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ABSTRACT

We introduce and study absolutely supplement (respectively complement)

modules. We call a module an absolutely supplement (respectively complement)

if it is a supplement (respectively complement) in every module containing it.

We show that a module is absolutely supplement (respectively complement) if

and only if it is a supplement (respectively complement) in its injective enve-

lope. The class of all absolutely supplement (respectively complement) modules

is closed under extensions and under supplement submodules (respectively under

factor modules by complement submodules). We also consider the dual notions

of absolutely co-supplements (respectively co-complements).

iv



ÖZ

Bu tezde mutlak tümleyen ve mutlak bütünleyen modülleri tanımladık

ve inceledik. Bir modül kendisini içeren tüm modüllerin içerisinde tümleyen

(sırasıyla bütünleyen) ise bu modüle mutlak tümleyen (sırasıyla bütünleyen)

modül denir. Bir modülün mutlak tümleyen (sırasıyla bütünleyen) olması için

gerek ve yeter koşul bu modülün kendi injektif bürümü içinde bir tümleyen

(sırasıyla bütünleyen) olmasıdır. Bütün mutlak tümleyen (sırasıyla bütünleyen)

modüller sınıfı genişlemeler ve tümleyen alt modüller (sırasıyla bütünleyen alt

modüllere göre bölüm modulleri) altında kapalıdır. Ayrıca mutlak tümleyen

(sırasıyla bütünleyen) modüllerin dualleri olan mutlak dual-tümleyen (sırasıyla

dual-bütünleyen) modülleri ele aldık.
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Chapter 1

INTRODUCTION

The decomposition of modules into the direct sum of their submodules

plays an important role in Module and Ring Theory. Supplements and comple-

ments are two generalizations of direct summands when only one of two conditions

of the direct sum and some condition of minimality (respectively maximality) are

satisfied. Namely, a submodule N of a module M is a supplement (respectively

complement) of K ≤ M if N + K = M (N ∩K = 0) and N is minimal (respec-

tively maximal) with respect to this property. The class of short exact sequences

0 //N
f

//M //L //0

where f(N) is a supplement (respectively complement) for some K ≤ M , forms

a proper class (purity in other terminology) in the sense of Buchsbaum and

McLane, which we denote by S (respectively C). One of the classical examples

of proper classes is the Cohn class (Cohn purity) and one of the useful notions

in the study of the Cohn class is the absolutely pure and flat modules. We intro-

duce and study analogous notions for supplements and complements. Namely,

N is an absolutely supplement (respectively absolutely complement) module if

N is a supplement (respectively complement) of some submodule of each mod-

ule M containing N . N is an absolutely co-supplement (respectively absolutely

co-complement) module if in all cases when M/L ∼= N for some module M and

its submodule L, L is a supplement (respectively complement) of some K ≤ M .

We show that N is absolutely supplement if and only if N is a supple-

ment in the injective envelope E(N) of N . Every finite direct sum of absolutely

supplement (respectively absolutely co-supplement) modules is absolutely sup-

plement(respectively absolutely co-supplement). Every supplement submodule

of an absolutely supplement module is absolutely supplement. If N ≤ M and N ,

M/N are absolutely supplement modules then M is an absolutely supplement

module. We show also that M is absolutely co-supplement if and only if there

is a projective module P and an epimorphism f : P −→ M such that Ker f



is a supplement in P . If M is an absolutely co-supplement module and N is a

supplement submodule of M then M/N is also absolutely co-supplement. Con-

versely, if N ≤ M and N , M/N are absolutely co-supplement modules then M

is an absolutely co-supplement module. It turns out that absolutely complement

modules coincide with injective modules. Using this fact we prove that every

complement submodule of an injective module is injective. If N ≤ M and N ,

M/N are absolutely complement modules then M is an absolutely complement

module. A module M is absolutely co-complement if and only if there is an

epimorphism f : P −→ M with a projective module P and Ker f a complement

submodule of P . If M is an absolutely co-complement module and N is a com-

plement submodule of M then M/N is absolutely co-complement. Conversely,

if N ≤ M and N , M/N are absolutely co-complement modules then M is an

absolutely co-complement module.
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Chapter 2

PRELIMINARIES

2.1 Isomorphism Theorems

Let R be a ring with identity 1 and M be an abelian group. Suppose there

is a function f : R ×M −→ M (we will denote f(r,m) by rm) where r ∈ R and

m ∈ M . Then M is called a left R-module (or briefly a module) if the followings

are satisfied.

1. r(m + n) = rm + rn for every r ∈ R and m,n ∈ M

2. (r + s)m = rm + sm for every r, s ∈ R and m ∈ M

3. (rs)m = r(sm) for every r, s ∈ R and m ∈ M

4. 1 · m = m for every m ∈ M .

If the function f : M × R −→ M (mr ∈ M) with similar conditions are

given we will have right R-module. If M is a left R-module, right S-module and

(rm)s = r(ms) for every r ∈ R, m ∈ M , s ∈ S then M is called an R-S-module

or bimodule.

A subset N of an R-module M is called a submodule if N itself is a module

with respect to the same operations. Notation: N ≤ M .

Basic information about modules can be found in [3]. Throughout this

study we will use the following definitions, theorems and propositions.

Definition 2.1.1. Let M be module and let N be a submodule of M . The set of

cosets M/N = {x+N |x ∈ M} is a module with respect to the addition and scalar

multiplication defined by (x + N) + (y + N) = (x + y) + N , r(x + N) = rx + N .

This module M/N is called a factor module of M by N .

Definition 2.1.2. If M and N are two modules then a function f : M −→ N is a

homomorphism in case for all r, s ∈ R and m, a ∈ M f(rm+sa) = rf(m)+sf(a).



Definition 2.1.3. A homomorphism f : M −→ N is called an epimorphism in

case it is onto. It is called a monomorphism in case it is one to one.

Definition 2.1.4. Kernel of f : Ker f = {m ∈ M |f(m) = 0} ≤ M .

Image of f : Im f = {f(m)|m ∈ M} ≤ N .

So f is an epimorphism if and only if Im f = N , and it can be easily

verified that f is a monomorphism if and only if Ker f = 0.

Definition 2.1.5. A homomorphism f is called an isomorphism if it is both an

epimorphism and a monomorphism (i.e. it is a bijection).

Definition 2.1.6. If N is a submodule of M then the inclusion map i : N −→ M

is a monomorphism also called the natural embedding of N in M with image N .

Let N be a submodule of M then the mapping σ : M −→ M/N from M onto

the factor module M/N defined by σ(m) = m + N , m ∈ M is called the natural

(canonical) epimorphism of M onto M/N . Clearly Ker σ = N

Theorem 2.1.7. Fundamental Homomorphism Theorem

Let M and N be left modules and f : M −→ N be a homomorphism, then

M/ Ker f ∼= Im f

In particular if f is an epimorphism then M/ Ker f ∼= N .

Proof. Define f : M/K −→ N (where K = Ker f) by f(m + K) = f(m).

m + K = n + K implies m − n ∈ K, so f(m − n) = 0, then f(m) = f(n).

Thus f is well-defined.

Also f((m + K) + (n + K)) = f((m + n) + K) = f(m + n) = f(m) + f(n) =

f(m + K) + f(n + K).

f(r(m + K)) = f(rm + K) = f(rm) = rf(m) = rf(m + K).

So f is a homomorphism.

If f(m + K) = f(n + K) then f(m) = f(n) ⇒ f(m − n) = 0 ⇒ m − n ∈ K ⇒

m + K = n + K ⇒ f is one-to-one.

At last for every n ∈ N we have n = f(m) = f(m + K) ⇒ f is onto.

So f is an isomorphism.

Theorem 2.1.8. Second Isomorphism Theorem

If N , K are submodules of M , then

(N + K)/K ∼= N/(N ∩ K)
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Proof. Define f : N −→ (N + K)/K by f(n) = n + K.

Since (n + k) + K = n + K = f(n), f is an epimorphism.

Ker f = {n ∈ N |n ∈ K} = N ∩ K.

So by Fundamental Homomorphism Theorem N/(N ∩ K) ∼= (N + K)/K.

Theorem 2.1.9. Third Isomorphism Theorem

If K ≤ N ≤ M , then

(M/K)/(N/K) ∼= M/N

Proof. Define f : M/K −→ M/N by f(m + K) = m + N .

Suppose that m1 + K = m2 + K then m1 − m2 ∈ K ≤ N ⇒ m1 − m2 ∈ N ⇒

m1 + N = m2 + N .

Hence f is well-defined.

Also f(r(m1 + K) + s(m2 + K)) = f((rm1 + sm2) + K) = (rm1 + sm2) + N =

r(m1 +N)+ s(m2 +N) = rf(m1 +K)+ sf(m2 +K), i.e. f is a homomorphism.

Since for all m + N ∈ M/N we have f(m + K) = m + N , f is an epimorphism.

Ker f = {m + K|m ∈ N} = N/K.

So by Fundamental Homomorphism Theorem (M/K)/(N/K) ∼= M/N .

Lemma 2.1.10. Modular Law

Let N , K, L be submodules of a module M and K ≤ N , then

N ∩ (K + L) = K + (N ∩ L)

Proof. Any x from N ∩ (K + L) can be represented as x = n = k + l for some

n ∈ N , k ∈ K, and l ∈ L. Since K ≤ N , k ∈ N . Therefore l = n − k ∈ N ∩ L.

Thus x = k + l ∈ K + (N ∩ L). Converse is obvious.

Definition 2.1.11. Let {Ni}i∈I be a family of submodules of a module M . M

is the internal direct sum of submodules Ni if every element m ∈ M can be

uniquely represented as m =
∑

i∈I

ni; ni ∈ Ni.

Proposition 2.1.12. M =
⊕

i∈I

Ni if and only if M =
∑

i∈I

Ni and Ni∩ (
∑

i6=j

Nj) = 0

for every i ∈ I.

Proof. (⇒) 1)For every m ∈ M we have m =
∑

i∈I

ni ∈
∑

i∈I

Ni, ⇒ M ⊆
∑

i∈I

Ni ⇒

M =
∑

i∈I

Ni.
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2)Let x = ni =
∑

i6=j

nj ∈ Ni ∩
∑

j 6=i

Nj then by uniqueness of representation

x = ni = 0.

(⇐) ∀m ∈ M =
∑

i∈I

Ni, m =
∑

i∈I

ni. To prove uniqueness let m =
∑

i∈I

ni =
∑

i∈I

n
′

i.

For every i ∈ I we have ni −n
′

i =
∑

i6=j

(nj −n
′

j) ∈ Ni ∩ (
∑

i6=j

Nj) = 0 ⇒ ni = n
′

i.

Definition 2.1.13. Let {Ni}I be a family of modules. The cartesian product
∏

i∈I

Ni is a module relative to the addition and scalar multiplication defined by

(ni) + (mi) = (ni + mi) and r(ni) = (rni), ni,mi ∈ Ni, r ∈ R. This module is

called the direct product of the modules Ni. The subset
⊕

i∈I

Ni = {(ni)|ni = 0 for

all but finite number of i ∈ I} is called the external direct sum of modules Ni.

Definition 2.1.14. If M = N ⊕K then N , K are called direct summands of M.

2.2 Exact Sequences

Definition 2.2.1. A sequence

S : · · · // Mn−1
fn−1

// Mn

fn
// Mn+1

// · · ·

of modules {Mn}n∈Z and homomorphisms {fn}n∈Z is called an exact sequence if

for all n ∈ Z Im fn−1 = Ker fn.

Definition 2.2.2. An exact sequence of the form

0 //A
f

//B
g

//C //0

is called a short exact sequence.

Theorem 2.2.3. For a short exact sequence

0 //A
f

//B
g

//C //0

the following conditions are equivalent.

1. There is a homomorphism h : B −→ A such that h ◦ f = 1A.

2. Im f is a direct summand of B i.e. B = Im f ⊕ L for some L ≤ B.

6



3. There is a homomorphism e : C −→ B such that g ◦ e = 1C.

Definition 2.2.4. If any of the conditions of this theorem is satisfied the short

exact sequence

0 //A //B //C //0

is said to be a splitting short exact sequence.

Remark 2.2.5. If

0 //A //B //C //0

is splitting then B ∼= A ⊕ C.

Definition 2.2.6. Let A and B are modules. The set

Hom(A,B) = {f |f : A −→ B}

of all module homomorphisms f of A into B is an abelian group under the

addition defined for f, g : A −→ B by (f + g)(a) = f(a) + g(a). In case the ring

R is commutative, Hom(A,B) can be regarded as a module when tf : A −→ B

is defined for t ∈ R and f : A −→ B by (tf)(a) = t(f(a)) for all a ∈ A. That tf

is still a module homomorphism follows from the calculation

(tf)(ra) = t(f(ra)) = tr(f(a)) = rt(f(a)) = r((tf)(a))

which uses the commutativity of R.

Consider the effect of a fixed module homomorphism β : B −→ B′ on Hom(A,B).

Each f : A −→ B determines a composite β ◦ f : A −→ B′ and β ◦ (f + g) =

β ◦ f + β ◦ g. Hence the correspondence f −→ β ◦ f is a homomorphism

β∗ : Hom(A,B) −→ Hom(A,B′) (2.1)

of abelian groups. Explicitly, β∗(f) = β ◦ f . If β is an identity, so is β∗, if β is a

composite, so is β∗, in detail

(1β)∗ = 1Hom(A,B), (β ◦ β′)∗ = β∗ ◦ β′
∗ (2.2)

the latter whenever the composite β ◦ β′ is defined. We summarize (2.1) and

(2.2) by the phrase: Hom(A,−) is a covariant functor.

For the first argument A a reverse in direction occurs. For a fixed module

homomorphism α : A −→ A′ each f ′ : A′ −→ B determines a composite

7



f ′ ◦ α : A −→ B with (f ′ + g′) ◦ α = f ′ ◦ α + g′ ◦ α. Hence f ′ −→ f ′ ◦ α

is a homomorphism

α∗ : Hom(A′, B) −→ Hom(A,B)

of abelian groups defined by α∗(f ′) = f ′◦α. Again (1A)∗ is an identity map. If α :

A −→ A′ and α′ : A′ −→ A′′ the composite α′◦α is defined and (α′◦α)∗ = α∗◦α′∗.

Because of this reversal order Hom(−, B) is called a contravariant functor.

Theorem 2.2.7. For any module M and any exact sequence

0 // A // B // C

the following sequence

0 // Hom(M,A) // Hom(M,B) // Hom(M,C)

is exact.

Proof. Proof of this theorem can be found in [8].

Above theorem states that the functor Hom(M,−) for fixed M turns each

exact sequence into a left exact sequence.

Theorem 2.2.8. For any module M and any exact sequence

A // B // C // 0

the following sequence

0 // Hom(C,M) // Hom(B,M) // Hom(A,M)

is exact.

Proof. For proof of this theorem see [8].

By the previous theorem, Hom(−,M) carries an exact sequence into a left

exact sequence.

In this thesis without lose of generality, for a short exact sequence

0 //A //B //C //0

we will assume A as a submodule of B.

8



2.3 Projective and Injective Modules

Definition 2.3.1. A module I is called injective if for every monomorphism

f : A −→ B and homomorphism g : A −→ I there exists a homomorphism

h : B −→ I such that g = h ◦ f . We can show this by the following commutative

diagram.

0 // A
f

//

g

��

B

h
��~

~
~

~

I

For R = Z, i.e. for abelian groups D is injective if and only if D is a

divisible group (László Fuchs, [5]), (i.e. for every d ∈ D and non-zero integer n

there is d′ ∈ D such that d = nd′).

Theorem 2.3.2. If D is a divisible abelian group then HomZ(R,D) is an injective

R-module.

Proof. Proof of this theorem is given in [2].

Theorem 2.3.3. For every module M there is a monomorphism g : M −→ I

with an injective module I.

Proof. There is a divisible group D and monomorphism of abelian groups

f : M −→ D. Then e : M −→ Hom(R,M) defined by e(m)(r) = rm and

f∗ : Hom(R,M) −→ Hom(R,D) are monomorphisms of modules. Now taking

I = Hom(R,D) we will have monomorphism f∗ ◦ e : M −→ I with injective

module I.

Theorem 2.3.4. For a module I the following statements are equivalent.

1. I is injective.

2. Hom(−, I) is exact.

3. Every short exact sequence

0 //I
g

//A //B //0

is splitting.

9



4. I is a direct summand of a module of the form HomZ(R,D) where D is a

divisible group.

Proof. 1. ⇒ 2. Let

0 //A
f

//B //C //0

be a short exact sequence. Then the sequence

0 // Hom(C, I) // Hom(B, I)
f∗

// Hom(A, I)

is exact. It remains only to show that f ∗ is an epimorphism. Let α ∈ Hom(A, I).

We have a diagram

0 // A
f

//

��

B

β
��~

~
~

~

I

Since I is injective, there exists a homomorphism β : B −→ I such that β ◦f = α

i.e. f ∗(β) = β ◦ f = α, β ∈ Hom(B, I). So f ∗ is an epimorphism. Thus

0 // Hom(C, I) // Hom(B, I)
f∗

// Hom(A, I) // 0

is an exact sequence.

2. ⇒ 3. Since Hom(−, I) is exact, the homomorphism g∗ : Hom(A, I) −→

Hom(I, I) is an epimorphism. Then 1I ∈ Hom(I, I) there is a homomorphism

h ∈ Hom(A, I) such that g∗(h) = 1I ⇒ h ◦ g = 1I . So the short exact sequence

0 //I //A //B //0

is splitting.

3. ⇒ 4. We know that there is a monomorphism I −→ Hom(R,D) for some

divisible group D. Then we have a short exact sequence

0 //I // Hom(R,D) //X //0

By 3) this sequence is splitting Hom(R,D) ∼= I ⊕ X.

4. ⇒ 1. By the Theorem 2.3.2 Hom(R,D) is injective. So every direct summand

of Hom(R,D) is injective. Thus I is injective.

Definition 2.3.5. Let M be a module. An injective module E together with a

monomorphism f : M −→ E is called an injective envelope(hull) of M if Im f EE

and denoted by E(M).

10



Definition 2.3.6. A module P is called projective if for every epimorphism

f : A −→ B and homomorphism g : P −→ B there exists a homomorphism

h : P −→ A such that g = f ◦h. We can show this by the following commutative

diagram.

P
h

��~
~

~
~

g

��

A
f

// B // 0

It is well-known that every vector space has a basis. Modules with bases

are free modules.

Theorem 2.3.7. Let F be a module and X = {xα}α∈A be a subset of F . Then

the followings are equivalent.

1. Every element a ∈ F can be uniquely represented as a =
∑

α∈A

rαxα, where

rα ∈ R and rα = 0 for almost all α ∈ A.

2. For each α ∈ A the function fα : R −→ Rxα is defined by fα(r) = rxα is

an isomorphism and F =
⊕

α∈A

Rxα.

Proof. 1. ⇒ 2. fα is an epimorphism. If fα(r) = fα(s) i.e. rxα = sxα by

uniqueness of the representation r = s. So fα is 1−1. Thus fα is an isomorphism.

Every element can be uniquely represented as a =
∑

α∈A

rαxα ∈
∑

α∈A

Rxα therefore

F =
⊕

α∈A

Rxα.

2. ⇒ 1. F =
⊕

α∈A

Rxα ⇒ ∀a ∈ F , a =
∑

α∈A

rαxα. If a =
∑

α∈A

rαxα =
∑

α∈A

r′αxα then

rαxα = r′αxα. Since fα is 1 − 1 then rα = r′α.

Definition 2.3.8. If F satisfies the condition of the Theorem 2.3.7 then it is said

to be a free module and X is said to be a basis of F .

The following theorem shows that every function from a basis of a free

module to any module can be uniquely extended to a homomorphism from the

free module.

Theorem 2.3.9. If F is a free R-module with a basis X then for every function

f : X −→ M , where M is an R-module, there is a unique homomorphism g :

F −→ M such that g|X = f that is g(xα) = f(xα) for all xα ∈ X.

11



Proof. Define g : F −→ M by g(
∑

α∈A

rαxα) =
∑

α∈A

rαf(xα). g is a homomorphism

and g(xα) = g(1 · xα) = 1 · f(xα) = f(xα) i.e. g|X = f . If g′ : F −→ M is a

homomorphism such that g′|X = f then ∀
∑

α∈A

rαxα ∈ F we have g′(
∑

α∈A

rαxα) =
∑

α∈A

rαg′(xα) =
∑

α∈A

rαf(xα) =
∑

α∈A

rαg(xα) = g(
∑

α∈A

rαxα) ⇒ g = g′

Corollary 2.3.10. Every free module is projective.

Proof. Let F be a free module with a basis X = {xα}α∈A and f : A −→ B be an

epimorphism and g : F −→ B be a homomorphism. Since f is an epimorphism

for each element g(xα) ∈ B there is an element aα ∈ A such that f(aα) = g(xα).

F
u

��~
~

~
~

g

��

A
f

// B // 0

Define a function h : X −→ A by h(xα) = aα. By the Theorem 2.3.9 there is a

homomorphism u : F −→ A such that u|X = h i.e. u(xα) = h(xα) = aα. For

every element
∑

α∈A

rαxα ∈ F , (f ◦u)(
∑

α∈A

rαxα) =
∑

α∈A

rαf(u(xα)) =
∑

α∈A

rαf(aα) =
∑

α∈A

rαg(xα) = g(
∑

α∈A

rαxα) ⇒ f ◦ u = g. So F is projective.

Lemma 2.3.11. For every module M there is a free module F and an epimor-

phism f : F −→ M .

Proof. Let X = {xm}m∈M and F = {
∑

m∈M

rmxm| where rm = 0 for almost all

m ∈ M}. Define addition and multiplication by
∑

m∈M

rmxm +
∑

m∈M

r′mxm =
∑

m∈M

(rm + r′m)xm and s(
∑

m∈M

rmxm) =
∑

m∈M

(srm)xm. Then F is a free module

with basis X ′ = {1 ·xm}. Really ∀
∑

m∈M

rmxm ∈ F can be uniquely represented as
∑

m∈M

rmxm =
∑

m∈M

rm(1 · xm). Define a function g : X −→ M by g(xm) = m. By

the Theorem 2.3.9 there is a homomorphism f : F −→ M such that f(xm) = m,

∀m ∈ M . So f is an epimorphism.

Now we can formulate the following equivalent conditions for projective

modules.

Theorem 2.3.12. For a module P the following conditions are equivalent.

1. P is projective.

12



2. Hom(P,−) is exact.

3. Every exact sequence of the form

0 //A //B //P //0

is splitting.

4. P is a direct summand of a free module, i.e. F ∼= P ⊕ N for some free

module F .

Proof. 1. ⇒ 2. Let

0 //A
f

//B
g

//C //0

be an exact sequence. Then the sequence

0 // Hom(P,A)
f∗

// Hom(P,B)
g∗

// Hom(P,C)

is exact. It remains to show that g∗ is an epimorphism. Let α ∈ Hom(P,C).

Since P is projective, there is a homomorphism β : P −→ B such that g ◦ β = α

P
β

��~
~

~
~

α

��

B
g

// A // 0

i.e. ∃β ∈ Hom(P,B) such that g∗(β) = g ◦ β = α. So g∗ is an epimorphism.

2. ⇒ 3. Let

0 //A //B //P //0

be exact. By 2) the sequence

0 // Hom(P,A) // Hom(P,B)
f∗

// Hom(P, P ) // 0

is exact. So f∗ is an epimorphism. For 1P ∈ Hom(P, P ) there is α ∈ Hom(P,B)

such that f∗(α) = 1P ⇒ f ◦ α = 1P . So the sequence

0 //A //B //P //0

is splitting.

3. ⇒ 4. By the Lemma 2.3.11 there is an epimorphism f : F −→ P from a free

module F . Then we have the following short exact sequence

0 // Ker f i
//F

f
//P //0
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By 3) this sequence is splitting. So F ∼= Ker f ⊕ P .

4. ⇒ 1. Follows from the Proposition 2.3.13.

Proposition 2.3.13. A direct sum P =
⊕

α∈A

Pα of modules {Pα}α∈A is projective

if and only if each Pα is projective.

Proof. This proposition is proved by R. Alizade & A. Pancar in [2].

2.4 Proper Classes

Sometimes it is convenient to study some homological properties with

respect to some class of short exact sequences. Of course the class must satisfy

some conditions. This leads to proper classes of short exact sequences.

Definition 2.4.1. Let A be a class of short exact sequences of modules

0 //A
f

//B
g

//C //0

We assume that A is closed under isomorphisms: if E ∼= E ′, then E ∈ A ⇔

E ′ ∈ A. If E ∈ A, we say that f is an A-monomorphism (f ∈ Am) and g is

an A-epimorphism (g ∈ Ae). A is said to be a proper class if it satisfies the

following conditions:

P1. Every splitting short exact sequence is in A;

P2. The composition h◦f of two A-monomorphisms h, f is an A-monomorphism

if it is defined;

P2′. The composition u ◦ g of two A-epimorphisms g, u is an A-epimorphism if

it is defined;

P3. If h ◦ f is an A-monomorphism and h is a monomorphism then f is an A-

monomorphism;

P3′. If u ◦ g is an A-epimorphism and g is an epimorphism then u is an A-

epimorphism.
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Let A denote a proper class of R-modules.

Definition 2.4.2. An R-module P is said to be A-projective if it is projective

with respect to all short exact sequences in A, that is, every diagram

P
h

��~
~

~
~

u

��

E : 0 // A
f

// B g
// C // 0 ∈ A

can be embedded in a commutative diagram by choosing an R-module homo-

morphism h : P → B properly; equivalently,

Hom(P, E) : 0 // Hom(P,A)
f∗

// Hom(P,B)
g∗

// Hom(P,C) //0

is exact for every

E : 0 //A
f

//B
g

//C //0

in A. The class of all A-projective modules is denoted by π(A).

Definition 2.4.3. An R-module I is said to be A-injective if it is injective with

respect to all short exact sequences in A, that is, every diagram

E : 0 // A
f

//

u

��

B
g

//

h
��~

~
~

~
C // 0 ∈ A

I

can be embedded in a commutative diagram by choosing an R-module homo-

morphism h : B → I properly; equivalently,

Hom(E, I) : 0 // Hom(C, I)
f∗

// Hom(B, I)
g∗

// Hom(A, I) //0

is exact for every

E : 0 //A
f

//B
g

//C //0

in A. The class of all A-injective modules is denoted by ι(A).

For the study of proper classes it is useful to define some notions which

have no nontrivial analogs for the class of all short exact sequences.

Definition 2.4.4. An R-module C is said to be A-coprojective if every short

exact sequence of R-modules with the term prior to the last 0 being C is in A,

that is, every short exact sequence of R-modules of the form

0 //A
f

//B
g

//C //0

is in A.
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Definition 2.4.5. An R-module A is said to be A-coinjective if every short exact

sequence of R-modules with the term after the first 0 being A is in A, that is,

every short exact sequence of R-modules of the form

0 //A
f

//B
g

//C //0

is in A.

Definition 2.4.6. For a class M of modules M , π−1(M) denotes the smallest

proper class A for which each M ∈ M is A-projective, i.e.

π−1(M) = {E|Hom(M, E) is exact for all M ∈ M}

Definition 2.4.7. For a class M of modules M , ι−1(M) denotes the smallest

proper class A for which each M ∈ M is A-injective, i.e.

ι−1(M) = {E|Hom(E,M) is exact for all M ∈ M}

2.5 Pullback and Pushout Diagrams

We will use pullback and pushout diagrams for some following proofs. So

we here will define pullback and pushout of a diagram and show their existence

and uniqueness for R-modules. Extended information about these are given by

R. Alizade in [1] and L.R.Vermani in [13].

Definition 2.5.1. An R-module G together with homomorphisms γ : G −→ A

and δ : G −→ B is said to be a pullback of the pair of homomorphisms α : A −→

C and β : B −→ C if,

(i) the following diagram is commutative

G
γ

//

δ
��

A

α

��

B
β

// C

(2.1)

(ii) if the following diagram is commutative

G′
γ′

//

δ′

��

A

α

��

B
β

// C

(2.2)
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then there is a unique homomorphism θ : G′ −→ G such that the diagrams

G′ θ
//

γ′

��

G

γ
~~}

}
}

}

A

G′ θ
//

δ′

��

G

δ
~~}

}
}

}

B

are commutative i.e. γ ◦ θ = γ′ and δ ◦ θ = δ′. Also (2.1) is said to be a pullback

diagram.

Theorem 2.5.2. Existence of Pullback

Given the homomorphisms α : A −→ C and β : B −→ C there is a pullback G.

Proof. Given α, β define G as the submodule of the direct sum A⊕B consisting

of all (a, b) with α(a) = β(b) i.e. G = {(a, b) ∈ A ⊕ B|α(a) = β(b)} and let

γ : G −→ A and δ : G −→ B be the corresponding projections :γ(a, b) = a

and δ(a, b) = b. Then (2.1) will obviously be commutative. Assume (2.2) is

a commutative diagram and define θ : G′ −→ G as θ(g′) = (γ′(g′), δ′(g′)) for

g′ ∈ G′. Since (α ◦ γ′)(g′) = (β ◦ δ′)(g′) by commutativity of (2.2), we have

(γ′(g′), δ′(g′)) ∈ G. Evidently, (γ ◦θ)(g′) = γ′(g′) and (δ ◦θ)(g′) = δ′(g′) for every

g′ ∈ G′, so θ is of the stated kind. Ker γ = {(a, b) ∈ G|γ(a, b) = 0} = {(a, b) ∈

A ⊕ B|a = 0, β(b) = α(a) = 0} = {(0, b)|b ∈ Ker β} = 0 ⊕ Ker β. So we have

Ker γ = 0 ⊕ Ker β (2.3)

Similarly, Ker δ = Ker α ⊕ 0. Therefore, if θ′ : G′ −→ G, also satisfies γ ◦ θ′ = γ′

and δ◦θ′ = δ′, then γ(θ−θ′) = 0 = δ(θ−θ′) and hence Im(θ−θ′) ⊂ Ker γ∩Ker δ =

0. This shows that θ − θ′ = 0 and θ is unique.

Theorem 2.5.3. Uniqueness

This pullback G is unique up to isomorphism.

Proof. Let G be another pullback of the homomorphisms α : A −→ C and

β : B −→ C with homomorphisms γ : G −→ A and δ : G −→ B. So G has the

same properties which are stated in the Definition 2.5.1. Then we have unique

homomorphisms θ : G −→ G and θ : G −→ G such that γ ◦ θ = γ, δ ◦ θ = δ,

and γ ◦ θ = γ, δ ◦ θ = δ. Hence γ ◦ (θ ◦ θ) = γ and δ ◦ (θ ◦ θ) = δ. On the other

hand, γ ◦ 1G = γ and δ ◦ 1G = δ. By uniqueness of the homomorphisms in (2.2)

θ ◦ θ = 1G. Similarly, θ ◦ θ = 1G. So θ is an isomorphism.
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Theorem 2.5.4. If in the pullback diagram (2.1), β is a monomorphism, then

so is γ. If β is an epimorphism, then so is γ; and δ induces an isomorphism

Ker γ ∼= Ker β, so we have the following commutative diagram with exact rows:

E : 0 // Ker γ //

δ′

��

G
γ

//

δ

��

A //

α

��

κ

���
�

�
�

0

E ′ : 0 // Ker β // B
β

// C // 0

where δ′ = δ|Ker γ. The short exact sequence E is splitting if and only if there

exists a homomorphism κ : A −→ B such that α = β ◦ κ.

Proof. Since G is unique up to isomorphism, and moreover Im γ and Ker γ is

unique up to isomorphism, it suffices to prove the statement for G as constructed

in the proof of Theorem 2.5.2. By equality (2.3) Ker γ = 0 ⊕ Ker β = 0 if β is

a monomorphism. If β is an epimorphism, then for every a ∈ A there is b ∈ B

such that β(b) = α(a). Then (a, b) ∈ G and γ(a, b) = a, so γ is an epimorphism

by equality (2.3) Ker γ = 0 ⊕ Ker β ∼= Ker β, hence the restriction of projection

δ′ to Ker γ is an isomorphism.

Now let E be splitting by Theorem 2.2.3 there is a homomorphism γ′ : A −→ G

such that γ ◦ γ′ = 1A. Since α ◦ γ = β ◦ δ, for the homomorphism κ = δ ◦ γ′ :

A −→ B we have α ◦ (γ ◦ γ′) = β ◦ (δ ◦ γ′). Therefore, α = β ◦ κ.

On the other hand if we have a homomorphism κ : A −→ B with α = β ◦ κ,

the function γ′ : A −→ G defined by γ′(a) = (a, κ(a)) is well-defined (since

α(a) = (β ◦ κ)(a) and (a, κ(a)) ∈ G) homomorphism. For every a ∈ A, (γ ◦

γ′)(a) = γ(a, κ(a)) = a, hence γ ◦ γ′ = 1A and by the Theorem 1.3.3. E is

splitting.

Definition 2.5.5. An R-module G together with homomorphisms γ : A −→ G

and δ : B −→ G is said to be a pushout of the pair of homomorphisms α : C −→ A

and β : C −→ B if,

(i) the following diagram is commutative

C
α

//

β

��

A

γ

��

B
δ

// G

(2.4)
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(ii) if the following diagram is commutative

C
α

//

β

��

A

γ′

��

B
δ′

// G′

(2.5)

then there is a unique homomorphism θ : G −→ G′ such that the diagrams

A

γ

��

γ′

  
A

A
A

A

G
θ

// G′

B

δ

��

δ′

  A
A

A
A

G
θ

// G′

are commutative i.e. θ ◦ γ = γ′ and θ ◦ δ = δ′. Also (2.4) is said to be a pushout

diagram.

Theorem 2.5.6. Existence of Pushout

Given the homomorphisms α : C −→ A and β : C −→ B there is a pushout G.

Proof. Starting with α, β define G as the quotient module of A ⊕ B by the

submodule H of the elements of the form (α(c),−β(c)) for c ∈ C, and let γ :

A −→ G and δ : B −→ G be the maps induced by the injections γ(a) = (a, 0)+H,

δ(b) = (0, b) + H. Then (γ ◦ α)(c) = (δ ◦ β)(c) for every c ∈ C and (2.4)

is commutative. If (2.5) is a commutative diagram define θ : G −→ G′ as

θ((a, b)+H) = γ′(a)+δ′(b). If (a, b)+H = (a′, b′)+H, that is (a, b)−(a′, b′) ∈ H,

then a − a′ = α(c), b − b′ = −β(c) for some c ∈ C. Since γ′ ◦ α = δ′ ◦ β, we have

γ′(a) + δ′(b) = γ′(a′) + (γ′ ◦ α)(c) + δ′(b′) − (δ′ ◦ β)(c) = γ′(a′) + δ′(b′), so θ is

well-defined. It is readily seen that θ ◦ γ = γ′, θ ◦ δ = δ′.

If θ′ ◦γ = γ′, θ′ ◦ δ = δ′ for some θ′ : G −→ G′, then (θ− θ′)γ = 0 = (θ− θ′)δ and

for every (a, b) + H ∈ G we have (θ − θ′)((a, b) + H) = (θ − θ′)(γ(a) + δ(b)) =

(θ − θ′)γ(a) + (θ − θ′)δ(b) = 0. Therefore θ − θ′ = 0 and θ is unique.

Theorem 2.5.7. Uniqueness

This pushout G is unique up to isomorphism.

Proof. An argument analogous to Theorem 2.5.3 establishes the uniqueness of

G.
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Theorem 2.5.8. If in the pushout diagram (2.4) α is an epimorphism, then

so is δ; if α is a monomorphism, then so is δ and γ induces an isomorphism

γ′ : A/Imα −→ G/Imδ. So we have the following commutative diagram with

exact rows:

E ′ : 0 // C
α

//

β

��

A
π1
//

γ

��

κ

���
�

�
�

A/Imα //

γ′

��

0

E : 0 // B
δ

// G π2

// G/Imδ // 0

where π1, π2 are natural projections, γ′(a + Imα) = γ(a) + Imδ. The short exact

sequence E is split if and only if there exists a homomorphism κ : A −→ B such

that β = κ ◦ α.

Proof. If α is an epimorphism, for every a ∈ A there is a c ∈ C with α(c) = a.

Then for every element (a, b)+H we have (a, b)+H = (a−α(c), b+β(c))+H =

(0, b + β(c)) + H = δ(b + β(c)). Hence δ is an epimorphism.

Let α be a monomorphism. Ker δ consists of all b ∈ B for which δ(b) = (0, b) ∈ H,

i.e. there is a c ∈ C with α(c) = 0 and −β(c) = b. Since α is a monomorphism,

c = 0 and b = β(0) = 0. So Ker δ = 0 and δ is a monomorphism.

If E is splitting, there is δ′ : G −→ B with δ′ ◦ δ = 1B. Since δ ◦ β = γ ◦ α, for

the homomorphism κ = δ′ ◦ γ we have δ′ ◦ (δ ◦ β) = δ′ ◦ (γ ◦ α), or β = κ ◦ α.

If there is a homomorphism κ : A −→ B with β = κ◦α, define the homomorphism

δ′′ : A ⊕ B −→ B by δ′′(a, b) = κ(a) + b. For every (α(c),−β(c)) ∈ H we

have δ′′(α(c),−β(c)) = (κ ◦ α)(c) − β(c) = 0. Hence there exists a unique

homomorphism δ′ : G −→ B such that δ′((a, b) + H) = (δ′ ◦ π)(a, b) = δ′′(a, b) =

κ(a) + b. Clearly, (δ′ ◦ δ)(b) = δ′((0, b) + H) = κ(0) + b = b for every b ∈ B. So

δ′ ◦ δ = 1B and E is splitting.
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2.6 Small Submodules

The most important notion in the study of supplements is the small sub-

module.

Definition 2.6.1. A submodule N of a module M is called superfluous or small

if there is no proper submodule K of M such that N + K = M . Equivalently

N + K = M implies that K = M . It is denoted by N ≪ M .

Some of properties of the following proposition can be found in [7]

Proposition 2.6.2. Let M be a module

1. If K ≤ N ≤ M and K is small in N then K is small in M .

2. Let N be a small submodule of a module M , then any submodule of N is

also small in M .

3. If K is a small submodule of a module M and K is contained in a direct

summand N of M then K is small in N .

4. K ≪ M and N ≪ M iff K + N ≪ M .

5. If K ≤ N ≤ M , then N ≪ M iff K ≪ M , N/K ≪ M/K.

6. Finite sum of small submodules Ni of M is a small submodule of M .

7. Let f : M −→ N be a homomorphism of modules M and N , let K be a

submodule of M . If K is a small submodule of M , then f(K) is a small

submodule of N .

Proof. 1. Let K + L = M for a submodule L of M .

N = N∩M = N∩(K+L) = K+(N∩L). Since K is small in N , N = N∩L

so N ≤ L. K ≤ N and N ≤ L so K ≤ L. Therefore M = K + L = L.

Thus K ≪ M .

2. Let K be a submodule of N and K + L = M for a submodule L of M .

Since K ≤ N , N + L = M and also since N ≪ M , L = M . So K ≪ M .
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3. K ≤ N ≤ M ,K ≪ M and M = N ⊕ L for a submodule L of M . Let

K + U = N for a submodule U of N . M = N + L = K + U + L since

K ≪ M , M = U + L and U ∩ L ≤ N ∩ L = 0 implies U ∩ L = 0 so

M = U ⊕L. N = N ∩M = N ∩ (U ⊕L) = U ⊕ (N ∩L) = U . So K ≪ N .

4. (⇒) Let (K + N) + L = M for some L ≤ M . Since K + (N + L) =

(K + N) + L = M and K ≪ M , we have N + L = M . Since N ≪ M ,

L = M .

(⇐) K ≤ K + N ≪ M by 2) K ≪ M . Similarly N ≤ K + N ≪ M by 2)

N ≪ M .

5. (⇒) Since N ≪ M by 2) K ≪ M . Suppose that N/K + X/K = M/K

where X/K is a submodule of M/K, then N + X = M by assumption

X = M i.e. X/K = M/K.

(⇐) Let N + X = M then (N + X)/K = M/K i.e. N/K + (X + K)/K =

M/K or N + X + K = M . Since N ≪ M we have X + K = M . Now

K ≪ M implies X = M .

6. Let N =
n∑

i=1

Ni and let N1 + · · · + Nn + X = M for some X ≤ M . Since

Ni ≪ M , N1 + (N2 + · · · + Nn + X) = M then N2 + · · · + Nn + X = M

continuing in this way we obtain Nn +X = M and since Nn ≪ M , X = M .

7. Suppose that f(K)+L = f(M) for some L ≤ f(M). Then f−1(f(K)+L) =

f−1(f(K)) + f−1(L) = f−1(f(M)) = M and therefore M = K + Ker f +

f−1(L) = K + f−1(L). Since K ≪ M , f−1(L) = M , hence f(f−1(L)) =

f(M) implies that L ∩ f(M) = f(M). So L = f(M).
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2.7 Essential Submodules

The notion of essential submodule plays a key role in the study of com-

plements. Some of the following propositions are given in [4] and [11].

Definition 2.7.1. A submodule N of an R-module M is said to be essential (or

big) in M , if N ∩ K 6= 0 for every non-zero submodule K of M . In other words

N ∩ K = 0 ⇒ K = 0. Notation: N E M .

Proposition 2.7.2. Let K and N be submodules of M . Then

1. N E M ⇔ N ∩ Rm 6= 0 for all 0 6= m ∈ M .

2. Given K ≤ N , K E M ⇔ K E N and N E M .

3. If N E M then N ∩ K E K.

4. K E M and N E M ⇔ N ∩ K E M .

5. Given K ⊂ N if N/K E M/K the N E M .

6. If M =
n⊕

i=1

Mi and Ni E Mi for each i ∈ I then
n⊕

i=1

Ni E M .

Proof. 1. (⇒) We know that N E M . 0 6= m ∈ M ⇒ 0 6= Rm ≤ M and since

N E M then N ∩ Rm 6= 0.

(⇐) Let N ∩ K = 0 for some K ≤ M . Suppose K 6= 0 i.e. there is a

non-zero element x ∈ K. By the condition ∃r ∈ R such that 0 6= rx ∈ N .

Since x ∈ K rx ∈ K so 0 6= rx ∈ N ∩ K = 0. Contradiction. So K = 0.

2. (⇒) Let T ≤ N such that K ∩ T = 0. Clearly T ≤ N ≤ M ⇒ T ≤ M .

Since K E M then K ∩ T = 0 ⇒ T = 0 ⇒ K E N . Let S ≤ M such

that N ∩ S = 0. K ∩ S ≤ N ∩ S = 0 ⇒ K ∩ S = 0. Since K E M then

S = 0 ⇒ N E M .

(⇐) Let K ∩ L = 0 for some L ≤ M ⇒ K ∩ (L ∩ N) = 0. Since K E N

and L ∩ N ≤ N , L ∩ N = 0 and since N E M , L = 0. So K E M .

3. Let (N ∩K)∩T = 0 for some T ≤ K ≤ M . N ∩ (K∩T ) = 0. Since N EM

and K ∩ T ≤ M , K ∩ T = 0. Since K ∩ T = T , T = 0 ⇒ N ∩ K E K.
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4. (⇒)Let (N ∩ K) ∩ T = 0 for some T ≤ M ⇒ N ∩ (K ∩ T ) = 0. Since

N E M , K ∩ T = 0 and also K E M , T = 0 ⇒ N ∩ K E M .

(⇐) N ∩ K ≤ N ≤ M . Since N ∩ K E M by 2), N E M . Similarly

N ∩ K ≤ K ≤ M . Since N ∩ K E M by 2), K E M .

5. Let N ∩ T = 0 for some T ≤ M ⇒ [(N ∩ T ) + K]/K = 0 ⇒ N/K ∩ (T +

K)/K = 0 since N/K E M/K, (T + K)/K = 0 ⇒ T + K = K ⇒ T = 0.

6. Suppose (N1 ⊕ N2) ∩ K = 0 and assume K 6= 0. ∃0 6= x ∈ K, x ∈

M1 ⊕ M2 ⇒ x = m1 + m2 since K 6= 0 at least one of m1, m2 6= 0. Say

m1 6= 0. Since N1 E M1 by 1) there is r ∈ R such that 0 6= rm1 ∈ N1.

rx = rm1 + rm2 if rm2 ∈ N2 then rx ∈ (N1 ⊕ N2) ∩ K = 0 ⇒ rx = 0 ⇒

rm1 = 0. Contradiction. If rm2 /∈ N2 since N2 E M2 ⇒ ∃s ∈ R such that

0 6= sm2 ∈ N2. srx = srm1 + srm2 ∈ (N1 ⊕ N2) ∩ K = 0 ⇒ srm2 = 0.

Contradiction. Thus K = 0 ⇒ N1 ⊕ N2 E M1 ⊕ M2.

We can characterize essential submodules in the language of the elements

and ideals.

Proposition 2.7.3. A submodule N of an R-module M is essential in M if and

only if for all 0 6= m ∈ M and for the ideal (N : m) of R, (N : m)m 6= 0.

Proof. (⇒) Let N E M . We know for all 0 6= m ∈ M , Rm ∩ N 6= 0 ⇒ ∃0 6=

rm ∈ N ⇒ 0 6= r ∈ (N : m) ⇒ (N : m) 6= 0 ⇒ (N : m)m 6= 0.

(⇐) For all 0 6= m ∈ M , (N : m)m 6= 0 ⇒ ∃0 6= r ∈ (N : m) ≤ R such that

0 6= rm ∈ N ⇒ Rm ∩ N 6= 0 ⇒ N E M .

Definition 2.7.4. Let M be an R-module. A submodule K of M is said to be

closed in M if K has no proper essential extension in M i.e. if L is a submodule

of M such that K E L then K = L.

Definition 2.7.5. Let M be a module. A submodule N of module M is said to

be a complement of a submodule L of M if N ∩ L = 0 and N is maximal with

respect to this property.

Example 2.7.6. If M = N⊕K then K is a complement of N . Really N∩K = 0

and if for some T ≤ M , K ≤ T such that N ∩ T = 0 then by modular law

T = T ∩ (N ⊕ K) = K ⊕ (N ∩ T ) ⇒ K = T .
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Complements always exist, moreover we have the following theorem.

Theorem 2.7.7. Existence of Complements

Let L, N be submodules of a module M with L ∩ N = 0. Then there exists a

complement K of N such that L ⊂ K.

Proof. Let Γ = {T ≤ M |L ≤ T and N ∩ T = 0}. Γ 6= ∅ since L ∈ Γ. Let Ω be

any chain in Γ, that is ∀ U, V ∈ Ω either U ≤ V or V ≤ U . Put W =
⋃

U∈Ω

U .

1) Let x, y ∈ W and x ∈ U ∈ Ω, y ∈ V ∈ Ω since Ω is a chain either U ≤ V or

V ≤ U . Let U ≤ V then x, y ∈ V and V ≤ M ⇒ ∀r, s ∈ R, rx+ sy ∈ V ≤ M ⇒

W ≤ M .

2) For every U ∈ Ω, L ≤ U ⇒ L ∈
⋃

U∈Ω

U = W ⇒ L ≤ W . For ever U ∈ Ω,

N ∩ U = 0 ⇒ N ∩ (
⋃

U∈Ω

U) = 0 ⇒ N ∩ W = 0 ⇒ W ∈ Γ.

3) For every U ∈ Ω, U ≤
⋃

V ∈Ω

V = W ⇒ W is an upper bound for Ω.

By Zorn’s Lemma there is a maximal element K in Γ which is a complement of

N containing L.

Proposition 2.7.8. If K is a complement of N in M then N ⊕ K E M .

Proof. Let 0 6= m ∈ M . (N ⊕ K) ∩ Rm 6= 0 or (N ⊕ K) ∩ Rm = 0. If

(N ⊕ K) ∩ Rm = 0, then for every n = k + rm ∈ N ∩ (K + Rm) we have

rm = n − k ∈ (N + K) ∩ Rm = 0. Therefore rm = 0 and n = k ∈ N ∩ K = 0,

so n = 0. Thus N ∩ (K + Rm) = 0, but it contradicts the maximality of K. So

(N ⊕ K) ∩ Rm 6= 0.

Proposition 2.7.9. If L is a complement of K in M then E(M) = E(L)⊕E(K).

Proof. We know that K ⊕ L E M ⇒ K ⊕ L E M E E(M) ⇒ K ⊕ L E E(M).

K ⊕L ≤ E(K ⊕L) ≤ E(M) ⇒ E(K ⊕L) E E(M). Since E(K ⊕L) is injective,

it is a direct summand, E(M) = E(K ⊕ L) ⊕ T ⇒ E(K ⊕ L) ∩ T = 0 ⇒ T =

0 ⇒ E(M) = E(K ⊕ L) = E(K) ⊕ E(L).

Proposition 2.7.10. If L is a complement of K in M then L = E(L) ∩ M ,

where E(L) is injective envelope of L.
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Proof. Clearly L ≤ E(L) ∩ M . On the other hand L ∩ [(E(L) ∩ M) ∩ K] ≤

L ∩ K = 0. But L E E(L), therefore (E(L) ∩ M) ∩ K = 0. By maximality of L

we have L = E(L) ∩ M .

The following proposition shows that complements coincide with closed

submodules.

Proposition 2.7.11. Let K be a submodule of an R-module M . K is closed in

M ⇔ K is a complement of some submodule N of M .

Proof. (⇒) Suppose that K is closed. Suppose H ≤ M such that K ⊂ H

and H ∩ N = 0. Let L be a submodule of H such that K ∩ L = 0 then

K ∩ (L ⊕ N) = 0 ⇒ N = L ⊕ N i.e. L = 0 ⇒ K E H so K = H. Thus K is a

complement of N in M .

(⇐) Suppose that K E K ′ ≤ M . Since K is a complement of some submodule

N in M , (K ′ ∩N)∩K = K ′ ∩ (N ∩K) = 0. Then K ′ ∩N ≤ K ′, K E K ′ implies

K ′ ∩ N = 0. By maximality of K with respect to property K ∩ N = 0 we have

K = K ′ i.e. K is closed in M .

Proposition 2.7.12. Let L,K,N be submodules of an R-module M with K ⊂ L.

Then

1. There exists a closed submodule H of M such that N E H.

2. The submodule K is closed in M if and only if whenever Q E M such that

K ⊂ Q then Q/K E M/K.

Proof. 1. By Zorn’s Lemma there exists H ≤ M maximal in the collection of

submodules V of M with H E V . Clearly H is closed.

2. (⇒) Let Q E M , K ⊂ Q. Let P be a submodule of M such that K ⊂ P

and (Q/K)∩ (P/K) = 0 ⇒ K = Q∩P E P , (If N E M then N ∩K E K).

Since K is closed K = P ⇒ P/K = 0 ⇒ Q/K E M/K.

(⇐) Q/K E M/K for every essential submodule Q containing K. Suppose

K EL. Let T be a complement of K in M ⇒ K ⊕T EM ⇒ (K ⊕T )/K E

M/K. But L ∩ T = 0 ⇒ ((K ⊕ T )/K) ∩ (L/K) = [(K ⊕ T ) ∩ L]/K =

[K ⊕ (T ∩ L)]/K = 0 ⇒ K = L ⇒ K is closed.
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Proposition 2.7.13. If A ≤ B ≤ C and A is a complement in C then A is also

a complement in B.

Proof. Let A be a complement of a submodule K of C. Then by the definition

A ∩ K = 0 and A is maximal with respect to this. Suppose that A ≤ A′ ≤ B

and A′ ∩ (K ∩ B) = 0 ⇒ A′ ∩ K = 0 ⇒ A = A′ ⇒ A is a complement of K ∩ B

in B.

Lemma 2.7.14. Let N,K,L be submodules of an R-module M such that K∩L =

N and K + L = M . If N is a complement in K and N E L, then K E M i.e.

N
E

//

compl

��

L

��

K
E?

// M

Proof. Suppose that (K : m)m = 0 for 0 6= m ∈ M with m = k + l, where k ∈ K

and l ∈ L. We want to show that N E N + Rk = N1.

(0 : m) = (K : m) = (N : l)

Let r ∈ (K : m). Since (K : m)m = 0, rm = 0 ⇒ r ∈ (0 : m).

So (K : m) ⊆ (0 : m). We know that (0 : m) ⊆ (K : m). Thus (0 : m) = (K : m).

r ∈ (K : m) ⇒ r ∈ (0 : m) ⇒ rm = 0, since m = k + l, rk = −rl ∈ K ∩ L =

N ⇒ rl ∈ N ⇒ r ∈ (N : l) ⇒ (K : m) ⊆ (N : l).

s ∈ (N : l) ⇒ sl ∈ N ⇒ sm = sk + sl ∈ K + N = K ⇒ s ∈ (K : m) ⇒

(N : l) ⊆ (K : m). Thus (N : l) = (K : m).

Let x = n + rk ∈ N1, where n ∈ N , k ∈ K, r ∈ R, such that rk 6∈ N ⇒ rm =

rk + rl = rk + n
︸ ︷︷ ︸

x

+ rl + n
︸ ︷︷ ︸

l′

= x + l′.

l′ 6∈ N : If l′ ∈ N then rl ∈ N ⇒ r ∈ (N : l) = (0 : m) ⇒ rm = 0 ⇒ rk = −rl ∈

K ∩ L = N ⇒ rk ∈ N contradiction.

(0 : rm) ⊆ (N : x):

s ∈ (0 : rm) ⇒ (sr)m = 0 ⇒ sr ∈ (0 : m) = (N : l) ⇒ srl ∈ N , sx = −sl′ =

sn − srl ∈ N ⇒ s ∈ (N : x) ⇒ (0 : rm) ⊆ (N : x).

(0 : rm) = (N : l′):

s ∈ (0 : rm) ⇒ srm = 0 ⇒ sx + sl′ = 0 ⇒ sx = −sl′ = sn − srl ∈ N ⇒
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s ∈ (N : l′).

s ∈ (N : l′) ⇒ sl′ ∈ N ⇒ srl − sn ∈ N ⇒ sr ∈ (N : l) = (0 : m) ⇒ srm = 0 ⇒

s ∈ (0 : rm).

(N : l′)l′ 6= 0 (since N E L, l′ 6∈ N ⇒ ∃s ∈ (N : l′) = (0 : rm) such that

sl′ 6= 0 ⇒ sx 6= 0 ⇒ (N : x)x 6= 0 ⇒ N E N1 ≤ K ⇒ N = N1 ⇒ k ∈ N ⇒

m ∈ L.

(K : m) = (N : l) = (N : k + l) = (N : m) ⇒ (N : m)m 6= 0. Contradiction.

So (K : m)m 6= 0.

The following theorem allows to use the properties of proper classes for

the study of complements.

Theorem 2.7.15. (Generalov, [6]) The class

C = {0 //A //B //C //0|A is a complement of some K in B}

is a proper class.

Proof. P1. If a short exact sequence 0 //A //B //C //0 is splitting then

B = A ⊕ C, i.e. A is a complement in B. So every splitting exact sequence is in

C.

P2. Let f : A −→ B and g : B −→ C be C-monomorphisms. We want to show

that g ◦ f is a C-monomorphism. In other words A ≤ B ≤ C, A is a complement

in B and B is a complement in C. We want to show that A is a complement in

C. We can draw the following diagram:

0

��

0

��

0 // A
compl

f
//

‖

B //

complg

��

B/A //

��

0

0 // A
compl?

g◦f
// C //

��

C/A //

��

0

C/B =

��

C/B

��

0 0

Suppose A E A1 ≤ C ⇒ A E A1 ∩B since A is a complement in B, A1 ∩B = A.
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Take B1 = B + A1.

A
E

//

compl

��

A1

��

B // B + A1

By Lemma 2.7.14 BEB+A1. B is a complement in C ⇒ B = B+A1 ⇒ A1 ≤ B.

Since A E A1 and A is a complement in B, A = A1.

P2′. Suppose K ≤ A ≤ B. Let σ : B → B/K and σ : B/K → B/A be C-

epimorphisms we want to show that σ ◦ σ is a C-epimorphism. That is as it can

be seen on the following diagram we want to show that if K is complement in B

and A/K is a complement in B/K then A is a complement in B.

0

��

0

��

0 // K //

‖

A //

compl?

��

A/K //

compl

��

0

0 // K
compl

// B
σ

//

��

B/K //

σ

��

0

B/A =

��

B/A

��

0 0

Suppose A E C ≤ B. Since K is a complement in B, K is a complement in

C. So K is closed in C. We know by the Proposition 2.7.12 If K is closed

in C then whenever A E C then A/K E C/K. Since A/K is a complement in

B/K,A/K = C/K so A = C. Hence A is a complement in B.

P3. Let h ◦ f be a C-monomorphism and h be a monomorphism. We want to

show that f is a C-monomorphism.
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0

��

0

��

0 // A
compl?

f
//

‖

B //

h

��

B/A //

��

0

0 // A
compl

h◦f
// C //

��

C/A //

��

0

C/B =

��

C/B

��

0 0

Let A ∩ K = 0 and A is a maximal with respect to this for some submodule K

of C. We know this by the Proposition 2.7.13. Thus f is a C-monomorphism.

P3′. Let u ◦ g be a C-epimorphism and g be an epimorphism. We want to show

that u is a C-epimorphism.

0

��

0

��

0 // A //

‖

K //

compl

��

K/A //

compl?
��

0

0 // A // B
g

//

u◦g

��

B/A //

u

��

0

B/K =

��

B/K

��

0 0

Since u◦ g is a C-epimorphism, K is a complement in B. We will show that K/A

is a complement in B/A. Let K ∩ T = 0 and K be a maximal with respect to

this property for some submodule T of B. K ∩ (T + A) = A + (K ∩ T ) = A ⇒

K/A ∩ (T + A)/A = 0.

Suppose K/A ≤ K ′/A ≤ B/A and K ′/A ∩ (T + A)/A = 0.

K ≤ g−1(K ′/A). g−1(K ′/A)∩(T +A) = A+(g−1(K ′/A)∩T ) = A ⇒ g−1(K ′/A)∩
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T ≤ A ≤ K ⇒ g−1(K ′/A) ∩ T ≤ K ∩ T = 0.

Since K is maximal, g−1(K ′/A) = K = g−1(K/A) ⇒ K ′/A = K/A. Thus K/A

is closed in B/A. Hence K/A is a complement in B/A.
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Chapter 3

ABSOLUTELY SUPPLEMENT MODULES

3.1 Absolutely Supplement Modules

Let M be a module. A submodule N of module M is called a supplement

of a submodule L of M if N + L = M and N is minimal with respect to this

property.

Proposition 3.1.1. (Wisbauer, [12]) N is a supplement of L in M if and only

if N + L = M and N ∩ L ≪ N .

Proof. (⇒) Let N be a supplement of L in M . Then we know that M = N+L and

N is minimal with respect to this property. For K ≤ N let N = K + (N ∩ L).

By Modular Law N = K + (N ∩ L) = N ∩ (K + L) that is N ≤ L + K.

M = N + L = L + K. By minimality of N we have K = N .

(⇐) Let M = L+K for some submodule K of N . N = N ∩M = N ∩ (K +L) =

K + (N ∩ L). Since N ∩ L ≪ N , K = N . So N is minimal with respect to

N + L = M .

Unlike complements, supplements need not exist always, but supplements

give a proper class as well as complements.

Theorem 3.1.2. (Generalov, [6]) The class

S = {0 //A
f

//B
g

//C //0|A is a supplement in B}

is a proper class.

Proof. P1. If a short exact sequence

0 //A //B //C //0

is splitting then A is a supplement in B. So every splitting exact sequence is in

S.



P2. Let α : A −→ B and β : B −→ C be S-monomorphisms. We must show

that β ◦ α is an S-monomorphism. We can draw the following diagram:

0

��

0

��

0 // A
suppl

α
//

‖

B //

supplβ

��

B/A //

��

0

0 // A
suppl?

β◦α
// C //

��

C/A //

��

0

C/B =

��

C/B

��

0 0

Let A be a supplement of a submodule K of B and B be a supplement of a

submodule N of C.

A + (K + N) = (A + K) + N = B + N = C

Let [A ∩ (K + N)] + X = A for some submodule X of A. Then

[A ∩ (K + N)] + X + K = A + K = B.

[A ∩ (K + N)] + X + K + N = B + N = C ⇒ X + K + N = C. Since B is

a supplement of N in C then X + K = B ⇒ [A ∩ (X + K)] = A ∩ B = A ⇒

[X + (A ∩ K)] = A. Since A ∩ K ≪ A, X = A. So A ∩ (K + N) ≪ A. Thus A

is a supplement of a submodule (K + N) in C.

P2′. Let α : B −→ B/K and β : B/K −→ B/A be S-epimorphisms. We want

to show that β ◦ α is an S-epimorphism. We can use the following diagram:

33



0

��

0

��

0 // K //

‖

A //

suppl?

��

A/K //

suppl

��

0

0 // K
suppl

// B
α

//

β◦α

��

B/K //

β

��

0

B/A =

��

B/A

��

0 0

Let K be a supplement of a submodule X of B and A/K be a supplement of a

submodule Y/K of B/K where K ≤ Y ≤ B. We have an exact sequence

0 //(A ∩ Y )/K //A/K σ
//B/Y //0

Since A ≤ B, a + K 7−→ a + Y and Ker σ = (A ∩ Y )/K.

b ∈ B = A+Y ⇒ b+Y = a+y+Y = a+Y = σ(a+K). So σ is an epimorphism.

K+X = B ⇒ Y = K+(X∩Y ) ⇒ A+Y = A+K+(X∩Y ) ⇒ A+(X∩Y ) = B.

Now we will show that A ∩ (X ∩ Y ) ≪ A.

σ : A/(K ∩ X) −→ B/(X ∩ Y )

B/(X∩Y ) = [A+(X∩Y )]/(X∩Y ) ∼= A/(A∩X∩Y ). Since (K∩X) ≤ (A∩X∩Y ),

we can define an epimorphism A/(K ∩X) −→ A/(A∩X ∩Y ) ∼= B/(X ∩Y ). So

σ is an isomorphism.

α : K/(K ∩ X) ∼= (K + X)/X = B/X

β : B/(X ∩ Y ) ∼= Y/(X ∩ Y )⊕X/(X ∩ Y ) where since X + K = B and K ≤ Y ,

X + Y = B. Also by the second isomorphism theorem Y/(X ∩ Y ) ∼= B/X and

X/(X ∩ Y ) ∼= B/Y so β : B/(X ∩ Y ) ∼= B/X ⊕ B/Y .

γ : A/(K ∩ X) = [K + (A ∩ X)]/(K ∩ X) ∼= K/(K ∩ X) ⊕ (A ∩ X)/(K ∩ X).

Since (A ∩ X)/(K ∩ X) = (A ∩ X)/(A ∩ X ∩ K) ∼= [K + (A ∩ X)]/K = A/K,

γ : A/(K ∩ X) ∼= K/(K ∩ X) ⊕ A/K.

Now it can be seen that

σ = β−1 ◦ (α ⊕ σ) ◦ γ

and so σ is a minimal epimorphism.
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Thus Ker σ = (A ∩ X ∩ Y )/(K ∩ X) ≪ A/(K ∩ X).

We know that

(K∩X) ≤ (A∩X∩Y ) ≤ A, K∩X ≪ A and (A∩X∩Y )/(K∩X) ≪ A/(K∩X).

Hence (A ∩ X ∩ Y ) ≪ A.

P3. Let α : A −→ B and β : B −→ C be monomorphisms and β ◦ α be an

S-monomorphism. We want to show that α is an S-monomorphism. We can

draw the following diagram:

0

��

0

��

0 // A
suppl?

α
//

‖

B //

β

��

B/A //

��

0

0 // A
suppl

β◦α
// C //

��

C/A //

��

0

C/B =

��

C/B

��

0 0

Let A be a supplement of a submodule K of C. Then A+K = C and A∩K ≪ A.

B = B ∩ C = B ∩ (A + K) = A + (B ∩ K).

A∩ (B ∩K) ≤ (A∩K) ≪ A ⇒ A∩ (B ∩K) ≪ A. Thus A is a supplement of a

submodule B ∩ K of B.

P3′. Let α : C −→ C/A and β : C/A −→ C/B be epimorphisms and β ◦ α be

an S-epimorphism. We want to show that β is an S-epimorphism. We can draw

the following diagram:
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0

��

0

��

0 // A //

‖

B //

suppl

��

B/A //

suppl?
��

0

0 // A // C α
//

β◦α

��

C/A //

β

��

0

C/B =

��

C/B

��

0 0

Let B be a supplement of a submodule N of C.Then B+N = C and B∩N ≪ B.

C/A = α(C) = α(B + N) = α(B) + α(N) = B/A + α(N).

B/A ∩ α(N) = α(B ∩ N): α(B ∩ N) ⊆ B/A ∩ α(N).

α(n) = α(b) ∈ α(B) ∩ α(N) ⇒ α(b − n) = 0 ⇒ b − n = a ∈ A ⇒ n = b − a ∈

B ∩ N ⇒ α(n) ∈ α(B ∩ N). So α(B) ∩ α(N) = α(B ∩ N) ≪ α(B).

Definition 3.1.3. A module M is called absolutely supplement if it is a supple-

ment submodule of every module containing M .

Proposition 3.1.4. For a module M the followings are equivalent

1. M is an absolutely supplement module.

2. M is a supplement in every injective module I containing M .

3. M is a supplement in its injective envelope E(M).

Proof. 1. ⇒ 2. It is clear by the Definition 3.1.3.

2. ⇒ 3. If M is a supplement in every injective module containing M and since

E(M) is an injective module containing M , M is a supplement submodule of

E(M).

3. ⇒ 1. Let M be a submodule of a module N , E(M) is an injective envelope of

M ; f : M −→ N and g : M −→ E(M) be inclusion maps. Then we have the

following diagram:
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0 // M
f

//

g

��

N

h||xxxxxxxx

E(M)

By (2) M is a supplement submodule of E(M). Let M be a supplement of K in

E(M). Then M +K = E(M) and M∩K ≪ M . M = g(M) = h◦f(M) ≤ h(N),

therefore by Modular Law h(N) = M + (K ∩ h(N)). Let n ∈ N . Then h(n) =

m + h(n1) where m ∈ M , h(n1) ∈ K ∩ h(N) with n1 ∈ N . Since the diagram is

commutative, m = g(m) = h(f(m)) ⇒ h(n) = m + h(n1) = h(f(m)) + h(n1) =

h(f(m)+n1) ⇒ h(n−f(m)−n1) = 0 ⇒ y = n−f(m)−n1 ∈ Ker h ≤ h−1(K) ⇒

n = m + n1 + y ∈ M + h−1(K) ⇒ N = M + h−1(K). Now to prove that M

is a supplement of h−1(K) in N it remains to show that M ∩ h−1(K) ≪ M .

M ∩ h−1(K) = f−1(f(M) ∩ h−1(K)) = M ∩ f−1(h−1(K)) = M ∩ g−1(K) =

g−1(M ∩ K) = M ∩ K ≪ M .

Proposition 3.1.5. Every finite direct sum of absolutely supplement modules is

an absolutely supplement module.

Proof. Let S1 and S2 be absolutely supplement modules. Since S1 is absolutely

supplement, S1 is a supplement submodule of every injective module containing

S1. Similarly S2 is a supplement submodule of every injective module containing

S2. Let S1 be a supplement submodule of an injective module I1 and S2 be a

supplement submodule of an injective module I2. That is for suitable modules

K1 ≤ I1 and K2 ≤ I2; S1 + K1 = I1 and S1 ∩ K1 ≪ S1, S2 + K2 = I2 and

S2 ∩ K2 ≪ S2. We will show that S1 ⊕ S2 is a supplement submodule of I1 ⊕ I2

(Direct sum of finite number of injective modules is an injective module). S1 ⊕

S2 +K1 +K2 = I1⊕I2. We must show that (S1⊕S2)∩ (K1 +K2) ≪ S1⊕S2. Let

x ∈ (S1+S2)∩(K1+K2) ⇒ x = s1+s2 = k1+k2 where s1 ∈ S1, s2 ∈ S2, k1 ∈ K1,

k2 ∈ K2 ⇒ x = s1−k1 = k2−s2 ⇒ x ∈ I1∩I2 = 0 ⇒ x = 0 ⇒ s1 = k1, s2 = k2 ⇒

x ∈ (S1∩K1)+(S2∩K2) ⇒ (S1+S2)∩(K1+K2) ≤ (S1∩K1)+(S2∩K2) ≪ S1+S2.

Since S1∩K1 ≪ S1 and S2∩K2 ≪ S2 ⇒ (S1⊕S2)∩(K1+K2) ≪ S1⊕S2 ⇒ S1⊕S2

is a supplement of K1 + K2 in I1 ⊕ I2. by the Proposition 3.1.4 S1 ⊕ S2 is an

absolutely supplement module.
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Proposition 3.1.6. If S1 is a supplement in I1 then S1 is a supplement in I1⊕I2.

Proof. Let S1 be a supplement of K1 in I1. We will show that S1 is a supplement

of K1+I2 in I1⊕I2. S1+K1+I2 = I1+I2. . Let a ∈ S1∩(K1+I2) ⇒ a = s = k+x

where s ∈ S1, k ∈ K1, x ∈ I2 ⇒ x = s − k ⇒ x ∈ S1 + K1 = I1 ⇒ x ∈ I1 ∩ I2 =

0 ⇒ x = 0 ⇒ a = s = k ⇒ a ∈ S1 ∩ K1 ⇒ S1 ∩ (K1 + I2) = S1 ∩ K1 ≪ S1 so S1

is a supplement submodule of I1 ⊕ I2.

Proposition 3.1.7. Every supplement submodule of an absolutely supplement

module is absolutely supplement.

Proof. Let M be an absolutely supplement module and N be a supplement sub-

module of M . Since M is a supplement in its injective envelope E(M), N is a

supplement in E(M) by Theorem 3.1.2. We can assume that the injective en-

velope E(N) of N is contained in E(M). Then again by Theorem 3.1.2 N is

a supplement in E(N). Now by Theorem 3.1.4 N is an absolutely supplement

module.

Corollary 3.1.8. Every direct summand of an absolutely supplement module is

an absolutely supplement module.

Proof. Let M be an absolutely supplement module and K be a direct summand

of M . Let for a suitable submodule T of M , M = K ⊕ T . Since M is absolutely

supplement by Proposition 3.1.4, M is a supplement submodule of its injective

envelope E(M). Now it is sufficient to show that K is a supplement submodule

of its injective envelope E(K).

Proposition 3.1.9. For a submodule N of a module M if N and M/N are

absolutely supplement then M is absolutely supplement.

Proof. Since N is an absolutely supplement module, N is a supplement in ev-

ery module containing it and since M/N is an absolutely supplement module,

M/N is a supplement in every module containing it. So we have the following

commutative diagram with exact rows and columns.
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0

��

0

��

0 // N //

‖

M //

suppl?
��

M/N //

suppl

��

0

0 // N
suppl

// E(M) α
//

β◦α

��

E(M)/N //

β

��

0

E(M)/M =

��

E(M)/M

��

0 0

Where E(M) is an injective envelope of M , α and β are two S-epimorphisms so

by Theorem 3.1.2 β ◦α is an S-epimorphism i.e. M is a supplement in its injec-

tive envelope E(M). Thus by Proposition 3.1.4 M is an absolutely supplement

module.

3.2 Absolutely Co-supplement Modules

Definition 3.2.1. If for all short exact sequences

0 //T //X //M //0

T is a supplement submodule of X then M is called an absolutely co-supplement

module.

Proposition 3.2.2. For a module M the following conditions are equivalent

1. M is an absolutely co-supplement module i.e. for all short exact sequences

0 //T //X //M //0

T is a supplement submodule of X.

2. There exists a short exact sequence

0 //N //P //M //0

with a projective module P such that N is a supplement submodule of P .

39



Proof. 1. ⇒ 2. There is a short exact sequence

0 //N //P //M //0

with a projective module P (see e.g. [2] or [9]). By (1) N is a supplement

submodule of P .

2. ⇒ 1. Let

0 //T //X s
//M //0

be a short exact sequence. By (2) there is a short exact sequence

0 //N //P
g

//M //0

with a projective module P such that N is a supplement submodule of P . By

Theorem 2.5.4 we have the following commutative diagram with exact rows and

columns.

0

��

0

��

N =

��

N

��

0 // T //

‖

Y
f

//

h
��

P //

g

��

0

0 // T // X
s

//

��

M //

��

0

0 0

Since P is projective f is a splitting epimorphism. Then by Theorem 3.1.2

s◦h = g◦f is an S-epimorphism. Again by Theorem 3.1.2 s is an S-epimorphism.

It means that T is a supplement submodule of X.

Example 3.2.3. Every projective module is absolutely co-supplement. Really

let P be a projective module. Then we know that every short exact sequence

ending with P is splitting. Since the class S = {0 //A
f

//B
g

//C //0|A

is a supplement in B} is a proper class, every splitting short exact sequence is in

S. Thus P is an absolutely co-supplement module.

40



Proposition 3.2.4. If M1 and M2 are absolutely co-supplement modules then

M1 ⊕ M2 is absolutely co-supplement.

Proof. Since M1 is an absolutely co-supplement module by the previous propo-

sition there exists a short exact sequence

0 //N1
//P1

//M1
//0

with P1 is projective and P1/N1
∼= M1, such that N1 is a supplement submodule

of P1 and similarly since M2 is an absolutely co-supplement module there exists

a short exact sequence

0 //N2
//P2

//M2
//0

with P2 is projective and P2/N2
∼= M2, such that N2 is a supplement submodule

of P2. Now there exists a short exact sequence

0 //N1 ⊕ N2
//P1 ⊕ P2

//M1 ⊕ M2
//0

with P1 ⊕ P2 is projective (direct sum of projective modules is projective) and

(P1⊕P2)/(N1⊕N2) ∼= M1⊕M2, such that N1⊕N2 is a supplement in P1⊕P2. Let

N1 be a supplement of a submodule K1 of P1 i.e. N1+K1 = P1 and N1∩K1 ≪ N1.

N1 + K1 + P2 = P1 + P2. Now we want to show that N1 ∩ (K1 + P2) ≪ N1.

Let a ∈ N1 ∩ (K1 + P2) ⇒ a = n = k + x for some n ∈ N1, k ∈ K1, x ∈ P2 ⇒

x = n − k ∈ N1 ∩ K1 = P1 ⇒ x ∈ P1 ∩ P2 = 0 ⇒ a = n = k ⇒ a ∈ N1 ∩ K1 ⇒

N1 ∩ (K1 + P2) = N1 ∩ K1 ≪ N1. Thus N1 is a supplement of a submodule

K1 + P2 of P1 ⊕ P2. Similarly, N2 is a supplement submodule of P1 ⊕ P2. So it

can be proved by similar way as in the last part of proof of Proposition 3.1.5 that

N1 ⊕ N2 is a supplement submodule of P1 ⊕ P2.

Corollary 3.2.5. Every finite direct sum of absolutely co-supplement modules is

absolutely co-supplement.

An arbitrary factor module of an absolutely co-supplement module need

not be absolutely co-supplement, but we have the following proposition.

Proposition 3.2.6. If M is an absolutely co-supplement module and N is a

supplement submodule of M then M/N is also absolutely co-supplement.
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Proof. If N is a supplement in M then

0 //N
suppl

//M //M/N //0 ∈ S

On the other hand since M is an absolutely co-supplement module, by the Propo-

sition 3.2.2 there exists a short exact sequence

0 //K //P //M //0

with a projective module P such that N is a supplement in P . Then we have

the following diagram.

0

��

0

��

K

��

= K

��

0 // T
suppl?

//

��

P

f

��

g◦f
// M/N //

‖

0

0 // N
suppl

//

��

M
g

//

��

M/N // 0

0 0

where T = Ker(g ◦ f). Now f and g are S-epimorphisms, therefore g ◦ f is also

an S-epimorphism since S is a proper class (see Theorem 3.1.2). It means that

there is a short exact sequence

0 //T //P //M/N //0 ∈ S

Thus by Theorem 3.2.2 M/N is also an absolutely co-supplement module.

The following proposition shows that absolutely co-supplement modules

are closed under extensions.

Proposition 3.2.7. For a module M , if a submodule N and a quotient module

M/N of M are absolutely co-supplement, then M is also absolutely co-supplement.
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Proof. Let

0 //A //C //M //0

be any short exact sequence. We have the following diagram with exact rows and

columns.

0

��

0

��

A

supplf

��

= A

suppl?

��

0 // B
suppl

g
//

��

C

��

// M/N //

‖

0

0 // N //

��

M //

��

M/N // 0

0 0

Since N is absolutely co-supplement, A is a supplement in B and since M/N is

absolutely co-supplement, B is a supplement in C. Then by Theorem 3.1.2 A is

a supplement submodule of C. Thus M is absolutely co-supplement.
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Chapter 4

ABSOLUTELY COMPLEMENT MODULES

4.1 Absolutely Complement Modules

Definition 4.1.1. A module M is called absolutely complement if it is a com-

plement submodule of every module containing M .

Theorem 4.1.2. (Sharpe, [9]) If I be an injective module then I is a direct

summand of every extension of itself.

Proof. Let M be an extension of I. Since I is an injective module, we have the

following diagram.

0 // I
i

//

1I

��

M

θ
��~

~
~

~

I

such that θ ◦ i = 1I . Let m ∈ M ⇒ θ(m) ∈ I so that θ(m) = θ(θ(m)) ⇒

m − θ(m) ∈ Ker θ ⇒ m ∈ I + Ker θ ⇒ M = I + Ker θ. But I ∩ Ker θ = 0 so

M = I ⊕ Ker θ.

Corollary 4.1.3. Every injective module is absolutely complement.

Proof. Really since an injective module is a direct summand of every extension

of itself, it is a complement in every extension of itself.

The following proposition shows that there are no non-trivial absolutely

complement modules.

Proposition 4.1.4. For a module M the followings are equivalent

1. M is an absolutely complement module.



2. M is a complement in every injective module I containing M .

3. M is a complement in its injective envelope E(M).

4. M is an injective module.

Proof. 1. ⇒ 2. It is clear by the definition of absolutely complement modules.

2. ⇒ 3. If M is a complement in every injective module containing M and since

E(M) is an injective module containing M , M is a complement submodule of

E(M).

3. ⇒ 4. If M is a complement in its injective envelope E(M) then M is closed in

M = E(M). So there is no proper essential extension of M in E(M). Also we

know that M E E(M). Thus M = E(M) i.e. M is an injective module.

4. ⇒ 1. Since every injective module is absolutely complement, M is an absolutely

complement module.

Corollary 4.1.5. Every complement submodule of an injective module is injec-

tive.

Proof. Let M be a complement submodule of an injective module I. Then the

injective envelope E(M) is a direct summand of I, therefore M is a complement

submodule of E(M). By Proposition 4.1.4 (3. ⇒ 4.), M is an injective module.

Proposition 4.1.6. For a submodule N of a module M if N and M/N are

absolutely complement then M is absolutely complement.

Proof. Since N is an absolutely complement module, N is a complement in ev-

ery module containing it and since M/N is an absolutely complement module,

M/N is a complement in every module containing it. So we have the following

commutative diagram with exact rows and columns.
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0

��

0

��

0 // N //

‖

M //

compl?
��

M/N //

compl

��

0

0 // N
compl

// E(M) α
//

β◦α

��

E(M)/N //

β

��

0

E(M)/M =

��

E(M)/M

��

0 0

Where E(M) is an injective envelope of M , α and β are two C-epimorphisms so

by Theorem 2.7.15 β ◦α is a C-epimorphism i.e. M is a complement in its injec-

tive envelope E(M). Thus by Proposition 4.1.4 M is an absolutely complement

module.

4.2 Absolutely Co-complement Modules

Definition 4.2.1. If for all short exact sequences

0 //T //X //M //0

T is a complement submodule of X then M is called an absolutely co-complement

module.

Proposition 4.2.2. For a module M the following conditions are equivalent

1. M is an absolutely co-complement module i.e. for all short exact sequences

0 //T //X //M //0

T is a complement submodule of X.

2. There exists a short exact sequence

0 //N //P //M //0

with a projective module P such that N is a complement submodule of P .
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Proof. 1. ⇒ 2. is clear.

2. ⇒ 1. Let

0 //T //X //M //0

be any short exact sequence. The short exact sequences

0 //N //P //M //0

and

0 //T //X //M //0

together with pullback diagrams (see 2.7) give the following commutative diagram

with exact rows and columns.

0

��

0

��

N =

��

N

��

0 // T //

‖

Y
g

//

e

��

P //

f

��

0

0 // T
compl

// X
h

//

��

M //

��

0

0 0

Since P is projective, the epimorphism g is splitting. By Theorem 2.7.15 C is a

proper class, therefore h◦e = f ◦g is a C-epimorphism. Again since C is a proper

class h is a C-epimorphism, i.e.

0 //T //X //M //0 ∈ C

So M is an absolutely co-complement module.

Example 4.2.3. Every projective module is absolutely co-complement. Really,

if P be a projective module then every sequence ending with P is a splitting

short exact sequence. Since the class C = {0 //A //B //C //0|A is a

complement of some K in B} is a proper class, these short exact sequences are

in C it means that projective modules are absolutely co-complement.
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Corollary 4.2.4. Every free module is an absolutely co-complement module.

Absolutely co-complement modules are not closed under factor modules

in general but we have the following proposition.

Proposition 4.2.5. If M is an absolutely co-complement module and N is a

complement submodule of M , then M/N is absolutely co-complement.

Proof. If M is an absolutely co-complement module then by the Proposition 4.2.2

there exists a short exact sequence

0 //K //P
f

//M //0

with ap projective module P such that K is a complement in P . Also we have a

short exact sequence

0 //N //M
g

//M/N //0

such that N is a complement in M , that is f and g are C-epimorphisms. We

know that the composition g◦f of two C-epimorphisms is a C-epimorphism. Thus

there exists a short exact sequence

0 //T //P
g◦f

//M/N //0

with a projective module P such that T is a complement in P . Hence M/N is

an absolutely co-complement module.

The following proposition shows that absolutely co-complement modules

are closed under extensions.

Proposition 4.2.6. For a module M , if a submodule N of M and the quo-

tient module M/N are absolutely co-complement, then M is also absolutely co-

complement.

Proof. Let

0 //A //C //M //0

be any short exact sequence. We can use the following diagram:
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0

��

0

��

A =

compl f

��

A

compl?

��

0 // B
compl

g
//

��

C //

��

M/N //

‖

0

0 // N //

��

M //

��

M/N // 0

0 0

Since N is absolutely co-complement, A is a complement in B, M/N is absolutely

co-complement, therefore B is a complement in C. Then by Theorem 2.7.15 A

is a complement submodule of C. So M is absolutely co-complement.
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[5] László Fuchs, Infinite Abelian Groups, Volume I, New York: Academic

Press, (1970).

[6] A.I. Generalov, ”The ω-Cohigh Purity in a Categories of Modules”, Plenum

Publishing Corporation, (1983).

[7] W.W. Leonard, ”Small Modules”, Procedings of Amer.Math.Soc. 17:1,

(1966), 527-531.

[8] S. MacLane, Homology, Springer-Verlag, (1963).
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