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Department of Electrical and Electronics Engineering

—————————————————— 22.10.2004

Asst. Prof. Dr. Thomas BECHTELER

Department of Electrical and Electronics Engineering

—————————————————— 22.10.2004

Prof. Dr. Durmuş Ali DEMİR
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ABSTRACT

This thesis deals with the implementation of a numerical method to de-
scribe how electromagnetic waves propagate through a one-dimensional photonic
crystal waveguide. The one-dimensional photonic crystal waveguide is a periodic
arrangement of dielectric slabs of alternating dielectric constant with an impurity
slab introduced as the guiding layer. This impurity guides, and confines light
within a given range of frequencies by producing waveguide modes within the
photonic band gap. These modes are different from those of conventional waveg-
uides that use total internal reflection as the basic guiding mechanism. Photonic
crystal waveguides are expected to lead to compact photonic integrated circuits.
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ÖZET

Elektromanyetik dalgaların bir boyutlu fotonik kristal dalga kılavuzu
içerisinde nasıl ilerlediği nümerik metotların uygulanmasıyla açıklanmaktadır.
Bir boyutlu fotonik kristal dalga kılavuzu, değişen dielektrik sabitine sahip tabakaların
periyodik olarak sıralanmasından ve içerisinde kılavuz tabaka olarak bilinen safsızlğa
sahip bir tabakadan meydana gelmektedir. Bu safsızlık, fotonik yasaklanmış
bant aralğında dalga kılavuzu modları yaratarak, ışığın verilen belirli bir frekans
aralğında ilerlemesini ve hapsedilmesini sağlamaktadır. Elde edilen bu modlar,
basit kılavuzlama mekanizması olarak iç tam yansımayı kullanan geleneksel dalga
kılavuzlarından farklıdır. Fotonik kristal dalga kılavuzlarının bütünleşmiş yoğun
fotonik devrelerde yol gösterici olacağı umulmaktadır.
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Chapter 1

INTRODUCTION

As the world demands ever more of computers and communications we

turn increasingly to optical devices whose bandwidth and speed of execution offer

great potential. However materials science has lagged behind in this rush into the

optical domain : optical properties of materials are not always well matched to the

functions we seek. This is in contrast to the vast range of electronic properties

available to us. In the electronic domain one can almost make materials to

order. The root cause of this richness in electronic properties is the interaction of

electrons with the periodic structure of the materials. It is this interaction that

decides whether a material will be a metal, a semiconductor, or an insulator, and

can be further exploited to fine tune the detailed electronic properties. Change

the structure, change the properties.

It was this concept that led Yablonovitch [1] to propose that we try the

same trick with light. He had in mind that just as a semiconductor has a forbidden

band of energies within which no electron could enter the crystal, so it should be

possible to make a periodic dielectric such that in a forbidden range of frequencies

no photon could enter into or propagate within the crystal. This idea created the

concept of photonic crystal which has a periodically modulated dielectric constant

with a lattice constant that is comparable to desired wavelength. Structure of

a photonic crystal consists of periodically arranged blocks and that is why it

is a “crystal”. It is said to be “photonic” because these materials affect the

propagation properties of photons.

There is a conceptual analogy between the behavior of electromagnetic

waves in periodic dielectric structures and electron waves in natural crystals.

Photonic crystals are theoretically analyzed by using the solutions of Maxwell’s

equations in a periodic medium, while the electronic structure of natural crystals

are analyzed by the Schrödinger equation. But this is not a complete analogy.

For instance, one important difference between the electronic and photonic band

structures is that the electrons are massive whereas photons have no mass. There-

fore, the dispersion relation, which is the relationship between the wave-vector

1



and frequency for electrons in crystals is parabolic while in the photonic case

it is linear. There are a few other differences between electronic and photonic

band structures. The translation vectors for photonic crystals are much larger

then those for the electron systems and the photonic reciprocal space has a Bril-

louin zone much smaller than that for electrons. Electrons have spin 1/2, but

frequently this spin is ignored, and the Schrödinger equation is treated in a scalar

wave approximation. In contrast, photons have spin 1, but for 2D and 3D sys-

tems it is never a good approximation to neglect polarization in photonic crystal

calculations.

In vacuum a well known equation ω = ck is valid for free photons known

as dispersion relation of the radiation field, where c is speed of light in vacuum.

If photons are propagating through a homogeneous and isotropic dielectric then

ω = ck/n, where n is the refractive index of the dielectric material. As can be

seen, the frequency (and therefore photon energy) depends linearly on the ratio

of the wave-vector and the material refractive index.

1.1 History of Photonic Crystals

The interest of researchers in the field of photonic crystals has been in-

creasingly growing since they were proposed in 1987. The amount of publications

show a spectacular exponential growth. The number of papers published and

number of patents issued each year is so high that it is really hard to keep track

of even the most significant and valuable papers.

In this section a brief summary of the most important and crucial work

related to photonic crystals will be presented.

In 1987, two independent works appeared. The first one was published

by Yablonovitch [1] and dealt with the “inhibition of spontaneous emission of

electromagnetic radiation using a three dimensionally periodic structure”. The

lattice that was proposed should have a photonic band gap and a region of for-

bidden energy states. The second paper was published by John [4] that was titled

“Anderson localization of photons in disordered dielectric superlattices”. These

two works are considered as the starting point of the research field.

The spontaneous emission rate of an excited state of a quantum system

is given, to first order, by Fermi’s Golden Rule:

Γ(ω) =
2π

~2
< |M |2 > D(ω), (1.1)

whereMij is the matrix element of the interaction Hamiltonian,Hint : < ψf |Hint|ψi >.

2
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Figure 1.1: Number of published works per year. Data was obtained by searching
for “photonic crystal OR photonic band” at the ISI Web of Science.

The density of states of the radiation field in the volume V of vacuum, D(ω), is

proportional to ω2 :

D(ω) =
ω2 V

π2 c3
(1.2)

By modifying D(ω), one can change the spontaneous emission rate, and thus the

optical properties of materials. For this purpose, photonic crystals can be used

as the density of states can be radically altered within a photonic crystal. It

was this that motivated Yablonovitch to seek a periodic dielectric structure that

possessed a band of “forbidden frequencies.”

In 1990, Satpathy et al. [6] and Leung et al. [7] independently published

a scalar implementation of the plane-wave method to photonic band calculations.

Shortly after, both groups improved the plane-wave method. This time theoret-

ical calculations and experimental data showed almost excellent agreement. But

whereas Yablonovitch had predicted a photonic bandgap between the 2nd and the

3rd bands for a structure that consisted of slightly overlapping spherical voids ar-

ranged in the periodicity of the face-centered cubic (fcc) lattice, the calculations

showed that there was no such gap, and that the experimental data was in error.

In 1992, Sözüer et al [8] further improved the plane-wave method to show

the behavior of higher energy bands. Surprisingly, they showed that between

the 8th and the 9th bands of the same structure that Yablonovitch had studied,

a complete photonic band gap was formed for a fcc lattice of air holes in a

3
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Figure 1.2: Number of US patents issued per year related to photonic crystals.
Data was obtained by searching “photonic crystal OR photonic band” at the US
Patent Office website http://www.uspto.gov.

semiconductor when the refractive index contrast was above 2.8. About one

year later Sözüer et al. [9] investigated the photonic bands in the simple-cubic

lattice (scaffold structure) and calculated the effective long-wavelength dielectric

constant.

In the beginning of 1994, a new structure with a complete photonic band

gap was proposed by two independent groups [10, 11]. The so-called woodpile

structure has a tetragonal symmetry and a complete photonic band gap between

the 2nd and 3rd bands.

In 1995, artificial opals [12] were a method that all research laboratories

could afford to manufacture and soon many other groups were interested. Fur-

thermore, loading the opal voids with a high refractive index material and then

etching away the opal template would result in a structure of air spheres in a

dielectric material matrix. Such a structure was precisely the kind of crystal for

which Sözüer et al. [8] had predicted a complete photonic band gap.

In 1996, Lin et al. [13] observed that photons were strongly dispersed in

2D crystals when their frequency was close to the band gap edges. P. St. J.

Russell’s group was the first to demonstrate all-silica single-mode optical fiber

with photonic crystal cladding [14].

One year later, Birks et al. [15] demonstrated early photonic crystal fiber

4



with some unusual properties. In 1998, Knight et al. [16] actually produced the

first photonic crystal fiber. The first photonic crystal laser working in the near

infrared (NIR) was presented by Fleming et al. [17] in 1999. In May of 2000, an

inverse opal of silicon was presented by Blanco et al. [18].

By 2004, there have been many publications which are mainly related

with the different kind of photonic crystal optical fibers and electromagnetic

wave guidance.

1.2 Applications of Photonic Crystals

There are many conventional applications of photonic band structures

such as perfect dielectric mirrors, resonant cavities, lasers, photonic crystal waveg-

uides, and photonic crystal fibers. Photonic crystals can be used as perfect di-

electric mirrors because the reflectivity of photonic crystals derives from their

geometry and periodicity, not from a complicated atomic scale property. They

should be essentially lossless. Such materials are widely available all the way from

the ultraviolet regime to the microwave. Using of the materials with nonlinear

properties for construction of photonic crystal lattices open new possibilities for

molding the flow of light.

Photonic band gap materials show potential of changing the whole sce-

nario of light guiding in the near future. In traditional waveguides operated

at optical range, light is guided by total internal reflection at the boundary

of the waveguide. This is quite different from the waveguide operated at mi-

crowave range, where the metallic waveguides are used. Though in some sense,

the propagation of microwaves in such waveguides can also be regarded as inter-

nal reflection, there is no restriction on the reflection angle. For waves at optical

frequencies, the metallic waveguides result in great loss, so the dielectric waveg-

uides are the natural choice. But the reflection is restricted to small incidence

angles with respect to the waveguide surface. The discovery of photonic crystals

put a new alteration on light guiding. When the frequency of the light falls in

the gap of the photonic crystal, it is not able to propagate in the crystal. When

such light is incident on the surface of the crystal, it will be completely reflected

for any incident angle. This provides a great deal of flexibility for the guiding of

light. A prominent example is to guide the light through a sharp bend with very

high efficiency.[2] For photonic waveguides, extensive numerical calculations and

experimental study have been conducted by several groups.[3, 5]
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1.3 Overview of the Thesis

In this study we review the optical properties of one-dimensional photonic

crystals and one-dimensional photonic crystal waveguides using two different nu-

merical methods. We also investigated transmission spectra of finite periodic

dielectric layers. We investigated the effects of random perturbations on the pe-

riodic geometry and found that the bandgaps are quite robust to such random

variations that could possibly result during an actual manufacturing process.

In chapter 2 we outline the plane-wave method in one and three dimen-

sions. We also show E and H methods and give the derivations and comparison

between these two methods.

In chapter 4 the calculation of transmission and reflection coefficients of

periodic dielectric media is shown and information about the used method is

explained.

In the Randomness in Periodic Layered Media and 1-D Photonic Crystal

chapter, effects of random parameters and importance of randomness in dielectric

layers and one-dimensional photonic crystals are reviewed and also derivation of

the supercell method is given for a disordered one-dimensional photonic crystal.

In the last chapter, derivation of the supercell method is given and prop-

erties of one-dimensional photonic crystal waveguides and some guided modes

both E-polarization (TE) and B-polarization (TM) are shown. Additionally we

have compared analytical and numerical solutions of a single slab symmetric

waveguide at both E (TE) and B (TM) polarizations.
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Chapter 2

The Plane-Wave Method

The Plane-wave method, is a straightforward way of solving for eigen-

values and eigenfunctions of the equation which is obtained from the Maxwell’s

equations. The basic idea is to expand the dielectric constant as well as the peri-

odic part of Bloch function in a discrete Fourier series expressed on the plane-wave

basis [8],[19], [20], [21]. This method can be very versatile when the medium is

periodic.

Unfortunately the plane-wave method does not seem very suitable if the

photonic crystals has defects. However, many structures having a point defect

have already been studied with this method using a supercell method. In section

6.1, we are going to consider the supercell method for photonic crystals with

defects.

2.1 E Method

We start with macroscopic Maxwell’s equations in a lossless, charge-free

region of space:

∇ · D = 0 (2.1)

∇ · B = 0 (2.2)

∇× E = −∂B
∂t

(2.3)

∇× H =
∂D

∂t
. (2.4)

where E and H are the macroscopic electric and magnetic fields, D is the dis-

placement field, B is the magnetic induction field. The displacement field is

D = ε0ε(x)E where ε(x) is relative dielectric permittivity and the magnetic in-

duction field B = µ0µH where µ is the relative magnetic permeability. For most

dielectric materials of interest, the relative magnetic permeability is close to unity
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and we may set B = µ0H in the Eq. (2.4). Taking the curl of both sides of Eq.

(2.3),

∇× (∇× E) = −∇× ∂B

∂t
=
∂(∇× B)

∂t
, (2.5)

where we interchange the order of time and space derivatives. We can substitute

Eq. (2.4) in the right hand side of the Eq. (2.5) which yields:

∇× (∇× E) = −µ0
∂

∂t

(
∂D

∂t

)
= − 1

c2
∂2

∂t2
(εE) (2.6)

where we used D = ε0ε(x)E and 1/c2 = ε0µ0. or

∇× (∇× E) +
1

c2
∂2

∂t2
(ε E) = 0. (2.7)

Eq. (2.7) is the general form of the electromagnetic wave equation in real space.

2.1.1 3-D Wave Equation in G Space

In Eq. (2.7) we can separate out the time dependence using

E(r, t) = E(r)eiωt , (2.8)

which yields

∇× (∇× E(r))
ω2

c2
ε(r) E(r). (2.9)

For a dielectric constant that is periodic, ε(r + R) = ε(r), where R is a

lattice vector, one can expand ε(r) in terms of the reciprocal lattice vectors G.

Thus ε(r) can be written as:

ε(r) =
∑

G

ε(G) eiG·r. (2.10)

In general the Fourier transform of the dielectric lattice constant ε(r) can

be written as

ε(q) =
1

(2π)3

∫
dre−iq·rε(r) =

∑

G

δ(q − G)ε(G) (2.11)

ε(G) =
1

Vcell

∫

WS cell

dre−iG·rε(r)

=
1

Vcell

∫

WS cell

dre−iG·r

[
εb +

∑

R

ε0(r − R)

]

= εbδG0 +
1

Vcell

∑

R

∫

WS cell

dre−iG·(r−R)ε0(r − R) (2.12)
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= εbδG0 +
1

Vcell

∫

all r

dre−iG·rε0(r)

= εbδG0 + ε0(G)

where

ε0(G) ≡ 1

Vcell

∫

all r

dre−iG·rε0(r) (2.13)

Here the volume of the primitive cell of the lattice is taken as Wigner-Seitz

(WS) cell, G is the reciprocal lattice vector, εb is the dielectric constant of the

background, and q is taken as (k + G).

And also E(r) can be written as

E(r) =

∫

all q

dq ei q · r E(q). (2.14)

If we have an integral which is over all q, it can be replaced in the calculations

as an integral dk times summation over reciprocal lattice vectors.

∫
dq =

∫
dk

∑

G′

(2.15)

Taking the curl of E(r)

∇× E(r) =

∫
dq ei q· r i q × E(q). (2.16)

Retaking the curl of Eq. (2.16)

∇×∇× E(r) = −
∫

dq ei q· r q × q × E(q). (2.17)

On the right hand side of Eq. (2.9)

=
ω2

c2

∑

G

ε(G)eiG·r

∫
dqeiq·rE(q). (2.18)

Using the integral property

=
ω2

c2

∑

G

ε(G)eiG·r

∫
dk

∑

G′

ei(k+G′)·rE(k + G′) (2.19)

where q ≡ k + G′.

=
ω2

c2

∫
dk

∑

G

∑

G′

ε(G)ei(k+G+G′)·rE(k + G′) (2.20)
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Using G + G′ ≡ G′′ and G ≡ G′′ − G′ into Eq. (2.20)

=
ω2

c2

∫
dk

∑

G′′

∑

G′

ε(G′′ − G′)ei(k+G′′)·rE(k + G′). (2.21)

Changing summation indices as G′′ → G′ and G′ → G then

=
ω2

c2

∫
dk

∑

G′

∑

G

ε(G′ − G)ei(k+G′)·rE(k + G). (2.22)

Using the integral property again, which yields:

=
ω2

c2

∫
dqeiq·r

∑

G

ε(G′ − G)E(k + G). (2.23)

Writing Eq. (2.17) and Eq. (2.23) into the Eq. (2.9)

−
∫

dq ei q· r q × q × E(q) =
ω2

c2

∫
dqeiq·r

∑

G

ε(G′ − G)E(k + G). (2.24)

We can write

−
∫

dq ei q· r

{
q × q × E(q) +

ω2

c2

∑

G

ε(G′ − G)E(k + G)

}
= 0. (2.25)

Since ei q· r is linearly independent, the expression in the parenthesis must be

equal to zero to satisfy this equality. According to this reason, we can write,

−q × q × E(q)
ω2

c2

∑

G

ε(G′ − G)E(k + G). (2.26)

And using q ≡ k + G′ into Eq. (2.26)

−(k + G′) × (k + G′) × E(k + G′) =
ω2

c2

∑

G

ε(G′ − G)E(k + G). (2.27)

In more convenient form

−(k + G′) × (k + G′) × Ek(G
′) =

ω2

c2

∑

G

ε(G′ − G)Ek(G). (2.28)

This is the generalized eigenvalue equation and (k+G′)× (k+G′)×Ek(G
′) and

ε(G′ − G) must be hermitian and hermitian, positive definite. If we would like

to solve our photonic band gap structure in 3-D using E method we should use

Eq. (2.28).
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2.1.2 1-D Wave Equation in G Space

From Eq. (2.7) , one-dimensional time dependent wave equation in a

lossless periodic dielectric structure can be written for µ(x) = 1, σ(x) = 0 and

the dielectric constant is ε(x, y, z) = ε(x) in one-dimension,

∂2

∂x2
E(x, t) − 1

c2
∂2

∂t2
ε(x)E(x, t) = 0, (2.29)

We consider a linear, isotropic and positive definite medium in a lattice with the

dielectric lattice constant

ε(x) = ε(x+ a) > 0,

where a is the lattice constant. We can separate out the time dependence by

expanding the fields into a set of harmonic modes:

E(x, t) = E(x)eiωt (2.30)

After these assumptions we are going to substitute the electric field into

our one-dimensional time dependent wave equation to obtain the wave equation

only in spatial domain.

∂2

∂x2
(E(x) eiωt) − 1

c2
∂2

∂t2
ε(x) E(x) eiωt = 0,

eiωt ∂
2 E(x)

∂x2
+
ω2

c2
ε(x) E(x) eiωt = 0,

∂2 E(x)

∂x2
+
ω2

c2
ε(x) E(x) = 0, (2.31)

where E(x) is perpendicular to x coordinate. We expand both E(x) and ε(x) in

terms of Bloch plane-waves. We have a periodic dielectric structure, therefore we

can write ε(x) as

ε(x) =
∑

G

ε(G) eiGx (2.32)

E(x) =

∫

all q

dq E(q) eiqx (2.33)

ε(G) =
1

Vcell

∫
ε(x) e−iGx (2.34)

E(q) =
1

Vcell

∫
dx E(x) e−iqx (2.35)
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and we rewrite the integral over all q as an integral over Brillouin zone (BZ) and

summation over reciprocal lattice vector G.
∫

all q

=

∫

BZ

∑

G

(2.36)

where q = k+G. This integral transformation can be thought as a transformation

between real space and reciprocal lattice space. Substituting ε(x) and E(x) into

time independent wave Eq. (2.31)

∂2

∂x2

∫

all q

dqE(q)eiqx +
ω2

c2

∑

G

ε(G)eiGx

∫

all q

dqE(q)eiqx = 0 (2.37)

∫

all q

dq(−q2)E(q)eiqx +
ω2

c2

∑

G

ε(G)eiGx

∫

all q

dqE(q)eiqx = 0. (2.38)

Using (2.36) and q = k +G

−
∫

BZ

dk
∑

G′

(k +G′)2E(k +G′)ei(k+G′)x +

ω2

c2

∑

G

ε(G)eiGx

∫

BZ

dk
∑

G′

E(k +G′)ei(k+G′)x = 0. (2.39)

Taking G
′′ ≡ G

′

+G

∫

BZ

dk eikx

[
−

∑

G′

(k +G′)2E(k +G′)eiG′x+

ω2

c2

∑

G′

∑

G′′−G′

ε(G′′ −G′)E(k +G′)eiG′′x

]
= 0. (2.40)

We can rewrite this equation as

∫

BZ

dk eikx

[
−

∑

G′

(k +G′)2E(k +G′)eiG′x+

ω2

c2

∑

G′

∑

G′′

ε(G′′ −G′)E(k +G′)eiG′′x

]
= 0. (2.41)

Now we would like to return first G′ and G. Changing our summation indices as

G′ −→ G and G′′ −→ G′ in Eq. (2.41)

∫

BZ

dkeikx

[
−

∑

G′

(k +G′)2E(k +G′)eiG′x +
ω2

c2

∑

G

∑

G′

ε(G′ −G)E(k +G)eiG′x

]
= 0

∫

BZ

dkeikx
∑

G′

eiG′x

[
−(k +G′)2E(k +G′) +

ω2

c2

∑

G

ε(G′ −G)E(k +G)

]
= 0. (2.42)
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Using (2.36) again

∫

all q

dqeiqx

{
−|k +G′|2E(k +G′) +

ω2

c2

∑

G

ε(G′ −G)E(k +G)

}
= 0. (2.43)

According to this integral in Eq. (2.43), we can say that the expression in the

parenthesis must be equal to zero.

−|k +G′|2E(k +G′) +
ω2

c2

∑

G

ε(G′ −G)E(k +G) = 0 (2.44)

For a given k value Ek(G) ≡ E(k +G) Eq. (2.1.2) becomes:

|k +G′|2Ek(G
′) =

ω2

c2

∑

G

ε(G′ −G)Ek(G) (2.45)

or in an easier more convenient notation

|k +G|2EG =
ω2

c2

∑

G′

ε(G−G′)EG′ . (2.46)

For simplicity, we have dropped the script k. These equations define an infinite-

dimensional generalized eigenvalue problem of the form

Ax = λBx, (2.47)

where AGG
′ = |k + G|2 δGG

′ , BGG
′ = ε(G − G′), xG = E(G), and λω2

c2
. We note

that A and B are Hermitian matrices, and in addition B is positive definite. Be-

cause of real ε(x) and ε(x) > 0 respectively, B is a Hermitian and positive definite

matrix. Eq. (2.46) can now be solved numerically using standard techniques to

give all the allowed frequencies ω for a given wavevector k.

To illustrate the matrices, consider a basis that consists of three reciprocal

lattice vectors G1, G2, and G3. One would then obtain, for A, B, and x,

A =




|k +G1|2 0 0

0 |k +G2|2 0

0 0 |k +G3|2




B =




ε(G1 −G1) ε(G1 −G2) ε(G1 −G3)

ε(G2 −G1) ε(G2 −G2) ε(G2 −G3)

ε(G3 −G1) ε(G3 −G2) ε(G3 −G3)



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and x matrix

x =




E(G1)

E(G2)

E(G3)




Of course, a basis of just 3 G points would be inadequate for solving an

actual problem. One would typically need ∼ 100 plane waves for band structure

calculations in 1D to obtain reliable results. The band diagram displayed in Fig.

(2.1) was obtained with an expansion using 100 plane waves:

Figure 2.1: 1-D Photonic Crystal Band Diagram for εa = 1, εb = 13, filling ratio
β = 0.5, number of plane-waves = 100, where the filling ratio is da

da+db

. Shaded
regions show the photonic band gaps.

2.2 H Method

In the previous section, the B field was eliminated from Maxwell’s equa-

tions and a second order equation for E was obtained. Alternatively, one could

eliminate the E field from the equations and find an equation for B:

∇× E = −∂B
∂t

(2.48)

∇× H =
∂D

∂t
. (2.49)
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Using two of the Maxwell’s equations and taking the curl of Eq. (2.49),

∇× H =
∂D

∂t
ε0 ε(r)

∂E

∂t
(2.50)

Dividing by ε(r) and taking the curl, one obtains

∇× 1

ε(r)
∇× H = ε0

∂(∇× E)

∂t
.

(2.51)

Using Eq. (2.48), one obtains

∇× 1

ε(r)
∇× H = − 1

c2
µ
∂2H

∂t2
. (2.52)

For most dielectric materials of interest, the relative magnetic permeability is

close to unity and we may set B = µ0H in Eq. (2.48). As before, we are looking

for harmonic solutions of the form

H(r, t) = H(r)eiωt , (2.53)

which, upon substitution into Eq.(2.52) yields

∇×
[

1

ε(r)
∇× H

]
=

ω2

c2
H. (2.54)

Eq. (2.54) is the wave equation for H which can also be written as

∇× [η(r) ∇ × H]
ω2

c2
H (2.55)

where η(r) ≡ 1

ε(r)
.

For the H method we have two choices. The first one is choosing
1

ε(r)
≡

η(r) and the other one is doing our calculation with ε−1. In some of the problems

second one converges very well. Of course it depends on the structure that you

would like to solve.

2.2.1 3-D Wave Equation in G Space

Since the dielectric constant is periodic, we can expand η(r) in terms

of reciprocal lattice vector G. η(r) can be written as an summation over all

reciprocal lattice vectors

η(r) =
∑

G

η(G) eiG·r. (2.56)
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And also H(r) can be written as

H(r) =

∫

all q

dq ei q·r H(q). (2.57)

If we have an integral which is over all q, it can be replaced in the calculations

as an integral dk times summation over reciprocal lattice vectors.
∫

allq

dq

∫

BZ

dk
∑

G′

(2.58)

Taking the curl of H(r)

∇× H(r) =

∫
dq ei q· r i q × H(q). (2.59)

Multiplying Eq. (2.59) with η(r) and using the identity q ≡ k + G, Eq. (2.59)

can be written as:

η(r) ∇× H(r) =
∑

G

η(G) ei G·r

∫
dq ei q·r i q × H(q)

= i
∑

G

η(G) ei G·r

∫
dk

∑

G′

ei (k+G′)·r(k + G′) × H(k + G′)

= i
∑

G

∑

G′

η(G)

∫
dk ei (k+G+G′)·r (k + G′) × H(k + G′).

Taking the curl of η(r) ∇× H(r) one more time Eq. (2.59) becomes:

∇× η(r)∇× H(r)

= i
∑

G

∑

G′

η(G)

∫
dkei (k+G+G′)·ri(k + G + G′) × (k + G′) × H((k + G′))

= −
∫
dk

{
∑

G

∑

G′

(k + G + G′) × η(G)(k + G′) × H(k + G′)

}
ei(k+G+G′)·r.

Changing the index of summations as G′′ ≡ G′ + G

∇× η(r) ∇× H(r)

= −
∫
dk

{
∑

G′′−G

∑

G′

(k + G′′) × η(G′′ − G′)(k + G′) × H(k + G′)

}
ei(k+G′′)·r.

= −
∫
dk

{
∑

G′

∑

G

(k + G′) × η(G′ − G)(k + G) × H(k + G)

}
ei(k+G′)·r

= −
∫
dk

∑

G′

ei(k+G′)·r

{
∑

G

(k + G′) × η(G′ − G)(k + G) × H(k + G)

}

where the substitution G′′ → G′ and G′ → G was used in the second step.
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Using the integration property again,

∇× (η(r)∇× H(r))

= −
∫
dqeiq·r

{
∑

G

(k + G′) × η(G′ − G)(k + G) × H(k + G)

}
. (2.60)

Substituting Eq. (2.60) into Eq. (2.55) and rearranging
∫
dqeiq·r

{
∑

G

(k + G′) × η(G′ − G)(k + G) × H(k + G) +
ω2

c2
H(k + G′)

}
= 0.

In order to satisfy this equality, the expression in the curly braces must vanish

−
∑

G

(k + G′) × η(G′ − G)(k + G) × H(k + G) =
ω2

c2
H(k + G′). (2.61)

The equation above is an ordinary eigenvalue problem in the form

AH =
ω2

c2
H. (2.62)

In Eq. (2.61) we have 3N × 3N matrix equation and we can reduce in 2N ×
2N eigenvalue problem (see Appendix A) by similarity transformation choosing

appropriate bases vectors as in the form

∑

G

|k + G′||k + G|η(G′ − G)


 e′

2 · e2 −e′
1 · e2

−e′
2 · e1 e′

1 · e1




 H1(G)

H2(G)


=

ω2

c2


 H1(G)

H2(G)


 .

2.2.2 1-D Wave Equation in G Space

In this section we derive H method in one-dimension. We start with the

Eq. (2.61) and writing it in one-dimension by setting k ≡ k i, G ≡ G i, G′ ≡ G′ i,

and H ≡ Hz k, where H is perpendicular to x coordinate. For a given G,

(k +G′)i × {η(G′ −G)(k +G)i ×Hz k}ω
2

c2
Hz k. (2.63)

Taking the first curl, we have

(k +G′)i × η(G′ −G)(k +G)Hz j =
ω2

c2
Hz k. (2.64)

Taking the second curl, we have

(k +G′)η(G′ −G)(k +G)Hz k =
ω2

c2
Hz k. (2.65)

Eq. (2.65) can be written for all G

−
∑

G

(k +G′)η(G′ −G)(k +G)Hz =
ω2

c2
Hz. (2.66)

This is the ordinary eigenvalue problem in the from

AHz = λHz (2.67)
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Chapter 3

ONE-DIMENSIONAL PERFECT PHOTONIC CRYSTAL

One-dimensional photonic crystals are the simplest photonic crystals and

serve as a “textbook” case to understand the fundamental properties of the prob-

lem. Furthermore the convergence of the plane-wave method is excellent for these

structures, making them ideal as a starting point for studying various compli-

cations such as randomness, point defects etc. without having to worry about

computational resources. In this chapter we are going to show the band struc-

tures of one-dimensional perfect photonic crystal calculated with the plane-wave

and supercell methods.

3.1 Plane-wave Method

1st Five Gaps of Perfect Photonic Crystal
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Figure 3.1: Filling ratio vs k(wave vector) for ε(a) = 1, ε(b) = 13.
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In this section we show the band diagrams of one-dimensional photonic

crystal calculated by using the plane-wave method. First of all we start with the

filling ratio factor which is
da

da + db

.

In our calculations we have used the quarter wave stack which gives the

maximum band gap for the lowest gap and higher odd numbered gaps. The even

numbered gaps 2, 4, 6, .. are zero for this choices of da,db. In the Fig. (3.1), the

first five band gaps are shown and according to the figure we have chosen the

filling ratio as 0.78 that means da
√
εa and db =

√
εb.

3.2 Supercell Method

In this section, we show the band diagrams of a one-dimensional pho-

tonic crystal calculated by using the supercell method and compare two band

diagrams. In this method, we have chosen the big unit cell (supercell) and calcu-

lated photonic band gaps. This method allows the inclusion impurities into the

photonic crystal.
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Figure 3.2: Band Structure of One-
Dimensional Photonic Crystal (Supercell
Method) for εa = 13, εb = 1, da = 1,
db = 3.6055, increasing number of layer,
where white regions are band gaps
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Figure 3.3: Band structure of 1D photonic crystal with plane-wave method and
supercell method, where εa = 13, εb = 1, da = 1, db = 3.6055, number of plane-
waves = 3000 for both method and supercell size = 101 for supercell method.

In Fig. (3.3), comparison between plane-wave and supercell methods is

given for the same medium parameters. In Fig. (3.2)
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Chapter 4

ONE-DIMENSIONAL DIELECTRIC LAYER’S REFLECTION

AND TRANSMISSION CALCULATION

In this chapter, we are going to show and derive the reflection and trans-

mission coefficients for one-dimensional dielectric layers. This method is used for

finite structures, where one con not speak of a “band gap”, as the concept of a

band gap is meaningful only for perfectly periodic structures of infinite extent. Of

course for finite structures, we should be able to see the “band gaps” as regions

where the transmission coefficient is extremely small.

4.1 One-dimensional Dielectric Layer

x

y

E0

E3 E5

E6E4E2

E1

v0

v0

v1

v1

v2

v2

n1 n2 n3 n4

v3

B0

B5B3

B6B4B2

B1

x =00 x1 x2

Figure 4.1: Illustration of 1D Dielectric Layer.
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A plane-wave of frequency ω,travelling in the x direction and polarized in

the y direction is represented

E(x, t) = E0e
i(kx−ωt)ŷ (4.1)

B(x, t) =
1

v
E0e

i(kx−ωt)ẑ. (4.2)

In our problem we have reflected and transmitted waves and we take t = 0.

Writing E and B for each region,

E0(x, t) = E0e
ik0x (4.3)

B0(x, t) =
E0

v0

eik0x (4.4)

E1(x, t) = E1e
−ik0x (4.5)

B1(x, t) = −E1

v0

e−ik0x, (4.6)

E2(x, t) = E2 e
ik1x (4.7)

B2(x, t) =
E2

v1

eik1x (4.8)

E3(x, t) = E3 e
−ik1x (4.9)

B3(x, t) = −E3

v1

e−ik1x, (4.10)

E4(x, t) = E4 e
ik2x (4.11)

B4(x, t) =
E4

v2

eik2x. (4.12)

Boundary conditions for our system are ;

ε1E1
⊥ = ε2E2

⊥

B1
⊥ = B2

⊥

E1
‖ = E2

‖

1

µ1

B1
‖ =

1

µ2

B2
‖.

Applying boundary conditions at x = 0 and x = d then At x = 0 ;

1 + E1 = E2 + E3 (4.13)

1 − E1 = n1E2 − n1E3. (4.14)
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At x = d ;

E2 e
ik1d + E3 e

−ik1d = E4 e
ik2d (4.15)

n1E2 e
ik1d − n1E3 e

−ik1d = n2E4 e
ik2d. (4.16)

Multiplying Eq. (4.15) by n2 and subtracting Eq. (4.16) we obtain

(n2 − n1)E2 e
ik1d + (n2 + n1)E3 e

−ik1d = 0 (4.17)

Multiplying Eq. (4.13) by n1 and adding Eq. (4.14) then

(n1 + 1) + (n1 − 1)E1 = 2n1E1 (4.18)

E2 =
(n1 + 1) + (n1 − 1)E1

2n1

. (4.19)

Multiplying Eq. (4.13) by n1 and subtracting Eq. (4.14)

(n1 − 1) + (n1 + 1)E1 = 2n1E3 (4.20)

E3 =
(n1 − 1) + (n1 + 1)E1

2n1

. (4.21)

¿From Eq. (4.17) we can write

(n2 − n1)E2X + (n2 + n1)E3
1

X
= 0, (4.22)

where X ≡ eik1d. Substituting E2 and E3 into Eq. (4.22)

(n2 − n1)
[(n1 + 1) + (n1 − 1)E1]X

2n1

(4.23)

+(n2 + n1)
[(n1 − 1) + (n1 + 1)E1]

2n1

1

X
= 0

(n2 − n1)[(n1 + 1) + (n1 − 1)E1]X
2

2n1X
(4.24)

+
(n2 + n1)[(n1 − 1) + (n1 + 1)E1]

2n1X
= 0

(n2 − n1)(n1 + 1)X2 + (n2 − n1)(n1 − 1)E1X
2

2n1X
+

(4.25)

(n2 + n1)(n1 − 1) + (n2 + n1)(n1 + 1)E1

2n1X
= 0
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E1[(n2 − n1)(n1 − 1)X2 + (n2 + n1)(n1 + 1)]

2n1X
(4.26)

+
(n2 − n1)(n1 + 1)X2 + (n2 + n1)(n1 − 1)

2n1X
= 0

E1 = −(n2 − n1)(n1 + 1)X2 + (n2 + n1)(n1 − 1)

(n2 + n1)(n1 − 1)X2 + (n2 + n1)(n1 + 1)
, (4.27)

where X2 ≡ e2ik1d and taking 2ik1d ≡ y we can write that X2 = cos y + i sin y

then substituting this into E1

E1 = −(n2 − n1)(n1 + 1)(cos y + i sin y) + (n2 + n1)(n1 − 1)

(n2 + n1)(n1 − 1)(cos y + i sin y) + (n2 + n1)(n1 + 1)
. (4.28)

We assume that there is no reflection,according to this assumption we can take

E1 = 0 then right part of equation (4.28) is

−(n2 − n1)(n1 + 1)(cos y + i sin y) + (n2 + n1)(n1 − 1)

(n2 + n1)(n1 − 1)(cos y + i sin y) + (n2 + n1)(n1 + 1)
= 0 (4.29)

(n2 − n1)(n1 + 1)(cos y + i sin y) + (n2 + n1)(n1 − 1) = 0 (4.30)

For the imaginary part ;

sin y = sin2k1d = 0

2k1d = mπ , m = 1, 3, 5...

For the real part ,cos y = cos2k1d = −1 using this in Eq. (4.30) we can find

n1 =
√
n2 (4.31)

For 2k1d = π ;

d =
λ

4n1

=
λ′

4
(4.32)

Eq. (4.31) and Eq. (4.32) are known as antireflection coating conditions. If

the refractive index of second region is square root of third region and width

of slab is a quarter wavelength, we do not have any reflected wave. These two

conditions are not related with incident region and also refractive index and

dielectric constant. We can write this problem in matrix form. Rewriting Eq.

(4.13), Eq. (4.14), Eq. (4.15) and Eq. (4.16).

E1 − E2 − E3 = −1 (4.33)

E1 + n1E2 − n1E3 = 1 (4.34)

E2 e
ik1d + E3 e

−ik1d − E4 e
ik2d = 0 (4.35)

n1E2 e
ik1d − n1E3 e

−ik1d − n2E4 e
ik2d = 0 (4.36)
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This linear system can be written as AX = B. Here A,B and X matrixes are

defined as

A




1 −1 −1 0

1 n1 −n1 0

0 eik1d e−ik1d −eik2d

0 n1e
ik1d −n1e

−ik1d −n2e
ik2d




(4.37)

B =




−1

1

0

0




X =




E1

E2

E3

E4



. (4.38)

The calculations above are performed for one dielectric layer. Now we

are going to investigate two dielectric layers. Our purpose is to generalize this

problem to N dielectric layers, solving this linear system of equations.

First media ;

E0(x, t) = E0 e
ik0x (4.39)

B0(x, t) =
E0

v0

eik0x (4.40)

E1(x, t) = E1 e
−ik0x (4.41)

B1(x, t) =
E1

v0

e−ik0x (4.42)

Second media ;

E2(x, t) = E2 e
ik1x (4.43)

B2(x, t) =
E2

v1

eik1x (4.44)

E3(x, t) = E3 e
−ik1x (4.45)

B3(x, t) =
E3

v1

e−ik1x (4.46)

Third media ;

E4(x, t) = E4 e
ik2x (4.47)

B4(x, t) =
E4

v2

eik2x (4.48)

E5(x, t) = E5 e
−ik2x (4.49)

B5(x, t) =
E5

v2

e−ik2x (4.50)
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Fourth media ;

E6(x, t) = E6 e
ik3x (4.51)

B6(x, t) =
E6

v3

eik3x (4.52)

Using boundary conditions for each media At x = 0

1 + E1 = E2 + E3 (4.53)

1 − E1 = n1E2 − n1E3 (4.54)

At x = x1

E2 e
ik1x1 + E3 e

−ik1x1 = E4 e
ik2x1 + E5 e

−ik2x1 (4.55)

n1E2 e
ik1x1 − n1E3 e

−ik1x1 = n2E4 e
ik2x1 − n2E5 e

−ik2x1 (4.56)

At x = x2

E4 e
ik2x2 + E5 e

−ik2x2 = E6 e
ik3x2 (4.57)

n2E4 e
ik2x2 − n2E5 e

−ik2x2 = n3E6 e
ik3x2 (4.58)

Rearranging these equations we obtain

E1 − E2 − E3 = −1

E1 + n1E2 − n1E3 = 1

E2 e
ik1x1 + E3 e

−ik1x1 − E4 e
ik2x1 − E5 e

−ik2x1 = 0

n1E2 e
ik1x1 − n1E3 e

−ik1x1 − n2E4 e
ik2x1 + n2E5 e

−ik2x1 = 0

E4 e
ik2x2 + E5 e

−ik2x2 − E6 e
ik3x2 = 0

n2E4 e
ik2x2 − n2E5 e

−ik2x2 − n3E6 e
ik3x2 = 0.

In matrix form

A =




1 −1 −1 0 0 0

1 n1 −n1 0 0 0

0 eik1x1 e−ik1x1 −eik2x1 −e−ik2x1 0

0 n1e
ik1x1 −n1e

−ik1x1 −n2e
ik2x1 n2e

−ik2x1 0

0 0 0 eik2x2 e−ik2x2 −eik3x2

0 0 0 n2e
ik2x2 −n2e

−ik2x2 −n3e
ik3x2




(4.59)
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B =




−1

1

0

0

0

0




X =




E1

E2

E3

E4

E5

E6




. (4.60)

4.2 Calculation of Transmission and Reflection Coefficients

In this section we are going to examine the energy density of electro-

magnetic waves which is important to understand the behavior of the incident

wave. Before doing this, we should calculate the reflection and transmission co-

efficients. They measure the fraction of the incident energy that is reflected and

transmitted. In order to obtain these two coefficients, we need to consider the

poynting vectors of reflected, transmitted, and incident waves. The formula of

the poynting vector is

S
1

µ
E × B. (4.61)

For µ = 1 reflection and transmission coefficients are

R =
Sr

Si

T =
St

Si

, (4.62)

where Sr, Si, St are respectively poynting vectors of reflected, incident,

and transmitted waves. These are calculated below

Si = E × B =
ni

c
EiEi =

n1

c
Ei

2 (4.63)

Sr =
ni

c
ErEr =

ni

c
Er

2 (4.64)

St =
ni

c
EtEt =

ni

c
Et

2 (4.65)
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R =
Sr

Si

=
ni

c
Er

2

ni

c
Ei

2 =

[
Er

Ei

]2

(4.66)

T =
St

Si

=
nt

c
Et

2

ni

c
Ei

2

nt

ni

[
Et

Ei

]2

. (4.67)

In this problem we take the coefficient of electric field of incident wave Ei = 1.

Substituting this into R and T we obtain reflection and transmission coefficients

as

R = Er
2 (4.68)

T =
nt

ni

Et
2. (4.69)

According to equations above, we can say that the reflection coefficient only

depends on the electric field coefficient of reflected wave but the transmission

coefficient also depends on the electric field coefficient of transmitted wave and

refractive index of transmitted and incident regions.

At the beginning of our calculations we have illustrated our medium and problem.

Using the parameters of each medium we have calculated transmission coefficients

of dielectric layers using Eq. (4.69). In order to see first three band gap clearly,

we have taken natural logarithm of the transmission coefficient.

Figure 4.2: ln(Transmission) versus frequency for ε1 = 1, ε2 = 13, d1 = 3.6055,
d2 = 1.

In this graph we have taken number of slab as 500 that means 250 unit cells.
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Chapter 5

RANDOMNESS IN PERIODIC LAYERED MEDIA AND

ONE-DIMENSIONAL PHOTONIC CRYSTAL

Bandgaps in photonic crystals depend on two crucial properties: an in-

finite and perfect translational symmetry. In real life no crystal is infinite in

size or perfect. When one introduces randomness, one has to give up the idea

of a complete bandgap, i.e. a region where the density of states is exactly zero.

Instead one needs to look for bands of frequencies for which the density of states

is very small. Similarly when the crystal is finite, a quantity of interest would be

the transmission coefficient vs frequency. In this chapter, we will consider both

approaches, and demonstrate that the bandgaps for the infinite perfect lattice

show up as large depressions in the transmission coefficient and the density of

states.

5.1 Supercell Method

To calculate the density of states, we use a supercell which contains many unit

cells, but the geometrical parameters in each unit cell are randomly perturbed.

This unit cell, however is repeated in space so the Bloch formalism still applies to

the supercell. Clearly, the larger the supercell size, the better. The supercell is

illustrated in Fig. (5.1). There are n layers in the supercell each with a dielectric

constant εi. The Fourier transform of ε(x) can be written as

ε(G) =
1

Vcell

n∑

m=1

∫ m

m−1

εm e−i G x dx

=
1

Vcell

n∑

m=1

εm

∫ m

m−1

e−i G x dx

=
1

Vcell

n∑

m=1

εm

∫ m

m−1

(cos(G x) − i sin(G x)) dx

=
1

Vcell

n∑

m=1

εm [
1

G
(sin(G x) + i cos(G x))]xm

xm−1
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Figure 5.1: General Picture of the Supercell Method where εi is dielectric constant
of each medium, di is the thickness of each medium,and supercell size is taken
2π.

=
1

Vcell

n∑

m=1

εm [
1

G
{(sin(G xm) + i cos(G xm)) − (sin(G xm−1) + i cos(G xm−1))}]

ε(G) =
1

Vcell

n∑

m=1

εm [
1

G
(sin(G xm) − sin(G xm−1)) +

i

G
(cos(G xm) − cos(G xm−1))].

Up to now now we have derived the general Fourier transform of ε(G)

including both cosine and sine terms without any assumption. For a perfectly

periodic medium

εi =





εa, for i odd,

εb, for i even,
(5.1)

di =





da, for i odd,

db, for i even.
(5.2)

Now we are going to write Fourier transform of dielectric constant for a given

lattice parameters. According to the Fig. (5.1),

ε(G) =
1

2π

∫
dx e−i G x ε(x)

ε(G) =
1

2π

{
n−1∑

i=1,3,5...

εa

∫ da+
(i−1)

2
(da+db)

(i−1)
2

(da+db)

e−iGxdx+
n∑

i=2,4,6...

εb

∫ i

2
(da+db)

(i−2)
2

(da+db)+da

e−iGxdx

}

To consider the effect of randomness, we added a random variation to the thick-

ness of each layer in the unit cell.

d = d0

[
1 + (r − 0.5)

(
2p

100

)]
, (5.3)
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where d0 is unperturbed thickness, r is uniformly distributed random number

between 0 and 1, and p is percentage of randomness.

5.2 Randomness in 1-D Photonic Crystal

In disordered one-dimensional photonic crystal, we deal with the density

of states and sketch the density of states vs normalized frequency graph. We are

interested in the first three band gaps and the effect of uniform random numbers

on the band gaps. The density of states graph in Fig. (5.2) is for p = 0, i.e.

a perfect structure. The medium parameters that we have used are εa = 13,

εb = 1, the thicknesses of a and b layers are da = 1, db = 3.6055 and the supercell

contains 250 unit cells. We have taken 500 layers for our calculations because

size of structure is important. If we take small number of layer for example 8

layer,the result can be a little bit different from the real one. This difference

appears because of the interaction between the neighboring unit cells.

Figure 5.2: Density of States graph of periodic structure for εa = 13, εb = 1,
da = 1, db = 3.6055, number of plane-waves = 10000, and number of layers
= 500.

All figures are sketched for εa = 13, εb1, the thicknesses of a and b layers

are da = 1, db3.6055 and the number of layer is 500. In Fig. (5.3), there is no

change in the band gap size but we can see the fluctuations according to random

thickness. When we increase the percentage of uniform random numbers we see

the third band gap is starting to get smaller but there is no damage in the first

band gap even the randomness percentage is 10. In Fig. (5.5), second and third

band gaps disappeared according to 50% percentage. For 100% randomness,

there is no band gap and periodicity and the structure is completely random. In

order to observe and find where these three band gaps will disappear, we have
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Figure 5.3: Density of States graph for 1% randomness where εa = 13, εb = 1,
da = 1, db = 3.6055, number of plane-waves = 10000, and number of layers
= 500.

Figure 5.4: Density of States graph for 10% randomness where εa = 13, εb = 1,
da = 1, db = 3.6055, number of plane-waves = 10000, and number of layers
= 500.

made an animation and sketched the change of first three band gaps with the

increasing percentage.

¿From Fig. (5.7) we have found the disappearing percentages of each band gaps.

According to this figure, it is clear that the damages are beginning from the high

frequencies and finally first band gap disappeared. Third, second, and first band

gaps disappeared when the randomness is %11, %21, and 68% respectively.
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Figure 5.5: Density of States graph for 50% randomness where εa = 13, εb = 1,
da = 1, db = 3.6055, number of plane-waves = 10000, and number of layers
= 500.

Figure 5.6: Density of States graph for 100% randomness where εa = 13, εb = 1,
da = 1, db = 3.6055, number of plane-waves = 10000, and number of layers
= 500.

In Fig. (5.8), Fig. (5.9), and Fig. (5.10) we have shown first three

band gaps of one-dimensional photonic crystal with 10% randomness and band

structure of one-dimensional perfectly periodic photonic crystal. Band structure

of photonic crystal is calculated for εa = 13, εb = 1, filling ratio = 0.22, and

3000 plane-waves. Using the same parameters we have calculated band gap

widths with 10% randomness in the thickness of each medium and sketched the

graph normalized frequency vs number of layers. These three figures are also

calculated for different sample size. We have taken different number of samples

and looked at the fact that how much sample we need to take for accurate result.

In figures we have seen that 100 samples is sufficient but taking only 1 sample is

not good enough. When we have taken less number of samples we come across
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Figure 5.7: Frequency vs % Randomness where εa = 13, εb = 1, da = 1, db =
3.6055, number of plane-waves = 10000, and number of layers = 500.

Figure 5.8: Band structure of 1D photonic crystal and 1st three band gaps of
the same structure with 10% randomness for (1 sample) where εa = 13, εb = 1,
da = 1, db = 3.6055, number of plane-waves = 10000.

with virtual band gaps. Taking enough number of sample we can get rid of these

kind of virtual band gaps. There is also another fact about the number of layer

parameter because if we have increase the number of layers we have approached

the real band gap width and obstructed the interaction between the unit cells.

5.3 Randomness in Periodic Layered Media

In this section we have investigated how transmission is influenced from

the randomness. Uniform random numbers are added or subtracted to thicknesses

of each slabs after that transmission coefficients are calculated and ln(transmission)

versus frequency graphs are sketched. While we are studying this problem we

have searched the importance of sample and structure sizes as in the case of ran-

domness in one-dimensional photonic crystal section. We have also calculated

the standard deviation of transmission coefficients for each frequencies. We have
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Figure 5.9: Band structure of 1D photonic crystal and 1st three band gaps of the
same structure with 10% randomness (for 50 sample) where εa = 13, εb = 1, da1,
db = 3.6055, number of plane-waves = 10000.

Figure 5.10: Band structure of 1D photonic crystal and 1st three band gaps of
the same structure with 10% randomness (for 100 sample) where εa = 13, εb = 1,
da1, db = 3.6055, number of plane-waves = 10000.

looked at the standard deviations because we would like to see and understand

how the change in size of the structure influences the fluctuations in the trans-

mission. Now we are giving graphs for different number of slabs and percent

randomness.
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Figure 5.11: ln(Transmission) of periodic layered structure where εa = 13, εb = 1,
da = 1, db = 3.6055.
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Figure 5.12: ln(Transmission)
vs Normalized frequency for
10% and 25% randomness
where εa = 13, εb = 1, da = 1,
db = 3.6055.
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Figure 5.13: ln(Transmission)
vs Normalized frequency for
50% and 100% randomness
where εa = 13, εb = 1, da = 1,
db = 3.6055. Making the com-
parison between graphs for dif-
ferent number of slabs and same
percent randomness for instance
this figure and previous figure
we can easily see that if we in-
crease the number of slabs we
can minimize the fluctuations in
transmission.

39



Figure 5.14: ln(Transmission) vs Normal-
ized frequency with different sample size for
40% randomness where εa = 13, εb = 1,
da = 1, db = 3.6055.
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Chapter 6

ONE-DIMENSIONAL PHOTONIC CRYSTAL WAVEGUIDE

6.1 Supercell Method: Derivation and Illustration

This method is the second method which we used for band structure

calculations. The plane-wave method is always valid for band gap calculation of

periodic dielectric structures such as perfect photonic crystals. If we would like

to produce a defect into the periodic dielectric structure we have to change our

method. The plane-wave method based supercell approach allows us to model

the combined photonic crystals defects by a periodic system with a large unit

cell centered around the defect. If the unit cell is made sufficiently large, the

probability of reciprocal influence between the unit cells is going to be low and

you can not observe the virtual defect modes associated with the overlap between

neighboring unit cells in the photonic band gap. The figure below represent our

supercell which has a small unit cell size.

Now we are going to show our derivations of supercell approach and obtain

the Fourier transform of dielectric constant ε(r) using similar procedure for the

supercell as in the case of plane-wave method. Before writing the general formula

of ε(G), we are going to take the Fourier transform of it.

ε(G) =
1

Vcell

n∑

m=1

[

∫ m

m−1

εm ei G x dx]

=
1

Vcell

n∑

m=1

εm

∫ m

m−1

ei G x dx

=
1

Vcell

n∑

m=1

εm

∫ m

m−1

(cos(G x) + i sin(G x)) dx

=
1

Vcell

n∑

m=1

εm [
1

G
(sin(G x) − i cos(G x))]xm

xm−1

=
1

Vcell

n∑

m=1

εm [
1

G
{(sin(G xm) − i cos(G xm)) − (sin(G xm−1) − i cos(G xm−1))}]

ε(G) =
1

Vcell

n∑

m=1

εm [
1

G
(sin(G xm) − sin(G xm−1)) −

i

G
(cos(G xm) − cos(G xm−1))].
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Figure 6.1: Illustration of Supercell, where εi dielectric constant of impurity
layer, di thickness of impurity layer, εb dielectric constant of b type material, db

thickness of b type material, εa dielectric constant of a type material, da thickness
of a type material, nεa

number of epsilon of a type material, a ≡ da + db lattice
constant, A superlattice constant (Taken 2π).

Up to now now we have derived the general Fourier transform of ε(G)

including both cosine and sine terms without any assumption. Now we are going

to assume that εm has an even symmetry. That means, the complex part of

the integral is zero and we have only cosine part as an integrant. As a result

ε(G) depends only on sine function. According to figure 6.1 substituting the

parameters and keeping it in mind, we are going to take Fourier transform of

ε(G).

Starting point of derivation of ε(G) for a supercell structure is rewriting

the general Fourier transform of ε(r).

ε(G) =
1

Vcell

∫

WScell

dr e−i G·r ε(r)

ε(G) =
2

Vcell

[

∫ di

2

0

εi cos(G x) dx+

nεa∑

m=1

{εb
∫ di

2
+(m−1)(da+db)+db

di

2
+(m−1)(da+db)

cos(G x) dx

+ εa

∫ di

2
+m(da+db)

di

2
+(m−1)(da+db)+db

cos(G x) dx} + εb

∫ di

2
+nεa (da+db)+db/2

di

2
+nεa (da+db)

cos(G x) dx]

=
2

A
{εi [

sin(G x)

G
]

di

2
0 +

nεa∑

m=1

(εb [
sin(G x)

G
]

di

2
+(m−1)(da+db)+db

di

2
+(m−1)(da+db)
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+ εa [
sin(G x)

G
]

di

2
+m(da+db)

di

2
+(m−1)(da+db)+db

) + εb [
sin(G x)

G
]

di

2
+nεa (da+db)+

db

2
di

2
+nεa (da+db)

}

ε(G) =
2

A
{εi

sin(G di

2
)

G
+

nεa∑

m=1

{εb [
sin(G(di

2
+ (m− 1)(da + db) + db))

G

− sin(G(di

2
+ (m− 1)(da + db)))

G
] + εa [

sin(G(di

2
+m(da + db)))

G

− sin(G(di

2
+ (m− 1)(da + db) + db))

G
]} + εb [

sin(G(di

2
+ nεa

(da + db)) + db

2
)

G

− sin(G(di

2
+ nεa

(da + db)))

G
]}. (6.1)

For simplification we define x1
di

2
+ (m− 1)(da + db) + db and

x2
di

2
+nεa

(da +db). Substituting these two new variables into the above equation

and multiplying each side by the argument of sine functions yields:

ε(G) =
2

A
{εi

di

2

sin(G di

2
)

G di

2

+

nεa∑

m=1

{εb [x1
sin(G x1)

G x1

− (x1 − db)
sin(G (x1 − db))

G (x1 − db)
]

+ εa [(x1 + da)
sin(G x1 + da)

G (x1 + da)
− x1

sin(G x1)

G
]} + εb [(x2 +

db

2
)

sin(G (x2 + db

2
))

G (x2 + db

2
)

− x2
sin(G x2)

G x2

]}. (6.2)

The thickness values of each layer are given in units of 2π
A

. As mentioned before,

the unit cell size A has a value of 2π.

A = 2 (
di

2
+ nεa

(da + db) +
db

2
)

di

2
=

2π
di

2
A

da =
2π da

A

db =
2π db

A

To obtain comparable results with the outputs of the 1-D photonic crystal, we

normalize the frequency as ω =
ω

2 nεa
+ 1

6.2 H Method in One-Dimensional Photonic Crystal Waveguide

If we have decided to solve one-dimensional photonic crystal by using H method

we can follow different way for this method. We start on the left hand side of

Eq. (2.61) for a given G

(k + G′) × η(G′ − G)(k + G) × H(k + G) (6.3)
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At the beginning of our derivation , we have chosen (k + G′) as q. Again

using q into matrix element ,we are going to obtain the matrix A. This is not

the only way to calculate matrix elements but it is an easy way to do it.

q = (k + G)

q′ = (k + G′)

¿From Eq. (6.3)

q′ × ηq × H = ηq′ × q × H. (6.4)

Here q, q′, and H have been chosen for one-dimensional photonic crystal waveg-

uide as q′ = Gi + kj, q = G′i + kj, and H = Hxi + Hyj + Hzk. Using the

appropriate vector identity

q′ × q × H = (q · q′)H − (H · q′)q,

(q · q′)H = (k2 +GG′)Hxi + (k2 +GG′)Hyj + (k2 +GG′)Hzk (6.5)

(H · q′)q = (G′Hx + kHy)(kj +Gi)

= (G′Hx + kHy)kj + (G′Hx + kHy)Gi. (6.6)

¿From Eq. (6.5) and Eq. (6.6)

q′ × q × H = k2Hxi +GG′Hxi + k2Hyj +GG′Hyj + k2Hzk

+ GG′Hzk − kG′Hxj − k2Hyj −GG′Hxi − kGHyi

= i(k2Hx − kGHy) + j(−kG′Hx +GG′Hy)

+ k(k2 +GG′)Hz. (6.7)

If we write this equation in matrix form

q′ × q × H =




k2 −kG 0

−kG GG′ 0

0 0 (k2 +GG′)


 . (6.8)

Our eigenvalue problem is going to be

η




k2 −kG 0

−kG GG′ 0

0 0 (k2 +GG′)







Hx

Hy

Hz


 =

ω2

c2




Hx

Hy

Hz


 . (6.9)
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¿From Eq. (6.9) , matrix A can be written for two reciprocal lattice vectors G1

and G2

A =




k2η11 −kG1η11 0 k2η12 −kG1η12 0

−kG1η11 G2
1 0 −kG2η12 G1G2η12 0

0 0 (k2 +G2
1)η11 0 0 (k2 +G1G2)η12

k2η21 −kG2η21 0 k2η22 −kG2η22 0

−kG2η21 G2G1η21 0 −kG2η22 G2
2η22 0

0 0 (k2 +G2G1)η21 0 0 (k2 +G2
2)η22




,

H =




Hx(G1)

Hy(G1)

Hz(G1)

Hx(G2)

Hy(G2)

Hz(G2)




.

We can reduce this 3N ×3N system into 2N ×2N and N ×N systems by

doing some column and row operations. After solving N ×N eigenvalue problem

, we obtain information about dispersion relation of Hz and guided modes for

a given system. Now we are going to apply column and row operations to our

system step by step. Exchanging column 3 ↔ 4 and row 3 ↔ 4 in matrix A




k2η11 kG1η11 k2η12 0 −kG1η12 0

−kG1η11 G2
1η11 −kG2η12 0 G1G2η12 0

k2η21 −kG2η21 k2η22 0 −kG2η22 0

0 0 0 (k2 +G1)η11 0 (k2 +G1G2)η12

−kG1η21 G2G1η21 −kG2η22 0 G2
2η22 0

0 0 0 (k2 +G2G1)η21 0 (k2 +G2
2)η22




.
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Exchanging column 4 ↔ 5 and row 4 ↔ 5



k2η11 −kG1η11 k2η12 −kG1η12 0 0

−kG1η11 G2
1η11 −kG2η12 G1G2η12 0 0

k2η21 −kG2η21 k2η22 −kG2η22 0 0

−kG1η21 G2G1η21 −kG2η22 G2
2η22 0 0

0 0 0 0 (k2 +G2
1)η11 (k2 +G1G2)η12

0 0 0 0 (k2 +G2G1)η21 (k2 +G2
2)η22




.

These operations show us that we have two different ordinary eigenvalue prob-

lems. As in the form

A1Hxy = λ1Hxy

A2Hz = λ2Hz.

If we write the separated eigenvalue equations in matrix form



k2η11 −kG1η11 η12k
2 −kG1η12

−kG1η11 G2
1η11 −kG2η12 G1G2η12

k2η21 −kG2η21 k2η22 −kG2η12

−kG2η21 G2G1η21 −kG2η22 G2
2η22







Hx(G1)

Hy(G1)

Hx(G2)

Hy(G2)




= λ1




Hx(G1)

Hy(G1)

Hx(G2)

Hy(G2)



,

and

 (k2 +G2

1)η11 (k2 +G1G2)η12

(k2 +G2G1)η21 (k2 +G2
2)η22





 Hz(G1)

Hz(G2)


 = λ2


 Hz(G1)

Hz(G2)


 .

We are going to solve N × N eigenvalue problem as in the case of E-

polarization. As an analogy we are going to use another notation in our cal-

culations and results is B-polarization. Transverse electric (TE) and transverse

magnetic (TM) polarization are equivalent to E-polarization and B-polarization.

We will sometimes use TE and TM polarizations instead of E and B-polarizations.

6.3 1-D Photonic Crystal Waveguide

We are beginning this section by considering a photonic crystal waveguide

as illustrated in Fig.(6.2). Guiding direction will be taken as the y axis, the time

variation of the modes is of the form eiωt, and β represents the propagation vector

in the y direction. In this medium µ ≡ 1 and ε is the dielectric constant of the

dielectric structure and is a function of x.
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db

da
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eb
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H

For E Pol.

For B Pol.

Figure 6.2: 1D Waveguide, where di thickness of impurity layer, da ≡ thickness
of a type material, db ≡ thickness of b type material, εi ≡ dielectric constant
of impurity layer, εa ≡ dielectric constant of a type material, εb ≡ dielectric
constant of b type material and em waves moving in y direction.

β = βj

Since the whole dielectric structure is homogeneous along the y axis, solutions to

the wave equation can be taken as

E(x, y, t) = E(x) ei(βy−ωt) (6.10)

B(x, y, t) = B(x) ei(βy−ωt), (6.11)

where E(x) and B(x) are

E(x) = Ex0(x) i + Ey0(x) j + Ez0(x) k

B(x) = Bx0(x) i +By0(x) j +Bz0(x) k

E(x, y, t) = [ Ex0(x) i + Ey0(x) j + Ez0(x) k ] ei(βy−ωt) (6.12)

B(x, y, t) = [ Bx0(x) i +By0(x) j +Bz0(x) k ] ei(βy−ωt). (6.13)

Maxwell’s equations ;

∇ · D = 0 (6.14)
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∇ · B = 0 (6.15)

∇× E = −1

c

∂B

∂t
(6.16)

∇× H =
1

c

∂D

∂t
(6.17)

¿From Eq. (6.14) we obtain

∇ · (ε(x) E(x)) = 0

or similarly

∂(ε(x) Ex0)

∂x
+
∂(ε(x) Ey0)

∂y
+
∂(ε(x) Ez0)

∂z
= 0.

Since ε is not a function of y and z, we can take ε outside of derivatives with

respect to the y and z.

∂(ε(x) Ex0)

∂x
+ ε(x)

∂Ey0

∂y
+ ε(x)

∂Ez0

∂z
= 0

¿From Eq. (6.15) we obtain

∂Bx0

∂x
+
∂By0

∂y
+
∂Bz0

∂z
= 0 (6.18)

¿From Eq. (6.16) ;

∇× E =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂x ∂y ∂z

Ex(x, y) Ey(x, y) Ez(x, y)

∣∣∣∣∣∣∣∣∣∣∣∣

= i [ ∂y(Ez0(x) e
i(βy−ωt)) − ∂z(Ey0(x) e

i(βy−ωt)) ]

− j [ ∂x(Ez0(x) e
i(βy−ωt)) − ∂z(Ex0(x) e

i(βy−ωt)) ]

+ k [ ∂x(Ey0(x) e
i(βy−ωt)) − ∂y(Ex0(x) e

i(βy−ωt)) ]

= i (iβEz0(x) e
i(βy−ωt) − 0)

− j (E ′
z0(x) e

i(βy−ωt) − 0)

+ k (E ′
y0(x) e

i(βy−ωt) − iβEx0(x) e
i(βy−ωt)) (6.19)

− ∂B(x, y)

∂t
= iωB(x, y)

= iω(Bx0(x) i +By0(x) j +Bz0(x) k) ei(βy−ωt) (6.20)
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¿From Eq. (6.17) ;

∇× B = ε
∂E

∂t
(6.21)

∇× B =

∣∣∣∣∣∣∣∣∣

i j k

∂x ∂y ∂z

Bx(x, y) By(x, y) Bz(x, y)

∣∣∣∣∣∣∣∣∣

= i [ ∂y(Bz0(x) e
i(βy−ωt)) − ∂z(By0(x) e

i(βy−ωt)) ]

− j [ ∂x(Bz0(x) e
i(βy−ωt)) − ∂z(Bx0(x) e

i(βy−ωt)) ]

+ k [ ∂x(By0(x) e
i(βy−ωt)) − ∂y(Bx0(x) e

i(βy−ωt)) ]

= i (iβBz0(x) e
i(βy−ωt) − 0)

− j (B′
z0(x) e

i(βy−ωt) − 0)

+ k (B′
y0(x) e

i(βy−ωt) − iβBx0(x) e
i(βy−ωt)) (6.22)

∂(ε(x)E(x, y))

∂t
= ε(x)(−iω)E(x, y)

= −iω(Ex0i + Ey0j + Ez0k) (6.23)

where Em(x, y) and Bm(x, y) denote Em0(x) e
i(βy−ωt) and Bm0(x) e

i(βy−ωt) respec-

tively and m ≡ x, y, z.

In Eq. (6.16) and Eq. (6.17) comparing both left and right sides we

obtain;

βEz0 = ωBx0 (6.24)

E ′
z0 = −iωBy0 (6.25)

E ′
y0 = iβEx0 + iωBz0 (6.26)

βBz0 = −ωεEx0 (6.27)

B′
z0 = iωεEy0 (6.28)

B′
y0 = iβBx0 − iωεEz0 (6.29)

If we rewrite the above equations in terms of Ez0 and Bz0 after obtaining Ez0

and Bz0 we can find other components of electric and magnetic fields,

Bx0 =
β

ω
Ez0 (6.30)

By0 =
1

−iωE
′

z0 (6.31)
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Ex0 =
−β
ωε

Bz0 (6.32)

Ey0 =
1

iωε
B

′

z0 (6.33)

Now we are going to rewrite the electric and magnetic field components in terms

of Ez0 and Bz0 using the equations above.

6.3.1 Solution of One-dimensional Photonic Crystal Waveguide for

E-polarization

If we set Bz0 ≡ 0 we have only Ez0 component of electric field and the

solution of the wave equation gives only Ez0. If we know Ez0 we can find Bx0 and

By0 components of the magnetic field. In this case we have E polarized waves or

transverse electric modes (TE). We are going to first derive the wave equation of

electric field in real space, next take the Fourier transform of it and then obtain

ordinary eigenvalue equation of electric field in reciprocal lattice space. ¿From

Eq. (6.25) and Eq. (6.28)

Byo = −E
′
z0

iω
(6.34)

Ey0 = −B
′
z0

iωε
. (6.35)

Taking derivative of Eq. (6.34) with respect to x ;

B′
y0 =

iE ′′
z0

ω
. (6.36)

¿From Eq. (6.29)

iβBx0 − iωεEz0 =
iE ′′

z0

ω
βωBx0 − ω2εEz0 = E ′′

z0 (6.37)

Substituting Bx0 into equation Eq. (6.37)

βω
β

ω
Ez0 − ω2εEz0 = E ′′

z0

E ′′
z0 + (ω2ε− β2)Ez0 = 0

E ′′
z0 − β2Ez0 = −ω2εEz0. (6.38)

We know that ε(x) is periodic and we can represent ε(x) as a summation over

reciprocal lattice vectors G and Ez0(x) as follows :

ε(x) =
∑

G

ε(G) eiGx

Ez0(x) =
∑

G

Ez0(G) eiGx

50



Taking second derivative of Ez0(x) with respect to x then,

E
′′

z0(x) = −
∑

G

GEz0(G)eiGx,

(6.39)

and plugging ε(x) and E
′′

z0(x) into Eq. (6.38) then

−
∑

G

G2Ez0(G)eiGx − β2
∑

G

Ez0(G) eiGx = −ω2
∑

G

ε(G) eiGx
∑

G′

Ez0(G
′) eiG′x

∑

G

(β2 +G2)Ez0(G)eiGx = ω2
∑

G

∑

G′

ε(G) eiGx Ez0(G
′) eiG′x

∑

G

(β2 +G2)Ez0(G)eiGx = ω2
∑

G

∑

G′

ε(G) Ez0(G
′) ei(G′+G)x.

Changing indices as G′ +G ≡ G′′ and G ≡ G′′ −G′ on the right hand side then

∑

G

(β2 +G2)Ez0(G)eiGx = ω2
∑

G′′

∑

G

ε(G′′ −G′) Ez0(G
′) eiG′′x (6.40)

Then defining G′′ ≡ G′ and G′ ≡ G

∑

G

(β2 +G2)Ez0(G)eiGx = ω2
∑

G′

∑

G

ε(G′ −G) Ez0(G) eiG′x (6.41)

Following this equation we can obtain matrix equation for a given G as

(β2 +G2)Ez0(G) = ω2 ε(G′ −G) Ez0(G
′). (6.42)

This equation is generalized eigenvalue problem for E-polarization as in the form

of AX = λBX. We can reduce this generalized equation in ordinary eigenvalue

equation because we do not want to store two different matrices. In the ordinary

eigenvalue problem we should only have one matrix and therefore we can reach

results in shorter time than the generalized case. Now we are going to reduce

generalized problem multiplying both sides of Eq. (6.3.1) by ε−1(G′ − G), from

the left then

ε−1(G′ −G) (β2 +G2)Ez0(G) = ω2 Ez0(G) (6.43)

In this case we have A′X = λX where AG′,G ≡ ε−1(G′ − G) (β2 + G2) and

XG ≡ Ez0(G).

Solving this ordinary eigenvalue equation we are going to obtain solution

of one-dimensional photonic crystal waveguide for E-polarization.
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6.3.2 Solution of One-dimensional Photonic Crystal Waveguide for

B-polarization

If we set Ez0 ≡ 0 we have only Bz0 component of magnetic field and wave

equation of the magnetic field. This case is known as B-polarization or transverse

magnetic (TM). The solution of the wave equation gives us Bz0 and using it we

can find Ex0 and Ey0. In order to find B polarized solutions of the wave equation

we write the wave equation of magnetic field and following the same procedure

as in the case of E-polarization we can obtain eigenvalue equation. First of all

we are going to derive wave equation in real space. Now we are going to rewrite

Eq. (6.35) by setting η(x) ≡ ε−1(x) in order to simplify our calculations.

Ey0 = −η(x)B
′
z0

iω
(6.44)

We want to find and solve second order differential equation with respect to Bz0.

In order to derive the equation, we are going to take the derivative of equation

Eq. (6.44).

E ′
y0 =

1

iω
(η′ B′

z0 + η B′′
z0) (6.45)

Substituting Eq. (6.26)

i β Ex0(x) + i ω Bz0(x) =
1

iω
(η′(x) B′

z0(x) + η(x) B′′
z0(x))

−β ω Ex0(x) + −ω2 Bz0(x) = η′(x) B′
z0(x) + η(x) B′′

z0(x)

−β ω β η(x)

(−ω)
Bz0(x) + −ω2 Bz0(x) = η′(x) B′

z0(x) + η(x) B′′
z0(x)

β2 η(x) Bz0(x) + −ω2 Bz0(x) = η′(x) B′
z0(x) + η(x) B′′

z0(x). (6.46)

η(x) B′′
z0(x) + η′(x) B′

z0(x) + (ω2 − β2η(x)) Bz0(x) = 0 (6.47)

Equation Eq. (6.47) can be written in the form

(η(x) B′
z0(x))

′ + (
ω2

c2
− β2 η(x)) Bz0(x) = 0. (6.48)

Since η(x) is periodic it can be represented as a summation over reciprocal lattice

vectors G.

η(x) =
∑

G

η(G) eiGx

(6.49)
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Bz0(x) =

∫ ∞

−∞

dqBz0(q) e
iqx

=

∫

BZ

dk Bz0(k +G) eikx eiGx

=

∫

BZ

dk eikx

[
∑

G

Bz0(G) eiGx

]
(6.50)

In our calculations we can use two different ways for obtaining Bz0(x) in super-

cell method. First one is taking different k values and for each value taking G

values, second one is taking k = 0 and different G values for this k value. In the

second method, for instance if we define our superlattice size as A100a in terms

of lattice constant we have reciprocal lattice vector as G = 2π
A
n = 2π

a
n

100
. That

means we have divided our reciprocal lattice vector in 100 pieces and we have 100

different lattice vectors. The second method brings us scanning reciprocal lat-

tice space with small lattice vectors for k = 0. That is why we can write Bz0(x) as

Bz0(x) =
∑

G

Bz0(G) eiGx.

Taking derivative of Bz0(x) with respect to x and then multiplying by η(x) we

obtain

B′
z0(x) =

∑

G

iG Bz0(G) eiGx

η(x) B′
z0(x) =

∑

G

η(G) eiGx
∑

G′

iG′ Bz0(G
′) eiG′x

=
∑

G

∑

G′

iG′ η(G) Bz0(G
′) ei(G′+G)x.

Changing the summation indices as G+G′ = G′′ and G = G′′ −G′ then

η(x) B′
z0(x) =

∑

G′′

∑

G′

η(G′′ −G′)eiG′′x
∑

G′

iG′Bz0(G
′)

=
∑

G′′

∑

G′

η(G′′ −G′) iG′ Bz0(G
′) eiG′′x

(η(x) B′
z0(x))

′ =
∑

G′′

∑

G′

η(G′′ −G′) iG′′ iG′ Bz0(G
′) eiG′′x

Substituting the above equation into equation Eq. (6.48)

−
∑

G′′

∑

G′

η(G′′ −G′) G′G′′ Bz0(G
′) eiG′′x + (

ω2

c2
− β2

∑

G

η(G) eiGx)
∑

G′

Bz0(G
′) eiG′x = 0
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Using the same procedure for η Bz0 term as in the case of η B ′
z0 ,

−
∑

G′′

∑

G′

η(G′′ −G′) G′G′′ Bz0(G
′) eiG′′x +

ω2

c2

∑

G′

Bz0(G
′) eiG′x

−β2
∑

G′′,G′

η(G′′ −G′) Bz0(G
′) eiG′′x = 0

∑

G′′

∑

G′

η(G′′ −G′) (β2 +G′G′′) Bz0(G
′) eiG′′x =

ω2

c2

∑

G′

Bz0(G
′) eiG′x. (6.51)

Again changing indices as G′′ ≡ G′ and G′ ≡ G

∑

G′

∑

G

η(G′ −G) (β2 +GG′) Bz0(G) eiG′x =
ω2

c2

∑

G′

Bz0(G
′) eiG′x

∑

G′

eiG′x

{
∑

G

η(G′ −G) (β2 +GG′) Bz0(G) − ω2

c2
Bz0(G

′)

}
= 0 (6.52)

If this equation is equal to zero, the part which is in the parenthesis must be

equal to zero. From this equality,

∑

G

η(G′ −G) (β2 +GG′) Bz0(G) =
ω2

c2
Bz0(G

′) (6.53)

We have reduced our second order differential equation into eigenvalue problem

as;

AX = λX (Ordinary Eigenvalue problem)

Where matrix element A, Bz0, and λ are

AG′,G ≡ η(G′ −G) (β2 +GG′) , Bz0 ≡ X and λ = ω2

c2
.

6.4 Results and Discussion on 1-D Photonic Crystal Waveguide

6.4.1 Analytical Solution of Single Slab Symmetric Waveguide

In this section the analytical solution of the single slab symmetric waveg-

uide will be compared with the numerical solutions. We have done this com-

parison because we would like to be sure about our method and calculations.

The analytical solutions are obtained from [22] and [23]. Some of the procedures,

mathematical operations, and figure of single slab symmetric waveguide are given

below .

Maxwell’s equations can be written in the form

∇× E = −i ω µ H (6.54)

∇× H = i ω ε0 n
2 E (6.55)
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e(x)

e1

e2

x

Figure 6.3: Figure of Single Slab Symmetric Waveguide, where ε1 ≡ dielectric
constant of guiding layer, ε2 ≡ dielectric constant of outside.

Since the whole structure is homogeneous along the z axis, solutions to the wave

equations Eq. (6.54) and Eq. (6.55) can be taken as;

E(x, t) = Em(x) ei(ω t−β z) (6.56)

H(x, t) = Hm(x) ei(ω t−β z) (6.57)

The wave equation can be obtained by eliminating H from Eq. (6.55):
[
d2

dx2
+

(ω
c
n
)2

− β2

]
Em(x) = 0. (6.58)

The electric field amplitude of the guided E polarized modes can be written in

the form

Ey(x, z, t) = Em(x)ei(ωt−βz). (6.59)

The mode function Em(x) is taken as

Em(x) =





A sinhx+B coshx, |x| < 1
2
d,

Ce−qx, 1
2
d < x,

Deqx, x < −1
2
d,

(6.60)

where A, B, C, and D are constants, and parameters h and q are related to the

propagation constant by

h =

[(n2ω

c

)2

− β2

]1/2

, (6.61)
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q =

[
β2 −

(n1ω

c

)2
]1/2

. (6.62)

The parameter h may be considered as the transverse component of the wave vec-

tor in the guiding layer. To have acceptable solutions, the tangential component

of the electric and magnetic fields Ey, Hz must be continuous at the interfaces.

After some mathematical operations, the solutions of E polarized modes may be

divided into two classes: for the first class (for even solutions)

A = 0, C = D, h tan

(
1

2
h d

)
= q, (6.63)

and for the second class (for odd solutions)

B = 0, C = −D, h cot

(
1

2
h d

)
= −q. (6.64)

The continuity of Hy and Ez at the two interfaces x = ± 1
2

leads to the solutions of

B polarized modes that may be divided into two groups as even and odd solutions

respectively

h tan

(
1

2
h d

)
=

n2
2

n2
1

q, (6.65)

h cot

(
1

2
h d

)
= −n

2
2

n2
1

q. (6.66)

We have taken both E and B polarized solutions of single slab symmetric

waveguide and written a small program for analytical solutions. After giving

the parameters of the medium which we want to solve, we have sketched the

frequency versus propagation constant graph. At the same time for the same

physical medium we have obtained the same graph as a result of our photonic

crystal waveguide program.
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Figure 6.4: Exact and Numerical Solu-
tion of Single Slab Symmetric Waveguide
for ε1 = 13, ε2 = 1, d1 = 0.1, d2 =
0.05 for E Polarization and B Polarization.
Straight and dashed lines denote even and
odd modes respectively.
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For exact solution of single slab symmetric waveguide, modes are calcu-

lated for dielectric constant of guiding layer ε1 = 13 and dielectric constant of

outside region ε2 = 1. Numerical solutions of single slab symmetric waveguide

is obtained for dielectric constant of guiding (impurity) layer εi = 13, dielectric

constants of outside region εa = 1 and εb = 1 by using supercell method and

10000 plane-waves are taken. In Fig. (6.4), straight and dashed lines are denoted

respectively even and odd solutions of single slab symmetric waveguide. When we

compare these two solutions for E-polarization we can easily see that the guided

modes exactly match with each other. In Fig. (6.5), the region where there is no

guidance is keeping radiation modes inside. In this region the modes can have a

phase velocity that is greater than the speed of light and the boundary of this

region is known as a light cone. If the phase velocity of modes is less than the

slope of this line the modes can be guided modes and the phase velocity of these

modes is less than the speed of light. For B-polarization, the solutions of single

slab symmetric waveguide is

For exact solution of single slab symmetric waveguide, modes are calcu-

lated for dielectric constant of guiding layer ε1 = 13 and dielectric constant of

outside region ε2 = 1. Numerical solutions of single slab symmetric waveguide

is obtained for dielectric constant of guiding (impurity) layer εi = 13, dielectric

constants of outside region εa = 1 and εb = 1 by using supercell method and

10000 plane-waves are taken. In Fig. (6.4), straight and dashed lines are denoted

respectively even and odd solutions of single slab symmetric waveguide. When

we compare these two solutions for B-polarization we can easily see that the

guided modes exactly match with each other. The concept about phase velocity

which we have mentioned that in the E polarized solutions is valid for B polarized

solutions.

When we look at the electric fields of analytical and numerical solutions of

single slab symmetric waveguide for making comparison between them we have

seen that the modes are matched. This calculations are performed for β = 1.57.

In Fig. (6.5), we have seen that frequencies of the first even, first odd, and second

even modes are 0.45995, 0.58414, and 0.76683 respectively.

6.4.2 1-D Photonic Crystal Waveguide

Light propagation in photonic crystal waveguide is a topic under intense

investigation. It is expected that the control of photons in photonic crystal

structure can be realized by introducing artificial defects that have the way for
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propagating modes confined within the defect. Because of that reason we have

constituted impurity into our structures by using supercell method. This impu-

rity can be constituted by using two ways. One of them dedends on changing the

dielectric constant and the other depends on changing the thickness of impurity

layer. In our calculations we use both of them. Now we will show two dispersion

diagram for periodic structure and the structure with defect.

Figure 6.6: Perfect Periodic Structure for εa = 2.43, εb = 12.25, εi = 2.43,
da : db = 1 : 2, di = da, β = 0.32786 and Structure with defect for εa = 2.43,
εb = 12.25, εi1, da : db = 1 : 2, di ≡ 2

3
(da + db), β = 0.32786 for E-Polarization.

Here is the first even and odd modes of Fig. (6.6). Both even and odd

modes have fluctuations out side the impurity layer and this modes are not per-

fectly localized modes. The phase velocity of these modes are greater than the

speed of light.
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In the dispersion relation of perfect periodic structure that we have given

in Fig. (6.6) the medium parameters are εi = 2.43, εa2.43, εb = 12.25 for periodic

structure and for structure with defect parameters are εi = 1, εa = 2.43, εb =

12.25. From the parameters we can easily see that the impurity is constituted by

changing the εi. Because of this defect we obtained the modes that is different

from the modes from Fig. (6.6). When we investigate these modes we find out

that these are guided modes and that means we have photonic crystal waveguide.

In order to check our results with the literature we have obtained band

diagram of one-dimensional photonic crystal waveguide structure with different

parameters and compared our guided modes with [25]. In Fig. (6.8) we have

seen that five guided modes are matched for E-polarization but the other modes

do not match. We think the way what we have used is different from this paper

or they could not catch these guided modes.

Figure 6.8: Comparison of guided modes [25] for εa = 2.43, εb = 12.25, εi = 1,
da : db = 1 : 2, di = 2

3
(da + db).
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In Fig. (6.9), we have shown the band diagram of first even guided mode

and electric fields in real spaces for B-polarization. All the calculations are done

for propagation constant value 1.94 and 10000 plane-waves. We use this propa-

gation constant β value because we need to look all the guided modes clearly that

we have seen in the figures. we can easily see that electric field of first even modes

is localized and confined into guided layer. The thing that we have considered

both localization and confinement in it. The frequency value of this mode for

this β value is 0.55529. Therefore we have single mode one-dimensional photonic

crystal waveguide up to this frequency. After this frequency we are going to have

multi mode waveguide. In Fig. (6.10) and Fig. (6.11), we have first odd guided

mode and second even guided mode. The localization is also valid for these two

modes. Frequency values are 0.60404 and 0.6775 of these modes respectively.

From these values we can say that this waveguide is still a single mode up to the

frequency value 0.60404 because there is no other mode between first even and

odd modes.

There is an interesting thing that we have to mention here. When we com-

pare the band diagrams of single slab symmetric waveguide and one-dimensional

photonic crystal waveguide we see that there is a perfect matching between guided

modes. That means our photonic crystal waveguide behaves like single slab sym-

metric waveguide.

When we come to guided modes of E-polarization we should look at Fig.

(6.12), Fig. (6.13), and Fig. (6.14). As in the case of B-polarization on the left

hand side there are band diagrams of one-dimensional photonic crystal and on

the right side electric fields in real spaces. The frequency values of first even, first

odd and second even guided modes are 0.551, 0.58869, and 0.64815 respectively.

Until 0.58869 frequency value we have single mode waveguide. There is also a

correspondence between guided modes of single slab symmetric waveguide and

one-dimensional photonic crystal waveguide for E-polarization.
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Chapter 7

DISCUSSION AND CONCLUSIONS

In this thesis, one-dimensional photonic crystals and photonic crystal

waveguides are investigated by using different methods. We have begun to study

our research with the plane-wave method and then calculated reflection and trans-

mission coefficients of layered structure. Since we have obtained the band dia-

gram of one-dimensional photonic crystal for a certain medium and the structure

parameters, we have found transmission coefficients of layered structure for the

same parameters and compared the photonic band gaps with the frequency re-

gion where the transmission was zero. After compared the results, we would like

to observe the impurities in the band structure of one-dimensional photonic crys-

tal. Using the transmission and reflection coefficients method, we could observe

the impurities by changing the thickness of layers, but the impurities can not

be obtained by using the plane-wave method. This method is valid only for the

periodic photonic band gap structures. Because of this reason we have decided to

use another method to create impurity into the structure. This method is known

as the supercell method. By using this method, we have observed impurity in

the middle of the supercell and chosen the convenient parameters, geometry, and

the direction of electromagnetic waves, we have obtained the one-dimensional

photonic crystal waveguide.

In the photonic crystal waveguide part of this thesis, we have calculated

our modes for two polarizations E (TE) and B (TM). In order to check our

results whether they are true or not, we have found the modes of single slab

symmetric waveguide and compared it with the analytical solutions for E and B

polarizations. We have seen that there is a good harmony between analytical and

numerical results. After this check, we have constituted one-dimensional photonic

crystal waveguide that has a different guiding mechanism than the conventional

waveguide. This guiding mechanism is called photonic crystal guidance. The

occurrence of this guidance is the reason of periodic photonic crystal which is

placed outside of the guiding layer. In the calculation process of the modes of

one-dimensional photonic crystal waveguide, the importance of structure size and
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the number of plane-waves investigated for obtaining a good results. If we have

taken small supercell size, the supercells are influenced with each other. Because

of the fact that we have to take big supercell size to have reliable results. The

second important parameter is the number of plane-waves which we have to take

enough number of plane-waves for convergence [8].

As the second part of this research, we have tried to observe randomness

in one-dimensional photonic crystal. In this study, we have used uniform random

numbers which were added or subtracted to the thickness of each layer as a

percentage. We have also calculated the same structure for a different percentages

and looked at the variation of the first three band gaps of it. We have seen that

how the randomness is important in the fabrication process of photonic crystals

and how it affects the band gaps and the characteristics of the structure.

7.1 FUTURE WORKS

There are many possibilities for future work to extend and build upon the

ideas put forward here. Specifically there a several key directions we would like

to follow up.

• Design different photonic crystal waveguides which have different modes, con-

finements etc.

• Doing this research in 2-D structures for investigating the photonic crystal op-

tical fibers.

• Randomness in 2-D or 3-D structures.

• Randomness in Supercell Method.

• Randomness in 1-D Photonic Crystal Waveguide.

We hope that these ideas will be attempted in the near future.
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APPENDIX A

DERIVATION OF EIGENVALUE EQUATION OF H METHOD

First of all we are going to write general form of our equation,

−
∑

G

(k + G′) × η(G′ − G)(k + G) ×H(k + G) =
ω2

c2
H(k + G′)(A.1)

The equation above is an ordinary eigenvalue problem in the form

AH =
ω2

c2
H. (A.2)

In Eq. (A.1) we have 3N × 3N matrix equation and we can reduce in 2N × 2N

eigenvalue problem. From the left hand side

q′ × q × HG =




q′1q1 − q′ · q q′2q2 q′3q1

q′1q2 q′2q2 − q′ · q q′3q2

q′1q3 q′2q3 q′3q3 − q′ · q







Hx

Hy

Hz


(A.3)

We can write our equation in the form

∑

G

AGG′HG =
ω2

c2
HG′ (A.4)

Multiplying both sides from left by SG then

∑

G,G′

SGAGG′HG =
ω2

c2
SG′HG′ (A.5)

Using identity matrix as I ≡ S†
G′SG then

∑

G,G′

SGAGG′S†
G′SGHG =

ω2

c2
SG′HG′ (A.6)
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Now we have another eigenvalue problem

∑

G,G′

SGAGG′S†
G′H

∗
G =

ω2

c2
H∗

G′ (A.7)

where

SG =




e1x e1y e1z

e2x e2y e2z

e3x e3y e3z


 (A.8)

S†
G′ =




e′1x e′2x e′3x

e′1y e′2y e′3y

e′1z e′2z e′3z


 (A.9)

Ã =




e1x e1y e1z

e2x e2y e2z

e3x e3y e3z







q′1q1 − q′ · q q′2q2 q′3q1

q′1q2 q′2q2 − q′ · q q′3q2

q′1q3 q′2q3 q′3q3 − q′ · q







e′1x e′2x e′3x

e′1y e′2y e′3y

e′1z e′2z e′3z




Where Ã ≡ SGAGG′S†
G′ . Using q ≡ qê3 and q′ ≡ qê′3 into equation above,

= qq′




e1x e1y e1z

e2x e2y e2z

e3x e3y e3z











e′3xe3x e′3ye3y e′3ze3z

e′3xe3y e′3ye3y e′3ze3y

e′3xe3z e′3ye3z e′3ze3z


 − ê′3 · ê3I








e′1x e′2x e′3x

e′1y e′2y e′3y

e′1z e′2z e′3z




In order to simplify our calculations we denote that

Eij =




e1x e1y e1z

e2x e2y e2z

e3x e3y e3z




Qij =




e′3xe3x e′3ye3y e′3ze3z

e′3xe3y e′3ye3y e′3ze3y

e′3xe3z e′3ye3z e′3ze3z




E ′
ij =




e′1x e′2x e′3x

e′1y e′2y e′3y

e′1z e′2z e′3z



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We can write Eij ≡ êi · uj, Qij ≡ (ê′3 · ui)(ê3 · uj), and E ′
ij ≡ ui · ê′

j into above

equation. As we can see from the equation we have two part. For the first part

we can write,

Ãij = qq′
∑

k,l

EikQklE
′
lj

= qq′
∑

k,l

(êi · uk)(ê′3 · uk)(ê3 · ul)(ul · ê′j)

= qq′(êi · ê′3)(ê3ê′j)

= qq′




(e1 · e′
3)(e3 · e′

1) (e1 · e′
3)(e3 · e′

2) (e1 · e′
3)(e3 · e′

3)

(e2 · e′
3)(e3 · e′

1) (e2 · e′
3)(e3 · e′

2) (e2 · e′
3)(e3 · e′

3)

(e3 · e′
3)(e3 · e′

1) (e3 · e′
3)(e3 · e′

2) (e3 · e′
3)(e3 · e′

3)


(A.10)

For the second part of our equation,

= −qq′ê′3 · ê3




e1 · e′
1 e1 · e′

2 e1 · e′
3

e2 · e′
1 e2 · e′

2 e2 · e′
3

e3 · e′
1 e3 · e′

2 e3 · e′
3




= −qq′




(e′
3 · e3)(e1 · e′

1) (e′
3 · e3)(e1 · e′

2) (e′
3 · e3)(e1 · e′

3)

(e′
3 · e3)(e2 · e′

1) (e′
3 · e3)(e2 · e′

2) (e′
3 · e3)(e2 · e′

3)

(e′
3 · e3)(e3 · e′

1) (e′
3 · e3)(e3 · e′

2) (e′
3 · e3)(e3 · e′

3)


 (A.11)

Combining Eq. (A.10) and Eq. (A.11) and arranging some terms then

Ã = qq′




e1 · [(e3 · e′
1)e

′
3 − (e′

3 · e3)e
′
1] e1 · [(e3 · e′

2)e
′
3 − (e′

3 · e3)e
′
2] 0

e2 · [(e3 · e′
1)e

′
3 − (e′

3 · e3)e
′
1] e2 · [(e3 · e′

2)e
′
3 − (e′

3 · e3)e
′
2] 0

0 0 0




Using (B.A)C − (C.A)B rule for each matrix element, we have obtain

S†
G′ASG as

SGAGG′S†
G′ = q′q




−e′
2 · e2 e′

1 · e2 0

e′
2 · e1 −e′

1 · e1 0

0 0 0


 (A.12)

Using this matrix into Eq. (A.1) and substituting q ′ ≡ |k +G′| and q ≡ |k +G|
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we have

∑

G

|k + G′||k + G|η(G′ − G)


 e′

2 · e2 −e′
1 · e2

−e′
2 · e1 e′

1 · e1




 H1(G)

H2(G)


=

ω2

c2


 Hx(G)

Hy(G)


 .

Here we have reduced 3N × 3N problem in 2N × 2N problem.
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[8] H. Sami Sözüer, J.W. Haus, R. Inguva, Phys. Rev. B 45 13962 (1992).
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