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ABSTRACT

This thesis provides the oscillation criteria for second order linear differ-

ential equations and dynamic equations on time scales.

We establish the comparison theorems and oscillation criteria for self-

adjoint and non-self adjoint equations and systems of first order ordinary differ-

ential equations. Then we prove the fundamental results concerning the dynamic

equations: existence and uniqueness theorem and disconjugacy criteria.
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ÖZET

Bu tez ikinci mertebeden lineer differansiyel denklemlerde ve zaman skala-

sında dinamik denklemlerde salınım teorisini içermektedir.

İkinci mertebeden öz eşlenik ve öz eşlenik olmayan diferansiyel denklem-

lerde ve birinci mertebeden diferansiyel denklem sistemlerinde karşılaştırma teo-

remleri ve salınım kriterlerini kurduk. Ek olarak zaman skalasında dinamik den-

klemlerde varlık teklik teoremini ve disconjugacy kriterlerini ispatladık.
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Chapter 1

INTRODUCTION

Since the most differential equations cannot be solved in terms of elimi-

nating functions, it is important to be able to compare the unknown solutions of

one differential equation with the known solutions of another.

One of the most frequently occurring types of differential equations in

mathematics and the physical sciences is the linear second order differential equa-

tion of the form

p0(x)u′′(x) + p1(x)u′(x) + p2(x)u(x) = p3(x). (1.1)

The coefficient functions pi(x) [i = 0, 1, 2, 3] are assumed continuous and real

valued on an interval I of the real axis, which may be finite or infinite. In this

thesis we are concerned with the basic tools of comparison theorems and oscilla-

tion theory of second order linear differential and dynamic equations. We deal

with the homogenous linear differential equation obtained by dropping the forc-

ing term p3(x).

In Chapter 2 we give brief information for the theory of differential equa-

tions. We first give definitions of adjoint and self-adjoint operators and Lagrange

Identity. Next we introduced the Sturm Liouville Problem which is the basis of

our study. And then we present the definition of oscillatory and nonoscillatory

solutions and disconjugate differential equations. Finally very powerful methods

of oscillation theory the Prüfer Substitution and the Riccati differential equation

are introduced. For the main notions and the facts from the theory of differential

equations we refer to [5, 17, 21, 22, 27].

In Chapter 3 we deal with the comparison theorems for self-adjoint dif-

ferential equations. We used the differential equation

L[u] = − d

dx
[p(x)u′(x)] + r(x)u(x) = 0

as a basis of our study. We try to interpret the zeros of the solutions of the

Sturm Majorant of the above equation by comparing the coefficients. Birkhoff

and Rota [5] and Hartman [17] give comparison theorems for second order self-

adjoint differential equations by using Prüfer Substitution. We present different



point of view for the proofs of these theorems. Next we give oscillation and

nonoscillation criteria for this type of differential equations by using the Riccati

technique and Prüfer substitution.

In Chapter 4 first we generalized the results obtained in Chapter 3 for the

differential equations of the type

− d

dx
[p(x)

du

dx
] + q(x)

du

dx
+ r(x)u = 0.

Since every second order differential equation can be stated as a system of first

order equations we also present the oscillation criteria for the systems of first

order equations.

In Chapter 5 first the time scale calculus as developed by Stefan Hilger

[18] is introduced. The calculus of time scales is included in many of the recent

papers interested in the time scales. We refer to [1, 4, 7, 18, 19, 20] for calculus of

time scales. For functions f : T → R we introduce a derivative which unifies the

ordinary derivative of continuous case and difference derivative of discrete case

and an integral which unifies the ordinary integral of continuous case and the

summation of discrete case. Fundamental results, e.g., the product rule, quotient

rule, integration by part formula are presented. Next we present the induction

principle on time scales to prove the existence and uniqueness of the solutions

of initial value problem including a self-adjoint linear dynamic equation. Then

we introduce the Hilger’s complex plane. We use the so-called cylinder transfor-

mation to introduce the exponential function on time scales. This exponential

function is then shown to satisfy an initial value problem involving a first order

linear dynamic equation [18]. We present some properties of exponential func-

tion. Agarwal, Bohner O’Regan and Peterson [1] and Bohner and Peterson [7]

present other properties of the exponential functions on time scales. Then we

give the oscillation properties of the second order linear self-adjoint differential

equation

[p(t)y∆(t)]∆ + q(t)yσ(t) = 0.

Such equations have been well studied in the continuous case (where they are

called Sturm-Liouville equations) and the discrete case (where they are called

Sturm-Liouville difference equations). Erbe and Hilger unified these two case

[12]. They presented the generalization of Sturm’s Seperation and Comparison

2



Theorems to the time scales. We investigate the disconjugacy of self adjoint equa-

tions. Also the theory of Riccati equations is developed in the general setting of

time scales, and we present a characterization of disconjugacy in terms of a cer-

tain quadritic functional. The extended results are examined by Erbe, Peterson

and R̃ehãk [14]. The eigenvalue problem, one of the most interesting problem of

Sturm Liouville differential equation, is considered by Agarwal, Bohner, Wong

[3]. Dos̃ly and Hilger then give a necesssary and sufficient condition for the os-

cillation Sturm Liouville dynamic equation on time scales [10]. An analogue of

the classical Prüfer transformation, which has proved to be a useful tool in the

theory of Sturm-Liouville equations, is given as well.
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Chapter 2

PRELIMINARIES

2.1 Notations

First of all we need to describe some notations that we used throughout

this thesis.

C := The class of continuous functions defined on R.

Cn := The class of functions defined on R whose first n th derivative and itself

are continuous.

T
k := The region of differentiability of the functions defined on T.

T
k2

:= The region of differentiability of the functions defined on T
k.

Crd := The class of all right dense continuous functions defined on T.

Cprd := The class of all piecewise right dense continuous functions.

R := The set of all regressive and rd-continuous functions.

Ch := Hilger’s Complex plane.

2.2 Adjoint and Self-adjoint Operators and Lagrange Identity

Early studies of differential equations concentrated on formal manipu-

lations yielding solutions in terms of familiar functions. Out of these studies

emerged many useful concepts, including those of integrating factors, and exact

differentials. Birkhoff and Rota [5] extended these concepts to second order lin-

ear differential equations and derived the extremely important notions of adjoint

and self-adjoint equations from them.



Definition 2.2.1. A second order homogenous linear differential equation

L[u] = p0(x)u′′(x) + p1(x)u′(x) + p2(x)u(x) = 0 (2.1)

is said to be exact if and only if for some P (x), Q(x) ∈ C1

p0u
′′ + p1u

′ + p2u =
d

dx
[P (x)u′ + Q(x)u]

is satisfied for all functions u ∈ C2.

For simplicity we omit the independent variable x in some of the equations

of this chapter.

Lemma 2.2.2. The operator L[u] in (2.1) is exact if and only if its coefficients

satisfy

p′′0(x) − p′1(x) + p2(x) = 0

Corollary 2.2.3. A function v ∈ C2 is an integrating factor for (2.1) if and only

if it is a solution of the second order linear differential equation

M [v] = (p0v)′′ − (p1v)′ + p2v = 0 (2.2)

Definition 2.2.4. The operator M is called the adjoint of the operator L.

The concept of the adjoint of a linear operator, which originated histori-

cally in the search of integrating factors, is of major importance because of the

role which it plays in the theory of oscillation.

Consider the operators M and L. If L is multiplied by v and M is multi-

plied by u, and the results subtracted it follows that:

vL[u] − uM [v] =
d

dx
[p0(u

′v − uv′) − (p′0 − p1)uv] (2.3)

The relation (2.3) is called Lagrange Identity.

In Chapter 3 we apply Lagrange Identity for the proofs of the comparison

theorems.

Definition 2.2.5. Homogenous linear differential equations that coincide with

their adjoint are called self-adjoint.

5



The condition for (2.1) to be self adjoint is p′0−p1 = 0. Since this relation

implies p′′0 − p′1 = 0, it is also sufficient. Moreover in self-adjoint case, since

[p(uv′ − u′v)]′ = u(pv′)′ − v(pu′)′ Lagrange Identity becomes:

vL[u] − uL[v] =
d

dx
[p0(u

′v − uv′)]. (2.4)

Theorem 2.2.6. The second order linear differential equation (2.1) is self-adjoint

if and only if
d

dx
[p(x)

du

dx
] + q(x)u = 0. (2.5)

All second order homogenous differential equations can be turned into self adjoint

form by multiplying through by

h(x) =
e

∫ p1(x)
p0(x) dx

p0(x)

Example 2.2.7. Consider the Chebyshev differential equation:

(1 − x2)u′′ − xu′ + λu = 0

In this case p0(x) = 1 − x2, p1(x) = x and p2(x) = λ. Then

h(x) =
e

∫ p1(x)
p0(x) dx

p0(x)
=

e
∫

x

1−x2 dx

1 − x2

=
e−

1
2

ln(1−x2)

1 − x2

=
1

(1 − x2)
3
2

.

Hence the self adjoint form of the Chebyshev differential equation is given by:

d

dx
(

1√
1 − x2

du

dx
) +

λ

(1 − x2)
3
2

u = 0.

2.3 Sturm-Liouville Problem

The Sturm-Liouville problem is the boundary value problem

d

dx
[p(x)

du

dx
] + [q(x) + λr(x)]u(x) = 0 (2.6)

6



together with the boundary conditions

αu(a) + βu(b) = 0 (2.7a)

γu′(a) + δu′(b) = 0 (2.7b)

where α, β, γ, δ ∈ R such that α2+β2 6= 0 and γ2+δ2 6= 0. Here, λ is a parameter

and r(x) is a function that is assumed continuous and positive on the interval

a ≤ x ≤ b. As before, the functions p(x), p′(x) and q(x)are assumed continuous,

and p(x) is positive on this interval. Under these conditions the boundary value

problem (2.6) and (2.7) is known as a regular Sturm-Liouville problem. This

is distinguished from the case when p(x) or r(x) vanishes at some point in the

interval [a, b] or when the interval is of infinite length, in which case the problem

is called a singular Sturm-Liouville problem.

Other important boundary conditions that may arise with the differential

equation (2.6) are

u(a) − u(b) = 0 (2.8a)

u′(a) − u′(b) = 0. (2.8b)

These are periodic boundary conditions, since both u(x) and its derivative are

required to have same value at the endpoints of the interval [a, b].

2.4 Prüfer Substitution

One of the most powerful method for the study of the solutions of a self-

adjoint second order linear differential equation

d

dx
[p(x)

du

dx
] + q(x)u(x) = 0, a < x < b (2.9)

is the Prüfer Substitution which is defined by;

p u′ = ρ(x) cos θ(x), u = ρ(x) sin θ(x) (2.10)

or

ρ2(x) = u2 + (p u′)2, θ(x) = arctan(
u

p u′
) (2.11)

7



ρ is called the amplitude and θ is called the phase variable [5, 23]. This method

is based on obtaining a system of first order equations from (2.9). When ρ 6= 0

the transformation (p u′, u) ⇌ (ρ, θ) defined by (2.10) or (2.11) are analytic with

nonvanishing Jacobian.

θ(x) = arctan(
u

p u′
) ⇒ sin θ(x) =

u
√

u2 + (p u′)2
=

u

ρ(x)

⇒ cos θ(x) =
p u′

√

u2 + (p u′)2
=

p u′

ρ(x)

The system is obtained by differentiation of ρ(x)

ρ′(x) =
2u(x)u′(x) + 2p(x)p′(x)(u′(x))2 + 2u′(x)u′′(x)p2(x)

2
√

u2(x) + (p(x)u′(x))2

=
u′(x)[u(x) + p(x)p′(x)u′(x) + u′′(x)p2(x)]

ρ(x)

=
u′(x)p(x)

ρ(x)
· 1

p(x)
[u(x) + p(x)p′(x)u′(x) + u′′(x)p2(x)]

= cos θ(x)[
u(x)

p(x)
+ u′(x)p′(x) + u′′(x)p(x)]

= cos θ(x)[
u(x)

p(x)
+ (p(x)u′(x))′]

= cos θ(x)[
u(x)

p(x)
− q(x)u(x)]

= cos θ(x)u(x)[
1

p(x)
− q(x)]

= cos θ(x)
u(x)

ρ(x)
ρ(x)[

1

p(x)
− q(x)]

= cos θ(x) sin θ(x)ρ(x)[
1

p(x)
− q(x)]

=
1

2
[

1

p(x)
− q(x)]ρ(x) sin 2θ(x)

and by the differentiation of θ(x)

θ′(x) =
[u′(x)]2p(x) − [u′(x)p(x)]′u(x)

u2(x) + (u′(x)p(x))2

=
[u′(x)]2p(x) + q(x)u2(x)

ρ2(x)

=
u2(x)q(x)

ρ2(x)
+

u2(x)p(x)

ρ2(x)

=
u2(x)q(x)

ρ2(x)
+

1

p(x)
· u2(x)p2(x)

ρ2(x)

= q(x) sin2 θ(x) +
1

p(x)
cos2 θ(x).

8



Hence we can transform (2.9) into the following system of first order nonlinear

differential equations:

dθ

dx
= q(x) sin2 θ(x) +

1

p(x)
cos2 θ(x) = F (x, θ) (2.12a)

dρ

dx
=

1

2
[

1

p(x)
− q(x)]ρ(x) sin 2θ(x) (2.12b)

The system (2.12) is equivalent to (2.9) in the sense that every nontrivial solution

of the system defines a unique solution of the differential equation by Prüfer sub-

stitution (2.10) or (2.11), and conversely. This system is called Prüfer System

associated with self-adjoint differential equation (2.9).

The first differential equation of Prüfer System (2.12) is a first order dif-

ferential equation in θ, x alone, not containing other dependent variable ρ, it

satisfies Lipschitz condition with Lipschitz constant

L = sup
a<x<b

∣

∣

∣

∂F

∂θ

∣

∣

∣

Hence the existence and uniqueness theorems of first order ordinary differential

equations are applicable and show that the first differential equation of (2.12)

has a unique solution θ(x) for any initial value θ(a) = ν, by assuming p(x) and

q(x) are continuous at a [5].

With known θ(x), ρ(x) is given by

ρ = K exp
{1

2

∫ x

a

[
1

p(t)
− q(t)] sin 2θ(t)

}

dt (2.13)

where K = ρ(a). Each solution of Prüfer System (2.12) depends on two constants:

the initial amplitude K = ρ(a) and the initial phase ν = θ(a).

2.5 Riccati Substitution

The first order differential equation

du

dx
= q1(x) + q2(x)u(x) + q3(x)u2(x) (2.14)

is known as a Riccati equation. The Riccati technique relates the zeros of u(x)

to the singularities of a solution of the following Riccati equation and constitutes

a basic tool in oscillation theory.

9



Lemma 2.5.1. If u is a solution of

L[u] = − d

dx
[p(x)

du

dx
] + r(x)u(x) = 0. (2.15)

Then

h(x) = −p(x)u′(x)

u(x)
(2.16)

is a solution of the Riccati equation

h′(x) − 1

p(x)
h2(x) + r(x) = 0. (2.17)

Proof. Let u(x) be a real valued nontrivial solution of (2.15) and let h(x) be

defined as in (2.16). Then by using (2.15) we get

h′(x) = − [p(x)u′(x)]′u(x) − p(x)u′(x)u′(x)

u2(x)

= − [p(x)u′(x)]′

u(x)
+

1

p(x)

p2(x)[u′(x)]2

u2(x)

= −r(x)u(x)

u(x)
+

1

p(x)
h2(x)

= −r(x) +
1

p(x)
h2(x).

Therefore the Riccati equation of (2.15) is given by

h′(x) − 1

p(x)
h2(x) + r(x) = 0.

10



Chapter 3

COMPARISON AND OSCILLATION CRITERIONS OF

SELF ADJOINT EQUATIONS

In this chapter we are concerned with the comparison and oscillation the-

orems of second order linear equation

L[u] = − d

dx
[p(x)u′(x)] + r(x)u(x) = 0

on infinite domain. We try to interpret the solutions of a differential equation

by comparing the coefficients with the solutions of the differential equations with

known zeros. The object of interest is the set of zeros of a solution u(x). For

the study of zeros of u(x) the Prüfer transformation is a particularly useful tool

since u(x) = 0 if and only if θ(x) = 0 ( mod π) [17].

3.1 Comparison Theorems

Let L be the differential operator defined on an open interval (a,∞) by

L[u] = − d

dx
[p(x)

du

dx
] + r(x)u(x) = 0 a < x < ∞ (3.1)

where p(x), r(x) are real valued functions on (a, +∞), p(x) ≥ 0, r(x) is continuous

and p(x) is continuously differentiable. We study the comparison theorem of

Sturm Liouville problem dealing with the second order self-adjoint equations:

L1[u] = − d

dx
[p1(x)

du

dx
] + r1(x)u(x) = 0 (3.2)

L2[v] = − d

dx
[p2(x)

dv

dx
] + r2(x)v(x) = 0 (3.3)

Theorem 3.1.1. If x1 and x2 are two consecutive zeros of a nontrivial solution

of u(x) of (3.2) and if

(i) p1(x) ≡ p2(x), for x ∈ [x1, x2],

(ii) r1(x) ≥ r2(x) and r1(x) 6≡ r2(x) for x ∈ [x1, x2],



then every solution v(x) of (3.3) has a zero in (x1, x2).

Proof. Let u(x) and v(x) be the solutions of (3.2) and (3.3) respectively. Since

x1 and x2 are consecutive zeros of a nontrivial solutions of L1[u] = 0, without

loss of generality we can assume that u(x) > 0 for all x ∈ (x1, x2). Suppose to

the contrary that v(x) 6= 0 for all x ∈ (x1, x2). Again without loss of generality

we can suppose that v(x) > 0 for all x ∈ (x1, x2).

Multiplying equation (3.2) by v , equation (3.3) by u and subtracting the resulting

equations and by using Lagrange Identity (2.4) we get

vL1[u] − uL2[v] = −[p1u
′]′v + r1uv + [p2v

′]′u − r2uv

= [p2v
′]′u − [p1u

′]′v + (r1 − r2)uv

= [p1(uv′ − vu′)]′ + (r1 − r2)uv.

Integrating the last equation from x1 to x2, we get
∫ x2

x1

{[vL1[u] − uL2[v]}dx =

∫ x2

x1

[p1(uv′ − vu′)]′dx +

∫ x2

x1

(r1 − r2)uvdx.

Since
∫ x2

x1

{[vL1[u] − uL2[v]}dx = 0,

then it follows that
∫ x2

x1

(r1 − r2)u(x)v(x)dx = −
∫ x2

x1

d

dx
[p1(uv′ − vu′)]dx.

This relation implies that
∫ x2

x1

(r1 − r2)u(x)v(x)dx = −p1(uv′ − vu′)
∣

∣

∣

x2

x1

= p1(x1){u(x1)v
′(x1) − v(x1)u

′(x1)} − p1(x2){u(x2)v
′(x2) − v(x2)u

′(x2)}

= p1(x2)v(x2)u
′(x2) − p1(x1)v(x1)u

′(x1).

Since x1 and x2 are consecutive zeros of u(x) and since u(x) > 0 for all x ∈ (x1, x2)

then u(x) is increasing at x1 and decreasing at x2. It implies that u′(x1) > 0 and

u′(x2) < 0. By hypothesis the left hand side of the equation is positive but the

right hand side is negative. This result leads a contradiction. So the assumption

is wrong. Then v(x) has a zero in [x1, x2]. Note that if we get the equality 0 = 0

then r1 = r2. So the equation (3.2) is identical to equation (3.3) on [x1, x2].

12



The condition p1(x) ≡ p2(x) is not essential. We can remove this restric-

tion and establish the following theorem. If the comparison conditions of the

following theorem is satisfied then (3.3) is called Sturm majorant for (3.2) and

(3.2) is called Sturm minorant for (3.3).

Theorem 3.1.2. If x1 and x2 are two consecutive zeros of a nontrivial solution

u(x) of (3.2), and if

(i) p1(x) ≥ p2(x) for x ∈ [x1, x2],

(ii) r1(x) ≥ r2(x) for x ∈ [x1, x2],

then every solution v(x) of (3.3) has a zero in [x1, x2].

Proof. Let u(x) and v(x) be the solutions of (3.2) and (3.3) respectively. Suppose

for the contrary that v(x) 6= 0 for all x ∈ [x1, x2].

L1[u] = 0 ⇒ d

dx
[p1(x)

du

dx
] = r1(x)u(x)

and

L2[v] = 0 ⇒ d

dx
[p2(x)

dv

dx
] = r2(x)v(x)

d

dx
[
u

v
(p1u

′v − p2uv′)] =
u′v − uv′

v2
(p1u

′v − p2uv′) +
u

v
(p1u

′v − p2uv′)′

=
p1(u

′)2v2

v2
− p1uu′vv′

v2
− p2uu′vv′

v2
+

p2(v
′)2u2

v2

. +
u

v

[

(p1u
′)′v + p1u

′v′ − (p2v
′)′u − p2u

′v′
]

= p1(u
′)2 − p2

uu′v′

v
+ p2

(v′)2u2

v2
+ r1u

2 − r2u
2 − p2

uu′v′

v

This is valid when u, v, p1u
′, p2v

′ are differentiable and v(x) 6= 0. If we subtract

and add the term p2(u
′)2 to the last equation,

d

dx

[u

v
(p1u

′v − p2uv′)
]

= (r1 − r2)u
2 + (p1 − p2)(u

′)2 + p2

[

(u′)2 − 2
uu′v′

v
+

(v′)2u2

v2

]

then we get

d

dx

[u

v
(p1u

′v − p2uv′)
]

= (r1 − r2)u
2 + (p1 − p2)(u

′)2 + p2

[

u′ − uv′

v

]2
. (3.4)

13



Integrating (3.4) over (x1, x2) we obtain

∫ x2

x1

d

dx

[u

v
(p1u

′v − p2uv′)
]

dx =

∫ x2

x1

{

(r1 − r2)u
2 + (p1 − p2)(u

′)2 + p2[u
′ − uv′

v
]2

}

dx.

Since u(x1) = u(x2) = 0 then

∫ x2

x1

d

dx

[u

v
(p1u

′v − p2uv′)
]

dx = 0. (3.5)

It follows from (3.5) that

−
∫ x2

x1

p2[u
′ − uv′

v
]2dx =

∫ x2

x1

(r1 − r2)u
2dx +

∫ x2

x1

(p1 − p2)(u
′)2dx. (3.6)

Here right hand side of (3.6) is bigger than or equal to 0. But the left hand

side is less than or equal to 0. This is a contradiction unless r1(x) ≡ r2(x)

and p1(x) ≡ p2(x), i.e. (3.2) and (3.3) are the same. So either u(x) ≡ v(x) or

u′(x)− u(x)v′(x)

v(x)
≡ 0. ⇒ u′(x)

u(x)
=

v′(x)

v(x)
, i.e. u(x) = cv(x) where c is a constant.

Then v(x1) = v(x2) = 0, therefore v(x) has at least one zero in [x1, x2].

For another proof obtained by using Prüfer substitution see [5, 17].

3.2 Oscillation Criterions

Now we can establish a number of oscillation and nonoscillation criteria

by using the above theorems.

Definition 3.2.1. A self adjoint differential equation

L[u] = − d

dx
[p(x)

du

dx
] + r(x)u(x) = 0 (3.7)

is said to be oscillatory at ∞ if every nontrivial solution has a zero in every

interval of the form [c, +∞) where c ≥ a.

It is nonoscillatory at ∞ if some nontrivial solution has a finite number of zeros

in an interval of the form [c, +∞).

It is said to be disconjugate on an interval (a, +∞) if no solution has more than

one zero in (a, +∞).
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Theorem 3.2.2. If there exist a point c ∈ (a,∞) such that
∫ ∞

c

1

p(x)
dx = ∞

and
∫ ∞

c

r(x)dx = −∞

then (3.1) is oscillatory at ∞.

Proof. Suppose to the contrary that (3.1) is not oscillatory at ∞. If u(x) > 0 on

[η,∞) (η > a) then h(x) defined in (2.16) is the solution of the Riccati equation

(2.17) on [η,∞). Since
∫ ∞

c

r(x)dx = −∞

i.e. ∀M > 0 ∃γ (γ > c) such that α > γ we have
∫ α

c

r(x)dx < −M.

So we can find η and α such that c < η < α < ∞ and
∫ x

η

r(t)dt < h(η) (3.8)

whenever x ∈ [α,∞]. Integrating the equation (2.17) over [η, x] yields
∫ x

η

h′(t)dt = −
∫ x

η

r(t)dt +

∫ x

η

1

p(t)
h2(t)dt.

h(x) − h(η) +

∫ x

η

r(t)dt = g(x) (3.9)

where

g(x) =

∫ x

η

1

p(t)
h2(t)dt. (3.10)

If we choose M = |h(η)| , it follows from (3.8) and (3.9) that;

h(x) − g(x) > 0

on [η,∞). From (3.10) we get

g′(x) =
1

p(x)
h2(x) >

1

p(x)
g2(x).
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It follows that;
1

p(x)
<

g′(x)

g2(x)
(3.11)

on [η,∞). Integrating (3.11) on (η,∞) we obtain

∫ ∞

η

1

p(x)
dx <

∫ ∞

η

g′(x)

g2(x)
dx = − 1

g(x)

∣

∣

∞

η
=

1

g(η)
− 1

g(∞)
<

1

g(η)
< ∞.

So from (3.11) we get

∫ ∞

c

1

p(x)
dx < ∞.

This contradicts with the assumption. Then u(x) is oscillatory at ∞.

Theorem 3.2.3. If there exist a point c ∈ (a,∞) such that

∫ ∞

c

1

p(x)
dx < ∞

and
∫ ∞

c

| r(x) | dx < ∞

then (3.1) is nonoscillatory at ∞.

Proof. Let (3.1) is oscillatory at ∞. Then every nontrivial solution of (3.1)

has a zero in the interval of the form [c,∞) where c ≥ a. For simplicity let

r(x) = −s(x). Then
d

dx
[p(x)u′(x)] + s(x)u(x) = 0 (3.12)

If we apply Prüfer substitution (2.10) to (3.12), then we get the following system

of the first order equations:

dθ

dx
= s(x) sin2 θ(x) +

1

p(x)
cos2 θ(x); (3.13)

dρ

dx
=

[ 1

p(x)
− s(x)

]

ρ(x) sin θ(x) cos θ(x). (3.14)

With known θ(x), ρ(x) is given by

dρ

dx
=

1

2

[ 1

p(x)
− s(x)

]

ρ(x) sin 2θ(x)

dρ

ρ
=

1

2

[ 1

p(x)
− s(x)

]

sin 2θ(x)dx

16



ρ(x) = K exp{1

2

∫ x

a

[ 1

p(t)
− s(t)

]

sin 2θ(t)dt} (3.15)

where K = s(a). It is obvious that for any nontrivial solution of (3.1)

u(x) = 0 ⇔ sin θ(x) = 0 ⇔ θ(x) = kπ (k ∈ Z).

Hence (3.1) is oscillatory at ∞ if and only if lim
x→∞

θ(x) = ∞. Notice that θ′(x) > 0

at all zeros of u(x) since at these points p(x) > 0 and sin θ(x) = 0. Therefore

(3.1) is oscillatory at ∞ if and only if lim
x→∞

= ∞. However

∣

∣

∣

∫ ∞

c

(
dθ

dx
)dx

∣

∣

∣
=

∣

∣

∣

∫ ∞

c

[

s(x) sin2 θ(x) +
1

p(x)
cos2 θ(x)

]

dx
∣

∣

∣

≤
∣

∣

∣

∫ ∞

c

s(x) sin2 θ(x)dx
∣

∣

∣ +
∣

∣

∣

∫ ∞

c

1

p(x)
cos2 θ(x)dx

≤
∫ ∞

c

∣

∣

∣s(x) sin2 θ(x)
∣

∣

∣dx +

∫ ∞

c

∣

∣

∣

1

p(x)
cos2 θ(x)

∣

∣

∣dx

≤
∫ ∞

c

1

p(x)
dx +

∫ ∞

c

|s(x)|dx

=

∫ ∞

c

1

p(x)
dx +

∫ ∞

c

|r(x)|dx.

Then

θ(x)
∣

∣

∣

∞

c
≤

∫ ∞

c

1

p(x)
dx +

∫ ∞

c

|r(x)|dx ≤ ∞

i.e. all the solutions of (3.13) are bounded on [c,∞). Therefore the phase of (3.1)

attains finite number of nπ on [c,∞), that is, sin θ has finite number of zeros on

[c,∞). Thus (3.1) is not oscillatory at ∞.
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Chapter 4

COMPARISON AND OSCILLATION CRITERIONS OF

NONSELF ADJOINT EQUATIONS

4.1 Oscillation Theorems of Second Order Nonself-Adjoint Equations

In this chapter we used some kind of transformations to establish the crite-

ria of oscillation for nonself-adjoint equations. Consider the following differential

equations:

− d

dx

[

p1(x)
du

dx

]

+ q1(x)
du

dx
+ r1(x)u = 0 (4.1)

− d

dx

[

p2(x)
dv

dx

]

+ q2(x)
dv

dx
+ r2(x)u = 0 (4.2)

where q1, q2, r1, r2 are continuous on (a,∞), p1, p2 are continuously differentiable

and p1, p2 > 0 on (a,∞).

The generalization of Theorem 3.1.2 to (4.1) and (4.2) can be stated as

follows:

Theorem 4.1.1. If x1 and x2 are two consecutive zeros of a nontrivial solution

u(x) of (4.1), and if

(i) p1(x) ≥ p2(x) > 0

(ii) p1(x) > p2(x) > 0 whenever q1(x) 6= q1(x)

(iii) r2(x) +
(q1(x) − q2(x))2

4(p1(x) − p2(x))
+

q2(x)2

4p2(x)
≤ r1(x)

for x ∈ [x1, x2] then every solution v(x) of (4.2) has a zero in [x1, x2]

Proof. Suppose to the contrary that v(x) 6= 0 for all x ∈ [x1, x2].

d

dx

[u

v
(p1u

′v − p2v
′u)

]

=
u′v − uv′

v2
(p1u

′v − p2v
′u) +

u

v
(p1u

′v − p2v
′u)′

=
u′v − uv′

v2
(p1u

′v − p2v
′u) +

u

v
[(p1u

′)′v + p1u
′v′ − (p2v

′)′u − p2u
′v′]

=
u′v − uv′

v2
(p1u

′v − p2v
′u) +

u

v
[(q1u

′ + r1u)v − (q2v
′ + r2v)u + (p1 − p2)u

′v′]



= p1(u
′)2 − p2

uu′v′

v
+ p2

u2(v′)2

v
+ q1uu′ + r1u

2 − q2
u2v′

v
− r2u

2 − p2
uu′v′

v

= p1(u
′)2 − 2p2

uu′v′

v
+ p2

u2(v′)2

v
+ (r1 − r2)u

2 + q1uu′ − q2
u2v′

v

= (p1 − p2)(u
′)2 + p2

[

u′ − uv′

v

]2
+ (r1 − r2)u

2 + (q1 − q2)uu′ + q2(uu′ − u2v′

v
)

= (r1 − r2)u
2 + (p1 − p2)(u

′)2 + (q1 − q2)uu′ + p2

[

u′ − uv′

v

]2

. +q2u
[

u′ − u2v′

v

]

− q2
2

4p2

u2 +
q2
2

4p2

u2

=
[

(r1 − r2)u
2 − q2

2

4p2

u2 − (q1 − q2)
2

4(p1 − p2)
u2

]

+
(q1 − q2)

2

4(p1 − p2)
u2 + (p1 − p2)(u

′)2

. +(q1 − q2)uu′ + p2

[

u′ − uv′

v

]2
+ q2u

[

u′ − uv′

v

]

+
q2
2

4p2

u2

= (r1 − r2 −
q2
2

4p2

− (q1 − q2)
2

4(p1 − p2)
)u2 + (p1 − p2)

[

u′ +
q1 − q2

2(p1 − p2)
u
]2

. +p2

[

(u′ − uv′

v
) +

q2

2p2

u
]2

where we used (4.1) and (4.2). Hence we find

d

dx

[u

v
(p1u

′v − p2v
′u)

]

≥ 0

which implies
u

v
[p1u

′v − p2v
′u] is a nondecreasing function.

u

v
[p1u

′v − p2v
′u](x1) =

u

v
[p1u

′v − p2v
′u](x2) = 0

implies that

u

v
[p1u

′v − p2v
′u] ≡ 0, ∀x ∈ [x1, x2].

Since x1, x2 are consecutive zeros of (4.1) and v(x) 6= 0 for all x ∈ [x1, x2] then

p1u
′v − p2v

′u ≡ 0, ∀x ∈ [x1, x2].

At x = x1, u(x1) = 0, p(x1) > 0 and u′(x1) > 0. Then v(x1) = 0.

Similarly at x = x2, u(x2) = 0, p(x2) > 0 and u′(x2) < 0. Then v(x2) = 0. This

is a contradiction. Therefore, v(x) has a zero on [x1, x2].

Theorem 4.1.2. If there exist a point b ∈ (a,∞) such that
∫ ∞

b

1

p1(x)
dx = ∞ and lim

s→∞
{−q1(s)

2
+

∫ s

b

[r1(x) +
q2
1(x)

4p1(x)
]dx} = −∞

then (4.1) is oscillatory at ∞.
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Proof. Assume that (4.1) is not oscillatory at ∞. Then there exist a nontrivial

solution u(x) such that

u(x) 6= 0; ∀x ∈ [η,∞)

Without loss of generality we may assume that u(x) > 0. Applying Riccati

substitution in (2.16), and using (4.1) we obtain

h′(x) =
−[p1(x)u′(x)]′u(x) + p1(x)[u′(x)]2

u2(x)

=
[−q1(x)u′(x) − r1(x)u(x)]u(x) + p1(x)[u′(x)]2

u2(x)

= −r1(x) − q1(x)
u′(x)

u(x)
+ p1(x)

[u′(x)]2

u2(x)

= −r1(x) +
q1(x)

p1(x)
h(x) +

1

p1(x)
h2(x).

Then

h′(x) + r1(x) − q1(x)

p1(x)
h(x) − 1

p1(x)
h2(x) = 0 (4.3)

is the Riccati equation of (4.1). By adding and subtracting the term
q2
1(x)

4p1(x)
on

the right hand side of (4.3) we find

h′(x) = −r1(x) +
1

p1(x)

[(

h(x) +
q1(x)

2

)2 − q2
1(x)

4

]

. (4.4)

Let

H(x) = h(x) +
q1(x)

2

Therefore by using (4.4) we find

H ′(x) = h′(x) +
q′1(x)

2
= −r1(x) +

1

p1(x)

[

H2(x) − q2
1(x)

4

]

+
q′1(x)

2
. (4.5)

Integrating (4.5) over [η, s] we obtain
∫ s

η

H ′(x) dx =

∫ s

η

[

− r1(x) − q2
1(x)

4p1(x)

]

dx +

∫ s

η

1

p1(x)
H2(x) dx +

∫ s

η

q′1(x)

2
dx

H(s) − H(η) =

∫ s

η

[

− r1(x) − q2
1(x)

4p1(x)

]

dx + K(s) +
q1(s)

2
− q1(η)

2

where

K(x) =

∫ x

η

1

p1(t)
H2(t) dt. (4.6)
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Then

H(s) − K(s) = H(η) − q1(η)

2
−

[

− q1(s)

2
+

∫ s

η

(

− r1(x) − q2
1(x)

4p1(x)

)

dx
]

= h(η) −
[

− q1(s)

2
+

∫ s

η

(

− r1(x) − q2
1(x)

4p1(x)

)

dx
]

By hypothesis there exists N > 0 such that

s > N ⇒ −q1(s)

2
+

∫ s

η

(

− r1(x) − q2
1(x)

4p1(x)

)

dx < −M

for given M > 0. Hence H(s) − K(s) > h(η) + M . If we chose M = |h(η)| then

H(s) − K(s) > 0, i.e. H(s) > K(s). From (4.6)

K ′(x) =
1

p1(x)
H2(x) >

1

p1(x)
K2(x)

or

1

p1(x)
<

K ′(x)

K2(x)

on [η, ∞) since K(x) > 0 on [η, ∞). Integrating the last inequality over [b,∞)

and using the hypothesis we get

∞ =

∫ ∞

b

1

p1(x)
dx <

∫ ∞

b

K ′(x)

K2(x)
dx =

1

K(b)
− lim

s→∞

1

K(s)
<

1

K(b)
< ∞.

This result leads a contradiction. So the assumption is wrong. Then (4.1) is

oscillatory at ∞.

4.2 Oscillation Theorems For Systems of First Order Equations

Theorem 4.2.1. Let u, w, v and z are nontrivial solutions of the following first

order systems:

u′(x) = a1(x)u(x) + b1(x)w(x) (4.7a)

w′(x) = c1(x)u(x) + d1(x)w(x) (4.7b)

v′(x) = a2(x)v(x) + b2(x)z(x) (4.8a)

z′(x) = c2(x)v(x) + d2(x)z(x) (4.8b)

where ai, ci, di are continuous functions for i = 1, 2 and bi > 0 on (a,∞) where

a ∈ R. If x1 and x2 are two consecutive zeros of u(x) and;
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(i) b2(x) ≥ b1(x) > 0

(ii) c1(x) ≥ c2(x)

(iii) [b2(x) − b1(x)] · [c1(x) − c2(x)] ≥ 1

4
· [a2(x) + d1(x) − a1(x) − d2(x)]2

for x ∈ [x1, x2] then v(x) has a zero in [x1, x2].

Proof. By using Prüfer substitution (2.9) or (2.10) for the systems (4.7) and (4.8)

we get following systems:

u(x) = ρ1(x) sin θ1(x) (4.9a)

w(x) = ρ1(x) cos θ1(x) (4.9b)

and

v(x) = ρ2(x) sin θ2(x) (4.10a)

z(x) = ρ2(x) cos θ2(x) (4.10b)

Then further by (4.9) and (4.10)

θ1(x) = arctan
u

w
, θ2(x) = arctan

v

z
.

θ′1(x) =
u′(x)w(x) − u(x)w′(x)

ρ2
1

By using the original system (4.7) and Prüfer substitution (4.9)

θ′1(x) = ρ−2
1 (x){(a1(x)u(x) + b1(x)w(x))w(x) − (c1(x)u(x) + d1(x)w(x))u(x)}

= ρ−2
1 {(a1ρ1 sin θ1 + b1ρ1 cos θ1)ρ1 cos θ1 − (c1ρ1 sin θ1 + d1ρ1 cos θ1)ρ1 sin θ1}

= a1 sin θ1 cos θ1 + b1 cos2 θ1 − c1 sin2 θ1 − d1 sin θ1 cos θ1.

And similarly by using the system (4.8) and Prüfer substitution (4.9) we get the

following differential equations for the phases of the systems:

θ′1(x) = b1 cos2 θ1 + (a1 − d1) sin θ1 cos θ1 − c1 sin2 θ1 = f1(x, θ1) (4.11)

and similarly we get

θ′2(x) = b2 cos2 θ2 + (a2 − d2) sin θ2 cos θ2 − c2 sin2 θ2 = f2(x, θ2) (4.12)
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From (4.11) and (4.12) it follows that

f2(x, θ2(x)) − f1(x, θ1(x)) =
(

cos θ sin θ

)

A





cos θ

sin θ



 (4.13)

where

A =





b2 − b1
1
2
[(a2 − d2) − (a1 − d1)]

[(a2 − d2) − (a1 − d1)] c2 − c1





A is symmetric matrix and by assumptions all aij > 0. The eigenvalues of A

. λ1,2 =
1

2
{(b2 − b1) + (c2 − c1)

. ±
√

[(b2 − b1) + (c2 − c1)]2 − 4[(b2 − b1) + (c2 − c1) −
1

4
(a2 + d1 − a1 − d2)2] }

are nonnegative if b2 ≥ b1, c1 ≥ c2 and (b2 − b1)(c1 − c2) ≥
1

4
(a2 + d1 − a1 − d2)

2

[8]. Hence f2(x, θ2(x)) > f1(x, θ1(x)) holds for all x ∈ [x1, x2]. By Sturm Com-

parison theorem θ2(x) > θ1(x).

We used Mathematica to compute the eigenvalues of A in the proof the

theorem above.

Theorem 4.2.2. If there exists a point c ∈ (a,∞) such that

∫ ∞

c

b(x)dx = ∞

and

lim
s→∞

{d1(s) − a1(s)

2b2(s)
+

∫ s

c

[

c1(x) +
(d1(x) − a1(x))2

4b1(x)

]

dx} = −∞

then (4.7) is oscillatory at ∞.

23



Chapter 5

SELF ADJOINT DYNAMIC EQUATIONS ON TIME

SCALES

In this chapter we are concerned with second order self-adjoint dynamic

equations on time scales

L[y(t)] = [py]∆(t) + q(t)yσ(t) = 0. (5.1)

5.1 Time Scale Calculus

By a time scale (measure chain) T, we mean an arbitrary nonempty closed

subset of real numbers. The set of the real numbers, the integers, the natural

numbers, and the Cantor set are examples of time scales. But the rational num-

bers, the irrational numbers,the complex numbers, and the open interval between

0 and 1, are not time scales.

The calculus of time scales was introduced by Stefan Hilger [18] in order

to create the theory that can unify the discrete and continuous analysis. After

discovery of time scales in 1988 almost every result obtained in the theory of

differential and difference equations are carried into time scales.

Indeed the delta derivative f∆ for a function f on T is

1. f∆ = f ′ if T = R

2. f∆ = ∆f if T = Z.

5.1.1 Forward and Backward Jump Operators

In order to define ∆ derivative (∇ derivative) we need to define forward

jump operator σ, (backward jump operator ρ), graininess function µ, and the the

region of differentiability T
k (Tk) which is derived from T.



Definition 5.1.1. Let T be a time scale. The forward jump operator

σ : T → T is defined by

σ(t) = inf{s ∈ T : s > t} , ∀t ∈ T

and the backward jump operator ρ : T → T is defined by

ρ(t) = sup{s ∈ T : s < t} , ∀t ∈ T.

Also σ(max(T)) = max(T) and ρ(min(T)) = min(T). t is called right dense if

σ(t) = t, left dense if ρ(t) = t and right scattered if σ(t) > t, left scattered if

ρ(t) < t. t is called dense point if t is both left and right dense, and t is isolated

if it is both left and right scattered. The graininess function µ : T → [0,∞) is

defined by µ(t) = σ(t) − t.

If T = R, then we have for any t ∈ R

σ(t) = inf{s ∈ R : s > t} = inf(t,∞) = t

and similarly ρ(t) = t. Hence every point t ∈ R is dense.The graininess function

µ turns out to be µ(t) ≡ 0 for all t ∈ R.

If T = Z, then we have for any t ∈ Z

σ(t) = inf{s ∈ Z : s > t} = inf{t + 1, t + 2, · · · } = t + 1

and similarly ρ(t) = t − 1. Hence every point t ∈ Z is isolated.The graininess

function µ turns out to be µ(t) ≡ 1 for all t ∈ Z.

Throughout this section and Chapter 5 we make the blanket [a, b] that a

and b are the points in T. We define the interval [a, b] in T by

[a, b] = {t ∈ T : a ≤ t ≤ b}.

The following theorem unifies the induction principle of Z and the com-

pleteness axiom of real numbers and is used to prove the mean value, and exis-

tence and uniqueness theorems on time scales.

Theorem 5.1.2. (Induction Principle on Time Scale) Let t0 ∈ T and assume

that

{A(t) : t ∈ [t0,∞)}

is a family of statements satisfying:
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(i) The statement A(t0) is true,

(ii) If t ∈ [t0,∞) is right scattered and A(t) is true, then A(σ(t)) is true,

(iii) If t ∈ [t0,∞) is right dense and A(t) is true, then there is a neighborhood

U of t such that A(s) is true for all s ∈ U
⋂

(t,∞),

(iv) If t ∈ (t0,∞) is right dense and A(s) is true for all s ∈ [t0, t), then A(t) is

true.

Then A(t) is true for all t ∈ [t0,∞).

Throughout this thesis we only deal with ∆ dynamic equations. So we

only define ∆ derivative and ∆ integration. The ∇ calculus can be obtained by

replacing the operator ρ instead of σ.

5.1.2 Derivative on Time Scales

In order to define the derivative on time scale we also need the following

set T
k ( region of differentiability ) which is derived from the time scale T as

follows:

T
k =







T − {max T}, if max(T) < ∞ and max T is right scattered;

T , otherwise.

Definition 5.1.3. Let f : T → R and t ∈ T
k. If there exists a neighborhood Ut

such that

|f(σ(t)) − f(s) − a[σ(t) − s]| ≤ ǫ|σ(t) − s| (5.2)

is satisfied for all t, a ∈ R and s ∈ Ut. Then f is ∆-differentiable at the point t

and a is called ∆-derivative of f at the point t.

a = f∆(t) =















lim
s→t

f(σ(t)) − f(s)

σ(t) − s
, if µ(t) = 0;

f(σ(t)) − f(t)

µ(t)
, if µ(t) > 0.

∆-derivative is defined on T
k = T−{max T} , not on the whole time scale.

If t = max T then a neighborhood Ut of t contains only t. So the inequality (5.2)
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can be written only for s = t,

|f(σ(t)) − f(t) − a[σ(t) − t]| ≤ ǫ|σ(t) − t|

|f(t) − f(t) − a[t − t]| ≤ ǫ|t − t|

0 ≤ 0

Thus the definition of ∆-derivative is satisfied for every value of a. Then a can

not be determined uniquely.

Theorem 5.1.4. Assume that f, g : T → R are differentiable at t ∈ T
k. Then

for α, β ∈ R

(i) The linear sum αf + βg : T → R is differentiable at t with

(αf + βg)∆(t) = αf∆(t) + βg∆(t)

(ii) The product (fg) : T → R is differentiable at t with

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)).

(iii) If g(t)g(σ(t)) 6= 0 then
f

g
is differentiable at t with

(
f

g
)∆(t) =

f∆(t)g(t) − f(t)g∆(t)

g(t)g(σ(t))
.

Example 5.1.5. We consider the function f(t) = t2 on an arbitrary time scale.

Let T be an arbitrary time scale and t ∈ T
k. The ∆ derivative of f is

given by

f∆(t) = lim
s→t

f(σ(t)) − f(s)

σ(t) − s
= lim

s→t

(σ(t))2 − s2

σ(t) − s
= lim

s→t
σ(t) + s = σ(t) + t.

1. If T = R then σ(t) = t. Therefore f∆(t) = f ′(t) = 2t

2. If T = Z then σ(t) = t + 1. Therefore f∆(t) = ∆f(t) = 2t + 1.

3. If T = N
1
2
0 = {√n : n ∈ N0} then σ(t) =

√
t2 + 1. Therefore

f∆(t) = t +
√

t2 + 1.

For computational results for ∆-derivative for given time scales see [25,

26].
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5.1.3 Integration on Time Scales

We refer to [1, 7, 16, 18] for the time scale integration. Guseinov gives the

most detailed theory of Riemann integral, Lebesque measure and integral and a

criterion for Riemann integrability [16].

Definition 5.1.6. A function f : T → R is called regulated if it has finite

right-sided limits at all right dense points in T and it has finite left-sided limits

at all left dense points in T. A function f : T → R is called rd-continuous if it

is continuous at all right-dense points in T and its left-sided limits exist (finite)

at all left-dense points in T. The set of rd-continuous functions in T is denoted

by Crd.

Theorem 5.1.7. (Existence of Antiderivatives) Every rd-continuous function

has an antiderivative. In particular if t0 ∈ T, then F defined by

F (t) :=

∫ t

t0

f(τ)∆τ for t ∈ T

is an antiderivative of f .

Proof. [7, 18].

Theorem 5.1.8. If a, b ∈ T and f, g ∈ Crd, then

∫ b

a

f(σ(t))g∆(t)∆t = (fg)(b) − (fg)(a) −
∫ b

a

f∆(t)g(t)∆t

and
∫ b

a

f(t)g∆(t)∆t = (fg)(b) − (fg)(a) −
∫ b

a

f∆(t)g(σ(t))∆t

Proof. Trivial from Theorem 5.1.4.

The formulas above are known as integration by parts formulas.

Theorem 5.1.9. If f ∈ Crd and t ∈ T
k, then

∫ σ(t)

t

f(τ)∆τ = µ(t)f(t).

Proof. [7].
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Theorem 5.1.10. Let a, b ∈ T and f ∈ Crd. If [a, b] consists of only isolated

points, then

∫ b

a

f(t)∆t =















∑

t∈[a,b) µ(t)f(t) , a < b ;

0 , a = b;

−∑

t∈[b,a) µ(t)f(t) , a > b.

Proof. Assume that a < b and let [a, b] = {t0, t1, t2, ..., tn} where

a = t0 < t1 < t2 < ... < tn = b.

∫ b

a

f(t)∆t =

∫ t1

t0

f(t)∆t +

∫ t2

t1

f(t)∆t + ... +

∫ tn

tn−1

f(t)∆t

=
n−1
∑

i=0

∫ ti+1

ti

f(t)∆t

=
n−1
∑

i=0

∫ σ(ti)

ti

f(t)∆t

=
n−1
∑

i=0

(σ(ti) − ti)f(ti)

=
∑

t∈[a,b)

(σ(t) − t)f(t)

If a > b, by using the fact

∫ b

a

f(t)∆t = −
∫ a

b

f(t)∆t

we obtain
∫ b

a

f(t)∆t = −
∑

t∈[b,a)

(σ(t) − t)f(t)

which is the desired result.

Example 5.1.11. For T = Z consider the indefinite integral

∫

at∆t

where a 6= 0 is a constant.

Since

(
at

a − 1
)∆ = ∆(

at

a − 1
) =

at+1 − at

a − 1
= at,
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we get that
∫

at∆t =
at

a − 1
+ C

where C is an arbitrary constant.

For the computational results for definite integral see [24, 26].

Theorem 5.1.12. Let a ∈ T
k an b ∈ T and assume f : T×T

k → R is continuous

at (t, t), where t ∈ T
k with t > a. Also assume that f∆(t, ·) is rd-continuous

on [a, σ(t)]. Suppose that for each ǫ > 0 there exist a neighborhood U of t,

independent of τ ∈ [a, σ(t)], such that

|f(σ(t), τ) − f(s, τ) − f∆(t, τ)(σ(t) − s)| ≤ ǫ|σ(t) − s| forall s ∈ U

where f∆ denotes the derivative of f with respect to the first variable. Then

(i) g(t) =

∫ t

a

f(t, τ)∆τ implies g∆(t) =

∫ t

a

f∆(t, τ)∆τ + f(σ(t), t)

(ii) h(t) =

∫ t

t

f(t, τ)∆τ implies h∆(t) =

∫ b

t

f∆(t, τ)∆τ − f(σ(t), t).

Proof. [1, 7]

5.2 The Exponential Function

In this section we use the cylindrical transformation to define a gener-

alized exponential function for an arbitrary time scale T. First we make some

preliminary definitions.

Definition 5.2.1. For h > 0 Hilger’s complex numbers is defined as

Ch = {z ∈ C : z 6= −1

h
}.

For h = 0, C0 = C.

Definition 5.2.2. For h > 0 the cylinder transformation ξh : Ch → Zh is defined

by

ξh(z) =
1

h
Log(1 + hz)

30



where Log is the principle logarithm function and

Zh = {z ∈ C : −π

h
≤ Im(z) ≤ π

h
}

and Z0 = C. For h = 0, ξ0(z) = z for all z ∈ C.

Definition 5.2.3. A function p : T → R is said to be regressive provided that

1 + µ(t)p(t) 6= 0

for all t ∈ T
k. The set of all regressive and rd-continuous functions is denoted by

R. If p ∈ R then the generalized exponential function is defined by

ep(s, t) = exp(

∫ t

s

ξµ(t)(p(τ))∆τ)

for s, t ∈ T. If p ∈ R then the first order linear dynamic equation

y∆(t) = p(t)y(t)

is called regressive.

Theorem 5.2.4. Suppose that y∆(t) = p(t)y(t) is regressive and fix t0 ∈ T
k.

Then ep(·, t0) is the solution of the initial value problem

y∆(t) = p(t)y(t), y(t0) = 1

on T.

Proof. [7].

Now we give some important properties of exponential function.

Theorem 5.2.5. If p ∈ R then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = [1 + µ(t)p(t)]ep(t, s);

(iii) ep(t, s) = 1
ep(s,t)

;

(iv) ep(t, s)eq(s, r) = ep(t, r).
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Proof. The proof of these properties are included in [1, 7, 18]. We only show the

proof of (ii) which we will use in Theorem 5.4.1.

(ii) By the definition of ∆ derivative we have

ep(σ(t), s) = eσ
p(t, s)

= ep(t, s) + µ(t)e∆
p (t, s)

= ep(t, s) + µ(t)p(t)ep(t, s)

= [1 + µ(t)p(t)]ep(t, s),

where we used Theorem 5.2.4.

5.3 Existence and Uniqueness Theorem

Throughout we assume that p, q ∈ Crd and p(t) 6= 0 for all t ∈ T. Define

the set D to be the set of all functions y : T
k2 → R such that y∆ : T

k → R is

continuous and such that (p y∆)∆ : T
k2 → R is rd-continuous. A function y ∈ D

is then said to be solution of (5.1) provided L[y] = 0 holds for all t ∈ T
k2

.

Theorem 5.3.1. If t0 ∈ T, and y0, y∆
0 are given constants then the initial value

problem

L[y(t)] = [py∆]∆(t) + q(t)yσ(t) = 0. (5.3)

y(t0) = y0, y∆(t0) = y∆
0 (5.4)

has a unique solution that exists on whole time scale T.

Proof. We will use induction principle on time scale (Theorem 5.1.2) to prove

the theorem.

Let the statement A(r) be "The initial value problem (5.3) − (5.4) has a unique

solution in [t0, r] = {t ∈ T : t = 0 ≤ t ≤ r}."
In other words, let the statement A(r) be "The initial value problem

[p(t)y∆(t)]∆ + q(t)yσ(t) = 0, t ∈ [t0, r] (5.5)

y(t0) = c0, y∆(t0) = c1
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has a unique solution yr(t)."

Note that since the operator in (5.5) has a degree of two, then the solution yr(t)

is defined on [t0, σ
2(r)].

I) We will first show that A(t0) is true, i.e.

[p(t)y∆(t)]∆ + q(t)yσ(t) = 0, t ∈ {t0} (5.6)

y(t0) = c0, y∆(t0) = c1 (5.7)

has a unique solution.

Case 1) Let t0 be right dense. So y∆(t) = y′(t). In this case, since t0 has no

neighborhood, we can not calculate y∆(t). So the statement is meaningless. Thus

there is nothing to prove.

Case 2) Let t0 be right scattered.

i) If σ(t0) is right dense, then [t0, σ
2(t0)] = [t0, σ(t0)] = {t0, σ(t0)}. In this set we

cannot calculate y∆∆(t0). So the statement is meaningless. Thus there is nothing

to prove.

ii) If σ(t0) is right scattered, then it follows from (5.6) that

[p(t0)y
∆(t0)]

∆ + q(t0)y
σ(t0) = 0

and from (5.7) that

y(t0) = c0, y∆(t0) =
y(σ(t0)) − y(t0)

σ(t0) − t0
.

Here y(t) = [t0, σ
2(t0)] → R. Since t0 and σ(t0) are right scattered then the

interval [t0, σ
2(t0)] turns out to the set {t0, σ(t0), σ

2(t0)}. Since {t0, σ(t0), σ
2(t0)}

is a discrete set then the problem becomes

"Does y(t) attain a value at all the elements of {t0, σ(t0), σ
2(t0)}? "

Note that y(t) can not take two values at any point of {t0, σ(t0), σ
2(t0)}.

If we prove that y(t) takes values at {t0, σ(t0), σ
2(t0)} then we will obtain both
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existence and uniqueness. From (5.6) and (5.7) we can obtain the followings:

y(t0) = c0,

y∆(t0) =
y(σ(t0)) − y(t0)

σ(t0) − t0
= c1

y(σ(t0)) = y(t0) + c1(σ(t0) − t0),

p(σ(t0))y
∆(σ(t0)) − p(t0)y

∆(t0)

σ(t0) − t0
+ q(t0)y

σ(t0) = 0

p(σ(t0)
y(σ2(t0)) − y(σ(t0))

σ2(t0) − σ(t0)
− p(t0)y

∆(t0)

σ(t0) − t0
+ q(t0)y

σ(t0) = 0.

Here all of the terms is known. Hence y(σ2(t0)) can be determined uniquely.

II) Let r > t0 be right scattered and A(r) be true, i.e. there exist a unique

solution yr(t) : [t0, σ
2(r)] :→ R of the initial value problem

[p(t)y∆(t)]∆ + q(t)yσ(t) = 0, t ∈ [t0, r]

y(t0) = c0, y∆(t0) = c1

We must show that there exist a unique function yσ(r)(t) : [t0, σ
3(r)] → R such

that following equalities

. [p(t)y∆
σ(r)(t)]

∆ + q(t)yσ
σ(r)(t) = 0

. yσ(r)(t0) = c0, y∆
σ(r)(t0) = c1

are satisfied for all t ∈ [t0, σ
3(r)]. Since A(r) is true; we have unique solution

yr(t) for [t0, σ
2(r)]. Since [t0, σ

2(r)] ⊂ [t0, σ
3(r)] then

yr(t) = yσ(r)(t) ∀t ∈ [t0, σ
2(r)] (5.8)

To complete the proof of the statement we must show that there exist a unique

solution at σ3(r).

For an arbitrary function the equalities

f(t) = f(σ(t)) + (t − σ(t))f∆(t) (5.9)

f(σ2(t)) = f(σ(t)) + (σ2(t) − σ(t))f∆(σ(t)) (5.10)
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are satisfied. (5.9) comes from Definition 5.1.3 and (5.10) is obtained by setting

t = σ(t) in (5.9). Lets take f(t) = p(t)y∆
σ(r)(t) in (5.9).

p(t)y∆
σ(r)(t) = p(σ(t))y∆

σ(r)(σ(t)) + (t − σ(t))[p(t)y∆
σ(r)(t)]

∆

= p(σ(t))y∆
σ(r)(σ(t)) + (σ(t) − t)q(t)yσ(r)(σ(t))

So we get

y∆
σ(r)(t) =

p(σ(t))

p(t)
y∆

σ(r)(σ(t)) +
q(t)

p(t)
(σ(t) − t)yσ(r)(σ(t)) (5.11)

Lets take f(t) = yσ(r)(t) in (5.10). Then we get

yσ(r)(σ
2(t)) = yσ(r)(σ(t)) + (σ2(t) − σ(t))y∆

σ(r)(σ(t)) (5.12)

By using (5.11) for y∆
σ(r)(σ(t)) in (5.12) we obtain

yσ(r)(σ
2(t)) = yσ(r)(σ(t)) + (σ2(t) − σ(t))

.
{p(σ(t))

p(t)
y∆

σ(r)(σ(t)) +
q(t)

p(t)
(σ(t) − t)yσ(r)(σ(t))

}

(5.13)

Plugging t = σ(r) in (5.13) and using (5.11) we get

yσ(r)(σ
3(r)) = yr(σ

2(r)) + (σ3(r) − σ2(r))

.
{p(σ2(r))

p(σ(r))
y∆

r (σ2(r)) +
q(σ(r))

p(σ(r))
(σ2(r) − σ(r))yr(σ

2(r))
}

We accomplished that yr(σ
3(r)) is determined uniquely. So by using (5.8) and

uniqueness of yr(σ
3(r)) we obtain that A(σ(r)) is true.

III) Let r0 ≥ t0, r0 be right dense and A(r0) be true; i.e. there exist a unique

function yr0 : [t0, σ
2(r0)] → R such that the following equalities

. [p(t)y∆
r0

(t)]∆ + q(t)yσ
r0

(t) = 0, t ∈ [t0, r0]

. yr0(t0) = c0, y∆
r0

(t0) = c1

are satisfied. We must show that there exist r1 in right neighborhood of r0

such that A(r) is true for all r ∈ [r0, r1]; i.e. there exist a unique function

yr : [t0, σ
2(r)] → R such that following equalities

. [p(t)y∆
r (t)]∆ + q(t)yσ

r (t) = 0, ∀t ∈ [t0, r] (5.14)

. yr(t0) = c0, y∆
r (t0) = c1
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are satisfied. Since r0 is right dense then

r0 = σ(r0) = σ2(r0). (5.15)

From the truth of A(r0) and (5.15), we get

yr(t) = yr0(t), ∀t ∈ [t0, r0]. (5.16)

To complete the proof of the statement we must determine yr(t) for the interval

r0 < t ≤ σ2(r). Let t ∈ (r0, r]. Integrating the equation (5.14) from r0 to t we

get
∫ t

r0

[p(s)y∆
r (s)]∆∆s = −

∫ t

r0

q(s)yσ
r (s)∆s

p(t)y∆
r (t) − p(r0)y

∆
r (r0) = −

∫ t

r0

q(s)yσ
r (s)∆s

By using equation (5.16); we obtain

y∆
r (t) =

1

p(t)
p(r0)y

∆
r0

(r0) −
1

p(t)

∫ t

r0

q(s)yσ
r (s)∆s. (5.17)

By integrating the equation (5.17) from r0 to t and using the equation (5.16) we

get

yr(t) = yr0(r0) + p(r0)y
∆
r0

(r0)

∫ t

r0

∆τ

p(τ)
−

∫ t

r0

1

p(τ)

{

∫ τ

r0

q(s)yσ
r (s)∆s

}

∆τ. (5.18)

If we show that the integral equation (5.18) has a continuous solution yr(t) then

we will complete the proof of the statement. If we apply sequential approaching

method by taking q1(s) = −q(s)

y(0)
r (t) = yr0(t) + p(r0)yr0y

∆
r0

(r0)

∫ t

r0

∆τ

p(τ)
(5.19)

y(j)
r (t) =

∫ t

r0

1

p(τ)

{

∫ τ

r0

q1(s)y
(j−1)
r (σ(s))∆s

}

∆τ j = 1, 2, ... (5.20)

we get

yr(t) =
∞

∑

j=0

y(j)
r (t). (5.21)

If yr(t) defined by (5.21) is uniformly convergent then it is a solution of (5.18).

(5.19) ⇒ |y(0)
r (t)| ≤ |yr0(t)| + |p(r0)| · |y∆

r0
(r0)| · |

∫ t

r0

∆τ

p(τ)
|

≤ |yr0(t)| + |p(r0)| · |y∆
r0

(r0)| ·
∫ r

r0

∆τ

|p(τ)| = M0
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|y(1)
r (t)| ≤

∫ t

r0

1

|p(τ)|
{

∫ τ

r0

|q(s)| · |y(0)
r (σ(s))|∆s

}

∆τ

≤
∫ r

r0

1

|p(τ)|
{

∫ τ

r0

|q(s)| · |y(0)
r (σ(s))|∆s

}

∆τ

≤
∫ r

r0

{ 1

|p(τ)|
{

max
r0≤s≤ρ(s)

|y(0)
r (s)|

}

·
∫ τ

r0

|q(s)|∆s
}

∆τ

≤
{

max
r0≤s≤ρ2(s)

|y(0)
r (s)|

}

·
∫ r

r0

1

|p(τ)|
{

∫ τ

r0

|q(s)|∆s
}

∆τ

≤ M0M1

where

M1 =

∫ r

r0

1

|p(τ)|
{

∫ τ

r0

|q(s)|∆s
}

∆τ. (5.22)

By induction it can be shown that

|y(j)
r (t)| ≤ M0M

j
1 , j = 1, 2, ...

Thus the necessary condition for (5.21) to be uniformly convergent is M1 < 1.

Since r1 is in right neighborhood of r0 it follows that

∫ r1

r0

1

|p(τ)|
{

∫ τ

r0

|q(s)|∆s
}

∆τ < 1

and therefore M1 < 1 for all r ∈ [r0, r1]. Thus the integral equation (5.18) has a

solution. If we show the uniqueness of the solution we complete the proof of the

statement. Let yr(t) and zr(t) be two different solution of (5.18).

|yr(t) − zr(t)| ≤
∫ t

r0

1

|p(τ)|
{

∫ τ

r0

|q(s)| · |yσ
r (s) − zσ

r (s)|∆s
}

∆τ

≤
∫ r

r0

1

|p(τ)|
{

∫ τ

r0

|q(s)| · |yσ
r (s) − zσ

r (s)|∆s
}

∆τ

≤
{

max
r0≤s≤ρ2(r)

|yr(σ(s)) − zr(σ(s))|
}

∫ r

r0

1

|p(τ)|
{

∫ τ

r0

|q(s)|∆s
}

∆τ

≤
{

max
σ(r0)≤s≤ρ(r)

|yr(s) − zr(s)|
}

∫ r

r0

1

|p(τ)|
{

∫ τ

r0

|q(s)|∆s
}

∆τ

N :=
{

max
σ(r0)≤s≤ρ(r)

|yr(s) − zr(s)|
}

So we get

| yr(t) − zr(t)| ≤ N

∫ r

r0

1

|p(τ)|
{

∫ τ

r0

|q(s)|∆s
}

∆τ
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If N 6= 0, then

∫ r

r0

1

|p(τ)|
{

∫ τ

r0

| q(s)|∆s
}

∆τ > 1

It is a contradiction. So N = 0. Thus the integral equation (5.18) has a unique

solution.

IV) Let r0 > t0 be left dense point and A(r) is true for all [t0, r0], i.e. there exist

a unique function yr(t) : [t0, σ
2(r)] → R such that

. [p(t)y∆
r (t)]∆ + q(t)yσ

r (t) = 0 ∀t ∈ [t0, r]

. yr(t0) = c0, y∆
r (t0) = c1

are satisfied. We must show that A(r0) is true, i.e. there exist a unique function

yr0(t) : [t0, σ
2(r0)] → R such that

. [p(t)y∆
r0

(t)]∆ + q(t)yσ
r0

(t) = 0 ∀t ∈ [t0, r0]

. yr0(t0) = c0, y∆
r0

(t0) = c1

are satisfied.

Lets choose r1 ∈ (t0, r0] such that

∫ r0

r1

1

|p(τ)|
{

∫ τ

r1

|q(s)|∆s
}

∆τ < 1 (5.23)

is satisfied. Since r0 is left dense, there exist a point in left neighborhood of r0

that satisfies (5.23). Thus by our assumption there exist a unique solution yr1(t)

on [t0, r1]. Let t ∈ [r1, r0].

∫ t

r1

[p(s)y∆(s)]∆∆s = −
∫ t

r1

q(s)yσ(s)∆s

p(t)y∆(t) = p(r1)y
∆(r1) −

∫ t

r1

q(s)yσ(s)∆s

y∆(t) =
1

p(t)
p(r1)y

∆(r1) −
1

p(t)

∫ t

r1

q(s)yσ(s)∆s

∫ t

r1

y∆(τ)∆τ = p(r1)y
∆(r1)

∫ t

r1

1

p(τ)
∆τ −

∫ t

r1

1

p(τ)

{

∫ τ

r1

q(s)yσ(s)∆s
}

∆τ

y(t) = y(r1) + p(r1)y
∆(r1)

∫ t

r1

1

p(τ)
∆τ −

∫ t

r1

1

p(τ)

{

∫ τ

r1

q(s)yσ(s)∆s
}

∆τ
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So by using the assumption we get

y(t) = y(r1) + p(r1)y
∆(r1)

∫ t

r1

1

p(τ)
∆τ −

∫ t

r1

1

p(τ)

{

∫ τ

r1

q(s)yσ(s)∆s
}

∆τ (5.24)

By using (5.23) and sequential approaching method , we can show that (5.24)

has a unique solution y(t). Since r1 is in left neighborhood of r0, then r1 is right

dense, i.e. σ(r1) = r1. From (5.24) the following results are obtained:

y(r1) = yr1(r1), y(σ(r1)) = yr1(σ(r1)) (5.25)

y∆(r1) = y∆
r1

(r1), y∆(σ(r1)) = y∆
r1

(σ(r1)) (5.26)

Claim:

z(t) =







yr1(t), t ∈ [t0, σ
2(r1)];

y(t) , t ∈ [σ(r1), σ
2(r0)].

is the unique solution of the initial value problem on [t0, r0]. To prove this claim

we must show that y(σ(r1)) = yr1(σ(r1)) and y(σ2(r1)) = yr1(σ
2(r1)). First

statement is trivial from (5.25).

If we plug f(t) = yr1(t) and f(t) = y(t) respectively into (5.9) and plugging

t = r1 we get;

yr1(σ
2(r1)) = yr1(σ(r1)) + [σ2(r1) − σ(r1)]y

∆
r1

(σ(r1)) (5.27)

y(σ2(r1)) = y(σ(r1)) + [σ2(r1) − σ(r1)]y
∆(σ(r1)). (5.28)

If we subtract (5.27) from (5.28) and use the equalities (5.25) and (5.26) we

obtain the desired result.

5.4 Basic Tools of Second Order Dynamic Equations

This section brings together the basic tools of second order dynamic equa-

tions on time scales. For the main notions, proofs and the facts from the theory

of dynamic equations on time scales we refer to [1, 7, 10, 12, 15].

Theorem 5.4.1. If a, b ∈ Crd and

1 − a(t)µ(t) + b(t)µ2(t) 6= 0 (5.29)
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for all t ∈ T
k2

then the second order dynamic equation

y∆∆ + a(t)y∆ + b(t)y = 0 (5.30)

can be written in self-adjoint form (5.1), where

p(t) = eα(t, t0) (5.31)

with t0 ∈ T
k,

α(t) =
a(t) − µ(t)b(t)

1 − a(t)µ(t) + b(t)µ2(t)
(5.32)

and

q(t) = eσ
α(t, t0)b(t) = [1 + µ(t)α(t)]p(t)b(t). (5.33)

Proof. Assume that (5.29) holds and α is given by (5.32). Then

1 + α(t)µ(t) =
1

1 − a(t)µ(t) + b(t)µ2(t)
6= 0,

and hence α ∈ R so that p defined as (5.30) exists. Replacing y = yσ − µy∆ in

the third term on the left side of equation (5.30), we obtain

y∆∆(t) + [a(t) − µ(t)b(t)]y∆ + b(t)yσ(t) = 0

Multiplying both sides by eσ
α(t, t0), we get the equation

eσ
α(t, t0)y

∆∆(t) + eσ
α(t, t0)[a(t) − µ(t)b(t)]y∆ + eσ

α(t, t0)b(t)y
σ(t) = 0

The coefficient of y∆(t) is

eσ
α(t, t0)[a(t) − µ(t)b(t)] = [1 + µ(t)α(t)]eα(t, t0)[a(t) − µ(t)b(t)]

=
a(t) − µ(t)b(t)

1 − a(t)µ(t) + b(t)µ2(t)
eα(t, t0)

= α(t)eα(t, t0)

= e∆
α (t, t0).

See the proof of Theorem 5.2.4 and Theorem 5.2.5 (ii) for the last equation.

Hence the equation (5.30) is equivalent to

0 = eσ
α(t, t0)y

∆∆(t) + e∆
α (t, t0)y

∆ + eσ
α(t, t0)b(t)y

σ(t)

= [eα(·, t0)y∆]∆(t) + eσ
α(t, t0)b(t)y

σ(t).

This equation is in self adjoint form with p given by (5.31) and q given by (5.32).
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Example 5.4.2. Here we use Theorem 5.4.1 to write the dynamic equation

y∆∆ + 4y = 0

in self adjoint form on an arbitrary time scale T.

In this case we have a(t) ≡ 0 and b(t) ≡ 4. This implies

1 − a(t)µ(t) + b(t)µ2(t) = 1 + 4µ2(t) > 0.

So Theorem 5.4.1 can be applied. From (5.32), α(t) =
−4µ(t)

1 + 4µ2(t)
. Therefore,

with the arbitrary t0 ∈ T, we get from (5.31) that

p(t) = eα(t, t0) = e−4µ/(1+4µ2)(t, t0)

and from (5.33) that

q(t) = [1 + µ(t)α(t)]p(t)b(t) =
4

1 + 4µ2(t)
e−4µ/(1+4µ2)(t, t0)

Hence the self adjoint form of the above dynamic equation is

(e−4µ/(1+4µ2)(t, t0)y
∆)∆ +

1

1 + 4µ2(t)
e−4µ/(1+4µ2)(t, t0)y

σ = 0

Theorem 5.4.3. If a ∈ R, then the second order dynamic equation

y∆∆ + a(t)y∆σ

+ b(t)yσ = 0

can be written in self-adjoint form (5.1), where

p = ea(., t0), q = bp. (5.34)

Proof. [7]

The Prüfer Substitution has proved to be a useful tool in the qualitative

theory of Sturm-Liouville differential equations (5.1) (with T = R). Bohner and

Peterson [7] develop the extension of Prüfer Substitution to the time scales case.

Let y be a nontrivial solution of (5.1). Then for all t ∈ T

y2(t) + (p(t)y∆(t))2 6= 0.

and we can find real numbers ρ(t) and θ(t) with 0 ≤ θ(t) ≤ 2π such that the

equations

y(t) = ρ(t) sin θ(t) (5.35)

p(t)y∆(t) = ρ(t) cos θ(t) (5.36)

are satisfied for all t ∈ T.
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Definition 5.4.4. The equations (5.35) and (5.36) are said to be the Prüfer

Substitution.

The Prüfer Substitution on time scales unifies the continuous Prüfer sub-

stitution and the discrete Prüfer substitution examined by Bohner and Dosly in

2001 [6].

Theorem 5.4.5. If y is a nontrivial solution of (5.1) and if ρ and θ are defined

by (5.35) and (5.36), then the following equations hold:

ρ∆ = ρ
{1

p
cos θ(sin θ)σ − q sin θ(cos θ)σ − µq

p
cos θ(cos θ)σ

− (sin θ)∆(sin θ)σ − (cos θ)∆(cos θ)σ
}

(5.37)

(sin θ)∆(cos θ)σ − (sin θ)σ(cos θ)∆ =
1

p
cos θ(cos θ)σ + q sin θ(sin θ)σ

. +
µq

p
cos θ(sin θ)σ. (5.38)

Proof. [7].

Remark 5.4.6. Theorem 5.4.5 suggests a method to construct solutions of self

adjoint dynamic equation (5.1): Observe that the dynamic equation (5.38) for

θ is independent from ρ. It is a nonlinear equation and might be difficult to

solve but once (5.38) is solved, the linear dynamic equation (5.37) for ρ is readily

solved.

Definition 5.4.7. We say that y : T × T
k2 → R is the Cauchy function for

(5.1) provided for each s ∈ T
k2

, y(·, s) is the solution of the initial value problem

L[y(·, s)] = 0, y(σ(s), s) = 0, y∆(σ(s), s) =
1

p(σ(s))

Theorem 5.4.8. (Variation of Constants Formula) Assume f ∈ Crd and let

y(t, s) be the Cauchy function for (5.1). Then

Proof. [7]. Also examine the partial differentiation on time scale [2] for the

proof.
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Example 5.4.9. We use the variation of constants formula in Theorem 5.4.8 to

solve the initial value problem

y∆∆(t) = 1, y(0) = y∆(0) = 0

for T = h Z.

Here f(t) = 1, p(t) = 1, q(t) = 0. Then y(t) =

∫ t

0

y(t, s)∆s is the solution

of the initial value problem where y(t, s) is the Cauchy function for (5.1). Then

by definition 5.4.7 y(t, s) is the solution of the initial value problem

L[y(·, s)] = 0, y(σ(s), s) = 0, y∆(σ(s), s) =
1

p(σ(s))
.

It can be verified that if q(t) = 0 then the Cauchy function for 5.1 is given by

y(t, s) =

∫ t

σ(s)

1

p(τ)
∆τ . Hence y(t, s) =

∫ t

σ(s)

∆τ = t − σ(s). Then

y(t) =

∫ t

0

(t − σ(s))∆s.

If s ∈ T = h Z then s = h n for some n ∈ Z. ⇒ σ(s) = h (n+1) = h n+h = s+h.

And if t ∈ T = h Z then s = h m for some m ∈ Z. Then

y(t) =

∫ hm

0

(t − h − s)∆s

= (t − h) t −
∫ hm

0

s∆s

= (t − h) t −
{

∫ h

0

s∆s +

∫ 2h

h

s∆s + · · ·
∫ mh

(m−1)h

s∆s
}

by Theorem 5.1.9

= (t − h) t − (h · h + h · 2h + · · ·h · (m − 1)h)

= (t − h) t − h2(1 + 2 + · · · + (m − 1))

= (t − h) t − hm · h(m − 1)

2

= (t − h) t − t · ρ(t)

2
=

1

2
t(t − h).

Theorem 5.4.10. (Comparison Theorem for IVPs) Assume the Cauchy function

y for (5.1) satisfies y(t, s) ≥ 0 for t ≥ σ(s). If u, v ∈ D are functions satisfying

L[u(t)] ≥ L[v(t)], ∀t ∈ [a, b], u(a) = v(a), u∆(a) = v∆(a)

then

u(t) ≥ v(t), ∀t ∈ [a, σ2(b)].

43



Proof. Let u and v satisfy the conditions of the theorem and define

w(t) = u(t) − v(t), ∀t ∈ [a, σ2(b)].

Then

h(t) = L[u(t)] − L[v(t)] ≥ 0, ∀t ∈ [a, σ2(b)].

Hence w solves the initial value problem

L[w(t)] = h(t), w(a) = w∆(a) = 0.

So by variation of constants formula (Theorem 5.4.8)

w(t) =

∫ t

a

y(t, s)h(s)∆(s)

=

∫ ρ(t)

a

y(t, s)h(s)∆(s) +

∫ t

ρ(t)

y(t, s)h(s)∆(s)

by Theorem 5.1.9;

=

∫ ρ(t)

a

y(t, s)h(s)∆(s) + µ(ρ(t))y(t, ρ(t))h(ρ(t))

=

∫ ρ(t)

a

y(t, s)h(s)∆(s)

≥ 0.

Since y(t, s) is the Cauchy function for (5.1), y(t, ρ(t)) = y(σ(ρ(t)), ρ(t)) = 0.

Definition 5.4.11. If x, y : T → R are differentiable on T
k, then we define

Wronskian of x and y by

W (x, y)(t) = det





x(t) y(t)

x∆(t) y∆(t)



 .

Lemma 5.4.12. If x, y : T → R are differentiable on T
k, then

W (x, y)(t) = det





xσ(t) yσ(t)

x∆(t) y∆(t)



 ∀t ∈ T
k.

Proof. For t ∈ T
k, by Definition 5.1.3 we have

det





xσ(t) yσ(t)

x∆(t) y∆(t)



 = det





x(t) + µ(t)x∆(t) y(t) + µ(t)y∆(t)

x∆(t) y∆(t)





= det





x(t) y(t)

x∆(t) y∆(t)





= W (x, y)(t)
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which gives us the desired result.

Definition 5.4.13. If x, y : T → R are differentiable on T
k, then the Lagrange

bracket of x and y is defined by

{x; y}(t) = p(t)W (x, y)(t) ∀t ∈ T
k.

Theorem 5.4.14. (Lagrange Identity). If x, y ∈ D, then

xσ(t)L[y(t)] − yσ(t)L[x(t)] = {x; y}∆(t), ∀t ∈ T
k.

Proof.

{x; y}∆ = (p W (x, y))∆

= (x p y∆ − p x∆y)∆

= xσ(p y∆)∆ + x∆p y∆ − yσ(p x∆)∆ − y∆p x∆

= xσ(p y∆)∆ − yσ(p x∆)∆

= xσ{(p y∆)∆ + q yσ} − yσ{(p x∆)∆ + q xσ}

= xσ L[y] − yσ L[x]

on T
k2

.

Corollary 5.4.15. (Abel’s Formula). If x and y both solve (5.1), then

W (x, y)(t) =
C

p(t)
, ∀t ∈ T

k

where C is a constant.

Proof. From Theorem 5.4.14

{x; y}∆ = (p W (x, y))∆ = xσ L[y] − yσ L[x] = 0.

Hence p(t)W (x, y)(t) = C for all t ∈ T
k.

Corollary 5.4.16. If x and y both solve (5.1), then

W (x, y)(t) ≡ 0, ∀t ∈ T
k

or

W (x, y)(t) 6= 0, ∀t ∈ T
k.

Proof. Trivial from Corollary 5.4.16.
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5.5 The Riccati Equation

In this section the Riccati technique, very powerful method of studying

oscillation theory is considered and the oscillation and disconjugacy criterions of

second order dynamic equations are given. Erbe, Peterson and R̃ehãk give the

extended results for the comparison of linear dynamic equations on time scales

in [14]. Erbe and Peterson studied detailed the Riccati equation on measure

chain in [13]. The basic results in Sturmian theory, oscillation, nonoscillation,

and Riccati techniques are extended to dynamic equations are presented by Erbe

and Hilger [12].

Definition 5.5.1. We say that a solution y of (5.1) has a generalized zero

at t, in case y(t) = 0. A solution y has a generalized zero in (t, σ(t)), in case

y(σ(t))y(t) < 0 and µ(t) > 0. We say that (5.1) is disconjugate on an interval

[a, b], if there is no nontrivial solution of (5.1) with two (or more) generalized

zeros in [a, b]. (5.1) is said to be nonoscillatory on [τ, ∞) if there exist

a ∈ [τ, ∞) such that (5.1) is disconjugate on [a, b] for b > a. (5.1) is oscillatory

on [τ, ∞) if it has infinitely many generalized zeros in [τ, ∞).

Assume y is a solution of (5.1) with no generalized zeros. If we apply The

Riccati substitution

z =
p y∆

y
(5.39)

on T
k, then

p + µ z = p +
p y∆

x
=

p (y + µ y∆)

y
=

p yσ

y
> 0 (5.40)

on T
k.

z∆ =
y (p y∆)∆ − p (y∆)2

y yσ

=
−q y yσ − p (y∆)2

y yσ

= −q − y

p yσ
(
p y∆

y
)2

= −q − y

p yσ
z2

= −q − z2

p + µ z
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on T
k, here we used (5.40) for the last equation. Hence z is the solution of the

Riccati Equation

R[z](t) = z∆(t) + q(t) +
z2(t)

p(t) + µ(t)z(t)
= 0 (5.41)

on T
k satisfying

p(t) + µ(t)z(t) > 0 (5.42)

for all t ∈ T
k. Hence we establish the proof of following result.

Theorem 5.5.2. Let y be the solution of (5.1). If y has no generalized zeros on

T then z defined as in (5.39) is a solution of the Riccati equation (5.41) on T
k,

and (5.42) holds for all t ∈ T
k.

Example 5.5.3. Consider the Riccati equation

z∆ + 4(
1

9
)t+1 +

z2

(1
9
)t + µ(t)z

= 0

on T = Z.

Since T = Z, the self adjoint equation corresponding to the equation above is

∆
[

(
1

9
)t∆y(t)

]

+ 4(
1

9
)t+1y(t + 1) = 0.

Expanding this equation and simplifying we get the difference equation

y(t + 2) − 6y(t + 1) + 9y(t) = 0.

A general solution of this equation is

y(t) = c13
t + c2t3

t.

Hence

z(t) =
p(t)∆y(t)

y(t)

= (
1

9
)t · 3t(2c1 + 3c2 + 2c2t)

3t(c1 + c2t)

For c1 6= 0 we get that z(t) = (
1

9
)t · 2 + 3c + 2ct

1 + ct
.

Theorem 5.5.4. Assume p > 0. Then (5.1) has a positive solution on T if and

only if the Riccati equation (5.41) has a solution z on T
k satisfying (5.42) on T

k.
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Proof. [7]

Theorem 5.5.5. Assume y ∈ D has no generalized zeros in T and z is defined

by the Riccati substitution (5.39) for t ∈ T
k. Then (5.42) holds for t ∈ T

k and

L[y](t) = yσ(t)R[z](t) ∀t ∈ T
k2

.

Definition 5.5.6. Let w = sup T and if w < ∞ assume ρ(w) = w. Further

assume a ∈ T and q ∈ Crd. We say (5.1) is oscillatory on [a, w) provided every

nontrivial real-valued solution has infinitely many generalized zeros in [a, w).

The following theorem is an oscillation criteria for time scales which in-

clude only isolated points. More general types of oscillation criteria can be found

in Section 5.6.

Theorem 5.5.7. (Wintner’s Theorem). Assume sup T = ∞, a ∈ T ,

µ(t) ≥ K > 0 and 0 < p(t) ≤ M for all t ∈ [a,∞), and
∫ ∞

a

q(t)∆t = ∞.

Then (5.1) is oscillatory on [a,∞).

Proof. Assume (5.1) is nonoscillatory on [a, ∞). Then there exist t0 ≥ a such

that (5.1) has a positive solution y on [t0, ∞). Then we define z by the Riccati

substitution (5.39) on [t0, ∞). By Theorem 5.5.4 z is the solution of the Riccati

equation (5.41) on [t0, ∞) and (5.42) is satisfied on [t0, ∞). Integrating both

sides of Riccati equation from t0 to t we get that

z(t) = z(t0) −
∫ t

t0

q(τ)∆τ −
∫ t

t0

z2(τ)

p(τ) + µ(τ)z(τ)
∆τ

≤ z(t0) −
∫ t

t0

q(τ)∆τ.

Letting t → ∞ we get that

lim
t→∞

z(t) = −∞. (5.43)

But from (5.42) we have that

z(t) ≥ − p(t)

µ(t)
≥ −M

K
for t ≥ t0,

and this contradicts (5.43) so the proof is complete.
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Example 5.5.8. Consider the dynamic equation

x∆∆(t) +
1

t
xσ(t) = 0

on T = hN where h > 1 is a constant.

Here sup T = ∞, µ(t) = h > 1 > 0 and p(t) ≡ 1 for all t ∈ T. Hence

Theorem 5.5.7 is applicable. If a ∈ T then a = hk for some k ∈ N.

∫ ∞

a

q(t)∆t =
∞

∑

k= a
h

q(kh)h = h

∞
∑

k= a
h

q(kh) = h

∞
∑

k=0

q((k +
a

h
)h) = h

∞
∑

k=0

q(a + kh)

= { 1

a + h
+

1

a + 2h
+

1

a + 3h
+ · · · }

≥ h{1

h
+

1

2h
+

1

3h
+ · · · }

= h
1

h

∞
∑

k=0

1

k
=

∞
∑

k=0

1

k
.

Since
∞

∑

k=0

1

k
is divergent then by comparison test

∫ ∞

a

q(t)∆t = ∞. Therefore

x∆∆(t) +
1

t
xσ(t) = 0 is oscillatory on [a,∞).

5.6 Disconjugacy and Oscillatory Criterions

The following theorem summarizes and unifies the basic oscillatory and

disconjugacy properties of (5.1). This theorem is due to [14].

Theorem 5.6.1. (Reid-Roundabout theorem) The following statements are equiv-

alent:

(i) (5.1) is disconjugate on [a, b].

(ii) (5.1) has a solution without generalized zeros on [a, b].

(iii) The Riccati dynamic equation (5.41) has a solution z with p(t)+µ(t)z(t) > 0

for t ∈ [a, b]k.

(iv) The quadratic functional

F(ξ; a, b) =

∫ b

a

{p(t)(ξ∆(t))2 − q(t)(ξσ(t))2}∆t (5.44)

49



is positive definite for ξ ∈ U(a, b), where

U(a, b) = {ξ ∈ C1
prd[a, b] : ξ(a) = ξ(b) = 0}.

Here C1
prd denotes the set of all continuous functions whose derivatives are piece-

wise rd-continuous.

Proof. (i)⇒(ii) Assume that (5.1) is disconjugate on [a, b]. Let u and v be two

solutions of (5.1) satisfying the initial conditions

u(a) = 0 , u∆(a) = 1

v(b) = 0 , v∆(b) = −1

By the definition of disconjugacy on [a, b],

u(t) > 0 , ∀t ∈ (a, b] (5.45a)

v(t) > 0 , ∀t ∈ [a, b) (5.45b)

Let y(t) = u(t) + v(t). From (5.45) it follows that y(t) > 0 for t ∈ (a, b). Also

y(a) = u(a) + v(a) = v(a) > 0

and

y(b) = u(b) + v(b) = u(b) > 0

Then (5.1) has a solution without generalized zeros.

(ii)⇒(i) Let u(t) be the solution of (5.1) without generalized zeros. Without

loss of generality assume that u(t) > 0 on [a, b]. If we suppose for the contrary

that (5.1) is not disconjugate on [a, b] then (5.1) has a nontrivial solution v with

at least two generalized zeros. Without loss of generality there are points t1 < t2

in [a, b] such that v(t1) ≤ 0 , v(t2) ≤ 0 and v(t) > 0 on (t1, t2) where (t1, t2) 6= ∅.

(
v

u
)∆ =

v∆u − u∆v

uuσ
=

W (u, v)

uuσ
=

C

puuσ
.

So (
v

u
)∆ is of one sign. Hence

v

u
is strictly monotone on [a, b]. But

v

u
(t1) ≤ 0 ,

v

u
(t) > 0 ,

v

u
(t2) ≤ 0
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where t ∈ (t1, t2). It is a contradiction. So (5.1) is disconjugate on [a, b].

(ii)⇒(iii) Trivial from Theorem 5.5.4.

(iii)⇒(iv) Let z be the solution of (5.41) satisfying (5.42) for t ∈ [a, b]k. If

ξ ∈ U(a, b), then

(zξ2)∆(t) = ξ2(σ(t))z∆(t) + (ξ2(t))∆z(t)

= ξ2(σ(t))z∆(t) + ξ(σ(t))ξ∆(t)z(t) + ξ∆(t)ξ(t)z(t)

= ξ2(σ(t))(−q(t) − z2(t)

p(t) + µ(t)u(t)
) + ξ(σ(t))ξ∆(t)z(t)

. +ξ∆(t)[ξ(σ(t)) − µ(t)ξ∆(t)]z(t)

= p(t)(ξ∆(t))2 − q(t)ξ2(σ(t)) − z2(t)ξ2(σ(t))

p(t) + µ(t)z(t)
+ 2ξ(σ(t))ξ∆(t)z(t)

. −[p(t) + µ(t)z(t)](ξ∆)2.

So

(zξ2)∆(t) = p(t)(ξ∆(t))2 − q(t)ξ2(σ(t)) −
{ z(t)ξ(σ(t))

√

p(t) + µ(t)z(t)
−

√

p(t) + µ(t)z(t)ξ∆(t)
}2

is satisfied for all [a, b]k. By integrating the last equation over [a, b] and using

ξ(a) = ξ(b) = 0 we get

F(ξ; a, b) =

∫ b

a

{

p(t)(ξ∆(t))2 − q(t)ξ2(σ(t))
}

∆t

=

∫ b

a

{ z(t)ξ(σ(t))
√

p(t) + µ(t)z(t)
−

√

p(t) + µ(t)z(t)ξ∆(t)
}2

∆t.

It follows that F(ξ; a, b) ≥ 0 for all ξ ∈ U(a, b). Assume that F(ξ; a, b) = 0.

Then

z(t)ξ(σ(t))
√

p(t) + µ(t)z(t)
−

√

p(t) + µ(t)z(t)ξ∆(t) = 0, ∀t ∈ [a, b]k.

Hence ξ solves the initial value problem

ξ∆(t) =
z(t)

p(t) + µ(t)u(t)
ξ(σ(t)), ξ(a) = 0.

Existence and uniqueness theorem (Theorem 5.2.4) this implies that ξ(t) = 0 for

all t ∈ [a, b]k. This is a contradiction. Hence F is positive definite for ξ ∈ U(a, b).
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(iv)⇒(i) Let F(ξ; a, b) is positive definite on U(a, b). Assume that (5.1) is not

disconjugate on [a, b]. Then there exist at least two zeros of (5.1). Let t0 and t1

be the consecutive zeros of (5.1) in [a, b] such that a ≤ t0 ≤ σ(t0) < t1 ≤ b and y

of be a solution of (5.1) satisfying the following conditions:

y(t0) = 0 if µ(t0) = 0

y(t0)x(σ(t0)) < 0 if µ(t0) > 0,

and

y(t1) = 0 if µ(t1) = 0

y(t1)x(σ(t1)) < 0 if µ(t1) > 0,

and

y(t) 6= 0 in (t0, t1).

Let

ξ(t) =















0, a ≤ t ≤ t0;

y(t), t0 < t ≤ t1;

0, t1 ≤ t ≤ b.

F(ξ; a, b) =

∫ b

a
{p(t)(ξ∆(t))2 − q(t)ξ2(σ(t))}∆t

=

∫ t1

t0

{p(t)(ξ∆(t))2 − q(t)ξ2(σ(t))}∆t

=

∫ σ(t1)

t0

{p(t)(ξ∆(t))2 − q(t)ξ2(σ(t))}∆t −
∫ σ(t1)

t1

{p(t)(ξ∆(t))2 − q(t)ξ2(σ(t))}∆t

=

∫ σ(t1)

t0

p(t)(ξ∆(t))2∆t −
∫ σ(t1)

t0

q(t)ξ2(σ(t))∆t −
∫ σ(t1)

t1

p(t)(ξ∆(t))2∆t

. +

∫ σ(t1)

t1

q(t)ξ2(σ(t))∆t

=

∫ σ(t1)

t0

p(t)(ξ∆(t))2∆t −
∫ t1

t0

q(t)ξ2(σ(t))∆t −
∫ σ(t1)

t1

p(t)(ξ∆(t))2∆t

=

∫ σ(t0)

t0

p(t)(ξ∆(t))2∆t +

∫ t1

σ(t0)
p(t)(ξ∆(t))2∆t +

∫ σ(t1)

t1

p(t)(ξ∆(t))2∆t

. −
∫ σ(t0)

t0

q(t)ξ2(σ(t))∆t −
∫ t1

σ(t0)
q(t)ξ2(σ(t))∆t

=

∫ σ(t0)

t0

p(t)(ξ∆(t))2∆t +

∫ σ(t1)

t1

p(t)(ξ∆(t))2∆t −
∫ σ(t0)

t0

q(t)ξ2(σ(t))∆t

. +

∫ t1

σ(t0)
{p(t)(y∆(t))2 − q(t)y2(σ(t))}∆t
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= µ(t0)p(t0)(ξ
∆(t0))

2 + µ(t1)p(t1)(ξ
∆(t1))

2 − µ(t0)q(t0)(ξ
2(σ(t0))

. +[p(t)y∆(t)y(t)]t1σ(t0) −
∫ t1

σ(t0)
L[y(t)]y(σ(t))∆t

= µ(t0)p(t0)(ξ
∆(t0))

2 + µ(t1)p(t1)(ξ
∆(t1))

2 − µ(t0)q(t0)(ξ
2(σ(t0))

. +[p(t)y∆(t)y(t)]t1σ(t0)

= C + D

(we used integration by parts formula Theorem 5.1.8 and L[y(t)] = 0) where

C = µ(t0)p(t0)(ξ
∆(t0))

2 − µ(t0)q(t0)ξ
2(σ(t0)) − p(σ(t0))y

∆(σ(t0))y(σ(t0)) (5.46)

and

D = µ(t1)p(t1)(ξ
∆(t1))

2 + p(t1)y
∆(t1)y(t1). (5.47)

Further from (5.46)

C =















−p(t0)y(t0)y
∆(t0), µ(t0) = 0;

p(t0)y(t0)y(σ(t0))

µ(t0)
, µ(t0) > 0.

(5.48)

and

D =















p(t1)y(t1)y
∆(t1), µ(t1) = 0;

p(t1)x(t1)x(σ(t1))

µ(t1)
, µ(t0) > 0.

(5.49)

It follows from (5.48) and (5.6) that F(ξ; a, b) ≤ 0. This contradiction completes the

proof.

Theorem 5.6.1 makes it clear that there are at least two methods of in-

vestigation of (non)oscillation of (5.1). The first one is based on the equivalence

of (i) and (iv) and this method can be formulated as follows:

Lemma 5.6.2. If for any T ∈ (τ,∞) there exists 0 6= ξ in U(T ), where

U(T ) = {ξ ∈ C1
p [T,∞) : ξ(t) = 0, ∀t ∈ [τ, T ] and ∃T̂ , T̂ > σ(T ) such

that ξ(t) = 0, ∀t ∈ [σ(T̂ ),∞)}

such that F(ξ; T,∞) = F(ξ; T, σ(T̂ )) ≤ 0 then (5.1) is oscillatory.

Another method of investigation for the oscillation theory of (5.1) based

on the equivalence of (i) and (iv) of Theorem 5.6.1.
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Lemma 5.6.3. Consider the equation

[p1(t)x
∆(t)]∆ + q1(t)x

σ(t) = 0 (5.50)

where p1(t), q1(t) satisfy the same conditions as p(t) and q(t) of (5.1). Suppose

that p1(t) ≤ p(t) and q(t) ≤ q1(t) on [T,∞) for all large T . Then (5.50) is

nonoscillatory on [T,∞) implies (5.1) is nonoscillatory on [T,∞).

Proof. Let (5.50) is nonoscillatory on [T,∞). Then there exists a ∈ [T,∞) such

that (5.50) is disconjugate on [a, b] for all b > a. Then the equivalence of (i) and

(iv) of Theorem 5.6.1 implies

F1(ξ; a, b) =

∫ b

a

{p1(ξ
∆(t))2 − q1(t)(ξ

σ(t))2}∆t

is positive definite for all ξ ∈ U(a, b).

0 < F1(ξ; a, b) =

∫ b

a

{p1(t)(ξ
∆(t))2 − q1(t)(ξ

σ(t))2}∆t

≤
∫ b

a

{p(ξ∆(t))2 − q(t)(ξσ(t))2}∆t

= F(ξ; a, b)

Hence F(ξ; a, b) is positive definite. Then (5.1) is disconjugate on [a, b]. Then

(5.1) is nonoscillatory [T,∞).
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[14] L. Erbe, A. Peterson, R̃ehãk P., ”Comparison Theorems For Linear Dy-

namic Equations on Time Scales”, Journal of Mathematical Analysis and

Applications 275, (2002) 418-438.

[15] G. Sh. Guseinov, B. Kaymakcalan, ”On Disconjugacy Criterion for Seceond

Order Dynamic Equations”, Journal of Computational and Applied Mathe-

matics 141, (2002) 187-196.

[16] G. Sh. Guseinov, ”Integration on Time Scales”, Journal of Mathematical

Analysis and Applications 285, (2003) 107-127.

[17] P. Hartman, Ordinary Differential Equations (second edition), Birkhäuser
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