.

We can also deduce the following result of Vizing:

Corollary 51. If G is a regular graph containing a cut-vertex, then G is of
Class 2.

Proof. If G is of odd order, then the result follows from Corollary 49. If G is of
even order, let G = H∪K, where H∩K = {v}. We may assume that H has odd
order (say k), and that every vertex of H has degree ∆(G), except for v whose
degree in H is less than ∆(G). It follows that the number of edges of H is:

m(H) =
1

2
[(k − 1)∆(G) + degH(v)] > ∆(G)b

1

2
kc

and the result follows from Theorem 46.

3.7.2 Vizing’s Adjacency Lemma

A graph G with at least two edges is minimal with respect to chro-

matic index if χ′(G − e) = χ′(G) − 1 for every edge e of G. Since isolated

vertices have no effect on edge colorings, it is natural to rule out isolated vertices

when considering such minimal graphs. Therefore, the added hypothesis is that

a minimal graph G is connected is equivalent to the assumption that G has no

isolated vertices.

Two of the most useful results dealing with these minimal graphs are also

results of Vizing [22], which are presented without proof.

Theorem 52. Let G be a connected graph of Class 2 that is minimal with respect
to chromatic index. Then every vertex of G is adjacent to at least two vertices of
degree ∆(G). In particular, G contains at least three vertices of degree ∆(G).

Theorem 53. Let G be a connected graph of Class 2 that is minimal with respect
to chromatic index. If u and v are adjacent vertices with deg(u) = k, then v is
adjacent to at least ∆(G) − k + 1 vertices of degree ∆(G).

We next examine to which class a graph belongs if it is minimal with respect to

chromatic index.

Theorem 54. Let G be a connected graph with ∆(G) = d ≥ 2. Then G is
minimal with respect to chromatic index if and only if either:
i) G is of Class 1 and G = K1,d or
ii) G is of Class 2 and G − e is of Class 1 for every edge e of G.
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Proof. Assume first that G = K1,d. Then, χ′(G) = ∆(G) ≥ 2 while
χ′(G − e) = ∆(G) − 1 for every edge e of G. Since G is of Class 1, then
χ′(G − e) = χ′(G) − 1.
Next, suppose that G is of Class 2 and G− e is of Class 1 for every edge e of G.
Then for an arbitrary edge e of G, we have

χ′(G − e) = ∆(G − e) < 1 + ∆(G) = χ′(G)

⇒ χ′(G − e) < χ′(G).

Therefore χ′(G − e) + 1 = χ′(G), so G is minimal.

Assume that χ′(G − e) < χ′(G) for every edge e of G.
If G is Class 1, then,

∆(G) ≤ ∆(G − e) + 1 ≤ χ′(G − e) + 1 = χ′(G) = ∆(G).

Therefore, ∆(G−e) = ∆(G)−1 for every edge e of G which implies that G = K1,d.
If G is of Class 2, then

χ′(G − e) + 1 = χ′(G) = ∆(G) + 1

so that χ′(G − e) = ∆(G) for every edge e of G. Suppose that G contains an
edge e1 such that G − e1 is of Class 2. Then

χ′(G − e1) = ∆(G − e1) + 1

⇒ ∆(G) = ∆(G−e1)+1 ⇒ ∆(G−e1) < ∆(G), implying that G has at most two
vertices of degree ∆(G). This however, contradicts Theorem 52 and completes
the proof.

A graph G with at least two edges is called class minimal if G is of

Class 2 and G − e is of Class 1 for every edge e of G. It follows that a class

minimal graph without isolated vertices is necessarily connected. On the basis of

the Theorem 54, we conclude that except for star graphs, class minimal graphs

are connected graphs that are minimal with respect to chromatic index, and

conversely.

A lower bound on the size of class minimal graphs is given next in yet another

result by Vizing [22].

Theorem 55. If G is a class minimal graph of size m with ∆(G) = d, then

m ≥
1

8
(3d2 + 6d − 1)
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Proof. Without loss of generality, we assume that G is connected. Suppose that
δ(G) = k and deg(u) = k. By Theorem 52, the vertex u is adjacent to at least
two vertices of degree d. Let v be such a vertex. By Theorem 53, v is adjacent
to at least d − k + 1 vertices of degree d. Since the order of G is at least d + 1,
we arrive at the following lower bound on the sum of degrees of G:

2m ≥ [d(d − k + 2) + k(k − 1)] = k2 − k(d + 1) + (d2 + 2d) (3.2)

However, expression 3.2 is minimized when k =
d + 1

2
so that,

2m ≥ (
d + 1

2
)2 −

(d + 1)2

2
+ d2 + 2d

or

m ≥
1

8
(3d2 + 6d − 1).

3.8 Chromatic Index for Multigraphs

Vizing also obtained a corresponding bound for multi-graphs, which is

sometimes better than that given by Shannon [23]. It involves the maximum

multiplicity µ of a multi-graph M , defined to be the maximum number of edges

joining any pair of vertices in M . This result is stated as follows:

Theorem 56. If M is a multi-graph with maximum degree ∆ and maximum
multiplicity µ, then ∆(M) ≤ χ′(M) ≤ ∆(M) + µ.

We conclude this section by showing how Vizing’s Theorem for multi-graphs can

be used to prove Shannon’s result [18]:

Theorem 57. (Shannon’s Theorem) If M is a multi-graph with maximum degree
∆(M), then

χ′(M) ≤
3

2
∆(M).

Proof. Let M be a multi-graph for which χ′(M) = k, where k >
3
2∆(M). We may

assume that χ′(M −e) = k−1, for each edge e of M . It follows from the previous
theorem that k ≤ ∆(M) + µ, where µ is the maximum multiplicity of M and so
there must exist vertices v and w which are joined by at least k − ∆(M) edges.
We now color all of the edges of M except one of the edges joining v and w; since
χ′(M−e) = k−1, this coloring can be done with k−1 colors. Now the number of
colors missing from v and w (or both) can not exceed (k−1)−(µ−1), which in turn
can not exceed ∆(M), since k ≤ ∆(M)+µ. But the number of colors missing from
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v is at least (k−1)− (∆(M)−1) = k−∆(M) and similarly the number of colors
missing from w is at least k−∆(M). It follows that the number of colors missing
from both v and w is at least (k−∆(M))+(k−∆(M)) = (2k−∆(M))−∆(M),

which is positive since k >
3
2∆(M). By assigning one of these missing colors to the

uncolored edge joining v and w, we have colored all of the edges of M using only
k − 1 colors, thereby contradicting the fact that χ′(M) = k. This contradiction
establishes the theorem.

3.9 Edge Colorings of Planar Graphs

Definition 58. A planar graph is a graph which can be embedded in the plane
so that no two edges intersect geometrically except at a vertex to which they are
both incident.

In this section we briefly consider edge colorings of planar graphs here.

Our main problem remains to determine which planar graphs are of Class 1 and

which are of Class 2.

Proposition 59. If G is a planar graph whose maximum degree is at most 5,
then G can lie in either Class 1 or Class 2.

It is easy to find planar graphs G of Class 1 for which ∆(G) = d for each

d ≥ 2 since all star graphs are planar and of Class 1. There exist planar graphs

G of Class 2 with ∆(G) = d for d = 2, 3, 4, 5. For d = 2, the graph K3 has the

desired properties. It is not known whether there exists planar graphs of Class

2 having maximum degree 6 or 7; however Vizing [24] proved that if G is planar

and ∆(G) ≥ 8, then G must be of Class 1. We shall prove a similar, but weaker,

result which may be found in his earlier paper.

Theorem 60. If G is a planar graph with ∆(G) ≥ 10, then G is of Class 1.

Proof. Suppose that the theorem is not true, and suppose G is a planar graph
of Class 2 with ∆(G) ≥ 10. Without loss of generality, that G is minimal with
respect to chromatic index. Since G is planar, there must be at least one vertex
in G whose degree is at most 5. Let S denote the set of all such vertices. Define
H = G − S. Since H is planar, H contains a vertex w such that degH(w) ≤ 5.
Because degG(w) > 5, the vertex w is adjacent to vertices of S. Let v ∈ S such
that wv ∈ E(G), and let degG(v) = k ≤ 5. Then by Theorem 53, w is adjacent
to at least d− k + 1 vertices of degree d, but d− k + 1 ≥ 6 so that w is adjacent
to at least six vertices of degree d. Since d ≥ 10, w is adjacent to at least six
vertices of H, contradicting the fact that degH(w) ≤ 5.

As we mentioned above, this result can be improved to show that every

planar graph with ∆(G) ≥ 8 is of Class 1. However the problem of determining
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what happens when the maximum degree is either 6 or 7 remains open. In this

connection, the following conjecture was formulated by Vizing [24]:

Planar Graph Conjecture: Every planar graph with maximum degree 6 or 7

is of Class 1.

Seymour [6] conjectured that a planar graph is of Class 2 if and only if G contains

an overfull subgraph H with ∆(G) = ∆(H). If true, this conjecture would imply

that every planar graph G with ∆(G) ≥ 6 is of Class 1.

3.10 Edge Game Coloring of Graphs

The notion of a graph coloring game was first introduced by Bodlaender

in 1991 [4]. Consider a two person game as follows, played on an uncolored graph

G = (V,E) with respect to a set C = {1, 2, · · · , k} of colors. Two players, Player

1 and Player 2, move alternately with Player 1 moving first. Each feasible move

consists of choosing an uncolored edge, and coloring it with a color from C, so

that in the subgraph H of G induced by the colored edges, incident edges get

distinct colors. The game ends when no more feasible move is possible. In this

edge coloring game, Player 2 wins if, any stage of the game, there is an uncolored

edge adjacent to colored edges in all k colors; otherwise Player 1 wins. So Player

2 tries to surround an uncolored edge with a high number of differently colored

edges. Player 1 tries to prevent this [13].

A graph G is called k-edge-game colorable if Player 1 has a winning

strategy with k colors, and the game chromatic index χ′

g(G) is the smallest

number k such that G is k-edge-game colorable.

For each graph G, the edge set E(G) can be partitioned into k = χ′(G)

matchings, E1, E2, · · · , Ek. We have called each of them as a color class of G.

It is obvious that in the edge game coloring of graph G, Player 1 always want

to color the edges in a color class with the same color, and Player 2 try to color

each edge in a matching with distinct colors.

To facilitate the study of game chromatic index, we consider the following

edge game coloring on a graph G. Let us consider the game chromatic index

of K5. It is known that χ′(K5) and each matching of K5 contains at most two

edges. Let C = 1, 2, · · · , 6. Initially, Player 1 color an arbitrary edge. Suppose

Player 2 has just colored an edge e with color i ∈ C. If there is still uncolored

edge, then Player 1 choose an edge e′ which has no common vertex with e and

color it with i also. This guarantees that there are 8 edges of G are colored with

4 colors of C. Therefore, Player 1 has a winning strategy using 6 colors. Thus
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χ′(K5) = 6.

An obvious lower bound of χ′

g(G) is χ′(G). This lower bound can be

reached because χ′

g(K1,r) = χ′(K1,r) = r, and χ′

g(G) can be strictly greater than

χ′(G) because χ′

g(Pn) = 3 but χ′(Pn) = 2 when n ≥ 5. We can also see that

χ′

g(C) = 3.

Note that for any graph G of maximum degree ∆(G), we have

∆(G) ≤ χ′

g(G) ≤ 2∆(G) − 1 since no edge is adjacent to more than 2∆(G) − 2

edges. This motivates us to consider graphs whose chromatic game indices are

bounded above by ∆(G) + c for some constant c.

The game chromatic index has first been studied by Lam, Shiu and Xu

[13], who show that trees with maximum degree ∆(G) have game chromatic

index at most ∆(G) + 2 and mention that the class of trees with maximum

degree 3 has game chromatic at most ∆(G) + 1 = 4. Then, in 2002, Erdös,

Faigle, Hochstättler and Kern [7] proved that the statement for ∆(G) ≥ 6. Now

only the cases ∆(G) = 4 and ∆(G) = 5 are open.

Theorem 61. χ′

g(T ) ≤ ∆(T ) + 1, for any tree T with ∆(T ) ≥ 6.

The bound in Theorem 61 is easily seen to be sharp:

Theorem 62. For any ∆(T ) ≥ 2 there exists a tree with the game chromatic
index equal to ∆(T ) + 1.

The game chromatic index of wheels also shown by Lam, Shiu and Xu [13]. It is

clear that χ′

g(Wn) ≤ n + 2.

Theorem 63. χ′

g(W4) = 5 and χ′

g(Wn) = n + 1 when n ≥ 4.
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Chapter 4

EDGE COLORING WITH webMATHEMATICA

In this chapter, we present the problem of edge coloring of graphs with

webMathematica by using the Combinatorica package. First, we introduce in

Section 4.1 the package of Combinatorica. In Section 4.2, we describe the concept

of webMathematica which allows the generation of dynamic web content with

Mathematica. In Section 4.3 and 4.4, we give examples of drawing graphs, and

their chromatic indices by using webMathematica. The URL adress of this page

is http://gauss.iyte.edu.tr:8080/webMathematica/atina/edge.jsp.

4.1 Mathematica and Combinatorica Package

Mathematica is a high-level programming language, a calculator, a com-

posite of mathematical algorithms, and a program that is more powerful than any

application that has been devised for it. It is also a system developed recently

for doing mathematics by computer. Combinatorica, an extension to the popu-

lar computer algebra system Mathematica, is the most comprehensive software

available for educational and research applications of discrete mathematics, par-

ticularly combinatorics and graph theory. It includes functions for constructing

graphs and other combinatorial objects, computing invariants of these objects,

and finally displaying them. The Combinatorica user community ranges from

students to engineers to researchers in mathematics, computer science, physics,

economics, and the humanities. The use of Mathematica in Graph Theory, which

is also part of Discrete Mathematics, has been extensively explained by Steven

Skiena [15]. It has been perhaps the most widely used software for teaching

and research in discrete mathematics since its initial release in 1990. The new

Combinatorica is a substantial rewrite of the original 1990 version. It is now

much faster than before, and provides improved graphics and significant addi-

tional functionality. Combinatorica is included with every copy of Mathematica

as DiscreteMath`Combinatorica` [26].
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4.2 The Concept of webMathematica

One of the most exciting new technologies for dynamic mathematics on

the World Wide Web is a webMathematica. It makes all numerics, symbolics, and

graphics computing available over the web. It provides an alternative interface via

the web. Even in a web environment, the front end is extremely useful. This new

technology developed by Wolfram Research that allows the generation of dynamic

web content with Mathematica. People use the existing Internet browsers such

as Internet Explorer or Netscape as an interface to webMathematica and they do

not need to know Mathematica to use it.

There are various important features that Mathematica can offer to a web

site, including computation, an interactive programming language, connectivity,

the Mathematica frond end, and enhanced support for MathML.

webMathematica is based on a standard Java technology called servlets.

Servlets are special Java programs that run on a web server machine. Typically

they run in a separate program called a servlet container, which connects to

the web server. Two popular servlet containers are Tomcat and JRun. Both

of them include stand-alone web serves, as well, so they can be used as total

solutions themselves without requiring an external web serves such as Apache.

webMathematica allows a site to deliver HTML pages that are enhanced by the

addition of Mathematica commands. When a request is made for one of these

pages the Mathematica commands are evaluated and the computed result is

placed in the page. This is done with the standard Java templating mechanism,

Java server pages (JSPs) making use of a library of tag extensions called the JSP

Taglib. The aim of webMathematica and JSP technology is reduce the amount

of extra knowledge required for developing a side to a minimum. The JSP scripts

require some knowledge of HTML, including FORM and INPUT elements, and

Mathematica but not Java nor JavaScripts [21, 25].

4.3 Edge Coloring for Common Graph Families with webMathematica

We use some commands in the Combinatorica package with Mathematica

to color the graphs and to give web-based examples with webMathematica as

follows:
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<%@ page language="java" %>

<%@ taglib uri="/webMathematica-taglib" prefix="msp" %>

<html> <body bgcolor="# ffffff">

<msp:allocateKernel>

<msp:evaluate> <<DiscreteMath`Combinatorica`

</msp:evaluate>

<FORM ACTION="edge.jsp" METHOD="POST">

<INPUT type="text" name="v" ALIGN="LEFT" size="6"

Value="<msp:evaluate> MSPValue[$$v, "3"]</msp:evaluate>" />

Enter the number of vertices of the cycle graph:

<msp:evaluate>

input=True;

If[MSPValueQ[$$v],

n=MSPToExpression[$$v];

c= EdgeColoring[ g = Cycle[n] ];

e=Edges[g];

z=Max[c];

kk = Table[i, {i, 1, 1000}]; For[i = 1, i <= n ,

For[j = 1, j <= M[g], If[c[[j]] = i, kk[[j]] = Hue[i/ z]];

j++]; i++];,input=False;] </msp:evaluate>

</form>

<msp:evaluate> input=True;

If[MSPValueQ[$$v],

MSPShow[ShowGraph[g,Table[e[[i]], EdgeColor->kk[[i]],

i, 1, M[g]], VertexNumber-> On, EdgeStyle-> Thick]],

input=False;]</msp:evaluate>

<INPUT TYPE="Hidden" NAME="formNo" VALUE="1">

<INPUT TYPE="Submit"NAME="taskValue"

VALUE="Color the cycle graph"> </msp:allocateKernel>

</body></html>
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Figure 4.1: A view of the web page before running the program

In this example, there are two <INPUT> tags: one of them allow the user

of the page to enter the number of the vertex in the cycle graph, and the second

specifies a button that, when pressed, will submit the FORM. When the FORM

is submitted, it will send information from INPUT elements to the URL specified

by the ACTION attribute; in this case, the URL is the same JSP. Information

entered by the user is sent to a Mathematica session and assigned to a Mathemat-

ica symbol. Additionally, the Mathlets refer to Mathematica functions that are

not in standard usage. In this example some Mathematica commands; If, Table,

Edges, M, EdgeColoring, Cycle, ShowGraph, True, False, and some mathemat-

ical operations are used by the Mathlets. The name of the symbol is given by

prepending $$ to the value of the NAME attribute. MSPValue returns the value

of variable or a default if no value exists. This example also demonstrates the use

of page scoped variables with MSPToExpression. MSPToExpression interprets

values and returns the result. MSPShow saves an image on the server and returns

the necessary HTML to refer to this image (see Figure 4.1 and Figure 4.2). The

image uses a GIF format; it is possible to save images in other formats [25].
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Figure 4.2: A view of 2-edge colored cycle graph

If we change the Cycle[n] by Wheel[n], CompleteGraph[n], Star[n] and

RandomTree[n], we also color these graphs. For coloring the edges of complete

bipartite graph (CompleteKPartiteGraph[n,m]), we need one more INPUT tag.

4.4 Edge Coloring for any graphs with webMathematica

The module DrawG draw the simple graph without isolated points.

DrawG takes as input the list of edges of a graph. The vertices of the graph of

order n must be labelled consecutively 1, 2, · · · , n. This module must be added

to the package DiscreteMath`Combinatorica`. The module is;

DrawG[elist−]:=Module[{edgelist=elist,size,vertlist,vnum},

size=Length[edgelist];

vertlist=Union[Flatten[edgelist]];

vnum=Length[vertlist];

Do[edgelist[[i]]={edgelist[[i]]},{i,size}];

vertlist=CompleteGraph[vnum][[2]];

Graph[edgelist,vertlist]]
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The following example draws the given graph and colors edges. Let the vertices of

a graph be 1, 2, 3, 4, 5 and the set of edges be e = {{1, 2}, {2, 3}, {2, 5}, {3, 4}, {3, 5}}.

Then the graph can be drawn by typing the command ShowGraph[DrawG[e]].

<FORM ACTION="bes.msp" METHOD="POST">

<%INPUT type="text" name="v" ALIGN="LEFT" size="50"

Value ="<%Mathlet MSPValue[ $$v, "{{1, 2}, {2, 3}, {3, 4}}"] %>

<%Mathlet <<DiscreteMath`Combinatorica`%>

<%Mathlet <<Graphics`Colors`%>

<%Mathlet input=True;

If[MSPValueQ[$$v],

s=MSPToExpression[$$v];

c= EdgeColoring[ g = DrawG[s] ];

e=Edges[g];

m=Max[c];

kk =Table[i, {i, 1, 1000}]; For[i = 1, i <= m5 , For[j = 1, j <= M[g5],

If[c5[[j]] = i, kk5[[j]] = Hue[i/m5]]; j++]; i++];, input=False;] %>

<%Mathlet input=True;

If[MSPValueQ[$$v],

MSPShow[ShowGraph[g,Table[e[[i]],

EdgeColor->kk[[i]], i, 1, M[g]],

VertexNumber-> On,EdgeStyle-> Thick]],input=False;] %>

<INPUT TYPE="Hidden" NAME="formNo" VALUE="1">

<INPUT TYPE="Submit"NAME="taskValue"

VALUE="Color the edges of the graph" > </FORM>

A form element is a block of HTML that may contain input elements. A

form may be activated with an input of type submit. The action attribute refers

to an URL that accessed when the form is activated. The method attribute

tells the browser what HTTP method to use, in this case, a post method. This

example has two input tags. The first allows the user of the page to enter the

list of edges of the graph, and the second specifies a button that, when pressed,

will submit the form. When the form is submitted, it will send information from

input elements to the URL specified by the action attribute. This information is

sent to a Mathematica kernel and assigned to a Mathematica symbol (see Figure

4.3). The name of the symbol is given by $$ to the value of the name attribute.

When a value entered in the text field and the <Color the graph’s edges and
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vertices> button pressed, the text is displayed. This example also shows the use

of the MSP functions MSPShow, MSPValue, and MSPToExpression. [20]

Figure 4.3: A view of edge-colored for any graph

To color edges of the standard graphs (complete graph, wheel, tree, cycle,

and the others) we need more inputs. If the web user selects one of the standard

graphs and its number of vertices then they can get easily colored graph and its

chromatic index as follows:

<FORM ACTION="familycolor.jsp" METHOD="POST">

<p>Please select one of the following graphs and

input into the box:(1,2,3,or 4) </p> <p>1-CompleteGraph,</p>

<p>2-RandomTree, </p> <p>3-Wheel,</p> <p>4-Cycle)</p>

<msp:allocateKernel>

<INPUT type="text" name="m" ALIGN="LEFT" size="6"

value="<msp:evaluate> MSPValue[$$m,"1"]</msp:evaluate>" />

Input the number of the vertices for the selected graph:

<INPUT type="text" name="n" ALIGN="LEFT" size="6"

value="<msp:evaluate> MSPValue[$$n,"5"]</msp:evaluate>" />

<msp:evaluate> <<DiscreteMath`Combinatorica`

<<Graphics`Colors`</msp:evaluate>

<msp:evaluate> MSPBlock[{$$m,$$n},
Which[$$m==1, MSPShow[ColorEdges[CompleteGraph[$$n]]],

$$m==2, MSPShow[ColorEdges[RandomTree[$$n]]],

$$m==3, MSPShow[ColorEdges[Wheel[$$n]]],

$$m==4, MSPShow[ColorEdges[Cycle[$$n]]]]]

</msp:evaluate>
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The Chromatic Index of the selected graph is:

<msp:evaluate>

MSPBlock[{$$m,$$n},

Which[$$m==1, EdgeChromaticNumber[CompleteGraph[$$n]],

$$m==2, EdgeChromaticNumber[RandomTree[$$n]],

$$m==3, EdgeChromaticNumber[Wheel[$$n]],

$$m==4, EdgeChromaticNumber[Cycle[$$n]]]]

</msp:evaluate> </p> <input type="submit" name="button"

value="Graph Color"> </msp:allocateKernel>

Combinatorica package uses Brelaz’s heuristic to find a good, but not

necessarily minimal for edge coloring of graph G. Then when the web user enters

the huge number of the vertices he / she might get interesting results or time out

error for the edge coloring.
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