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İZMİR



We approve the thesis of Yasin ÇETİNDİL
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ABSTRACT

In this thesis we study how to extend the notion of cofinitely supplemented module

to lattice theory. A submodule N of a module M is called cofinite if the factor module M/N

is finitely generated and we say that M is a cofinitely supplemented module if every cofinite

submodule of M has a supplement. We analogously define the notions of cofinite element

and cofinitely supplemented lattice for lattices. Inspired by the similarities between the

properties of modules and modular lattices, we obtain results for cofinitely supplemented

modular lattices, analogous to results for cofinitely supplemented modules.
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ÖZET

Bu tezde dual sonlu tümleyen modül kavramının kafes teorisinde tanımlanması

ve genelleştirilmesi araştırılmaktadır. Bir M modülü ve N altmodülü için M/N bölüm

modulü sonlu üretilmiş ise N altmodülüne dual sonlu ve eğer M modülünün her dual sonlu

altmodülünün tümleyeni varsa M modülüne dual sonlu tümleyen modül denir. Benzer

şekilde dual sonlu eleman ve dual sonlu tümleyen kafes kavramlarını tanımladık. Modüller

ve modüler kafesler arasındaki benzerliklerden esinlenerek, dual sonlu tümleyen modüller

için geçerli olan bazı sonuçları modüler kafeslere genelleştirdik.

iii



TABLE OF CONTENTS

CHAPTER 1 . INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 . MODULES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Modules and Submodules . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Isomorphism Theorems . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Direct Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 3 . COFINITELY SUPPLEMENTED MODULES . . . . . . . . . . . 7

3.1 Superfluous (Small) Submodules . . . . . . . . . . . . . . . . . . 7

3.2 Complements and Supplements of a Submodule . . . . . . . . . 9

3.3 Cofinitely Supplemented Modules . . . . . . . . . . . . . . . . . 10

CHAPTER 4 . LATTICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Sublattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Modular Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 Lattice of Submodules . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 5 . COFINITELY SUPPLEMENTED LATTICES . . . . . . . . . . . 14

5.1 Superfluous (Small) Elements . . . . . . . . . . . . . . . . . . . 14

5.2 Complements and Supplements . . . . . . . . . . . . . . . . . . 14

5.3 Cofinitely Supplemented Lattices . . . . . . . . . . . . . . . . . 15

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iv



CHAPTER 1

INTRODUCTION

R will be an associative ring with identity and we will consider left unital R-

modules. Let M be an R-module. A module M is supplemented, if every submodule K

of M has a supplement, i.e., a submodule L minimal with respect to K + L = M . It is

well known that a submodule L of M is a supplement of a submodule K if K + L = M

and K ∩ L ¿ L. If every cofinite submodule K of M (that is K ≤ M with M/K finitely

generated) has a supplement in M is called a cofinitely supplemented module.

A lattice L is called supplemented if every element b of L has a supplement in L,

i.e., an element c which is minimal with respect to b∨ c = 1. It is well known that if L is

a bounded modular lattice, then c is a supplement of b in L if and only if b ∨ c = 1 and

b∧c ¿ c/0. An element a of a lattice L is called cofinite in L if the quotient sublattice 1/a is

compact (that is, the element 1 is compact). A lattice L is called cofinitely supplemented

if every cofinite element of L has a supplement in L.

There are many similarities between the properties of cofinitely supplemented mod-

ules and cofinitely supplemented lattices. The properties of the former are extensively

studied in (Alizade, Bilhan, Smith, 2001). We study generalizations of these properties

to lattice theory.
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CHAPTER 2

MODULES

2.1 Modules and Submodules

Definition 2.1.1. Let R be a ring with identity 1 and M be an abelian group. Suppose

there is a function f : R ×M −→ M (we will denote f(r,m) by rm) where r ∈ R and

m ∈ M . Then M is called a left R-module (or briefly a module) if the followings are

satisfied. (1) For every r ∈ R and m,n ∈ M ,

r(m + n) = rm + rn.

(2) For every r, s ∈ R and m ∈ M ,

(r + s)m = rm + sm.

(3) For every r, s ∈ R and m ∈ M ,

(rs)m = r(sm).

(4) For every m ∈ M ,

1 ·m = m.

Definition 2.1.2. A subset N of an R-module M is called a submodule if N itself is a

module with respect to the same operations. Notation: N ≤ M.

Definition 2.1.3. Let M be module and let N be a submodule of M . The set of cosets

M/N = {x + N | x ∈ M }

is a module with respect to the addition and scalar multiplication defined by

(x + N) + (y + N) = (x + y) + N , r(x + N) = rx + N.

This module M/N is called a factor module of M by N.
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Lemma 2.1.4. (Modular Law) Let N , K, L be submodules of a module M and K ≤ N ,

then

N ∩ (K + L) = K + (N ∩ L).

Proof. Any x from N ∩ (K + L) can be represented as

x = n = k + l

for some n ∈ N , k ∈ K, and l ∈ L. Since K ≤ N , k ∈ N . Therefore

l = n− k ∈ N ∩ L.

Thus

x = k + l ∈ K + (N ∩ L).

Converse is obvious.

2.2 Isomorphism Theorems

Definition 2.2.1. If M and N are two modules then a function f : M −→ N is a

homomorphism in case for all r, s ∈ R and m, a ∈ M ,

f(rm + sa) = rf(m) + sf(a).

Definition 2.2.2. A homomorphism f : M −→ N is called an epimorphism in case it

is onto. It is called a monomorphism in case it is one to one.

Definition 2.2.3. Kernel of f : ker f = {m ∈ M | f(m) = 0} ≤ M .

Image of f : Im f = {f(m) | m ∈ M} ≤ N .

So f is an epimorphism if and only if Im f = N , and it can be easily verified that

f is a monomorphism if and only if ker f = 0.

Definition 2.2.4. A homomorphism f is called an isomorphism if it is both an epi-

morphism and a monomorphism (i.e. it is a bijection).
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Theorem 2.2.5. (Fundamental Homomorphism Theorem) Let M and N be left

modules and f : M −→ N be a homomorphism, then

M/ker f
∼= Imf .

In particular if f is an epimorphism then

M/ker f
∼= N .

Proof. Define f : M/K → N where K = ker f by

f(m + K) = f(m).

m + K = n + K implies m − n ∈ K, so f(m − n) = 0, then f(m) = f(n). Thus f is

well-defined. Also

f((m+K)+(n+K)) = f((m+n)+K) = f(m+n) = f(m)+f(n) = f(m+K)+f(n+K).

Hence

f(r(m + K)) = f(rm + K) = f(rm) = rf(m) = rf(m + K).

So f is a homomorphism. If

f(m + K) = f(n + K)

then

f(m) = f(n) ⇒ f(m− n) = 0 ⇒ m− n ∈ K ⇒ m + K = n + K

which gives us f is one-to-one.

At last, since for every n ∈ N we have

n = f(m) = f(m + K),

f is onto. So f is an isomorphism.

Theorem 2.2.6. (Second Isomorphism Theorem) If N , K are submodules of M ,

then

(N + K)/K
∼= N/(N ∩K) .

4



Proof. Define f : N → (N + K)/K by

f(n) = n + K .

Since

(n + k) + K = n + K = f(n),

f is an epimorphism.

ker f = {n ∈ N | n ∈ K} = N ∩K .

So by Fundamental Homomorphism Theorem

(N + K)/K
∼= N/(N ∩K) .

Theorem 2.2.7. (Third Isomorphism Theorem) If K ≤ N ≤ M , then
(
M/K

)/(
N/K

) ∼= M/N .

Proof. Define f : M/K → M/N by

f(m + K) = m + N .

Suppose that m1 + K = m2 + K. Then

m1 −m2 ∈ K ≤ N ⇒ m1 −m2 ∈ N ⇒ m1 + N = m2 + N.

Hence f is well-defined. Also

f(r(m1+K)+s(m2+K)) = f((rm1+sm2)+K) = (rm1+sm2)+N = r(m1+N)+s(m2+N)

which gives us

f(r(m1 + K) + s(m2 + K)) = rf(m1 + K) + sf(m2 + K),

i.e. f is a homomorphism. Since for all m + N ∈ M/N we have f(m + K) = m + N , f

is an epimorphism.

ker f = {m + K | m ∈ N } = N/K .

So by Fundamental Homomorphism Theorem
(
M/K

)/(
N/K

) ∼= M/N

5



2.3 Direct Sum

Definition 2.3.1. Let {Ni}i∈I be a family of submodules of a module M . M is the inter-

nal direct sum of submodules Ni if every element m ∈ M can be uniquely represented

as

m =
∑
i∈I

ni

where ni ∈ Ni and ni = 0 for almost all i ∈ I.

Proposition 2.3.2. M =
⊕
i∈I

Ni if and only if

M =
∑
i∈I

Ni and Ni ∩ (
∑

j 6=i

Nj) = 0

for every i ∈ I.

Proof. (⇒) 1) For every m ∈ M we have

m =
∑
i∈I

ni ∈
∑
i∈I

Ni ⇒ M ⊆
∑
i∈I

Ni

which gives us

M =
∑
i∈I

Ni.

2) Let

x = ni =
∑

i 6=j

nj ∈ Ni ∩
∑

j 6=i

Nj

then by uniqueness of representation x = ni = 0.

(⇐) ∀m ∈ M =
∑
i∈I

Ni,

m =
∑
i∈I

ni.

To prove uniqueness let m =
∑
i∈I

ni =
∑
i∈I

n
′
i. For every i ∈ I we have

ni − n
′
i =

∑

i6=j

(nj − n
′
j) ∈ Ni ∩ (

∑

i6=j

Nj) = 0

Therefore ni = n
′
i.

Definition 2.3.3. If M = N ⊕K then N , K are called direct summands of M.
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CHAPTER 3

COFINITELY SUPPLEMENTED MODULES

3.1 Superfluous (Small) Submodules

The most important notion in the study of supplements is the small submodule.

Definition 3.1.1. A submodule N of a module M is called superfluous or small if

there is no proper submodule K of M such that N + K = M .

Equivalently N + K = M implies that K = M . It is denoted by N ¿ M .

Proposition 3.1.2. Let M be a module

1. If K ≤ N ≤ M and K is small in N then K is small in M .

2. Let N be a small submodule of a module M , then any submodule of N is also small

in M .

3. If K is a small submodule of a module M and K is contained in a direct summand

N of M then K is small in N .

4. K ¿ M and N ¿ M if and only if K + N ¿ M .

5. If K ≤ N ≤ M , then N ¿ M if and only if

K ¿ M and N/K ¿ M/K .

6. Finite sum of small submodules Ni of M is a small submodule of M .

7. Let f : M −→ N be a homomorphism of modules M and N , let K be a submodule

of M . If K is a small submodule of M , then f(K) is a small submodule of N .

Proof. 1. Let K + L = M for a submodule L of M .

N = N ∩M = N ∩ (K + L) = K + (N ∩ L).

Since K is small in N , N = N ∩ L so N ≤ L. K ≤ N and N ≤ L so K ≤ L.

Therefore M = K + L = L. Thus K ¿ M .

7



2. Let K be a submodule of N and K+L = M for a submodule L of M . Since K ≤ N ,

N + L = M and also since N ¿ M , L = M . So K ¿ M .

3. K ≤ N ≤ M ,K ¿ M and M = N ⊕ L for a submodule L of M . Let K + U = N

for a submodule U of N .

M = N + L = K + U + L

since K ¿ M , M = U +L and U ∩L ≤ N ∩L = 0 implies U ∩L = 0 so M = U⊕L.

N = N ∩M = N ∩ (U ⊕ L) = U ⊕ (N ∩ L) = U.

So K ¿ N .

4. (⇒) Let (K + N) + L = M for some L ≤ M . Since

K + (N + L) = (K + N) + L = M and K ¿ M,

we have N + L = M . Since N ¿ M , L = M .

(⇐) K ≤ K + N ¿ M by 2) K ¿ M . Similarly N ≤ K + N ¿ M by 2) N ¿ M .

5. (⇒) Since N ¿ M by (2) K ¿ M . Suppose that

N/K + X/K = M/K

where X/K is a submodule of M/K , then N + X = M . By assumption X = M i.e.

X/K = M/K .

(⇐) Let N + X = M then

(N + X)/K = M/K

i.e.

N/K + (X + K)/K = M/K or N + X + K = M .

Since N ¿ M we have X + K = M . Now K ¿ M implies X = M .

6. Let

N =
n∑

i=1

Ni and N1 + · · ·+ Nn + X = M

for some X ≤ M . Since Ni ¿ M ,

N1 + (N2 + · · ·+ Nn + X) = M

then

N2 + · · ·+ Nn + X = M.

Continuing this way, we obtain Nn + X = M and hence Nn ¿ M , X = M .

8



7. Suppose that

f(K) + L = f(M)

for some L ≤ f(M). Then

f−1(f(K) + L) = f−1(f(K)) + f−1(L) = f−1(f(M)) = M

and therefore

M = K + ker f + f−1(L) = K + f−1(L).

Since K ¿ M , f−1(L) = M , hence

f(f−1(L)) = f(M)

implies that

L ∩ f(M) = f(M).

So L = f(M).

3.2 Complements and Supplements of a Submodule

Definition 3.2.1. Let M be a module. A submodule N of module M is said to be a

complement of a submodule L of M if N ∩ L = 0 and N is maximal with respect to

this property.

Definition 3.2.2. Let M be a module. A submodule N of module M is called a sup-

plement of a submodule L of M if N + L = M and N is minimal with respect to this

property.

Proposition 3.2.3. N is a supplement of L in M if and only if

N + L = M and N ∩ L ¿ N.

Proof. (⇒) Let N be a supplement of L in M . Then we know that M = N + L and N

is minimal with respect to this property. For K ≤ N let N = K + (N ∩ L). By modular

law

N = K + (N ∩ L) = N ∩ (K + L)

9



that is N ≤ L + K.

M = N + L = L + K.

By minimality of N we have K = N .

(⇐) Let M = L + K for some submodule K of N .

N = N ∩M = N ∩ (K + L) = K + (N ∩ L).

Since N ∩ L ¿ N , K = N . So N is minimal with respect to N + L = M .

Unlike complements, supplements need not exist always.

Definition 3.2.4. A module M is called supplemented if every submodule of M has a

supplement.

3.3 Cofinitely Supplemented Modules

Definition 3.3.1. Let M be an R-module. For K ≤ M if M/K is finitely generated then

K is called a cofinite submodule of M .

Definition 3.3.2. If every cofinite submodule of M has a supplement in M then M is

called a cofinitely supplemented module.

10



CHAPTER 4

LATTICES

Definition 4.0.3. A partially ordered set (or poset) is a set taken together with a partial

order (reflexive, antisymmetric and transitive relation) on it.

Definition 4.0.4. The infimum is the greatest lower bound of a set S, defined as a

quantity m such that no member of the set is less than m. When it exists (which is not

required by this definition, e.g., inf R does not exist), the infimum is denoted inf S or

infx∈S x.

Definition 4.0.5. The supremum is the least upper bound of a set S, defined as a

quantity M such that no member of the set exceeds M . When it exists (which is not

required by this definition, e.g., sup R does not exist), the supremum is denoted sup S or

supx∈S x.

Definition 4.0.6. A lattice is any non-empty poset L in which any two elements x and

y have a supremum x ∨ y and an infimum x ∧ y.

Another equivalent definition is that a triple 〈L;∧,∨〉 is called a lattice if L is

a nonempty set, ∧ (meet) and ∨ (join) are binary operations on L, both ∧ and ∨ are

idempotent, commutative and associative and they satisfy the absorption law

a ∧ (a ∨ b) = a ∨ (a ∧ b) = a .

The partial order relation can be recovered from meet and join by defining

x ≤ y ⇔ x ∧ y = x and x ∨ y = y.

The study of lattices is called lattice theory.
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Definition 4.0.7. A lattice is said to be bounded if it has a greatest element often

denoted by 1 and a least element often denoted by 0.

Definition 4.0.8. A lattice is said to be complete if every nonempty subset of it has a

supremum and infimum.

4.1 Sublattices

Definition 4.1.1. A subset B of a lattice L is called a sublattice if for each b, b′ ∈ B,

inf
L
{b, b′} ∈ B and sup

L
{b, b′} ∈ B.

Clearly in this case, B is also a lattice and

inf
B
{b, b′} = inf

L
{b, b′} and sup

B
{b, b′} = sup

L
{b, b′} .

Definition 4.1.2. In a complete lattice L, a subset B is called a complete sublattice

if for each subset X ⊆ B,

inf
L

X ∈ B and sup
L

X ∈ B.

Definition 4.1.3. A quotient sublattice b/a for a ≤ b represents the sublattice

{x ∈ L | a ≤ x ≤ b} .

4.2 Modular Lattices

Definition 4.2.1. A lattice L which satisfies the identity

x ∨ (y ∧ z) = (x ∨ y) ∧ z

for all x, y, z ∈ L such that x ≤ z is said to be modular.

12



4.3 Lattice of Submodules

The set of submodules of a module ordered by inclusion forms a lattice. The

supremum is given by the sum of submodules and the infimum by the intersection of

them.

Proposition 4.3.1. The lattice of submodules is modular. Namely, if K, H,L are sub-

modules of M and K ⊂ H then

H ∩ (K + L) = K + (H ∩ L) .

Proof. First observe

K + (H ∩ L) = (H ∩K) + (H ∩ L) ⊂ H ∩ (K + L) .

If

h = k + l ∈ H ∩ (K + L)

with h ∈ H, k ∈ K, l ∈ L , then

k ∈ K ⊂ H and l = h− k ∈ H ∩ L.

Therefore

H ∩ (K + L) ⊂ K + (H ∩ L) .

So the lattice of submodules of a module is a modular lattice.

13



CHAPTER 5

COFINITELY SUPPLEMENTED LATTICES

5.1 Superfluous (Small) Elements

Definition 5.1.1. In a lattice with 1, an element a is called superfluous if a ∨ b 6= 1

holds for every b 6= 1.

Lemma 5.1.2. Let L be a lattice and let a ≤ b and bi ∈ L (1 ≤ i ≤ n) for some positive

integer n,

1. b ¿ L if and only if a ¿ L and b ¿ 1/a.

2. (b1 ∨ b2 ∨ . . . ∨ bn) ¿ L if and only if bi ¿ L.

Proof. 1. (⇒) If b ¿ L, it is clear that a ¿ L and b ¿ 1/a.

(⇐) If b ∨ c = 1, then b ∨ (a ∨ c) = 1. Since b ¿ 1/a, a ∨ c = 1 and since a ¿ L,

c = 1. Therefore b ¿ L.

2. It is enough to show the property for n = 2.

(⇒) By previous alternative, b1 ≤ b1 ∨ b2 ¿ L implies b1 ¿ L. Similarly b2 ¿ L.

(⇐) Let (b1 ∨ b2) ∨ b = 1. Since b1 ¿ L,

1 = (b1 ∨ b2) ∨ b = b1 ∨ (b2 ∨ b)

implies b2 ∨ b = 1. Similarly, since b2 ¿ L, b2 ∨ b = 1 requires b = 1. Therefore

b1 ∨ b2 ¿ L.

5.2 Complements and Supplements

Definition 5.2.1. Let L be a lattice with 0 and 1 and a ∈ L. An element a′ ∈ L is called

a complement of a if

a ∧ a′ = 0 and a ∨ a′ = 1.

14



Definition 5.2.2. If a′ ∈ L is a complement of a ∈ L, we use the notation

a⊕ a′ = 1

and we call this a direct sum and a and a′ direct summands.

Definition 5.2.3. In a lattice with 1, an element c is called a supplement of b in L if

it is minimal relative to the property b ∨ c = 1.

Lemma 5.2.4. If L is a bounded modular lattice, then c is a supplement of b in L if and

only if

b ∨ c = 1 and b ∧ c ¿ c/0.

Proof. (⇒) Let c be a supplement of b in L. Then by definition, c is minimal relative to

the property b ∨ c = 1. Now we have to show that b ∧ c ¿ c/0. Suppose that b ∧ c 6¿ c/0.

This means that there is an element d in c/0 such that (b ∧ c) ∨ d = c. In that case

1 = b ∨ c = b ∨ (b ∧ c) ∨ d = b ∨ d

contradicts the fact that c is minimal with the property b ∨ c = 1. Hence b ∧ c ¿ c/0.

(⇐) Let

b ∨ c = 1 and b ∧ c ¿ c/0 .

Now we have to show that c is a supplement of b. Suppose b ∨ c′ = 1 for some c′ ≤ c. In

that case, by modular law

c = c ∧ (b ∨ c′) = (b ∧ c) ∨ c′

Since b ∧ c ¿ c we have c′ = c. Therefore c is a supplement of b in L.

5.3 Cofinitely Supplemented Lattices

Definition 5.3.1. A lattice L is called supplemented if each element of L has a sup-

plement in L.

15



Definition 5.3.2. An element c of a complete lattice L is called compact if for every

subset X of L and c ≤ ∨X there is a finite subset F ⊆ X such that c ≤ ∨F.

Definition 5.3.3. A lattice with greatest element 1 is called compact if the element 1

is compact.

Definition 5.3.4. A complete lattice L is called compactly generated if each element

of L is a join of compact elements.

Definition 5.3.5. An element a of a lattice L is called cofinite in L if the quotient

sublattice 1/a is compact.

Definition 5.3.6. A lattice L is called cofinitely supplemented if every cofinite element

of L has a supplement in L.

Lemma 5.3.7. Let L be a cofinitely supplemented lattice. Then 1/a is cofinitely supple-

mented for any a ∈ L.

Proof. Suppose that L is cofinitely supplemented and let a ∈ L. Since L is cofinitely

supplemented, any cofinite element b of 1/a has a supplement c ∈ L. By Lemma 5.2.4,

1 = b ∨ c and b ∧ c ¿ c/0.

Hence

(b ∨ c) ∨ a = 1 ∨ a = 1 = b ∨ (c ∨ a) .

By Modular law,

b ∧ (c ∨ a) = (b ∧ c) ∨ a ¿ (c ∨ a)/0

by Lemma 5.1.2(2). By Lemma 5.2.4, c ∨ a is a supplement of b in 1/a. It follows that 1/a

is cofinitely supplemented.

Lemma 5.3.8. Let a < b be elements in a modular lattice L. If a is superfluous in b/0

then a is also superfluous in L. If b is a direct summand in L, the converse also holds.
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Proof. Suppose a ∨ u = 1. Then by modularity

b = b ∧ 1 = b ∧ (a ∨ u) = a ∨ (b ∧ u)

and since a is superfluous in b/0,

b ∧ u = b or b ≤ u.

Hence

a < b ≤ u and u = a ∨ u = 1.

Therefore a is small in L.

Conversely, let v ∈ b/0 be such that

a ∨ v = b and b⊕ c = 1.

Then a ∨ v ∨ c = 1 and so v ∨ c = 1, a being superfluous in L. Hence

v = v ∨ 0 = v ∨ (b ∧ c) = b ∧ (v ∨ c) = b

by modularity.

Definition 5.3.9. A subset I of a lattice L is called an ideal in L if

(i) x ∨ y ∈ I for every x, y ∈ I.

(ii) x ∧ y ∈ I for every x ∈ I and y ∈ L.

Lemma 5.3.10. The superfluous elements of a lattice form an ideal.

Proof. Let us denote the set of superfluous elements by I.

(i) x, y ∈ I means x ¿ L and y ¿ L. By Lemma 5.1.2(2), x ∨ y ¿ L.

(ii) Since x ∧ y ≤ x and x ¿ L, by Lemma 5.1.2(1) x ∧ y ¿ L and hence x ∧ y ∈ I.

Lemma 5.3.11. In a modular lattice L, let c′ be superfluous in c/0 and d′ be superfluous

in d/0. Then

c′ ∨ d′ ¿ (c ∨ d)/0.

Proof. By taking L = (c ∨ d)/0 in Lemma 5.3.8, we get c′ and d′ are superfluous and by

Lemma 5.3.10, c′ ∨ d′ is superfluous in (c ∨ d)/0.
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Lemma 5.3.12. In any modular lattice

(c ∨ d) ∧ b ≤ [c ∧ (b ∨ d)] ∨ [d ∧ (b ∨ c)]

holds for every b, c, d ∈ L.

Proof. Since

c ∧ (b ∨ d) ≤ b ∨ c

by modularity

[c ∧ (b ∨ d)] ∨ [d ∧ (b ∨ c)] = [[c ∧ (b ∨ d)] ∨ d] ∧ (b ∨ c)

and again by modularity, since d ≤ b ∨ d,

[c ∧ (b ∨ d)] ∨ d = (d ∨ c) ∧ (b ∨ d) .

These equalities gives us

[c ∧ (b ∨ d)] ∨ [d ∧ (b ∨ c)] = [[c ∧ (b ∨ d)] ∨ d] ∧ (b ∨ c) = [(d ∨ c) ∧ (b ∨ d)] ∧ (b ∨ c) .

It is clear that

b ≤ (b ∨ d) ∧ (b ∨ c) .

And hence

(c ∨ d) ∧ b ≤ [c ∧ (b ∨ d)] ∨ [d ∧ (b ∨ c)] .

Theorem 5.3.13. If a and b are elements in a modular lattice L then the quotient sub-

lattices

(a ∨ b)/b and a/(a ∧ b)

are isomorphic.

Proof. It is easily verified that the maps

f : a ∨ b/b → a/a ∧ b , f (x) = x ∧ a

for all x ∈ a ∨ b/b and

g : a/a ∧ b → a ∨ b/b , g (y) = y ∨ b

for all y ∈ a/a ∧ b are (in a modular lattice L) mutually inverse lattice morphisms.
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Proposition 5.3.14. Let c be a supplement of b in a lattice L. If a ≤ b and a ∨ c = 1,

then c is a supplement of a in L.

Proof. Let c′ ≤ c with a ∨ c′ = 1. a ≤ b implies b ∨ c′ = 1. Since c is a supplement of b,

c′ = c.

Lemma 5.3.15. Let a and b be elements of a lattice L such that b is cofinite, a/0 is

cofinitely supplemented and a ∨ b has a supplement in L. Then b has a supplement in L.

Proof. Let c be a supplement of a∨ b in L and d a supplement of (c ∨ b)∧ a in a/0. These

mean that

c ∨ (a ∨ b) = 1, c ∧ (a ∨ b) ¿ c/0

and

d ∨ [(c ∨ b) ∧ a] = a, d ∧ [(c ∨ b) ∧ a] ¿ d/0

First observe that d is a supplement of c ∨ b in L. Indeed

1 = c ∨ (a ∨ b) = c ∨ b ∨ [[(c ∨ b) ∧ a] ∨ d] = (c ∨ b) ∨ d

and

(c ∨ b) ∧ d = (c ∨ b) ∧ d ∧ a = [(c ∨ b) ∧ a] ∧ d ¿ d/0.

Using Proposition 5.3.14(1), as b ∨ d ≤ a ∨ b,

(a ∨ b) ∨ c = (b ∨ d) ∨ c = 1

and c is a supplement of a ∨ b, we obtain that c is also a supplement of b ∨ d. Hence

(b ∨ d) ∧ c ¿ c/0 .

Finally, we prove that c ∨ d is a supplement of b in L. We already know that

b ∨ (c ∨ d) = 1

so that we only need to show that

b ∧ (c ∨ d) ¿ (c ∨ d)/0 .

By Lemma 5.3.11,

[c ∧ (b ∨ d)] ∨ [d ∧ (b ∨ c)] ¿ (c ∨ d)/0

and using Lemma 5.3.12,

(c ∨ d) ∧ b ¿ (c ∨ d)/0 .

19



Lemma 5.3.16. Let ai/0 (i ∈ I) be any collection of cofinitely supplemented sublattices

of a lattice L. Then

∨
i∈I

ai

/
0

is a cofinitely supplemented sublattice of L.

Proof. Let

A = ∨
i∈I

ai

/
0

and b be a cofinite element of A. Because ∨
i∈I

ai

/
b is compact, there exists a finite set

F ⊆ I such that

∨
i∈I

ai = ∨
i∈F

ai .

Since (
∨

i∈F
ai

)
∨ b = ∨

i∈F
ai ,

we have

A = b ∨
(
∨

i∈F
ai

)/
0 .

Hence

∨
i∈I

ai = ∨
i∈F

ai = b ∨
(
∨

i∈F
ai

)
=

[
b ∨

(
∨

i∈F−j1
ai

)]
∨ aj1 .

It is clear that ∨
i∈I

ai has 0 as its supplement and we know that aj1/0 is cofinitely

supplemented. By Lemma 5.3.15,

b ∨
(

∨
i∈F−j1

ai

)

has a supplement in A. By repeated use of Lemma 5.3.15, we deduce that b has a

supplement in A. It follows that

∨
i∈I

ai

/
0

is cofinitely supplemented.

Corollary 5.3.17. Any direct sum of cofinitely supplemented sublattices of a lattice L is

cofinitely supplemented.

Proof. This immediately follows from Lemma 5.3.16.
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Definition 5.3.18. An element m ∈ L is called maximal in L if there is no element

greater than m.

Definition 5.3.19. In a complete lattice L the meet of all the maximal elements different

from 1 in L is called the radical of L, denoted by r (L) .

Proposition 5.3.20. Each finite join of compact elements is a compact element.

Proof. By induction, it suffices to verify the assertion for only two compact elements, say

a, b ∈ L. Since a and b are compact, for

a = ∨
i∈I1

ai and b = ∨
i∈I2

bi

we can find finite sets F1 ⊆ I1 and F2 ⊆ I2 such that

a = ∨
i∈F1

ai and b = ∨
i∈F2

bi.

Clearly

a ∨ b =

(
∨

i∈F1

ai

)
∨

(
∨

i∈F2

bi

)

is a finite join. Therefore a ∨ b is compact.

Lemma 5.3.21. In a compactly generated lattice L, an element k ∈ b/a is compact in a

quotient sublattice b/a if and only if there is a compact element c in L such that

k = a ∨ c and a ∨ c ≤ b .

Proof. (⇒) Let k be a compact element in b/a. The lattice being compactly generated,

there is a family of compact elements {ci}i∈I such that k = ∨
i∈I

ci. Clearly

k = a ∨ k = a ∨
(
∨
i∈I

ci

)
= ∨

i∈I
(a ∨ ci)

with a ∨ ci ∈ b/a (because ci ≤ k ≤ b). Thus there exists a finite subset F ⊆ I such that

k = ∨
i∈F

(a ∨ ci) = a ∨
(
∨

i∈F
ci

)
= a ∨ c ≤ b

where c = ∨
i∈F

ci is compact in L as finite join of compact elements by Proposition 5.3.20.

(⇐) Suppose c is compact in L, X ⊆ b/a and a∨ c ≤ ∨X. Then c ≤ ∨X and so there is a

finite subset F ⊆ X such that c ≤ ∨F. But F ⊆ b/a implies a ∨ c ≤ ∨F and hence a ∨ c

is compact in b/a.
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Proposition 5.3.22. Let a be a superfluous element in a compactly generated lattice L.

L is compact if and only if 1/a is a compact sublattice.

Proof. (⇒) If L is compact and 1 = ∨
i∈I

ci is a join of compact elements, then

1 = 1 ∨ a = ∨
i∈I

(ci ∨ a)

is a join of compact elements in 1/a.

(⇐) If 1/a is a compact sublattice, then

1 = ∨
i∈I

ki = ∨
i∈I

(a ∨ ci) = a ∨
(
∨
i∈I

ci

)

by Lemma 5.3.21. Then since a is superfluous in L,

1 = ∨
i∈I

ci .

Lemma 5.3.23. If a is superfluous in L, then a ≤ r (L) .

Proof. If m 6= 1 is a maximal element in L, then since a is superfluous a ∨m 6= 1. Hence

a ∨m = m, namely a ≤ m.

Lemma 5.3.24. If a is compact in L and a ≤ r (L), then a is superfluous in L.

Proof. Suppose that a is not superfluous. Then there is an element b 6= 1 such that

a ∨ b = 1. Clearly a 6≤ b and if we consider the set

D = {x ∈ L | a 6≤ x, x 6= 1, a ∨ x = 1}

D is nonempty. If C is a chain in D, a being compact, a 6≤ ∨C and ∨C ∈ D. Denote

again by b a maximal element in D. The element b is also maximal in L (indeed, if b < c,

by the maximality of b in D, a ≤ c and hence, 1 = a ∨ b ≤ c, namely c = 1) and so

a ≤ r (L) ≤ b ,

the required contradiction.
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Theorem 5.3.25. If L is compactly generated, then r (L) is the join of all the superfluous

elements from L.

Proof. Let u is the join of all the superfluous elements from L. Since the superfluous

elements of a lattice forms an ideal, u is also superfluous. Hence by Lemma 5.3.23,

u ≤ r (L) .

Conversely, if u < r (L), the lattice being compactly generated, there is a compact element

a such that a ≤ r (L), a 6≤ u. But Lemma 5.3.24 implies a superfluous and we contradict

a 6≤ u. Therefore u = r (L) .

Lemma 5.3.26. Let L be a cofinitely supplemented lattice. Then every cofinite element

of the quotient sublattice 1/r (L) is a direct summand.

Proof. Any cofinite element a of 1/r (L) is also a cofinite element of L. Since L is cofinitely

supplemented, by Lemma 5.2.4 there exists an element b of L such that

1 = a ∨ b and a ∧ b ¿ b/0.

Now a ∧ b ¿ L by Lemma 5.3.8 and hence by Lemma 5.3.23, a ∧ b ≤ r (L) . Therefore

a ∧ (b ∨ r (L)) ≤ r (L) .

Thus

1/r (L) = a/r (L)⊕ [b ∨ r (L)]/r (L)

as required.

Definition 5.3.27. An element a in a lattice L is called an atom if there is no element

b ∈ L such that 0 < b < a.

Definition 5.3.28. The join of all atoms of L, denoted by s (L), is called the socle of

the lattice L.

Lemma 5.3.29. The following statements are equivalent for a lattice L:

1. Every cofinite element of L is a direct summand of 1.
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2. Every maximal element of L is a direct summand of 1.

3. 1/s (L) does not contain a maximal element.

Proof. (1)⇒(2) It is clear that a maximal element, say m, is cofinite. Really 1/m is

compact. Because if we represent 1 as a join of some indexed elements, these elements

can only be either m or 1. Therefore 1 can be represented as a finite join.

(2)⇒(3) Let 1/s (L) contains a maximal m. Then for any atom m′ ≤ s (L), m ∨m′ = m

since m∨ s (L) = m. Therefore m∨m′ 6= 1 for every m′ ∈ L. Hence no maximal elements

can be a direct summand of 1.

(3)⇒(1) Let a be any cofinite element of L. Then a∨s (L) is cofinite and hence 1 = a∨s (L)

by (3). It follows that 1 = a ∨ a′ for any element a′ such that

s (L) = [a ∧ s (L)]⊕ a′

This proves (1).

Definition 5.3.30. Let a and b be elements of a lattice L such that b > a. If there is no

element a ∈ L such that a < c < b we say that the quotient sublattice

b/a = {a, b}

is simple.

Definition 5.3.31. A lattice L is called local if it has a largest element 6= 1.

Proposition 5.3.32. A lattice L is local if and only if r(L) is superfluous and maximal.

Theorem 5.3.33. Let Loc (L) is defined as

Loc (L) = ∨
i∈I
{ai | ai/0 is local ∀i ∈ I }

and Cof (L) is defined as

Cof (L) = ∨
i∈I
{ai | ai/0 is cofinitely supplemented ∀i ∈ I } .

Then the following statements are equivalent for a lattice L:

24



1. L is cofinitely supplemented.

2. Every maximal element of L has a supplement in L.

3. The quotient sublattice 1/Loc (L) doesn’t contain a maximal element.

4. The quotient sublattice 1/Cof (L) doesn’t contain a maximal element.

Proof. (1)⇒(2) Clear because maximal elements are cofinite.

(2)⇒(3) Let m be a maximal element of L. There exists an element l of L such that

1 = m ∨ l and m ∧ l ¿ l

by Lemma 5.2.4. Note that

l/(m ∧ l)
∼= (l ∨m)/m = 1/m

and since 1/m is simple m ∧ l is a maximal element of l/0. Therefore l is a local element

of L. It follows that Loc (L) is not an element of m/0. Hence 1/Loc (L) does not contain a

maximal element.

(3)⇒(4) Local lattices are cofinitely supplemented. Because it has a largest element which

is not equal to 1. Therefore since any element is superfluous, 1 is the supplement of each

proper element. Hence Loc (L) ≤ Cof (L) . This gives (4).

(4)⇒(1) Let c be a cofinite element of L. Then c∨Cof (L) is a cofinite element of L and

hence (4) gives that

1 = c ∨ Cof (L) .

Since 1/c is compact it follows that

1 = c ∨ k1 ∨ k2 ∨ . . . ∨ kn

for some c and cofinitely supplemented sublattices ki/0 (1 ≤ i ≤ n) . By repeated use of

Lemma 5.3.15, c has a supplement in L. It follows that L is cofinitely supplemented.
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