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ABSTRACT 

QUANTITATIVE TRAIT LOCI ANALYSIS (QTL) OF FRUIT 

CHARACTERISTICS IN TOMATO 

 

Tomato has a crucial part in the human diet. Therefore, many plant breeders 

have tried to improve horticulturally important traits such as yield, fruit size, shape and 

color. With increased attention on human health, plant breeders also consider the 

improvement of health-related traits of fruits and vegetables such as antioxidant 

characters. However, because most plant traits are controlled by more than one gene, 

improvement of crops that possess the desired traits is very difficult. 

Development of molecular marker techniques makes these processes feasible for 

plant breeders. In this study both health-related and horticulturally important traits were 

characterized for identificaton of their locations in the tomato genome using 152 

Lycopersicon hirsutum BC2F2 mapping individuals. For this aim, all plants were 

phenotypically and genotypically characterized. It was expected that some alleles from 

the wild species L.hirsutum had the capacity for improvement of both antioxidant and 

agronomically important traits of elite lines.  

A total of 75 QTLs were identified for all traits. Of the 75 QTLs, 28 were 

identified for five antioxidant traits including total water soluble antioxidant capacity, 

vitamin C, phenolic, flavonoids and lycopene content and 47 QTLs were identified for 8 

agronomic traits including external and internal fruit color, fruit weight, firmness, fruit 

shape, stem scar size, locule number and wall thickness. Seventeen of these QTLs were 

also identified by previous studies. Markers linked with these QTLs can be used in 

Marker Assisted Selection (MAS) for improvement of elite tomato lines.   
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ÖZET 

DOMATESTE MEYVE KARAKTERLERĐ ĐÇĐN 

KANTĐTATĐF KARAKTER LOCUS ANALĐZLERĐ 

 

Domatesin insan beslenmesinde çok önemli bir yeri vardır. Bundan dolayı 

birçok bitki ıslahçısı bugüne kadar domatesin tarımsal açıdan önem teşkil eden, 

verimlilik, meyve büyüklüğü, şekli ve rengi gibi birçok karaterin geliştirilmesi için çaba 

sarfetmişlerdir. Đnsan sağlığına verilen değerin artmasıyla beraber, bitki ıslahçıları artık 

meyve ve sebzelerde antioksidant karakterleri gibi sağlıkla ilişkili özelliklerin de 

geliştirilmesini dikkate almaktadırlar. Ne yazıkki, birçok bitki karakterinin birden fazla 

gen tarfından kontrol edilmesinden dolayı, istenilen özelliklere sahip bitkilerin ıslahı 

oldukça zordur. 

Moleküler markör sistemlerinin geliştirilmesi bitki ıslahçılarının birden fazla 

genle kontrol edilen bu karakterlerin ıslahını olası hale getirmiştir. Yapılan bu 

çalışmada, 152 bireyden oluşan BC2F2 L.hirsutum populasyonu kullanılarak, hem sağlık 

açısından hem de tarımsal açıdan önem teşkil eden özellikler domates genomu 

üzerindeki yerlerinin belirlenmesi için karakterize edilmiştir. Bu amaç doğrultusunda, 

populasyondaki bütün bireyler fenotipik ve genotipik olarak karakterize edilmişlerdir. 

Yabani bir tür olan L.hirsutum’dan gelen bazı allellerin kültür hatta bulunan 

antioksidant ve tarımsal öneme sahip bazı karakterleri geliştirebilecek kapasiteye sahip 

olduğu düşünülmüştür. 

Analiz edilen bütün karakterler için toplamda 75 QTL (genetic lokus) 

belirlenmiştir. Bu 75 QTL içerisinden, suda çözünen toplam antioksidant aktivitesi, C 

vitamini, toplam fenolic, flavonoid ve likopen miktarını da içerisine alan beş 

antioksidant karakteri için 28 adet, tarımsal açıdan önem taşıyan dış ve iç meyve rengi, 

meyve ağırlığı, sertliği, şekli, stem scar, lokul sayısı ve perikarp kalınlığı gibi sekiz 

karakter içinse toplamda 47 QTL belirlenmiştir. Bu QTL’lerin 17 tanesi daha önceden 

yapılmış olan bazı çalışmalarda da belirlenmiştir. Belirlenen bu QTL’lerle ilişkili olan 

markörler, markör dayalı seleksiyon da (MAS) kullanılmak suretiyle birinci sınıf kültür 

domates hatları geliştirilebilir. 
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CHAPTER 1 

 

QTL MAPPI�G 

 

1.1. Introduction 

 

The innovation of new molecular techniques drastically increases the importance 

and application of biotechnology in agriculture. Biotechnology is ‘any technique that 

uses living organisms or substances from those organisms, to make or modify a product, 

to improve plants or animals, or to develop microorganisms for specific uses’ (Kumar 

1999). Tissue culture, genetic engineering and using molecular markers in conventional 

plant breeding for improvement of crops are the main biotechnological applications that 

are used in agriculture (Kumar 1999). 

Since humans changed their lifestyle from hunting-gathering to agrarian societies, 

approximately 10000 years ago, agriculture has played a significant role for human life. 

The main objective of conventional breeding for improvement of existing crops is 

transfer of desired traits by crossing cultivars that do not possess such favorable traits 

with cultivars that have them. Desired traits such as high quality and yield, fruit size, 

shape and color, disease and insect resistance and high nutrient quality, have been 

selected during domestication and breeding. In addition, undesired traits such as 

shattering of seeds, non-compact growth habit, and germination inhibition have been 

eliminated from cultivated plants (Tanksley and McCouch 1997). However, the 

conventional breeding procedure is laborious and time consuming, requiring 

approximately 10-12 years to produce a new cultivar. This is because when two lines 

are crossed their whole genomes are combined, thereby the selection of desired 

recombinants, which contain desired traits, requires several crosses, several generations 

and careful phenotypic selection in the segregating population. Also the existence of 

unexpected plants with undesired traits that are tightly linked with desired traits 

decreases the success of this approach (Kumar 1999). The use of recombinant DNA 



 2 

technology and genetic engineering overcomes many limitations that are faced in 

conventional plant improvement. However, these techniques also have some 

disadvantages such as the availability of a limited number of cloned genes and the 

difficulty of transformation of polygenic traits to plant. Also genetically modified 

organisms are hot ethical issues that are still debated in society (Kumar 1999). 

 

1.2. Genetic Markers and Mapping 

 

The main source of genetic variation or polymorphism among individuals, species, 

and other taxonomic groups stems from mutation. Mutation occurs in all organisms as a 

result of normal cellular mechanisms or interactions with the environment (exposure to 

UV radiation, mutagens, chemicals, etc.). There are many types of mutation at the DNA 

level including base substitutions, insertion or deletion of nucleotides and inversion of 

DNA segments. Accumulation of different types of mutation at different ratios in a 

species defines the genetic variation among individuals in the species and among 

different species. These phenotypic or genotypic variations can be used as markers for 

several genetic approaches such as characterization of germplasm, estimation of genetic 

distances between populations, construction of genetic maps, identification of 

monogenic and polygenic traits and so on.  To use this variation as markers in genetic 

analyses, it must be heritable and recognizable whether in phenotype or at the molecular 

level of DNA or protein via gel electrophoresis (Liu and Cordes 2004). There are two 

main marker types: 1) Morphological markers and 2) Molecular markers (Tanksley 

1993, Staub, et al. 1996, Kumar 1999). 

 

1.2.1.  Morphological Markers 

 

Morphological markers are single gene mutations whose expression can be 

visualized in phenotypes such as dwarfism, anthocyanin production and leaf veins in 

plants. Morphological markers are affected by environment, thereby their reliability and 
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reproducibility can be low.  In addition, there are a limited number of morphological 

markers in nature. Because the formation of morphological markers depends on gene 

mutations, the presence of single or multiple mutations may interfere with plant health 

and result in death (Staub, et al. 1996) .  

 

1.2.2. Molecular Markers         

 

Restricted usage of morphological markers led geneticists to find new approaches to 

identify variation among organisms. Molecular markers are genetic loci for which 

different alleles reveal sequence variation at the DNA level. Molecular markers may be 

gene-coding or non-coding pieces of DNA. Virtually all molecular markers have neutral 

effect on phenotype, thereby they cannot be visualized in phenotype. In addition, they 

are very abundant and stable markers that are easily detectable with molecular 

techniques (Tanksley 1993).  

Molecular markers have several advantages over morphological markers.  Unlike 

morphological markers, molecular markers do not cause any visible changes in 

phenotype, thereby there are more molecular markers available than morphological 

markers (Tanksley 1993). Variation occurring at the DNA level, such as a nucleotide 

difference or insertion/deletion of DNA pieces, is the main source of molecular 

markers. Polymorphism among individuals is detected by electrophoretic techniques. 

There are many types of molecular markers that are popular with molecular biologists.  

The era of molecular markers was started with the discovery of isozymes. Isozymes 

are different allelic forms of enzymes produced by a single gene locus. It is supposed 

that any alteration that occurs at the DNA level may change the amino acid sequence of 

enzymes/proteins. These amino acid alterations result in the formation of differently 

charged or sized enzyme molecules that have the same function. The variation between 

these isozymes can be determined by using electrophoretic techniques which separate 

molecules in terms of their charge or size. The major drawbacks of using isozymes 

include: limited number of these marker types and their heterozygote deficiencies. In 

addition, post translational modification of proteins, which is not related with genetic 
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variation, restricts the usage of isozymes (Staub, et al. 1996, Tanksley and Nelson 

1996). 

Development of DNA-based molecular markers has enormously enhanced the 

potential usefulness of molecular marker types in genetics because of their ability to 

reveal more polymorphisms at the DNA level and their abundance. RFLP, restriction 

fragment length polymorphism, was the first type of DNA hybridization-based 

molecular marker that was developed in the 1980s. In this technique, genomic DNA is 

digested with a particular restriction enzyme at specific nucleotide sequences. Each 

different restriction enzyme recognizes a specific DNA sequence. Thus, any changes 

that occur in these restriction sites can create or eliminate restriction sites for a specific 

enzyme. Therefore, digestion of genomic DNA with an appropriate restriction enzyme 

can reveal variable sizes and numbers of DNA fragments among individuals or species. 

The Southern blotting method is applied with a specific probe to visualize these DNA 

fragments (Figure 1). RFLP markers are codominant markers, thereby allowing 

discrimination between homozygous and heterozygous individuals. However, RFLP 

markers have low levels of polymorphism and also require prior DNA sequence 

information and radioactive probes. These characteristics make this method more 

expensive and laborious (Staub, et al. 1996, Tanksley and Nelson 1996). 

The next advance in molecular markers was development of DNA amplification-

based molecular markers. RAPD, randomly amplified polymorphic DNA markers are 

derived from PCR (Polymerase Chain Reaction). In this technique, homologous 

arbitrary sequences in the genome are randomly amplified by PCR using 8-10 bp length 

single primers. Because of the short length and low annealing temperature (36-40 oC) of 

these primers, they can bind and amplify many DNA segments throughout the genome. 

Primers can amplify 200-2000 kb long pieces of DNA. The PCR products of RAPD 

primers can be separated by agarose or polyacrylamide gel electrophoresis and observed 

by staining with ethidium bromide or silver. The polymorphism of RAPD markers 

derives from sequence variation among the genomes that alter the primer binding sites. 

Thus, not all RAPD marker bands are amplified in all individuals using the same 

primer. RAPD markers are dominant markers and polymorphism is defined as presence 

or absence of particular RAPD bands (Figure 1.1). This is one of the shortcomings of 

RAPD markers, because they cannot distinguish between individuals homozygous for 

band  presence and heterozygous individuals (Staub, et al. 1996, Jones, et al. 1997).   
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Figure 1.1. Schematic depiction of (A) restriction fragment length polymorphism (RFLP) and    

(B)  randomly amplified polymorphic DNA (RAPD) markers 

 

Unlike RFLP, RAPD does not require prior knowledge of DNA sequence and 

radioactive probes. These advantages make RAPD cheaper than RFLP. However, poor 

reliability and reproducibility of RAPD markers and their high sensitivity to 

environmental conditions decrease the usage of this technique (Staub, et al. 1996, Jones, 

et al. 1997).  

CAPs, cleaved amplified polymorphic sequences, are PCR-based molecular markers 

that are analogous to RFLP markers. In this technique, sequence-specific primers are 

used to amplify a specific DNA region that contains restriction sites. After amplification 
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of this DNA region, the incidence of variation/polymorphism is enhanced by using 

particular restriction enzymes that cleave the PCR products (Staub, et al. 1996). They 

are highly polymorphic, codominant, phenotypically neutral and abundant molecular 

markers, thereby they are commonly used in mapping studies. 

 

1.3.  Molecular Marker Mapping  

 

Molecular marker analysis has several important applications in plant biology, 

but the construction of molecular marker maps is one of the most useful. Molecular 

marker mapping can be described as placing markers in their correct order along 

different linkage groups (Jones, et al. 1997). This technique depends on segregation of 

different genotypes, linkage between close markers and recombination between markers 

that are not closely linked.  The relative genetic distance between markers is expressed 

in centimorgans (cM) and represents the rate of recombination between them (1% 

recombination = 1 cM). Because the incidence of recombination varies along the 

chromosome, markers that are far away from each other may be defined as close 

markers if they are located in a chromosome region where recombination is suppressed. 

Therefore, the distance between two markers in genetic mapping (cM) and in physical 

mapping (expressed in base pairs) is not equal (Jones, et al. 1997, Kumar 1999).  

The construction of a molecular marker map depends on development of an 

appropriate mapping population, estimation of recombination frequencies of marker loci 

in this population, establishment of linkage groups of markers and determination of map 

distance and order of markers (Staub, et al. 1996).   

To develop an appropriate mapping population two homozygous parent lines 

that show polymorphisim for the markers in question are crossed to get a heterozygous 

F1 (filial) hybrid, and the F1 hybrid can be used to produce a segregating population. 

Recombination frequency is expressed as the percentage of recombinant progeny (for 

each marker) in the segregating population. Recombination frequency is directly 

proportional to the genetic distance between two loci. That means recombination 

between loci that are close to each other is lower than loci that are far apart. For that 



 7 

reason, recombination frequency can be used to define appropriate distances between 

two loci along the chromosome (Jones, et al. 1997). By using computer programs such 

as MapManager, Joinmap and MAPMAKER that determine the linear arrangement of 

molecular markers by estimating recombination frequencies, a linkage map can be 

easily constructed (Staub, et al. 1996).  

Once a genetic linkage map, based on molecular markers, has been constructed, 

it can be used for identification of gene location, positional gene cloning, comparative 

mapping and marker assisted selection in plant breeding. The ability of markers to act as 

a landmarks leads us to genes of interest along the chromosome (Jones, et al. 1997). By 

using molecular marker maps, both qualitatively and quantitatively inherited traits can 

be mapped. 

A qualitative character is a trait that is controlled by a single gene with major 

phenotypic impact such as flower color in pea and some types of disease resistance in 

plants. There is little environmental effect on the phenotype that exhibits discrete 

variation. Therefore, mapping of such qualitative genes, which are inherited in a 

Mendelian manner, is very simple (Tanksley 1993, Jones, et al. 1997). In order to detect 

the location of the gene of interest on the molecular marker map, the mapping 

population must possess phenotypic variation for the desired tarit. The assumption is 

that if one or more of the markers and alleles at the gene locus have linkage between 

each other, they will segregate together. Finally, the location of the gene can be 

identified (Tanksley 1993, Jones, et al. 1997).  

Quantitative traits are controlled by more than one gene with great 

environmental effect. The locations of genes that contribute to the expression of a 

polygenic trait in the genome are called quantitative trait loci (QTL). Many 

agronomically important traits such as yield, plant height, stress tolerance, nutritional 

quality and antioxidant production are controlled by QTL with great environmental 

effect. In contrast to qualitative traits, quantitative traits show continuous phenotypic 

variation for the trait in question. Therefore, mapping QTLs is not as simple as mapping 

major genes. However, the development of a molecular linkage map makes it feasible to 

study quantitatively inherited complex traits (Tanksley 1993, Jones, et al. 1997, 

Tanksley and McCouch 1997). 
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QTL analysis of traits of interest involves several requirements. The first 

requirement is the development of an appropriate mapping population. The mapping 

population must exhibit sufficient polymorpism for both molecular markers and desired 

traits. Without any polymorphism among the progeny, a gene cannot be mapped. The 

best approach for enhancement of genetic variation in a population is to cross two 

parent lines that are divergent for the desired trait and also for markers. For this reason, 

use of interspecific populations is often preferred. The use of two cultivated lines as 

parents reduces variation because during domestication the variation among cultivated 

crops has been decreased dramatically and lower genetic variation reduces the 

combination of new and useful alleles in progeny (Tanksley and McCouch 1997). Thus, 

using a wild species as one of the parents is an effective way to get an appropriate 

mapping population (Tanksley 1993, Jones, et al. 1997, Kumar 1999). There are several 

types of populations available for QTL mapping. Some important ones are: F2 

populations, backcross (BC) populations, recombinant inbred lines (RIL) and double 

haploid lines (DHL). Each population has strengths and weaknesses. Figure 1.2 shows 

some population types that are used in mapping studies. 

 

 

 

 

 

 

 

 

 

Figure 1.2.   Commonly used population types in mapping studies. F2 population, recombinant  

inbred lines (RIL), backcross (BC), and double haploid lines (DHL) 
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Secondly, a complete molecular marker linkage map for the studied population 

must be developed as described above. The presence of linkage disequilibrium between 

alleles of the molecular markers and alleles of the QTL is essential for molecular 

mapping analysis. Linkage disequilibrium is the nonrandom association of alleles at 

different loci in a population (Tanksley 1993). Physical linkage of loci that are located 

on the same chromosome is the main source of linkage disequilibrium. Linkage 

disequilibrium is inversely proportional to the distance between two loci. That means 

closer loci, have higher linkage disequilibrium (Tanksley 1993). 

Unlike qualitative traits, quantitative traits controlled by polygenes have 

continuous phenotypic distribution in a population. Thus, QTL mapping relies on 

different statistical strategies including analysis of variance (ANOVA) and linear 

regression analysis. These statistical analyses can reveal significant associations 

between markers and traits, the approximate number of loci that affect the trait, the 

average gene action along with the level of interaction between polygenes and also 

between environments (Tanksley 1993). 

The simplest way to detect QTL is to analyse the data using one marker at a 

time. One fundamental example is giving in Table 1. In this approach, firstly all 

polymorphic markers, these are Marker 1 and Marker 2 in this example, are tested on all 

individuals of the mapping population. Then the population is genotypically divided 

into three groups (homozygous like parent A, homozygous like parent B and 

heterozygous) based on each marker genotype. The phenotypic mean for the desired 

trait, in the example the trait is plant yield, is calculated for each genotypic group. 

Lastly, the association between marker and variation for yield is determined by testing 

significant differences among the means (ANOVA is used). If there is a significant 

difference among the phenotypic means for a marker, it can be said that this marker is 

linked to QTL for yield (Table 1.1).  
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Table 1.1. Basic strategy for QTL identification. 

Marker  Genotype  Mean Yield Conclusion  

 

Marker 1 

AA 50 No significant difference 

among  means, no yield 

QTL linked to marker 1  
AB 51 

BB 48 

 

Marker 2 

CC 80 Significant difference 

among means, yield QTL 

linked to marker 2 

CD 60 

DD 40 

  

1.4. Application of QTL Mapping 

 

Before construction of molecular marker maps, it was believed that quantitative 

traits were controlled by several genes that contribute equally to the expression of  the 

trait in question. However, QTL studies have revealed that this assumption is not true. 

Polygenic traits are controlled by a large number of loci that each possess weak or 

strong effects on the final phenotypic value of the trait (Tanksley and McCouch 1997). 

Thus, to find a marker tightly linked with a gene that has a large effect on the trait 

allows marker assisted selection in plant breeding and map-based cloning of this gene.         

Marker Assisted Selection (MAS) is based on the concept of the presence of an 

association between the marker and the gene of interest. If they are tightly linked to 

each other the possibility for the marker and locus to be transmitted together to the 

progeny will be very high due to low recombination frequency. Thus, screening of the 

population with a marker linked to the desired trait makes it feasible to select 

individuals that have the desired traits without phenotypic characterization . In addition, 

MAS can also be used for negative selection which means that undesired traits can be 

eliminated in the population. Conventional breeding processes require dramatically 

more time, labour and space. In conventional breeding, when two lines are crossed 

thousand of progeny that contain both desired and undesired alleles are formed. 

Therefore, the selection of progeny that possess the traits of interest is extremely 

difficult. MAS is an alternative way to overcome these obstacles. In contrast to 

conventional breeding, MAS does not require a completely mature plant, thereby 
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selection can be done at the seedling stage with a higher efficiency of selection. By 

doing this, requirements for time, space and labour are greatly decreased (Kumar 1999). 

Map-based cloning is a powerful technique for isolation of a gene of interest. As 

opposed to other gene cloning strategies, map-based cloning does not require prior 

knowledge about the gene products (Tanksley and Nelson 1996, Kumar 1999). The 

major necessity for map-based cloning is knowledge about the chromosomal location of 

the gene. Therefore, the identification of markers that are tightly linked to the desired 

gene is the first step in the map-based cloning strategy. If the gene region is sufficiently 

saturated with markers, the gene can be cloned by chromosome walking or chromosome 

landing. Production of a genetic library that is formed via cloning of large fragment of 

genomic DNA to yeast artificial chromosomes (YACs) or bacterial artificial 

chromosomes (BACs) makes chromosome walking possible to identified the exact 

location of the desired gene (Tanksley and Nelson 1996, Jones, et al. 1997). By 

hybridization with appropriate probes, the YAC or BAC clones that carry the markers 

linked to the desired gene can be identified. Analysis of the overlapping clones allows 

identification of the most likely position of the target gene (Kumar 1999). Finally, 

sequence and/or complementation analysis are used to confirm that the correct gene has 

been isolated. 
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CHAPTER 2 

 

A�TIOXIDA�TS 

 

2.1. Free Radicals and Antioxidants   

 

Recently, there is convincing evidence of a link between diet and human health. 

Therefore, there is great interest about food, food components and the positive effects of 

these components that improve health. Many reports demonstrate that fruits and 

vegetables contain some basic nutritives as well as biologically important substances, 

such as, vitamins, minerals and antioxidant components that have benefical effects on 

human health (Jones 2002, Rodriguez, et al. 2006). Since plants are rich in many types 

of vitamins and phytochemicals, high consumption of plant products may decrease the 

risk of several diseases such as atherosclerosis, cardiovascular diseases and many types 

of cancer (Yao, et al. 2004, Podsedek 2007). For that reason, in addition to 

improvement of agronomically important traits (yield, disease resistance, size, etc.), 

enhancement of the nutritional content of fruits and vegetables is now favored among 

plant breeders for improvement of human life expectancy. 

Antioxidants are capable of inhibiting free radical formation and protecting 

organisms against oxidative stress-mediated damage (Nordberg and Arner 2001, 

Somogyi, et al. 2007). Therefore, antioxidants are vital for maintaining an organism’s 

health and well-being. To appreciate the importance of antioxidant defense systems, it is 

essential to understand how free radicals are formed and how they damage cellular 

components in organisms. 
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2.2. Free Radicals  

 

A free radical is any electrically charged atom, molecule or compound that contains 

one or more unpaired electrons. An unpaired electron is one that occupies an atomic or 

molecular orbital by itself. Because of their unpaired electron, free radicals are very 

unstable and reactive and seek out and pull electrons from other substances to make a 

new pair. Although pairing of electrons causes a free radical to become neutralized, this 

process initiates a chain reaction that results in formation of new free radicals (Halliwell 

2006). Free radicals have many harmful effects on biologically important 

macromolecules such as DNA, lipids and proteins. They may disturb the normal 

structures and functions of these cellular components. Therefore, the presence of a high 

level of free radicals in living cells may contribute to a variety of disorders in both 

animals and plants. In animals, free radicals are major contributors to ageing and many 

of the degenerative diseases of ageing, including cardiovascular disease, many types of 

cancer, cataracts, age-related immunodeficiencies and degenerative diseases of the 

nervous system. In plants, free radicals may be responsible for membrane leakage, 

senescence, chlorophyll destruction and thereby decrease photosynthesis and yield 

(Percival 1998, Vichnevetskaia and Roy 1999, Devasagayam, et al. 2004, Singh, et al. 

2004). There are many types of free radicals in biological systems, but radicals that are 

derived from oxygen and nitrogen represent the most important classes. These are called 

reactive oxygen species (ROS) and reactive nitrogen species (RNS) (Percival 1998, 

Devasagayam, et al. 2004).   

 

Oxygen is essential to all aerobic organisms for efficient energy production and 

survival. However, when living things are exposed to high oxygen concentrations they 

suffer from oxygen toxicity. Oxygen has two unpaired electrons, therefore it is a kind of 

free radical. Oxygen can also be converted to more reactive forms which are called 

reactive oxygen species (ROS). ROS is a term that includes all reactive oxygen-

containing molecules, including free radicals (Percival 1998). The most important ROS 

are the hydroxyl radical (HO•), the superoxide anion radical (O2
•-), hydrogen peroxide 

(H2O2), nitric oxide radical (NO), singlet oxygen (1O2) and various lipid peroxides 

(Nordberg and Arner 2001, Halliwell 2006).  
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The superoxide anion radical (O2
•-) can be generated by one electron reduction of 

molecular oxygen or one electron oxidation of hydrogen peroxide (Reaction 1). 

Formation of O2
•-  occurs spontaneously during normal aerobic respiration in the 

mitochondria. O2
•- is also produced by reactions catalyzed by enzymes such as xanthine 

oxidase, lipoxygenase and the NADPH-dependent oxidase of phagocytic cells 

(Nordberg and Arner 2001, Halliwell 2006). 

 

• O2                                                   O2
•- (superoxide anion)   Reaction 1 

Hydrogen peroxide (H2O2) is formed by two electron reduction of molecular 

oxygen (Reaction 2). There is no unpaired electron in H2O2 orbitals, for that reason it is 

not a free radical. In spite of the fact that it is not a radical, it is a very crucial ROS 

because of its stability, ability to penetrate biological membranes and involvement in 

intracellular signaling. H2O2 also has an important role as an intermediate molecule in 

formation of hypochlorous acid (HOCl) and the hydroxyl radical which are both highly 

reactive free radicals. H2O2 is also produced as a result of normal functions of some 

enzymes, such as xanthine oxidase and amino acid oxidases (Nordberg and Arner 2001, 

Halliwell 2006).  

 

• O2 + 2H+
                                               H2O2  (hydrogen peroxide)  Reaction 2 

The hydroxyl radical (HO•) is the most reactive free radical due to its highly 

unstable structure. It can attack any biological molecules that are in its vicinity. 

Therefore, it causes more damage to biological systems than other ROS. Hydroxyl 

radicals are produced as a result of ionizing radiation and also from H2O2 via the Fenton 

reaction. The Fenton reaction is catalyzed by transition metals such as Fe2+ and Cu+ 

(Reactions 3-4) (Nordberg and Arner 2001). 

• O2
•- + Fe3+/Cu2+                       O2 + Fe2+/Cu+   Reaction 3 

• H2O2 + Fe2+/Cu+                   OH- + HO• + Fe3+/Cu2+  Reaction 4 

 

e- reduction 

2e- reduction 
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The nitric oxide radical (NO) has one unpaired electron, therefore like the 

superoxide anion radical, it is not highly reactive. However, when concentrations of 

both NO and O2
•- increase in the cell, the two can combine with each other to generate 

another toxic reactive oxygen species known as peroxynitrite (OONO-) (Reaction5). 

Peroxynitrite causes lipid peroxidation and nitration of tyrosyl hydroxyl groups of 

proteins that are located in the membrane (Nordberg and Arner 2001). 

• O2
•- +  NO                       OONO-  (peroxynitrite)   Reaction 5 

ROS are generated in a number of ways in organisms as a consequence of 

normal metabolic processes or as a result of environmental effects. The main source of 

ROS in organisms is mitochondria. In normal aerobic respiration, four electrons are 

transferred to molecular oxygen through the electron transport system (ETS) in order to 

reduce molecular oxygen to water. But during these reactions many types of ROS are 

generated. For example, the major site of superoxide radical formation is in the 

mitochondria. The chloroplast is another source of ROS in plants due to its high energy 

reactions and high oxygen concentration. Phagocytes are immune cells that kill bacterial 

and viral pathogens and also degrade foreign proteins via production of superoxide 

anions, hydrogen peroxide and hydroxyl radicals. However, after decomposition of 

phagocytes these ROS leak into the body plasma. Another way that ROS may be 

formed is xenobiotic metabolism; which is required for detoxification of toxic 

substances such as drugs and pesticides (Percival 1998). 

Environmental factors may also contribute to formation of ROS. Cigarette 

smoke is a source of a large amount of ROS, it contains nitric oxide and nitrogen 

dioxide that are known as active oxidants (Devasagayam, et al. 2004). Environmental 

pollutants, certain drugs, pesticides, anaesthetics, industrial solvents, ionizing radiation 

such as X-rays and γ-rays, and ultraviolet (UV) light also increase formation of free 

radicals (Madhavi, et al. 1996). 

As previously mentioned, ROS are highly reactive molecules and tend to be 

harmful for many organic molecules including DNA, lipids and proteins which have 

crucial roles in biological systems. Lipid peroxidation is one of the most important 

issues in redox biology. Lipids containing polyunsaturated fatty acids (PUFAs) are 

prone to be oxidized by ROS due to their multiple double bonds (Reactions 6-7). 

Peroxidation of PUFAs results in formation of peroxide and many other toxic 
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byproducts that have higly deleterious effects on both the structure and function of the 

cell membrane. ROS can also oxidize cholesterol to cholesterol oxide and low density 

lipoproteins (LDL) that are associated with atherosclerosis and cardiovascular diseases 

(Nordberg and Arner 2001, Ferrari and Torres 2003, Devasagayam, et al. 2004). In 

addition to ROS, transition metals such as Fe2+ and Cu+ can also oxidize lipids 

(Reaction 8-9). As a result of these oxidation reactions, alkoxyl (LO•) and peroxyl 

(LOO•) radicals, which lead to loss of membrane integrity, are formed (Madhavi, et al. 

1996, Halliwell 2006). 

• LH + HO•                L•  (Lipid radical) + H2O   Reaction 6 

• L• + O2                       LOO•  (Peroxyl radical)    Reaction 7 

• LOOH + Fe2+/ Cu+                 Fe3+/ Cu2+ + LO• + OH-  Reaction 8   

• LOOH + Fe3+/ Cu2+                 Fe2+/ Cu+ + LOO• + H+  Reaction 9  

The ability of ROS to react with DNA makes them very dangerous or even lethal for 

all organisms. ROS, especially HO•, have been shown to react with DNA. The initial 

attack results in several DNA alterations, such as cleavage of DNA, DNA-protein cross 

links and purine oxidation. Unless DNA repair systems are able to regenerate DNA, 

these DNA alterations may cause mutation along with a high incidence of cancer, 

(Percival 1998, Nordberg and Arner 2001, Singh, et al. 2004). Another issue that makes 

ROS important is that they also damage mitochondrial DNA whose activity is thought 

to be associated with ageing (Nordberg and Arner 2001).      

Interaction of ROS with amino acid residues, especialy sulfur or selenium-

containing amino acid residues, of proteins can cause loss of protein function and 

inactivated proteins that are degraded by proteolytic enzymes. Current research has 

revealed that cataract formation may stem from alteration of the lens proteins by ROS 

molecules. ROS cause the lens to lose its transparency (Percival 1998, Nordberg and 

Arner 2001).  

Despite their negative impacts, some level of ROS is beneficial for living things. For 

example, production of ROS molecules (O2
•-, H2O2, HO•) in phagocytes helps an 

organism to kill infectious bacteria and viruses or to denature foreign antigens. They are 

also responsible for apoptosis of defective cells. Another positive function of ROS is 
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that they have important roles in signal transduction by altering the conformation or 

activity of all sulphydryl-containing molecules and also in the formation of regulatory 

enzymes including cyclo-oxygenases and lipoxygenases. Finally all aerobic organisms 

need ROS for efficient energy production, they have crucial functions in production of 

ATP from ADP via oxidative phosphorylation (Nordberg and Arner 2001).   

In recent years, several studies have indicated that accumulation of high 

concentrations of free radicals in humans is associated with an increased risk of a 

number of diseases that were previously mentioned. This relationship can be explained 

by ‘oxidative stress’. In a normal cell, there is an appropriate free radical and 

antioxidant balance that is maintained by the antioxidant defense systems. However, 

when this balance shifts towards the free radical as a consequence of high production of 

ROS or loss of antioxidants, organisms are exposed to oxidative stress. It has been 

shown that oxidative stress has a role in over 100 types of human diseases and in ageing 

(Devasagayam, et al. 2004).    

The problem with ROS molecules is that high concentrations of them are dangerous 

for living things, because of their ability to damage cell components. Fortunately, 

antioxidants help to restore a balance of ROS. 

 

2.3. Antioxidants 

 

An antioxidant is a substance that is capable of delaying or inhibiting oxidation 

processes caused by free radicals. If it were not for antioxidant defence systems, the 

balance between pro-oxidant and antioxidant would be shifted in favour of free radicals. 

As a result, oxidative stress threatens the health and survival of organisms. Fortunately, 

antioxidant compounds effectively help maintain this balance and protect organisms 

from oxidative stress-mediated damages. Thus, antioxidants decrease the risk of a 

number of diseases that are associated with oxidative stress (Percival 1998). 

There are numerous types of molecules that play a role in the antioxidant 

defence system; therefore, antioxidants can be classified in different ways. One criterion 

for antioxidant classification is based on their solubility: i) water-soluble antioxidants 
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and ii) lipid-soluble antioxidants. Another classification of antioxidants depends on their 

origin: i) endogenous antioxidants, which are internally synthesized by an organism and 

ii) exogenous antioxidants, which are obtained by an organism from its diet 

(Vichnevetskaia and Roy 1999). Some researchers have also divided antioxidants 

according to their enzymatic functions into two groups: i) enzymatic antioxidants and ii) 

non-enzymatic antioxidants (Somogyi, et al. 2007).  Some of the antioxidants that fall 

into each of these groups are described below. 

 

2.3.1. Enzymatic Antioxidants 

 

Organisms that are exposed to the deleterious impacts of oxidative stress have 

inevitably envolved some defence systems against ROS to maintain their well-being. 

The endogenous enzymatic antioxidants are primarily defence systems that are 

responsible for scavenging or quenching of ROS in living systems. The most important 

enzymatic antioxidants are superoxide dismutase (SOD) (E.C.1.15.1.1), catalase (CAT) 

(1.11.1.6), and glutathione peroxidase (GPx) (1.11.1.9). All of these enzymes have one 

thing in common: they all require metal cofactors such as iron, copper, manganese, zinc 

and selenium for optimum catalytic activity (Nordberg and Arner 2001).    

Among the antioxidant enzyme systems, superoxide dismutase (SOD) 

(E.C.1.15.1.1) is the first line of defense that is responsible for dismutation. The major 

function of SOD in organisms is to metabolize O2
•- to H2O2 (Reaction 1). SOD enzymes 

are members of a family of metalloenzymes and are present in virtually all aerobic 

organisms. Eukaryotic cells contain a Cu/Zn-containing form of SOD in their cytosol 

and in the mitochondrial intermembrane space while the Mn-containing form is located 

in the mitochondrial matrix. In addition to these two forms, plants also have a Fe-

containing SOD in the chloroplast. Bacteria have a wide variety of SOD types, such as 

Mn, Fe, Cu, Ni and Zn-containing SOD forms (Nordberg and Arner 2001, Halliwell 

2006). Regardless of the metal cofactor that the SOD contains, all SODs catalyze the 

following reaction: scavenging of O2
•-. Mitochondria are the main source of O2

• due to 

leakage of electrons from the respiratory chain. 
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• 2O2
•- + 2H+                  H2O2 + O2    Reaction 1 

Catalase (CAT) (1.11.1.6) is another widely distributed antioxidant enzyme that 

contains a heme group in its structure. Virtually all catalase enzymes are located in 

peroxisomes, where catalase converts H2O2 to H2O and molecular O2 (Reaction 2). By 

catalyzing this reaction, catalase prevents the formation of the hydroxyl radical, the 

most dangerous ROS, via the Fenton-reaction (Nordberg and Arner 2001). Catalase 

catalyzes the following reaction: 

 

• 2 H2O2                    2H2O + O2     Reaction 2 

Organisms contain several glutathione peroxidase (GPx) (1.11.1.9) enzymes.  

All of them contain selenocysteine, an unusual amino acid. Selenocysteine is an analog 

of cysteine that contains selenium in place of sulfur. Antioxidant activity of GPx stems 

from reduction of H2O2 and other peroxides using glutathione as a substrate (Reaction 

3) (Nordberg and Arner 2001).  

• LOOH + 2GSH                  LOH + GSSH + H2O  Reaction 3 

Antioxidant enzyme systems are major defense mechanisms against free radical-

mediated cell damage in biological systems. However, these enzyme systems are not 

sufficient for efficient protection of organisms from free radicals. In addition to these 

systems, other biological compounds such as vitamin C, vitamin E, carotenoids and 

phenolics are important in antioxidant activity. Although these are non-enzymatic 

antioxidants, contribution of these antioxidant types to an organism’s health should not 

be underestimated. In the next section, non-enzymatic antioxidant will be discussed. 

 

2.3.2. �on-Enzymatic Antioxidants 

 

Vitamin C or L-Ascorbic acid is an α-keto lactone with an almost planar six-

membered ring (Figure 2.1). Vitamin C is the simplest vitamin based on its chemical 

SOD 

CAT 

GPx 
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structure, therefore, it was the first isolated and characterized vitamin. Synthesis of 

vitamin C in organisms is very common. Plants especially synthesize great amounts of 

vitamin C in their leaves and fruits. Also most mammals, with the exception of humans 

and other primates, guinea pigs and fruit bats, produce vitamin C for their well-being. 

Vitamin C synthesis requires glucuronic acid and galactonic acid that are derived from 

glucose. However, because humans and other primates lack gulono-γ-lactone oxidase 

enzymes, they cannot oxidase L-gulonolactone to 2-keto-L-gulonolactone which is then 

spontaneously converted to L-ascorbic acid.  Therefore these organisms must obtain a 

sufficient amount of vitamin C through their diet (Madhavi, et al. 1996).  

Vitamin C is one of the most important antioxidants with an electron reduction 

potential of + 0,28V. Vitamin C is an electron donor and therefore a reducing agent. 

Due to its water-soluble nature, it can react rapidly with ROS and protect 

macromolecules from the degenerative effects of oxidative stress. Vitamin C can 

detoxify HO•, O2
•-, peroxyl radicals and also scavenge singlet oxygen. After these 

oxidation-redution reactions, vitamin C donates its electrons to ROS and quenches 

them. In so doing, ascorbic acid becomes an ascorbyl radical that is less reactive. Then 

this ascorbyl radical can be reduced back to ascorbate or oxidized to form 

dehydroascorbic acid (Figure 2.1). Dehydroascorbic acid is unstable at physiological pH 

and it is degraded spontaneously to 2,3-diketo-gulonic acid. To prevent this 

degradation, dehyroascorbic acid can be reduced back to ascorbate by GSH or NADPH 

from the hexose monophosphate shunt (Madhavi, et al. 1996).   

The existence of a mechanism for recycling vitamin C demonstrates that some 

level of vitamin C is essential for organisms. Vitamin C is essential because, unlike 

other water-soluble vitamins that act as coenzymes, vitamin C has a role in enzymatic 

reactions as a co-substrate. While vitamin C is a good radical scavenger antioxidant, it 

also plays a vital role in regeneration of lipid-soluble vitamin E, an antioxidant that 

reduces ROS produced in lipid membranes and lipoproteins. As a result, vitamin C can 

be considered as both a direct and indirect antioxidant (Madhavi, et al. 1996).  
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Under certain conditions vitamin C can act as a pro-oxidant that helps in the 

formation of ROS. The pro-oxidant activity of vitamin C is derived from its ability to 

reduce transition metals, Fe3+ or Cu2+. At the expense of molecular oxygen, these 

transition metals rapidly catalyze oxidation of vitamin C (Reactions 1
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Vitamin E is a major lipid-soluble antioxidant that can effectively prevent lipid 

peroxidation in the cell membrane. Vitamin E can be classified into two groups based 

on their side chain structure. The first group of vitamin E is tocopherols, including the

α, β, γ and δ types, which contain a phytol side chain. Similar to tocopherols the second 

group of vitamin E known as tocotrienols have the same structure except that they have 
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four types: α, β, γ and δ tocotrienols (Figure 2.2). Vitamin E is widely distributed 
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Among the eight isomers of vitamin E, the most important is α

because of its high antioxidant activity in vivo. Tocopherols are hydrophobic molecules, 

therefore they are only found in lipid membranes and lipoproteins. For this reason, they 

play significant roles in protection of the cell membrane against ROS mediated damage. 

The antioxidant nature of tocopherols stems from the hydrogen atom of the phenolic 

hydroxyl group on their chromonal ring. These hydroxyl groups are labile, therefore 

they can easily react with lipid peroxy and alkoxy radicals in order to reduce them. 

known as the most efficient chain-breaking antioxidant

they inhibit lipid peroxidation by scavenging chain propagation radicals. By doing this, 

tocopherols protect cell membranes against oxidative damage (Vichnevetskaia

). They also have the ability to quench O2
•- and singlet oxygen. Vitamin E exhibits 

protective effects against coronary heart disease due to inhibition of oxidation of low 

density lipoproteins (LDL) and PUFAs (Madhavi, et al. 1996). 

The function of vitamin E is represented in the following reactions (Reactions 1

8). Autooxidation of a lipid starts when a hydroxyl radical takes a hydrogen atom from 

the lipid molecule (LH). This reaction generates a lipid radical (L•) and water. Then the 

lipid radical reacts with molecular oxygen to form another radical that is called a 

). The peroxyl radical can remove a hydrogen atom from another 

lipid molecule and produce a new free radical and hydroperoxide (LOOH

called propagation of a chain reaction of lipid peroxidation (Madhavi,
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basic structure of tocopherols (a) and tocotrienols (b) 

Among the eight isomers of vitamin E, the most important is α-tocopherol 

. Tocopherols are hydrophobic molecules, 

therefore they are only found in lipid membranes and lipoproteins. For this reason, they 

play significant roles in protection of the cell membrane against ROS mediated damage. 

tems from the hydrogen atom of the phenolic 

hydroxyl group on their chromonal ring. These hydroxyl groups are labile, therefore 

they can easily react with lipid peroxy and alkoxy radicals in order to reduce them. 

breaking antioxidants because 

they inhibit lipid peroxidation by scavenging chain propagation radicals. By doing this, 

Vichnevetskaia and Roy 

and singlet oxygen. Vitamin E exhibits 

protective effects against coronary heart disease due to inhibition of oxidation of low 

reactions (Reactions 1-

8). Autooxidation of a lipid starts when a hydroxyl radical takes a hydrogen atom from 

) and water. Then the 

er radical that is called a 

). The peroxyl radical can remove a hydrogen atom from another 

LOOH). This step is 

, et al. 1996). 

b 
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• Initiation 

• LH + HO•                L• + H2O     Reaction 1 

• Reaction of radical with oxygen 

• L•+ O2                       LOO•      Reaction 2 

• Propagation 

• LOO•+ LH                 L· + LOOH     Reaction 3 

These lipid peroxidations cause a chain oxidation reaction that will continue 

throughout the fatty material until stopped by an antioxidant. Vitamin E is the main 

lipophilic antioxidant that inhibits this chain reaction. 

• Antioxidant reaction 

• LOO• + EOH                EO• + LOOH    Reaction 4 

When tocopherol interacts with peroxyl radical, it donates one of its hydrogen atoms 

to the peroxyl radical and reduces it to hydroperoxide. After this reaction tocopherol is 

converted to a tocopheroxyl radical that is more stable than peroxyl radical and is a 

weak free radical. Regeneration of the inactive tocopheroxyl radical to active tocopherol 

is carried out by vitamin C and GSH. By accepting one hydrogen from vitamin C or 

GSH, the inactive tocopherol molecule returns to its active form. Also oxidized vitamin 

C and GSH can be reduced back to their normal state thanks to NADPH. This 

synergistic effect between vitamin E and vitamin C increases the ratio of antioxidant 

activity. Figure 2.3 shows the synergistic effect of vitamin E and vitamin C (Madhavi, 

et al. 1996). 

• Regeneration 

• EO•+ C               EOH + C•      Reaction 5  

• C•+ NADPH                C + NADP     Reaction 6 

• EO• + 2GSH                EOH + GSSG    Reaction 7 

• GSSG + NADPH               2GSH + NADP    Reaction 8 
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Figure 2.3. Synergistic effect of tocopherol and ascorbic acid 

 

Carotenoids are lipid-soluble pigments that contribute to the yellow, orange and 

red colour of fruits and vegetables. Carotenoids are also distributed in animals such as 

in egg yolk, salmon and crustaceans. The major carotenoids that are found in animals 

are β-carotene, lutein, lycopene, β-cryptoxanthin and α-carotene. Carotenoids are 

synthesized from acetyl coenzyme A via a series of reactions in plants and 

microorganisms. Several carotenoids, especially β-carotene, are precursors of vitamin A 

(Madhavi, et al. 1996).  

Carotenoids are accessory pigments in addition to chlorophyll in plant tissues. 

Carotenoids are very effective quenchers of singlet oxygen and peroxyl radicals. This is 

related to the number of double bonds they contain. Carotenoids are in the class of 

lipophilic antioxidants, therefore, carotenoids are especially important in protecting 

isolated lipid membranes from peroxidation, and LDL-containing lipids from oxidation 

(Madhavi, et al. 1996).  

Carotenoids with 9, 10, and 11 conjugated double bonds are better quenchers of 

singlet oxygen. Carotenoids can absorb the energy from the singlet oxygen, which is 

then distributed over all the single and double bonds in the molecule. After that, the 

LOO LOO

H+ 

Tocopheroxyl radical   

Ascorbic acid Dehydroascorbic acid  

Tocopherol   

H+ 
Lipophilic   

Hydrophilic  
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energized carotenoids release the absorbed energy in the form of heat, thereby they 

return to their normal energy level. For that reason, carotenoids are not destroyed during 

the quenching of free radicals and can react with another singlet oxygen (Madhavi, et al. 

1996). 

Lycopene is one of the most important types of carotenoids. Lycopene is a lipid 

soluble pigment and mostly founds in tomato skin, watermelon and grapefruit. 

Lycopene is one of the strongest antioxidants, due to the abundance of conjugated 

bonds in its structure. Recent studies have shown that lycopene is a powerful singlet 

oxygen quencher among the carotenoids.  Lycopene also can quench peroxyl radicals, 

and inhibit lipid peroxidation and the oxidation of DNA and low-density lipoprotein 

(LDL). It is also reported that lycopene can decrease the incidence of prostate cancer 

and cardiovascular diseases in humans (Arab and Steck 2000).  

Phenolic compounds are the largest category of secondary metabolites that are 

produced by plants and are common in fruits and vegetables (Lule and Xia 2005, 

Podsedek 2007). They contribute to plants’ taste, aroma and color. Phenolics are 

characterized by at least one aromatic ring that contains one or more hydroxyl groups in 

their structure. Flavonoids, phenols and phenolic acids are the most important phenolic 

compounds (Sakihama, et al. 2002).  

Phenolic compounds are constitutively synthesized by virtually all plants. 

However, biotic and abiotic stresses; such as UV radiation, high-light condensation, low 

temperature, wounding and pathogen attack; enhance the accumulation of phenolics in 

plants (Sakihama, et al. 2002). Phenolics protect plants against these stress conditions. 

Recent studies have reported the antimutagenic, anticarcinogenic, antiinflammatory, 

antiviral and antimicrobial activity of phenolic compounds (Sakihama, et al. 2002, Lule 

and Wenshui 2005). 

Phenolics are classified as water-soluble antioxidants whose activity greatly 

decreases the negative effect of ROS. The level of antioxidant activity of phenolic 

compounds depends on the number and position of their hydroxyl groups on their 

aromatic ring and/or rings. Due to their structure, the hydroxyl groups of phenolics can 

easily donate their H+ to ROS in order to reduce them (Podsedek 2007). Phenolics have 

the ability to scavenge O2
•-, H2O2 and HO• radicals and to protect organisms from their 

harmful effects (Sakihama, et al. 2002). 
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Flavonoids are one of the major categories of phenolic compounds and are 

commonly distributed in the epidermal cells of plant’s leaves, flowers, fruits and pollen 

(Vichnevetskaia and Roy 1999). Flavonoids are characterized by a C6-C3-C6 carbon 

skeleton structure. They are synthesized from phenylalanine. Flavanones, flavones, 

isoflavonoids and anthocyanins are particularly common types of flavonoids (Sakihama, 

et al. 2002) (Figure 2.4).  

Flavonoids are capable of chelating transition metals and scavenging the 

superoxide anion by donating their hydrogen atom. The antioxidant activity of 

flavonoids is determined by the position and degree of hydroxylation of the B ring. The 

presence of hydroxyl groups at the 3’, 4’ and 5’ positions on the B ring increases their 

antioxidant activity. Degradation of vitamin C is also prevented by flavonoids 

(Vichnevetskaia and Roy 1999). It was revealed that flavonoids have pharmacological 

activities such as the ability to scavenge radicals, provide resistance to pathogens, and 

provide anticarcinogenic and antiallergic activities (Yao, et al. 2004).  

 

 

 

Figure 2.4. Basic structure of flavone, flavanone and isoflavone 

 

2.4. Functional Foods 

 

Foods are essential for human survival and plant-originated foods are located in 

the center of the human diet. However, statistical analysis shows that the world 

population will be 9 billion by the year 2050, a 50% increase in the next 50 years, thus 

it will be a major problem to supply the food necessities of this rapidly expanding 

Flavone Flavanone Isoflavone 



 27

population (Clive 2001). In order to prevent starvation, agricultural production must 

expand faster than the human population; however, this is very difficult because of 

abiotic and biotic stresses. The world population reached 6 billion in 1999 and 1.3 

billion people of this total population are suffering from hunger (Clive 2001). In 

addition to hunger, it has been revealed that because of inappropriate dietary habits, 160 

million pre-school children suffer from malnutrition (Anderson and Cohen 2000).  

Recently scientific research has demonstrated that there is a strong relationship 

between food consumption and disease incidence. Since then, the term ‘functional food’ 

has become popular among scientists and consumers. Functional foods are any food that 

prevents or reduces the risk of diseases, regulates physical and mental performance 

and/or slows down the aging process (Roberfroid 2000). Fruits and vegetables which 

provide a rich source of biologically active compounds including vitamins, antioxidants 

and minerals occupy a large part of the human diet. There are many reports about the 

positive impact of phytochemicals, especially antioxidants, on human well being. For 

example, flavonoids have the ability to inhibit tumor formation, formation of coronary 

heart disease and also have antiviral activity (Yao, et al. 2004, Podsedek 2007). Vitamin 

C has an important role as an enzyme cofactor and free radical scavenger (Madhavi, et 

al. 1996, Podsedek 2007). Vitamin E and carotenoids also decrease the incidence of 

cardiovascular diseases and many types of cancers, especially the preventive feature of 

lycopene, red colored carotenoid, aginst prostate cancer is well studied (Madhavi, et al. 

1996, Bramley 2000, Rodrigez, et al. 2006, Podsedek 2007). 

There is growing interest in improvement of the nutritional content of crops 

either by conventional breeding methods or by transgenic techniques. One of the most 

important transgenic studies that has been done for nutrient fortification is The Golden  

Rice Project. Rice represents a major contribution in the diet of developing countries. 

However, because of a deficiency of vitamin A in rice, approximately 500.000 children 

become blind and also die during childhood in these countries. In this transgenic 

approach, the provitamin A gene, which is responsible for production of vitamin A, was 

incorporated into rice endosperm which lacks this gene (Ye, et al. 2000, Al-Babili and 

Beyer 2005).  
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2.5. Tomato 

 

Tomato, Lycopersicon esculentum (synonym: Solanum lycopersicum), 2n=24, is 

the second most important member of Solanaceae or nightshade family with potato 

ranking first. The Solanaceae family possesses several economically important crops 

such as potato, tomato, pepper, eggplant and tobacco. Lycopersicon contains several 

wild and cultivated tomato species such as L.esculentum, L.hirsutum, L.peruvianum, 

L.penellii, L.pimpinellifolium and L.chmielewskii. The tomato is native to Central and 

South America and southern North America from Mexico to Peru (Bai and Lindhout 

2007). Tomato is one of the most economically important vegetable crops with over 4.5 

million ha produced worldwide (FAO 2004). Turkey ranks fourth in production of 

tomato with 9,854,877 metric tons while China ranks first with 32,540,040 metric tons 

(FAO 2006). Tomato has a significant role in the human diet including in Turkey. It is 

widely consumed fresh, cooked, preserved and as a source of processed foods like 

ketchap and paste.  

Because of its high production and consumption rate, plant breeders have great 

interest in improvement of agronomically important characters in tomato. External and 

internal fruit color, fruit shape, fruit weight, firmness, stem scar size, fruit locule 

number and fruit wall thickness are some of the most important traits that increase the 

value of tomato in the market place. However, like most traits in nature these characters 

are quantitatively inherited, thereby to improve these characters is much more difficult 

than for qualitatively inherited traits. But, as mention before, with the development of 

molecular marker technology, these difficulties have been minimized.  

Besides its horticulturally important fruit characters, consumers now have great 

interest in tomato’s nutritional content and its features that positively affect human 

health. Tomato fruit is a rich source of carotenes and it contains especially high amounts 

of lycopene and β-carotene. In addition, it is a good source of many types of vitamins 

such as vitamin A, vitamin C and vitamin E and also several types of minerals such as 

potassium and magnesium. Tomatoes are also rich in flavonoids, a type of phenolic 

compound (USDA Nutrient Data Laboratory 2008).   
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 There are many studies on the benefits of tomato on human health; for example, 

there are many reports about therapeutic effect of lycopene against prostate cancer 

(Madhavi, et al. 1996, Bramley 2000, Sapuntzakis and Bowen 2005). Tomato also 

includes some nutrients such as flavonoids that are associated with reduction of low 

density lipoprotein, thereby regular consumption of tomato decreases or inhibits the risk 

of cardiovascular diseases and coronary heart diseases (Bramley 2000, Willcox, et al. 

2003, Rein, et al. 2006). 

 

2.6. Goals of Study 

 

Our main purpose in this study was to identify genomic regions that have roles 

in controlling the antioxidant capacity and also agronomically important characters in 

tomato fruit. This was done by identifying QTLs for the nutritional quality traits: total 

water soluble antioxidant activity, vitamin C, total phenolic content, total flavonoid 

content and lycopene content and the agronomic traits: external and internal fruit color, 

fruit weight, firmness, fruit shape, stem scar size, fruit locule number and fruit wall 

thickness. After determination of genetic markers that were tightly linked with QTLs for 

these fruit characters, alleles related with nutritional and agronomic traits can be used 

for improvement of high quality new tomato hybrids with marker assisted selection.   
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CHAPTER 3 

 

MATERIALS A�D METHODS 

 

3.1. Plant Material 

 

The BC2F2 mapping population used in this project was developed by Sami 

Doğanlar by crossing Lycopersicon esculentum (syn: Solanum lycopersicum) (TA1166) 

as a recurrent parent with L.hirsutum (syn: S.habrochaites) (LA1223) as a donor parent 

for both antioxidant and agronomic traits. F1 hybrids were backcrossed to the recurrent 

parent in order to obtain a BC1F1 population, then BC1F1 individuals were backcrossed 

one more time with the recurrent parent to produce a BC2F1 population. The reason for 

backcrossing the F1 hybrids with the recurrent parent was to increase the amount of 

L.esculentum genome in the population. Lastly, to fix the population genotypes the 

BC2F1 individuals were selfed and a BC2F2 population was obtained (Figure 3.1). For 

this project, ten tomato plants from each of the 152 individuals of the BC2F2 population 

were planted in the field in Antalya by MULTĐ Tarım seed company in April 2007.  

 

3.2. Phenotypic Characterization 

 

In this study 13 health related and agronomically important traits were analyzed 

for QTL identification. The health related fruit traits were: total water soluble 

antioxidant activity, total vitamin C content, total phenolic content, total flavonoids 

content and lycopene content and were determined using biochemical assays. 

 

 



 31

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.1.   Development of BC2F2 mapping population by crossing L.esculentum (TA1166) 

and L.hirsutum (LA1223) 

 

 3.2.1. Sample Preparation for Antioxidant Traits Analysis   

 

For the evaluation of total water soluble antioxidant activity, vitamin C content, 

total phenolic compounds, flavonoids content and lycopene content, tomato fruits were 

harvested from ten plants for each line at the normal market stage in July 2007. After 

the fruits were washed, about one kilo of fruits of each sample were cut into pieces and 

well mixed. Then, tomato fruit mixtures were packed and stored at -20oC until 

biochemical analyses were performed. It has been reported that there is no significant 

difference in antioxidant content of fresh and frozen tomato fruits (Toor, et al. 2006). 

The tomato fruits were analyzed for total water soluble antioxidant activity, vitamin C 

content, total phenolic compounds, flavonoids and lycopene content as described below.  

All analyses were performed within four months of harvest. 

L.esculentum cv. TA1166 L.hirsutum LA1223 X 

(Recurrent Parent) (Donor Parent) 

X TA1166 F1 

BC1F1 Families 

TA1166 X BC1F1  

BC2F1 Families 

Self 

BC2F2 Families 



 

3.2.2. Determination 

 

For the antioxidant activity assay, approximately 200 g of fruit was 

homogenized with 100 ml cold distilled water for 2 min at low speed in a Waring 

blender equipped with a 1L double walled stainless steel jar at +4

extract was taken from the homogenate and diluted with 15 ml cold distilled water. 

resulting mixtures were homogenized for one minute by using a 

Homogenized samples were then filtered through 4 layers of nylon cloth into two 15 ml 

falcon tubes. The filtrates were centrifuged at 3000 x g for 10 min at +4

refrigerated centrifuge (E

a single 50 ml falcon tube after filtration through 3 layers of nylon cloth to get a clear 

filtrate. Tomato filtrate was kept on ice until it was used for measurement of total water 

soluble antioxidant activity. 

The total water soluble antioxidant activity of tomato fruits was measured 

spectrophotometrically (Shimadzu, 1700 UV Visible Spectrophotometer, Japan) using 

the ABTS [2,2’-azinobis

of Re et al. (1999). ABTS radical cation

nm. When this compound is reduced by antioxidant species its absorbance decreases. 

The ABTS radical cation stock solution was prepared by mixing 7

mM potassium persufate and was stored in the dark for 12

ABTS•+ stock solution was diluted with phosphate buffered saline (PBS) at pH 7.4 to 

adjust its absorbance to 0.700 (

tomato supernatant were mixed separately with 2 ml ABTS radical cation solution and 

decolorization of blue-green ABTS

6 min at 30ºC. Trolox (6

used as a standard for construction of a standard graph (Figure 3.2

repeated to give three replicates for each aliquot volume.  The results were calculated as 

area under the curve (AUC) and expressed as µmol Trolox/kg fresh weigh

fruits. To calculate AUC, the percent inhibition/concentration values for the extracts and

Trolox were plotted separately against the test periods (1, 3, 6 min) and the ratio of the 

areas of curves for extracts and Trolox was used to calculate 

Determination of Total Water Soluble Antioxidant A

For the antioxidant activity assay, approximately 200 g of fruit was 

zed with 100 ml cold distilled water for 2 min at low speed in a Waring 

blender equipped with a 1L double walled stainless steel jar at +4

extract was taken from the homogenate and diluted with 15 ml cold distilled water. 

tures were homogenized for one minute by using a 

Homogenized samples were then filtered through 4 layers of nylon cloth into two 15 ml 

falcon tubes. The filtrates were centrifuged at 3000 x g for 10 min at +4

(Eppendorf). After centrifugation, supernatants were merged into 

a single 50 ml falcon tube after filtration through 3 layers of nylon cloth to get a clear 

filtrate. Tomato filtrate was kept on ice until it was used for measurement of total water 

oxidant activity.  

The total water soluble antioxidant activity of tomato fruits was measured 

spectrophotometrically (Shimadzu, 1700 UV Visible Spectrophotometer, Japan) using 

azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid)] decolorizatio

of Re et al. (1999). ABTS radical cation (ABTS•+) is a free radical that absorbs at 734 

nm. When this compound is reduced by antioxidant species its absorbance decreases. 

The ABTS radical cation stock solution was prepared by mixing 7 mM ABTS with 

mM potassium persufate and was stored in the dark for 12-16 hours. Before use, the 

+ stock solution was diluted with phosphate buffered saline (PBS) at pH 7.4 to 

adjust its absorbance to 0.700 ( 0.02) at 734 nm. Then, 2.5, 5 and 7.5 µ

tomato supernatant were mixed separately with 2 ml ABTS radical cation solution and 

green ABTS•+ solution was kinetically monitored at 734 nm for 

Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic 

used as a standard for construction of a standard graph (Figure 3.2

repeated to give three replicates for each aliquot volume.  The results were calculated as 

area under the curve (AUC) and expressed as µmol Trolox/kg fresh weigh

fruits. To calculate AUC, the percent inhibition/concentration values for the extracts and

Trolox were plotted separately against the test periods (1, 3, 6 min) and the ratio of the 

areas of curves for extracts and Trolox was used to calculate the AUC value.
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of Total Water Soluble Antioxidant Activity 

For the antioxidant activity assay, approximately 200 g of fruit was 

zed with 100 ml cold distilled water for 2 min at low speed in a Waring 

blender equipped with a 1L double walled stainless steel jar at +4oC. Then, 10 g of 

extract was taken from the homogenate and diluted with 15 ml cold distilled water. The 

tures were homogenized for one minute by using a tissue crusher. 

Homogenized samples were then filtered through 4 layers of nylon cloth into two 15 ml 

falcon tubes. The filtrates were centrifuged at 3000 x g for 10 min at +4oC in a 

pendorf). After centrifugation, supernatants were merged into 

a single 50 ml falcon tube after filtration through 3 layers of nylon cloth to get a clear 

filtrate. Tomato filtrate was kept on ice until it was used for measurement of total water 

The total water soluble antioxidant activity of tomato fruits was measured 

spectrophotometrically (Shimadzu, 1700 UV Visible Spectrophotometer, Japan) using 

sulfonic acid)] decolorization assay 

+) is a free radical that absorbs at 734 

nm. When this compound is reduced by antioxidant species its absorbance decreases. 

mM ABTS with 2.45 

16 hours. Before use, the 

+ stock solution was diluted with phosphate buffered saline (PBS) at pH 7.4 to 

0.02) at 734 nm. Then, 2.5, 5 and 7.5 µl aliquots of 

tomato supernatant were mixed separately with 2 ml ABTS radical cation solution and 

+ solution was kinetically monitored at 734 nm for 

carboxylic acid) was 

used as a standard for construction of a standard graph (Figure 3.2). Each assay was 

repeated to give three replicates for each aliquot volume.  The results were calculated as 

area under the curve (AUC) and expressed as µmol Trolox/kg fresh weight of tomato 

fruits. To calculate AUC, the percent inhibition/concentration values for the extracts and 

Trolox were plotted separately against the test periods (1, 3, 6 min) and the ratio of the 

the AUC value. 



 

Figure 3.2.  Percent inhibition vs. concentration plot of Trolox standard at 1

used to measure the Area Under Curve (AUC)

 

3.2.3. Determination 

   

Vitamin C content of tomato was measured by

using 2,6-dicloroindophenol

prepared by homogenization of 100 g tomato with 115 ml acetic acid

acid extraction solution for 2 min at low speed in a Wa

Afterwards, 25 g of extract was taken from the homogenate and diluted to 100 ml with 

cold extraction buffer. Then

ml diluted sample was titrated against a 

tomato extract, the vitamin C content of three replicate samples was measured. 

titrator was calibrated using commercial L

as mg ascorbic acid/kg fw of tomato frui

 

 

 

 

Percent inhibition vs. concentration plot of Trolox standard at 1

used to measure the Area Under Curve (AUC)  

Determination of Vitamin C Content 

content of tomato was measured by AOAC 967.21 titrimetric method 

dicloroindophenol as reactive substance (Nielsen 1994). The extractions were 

prepared by homogenization of 100 g tomato with 115 ml acetic acid

acid extraction solution for 2 min at low speed in a Waring blender at 

Afterwards, 25 g of extract was taken from the homogenate and diluted to 100 ml with 

Then, each homogenate was passed through filter paper and 15 

titrated against a 2,6-dicloroindophenol dye solution. For each 

tomato extract, the vitamin C content of three replicate samples was measured. 

titrator was calibrated using commercial L-ascorbic acid and the results were expressed

as mg ascorbic acid/kg fw of tomato fruit. 
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Percent inhibition vs. concentration plot of Trolox standard at 1st, 3rd and 6th minutes 

AOAC 967.21 titrimetric method 

1994). The extractions were 

prepared by homogenization of 100 g tomato with 115 ml acetic acid-metaphosphoric 

ring blender at +4oC.  

Afterwards, 25 g of extract was taken from the homogenate and diluted to 100 ml with 

, each homogenate was passed through filter paper and 15 

dicloroindophenol dye solution. For each 

tomato extract, the vitamin C content of three replicate samples was measured. The 

ascorbic acid and the results were expressed 
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3.2.4. Determination of Total Phenolic Compounds 

 

The total phenolic content of tomato fruits was spectrophotometrically measured 

using Folin-Ciocalteau as a reactive reagent adapted from the method of Singleton and 

Rossi (1965). In this procedure, gallic acid was used for generation of a standard curve. 

Homogenates were prepared by blending 200 ml cold distiled water with 100 g tomato 

sample for two min at low speed in a Waring blender at 4oC. Then, 2.5 g homogenate 

was diluted with 20 ml cold distilled water and centrifuged at 3000 x g for 10 min at 

+4oC in a refrigerated centrifuge (Eppendorf). The clear supernatant was used for the 

determination of total phenolic content. For this, 2 ml of the supernatant was mixed 

with 10 ml 2 N (10%) Folin-Ciocalteu and incubated for 3 min, then 8 ml 0.7 M 

Na2CO3 was added. After 2 hours of incubation at room temperature, the absorbance of 

the reaction mixture was measured at 765 nm in a spectrophotometer (Shimadzu, 1700 

UV Visible Spectrophotometer, Japan). There were three replicates for each sample. 

The total phenolic content was expressed as gallic acid equivalents (mg/kg fresh 

weight) based on a gallic acid standard curve. 

 

3.2.5. Determination of Flavonoids Content 

 

The total flavonoids content of tomato fruits was spectrophotometrically 

measured using the method described by Zhishen et al.. (1999). In this procedure, 

epicatechin was used for generation of a standard curve. Tomato homogenates were 

prepared by blending 100 g tomato sample with 200 ml cold distilled water for two min 

at low speed in a Waring blender at 4oC. Then, 2.5 g homogenate was diluted with 20 

ml cold distilled water and centrifuged at 3000 x g for 10 min at +4oC in a refrigerated 

centrifuge (Eppendorf). Then, 1250 µl clear supernatant was used for the measurement 

of total flavonoids content. For this, 75 µl 5% NaNO2 was mixed with 1250 µl tomato 

supernatant and then the mixture was incubated for 5 min. After that, 75 µl 10% AlCl3 

was added to the mixture. After one minute, 0.5 ml 1 M NaOH and 0.6 ml distilled 

water were added to the reaction mixture and the absorbance was measured at 510 nm in 
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a spectrophotometer (Shimadzu, 1700 UV Visible Spectrophotometer, Japan). There 

were three replicates for each sample. The total flavonoids content was calculated based 

on an epicatechin standard curve (mg/kg fresh weight) (Figure 3.3). 

 

3.2.6. Determination of Lycopene Content 

 

Lycopene content of tomato fruits was evaluated by using the method developed 

by Sadler et al. (1990). In this assay, tomato homogenate was prepared by blending 100 

g tomato fruit with 200 ml cold distilled water for two min at low speed in a Waring 

blender at 4oC. Three replicate 3 g tomato homogenates were diluted with 50 ml 

hexane-acetone-ethanol (2: 1: 1; v: v: v) extraction buffer in a brown volumetric flask. 

Then, these extractions were shaken on a rotary mixer for 30 min at 150 rpm at 25ºC in 

the dark. After agitation, samples were transferred into separation funnels and 10 ml 

distilled water was added to the extract and the samples were left for 4 hours in the dark 

to separate polar and non-polar phases. Lycopene dissolved in the top, hexane layer. 

The top layer was taken and its absorbance was measured at 472 nm using a quartz 

cuvette in a spectrophotometer (Shimadzu, 1700 UV Visible Spectrophotometer, 

Japan). The lycopene content was expressed as mg/kg fresh weight based on a lycopene 

standard curve (Figure 3.4). 

 

 

 

 

 

 

 



 

Figure 3.3.   Calibration curve of 

flavonoid cont

 

 

Figure 3.4. Calibration curve of lycopene standard which was used for expression of total 

lycopene contents as lycopene equivalents

Calibration curve of epicatechin standard which was used for expression of total 

flavonoid contents as epicatechin equivalents 

Calibration curve of lycopene standard which was used for expression of total 

lycopene contents as lycopene equivalents 
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epicatechin standard which was used for expression of total 

  

Calibration curve of lycopene standard which was used for expression of total 
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3.2.7. Determination of Agronomically Important Traits 

 

Eight agronomically important fruit traits were visually scored, except fruit 

weight, for each progeny of BC2F2 population. These were external and internal fruit 

color, total fruit weight, fruit firmness, fruit shape, stem scar, locule number and fruit 

wall.  

External (EC) and internal fruit color (IC) were visually assessed for each line 

using a scale from 1 to 5 (1 = yellow or orange, 5 = most intense red). Fruit weight 

(FW) was determined by taking the average weight of 10 mature tomato fruits. Fruit 

firmness (FIRM) was measured by hand squeezing of ripe tomato fruits using a scale of 

1 to 5 (1 = soft, 5 = very firm). Fruit shape (FS) was determined by comparing the ratio 

of fruit length to fruit width using a scale from 1 to 5 (1 = round, 5 = elongated).  Fruit 

stem scar size (SSC) was measured based on fruit stem scar diameter (1 = small, 5 = 

very large). Locule number (LN) of tomato fruit was determined by counting the locules 

of tomato fruit after transversely cutting the fruit. Fruit wall (WALL) or pericarp 

thickness was also determined using transverse sections of fruits using a scale from 1 to 

5 (1 = thin, 5 = very thick). 

 

3.3. Genotypic Characterization 

 

3.3.1. D�A Extraction  

 

DNA was isolated from leaves of tomato seedlings using the protocol described 

by Bernatzky and Tanksley (1986). With this DNA extraction method large amounts 

(~5000 ng/µl) of pure and high molecular weight DNA were obtained. Tomato leaf 

samples were collected in the field from ten plants for each line and samples were 

immediately frozen in liquid nitrogen for transport to Izmir Institute of Technology. 

Tomato leaf samples were stored at -80oC until DNA extraction was performed. The 

concentration and quality of the isolated DNA was measured with nano-drop ND-1000 
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spectorophotometer. To prepare DNA for PCR, each genotype’s DNA was diluted at a 

1/100 ratio (to ~50 ng/µl) with sterile distilled water. 

  

3.3.2. Molecular Marker Analysis  

 

For molecular characterization and QTL mapping of antioxidant traits, CAPs 

(Cleaved Amplified Polymorphic Sequence) marker analyses were performed. In the 

first step, parental surveys were done to identify a sufficient number of polymorphic 

markers (~100) for mapping. For this purpose, each marker was first tested on the two 

parental DNAs (TA1166 and LA1223). For CAPs assays, 25 µl PCR reaction mixture 

was prepared and amplified in a thermocycler (GeneAmp® PCR System 9700, Applied 

Biosystems). PCR components included: 2 µl DNA (~50 ng/µl), 2.5 µl 10X PCR buffer 

(50 mM KCl, 10 mM Tris-HCl, 1.5 mM MgCl2, pH: 8.3), 0.5 µl dNTP (0.2 mM), 0.5 

µl of each forward and reverse primers (10 pmol), 0.25 µl Taq polymerase (0.25 U) and 

18.75 µl sterile distiled water. The CAPs markers were amplified using the PCR profile 

shown in Figure 3.5.  

After amplification of CAPs markers, the PCR products were checked for 

amplification by electrophoresis through 2-4% agarose gels in 1X TBE buffer (0.9 M 

Tris, 0.002 M Na2EDTA, 0.9 M boric acid, pH 8.3). Then amplified CAPs marker 

products were digested with different restriction enzymes that depicted in Table 1 for at 

least 3 hours at the appropriate temperature. Enzyme digestion mixture for 25 µl PCR 

product consisted of: 3 µl 10X digestion buffer (1X), 0.5 µl enzyme and 1.5 µl sterile 

distiled water. Finally, all of the samples were run on 2-4% agarose gels in 1X TBE 

buffer. Staining of the gels with ethidium bromide and visualization under UV light 

allowed identification of polymorphic CAPs marker bands. Polymorphic markers were 

then applied on the complete mapping population using the appropriate primer and 

restriction enzyme combinations. 
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Figure 3.5. PCR profile for CAP55 method 

   

3.4. Statistical Analysis 

 

Analysis of variance (ANOVA) and Fishers PLSD were used for statistical 

analysis of the data. Significance was determined at P<0.05. Evaluation of correlation 

between the traits was done using the QGENE software program (Nelson 1997). Chi-

square analysis was performed in Excel 7. Single point regression analysis was 

performed to determine the association between molecular markers and each trait using 

the QGENE software program (Nelson 1997). The effect of L.hirsutum alleles was 

calculated by subtracting the trait mean for individuals with at least one wild allele from 

the trait mean for individuals that were homozygous for L.esculentum alleles and 

dividing by the L.esculentum mean.    
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CHAPTER 4 

 

RESULTS A�D DISCUSSIO� 

 

4.1. Phenotypic Characterization 

 

For phenotypic characterization all characters that were analyzed exhibited a 

high range of variation and many of them showed continuous distribution for the trait. 

These results were expected because in the development of the BC2F2 population, two 

highly distinct parents were used in order to enhance the variation in the tomato 

mapping population. As previously mentioned, continuous distribution of trait values in 

the mapping population was very important for identification of QTLs.    

 

4.1.1.Total Water Soluble Antioxidant Capacity 

  

Total water soluble antioxidant (WAOX) activities of the 152 BC2F2 lines, and 

their parents are given in Appendix A (Table A-1). Means of the antioxidants traits, 

standard errors and ranges for the two parental lines and BC2F2 population are displayed 

in Table 4.1. WAOX activity of fruit from L.hirsutum was 1.5-fold higher than the 

WAOX activity of L.esculentum. This difference was statistically significant at P<0.05. 

While WAOX activity of L.hirsutum was calculated as 3925 ± 11 µmol Trolox/kg fresh 

tomato, the L.esculentum AOX activity was determined to be 2575 ± 123 µmol 

Trolox/kg fresh tomato. The mean value of WAOX activity of the BC2F2 population 

was 3430 ± 49 µmol Trolox/kg (Table 4.1) and the values of WAOX activity in the 

population ranged from 1618 to 5092 µmol Trolox/kg fresh tomato. This mean value 

was closer to L. hirsutum WAOX activity. The differences between the highest and 
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lowest value of WAOX activity in the population was 3.2 fold indicating good variation 

for the WAOX trait (Table 4.1). 

Figure 4.1 depicts the distribution of WAOX capacity in the BC2F2 mapping 

population. The graph shows continuous variation for WAOX capacity and thereby it 

fits the normal distribution expected for a quantitative trait. As observed in Figure 4.1, 

there are some extreme individuals that exceeded both parental phenotypes. A total of 

18% of the mapping population had higher WAOX capacity than L.hirsutum’s WAOX 

value. This was because of the transgressive segregation. Due to the additive property of 

polygenes, some individuals had alleles combinations that increased their WAOX 

activities beyond that observed in either parent.  

   

Table 4.1.  Mean values and standard errors of parental lines and BC2F2 population for 

antioxidant traits. Values followed by differentletters means are significantly 

different between the two parental lines (P < 0.05) 

 L.esculentum L.hirsutum BC2F2 Population  

Trait  Mean ± SE  Mean ± SE  Mean ± SE  Range  

WAOX (µmolTrolox/kg)  2575 ± 123 a  3925 ± 11 b  3430 ± 49  1618-5092  

VitaminC (mg/kg)  170 ± 13 a  160 ± 10 a  200 ± 4  80-320  

Phenolic (mg/kg)  207 ± 0.7 a  303 ± 1.4 b  247 ± 4.3  140-454  

Flavonoid (mg/kg)  54 ± 0.4 a  83 ± 2.9 b  91 ± 3.6  47-250  

Lycopene mg/kg 87 ± 1.3 a 4 ± 0.1 b 69 ± 2.5 4-172 

   

4.1.2. Vitamin C Content 

 

In both parental lines, the vitamin C content (VitC) was found to be nearly 

equal. While the vitamin C value of L.hirsutum was 160 ± 10 mg/kg, L.esculentum 

vitamin C content was 170 ± 13 mg/kg (Table 4.1). In spite of the similarity of the two 

parental lines in vitamin C content, the BC2F2 population showed distinct segregation 

for the trait. The vitamin C content of the BC2F2 population ranged from 80 to 320 

mg/kg (Table 4.1), a 4-fold difference. Along with the wide range of variation for this 

trait, there was a normal distribution for vitamin C content of the BC2F2 population 



 

(Figure 4.2). Figure 4.2 showed 

were similar for their vitamin C values many progeny

fact, 84% of the population had higher vitamin C content than 

of progeny had higher values than 

segregation, so different alleles that came from 

these progeny. The mean value of vitamin C content of the BC

4 mg/kg, slightly higher than the  two 

vitamin C content for the individuals of the whole population. 

 

Figure 4.1. Distribution histogram for 

indicate locations of 

 

 

(Figure 4.2). Figure 4.2 showed a very interesting distribution. While two parental lines 

vitamin C values many progeny had higher vita

population had higher vitamin C content than L.hirsutum

higher values than L.esculentum. This was a result of 

segregation, so different alleles that came from the parents could enha

. The mean value of vitamin C content of the BC2F2 population was 200 ± 

4 mg/kg, slightly higher than the  two parental lines. Appendix A (Table A

vitamin C content for the individuals of the whole population.  

Distribution histogram for total water-soluble antioxidant activities.

indicate locations of L.esculentum and L.hirsutum means, respectively

Le 

42

g distribution. While two parental lines 

had higher vitamin C content. In 

L.hirsutum and also 73% 

This was a result of the transgressive 

parents could enhance the value of 

population was 200 ± 

parental lines. Appendix A (Table A-1) shows 

 

antioxidant activities. Le and Lh 

means, respectively 



 

Figure 4.2. Distribution histogram for 

L.esculentum 

 

4.1.3. Total Phenolic Content

 

Total phenolic content (PHE) for the BC
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Total phenolic content (PHE) for the BC2F2 population is given in Appendix A 

1). There was great variation for phenolic compounds in the population 

ranging from 140 to 454 mg/kg. The mean value of total phenolic compounds for the 
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content of the two parental lines whose values were 207 ± 0.7 mg/kg for 
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4.1.4. Total Flavonoids Content
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4.1.4. Total Flavonoids Content 

For total flavonoids content (FLAV), the lowest and the highest values of the 

population ranged from 47 to 250 mg/kg, a 5.3 fold difference (Table 4.1). The 
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4.1.5. Lycopene Content
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4.1.5. Lycopene Content 

In terms of lycopene content (Lyc), the BC2F2 population exhibited the highest 

variation among the antioxidant traits (Appendix A, Table A-1). Lycopene content 

ranged from 4 to 172 mg/kg, a 43-fold difference (Table 4.1). The red color of tomato 

fruit stems from lycopene content, therefore L.hirsutum which has green fruits even in 

their mature stage had the lowest lycopene content. While L.esculentum

L.hirsutum contained only 4 ± 0.1 mg/kg and the mean value of the 

population was 69 ± 2.5 mg/kg (Table 4.1). Figure 4.5 depicts the distribution histogram 

for lycopene content. There was continuous variation for that trait. However 76% of the 

population had lower lycopene content than L.esculentum. That meant that, as 

L.hirsutum alleles decreased lycopene content in the mapping 

population. Despite this, 24% of the BC2F2 population had higher lycopene content than 

. Thus in spite of its green fruit color, L.hirsutum also has some alleles that 

could improve elite tomato fruit color because of transgressive segregation. Therefore, 

the appearance of exotic germplasm does not always reflect its the genetic potential.  

Flavonoids mg/kg 

45

 

 indicate locations of 

population exhibited the highest 

1). Lycopene content 

fold difference (Table 4.1). The red color of tomato 

which has green fruits even in 

L.esculentum contained 87 ± 

contained only 4 ± 0.1 mg/kg and the mean value of the 

depicts the distribution histogram 

for lycopene content. There was continuous variation for that trait. However 76% of the 

. That meant that, as 

d lycopene content in the mapping 

population had higher lycopene content than 

also has some alleles that 

could improve elite tomato fruit color because of transgressive segregation. Therefore, 

the appearance of exotic germplasm does not always reflect its the genetic potential.   



 

Figure 4.5. Distribution histogram for 

L.esculentum 

 

4.1.6. Correlations Between

 

Moderate, but statistically significant (P

observed between some of the antioxidant

correlations for antioxidant traits were found between total water soluble antioxidant 

capacity (WAOX) and phenolic compounds (

C (r = 0.44). These results were not suprising

vitamin C have great contributions to the total amount of water soluble antioxidant 

activity (WAOX). An additional positive correlation was observed between vitamin C 

content and phenolic compounds (

pepper by Frary et al. (2008). Previous studies also indicated similar positive 

correlations between phenolic compounds and WAOX in tomato and pepper (Hanson, 

et al. 2004, Rousseaux, et al. 2005, Toor, et al. 2006, 

unexpectedly there was no correlation between flavonoid content and phenolics and also 

between flavonoid content and WAOX

contributors to total phenolic content and also

Distribution histogram for lycopene content. Le and Lh indicate locations of 

L.esculentum and L.hirsutum means, respectively 

4.1.6. Correlations Between the Antioxidant Traits 

Moderate, but statistically significant (P<0.05) positive correlations were 

observed between some of the antioxidant traits (Table 4.2). The strongest positive 

correlations for antioxidant traits were found between total water soluble antioxidant 

capacity (WAOX) and phenolic compounds (r = 0.48) and between WAOX and vitamin 

= 0.44). These results were not suprising because both phenolic compounds and 

vitamin C have great contributions to the total amount of water soluble antioxidant 

activity (WAOX). An additional positive correlation was observed between vitamin C 

content and phenolic compounds (r = 0.36), this correlation was also described in 

pepper by Frary et al. (2008). Previous studies also indicated similar positive 

correlations between phenolic compounds and WAOX in tomato and pepper (Hanson, 

et al. 2004, Rousseaux, et al. 2005, Toor, et al. 2006, Frary, et al.
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capacity, this was an unexpected result. Lycopene content also did not have any 

significant correlation with other antioxidant traits. This was not suprising because 

lycopene is a lipid soluble antioxidant so it could not contribute to total water soluble 

antioxidants.     

 

Table 4.2. Correlations between antioxidant traits in the population. P-value of each correlation 

is given in  parentheses. Only correlations with P-value <0.05 are considered to be 

significant 

Trait  Vitamin C  Phenolics  Flavonoids  Lycopene 

WAOX  0.44 (0.0001) 0.48 (0.0001)  0.04 (0.66) -0.16 (0.05) 

Lycopene -0.16 (0.05) -0.005 (0.9) -0.06 (0.5)  

Flavonoids  -0.034 (0.6)  0.08 (0.35)    

Phenolics  0.36 (0.0001)     

 

4.1.7. External and Internal Fruit Color 

 

Means, standard errors and ranges for agronomic traits evaluated for the two 

parental lines and the BC2F2 population are given in Table 4.3. For both internal (INC) 

and external fruit color (EXC), L.esculentum had a moderate red fruit color of 3 while 

L.hirsutum had green fruit and was scored as 1. Appendix A (Table A-2) indicates all 

agronomic traits scores for the BC2F2 population. Means for both internal and external 

fruit color for the BC2F2 population were calculated as approximately 2 ± 0.1. There 

was a wide range of variation for both characters ranging from 1 to 5 (Table 4.3). 

Figures 4.6 and 4.7 depict the distribution histogram for internal and external fruit color. 

Some progeny exhibited better color (approximately 17 % of the BC2F2 mapping 

population) than L.esculentum, this is because of transgressive segregation. Although 

L.hirsutum had green fruit color in its mature stage, it could still have some alleles that 

could improve the red fruit color of next generations. This same result assocaiated with 

L.hirsutum alleles was observed by Bernacchi et al. (1998). 
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Table 4.3.  The mean value and standard errors of parental lines and BC2F2 population for 

agronomic traits 

 L.esculentum L.hirsutum BC2F2 Population 

Trait  Mean  Mean  Mean ± SE Range 

Internal Color 3  1  2 ± 0.1 1- 4.5 

External Color  3  1  2.2 ± 0.1 1- 5 

Fruit Weight (g) 262  6.5  96 ± 3.2 6.5- 262 

Firmness 3.5  2  3.2 ± 0.1 1- 5 

Fruit Shape 1  1  1.3 ± 0.04 1- 4.5 

Stem Scar 5  1  3.7 ± 0.1 1- 5 

Locule �umber 6  3  4.3 ± 0.1 2- 6 

Wall 4.5  1  2.8 ± 0.1 1- 5 

 

4.1.8.Average Fruit Weight 

 

There was great variation for fruit weight (FW) in the BC2F2 population; ranging 

from 6.5 to 262 g (Table 4.3). The two parental lines showed extremely different values 

for fruit weight; fruit weight was 262 g for L.esculentum while only 6.5 g for 

L.hirsutum, a 40-fold difference. All progeny showed intermediate values for the trait. 

That means the two parental lines showed extreme values and no progeny exceeded 

them. The mean value of fruit weight for the population was calculated as 96 ± 3.2 g. 

The BC2F2 population exhibited continuous distribution for fruit weight (Figure 4.8). 

 

4.1.9. Fruit Firmness 

 

For the BC2F2 population, fruit firmness (FIRM) ranged from 1 to 5 with an 

average of 3.2 ± 0.1 (Table 4.3). While L.esculentum was scored as 3.5, L.hirsutum had 

softer fruit and was scored as 2. Figure 4.9 shows the distribution of fruit firmness in the 

BC2F2 population. A total of 36% of the mapping population’s values exceeded 

L.esculentum’s value and 9% of the population had lower values than L.hirsutum for 

firmness. This is also because of transgressive segregation. 



 

Figure 4.6. Distribution histogram for 

L.esculentum 

 

Figure 4.7. Distribution histogram for external fruit color.

L.esculentum 

 

Distribution histogram for internal fruit color. Le and Lh indicate locations of 

L.esculentum and L.hirsutum means, respectively 

Distribution histogram for external fruit color. Le and Lh indicate locations of 

L.esculentum and L.hirsutum means, respectively 
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Figure 4.8. Distribution histogram for average fruit weight.

L.esculentum 

 

Figure 4.9.  Distribution histogram for fruit firmness.

L.esculentum 

 

 

Distribution histogram for average fruit weight. Le and Lh indicate locations of 

L.esculentum and L.hirsutum means, respectively 

Distribution histogram for fruit firmness. Le and Lh indicate locations of 

L.esculentum and L.hirsutum means, respectively 
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 4.1.10. Fruit Shape 

 

In both parental lines, fruit shape (FS) was spherical (1 = round, 5 = elongated). 

However, there was good variation ranging between 1 and 4.5 for fruit shape in the 

BC2F2 population (Table 4.3). The mean fruit shape for population was 1.3 ± 0.04, so 

nearly all progeny (88% of population) had round fruit shape similar to the two parents 

(scored 1 or 1.5) (Figure 4.10). In contrast,12% of the mapping population had 

elongated fruit. That means that one or both of the parental lines might contain alleles 

that were responsible for formation of elongated fruit shape. 

 

4.1.11. Stem Scar 

 

The two parental lines were extremely different for stem scar size (SSC). There 

was a five-fold difference between them, L.esculentum’s stem scar size was very large 

and scored as 5 whereas L.hirsutum’s stem scar was very small and scored as 1 (Table 

4.3). The mean value of this trait in the BC2F2 population was calculated as 3.7 ± 0.1. 

Figure 4.11 exhibits the distribution of stem scar size in the population. 

 

4.1.12. Locule �umber 

 

Fruit of L.esculentum had an average of six locules whereas L.hirsutum had an 

average of three locules.. The average fruit locule number (LN) for the population was 

estimated as 4.3 ± 0.1 with variation from 2 to 6 locules (Table 4.3). Figure 4.12 shows 

the distribution histogram for locule number of the BC2F2 population. 

 



 

Figure 4.10. Distribution histogram for fruit shape.

and L.hirsutum

 

 

Figure 4.11. Distribution histogram for stem scar.

and L.hirsutum

 

Distribution histogram for fruit shape. Le and Lh indicate locations of 

hirsutum means, respectively 

Distribution histogram for stem scar. Le and Lh indicate locations of 

hirsutum means, respectively 
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Figure 4.12. Distribution histogram for locule number.

L.esculentum 

 

Figure 4.13.   Distribution histogram for fruit wall thickness.

L.esculentum 
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4.1.13. Wall 

 

Wall thickness (WALL) was evaluated as 4.5 for L.esculentum and 1 for 

L.hirsutum (Table 4.3). Thus, cultivated tomato had much thicker pericarp than the wild 

species. Among the BC2F2 population, wall values ranged from 1 to 5 with a mean of 

2.8 ± 0.1 and showed a continuous distribution (Figure 4.13).  

 

4.1.14. Correlation Between Agronomically Important Traits 

 

All of the agronomically important traits that were analyzed exhibited great 

phenotypic variation (Table 4.3). The highest statistically significant positive correlation 

was observed between internal and external fruit color as expected (r = 0.88) (Table 

4.4). Similar association was also identified by Fulton et al. (2000) and by Doğanlar et 

al. (2002). There were also significant high correlations between lycopene content and 

internal and external fruit color (r = 0.53 and r = 0.57, P = 0.0001). These correlations 

were expected because of the possibility of pleiotropic effects of the same loci for 

internal and external fruit color and lycopene content. There was a high positive 

correlation between stem scar size and fruit weight (r = 0.60). This was not surprising 

because large fruit was expected to have large stem scar size and a similar result was 

also observed by Doğanlar et al. (2002). Stem scar size also showed high correlation 

with fruit locule number (r = 0.58). There was also a moderate significant correlation 

between fruit weight and locule number (r = 0.50). Elongated fruit shape was correlated 

with fewer locules and smaller stem scar size (Table 4.4). Wall thickness was weakly 

correlated with INC, EXC, FW, FIRM, FS and SSC (Table 4.4).  
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Table 4.4. Correlations between agronomically important traits in the population. P-value of 

each correlation is depicted in parentheses. Only correlations with P-value < 0.05 are 

considered to be significant 

Trait In.color Ex.color FruitWeight Firmness Shape Stemscar Locule 

Wall 0.38 0.38 0.16  0.20 0.22  0.18  -0.10 

Locule -0.003  -0.04 0.50 -0.1 -0.51 0.58  

Stemscar 0.07  0.04 0.60 0.001 -0.34   

Shape 0.20 0.20 -0.33 0.02      

Firmness 0.06 0.07  0.01     

Weight 0.02 -0.02      

Excolor 0.88       

 

4.2. Genotypic Characterization and QTL Mapping 

 

To identify QTLs for both health-related and agronomically important traits, 70 

CAPs and 2 SSR markers were tested on the 152 BC2F2 lines for genotypic 

characterization. Table 4.5 is a list of these CAPs and SSR markers with their 

amplification conditions and the sizes of restriction products after cutting with the 

indicated enzyme. Out of the 70 CAPs and 2 SSRs markers that were mapped in the 

BC2F2 population, 14 of the markers (19%) fit the 29/32 AA : 3/32 Aa segregation ratio 

expected for a dominant markers after Chi-square analysis (P<0.05). A total of 58 of the 

markers (81%) were skewed toward the L.hirsutum genotypes, but there were no 

markers that were skewed toward the L.esculentum homozygous genotype. This type of 

skewing is commonly observed in interspecific populations as repoted by Paterson et al. 

(1990).  

A genetic linkage map was drawn for the 72 markers using the locations of the 

markers in a L.pennellii interspecific population as reference (Sol Genomics Network 

2008). The number of markers per linkage group ranged from 3 (chromosomes 6 and 8) 

to 12 (chromosome 2) (Figure 4.14). The average distance between markers was 15 cM 

while the largest gaps between markers were 77 cM on chromosome 1 and 60 cM on 

chromosome 5. Overall, the map provided approximately 65% genome coverage (905 

cM as compared to 1386 cM for the L.pennellii map). Poorest coverage was on 
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chromosome 6 with only 9% of the genome represented by the three markers mapped 

on this chromosome. Five chromosomes (1, 2, 5, 11 and 12) had at least 75% coverage 

with best coverage on linkage groups 2 (96%) and 5 (94%). 

Single point regression analysis was performed to determine the association 

between molecular markers and each trait in the BC2F2 mapping population using the 

QGENE software program (Nelson 1997). If more than one contiguous marker showed 

significant association with the same trait, it was assumed that only one locus was 

involved. In this study, a total of 75 significant (P < 0.05) QTLs were identified for all 

13 characters. Table 4.6 shows the QTLs that were identified for each trait. Of the 75 

QTLs, 28 (37%) were related with antioxidant traits, while 47 (63%) were associated 

with horticulturally important traits. Figure 4.14 exhibits the location of each QTL on 

the tomato genetic map. Each chromosome had at least 2 QTLs (chromosome 10) and at 

most 12 QTLs (chromosome 12) (Figure 4.14). The number of QTLs detected for each 

trait ranged from 3 for fruit weight to 8 for lycopene content. 

 

4.2.1. Total Water Soluble Antioxidant Capacity 

 

Six QTLs were identified for total water soluble antioxidant (WAOX) capacity. 

These QTLs were located on chromosome 1 (waox1.1), 5 (waox5.1), 6 (waox6.1), 8 

(waox8.1) and 12 (waox12.1 and 12.2) (Figure 4.14). The most significant one was 

waox12.1 on chromosome 12 with P = 0.0002 (Table 4.6). For this locus, the 

L.hirsutum allele was associated with a 12% increase in antioxidant capacity. 

Rousseaux et al. (2005) also identified a QTL for the same trait in the same location on 

chromosome 6 in L.pennellii introgression lines.. For five out of the six QTLs, as 

expected based on the values for the parental lines, L.hirsutum waox alleles enhanced 

the WAOX capacity. On the other hand, only one L.esculentum waox allele (waox1.1) 

was associated with higher WAOX capacity. 
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4.2.2. Vitamin C Content 

 

Vitamin C content was associated with five QTLs, vitc1.1 on chromosome 1, 

vitc2.1 and vitc2.2 on chromosome 2, vitc6.1 on chromosome 6 and vitc12.1 on 

chromosome 12 (Figure 4.14). The most significant vitc QTL was vitc6.1, marked by 

CT206, with P = 0.0005 (Table 4.6). The wild allele for this locus was associated with a 

16% increase in vitamin C. vitc2.2 QTL region was also identified by Stevens et al. 

(2007). In addition, the vitc12.1 QTL on chromosome 12 was identified in 

approximately the same map position in two previous studies carried out by Rousseaux 

et al. (2005) and Stevens et al. (2007). For vitc1.1, vitc6.1 and vitc12.1 QTLs, 

L.hirsutum alleles were associated with higher vitamin C content, while for vitc2.1 and 

vitc2.2 QTLs, L.esculentum alleles were responsible for higher vitamin C content. The 

parental lines showed no significant difference for vitamin C content. 

 

4.2.3. Total Phenolic Content 

 

Five QTLs were detected for total phenolic content. These phe QTLs were 

located on chromosomes 1 (phe1.1), 6 (phe6.1), 7 (phe7.1), 9 (phe9.1) and 12 (phe12.1) 

(Figure 4.14). phe6.1 was the most significant one (P = 0.01) and was linked to marker 

CT206 (Table 4.6). All of the alleles associated with high phenolic content came from 

L.hirsutum as expected because the wild species had higher phenolic content than 

cultivated tomato. phe7.1 and phe9.1 mapped to similar locations as phe QTLs 

previously identified by Rousseaux et al. (2005). phe7.1 was of special interest because 

the L.hirsutum allele at this locus was associated with a 17% increase in phenolic 

content. 
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Table 4.5. List of CAPs and SSR markers, their methods  and sizes of restriction products after 

cutting with indicated enzyme 

 
Markers  Method Enzymes Size for 

L.hirsutum 
Size for 
L.esculentum 

At1g14000 Cos55 RsaI 750+600 600 

At1g20050 Cos55 RsaI 500+450+250 500+250 

At1g30580 Cos55 HinfI 850+350 450+350 

At1g46480 Cos55 EcoRI 300+190+175 190+175 

At1g47830 Cos55 TaqI 1000+800+450 800+450 

At1g50020 Cos55 HindIII 1700+825 825 

At1g55870 Cos55 HinfI 750+500 750 

At1g60640 Cos55 TaqI 390+350+200 350+200 

At1g61620 Cos55 AluI 900+800+375 800+375 

At1g63610 Cos55 AluI 450+375+300 450+375 

At1g71810 Cos55 RsaI 850+600 850 

At1g75350 Cos55 RsaI 200+190 150+75 

At1g78690 Cos55 HinfI 850+700 450+250 

At2g01720 Cos55 RsaI 450+375 450 

At2g06530 Cos55 RsaI 500+300+250 300+250 

At2g15890 Cos55 HhaI 850+450+400 450+400 

At2g26590 Cos55 RsaI 850+750 850 

At2g29210 Cos55 AluI 375+250+150 250+150 

At2g32970 Cos55 AluI 375+300 300 

At2g42750 Cos55 HaeIII 800+400+350 400+350 

At3g06050 Cos55 AluI 425+375+350 375+350 

At3g09925 Cos55 HaeIII 350 325+200 

At3g13235 Cos55 RsaI 700+400+300 400+300 

At3g14910 Cos55 EcoRI 800+600+200 800 

At3g15430 Cos55 TaqI 450+375+225 375+225 

At3g16150 Cos55 TaqI 390+250+125 250+125 

        (cont. on next page)  
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Table 4.5.  (Cont.) List of CAPs and SSR markers, their methods  and sizes of restriction 

products after cutting with indicated enzyme  

Markers  Method Enzymes Size for 
L.hirsutum 

Size for 
L.esculentum 

At3g47640 Cos55 TaqI 900+700 700 

At3g52220 Cos55 AluI 380+350 350 

At3g57280 Cos55 HhaI 880+850 850 

At4g00560 Cos55 HinfI 800+750 750 

At4g03280 Cos55 HinfI 780+750 780 

At4g16580 Cos55 HinfI 400+200+175 200+175 

At4g21710 Cos55 HinfI 425+350+175 425 

At4g22260 Cos55 HinfI 425+350 500 

At4g28530 Cos55 HinfI 950+850+750 750 

At4g33985 Cos55 HinfI 380+250 380 

At4g35560 Cos55 HinfI 375+200+175 375 

At4g37280 Cos55 TaqI 900+700 700 

At5g04910 Cos55 AluI 350+300+200+1500 200+150 

At5g06130 Cos55 HinfI 250+150 250 

At5g06430 Cos55 PstI 1000+800 800 

At5g13030 Cos55 PstI 500+410 500 

At5g13640 Cos55 TaqI 550+400 550 

At5g14520 Cos55 HinfI 375+225 375 

At5g16710 Cos55 AluI 750+500+350 500+350 

At5g20180 Cos55 TaqI 1500 800+400 

At5g35360 Cos55 HinfI 425+375+150 425 

At5g37260 Cos55 HhaI 500+375+250 375+250 

At5g41350 Cos55 TaqI 475+225 225 

At5g42740 Cos55 PstI 500+350+180 350+180 

At5g49970 Cos55 HinfI 500+450 450 

At5g51110 Cos55 PstI 400+360 360 

         (cont. on next page) 
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Table 4.5.  (Cont.) List of CAPs and SSR markers, their methods  and sizes of restriction 

products after cutting with indicated enzyme 

Markers  Method Enzymes Size for 
L.hirsutum 

Size for 
L.esculentum 

CT138 Cos50 HhaI 800+450+375 800 

CT143 Cap50 RsaI 400+380 380 

CT167 Cap50 TaqI 200+190 200 

CT20 Cap50 RsaI 500+380+200 500+200 

CT206 Cap50 RsaI 550+400 400 

CT269 Cap50 TaqI 1500+900+500 900+500 

CT59 Cap50 TaqI 425+390 390 

CT64 Cos50 HinfI 450+380 450 

SSR32 SSR50 - 200+180 180 

SSR40 SSR50 - 190+175 175 

T0266 Cap50 TaqI 800+400+350 800 

T0564 Cap50 TaqI 950+750 750 

T0668 Cos50 HinfI 375+200+150 200+150 

T0671 Cap50 TaqI 800+750 800 

T1422 Cos50 AvaII 800+600 600 

TG180 Cap50 RsaI 875+800 875 

TG307 Cap50 RsaI 900+800 800 

TG36 Cap50 RsaI 500+425 425 

TG46 Cap50 TaqI 850+750+375 850+375 

TG566 Cap50 RsaI 250+190+175 190+175 

 

4.2.4. Total Flavonoids Content 

 

For flavonoid content, four QTLs regions were identified on the molecular 

marker map (Figure 4.14). These were flav2.1 (on chromosome 2), flav3.1 (on 

chromosome 3), flav5.1 (on chromosome 5) and flav11.1 (on chromosome 11). The 
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most significant one was flav11.1 QTL linked with TG36 (Table 4.6). The source of 

high flavonoid content for flav5.1 and  flav11.1 loci was L.hirsutum, while for the other 

two QTL regions L.esculentum alleles were associated with higher flavonoids. For 

flav11.1, the L.hirsutum allele accounted for a 24% increase in flavonoids content. 

 

4.2.5. Lycopene Content 

 

Eight QTLs were identified for lycopene content (Table 4.6; Figure 4.14). These 

QTLs were located on chromosomes 2 (lyc2.1), 3 (lyc3.1), 7 (lyc7.1), 8 (lyc8.1), 9 

(lyc9.1), 10 (lyc10.1), 11 (lyc11.1) and 12 (lyc12.1) (Figure 4.14). lyc8.1 and lyc12.1 

were the two most significant QTLs (Table 4.6). For lyc3.1, lyc7.1, lyc8.1 and lyc12.1, 

L.esculentum alleles were associated with an increase in lycopene content, while for the 

rest of the QTLs, L.hirsutum alleles were responsible for high lycopene content. This is 

an interesting finding as L.hirsutum has green fruit. These results also support the work 

of Bernacchi et al. (1998) and Monforte and Tanksley (2000) who found that L.hirsutum 

alleles could be used to improve red color in tomato fruit.  Of most interest were lyc9.1 

and lyc10.1 as wild alleles at these loci were responsible for 37 and 46% increases in 

lycopene content, respectively. lyc3.1 and lyc12.1 matched loci that were identified by 

Rousseaux et al. (2005) in the same map region. The Delta mutation, which results in 

reddish orange fruit, maps to a similar location on chromosome 12 suggesting that Delta 

might be a candidate locus for this QTL (Rousseaux, et al. 2005).  In addition, the never 

ripe mutant of tomato, nor, has been mapped to the same region of chromosome 10 as 

lyc10.1 (Tanksley, et al. 1992). 

 

4.2.6. External and Internal Fruit Color 

 

Nine QTLs were identified for external fruit color on six different chromosomes 

(Figure 4.14). Chromosomes 4, 9 and 12 contained two exc QTLs, while chromosomes 

1, 7 and 8 had one QTL each. The most significant QTL for external fruit color was 
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exc4.2 with P < 0.002. For exc1.1, exc7.1, exc8.1, exc12.1 and exc12.2 L.hirsutum allele 

were associated with decreased fruit color; however, exc4.1, exc4.2, exc9.1 and exc9.2 

alleles from L.hirsutum were responsible for increased red color. exc4.2 QTL was also 

detected by Monforte and Tanksley (2000). The wild alleles for the two loci on 

chromosome 9 increased external color by 41 and 32%, respectively. 

For internal fruit color, seven QTLs regions were identified. These were inc1.1 

(on chromosome 1), inc4.1 (on chromosome 4), inc7.1 (on chromosome 7), inc8.1 (on 

chromosome 8), inc9.1 (on chromosome 9), inc12.1 and inc12.2 (on chromosome 12) 

(Figure 4.14). inc8.1 linked with TG307 was the most significant QTL for internal color 

with P = 0.0007 (Table 4.6). For inc4.1 and inc9.1 L. hirsutum alleles were related with 

higher color formation with these alleles increasing red color by 22 and 30%, 

respectively. However, L.esculentum alleles increased internal red color for inc1.1, 

inc7.1, inc8.1, inc12.1 and inc12.2. Monforte and Tanksley (2000) also identified the 

inc4.1 QTL region for internal fruit color in their study. In addition, inc7.1 and inc8.1 

QTLs were in similar regions as color QTL identified by Bernacchi et al. (1998). The 

external and internal color QTL on the top of chromosome 12 also co-localize with the 

Delta fruit color mutant of tomato. Moreover, as with lycopene, it was found that 

L.hirsutum alleles could increase the external and internal red color of fruit which again 

confirms the findings of Bernacchi et al. (1998) and Monforte and Tanksley (2000). 

 

4.2.7. Average Fruit Weight 

 

Three QTLs were identified for fruit weight and each QTL was located on 

different chromosomes. fw7.1 was the most significant QTL region for fruit weight and 

it was marked by both At2g42750 and At3g14910 with P = 0.00001. fw2.1, located on 

chromosome 2, matched the location of fw2.2, a major fruit weight QTL that was cloned 

by Frary et al. (2000). The source of high fruit weight were cultivated tomato alleles as 

expected. 
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Table 4.6. QTL identified for antioxidant and for agronomic traits, their location in the tomato 

genome and any matches with previous studies. Table also shows the source of these 

QTL alleles and the effect of L.hirsutum alleles over the traits 

 

Trait  
QTL 
symbol Marker Chr P 

Effect of LH 
allele (%) Source 

Previously 
identified 
locia 

 

 

WAOX 

waox1.1 

waox5.1 

waox6.1 

waox8.1 

waox12.1 

waox12.2 

At3g06050 

T564 

CT206 

TG307 

At2g06530 

At4g16580 

chr1 

chr5 

chr6 

chr8 

chr12 

chr12 

0,0427 

0,0158 

0,0196 

0,0036 

0,0002 

0,0046 

-7 

9 

9 

9 

12 

9 

LE 

LH 

LH 

LH 

LH 

LH 

a 

a 

1  

a 

a 

a 

        

 

VITC 

vitc1.1 

vitc2.1 

vitc2.2 

vitc6.1 

vitc12.1 

At4g00560 

SSR40 

At4g37280 

CT206 

At2g06530 

chr1 

chr2 

chr2 

chr6 

chr12 

0,0505 

0,0067 

0,0047 

0,0005 

0,0199 

8 

-14 

-12 

16 

9 

LH 

LE 

LE 

LH 

LH 

a 

a 

2 

a 

1,2 

        

 

PHE 

phe1.1 

phe6.1 

phe7.1 

phe9.1 

phe12.1 

At2g15890 

CT206 

At1g55870 

At5g06130 

At2g06530 

chr1 

chr6 

chr7 

chr9 

chr12 

0,0362 

0,0144 

0,0174 

0,0479 

0,0177 

8 

11 

17 

10 

9 

LH 

LH 

LH 

LH 

LH 

a 

a 

1 

1 

a 

        

 

 

FLAV 

flav2.1 

flav3.1 

flav5.1 

flav11.1 

T266 

At1g61620 

At5g20180 

TG36 

chr2 

chr3 

chr5 

chr11 

0,0247 

0,0487 

0,0441 

0,0166 

-26 

-23 

-9 

24 

LE 

LE 

LH 

LH  

         (cont. on next page) 
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Table 4.6. (Cont.) QTL identified for antioxidant and for agronomic traits, their location in the 

tomato genome and any matches with previous studies. Table also shows the source 

of these QTL alleles and the effect of L.hirsutum alleles over the traits 

 

Trait  
QTL 
symbol Marker Chr P 

Effect of LH 
allele (%) Source 

Previously 
identified 
locia 

 

 

LYC 

lyc2.1 

lyc3.1 

lyc7.1 

lyc8.1 

lyc9.1 

lyc10.1 

lyc11.1 

lyc12.1 

At4g33985 

At5g51110 

At2g32970 

TG307 

At2g29210 

TG566 

At4g22260 

At2g06530 

chr2 

chr3 

chr7 

chr8 

chr9 

chr10 

chr11 

chr12 

0,042 

0,0101 

0,0077 

<0.0001 

0,0236 

0,001 

0,0029 

0,0001 

21 

-26 

-19 

-30 

37 

46 

18 

-28 

LH 

LE 

LE 

LE 

LH 

LH 

LH 

LE 

a 

1 

a 

a 

a 

3 

a 

1 

        

 

 

INC 

inc1.1 

inc4.1 

inc7.1 

inc8.1 

inc9.1 

inc12.1 

inc12.2 

At5g13030 

At1g47830 

T671 

TG307 

At3g09925 

TG180 

At2g06530 

chr1 

chr4 

chr7 

chr8 

chr9 

chr12 

chr12 

0,0093 

0,0311 

0,0147 

0,0007 

0,0076 

0,0052 

0,002 

-22 

22 

-19 

-27 

30 

-22 

-24 

LE 

LH 

LE 

LE 

LH 

LE 

LE 

a 

4,5 

4 

4 

a 

a 

a 

        

 

 

 

EXC 

exc1.1 

exc4.1 

exc4.2 

exc7.1 

exc8.1 

exc9.1 

exc9.2 

exc12.1 

exc12.2 

At5g13030 

At3g16150 

At1g47830 

At2g32970 

TG307 

At3g09925 

At2g29210 

TG180 

At2g06530 

chr1 

chr4 

chr4 

chr7 

chr8 

chr9 

chr9 

chr12 

chr12 

0,0051 

0,0362 

0,0017 

0,0514 

0,0055 

0,0041 

0,0444 

0,0186 

0,0057 

-23 

20 

31 

-13 

-22 

41 

32 

-18 

-20 

LE 

LH 

LH 

LE 

LE 

LH 

LH 

LE 

LE 

a 

a 

5 

a 

a 

a 

a 

a 

a 

                                                                                                                 (cont. on next page) 
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Table 4.6. (Cont.) QTL identified for antioxidant and for agronomic traits, their location in the 

tomato genome and any matches with previous studies. Table also shows the source 

of these QTL alleles and the effect of L.hirsutum alleles over the traits.  

 

Trait  
QTL 
symbol Marker Chr P 

Effect of 
LH allele 
(%) Source 

Previously 
identified 
locia 

 

FW 

fw2.1 

fw3.1 

fw7.1 

fw7.1 

At4g33985 

At3g47640 

At2g42750 

At3g14910 

chr2 

chr3 

chr7 

chr7 

0,0002 

0,0044 

0,0001 

0,0001 

-30 

-23 

-31 

-29 

LE 

LE 

LE 

LE 

6 

a 

a 

a 

        

 

 

FIRM 

firm2.1 

firm2.2 

firm2.3 

firm3.1 

firm4.1 

firm5.1 

firm8.1 

SSR40 

T266 

At4g37280 

At5g49970 

At1g71810 

CT138 

At5g41350 

chr2 

chr2 

chr2 

chr3 

chr4 

chr5 

chr8 

0,0148 

0,0155 

0,026 

0,0117 

0,0162 

0,0161 

0,0422 

21 

21 

17 

18 

19 

20 

15 

LH 

LH 

LH 

LH 

LH 

LH 

LH 

a 

a 

a 

a 

a 

4 

a 

 

FS 

fs1.1 

fs2.1 

fs3.1 

fs7.1 

At4g00560 

SSR40 

At1g61620 

At2g42750 

chr1 

chr2 

chr3 

chr7 

0,0439 

0,0017 

0,0425 

0,0276 

14 

31 

24 

17 

LH 

LH 

LH 

LH 

a 

7 

a 

4 

        

 

 

SSC 

ssc1.1 

ssc2.1 

ssc3.1 

ssc7.1 

ssc8.1 

ssc11.1 

ssc12.1 

T1422 

At4g33985 

At3g47640 

At2g42750 

TG307 

TG36 

TG180 

chr1 

chr2 

chr3 

chr7 

chr8 

chr11 

chr12 

0,0201 

0.0001 

0,0003 

0,0006 

0,0331 

0,0424 

0,0169 

-15 

-30 

-25 

-19 

-12 

13 

-13 

LE 

LE 

LE 

LE 

LE 

LH 

LE  

                                                                                                                                        (cont. on next page) 
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Table 4.6. (Cont.) QTL identified for antioxidant and for agronomic traits, their location in the 

tomato genome and any matches with previous studies. Table also shows the source 

of these QTL alleles and the effect of L.hirsutum alleles over the traits 

 

Trait  
QTL 
symbol Marker Chr P 

Effect of 
LH allele 
(%) Source 

Previously 
identified locia 

 

 

LN 

ln2.1 

ln3.1 

ln4.1 

ln7.1 

ln10.1 

ln12.1 

At4g33985 

At3g47640 

At1g71810 

At2g42750 

At3g13235 

TG180 

chr2 

chr3 

chr4 

chr7 

chr10 

chr12 

0,0017 

0,0013 

0,0285 

0,006 

0,0318 

0,0123 

-15 

-14 

-10 

-10 

-7 

-9 

LE 

LE 

LE 

LE 

LE 

LE 

8 

a 

a 

a 

a 

a 

        

a 

WALL 

a 

a 

wall6.1 

wall8.1 

wall11.1 

wall12.1 

CT206 

TG307 

CT269 

At2g06530 

chr6 

chr8 

chr11 

chr12 

0,0438 

0,0133 

0,0147 

0,0025 

-14 

-14 

-13 

-16 

LE 

LE 

LE 

LE  

 

a References are coded: 1=Rousseaux et al. (2005); 2=Stevens et al. (2007); 3=Tanksley et al. (1992); 
4=Bernacchi et al. (1998); 5=Monforte et al. (2001); 6=Frary et al. (2000); 7=Liu et al. (2002); 
8=Lippman and Tanksley (2001). 

 

4.2.8. Fruit Firmness 

 

For fruit firmness, there were seven QTLs identified. Three of them were located 

on the same chromosome (chromosome 2) while the rest were located on different 

chromosomes (chromosomes 3, 4, 5 and 8) (Figure 4.14). The most significant one was 

firm3.1 and it was located on chromosome 3 (Table 4.6). L.hirsutum alleles were always 

associated with increased fruit firmness with effects as high as 21% for firm2.1 and 

firm2.2. The firm5.1 QTL region for fruit firmness was also identified by Bernacchi et 

al. (1998). 
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4.2.9. Fruit Shape 

 

Four QTLs for fruit shape were detected in this study. All of them were located 

on different chromosomes. These are chromosomes 1 (fs1.1), 2 (fs2.1), 3 (fs3.1) and 7 

(fs7.1) (Figure 4.14). SSR40 was associated with fs2.1, the most significant QTL with P 

= 0.002. The source of elongated fruit shape was L.hirsutum alleles. Liu et al. (2002) 

identified the fs2.1 QTL region as ovate. In addition, Bernacchi et al. (1998) identified a 

fruit shape QTL similar to fs7.1. 

 

4.2.10. Stem Scar 

 

Seven QTLs on seven different chromosomes were associated with stem scar 

size (Table 4.6; Figure 4.14). The most significant QTL for stem scar size was ssc2.1 

with P < 0.00001. L.hirsutum alleles were associated with large stem scar in only one 

case, ssc11.1. For all other stem scar QTLs, the L.hirsutum alleles were responsible for 

formation of smaller stem scars. Of most interest was ssc2.1 for which the wild allele 

decreased stem scar by 30%.  

 

4.2.11. Locule �umber 

 

Locule number was associated with six QTLs, these were ln2.1, ln3.1, ln4.1, 

ln7.1, ln10.1 and ln12.1 (Figure 4.14). L.esculentum alleles were associated with higher 

locule number. The ln2.1 QTL for locule number was also identified by Lippman and 

Tanksley (2001). 
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4.2.12. Wall 

 

Four QTLs were associated with wall thickness and all of them were located on 

different chromosomes. These were wall6.1, wall8.1, wall11.1 and wall12.1 (Figure 

4.14). For all of the QTLs, L.esculentum alleles enhanced the thickness of the pericarp. 

The most significant QTL for wall thickness was wall12.1 with P < 0.003 (Table 4.6).  

Among the 28 identified antioxidant QTLs, for 18 loci (64%)  L.hirsutum alleles 

were associated with increased antioxidant trait values. This was not suprising because 

L.hirsutum had significantly higher values than L.esculentum for virtually all 

antioxidant traits, except vitamin C. On the other hand, for 10 QTLs (36%) wild alleles 

were responsible for reduction of antioxidant traits. The positive effects of L.hirsutum 

alleles over the antioxidant traits ranged from 8% to 46%. The L.hirsutum alleles for 

lyc10.1 and lyc9.1 showed the highest phenotypic effect on lycopene content. Because 

L.hirsutum has green fruit even in its ripe stage, it was unexpected to find the highest 

effect for lycopene content from this parent. However, some alleles located in the 

L.hirsutum genome could enhance the lycopene content of the elite line, this result is 

due to transgressive segregation of the lycopene alleles. On the other hand, the negative 

effects of L.hirsutum ranged from 7% (waox1.1) to 30% (lyc8.1).  

Of the 47 identified agronomically important QTLs (fruit shape excluded), for 

19 loci (44%) L.hirsutum alleles were responsible for enhancement of phenotypic 

values of traits and 24 wild alleles (56%) had negative effects on these traits. Thus, 

more than half of the QTLs wild alleles negatively impacted the elite lines for 

improvement of agronomic traits. This was expected, because L. hirsutum as a wild 

parent contained many undesired traits in terms of horticultural aspects such as low fruit 

weight and green fruit color. For example, the highest negative effect was observed in 

the fw2.1 allele that came from L.hirsutum (with a 30% negative effect). The highest 

positive effect of L.hirsutum alleles was for exc9.1 with a 41% increase in fruit color.  
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4.3. Colocalization of QTLs 

 

A total of 75 QTLs were identified for both antioxidant and agronomically 

important traits on the tomato genome map. The number of QTLs per linkage group 

ranged from 2 (chromosome 10) to 12 (chromosome 12) (Figure 4.14). However, some 

of the QTLs were colocalized in the same genomic region. These QTL clusters make it 

possible to understand the correlation between traits that are controlled by these QTLs 

and also interaction between these genes. One of the most notable colocalizations was 

observed among internal, external color and lycopene content. All of the QTLs that 

were identified for internal fruit color always colocalized with external color 

(chromosome 1, 4, 7, 8, 9 and 12) and also exc9.2 colocalized with lyc9.1. In addition, 

exc7.1, inc7.1 and lyc7.1; exc8.1, inc8.1 and lyc8.1; exc12.1, inc12.1 and lyc12.1; and 

exc12.2, inc12.2 and lyc12.1 were located in same genomic regions. Because lycopene 

pigment concentration determines the red color of tomato fruit, most probably these 

three traits are controlled by pleiotropic genes. This also clarified why these traits are 

highly and positively correlated. 

For antioxidant traits, waox 6.1, vitc6.1 and phe6.1 were located on the same 

chromosomal location on the sixth linkage group and waox12.1, vitc12.1 and phe12.1 

were colocalized on chromosome 12. A positive correlation was also seen among these 

antioxidant traits. Vitamin C and phenolic compounds are water soluble antioxidants; 

therefore genes that enhance these traits would also be expected to increase total water 

soluble antioxidant capacity. Also colocalization of the vitamin C and phenolic loci 

could be explained in that they have similar pathways and complementary effect against 

reactive oxygen species (ROS).  

For agronomic characterization, high significant correlations among locule 

number, fruit weight and stem scar size were observed. This is expected as fruit with 

more locules tend to be larger and have larger stem scars. Colocalization of these traits 

on the molecular marker linkage map (ln2.1, fw2.1 and ssc2.1; ln7.1 and fw7.1; ln12.1 

and ssc12.1 ) add support to this hypothesis. Thus these multiple QTLs may represent 

fewer loci with pleiotropic effects. 

 



 72

CHAPTER 5 

 

CO�CLUSIO� 

 

Tomato is one of the most important vegetables and is widely produced and 

consumed all over the world including in Turkey. The main goal of this study was to 

identify genetic regions for health related and agronomically important traits by 

identification of QTLs for these traits. For this aim, 152 BC2F2 mapping individuals 

derived from a cross between L.esculentum and L.hirsutum were analysed for both 

phenotypic and genotypic characters. While antioxidant traits were measured using 

biochemical assays, agronomic traits were visually scored. For genotypic 

characterization, 70 CAPs and 2 SSR markers were tested on the mapping population 

for construction of the molecular linkage map. 

In this study, L.hirsutum was used as a donor parent in order to increase both 

phenotypic and genotypic variation among the mapping population. L.hirsutum has 

many desired traits with regard to antioxidant capacity. This may be due to the fact that 

antioxidant compounds have crucial roles in plant defence systems and during natural 

selection, alleles that are responsible for production of  high antioxidant compound may 

have accumulated in wild species. In contrast, L.esculentum has been artificially 

selected for agronomic traits and may have lost some of the favorable antioxidant 

alleles. As expected, most of the L.hirsutum alleles (approximately 61%) that were 

identified for antioxidant traits were responsible for improvement of these antioxidant 

traits. However, for agronomic traits such as fruit color, fruit weight, etc. L.hirsutum is 

expected to negatively influence quality of the elite line. A total of 56% of the identified 

L.hirsutum alleles negatively affected the agronomically important traits. However, in 

some cases L.hirsutum alleles were associated with increased value of some antioxidant 

and agronomically important traits even when the parental line was inferior for these 

traits such as lycopene content, internal and external fruit color. For example, lyc10.1, 

inc9.1 and exc9.1 alleles from L.hirsutum positively affected these traits by 46, 41 and 

30%, respectively. This is because of transgressive segregation of alleles in the 
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population. Thus, formation of different combinations of alleles from the parents can 

lead to generation of progeny that can exceed both parental lines. As a result, the 

phenotype of the wild species does not always reflect its genetic potential. Thus, the use 

of molecular marker-based techniques can reveal the real potential of this exotic 

germplasm. By analysis of the genetic potential of wild species, may new and useful 

genes or alleles can be identified for improvement of existing cultivar types. 

The presence of associations between molecular markers and genes of interest 

indicates the potential usefulness of Marker Assisted Selection (MAS) for improvement 

of these traits. If a marker is tightly linked with a desired trait, the possibility that the 

marker and locus will be transmitted together is very high due to low recombination 

frequency. Therefore, screening of the population with a marker linked to the desired 

trait makes it feasible to select individuals that have the desired trait or traits without 

phenotypic characterization. In addition, MAS can also be used for negative selection 

which means that undesired traits can be eliminated in the population. MAS also does 

not require completely mature plants, thereby selection can be done at seedling stage 

with a higher efficiency of selection. By doing this, requirements for time, space and 

labour are greatly reduced. In this study, for improvement of health related traits, 

marker TG566 linked with lyc10.1 (46% allelic effect P = 0.001) and At2g06530  

linked with waox12.1 (12% allelic effect P = 0.0002), vitc12.1 (9% effect P = 0.02) and 

phe12.1 (9% effect P = 0.02) may be candidates for use in MAS. The region where 

lyc10.1 was located was previously identified to contain the nor locus (Tanksley, et al. 

1992). vitc12.1 was also identified in a previous study (Rousseaux, et al. 2005, Stevens, 

et al. 2007). For agronomic traits, the most significant markers are At3g09925 linked 

with both exc9.1 (41% allelic effect P = 0.004) and inc9.1 (30% effect P = 0.008) and 

At1g47830 which was associated with both exc4.2 and inc4.1. MAS also can be used 

for negative selection; for example At4g33985 is linked with a fw2.1 QTL that 

negatively affected fruit weight (approximately 30% reduction in weight P = 0.0002). It 

was also identified and cloned by Frary et al. (2000). So, progeny that possess the 

L.hirsutum allele for this marker could be eliminated through MAS. MAS decreases the 

time needed for trait improvement approximately 3 or 4 years. 

These identified QTLs can be cloned by using map based cloning techniques. 

After isolation of the sequences for the desired antioxidant or agronomic trait genes, 

these genes can be transferred into other crops with transgenic approaches. Also 
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indentification of gene sequence gives an opportunity to determine gene products and 

their roles in formation of phenotypic expression.   

To increase antioxidant capacity of tomato will not only positively affect human 

health but it will also impact the plant health. Because antioxidant compounds have 

important roles in plant defence systems, production of high amounts of antioxidants 

makes plants more vigorous against both biotic and abiotic stress conditions. As a 

result, producers can obtain higher quality and better yielding crops. 
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APPE�DIX 

 

RAW DATA FOR PHE�OTYPIC CHARACTERIZATIO� 

  

Table A-1.  Raw data for antioxidant traits 

 

Ped.# 
AOX µmol 
Trolox/kg 

Phenolic 
(mg/kg) 

Flavonoid 
(mg/kg) 

Vitamin C 
mg/kg 

Lycopene 
mg/kg 

7S0001 3925,1 303,1 83,3 160,7 3,9 

7S0002 2574,9 207,3 54,6 165,1 89,4 

7S0003 3801,2 255,2 172,2 237,6 83,4 

7S0006 3601,4 215,9 69,9 177,4 153,9 

7S0008 5092,8 454,6 126,8 314,9 76,7 

7S0009 3512,3 226,6 168,9 194,8 64,4 

7S0012 4402,3 333,8 58,8 230,7 81,1 

7S0013 4209,9 273,1 76,8 254,3 107,0 

7S0015 3557,6 196,6 55,1 182,9 71,8 

7S0030 2746,3 204,4 76,4 171,3 21,0 

7S0031 3672,6 253,8 151,3 268,1 17,7 

7S0032 3332,0 240,2 215,2 177,4 83,1 

7S0037 2804,9 275,9 88,4 178,7 91,7 

7S0091 4586,1 307,4 77,3 228,9 129,1 

7S0095 3429,6 252,3 72,2 173,3 95,8 

7S0105 3264,7 169,4 75,9 169,4 43,6 

7S0108 3695,0 284,5 137,4 224,9 137,5 

7S0113 3513,9 220,2 60,6 190,8 84,9 

7S0114 3713,2 266,6 54,6 243,0 101,4 

         (cont. on next page) 
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Table A-1. (Cont.) Raw data for antioxidant traits 

 

Ped.# 
AOX µmol 
Trolox/kg 

Phenolic 
(mg/kg) 

Flavonoid 
(mg/kg) 

Vitamin C 
mg/kg 

Lycopene 
mg/kg 

7S0115 2894,1 228,7 82,4 174,8 51,2 

7S0116 3482,9 221,6 57,4 167,6 36,8 

7S0123 3741,5 194,4 55,5 238,8 49,0 

7S0124 2614,2 290,9 61,5 165,9 72,8 

7S0126 3918,2 225,2 58,3 109,8 33,5 

7S0131 3670,7 233,0 84,7 163,4 36,7 

7S0132 4438,7 271,6 103,2 180,1 48,1 

7S0139 3684,1 269,5 59,7 319,1 69,4 

7S0143 4300,3 273,8 57,8 207,5 65,5 

7S0146 2926,8 180,8 62,9 171,8 60,0 

7S0148 3604,1 222,3 63,4 312,9 45,0 

7S0151 2734,1 273,8 75,9 322,8 61,6 

7S0153 3565,6 318,8 158,7 163,4 83,8 

7S0165 3437,3 343,8 72,2 176,3 66,0 

7S0171 3907,7 220,2 57,4 222,1 95,8 

7S0174 3139,5 187,3 66,6 125,3 62,7 

7S0177 2996,2 254,5 88,4 243,4 64,4 

7S0181 2918,0 188,0 74,0 167,6 41,0 

7S0195 3348,2 175,1 81,0 158,1 64,8 

7S0196 2510,6 218,7 172,2 113,0 53,5 

7S0203 2439,5 182,3 83,3 174,8 97,7 

7S0208 2988,7 166,6 62,9 235,0 94,5 

7S0210 2066,6 225,9 58,3 124,2 105,6 

7S0225 3529,6 181,6 70,3 196,3 70,0 

         (cont. on next page) 
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Table A-1. (Cont.) Raw data for antioxidant traits  

 

Ped.# 
AOX µmol 
Trolox/kg 

Phenolic 
(mg/kg) 

Flavonoid 
(mg/kg) 

Vitamin C 
mg/kg 

Lycopene 
mg/kg 

7S0226 3941,3 265,9 193,4 261,9 96,3 

7S0231 3189,8 281,6 104,6 233,5 48,0 

7S0233 3442,8 308,8 66,6 246,6 89,7 

7S0237 4007,4 249,5 58,8 177,8 127,4 

7S0239 2612,8 186,6 77,3 118,4 117,9 

7S0240 4043,3 235,9 227,7 245,3 42,3 

7S0250 2997,1 220,2 84,7 218,7 58,0 

7S0252 3066,6 185,1 59,7 171,8 30,8 

7S0267 4272,2 328,8 74,5 237,0 87,7 

7S0276 3652,5 304,5 99,5 266,6 40,1 

7S0287 3618,2 207,3 62,9 155,1 83,6 

7S0290 2941,2 205,9 80,5 224,9 34,5 

7S0294 4483,8 199,2 56,5 235,8 92,6 

7S0306 3355,8 245,9 74,0 130,2 44,1 

7S0313 3297,7 181,6 70,3 188,7 72,9 

7S0314 3288,5 304,5 75,9 201,6 105,0 

7S0319 3405,1 201,6 56,5 184,6 29,6 

7S0322 3319,6 311,7 119,4 190,7 56,3 

7S0325 3673,2 253,8 176,8 145,2 28,6 

7S0326 4012,1 245,9 72,7 245,7 28,8 

7S0328 2705,8 213,7 149,0 82,6 69,1 

7S0329 3819,5 371,0 79,1 217,0 43,7 

7S0331 2919,0 170,1 77,3 168,1 76,1 

7S0333 2669,5 217,3 61,5 273,8 54,2 

         (cont. on next page) 
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Table A-1. (Cont.) Raw data for antioxidant traits 

 

Ped.# 
AOX µmol 
Trolox/kg 

Phenolic 
(mg/kg) 

Flavonoid 
(mg/kg) 

Vitamin C 
mg/kg 

Lycopene 
mg/kg 

7S0338 5048,7 273,8 139,3 252,1 64,6 

7S0342 3729,6 317,4 217,0 145,0 31,1 

7S0347 4111,8 230,9 59,2 216,1 52,5 

7S0360 3341,7 258,0 79,1 206,4 94,5 

7S0392 3638,6 254,5 68,0 246,6 102,3 

7S0410 3724,9 291,6 62,0 222,6 48,1 

7S0417 3116,4 261,6 69,9 204,3 68,2 

7S0435 3013,9 211,6 215,7 161,7 38,9 

7S0439 2651,5 243,0 69,0 167,0 86,0 

7S0460 3694,5 323,1 78,2 138,9 66,8 

7S0461 3262,6 204,4 81,4 199,9 53,2 

7S0467 3247,6 318,8 88,4 255,1 67,4 

7S0470 4146,5 318,8 64,3 238,5 43,2 

7S0471 3780,3 326,0 62,9 227,9 73,1 

7S0476 4174,0 226,6 59,2 240,7 31,4 

7S0492 3614,8 312,4 61,1 216,9 53,1 

7S0499 3775,8 277,3 96,7 204,8 117,7 

7S0502 3931,7 226,6 115,7 253,6 78,4 

7S0510 4318,4 376,7 98,6 195,4 48,2 

7S0511 3325,7 176,6 90,2 132,4 43,5 

7S0524 2615,1 217,3 68,0 146,2 139,8 

7S0534 2576,4 180,1 87,5 189,6 70,3 

7S0547 3544,4 199,4 67,6 119,8 171,8 

7S0548 2796,6 169,4 64,8 190,7 111,7 
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Table A-1. (Cont.) Raw data for antioxidant traits 

 

Ped.# 
AOX µmol 
Trolox/kg 

Phenolic 
(mg/kg) 

Flavonoid 
(mg/kg) 

Vitamin C 
mg/kg 

Lycopene 
mg/kg 

7S0552 2583,2 161,5 58,8 199,0 60,1 

7S0555 2733,7 203,7 74,5 148,6 78,6 

7S0559 3019,3 229,5 162,9 192,8 66,5 

7S0561 2825,0 256,6 59,2 190,8 105,5 

7S0563 3697,6 278,8 80,5 196,9 119,1 

7S0571 3245,4 202,3 83,8 215,6 56,9 

7S0572 3715,8 322,4 93,5 190,3 78,9 

7S0575 2242,4 185,9 68,5 190,0 82,4 

7S0579 2974,4 259,5 85,6 204,6 58,3 

7S0580 2887,5 228,7 74,0 163,4 118,0 

7S0581 2160,1 212,3 46,7 161,7 84,8 

7S0583 3295,7 222,3 69,0 161,3 57,6 

7S0584 3532,8 220,2 54,6 196,9 46,1 

7S0586 3110,1 193,7 69,9 209,3 75,1 

7S0593 2960,1 269,5 61,1 240,0 68,6 

7S0596 2764,0 168,0 241,1 155,6 117,9 

7S0597 3264,2 336,0 59,7 102,8 83,9 

7S0598 2876,1 230,2 249,9 174,5 31,4 

7S0599 2557,5 209,4 166,6 215,1 55,9 

7S0601 3127,5 206,6 67,6 218,7 136,2 

7S0602 1618,1 168,0 77,3 118,6 76,6 

7S0604 3161,7 296,6 190,7 224,0 137,7 

7S0606 2288,2 183,0 59,7 192,7 115,4 

7S0608 3339,1 140,8 59,7 159,2 83,2 
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Table A-1. (Cont.) Raw data for antioxidant traits 

 

Ped.# 
AOX µmol 
Trolox/kg 

Phenolic 
(mg/kg) 

Flavonoid 
(mg/kg) 

Vitamin C 
mg/kg 

Lycopene 
mg/kg 

7S0610 2209,2 206,6 67,6 198,6 79,6 

7S0615 3464,1 260,9 69,9 174,5 50,5 

7S0616 3959,0 309,5 78,7 251,1 61,8 

7S0617 3614,9 193,7 56,0 237,1 58,5 

7S0618 4319,6 248,8 215,7 249,1 71,0 

7S0619 4509,0 255,9 62,9 200,5 33,6 

7S0627 3942,5 208,7 140,7 183,2 47,7 

7S0633 3902,7 265,2 112,5 213,7 57,1 

7S0634 4257,4 290,9 79,6 324,2 21,2 

7S0635 3309,5 248,8 95,3 125,9 126,2 

7S0637 4024,8 240,2 64,3 230,4 19,6 

7S0638 3356,3 295,2 78,2 186,9 26,7 

7S0639 4755,2 240,9 70,8 259,2 28,8 

7S0641 4048,7 308,1 57,4 219,8 22,1 

7S0642 2402,2 278,8 66,6 181,2 131,0 

7S0643 3283,8 172,3 73,6 150,8 58,8 

7S0644 3299,1 280,9 59,7 247,2 27,4 

7S0651 3281,5 209,4 64,8 207,3 46,6 

7S0663 3416,6 298,8 82,8 243,0 40,6 

7S0664 2991,3 213,0 77,7 192,7 54,7 

7S0673 3973,5 233,7 74,0 226,7 51,6 

7S0679 3063,3 209,4 128,2 200,6 38,0 

7S0680 3181,1 230,2 218,4 178,3 85,4 

7S0682 3439,6 269,5 60,2 198,8 96,5 
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Table A-1. (Cont.) Raw data for antioxidant traits 

 

Ped.# 
AOX µmol 
Trolox/kg 

Phenolic 
(mg/kg) 

Flavonoid 
(mg/kg) 

Vitamin C 
mg/kg 

Lycopene 
mg/kg 

7S0683 3705,4 189,4 54,6 224,0 53,5 

7S0684 4126,0 288,8 69,9 247,8 46,4 

7S0685 3279,0 215,9 161,0 206,8 61,0 

7S0686 3359,9 194,4 57,4 165,9 83,6 

7S0687 3154,3 196,6 142,5 181,2 30,8 

7S0689 3147,8 299,5 89,3 221,6 87,1 

7S0691 3538,7 183,7 74,0 158,1 89,9 

7S0692 3054,1 168,7 70,3 174,6 54,7 

7S0693 3341,6 213,0 78,7 258,5 46,4 

7S0699 2502,2 198,0 92,6 194,8 41,5 

7S0700 2791,7 208,7 77,3 155,0 49,1 

7S0701 3343,6 311,7 87,9 265,5 84,3 

7S0707 2521,0 215,9 72,7 168,7 80,4 
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Table A-2. Raw data for agronomic traits 

 

Ped.# 
Internal 
Color 

External 
Color Weight Firmness 

Fruit 
Shape 

Stem 
scar 

Locule 
Number Wall 

7S0001 1 1 6,5 2 1 1 3 1 

7S0002 3 3 261,9 3,5 1 5 6 4,5 

7S0003 3,5 4 123,5 4 1 3,5 6 2 

7S0006 3,5 4 55,8 4,5 4,5 2 2 5 

7S0008 1 1 103,4 2 1 4,5 4 1,5 

7S0009 2 3 198,4 2,5 1 5 6 3,5 

7S0012 - - - - - - - - 

7S0013 4 4 75,5 5 1 3 3 4,5 

7S0015 3 3 125,3 3,5 1 4,5 4 2 

7S0030 1 1 67 4,5 1,5 4,5 4 1,5 

7S0031 1 1 79,7 2 1 1,5 4 1,5 

7S0032 3 3,5 65 3 1 4 4 2,5 

7S0037 3 2,5 112,7 2,5 1,5 5 5 3 

7S0091 2 2,5 86,2 4,5 1,5 3,5 3 4 

7S0095 4,5 5 70,9 5 2 2 3 4 

7S0105 1,5 1,5 149,6 3 1 4 5 3,5 

7S0108 2 2,5 57,4 4 1,5 2,5 3 1,5 

7S0113 2 3 76,8 4 1,5 4 5 2,5 

7S0114 4 4,5 78 4 2,5 3 4 4 

7S0115 1 1 143,6 3,5 1,5 4 5 2,5 

7S0116 1,5 1,5 125,3 4 1 4,5 5 2 

7S0123 1,5 1,5 111,8 4 1 3,5 4 2,5 

7S0124 3 3 143 4 1 5 5 4,5 

7S0126 1 1 84,5 4 1,5 4,5 5 3,5 
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Table A-2. (Cont.) Raw data for agronomic traits 

 

Ped.# 
Internal 
Color 

External 
Color Weight Firmness 

Fruit 
Shape 

Stem 
scar 

Locule 
Number Wall 

7S0131 1 1 121,6 4 1 4 5 2,5 

7S0132 2 2 126,4 2 1,5 3,5 5 1,5 

7S0139 1 2 128 5 1,5 4 4 2,5 

7S0143 1 1 136,7 2 1 5 5 3,5 

7S0146 2,5 2,5 126,3 3,5 1 4,5 5 2,5 

7S0148 1,5 2 136,4 2 1 5 5 3 

7S0151 3 3 71 4 1,5 2,5 4 1,5 

7S0153 1,5 2 96,8 2 1,5 3,5 4 3,5 

7S0165 1,5 1,5 85,3 3,5 1 4 4 3,5 

7S0171 1,5 2 71,5 2 1 2,5 3 3 

7S0174 1,5 1,5 73,5 5 1 3 4 2,5 

7S0177 2 1,5 36,9 2,5 2 2 3 2 

7S0181 1,5 1,5 138 2 1 5 6 4 

7S0195 4,5 4 102,7 5 1 5 5 3 

7S0196 1 1,5 99,2 3 1 4 6 1,5 

7S0203 1,5 2,5 87 2,5 1 4 5 3 

7S0208 1,5 3,5 101,2 1,5 1,5 5 4 3 

7S0210 1,5 2 133,9 3 1 5 5 2 

7S0225 1,5 1,5 118 3 1 3 5 2,5 

7S0226 2 2 97,4 1,5 1 5 4 2,5 

7S0231 1,5 1,5 106,5 4 1,5 4,5 4 1,5 

7S0233 2 2 87,1 2,5 2,5 3,5 3 3,5 

7S0237 4 4 40,3 4,5 2 1 3 4 

7S0239 3 4 88,2 3,5 1 3,5 5 3 

7S0240 2,5 2 96,5 3,5 2,5 4,5 4 3,5 
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Table A-2. (Cont.) Raw data for agronomic traits 

 

Ped.# 
Internal 
Color 

External 
Color Weight Firmness 

Fruit 
Shape 

Stem 
scar 

Locule 
Number Wall 

7S0250 1 1 59,7 1,5 1 1,5 3 1,5 

7S0252 1 1 73,2 3 1 5 4 1,5 

7S0267 3,5 4,5 89,7 4 1 4 4 3,5 

7S0276 1,5 2,5 65,6 3 1 2 4 2,5 

7S0287 1,5 2 100,4 2 1,5 3,5 5 1 

7S0290 1 1,5 107,3 3,5 1,5 3,5 4 2 

7S0294 4,5 4,5 154,8 2 1 5 5 3,5 

7S0306 1,5 2 93,5 2 1 5 5 2 

7S0313 1,5 1,5 108,9 1 1 5 6 2 

7S0314 3 5 52,5 3 1,5 1,5 3 4 

7S0319 1,5 1,5 72 2 1,5 1,5 4 2,5 

7S0322 1,5 2 99,5 3 1,5 5 5 3,5 

7S0325 1 1 37,1 4,5 1 1,5 4 1 

7S0326 1 1 43 3,5 1 1 3 1 

7S0328 1,5 2,5 95,5 2,5 2 4 4 3,5 

7S0331 2 2 61,2 1,5 1,5 1,5 4 2 

7S0333 1 1,5 84,5 4,5 1,5 4,5 4 3,5 

7S0338 2 2,5 70,7 1,5 2 3 4 3,5 

7S0342 1 1 65 2 1 2 3 3 

7S0347 1 1 145,2 2 1 5 6 1,5 

7S0360 3 4 89,5 4 1,5 5 4 3,5 

7S0392 2 3,5 80 2 1 4 4 2,5 

7S0410 1 1,5 46,9 1,5 1 2 4 1,5 

7S0417 1,5 1,5 125,9 1,5 1 5 4 2,5 

7S0435 2 2,5 119,3 3 1,5 3 5 1,5 
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Table A-2. (Cont.) Raw data for agronomic traits 

 

Ped.# 
Internal 
Color 

External 
Color Weight Firmness 

Fruit 
Shape 

Stem 
scar 

Locule 
Number Wall 

7S0439 4 4 130,2 1,5 1 5 5 3 

7S0460 1 1 78,3 2 1,5 3 4 2,5 

7S0461 1,5 2 65 2 1,5 1 3 2,5 

7S0467 4,5 4 127,2 3 1 4,5 5 2,5 

7S0470 1,5 3 98,2 4 1 4 4 3 

7S0471 1,5 3 97,8 4,5 1 2 5 3,5 

7S0476 1 1 106,9 3,5 1 4,5 5 2,5 

7S0492 3,5 3,5 138,6 3 1 4,5 4 3,5 

7S0499 3,5 3,5 76 2 1,5 3 4 2 

7S0502 3 3 126,4 3 2 4,5 4 3 

7S0510 1,5 1,5 78,9 2 2 2 4 2,5 

7S0511 1 1 128,7 5 1 3,5 5 3,5 

7S0524 4 4,5 21,7 2,5 1 5 6 5 

7S0534 3 3 199,9 3,5 1 5 6 4,5 

7S0547 4 4 111,5 4 1,5 5 4 4,5 

7S0548 2 2 198 3,5 1 5 5 4,5 

7S0552 2 2,5 217 3 1 5 5 4,5 

7S0555 2,5 3 52,8 5 4 2 3 4,5 

7S0559 1,5 3 63,2 2 1 3 5 1 

7S0561 2 2 104,1 2,5 1 4,5 5 1,5 

7S0563 1,5 1,5 78,3 2,5 1,5 3 3 3,5 

7S0571 2,5 2,5 111,2 4,5 1,5 5 5 2,5 

7S0572 1 1,5 58,7 1,5 2 2 3 1 

7S0575 2 2,5 63,2 4,5 1 1 4 2,5 

7S0579 4 4,5 48 3 2,5 1 4 2,5 
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Table A-2. (Cont.) Raw data for agronomic traits 

 

Ped.# 
Internal 
Color 

External 
Color Weight Firmness 

Fruit 
Shape 

Stem 
scar 

Locule 
Number Wall 

7S0580 2,5 2,5 70,9 3 1 3,5 5 2,5 

7S0581 2 3 89,4 4,5 1,5 3 3 4 

7S0583 1,5 3 69,4 4,5 1,5 4 4 3 

7S0584 1 1 83,2 2,5 1 2,5 4 1,5 

7S0586 1,5 1,5 109,3 3,5 1 4,5 5 2,5 

7S0593 1,5 2 110,5 3,5 2,5 2 2 2 

7S0596 1,5 1,5 123,5 5 1 5 5 3,5 

7S0597 1,5 2 65,7 4 1 4 4 2,5 

7S0598 2 2 140 4 1 5 5 2,5 

7S0599 1,5 2 111,2 4,5 1 5 5 1,5 

7S0601 2 2,5 191,1 1,5 1 5 5 3,5 

7S0602 2 2,5 201,8 2 1 5 5 2 

7S0604 2,5 2,5 72,4 2 1 5 5 2,5 

7S0606 3 2 42,8 3 2 2 3 3 

7S0608 1,5 2 83,7 3 1,5 3 5 2,5 

7S0610 2 2,5 88,5 5 1 3,5 3 3,5 

7S0615 2,5 3,5 52,6 3,5 2 2,5 3 2,5 

7S0616 1,5 1 69,7 5 1,5 2,5 4 4,5 

7S0617 1,5 2 67 4 1 2,5 5 3,5 

7S0618 1 1 75,9 5 1 4 6 2 

7S0619 1 1 90,9 4,5 1,5 4,5 5 2,5 

7S0627 4,5 4 73 5 1,5 3,5 4 2,5 

7S0633 3 4 49,3 1,5 1,5 5 4 3,5 

7S0634 1 1 53,7 4,5 1,5 2 3 2 

7S0635 2 3 94 3 1 4,5 5 2 
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Table A-2. (Cont.) Raw data for agronomic traits 

 

Ped.# 
Internal 
Color 

External 
Color Weight Firmness 

Fruit 
Shape 

Stem 
scar 

Locule 
Number Wall 

7S0637 1 1 109,2 2 1 4 5 1,5 

7S0638 1 1 99,4 2 1 4 4 2 

7S0639 1 1 52,9 4,5 1,5 3 4 2 

7S0641 1 1 95 4,5 1 3,5 3 2 

7S0642 3,5 3 149,5 2 1 5 5 3 

7S0643 2 1,5 77,9 5 1 2 3 4 

7S0644 1 1 118,2 4 1 1 4 2 

7S0651 1 1 148 1,5 1 5 4 4,5 

7S0663 1 1 96,3 2,5 1,5 3,5 4 1,5 

7S0664 1 1 98 2,5 1,5 5 4 3,5 

7S0673 1,5 1,5 128,3 2 1 4,5 5 2,5 

7S0679 2 1,5 94,3 2,5 1 3,5 5 3 

7S0680 2 2,5 73,9 3,5 1 3,5 4 3,5 

7S0682 4,5 3,5 96,7 2 1 4,5 5 4 

7S0683 2 3 104,8 4,5 1 5 5 2 

7S0684 1 1,5 90 1,5 1 4,5 6 2,5 

7S0685 1 1 85,8 4 1,5 3,5 4 2,5 

7S0686 2 2,5 127,3 2,5 1 4,5 4 4 

7S0687 1,5 1,5 56,5 3,5 1,5 4,5 4 4 

7S0689 2,5 2,5 171,9 4 1 4,5 6 4 

7S0691 2,5 2,5 71 2,5 1 4,5 6 2,5 

7S0692 1,5 2 41,9 2,5 2,5 3 3 4 

7S0693 1,5 1,5 72,2 4 1 4 6 2,5 

7S0699 1,5 1,5 56,9 2 1 2 5 2,5 

7S0700 1,5 1,5 82,5 5 1 5 5 2,5 
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Table A-2. (Cont.) Raw data for agronomic traits 

 

Ped.# 
Internal 
Color 

External 
Color Weight Firmness 

Fruit 
Shape 

Stem 
scar 

Locule 
Number Wall 

7S0701 1,5 2 46,5 3,5 1 2,5 4 2,5 

7S0707 1,5 1,5 51,5 2 1,5 4 3 3,5 

 

 

 

 

 


