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ABSTRACT 
 

The first step in the construction of ligand libraries is the total cloning of gene 

fragments coding millions of ligand variants into selected plasmid vectors. Since ligand 

proteins are expressed in fusion with the phage pIII protein, they can be incorporated 

into the newly synthesized phage particles in bacteria. The other proteins that make up 

the phage particle are supplied by the super infection of bacteria containing the ligand 

DNA clones with the helper phage. The diversity of the ligand libraries is directly 

proportional to the number of different gene fragments. In the current phage display 

technology, there are some drawbacks which can dramatically influence the diversity of 

a given ligand library. One of the drawbacks arises from the fact that, theoretically half 

of the phage particles, which are produced after super-infection, can carry only the 

helper phage genome instead of the ligand gene, even though they display a specific 

ligand protein. These phages can compete with those which carry both the ligand gene 

and its protein during the selection process and consequently they loose the ligand 

protein during the second round of selection. In any given library, this problem can 

cause the loss of rare but functionally very important ligands during the sequential 

selection procedure. Another drawback is the reinfection of a super-infected bacteria 

during or after the super-infection. This can increase the frequency of those phage 

particles which only carry the helper-phage genome, in the total phage population. 

These two disadvantages in the phage display technology are due to super-infection. 

This study aimed at the elimination of the super-infection step from the phage display 

technology by the insertion of M13 phage genome excluding intergenic region which 

contains the DNA sequences necessary for replication instead of uses of helper phage. 

To accomplish this purpose, Homologous Recombination method was used. It is an in 

vivo method for the replacement, deletion or insertion of sequences in bacteria. 

 After Homologous Recombination, three colonies were observed and observed 

colonies were exposed some confirmation tests. First step of these tests was related to 

the presence of unique recombination cassette sequences in chromosomal DNA. 

 Results we obtained showed that the presence of such fragments in chromosomal 

DNA. However, the functional test of the M13 genes in E.coli chromosome suggested 

the toxicity of an unidentified M13 gene products on E.coli chromosome 
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ÖZET 
 

Ligand (Peptide) Kütüphanenelerinin yapımınındaki ilk adım, milyonlarca ligand 

varyantlarını kodlayan gen fragmanlarının, seçilmi� plasmid vektörlere total olarak 

klonlanmasıdır. Ligand proteinler, plasmid vektörde bulunan faj pIII filament proteiniyle 

füzyon olarak eksprese edildiklerinden, bakteride yeni faj partiküllerinin yapısına girerler. 

Faj partiküllerini olu�turan proteinler de ligand DNA klonlarını içeren bakterilerin yardımcı 

fajlarla (helper phage) super-enfeksiyonu ile sa�lanır. Ligand kütüphanelerin zenginli�i, 

içerdikleri farklı gen fragmanları sayısıyla do�ru orantılıdır. Faj displey yönteminin �u anki 

durumuyla, kütüphane diversitesini negatif yönde etkileyebilecek bazı yönleri vardır. 

Bunlardan bir tanesi, super-enfeksiyondan sonra olu�an faj partiküllerinin teorik olarak 

yarısının, spesifik bir ligandı ta�ıdıkları halde ligand geninin bulundu�u plasmidin yerine 

yardımcı fajın genomunu ta�ıyor olmalarından kaynaklanmaktadır. Bu fajlar hem bir ligandı 

hem de genini ta�ıyan fajlarla, seçim sırasında rekabet ederler ve bir sonraki seçim sırasında 

ta�ıdıkları ligandı da kaybederler. Bu durum, herhangi bir kütüphanede en az sıklıkta temsil 

edilen fakat fonksiyon bakımından büyük öneme sahip olabilecek ligandların ardı�ık seçim 

a�amalarında kaybolmalarına neden olmaktadır. Di�er bir dezavantaj, süper-enfeksiyon 

sırasında veya sonrasında yardımcı faj tarafından enfekte olan bir bakterinin yeniden 

enfeksiyona u�ramasıdır. Bu da, ligand ta�ımayan faj partiküllerinin sayıca artması 

nedeniyle, ligand DNA’sını ta�ıyan faj partiküllerinin popülasyondaki sıklı�ını azaltır. Faj 

gösterim yönteminde, bu iki dezavantaj faj süper-enfeksiyonundan kaynaklanmaktadır. Bu 

çalı�ma DNA replikasyono için gerekli olan genler arası bölgeyi içermeyen M13 genomunu 

yardımcı faj kullanımı yerine E.coli kromozomuna ekleyerek bu sürecin faj displey 

yönteminden eliminasyonunu öngörmektedir. Bu amacı gerçekle�tirmek için Homolog 

rekombinasyon methodu kullanıldı. Bu metod bacterinin kromozomundaki genlerin 

de�i�tirilmesi silinmesi ve eklenmesi için kullanılan in vivo bir methottur. Homolog 

recombinasyondan sonra, 3 koloni gözlenmi� ve bazı do�rulama testlerine maruz 

bırakılmı�tır. Bu testlerin ilk adımı  rekombinasyon kasetinde bulunan blirli genlerin 

varlı�ını do�rulamaya ili�kindir. Elde etti�imiz sonuçlar bazı genlerin kromozom üzerinde 

bulundu�unu göstermi�tir. Fakat , M13 genlerinin E.coli kromozomunun üzerindeki 

fonksiyonları belirlenmemi� M13 genlerinin toxic etkisi nedeniyle fonksiyonlarını 

kaybetmeye neden olan kromozomal yeniden düzenlemeyle  sonuçlanmı�tır. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1. Phage Display 
 

1.1.1. Overview of Phage Display  
 

Phage Display is described briefly as an extremely new and remarkable 

molecular technique for identifying and creating ligands (polypeptides) with novel 

properties and changing the properties of existing one. 

This method basically depends on a gene encoding ligands that are fused to 

phage coat protein genes and these “fusion genes” are incorporated in bacteriophage 

particles that also display the heterologous proteins on their surfaces (Sidhu, 2001). 

Phage displaying ligands with a desired binding specificity can be selected from library 

pools by binding to an immobilized ligand (Sidhu, 2000). This selection can be 

performed in vitro and in vivo (Johns et al., 2000; Sparks et al., 1996; McCafferty and 

Johnson, 1996). In vitro selection of phage displayed ligands can be screened not only 

against a wide range of biological targets but also inorganic ones (Whaley et al., 2000).  

G.P. Smith firstly defined this powerful technology in 1985 as a tool, which 

provides a direct relationship between phenotype and genotype. The main advantage of 

this technology is illustrated in Figure 1.1 (Azzazy et al, 2002).  
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Figure 1.1. Schematic representation of the direct link between genotype and phenotype 

 

Phage display technology is composed of three steps. The first step is the DNA 

library construction, second step is the preparation of phages displaying ligands and the 

last step is the selection of ligands with desired properties (Wiersma et al., 2003).  

Phage Display library is generated by the insertion of the genes, encoding 

proteins to be displayed, into the phage genome and expressed together as a fusion 

protein. Following expression the ligand fused with the phage coat protein is displayed 

on the filamentous phage. Phage particles displaying ligands with desired properties are 

then selected by exposing the phage library to an immobilized target molecule. This 

process is achieved by simple, rapid and inexpensive molecular biological techniques. 

Phage display technology had a major impact on immunology, cell biology, drug 

discovery, pharmacology, and plant science. Although, this technology is being used 

routinely in many areas, the success of this technology initially depends on the quality 

of the constructed library and researches towards the improvement of the technology are 

still going on (Baek et al., 2002; Sidhu, 2000). 

 

1.1.2. Filamentous Phages 
 

Bacteriophages are viruses that infect bacteria, which are also called phages. 

Most phages consist simply of nucleic acid enclosed within a protein capsid (also 

named coat). The genome may be dsDNA, ssDNA, dsRNA or ssRNA (Russel et al, 
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2004; Sambrook et al., 1989).  Phages as cloning vectors have been used for a lot of 

purposes up to now (Russel et al., 2004). Bacteriophages such as Lambda, T7 and 

filamentous phages (Rodi and Makowski, 1999; Bleaks, 2001; Smith et al., 1985; Sidhu, 

2001)) are used in phage display technology. However, filamentous phages are the most 

preferred and used vectors in this technology due to some of their biological properties 

(Russel et al., 2004). Their genome is small hence easier to manipulate and the genome 

tolerates insertions into non-essential regions. They can be produced in high amounts 

and the phage particles are stable under broad range of potential selection conditions 

(Russel et al., 2003).  
 

1.1.2.1. Structure of Filamentous Phages 
  

The filamentous phages are viruses that infect E.coli, they have a circular single 

stranded DNA genome, which is covered with a protective coat.  M13, f1, fd are 

filamentous phages and they are all genetically and phenotypically closely related to 

each other. The genomes of these bacteriophages have been completely sequenced 

(Beck et al. 1973; Van Wezenbeek et al. 1980; Beck and Zink 1981; Sambrook et al. 

1989). Their DNAs are 98 % homologous (Sambrook et al., 1989) 

M13 phage is one of the most well known filamentous phage. They are 7-nm.in 

diameter. The length of the enclosed genome is 900 nm. Their protein coat is composed 

of PVIII, (also called major coat protein). At one end of the M13 phage particle, PIII 

and PVI proteins and at the other end of the particle PVII and PIX proteins are located 

(Figure 1.2). The entire genome of M13 phage consists of 11 genes and an intergenic 

(IG) region which contains the replication of origin for (+) and (-) strand synthesis 

(Figure 1.3). Two of the phage proteins (X-V) are required to generate s.s. DNA, other 

three (I-XI-IV) are necessary for phage assembly and the remaining five (III-VII-VI-IX-

VIII) are components of the phage particles which are also named as coat proteins 

(Table 1.1) (Russel et al. 2004, Sidhu 2001). All five-coat proteins are responsible for 

host cell recognition and structural stability but PIII is also necessary for host cell 

recognition and infection. Although, PIII is structurally the most complex coat protein it 

is the most well-characterized coat protein. This protein consists of three distinct 

domains. N-terminal domain is responsible for the translocation of the viral DNA into 

e.coli, the second domain confers host cell recognition by binding to the F pilus present 
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on the bacterium and the C-terminal domain is responsible for the integration of PIII 

into phage coat (Sidhu, 2001). 

 

 

 

 
 

Figure 1.2: Structure of M13 Filamentous Phage with its coat proteins. 

 

 

 

 

 

   
 

Figure 1.3: M13 Genome 
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1.1.2.2. Life Cycle of M13 Phage 
 

PIII protein which is encoded by gene III attaches the E. coli pilus to initiate the 

infection. While PVIII strips off, PIII remains attached until the phage genome is 

transferred into the host cell. In the cytoplasm, the infecting (+) strand s.s. DNA is 

converted into a d.s. circular form which is called as “replicative form” (RF) DNA by 

cellular enzymes present in the host cell (host RNA and DNA polymerase and 

topoisomerase) (Sambrook et al., 1989, Russel et al., 2003) (Figure 1.4). 
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Figure 1.4: DNA replication, protein synthesis, and protein location in the M13   
bacteriophage. DNA replication represents in the bottom of the figure. The 
top of the figures shows the position of the proteins in the bacterial 
periplasm, cytoplasmic membrane and outer membrane (OM). PG refers to 
the peptidoglycan layer (Source: Scott et al., 1997). 

 

Transcription of viral genes begins and proceeds in the same direction. 

Amplification of viral genome begins when the PII introduces a nick at a specific site in 

the (+) strand of the d.s. RF DNA. E.coli DNA polymerase III extends the (+) strands 

using (-) strand as template. After one round of the replication, the PII nicks again to 

release a linear (+) strand by E. coli Rep helicase. Linear (+) strand is then circularized 

and progeny (+) strands are converted to d.s. RF form, which serve as template for 

transcription by RNA polymerase (Russel et al. 2004). 

 During the accumulation of RF DNA the amount of PV, which is a ssDNA 

binding protein, translated from phage transcripts increases up to a critical level which 

then binds to the newly synthesized ss (+) sense genome to prevent the polymerase 

activity and block their conversion to RF DNA (Azzazy et al., 2002; Russel et al., 

2004). This genome is then transferred to the cell membrane where phage assembly is 

initiated. Here, while PV proteins are stripped off the DNA, PVIII proteins, which are 

localized to cellular membrane, replace PV proteins and cover the phage DNA. The 
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other coat proteins which are also imbedded in the inner membrane are incorporated to 

the assembling phage particles and the completed phage particles are released to the 

outside from the cell membrane (Sidhu et al., 2003). 

 

1.1.3. Phage Display Technology 
 

Display of ligands on phage surface is achieved by the fusion of genes encoding 

desired proteins to phage coat protein genes. Displayed proteins on phage surface are 

then simply chosen by affinity selection methods. (Smith and Petrenko, 1997). 

In general, the process can be divided into three sections: creating a library of 

polypeptides, screening and selection of clones and analysis of the selected clones. 

(Hoogenboom et al., 1998). Initially, a library of different genes encoding polypeptides 

is created and cloned into phage genome as fusion to coat protein gene. For this 

purpose, DNA encoding polypeptides is inserted between the signal sequence of the 

coat protein and the amino terminus of the mature coat protein by molecular biological 

techniques and these are then expressed. Strategies of how the genes encoding desired 

foreign polypeptides are fused to coat proteins are shown in Figure 1.5. 

 

 
 

Figure 1.5:  How the genes encoding desired foreign polypeptides are fused to coat 
proteins 
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During the screening of libraries cloned polypeptides carried on phage surface 

fused with coat proteins are exposed to immobilized target molecules. Phages with 

appropriate specificity are then captured. This process is called as affinity selection 

(bio-panning) (Hoogenboom, 1997; Hoogenboom et al.1998; Spark et al.1996). 

Unbound phages are washed out, however, due to some non-specific binding, phages 

not specific for the target molecule may also remain bound to the target. Bound phages 

are then eluted by disrupting the bond between displayed polypeptides and the target. 

Eluted phages are then used for the infection of host cells for amplification. After 

several rounds of this cycle, phages with desired polypeptides carrying the desired 

specificities are analyzed. This cycle is schematically represented in Figure 1.6. 

.  

 
 

Figure 1.6: Phage Display cycle. 

 

1.1.3.1. Platforms of Phage Display Technology 
 

 The earliest phage display systems were based on fusions to either PIII or PVIII. 

However, this system had some limitations because polypeptides, which are displayed 
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on the phage were not efficiently displayed and selected (Hufton et al., 1999; Sidhu, 

2001). In this system, theoretically all the copies of the chosen coat proteins are fusion 

proteins (Winter et al., 1994). Although this seems to be advantageous, the phage coat 

protein loses its function and as a result, the phage viability is seriously affected. In 

return this can lead to the inefficient selection of the desired polypeptides. 

 This problem was tried to be solved by other approaches. In order to improve 

phage viability and stability, hybrid phage display system was created. In this system, 

two copies of the coat protein were employed. One copy was expressed as a fusion 

protein with the polypeptide of interest and the other in its native form. Therefore, both 

the fusion and the native coat proteins were exposed on the phage surface. Hence, while 

the desired protein was displayed on the surface phage, phage viability could be 

sustained with the presence of the native coat protein making the process efficient, safe 

and stable (Sidhu, 2001). 

 Alternatively, phagemid-based hybrid systems were developed (Sidhu, 2000). 

This approach, which allows the development of larger libraries, differed from phage-

based platform in terms of the cloning efficiency (Winter et al., 2000). Phagemid is a 

plasmid, which contains both phage and plasmid replication origins and one of the 

phage coat protein genes. The gene encoding the desired protein is fused to the chosen 

coat protein gene present in the phagemid vector, and then this vector is transferred to 

E.coli. The other phage proteins are provided by a helper phage, which contains a 

defective replication origin. The resultant phage particles contain wild type proteins 

from the helper phage, the chosen coat protein fused with the desired polypeptides and 

the phagemid genome. These platforms were reviewed and illustrated by William, 2002 

(Figure 1.7).  

 Hybrid phage display systems allow the development of many phage display 

applications and platforms. With this system, although some proteins can be difficult to 

be displayed because of their properties (e.g. toxicity to E. coli or interference with 

phage production), the size of the protein is not a major factor and the display of most 

of the proteins should be feasible. Large proteins, up to 40 kDa can be readily displayed 

on the phage surface (Sidhu, 2001; Hoogenboom et al. 1991; Stoop et al., 2000).  

 



 10

 
 

Figure 1.7: Platforms of phage display process 

 

1.1.3.2. Limitations and Improvement of Phage Display 
 

There had been many attempts to improve phage display since this process was 

described in 1985(Haek et al., 2003; Sidhu et al., 2003; Hoogenboom et al., 1994)). 

Despite this process has a lot of advantages, it still comprises some limitations (Azzazy 

et al., 2002; Willats, 2002). The drawbacks of the earliest phage display approach was 

tried to be solved by the hybrid phage systems (see, section 1.3.1). Hybrid phage 

systems considerably improved the phage viability and the continuity of the phage 

display process.  

Although, phagemid based system is preferred to the phage based system due to 

both its ease of manipulation, both systems suffer from similar drawbacks. Extremely 

low level display of proteins is a serious problem encountered in both phage and 

phagemid-based systems (Willats, 2002; Sanghoon et al., 2002). The number of cloned 

fusion proteins displayed on the phage surface is decreased due to the competition 

between the wild type coat proteins from the helper phage and the cloned fusion 

proteins from the phagemid during the incorporation into phage particle. Wild type coat 

proteins are much more efficiently incorporated into the phage particle (Willats, 2002; 

Winter et al. 1994). The number of phage particles without a fusion protein has been 
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estimated to be up to 99.5% of the total phage population. (Azzazy et al., 2002). Also, 

phage particles that display the fusion coat protein may carry the helper phage genome 

instead of the phagemid DNA causing the lost of the selected fusion protein during the 

amplification step.  

Some of the improvements made on the phage display process are focused on 

the elimination of the phage particles carrying only the wild type coat proteins but not 

the cloned fusion coat protein to increase the level of display (Willats, 2002). In 

phagemid-based systems, generally P3 is the chosen fusion partner to the cloned 

polypeptides because P3 fusions can accommodate larger foreign polypeptides. P3 

consists of three distinct domains connected to each other by glycine-rich linker regions. 

The N-terminal domain (N1) is responsible for viral infection, middle domain (N2) is 

necessary for binding to the F pilus of the bacterium, and the C- terminal domain is 

responsible for the viral morphogenesis (Sidhu et al., 2003). P3 fusion proteins are 

designed in a way that the foreign polypeptide is fused at the N-terminal of P3, since C-

terminal fusions are not incorporated into the phage particles (Sidhu et al., 2003). 

However, since P3 is present in few (5-7) copy numbers on the phage surface, this 

decreases the probability of the P3 fusion protein to be displayed on the phage surface. 

In order to circumvent this low probability, P8 protein was used as the fusion partner 

since P8 is present at considerably high (2700) copy numbers on the phage surface 

(Sidhu, 2001). However, the presence of more than five foreign amino acids in the P8 

fusion protein can prevent the packaging of phage particles leading to reduction in 

phage production. Coat proteins (P6, P7 and P9) other than P3 and P8 are also used as 

fusion partners (Table 1.2). However, since they are also present in low copy numbers 

(5) on the phage surface, they suffer from the same problems encountered with the use 

of P3. Furthermore the incorporation of their fusion proteins into the phage particles is 

around 100 times lower compared to P3 fusion proteins. 
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Table 1.2. M13 coat proteins used as fusion partners in phage display 

 

 
 

 In phagemid system, the use of a helper phage is necessary to provide all the 

phage proteins required for phage assembly. However, although the helper phage used 

in these systems is replication deficient, some helper phage genome replication still 

occurs at a reduced rate compared to the phage which contains a wild type origin of 

replication. This low level of helper phage genome replication in turn, may lead to the 

packaging of helper phage genome rather than the phagemid DNA expressing the 

recombinant fusion coat proteins displayed on the phage surface (Winter et al., 1994).  

There had been some studies towards the elimination of the drawbacks 

encountered in phage display technology (Kramer et al., 2003; Baek et al., 2002; Winter 

et al., 1994; Rondot et al., 2001; Griffiths et al., 1993; McCafferty, 1996; Rondot et al., 

2001; Larocca et al., 2001). Although the systems developed during such studies 

managed to improve the display level of recombinant fusion proteins they could not 

completely eliminate the loss of affinity selected phages in the total library. As a 

consequence, these developed systems also need further modifications in order to 

completely remove the background helper phage particles. 

   

1.1.4. Applications of Phage Display Process 
 

Phage display is a powerful technology and it has been applied to a number of 

different processes and studies (Willats, 2002) Receptor-ligand studies are the most 

important ones that use this technology (Neri et al., 2000)). Signal transduction 

research, new drug development and screening, and antibody engineering are other 

areas where phage display technology is routinely applied proteins and peptides 

displayed on the phages are represented in Table 3. 
 



 13

1.1.4.1. Peptide-Libraries  
 

Phage display of peptides started with the generation of random combinatorial 

libraries that provide a pool of variants from which peptides with desired characteristics 

can be isolated by affinity selection (Willats 2002). 
Synthetic oligonucleotides with constant lengths and random sequences are 

generated and then cloned as fusion to one of the coat proteins of M13. In this way, 

random peptide libraries are constructed and tested by binding to target molecules of 

interest. PIII or PVIII coat proteins are used for the display of random peptides on M13 

filamentous phage (Smith, 1985; Greenwood et al., 1991; Felici et al., 1991).  

 Peptide sequences identified by phage display have been shown to act as 

agonists and antagonists of receptors (Doobar et al., 1994). Peptides that neutralize 

immunoglobulins can be used as diagnostic reagents or therapeutic agents for 

controlling autoimmune diseases (Blank et al., 1999). 

 Random peptide libraries can be used for mapping epitopes of monoclonal and 

polyclonal antibodies to define substrate sites for different enzymes. 

 Additionally, display of small peptides on phage particles can increase their 

immunogenicity and their potential as vaccine candidates (Azzazy et al., 2002). 

 

1.1.4.2. Phage Display cDNA Libraries 
 

Phage display cDNA libraries enable to identify sequences that are expressed in 

nature presumably encoding proteins with specific biological functions (Crameri et al., 

1996). Other applications involve the specialized libraries constructed using cDNAs for 

single-chain antibodies (scFv) and Fab antibody fragments (Griffiths et al., 1993; 

Nissim et al., 1994; McCafferty et al., 1990; Winter et al., 1994).  

 

1.1.4.3. Antibody Libraries 
 

Phage displayed recombinant antibodies have a lot of advantages over 

monoclonal antibodies generated by hybridoma technology. Instead of hybridoma 

methods that are time consuming and labor intensive for cell screening, antibody genes 

can be directly from spleen cells using recombinant DNA methods. 
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 Phage displayed antibodies have stable genetic sources. Therefore, Phage 

antibody technology can also be used to clone and recover monoclonal antibodies from 

genetically unstable hybridomas. Phage antibody genes can be easily sequenced, 

mutated and screened to improve antigen binding (Azzazy et al., 2002; Holliger et al., 

1993). Especially, recombinant antibodies have been isolated against toxic antigens or 

conserved sequences and carbohydrates. Also, antibodies against heavy-chain binding 

proteins can be obtained which can not be generated by hybridoma technology. 

 The antibody-fusion proteins provide high sensitivity in diagnostic studies, 

because they enhance signal amplification after the initial binding of the antibody to its 

target antigen. Other diagnostic applications are related to the fusion of antibody 

fragments to alkaline phosphatase, green fluorescent proteins, and lipids. 
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Table 3:  Proteins obtained by phage display libraries. 

 

 
 

1.1.4.4. Phage Enzymes 
 

Several enzymes have been reported to be displayed on M13 bacteriophage to show 

their catalytic activities. These are alkaline phosphatase, trypsin, β-lactamase (McCafferty 

et al., 1991; Corey et al., 1993;Siemers et al., 1996). The most common enzyme that has 

been displayed on phage is penicillin acylase (86 kDa) (Gacio et al., 2003). 



 16

 Phage display libraries based on suitable enzymes can improve diagnostic by 

enhancing the stability and catalytic activities of enzymes. 

 As a result, this multi-purpose tool has allowed the identification of a variety of 

proteins and peptides that have therapeutic significance. Except the use for therapeutic 

purposes, there are many applications of the phage displayed proteins and peptides. For 

example, phage displayed antibodies in plant research can be performed (Willats et al., 

2002).  
 

1.1.5. Thesis Objectives 
  

In this study, some of the problems of the phage display technology which 

mainly stem from the use of helper phage were aimed to be solved by the elimination of 

the use of the helper phage. Although helper phage is necessary for the production of 

phage particles, it can cause the inefficient display of polypeptides. The helper phage 

genome can be packaged into the phage particles instead of the phagemid DNA coding 

for the fusion peptide presented on the phage surface. There is also the possibility of re-

infection of cells producing one kind of a fusion protein by the newly produced phage 

particles carrying other types of fusion proteins with their corresponding phagemid 

genomes. Both of these events can cause the loss of phage particles carrying the desired 

fusion peptides during the amplification step following the selection. Therefore, the 

probability of obtaining the phage particles with desired properties decreases through 

the amplification cycles. The use of a helper phage also increases the risk of 

contamination in the laboratories. 

 For this purpose, cis-acting elements found on the M13 genome responsible for 

the replication and packaging of the phage particles were deleted from the M13 

genome. Then, the M13 genes required for the production of phage particles were aimed 

to be inserted into the chromosomes of both F- and F+ E.coli strains. By this way, the 

M13 genes coding for the proteins required for the production of phage particles would 

be expressed from the bacterial chromosome and there would not be any production of 

phage particles unless the these bacteria were transformed with a phagemid plasmid 

DNA containing the M13 origin of replication and the packaging signal.  

 In the first round of the proposed platform, the fusion coat protein library will be 

cloned into the phagemid DNA and then transferred into the recombinant F- E.coli 
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strain by electropoartion. Since F- bacteria do not produce pilli they are resistant to 

infection with M13 and other filamentous phages. Thus, recombinant F- E.coli cells 

transformed with a phagemid DNA expressing a particular coat fusion will not be 

infected by other phage particles produced in other neighboring cells. Hence they will 

produce phage particles displaying only one kind of a fusion peptide and will only carry 

the corresponding phagemid DNA.  

 In the second round, phage particles carrying the coat fusion peptides produced 

during the first round will be subjected to affinity selection and the selected phage 

particles with desired properties will then be used for the infection of recombinant  F+ 

E.coli strain in order to amplify the phage particles displaying the desired fusion coat 

polypeptide (figure 1.8).  

 This phage display platform is a novel approach and if constructed successfully, 

we believe that it is going to improve the efficiency of this technology considerably. 
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Figure 1.8: Procedure of newly created phage display platform 
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CHAPTER 2 

 

MATERIALS AND METHODS 
 

2.1. Materials 
  

Buffers, solutions and suppliers are listed in Appendix C 

 

2.2. Methods 
 

2.2.1. Bacteriological Techniques 
 

2.2.1.1. Bacterial Strains, Plasmids and Media 
 

A list of bacterial strains, plasmids and their sources were presented in Table 2.1 

and Table 2.2. respectively. E.coli strains were grown in Laura-Bertani (LB) broth at 

37°C with continuous agitation. 

    For the selection of transformed bacteria, LB media containing 1.5 %( w/v) agar 

and Tetracycline and ampicillin (5µg/ml and 50µg/ml (w/v), respectively) were used. 

 

2.2.1.2. Maintenance of Bacterial Strains 
 

 Strains were grown on LB agar plates and they were inoculated into LB 

broth until Log phase. Glycerol stock, 20% in LB broth were prepared and stored 

at - 80°C for long-term storage. 
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Table 2.1: List of Bacterial Strains 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2: List of plasmids and phages 
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2.2.1.3. DNA Isolations 
 

2.2.1.3.1. Small-scale Preparation of Plasmid DNA from E.coli 
 

After transformation, single colonies were inoculated into 10 ml LB medium 

supplemented with appropriate antibiotics and incubated with constant agitation for 6-9 

h. Plasmid DNA was isolated by alkaline-lysis methods (Sambrook et al., 1989) with 

some minor modifications. One and a half milliliter of each culture were transferred into 

a 1.5 ml eppendorf tube. The cells were pelleted by centrifugation for 30 s. at 12.000 

rpm. Supernant was removed and the pellet was resuspended in 0.1 ml of Solution I and 

0.2 ml of freshly prepared Solution II were added. The sample was then mixed gently 

by inversion several times. Solution III, 0.15 ml, was immediately added. After mixing, 

each samples were incubated on ice for 3-5 min. Centrifugation was performed at 

12.000 rpm for 2 min and supernatants were transferred into fresh tubes. The sample 

was precipitated with 2 volumes of 99% ethanol at room temperature, and then mixed 

by vortexing and centrifuged for 5 min at 12.000 rpm. The supernant was removed. The 

pellet was washed with 1 ml of 70% ethanol and dried in air for 10 min. After drying, 

DNA was dissolved in 50-microliter dH20 or 1XTE (pH.8) by vortexing briefly. DNA 

was then kept at –20°C until needed. 

 

2.2.1.3.2. Preparation of Bacterial Genomic DNA by CTAB/NaCl  
 

The method of Ausubel et al. (1994) was used for genomic DNA isolation. 

   Strains were grown in LB broth at 37°C overnight with constant agitation. 

Following morning, 1.5 ml of the culture were transferred into eppendorf tubes and 

harvested by centrifugation for 5 min at 10.000 rpm. The supernatant was discarded and 

the pellet was suspended in 567µl 1×TE buffer (Appendix C). Then, 30 µl of 10 % SDS 

and 3µl of proteinase K (Appendix C) were added. The suspension was mixed 

thoroughly and incubated for 1 h at 37°C. After this step, 0.1 ml of 5M NaCl was added 

and mixed well. 80 µl CTAB/NaCl (Appendix C) was added. The samples were mixed 

and incubated for 10 m at 65 °C. After incubation, 0.7 ml of chloroform/isoamyl alcohol 

(Appendix C) was added, mixed gently and centrifuged for 5 m at 10.000 rpm. Aqueous 

supernatant was transferred into a fresh eppendorf tube. An equal volume of 
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chloroform/isoamyl alcohol was added, mixed and harvested for 5 min. The supernatant 

was then transferred into a fresh eppendorf tube and 0.6 volume of isopropanol was 

added to precipitate the DNA. The samples were shaken until a white DNA precipitate 

became visible. DNA was precipitated by centrifugation for 5 min. The supernatant was 

discarded and the pellet was rinsed with 500µl 70 % ethanol. It was centrifuged for 10 

min. After this, ethanol was removed. The pelleted DNA was dried and dissolved in 

1×TE buffer. Genomic DNA was stored at -20°C. 

 

2.2.1.3.3. Large-scale preparation DNA 
 

A Nucleospin maxi preparation kit was used and all the steps were performed 

according to the manufacturer’s instructions. 

 

2.2.1.3.4. DNA isolation from agarose gel with Applichem DNA 

Isolation kit 
 

DNA bands of interest were eluted from agarose gel according to manufacturer’s 

instruction with some minor modifications. After DNA was separated in 0.8% agarose 

gel at 40mA constant current. DNA bands visualized on u.v.box were excised from the 

gel with a razor blade under UV light. Three volumes of 6 M NaI solution and glass 

milk solution from the isolation kit, were added to each of the samples. The samples 

were incubated for 5 min at 55°C; the contents of the sample tube were mixed and 

returned to the 55°C for a period of 1-2 m. At this point, it was made sure that gel slice 

was dissolved completely. The samples were then centrifuged for 30 s at 12.000 rpm. 

Supernatant was discarded and the pellets were rinsed 3 times with wash solution 

provided with kit. After rinsing, supernatants were removed completely and the pellets 

were dissolved in dH2O and DNA were then eluted for 3-5 min at 55°C. 

Eluted samples were centrifuged at 12.000 rpm for 1 m. Following 

centrifugation. Supernatants were carefully transferred into a fresh tube. 
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2.2.1.4. Transformation of Bacterial Cells 
 

2.2.1.4.1. Preparation of Competent E.coli Cells Using CaCl2  

procedure 
 

   A single colony, which was freshly grown for 16-20 h at 37°C and inoculated 

into 100 ml of LB broth in a 1-liter flask, then incubated for overnight. Following 

incubation, 100 fold dilution was performed and incubated again for ~ 3 h with constant 

agitation (300 cycles / minute) until an OD600 of 0.6 was obtained. For efficient 

transformation, the number of visible cells should not exceed 108 cells/ml (Sambrook et 

al., 1989). 

   After incubation, the culture was transferred into sterile, ice-cold 50 ml falcon 

tubes, aseptically. Cultures were cooled to 0°C on ice for 10 min. and harvested at 5,000 

rpm, for 10 min, at 4°C. The supernatant was removed completely and the pellet was 

resuspended gently in 10 ml of ice cold 0.1 M CaCl2 (Appendix C), and stored on ice. It 

was centrifuged again at 5,000 rpm, for 10 min, at 4°C. After discarding the 

supernatant, the pellet was resuspended in 2 ml ice cold 0.1 M CaCl2 for each 50 ml of 

original culture. 160µl of competent cell suspension was transferred to a fresh sterile 

eppendorf tube and added then 40µl of sterile glycerol, mixed gently for storage. 

After that, all aliquots were incubated on ice for 4 h. These competent cells were 

stored at –80°C. 

 

2.2.1.4.2. Transformation of E.coli Strains with Plasmid DNA 
 

Before transformation, the frozen competent cells were thawed on ice. DNA was 

added (0.5-1.0µg in a volume of 10µl) into each tube and the contents of the tubes were 

mixed by swirling gently. The tubes were then incubated on ice for 30 min. After this, 

the tubes were heated at 42°C for 90 s. Heated tubes were transferred immediately onto 

an ice bath and cells were chilled for 1-2 min. LB broth, 800µl, were added and the 

cultures were then incubated for 45 min, at 37°C with constant agitation to allow the 

bacteria recover and to express the antibiotic resistance marker encoded by the plasmid. 

   Following incubation, transformed competent cells were plated on LB agar 

plates containing appropriate antibiotic. Plates were left at room temperature until the 
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liquid had been absorbed, and the plates were then inverted and incubated at 37°C. 

Following, colonies were observed in 16 h. 

 

2.2.1.4.3. Preparation of Electro-competent E.coli  
 

A single colony from a fresh culture was inoculated into 5 ml LB medium and 

grown overnight with moderate shaking. After overnight incubation, 2.5 ml of the 

culture were inoculated into 500 ml LB medium in a sterile 2-L flask and grown at 37°C 

with shaking at 300 rpm to an OD600 of ~ 0.5 to 0.7.  

 The culture was chilled on ice for 10-15 min and was then transferred into a 1- L 

prechilled centrifuge bottle. Chilled cells were harvested by centrifugation for 20 min at 

4,200 rpm at 2°C. All liquid phase was removed completely and the pellet was then 

resuspended in 5 ml of ice-cold water and mixed well. The cells were immediately 

centrifuged as above. The supernatant was immediately removed and the pellet was 

resuspended in10 % 500 µl of ice-cold glycerol, mixed thoroughly. The suspension was 

stored at –80 °C until use. 

 

2.2.1.4.4. Transformation of E.coli by Electroporation 
 

Five pico-grams to 0.5 µg plasmid DNA or purified ligation mixture in 1µl was 

added to tubes containing 40µl of fresh or thawed cells (on ice) and mixed by tapping 

the tube and the mixture were then transferred immediately into electroporation cuvettes 

that were prechilled on ice for 5 m. At this point, the volume of DNA added to the cells 

should have been kept small. Adding DNA up to one-tenth of the cell volume would 

decrease the transformation efficiency. The cuvette was then placed into the sample 

chamber. 

 The electroporation apparatus was set to 2.5 kV, 25µF and the pulse controller 

was also set to 200 or 400 ohms. Pulse was applied by pushing the button. The cuvette 

was removed from the chamber and 1 ml of SOC medium was immediately added and 

the mixture was transferred to a sterile eppendorf tube and incubated at 37°C for 60 m 

with constant agitation. After the incubation, aliquots of transformation culture were 

plated on LB agar plates containing appropriate antibiotics.  
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2.2.2. Phage Manipulations 
 

2.2.2.1. Preparation of Bacteria 
  

Firstly, bacterial strain carrying an F_ pilus episome (JM109-JM107) was 

streaked onto minimal M9agar plate (Appendix B), incubated for 36 h at 37°C. The 

genes encoding enzymes involved in proline biosynthesis have been deleted from 

chromosomes of these bacteria and these are only carried on F-pilus. Therefore, the 

colonies that can form on this minimal agar plate have F-pilus. A single colony on 

minimal agar plate was removed and inoculated into 50 ml of LB medium, in a 250 ml 

flask, agitated for exactly 6 h at 37°C. 

 (XL1Blue strain has a tetracycline resistant gene on their F-pilus. Therefore, there is no 

need to these processes. If colonies form on LB agar containing tetracycline, these 

colonies carry F-pilus. ). 

 

2.2.2.2. Infection with M13 
 

A plaque of bacteriophage M13 derives from infection of a single bacterium by a 

single phage particle. The progeny particles infect neighboring bacteria, which in turn 

release another generation of progeny. If the bacteria grow in semisolid medium 

(containing, e.g., agar), the diffusion of the progeny particles is limited. 

   M13 does not kill the cells they infect but make their growth slow nearly two-

fold. Under these circumstances, a plaque forms as an expanding zone of slowly 

growing bacteria that becomes visible to the naked eye against a background of more 

turbid bacterial growth within the agar overlay. 

   Sterile tubes containing 5 ml of melted top agar (made up in LB medium) were 

prepared and stored at 47°C. Ten-fold serial dilutions of bacteriophage stocks in LB 

medium were prepared. These dilutions were then added into cultures that were 

prepared before (XL1Blue or JM109) for infection, mixed gently and incubated at 37°C 

without agitation for infection. After that, 100µl of infected culture were added to each 

tube containing melted top agar, then mixed by vortexing gently. Forty microliters of X-

Gal solution (Appendix C) and 4µl of a solution of IPTG (Appendix C) were 

immediately added and mixed by manually. The contents of tubes were poured onto 
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plates containing LB agar and placed at room temperature to allow the top agar to 

harden for 5 min. Then, the plates were incubated at 37°C for 12 h. Blue plaques were 

begun to appear after 4 h. of incubation.  

 

2.2.2.3. Picking Bacteriophage M13 Plaques 
 

One milliliter of LB medium was dispensed into a sterile tube. A plaque was 

transferred using a sterile stick, into this medium. The suspension was incubated for 2 h 

at room temperature to allow the bacteriophage particles to diffuse out of the agar. 

  The suspensions of bacteriophage particles were stored in LB medium at  –20 °C 

to prevent the loss of viability. 

 

2.2.2.4. Preparing Stocks of Bacteriophage M13 from Single Plaque 
 

50 ml of a culture of a F+ E.coli strain (XL1Blue or JM 109) were prepared and 

dispensed into a sterile culture tube containing 2 ml of LB and one tenth of the 

suspension of bacteriophage particles derived from single plaque (Section 2.2.2.3.)  

   The infected culture was incubated for 4 h at 37°C with constant agitation. To 

minimize the possibility of selecting deletion mutants, cultures infected with 

recombinant bacteriophage M13 were not grown longer than 5 h. 

The infected culture was transferred into a sterile eppendorf tube and centrifuged 

at 12,000 rpm for 5 min at room temperature. The supernatant was transferred into a 

fresh eppendorf tube. The stocks were stored at 4°C or –20°C without loss of 

infectivity. 

   The remaining 1 ml of infected bacteria culture was used to prepare single 

stranded or double stranded replicative form of bacteriophage DNA. 

 

2.2.2.5. Preparation of Bacteriophage M13 DNA 
 

Bacteria, which were infected with bacteriophage M13, contain the double 

stranded replicative form of bacteriophage M13 DNA and produce virus particles 

containing single stranded progeny DNA (Sambrook et al.,1989)). 
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2.2.2.5.1. Small-scale Preparation of Replicative Form (RF) 

Bacteriophage M13 
 

The method described by Current Protocol (1999) was used for the small-scale 

preparation of Replicative Form (RF) of Bacteriophage M13 with some minor 

modifications. 

   An infected culture (2 ml) was prepared as described before on page 24.1.2-1.5 

ml of the infected culture was transferred into a fresh eppendorf tube and harvested by 

centrifugation at 12,000 rpm. for 5 m at room temperature. The infected bacteria formed 

a visible pellet and the bacteriophage particles remained in the supernatant. 

   The supernatant was transferred into a fresh, sterile eppendorf tube for using 

preparation of single stranded bacteriophage DNA at a later stage. Remaining of the 

supernatant was then discarded carefully and the bacterial pellet was resuspended in 

100µl of ice-cold Solution I (Appendix C) by vortexing. After this, 200µl of freshly 

prepared Solution II at room temperature (Appendix C) was added and the contents 

were mixed by inverting the tube rapidly several times. The tube was then placed on ice 

and 150µl of ice-cold Solution III (Appendix C) was immediately added and mixed by 

inverting the tube for several times.  The tubes were centrifuged at 12,000 rpm for 2 

min. The supernatant was transferred into a fresh tube and the RF DNA was extracted 

and precipitated using Applichem DNA Isolation Kit according to manufacturer’s 

instruction. 

 

2.2.2.5.2. Small-scale Preparations of Single-stranded Bacteriophage 

M13 DNA  
 

1.0-1.2 ml of the supernatant which was prepared and stored at 4°C were 

transferred to a fresh eppendorf tube, and 200µl of a solution of 20% PEG 

8000(Appendix C) in 0.3 M NaCl was added and the content was mixed by inverting 

the tube for several times. The sample was incubated for 5 min at room temperature, 

and then centrifuged at 12,000 rpm for 5 m at 4°C.  

   Supernatant was removed carefully and the pellet was resuspended in 100µl of 

TE (pH 8) by vortexing. For the extraction of DNA, 200µl of phenol equilibrated with 

Tris-HCl (pH 8) (Appendix C) was added and mixed well. The sample was incubated at 
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room temperature for 2 m. and mixed by vortexing and centrifuged at 12,000 rpm for 1 

min at room temperature. The upper phase was transferred into a fresh tube containing 

300µl of 25:1 absolute ethanol: 3M NaAc (pH 5.2) solution (Appendix C), mixed gently 

and incubated at room temperature for 15 min. 

   After the incubation, precipitated single stranded bacteriophage M13 DNA was 

recovered by centrifugation at 12,000 rpm. for 10 m at 4°C. The supernatant was 

removed gently. 200µl of 70% ethanol at room temperature was then added and mixed 

briefly. The sample was centrifuged. The supernatant was immediately removed and the 

pellet was placed at room temperature for 10 m to allow any residual ethanol to 

evaporate. 

   The pelleted DNA was dissolved in 50µl of TE (pH 8) and prepared single 

stranded bacteriophage DNA was stored at –20 °C. 

 

2.2.2.6. Transfection with Bacteriophage  
 

2.2.2.6.1. Preparation of Competent Bacteria for Transfection 
 

The method described by Sambrook et al., 1989 was used for the preparation of 

competent cells. 

A master culture of bacterial strain JM109 was streaked onto a minimal M9 agar 

plate. (A master culture of bacterial strain XL1-Blue was also streaked onto LB-agar 

plate containing tetracycline. Frozen competent bacteria were prepared as described in 

section 2.2.1.4.1. 

 

2.2.2.6.2. Transfection of Competent Bacteria with Bacteriophage M13 
 

The method described by Sambrook et al., 1989 was used for the transfection of 

competent cells with some modifications and optimizations. 

   An overnight culture of bacteria (as described in section 2.2.2.1.) was prepared 

in LB-medium at 37°C with constant shaking. Following incubation, a frozen competent 

XL1-Blue or JM109 at -70 °C was removed and thawed at room temperature, then 

placed on ice for 10 m. After this, 50µl of the competent bacteria was transferred into 

each of a series of sterile tubes. Five micro liters of each of the ligation reactions was 
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added into these tubes. The DNAs and bacteria were mixed thoroughly. After this, these 

tubes were incubated on ice for 30 min. 

   A set of sterile culture tube containing 5 ml of melted LB-top agar was prepared 

and stored at 47°C before use. The tubes containing the competent bacteria and DNA 

were incubated at 42°C for 90 sec. The tubes were transferred immediately onto an ice 

bath and incubated for 2 min. Following incubation, 175µl of LB-broth were added. The 

tubes were mixed gently and at the same time 40µl of a solution X-gal and 4µl of a 

solution IPTG were added into the tubes containing melted LB-top agar, and mixed by 

vortexing. The transfected bacteria were transferred into the tubes containing melted 

LB-top agar and 200µl of overnight culture of XL1-Blue or JM109, were immediately 

added and mixed by vortexing. After this, the mixtures, which were prepared before, 

were poured into LB-agar plates. The plates were incubated at room temperature for 5 

m to allow the top agars harden. Then the plates were inverted and incubated at 37°C. 

Plaques begun to appear after 4 h. and developed fully after 8-12 h of incubation. 

   Plaques formed by wild type bacteriophage M13 were deep blue while 

recombinants were colorless.  

 

2.2.2.7. Plaque Formation Assay  
 

Plaque formation assay was performed by combining two microbiological 

techniques (Sambrook et al., 1989; G.Soltes et al., 2003). 

  XL1Blue and infected culture were grown in liquid media (2X YT+1% (w/v) 

glucose) for overnight and following morning, XL1Blue overnight culture was diluted 

and grown to midlog phase (A600 of 0.6-0.8). Infected bacterial culture was heat killed at 

65 0C for 10 m and the culture was harvested by centrifugation for 10 m at 4000 rpm. 

Following centrifugation, supernatant was aliquoted without further purification and 

stored at –20 0C. 

 After that, for plaque formation assay, XL1Blue was infected with obtained 

phage particles at 37 0C for 30 m. The serial dilutions of infected culture were 

performed and diluted infected cultures were mixed with 3 ml of melted 2X YT soft 

agar (Appendix B), and spread on plate containing 2X YT agar (Appendix B). After 

overnight incubation, the number of plaques was determined. 
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2.2.3. DNA Manipulation Techniques  
 

2.2.3.1. Digestion of DNA with Restriction Enzymes  
 

All restriction enzymes were purchased from Fermentas and the digestions were 

achieved according to the manufacturer’s instructions.  

   All reactions were prepared using concentrated buffers supplied with the 

enzymes. 

 

2.2.3.2. Dephosphorylation of DNA 
 

To prevent self-ligation of vector DNA ends in cloning experiments, 5’ termini 

of vector DNA was dephosphorylated by using Calf Alkaline Intestinal Phosphatase 

(CIAP) (Fermentas). 

   Five micro liters of phosphatase buffer (supplied with the enzyme), 14µl dH20 

and 1 U CIAP was added to 30 µl of reaction mixture containing 1.5 µg linear plasmid 

DNA digested with restriction endonuclease(s).  

   Dephosphorylation reaction was achieved at 37°C for 30 m. To stop the reaction, 

the mixture was incubated at 85°C for 15 m. DNA was then purified by 

phenol/chloroform extraction. 

 

2.2.3.3. DNA Ligation Reactions 
 

To join double strand DNA digested with restriction endonuclease(s), T4 DNA 

ligase (Fermentas) was used according to the manufacturer’s instruction with some 

modifications. 

   All reactions were carried out at 22°C for overnight. 
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2.2.4. Purification and Extraction of DNA Fragments 
 

2.2.4.1. Phenol-chloroform Extraction 
 

Phenol-chloroform extraction was used to remove any remaining cellular debris 

and other substances from cell lysates and to remove any restriction or modification 

enzymes and buffers after a reaction. 

   An equal volume of phenol added to the lysate or DNA solution and mixed 

thoroughly and incubated on ice for 10 min and then the suspension was centrifuged at 

10,000 rpm for 2 m. The upper phase was transferred into a fresh tube and equal volume 

of phenol and chloroform were then added and mixed thoroughly. Centrifugation was 

performed at 10,000 rpm for 2 m. The resulting upper phase was carefully transferred 

into a fresh tube and mixed with an equal volume of chloroform and centrifuged. After 

this, aqueous phase was transferred into new tube containing 1/10 sample volume of 3M 

NaAc (pH5.2)(Appendix C) and mixed. Two and a half sample volume of 99% ethanol 

was added and mixed well. The sample was then centrifuged for 15 min at 7,000 rpm. 

Liquid phase was discarded and DNA pellet was washed with 70% ethanol. After 

centrifugation for 5 m. at 7,000rpm, ethanol was discarded. 

The pellet was dried at room temperature and was then dissolved in 1×TE buffer 

(Appendix C). 

 

2.2.4.2. Ethanol Precipitation of DNA 
 

In order to recover DNA from aqueous solutions or to concentrate the DNA in a 

solution, the DNA was precipitated by adding 1/10 volume of 3M NaAc (pH5.2) and 

2.5 volume of cold ethanol (stored at -20°C), and the sample was then incubated at –

80°C for 30 m. After the incubation, the mixture was centrifuged for 5 min at 12,000 

rpm and the pellet was dissolved in a desired volume of   1×TE (pH 8) or dH20. 

 

2.2.4.3. Purification of DNA by Applichem DNA Isolation Kit 
 

All the steps were performed according to the manufacturer’s instructions. 
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2.2.4.4. Separation of DNA Molecules by Agarose Gel Electrophoresis 
 

Agarose gels (0.8 or 1%)were prepared by melting the agarose in 1X TAE 

buffer. The melted solution was then poured into a horizontal gel apparatus and allowed 

to harden. The gel was covered with 1×TAE and the samples were mixed with the gel-

loading buffer and the mixtures were then pipetted into the wells formed by the removal 

of the comb after the gel hardened. To achieve the movement of the DNA molecules, an 

electric field of 40 mA was applied until Bromophenol blue reached the half of the gel. 

DNA fragments were visualized in UV box. 

 

2.2.5. Polymerase Chain Reaction (PCR) 
 

The polymerase chain reaction is a method for amplification of selected nucleic 

acids sequences in vitro (Mullis and Faloona, 1987). The method consists of repetitive 

cycles of DNA denaturation, primer annealing, and extension by DNA polymerase 

(Mullis et al., 1986). 

 

2.2.5.1. Primers 
 

The sequences of primers, which were used for PCR, are given in Appendix D. 
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CHAPTER III 
 

RESULTS 
 

3.1. Homologous Recombination 
 

 There are several methods designed for the replacement, deletion or mutation of 

desired chromosomal sequences in bacteria. Two of these methods, which can also be 

used for the specific integration of DNA sequences into the chromosome, are non-

replicative plasmid mediated insertions (Leenhouts et al., 1989) and temperature 

sensitive (ts) replicative plasmid mediated insertions (Biswas et al., 1993).   

 For several organisms it has been shown that a plasmid that is unable to replicate 

in the recipient strain can integrate efficiently into the host chromosome when it carries 

homologous chromosomal sequences. The region of homology provided usually 

stimulates the integration of the plasmid DNA by a Campbell-like mechanism (Fig. 3.1 

a). In the presence of two separate chromosomal sequences on such a plasmid the 

recombination event leading to the Campbell-like integration in one of the sites, may be 

followed by another recombination event in the other site (Fig. 3.1 b), which, in turn, 

may result in the replacement of the chromosomal segment between the two sites. There 

are two possible sites for a recombination event after the first one. Assuming equivalent 

sizes of the cloned DNA, 50% replacement and 50% reversion to wild-type (original) 

will take place (Fig. 3.1 c). In order to achieve the insertion of the M13 coding regions 

and the deletion of the recA gene by homologous recombination, the flanking DNA 

regions (each of approximately 1.2 kb) adjacent to the recA gene were cloned in a 

recombination cessette in the same orientation as in the chromosome of E.coli. 
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Figure3.1: General strategy for the gene insertion method. The initial 
recombination event occurs between homologous sequences of the
cassette and the chromosome and results in the formation of a 
cointegrate (a). Cointegrates are identified by plating transformed 
cells onto medium that selects for the antibiotic resistance gene 
encoded by the cassette (eg. tetracyclin resistance). After growth 
on non-selective medium, the cointegrates undergo a second 
recombination event, excising the cassette from the chromosome. 
Depending on the site of the second recombination event, the gene 
D on the chromosome will either be replaced by the region to be 
inserted (b) or remain in the chromosome (c). 

Recombination cassette

chromosome 
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3.2. Strategy used for the Integration of M13 genome without the IG 

region (M13�IG) into the E.coli Chromosome by Homologous 

recombination. 
 

Prior to the integration of the M13�IG genome into the E. coli chromosome, a 

locus on the chromosome was chosen as the target for integration. We chose this locus 

to be the recA gene of E. coli because recA protein plays a major role in the cell in 

DNA repair by recombination. Thus, recA+ cells are expected to be  more amenable to 

homologous recombination. Also, the consequences of insertion of the target DNA into 

the recA locus by homologues recombination would result in the loss of recA gene 

which would make the constructed new strain recA-. This is advantageous since recA- 

E. coli strains are more suitable in cloning experiments due to the deficiency of recA- 

strains in recombination events. 

Thus, in order to integrate the M13�IG, a recombination cassette was designed. 

Ultimately this cassette would lack an active replication origin of any sort in E. coli 

prior to the transfer of the cassette in to E. coli cells, so that any colonies expressing the 

marker gene present on the cassette would have to be the ones where the recombination 

cassette integrated into the bacterial chromosome. This cassette would contain the 5’ 

and the 3’ flanking regions of the E. coli recA gene which would provide homology 

required for the homologous recombination event and the M13�IG DNA in between 

these two flanking regions. There would also be a selectable marker gene which was 

decided to be the tetracycline resistance gene.  

 

3.3. Construction of the Recombination Cassette 
 

  Primers P55 and P53 (with PstI and EcoRI 5’ extensions on P55 and P53 

respectively) were designed for the production of 1.3 kb.fragments upstream of recA 

gene (figure 3.2). This fragment was called “5’recA”. E.coli chromosomal DNA was 

used as the template and the reaction conditions were as follows: 

Step1: 94°C for 1 min. 

Step2: 94°C for 1 min. (Denaturation) 

Step3: 54°C for 2 min. (Annealing) 

Step4: 72°C for 1 min. (Elongation) 
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Step5: 72°C for 10 min. (Final extension) 

30 amplification cycles  

This fragment was digested with EcoRI and PstI  restriction enzymes and then 

ligated into the MCS of the plasmid pBluescript KS+ which was also digested with the 

same enzymes. After the transformation of compotent E.coli cells with the ligation 

mixture, transformant colonies were selected on LB-agar plates containing ampicillin, 

X-gal and IPTG . Plasmid DNA were prepared from selected white colonies and they 

were checked for the presence of 5’rec A fragment by restriction enzyme digestion 

analysis. One of the plasmids which was confirmed to contain the 5’rec A fragment was 

used for further experiments. This plasmid was called “pBlue-5’recA” (figure 3.3). 

   Primers P35 and P33 (with SacI and XhoI extensions respectively) were 

designed for the amplification of the 1.2 kb. fragment which was called “3’recA” 

immediately downstream of the recA gene. The reaction conditions for this 

amplification was same as for the amplification of 5’recA fragment. This fragment was 

then digested with XhoI and SacI restriction enzymes and cloned into the MCS of the 

plasmid PCRII which was also digested with the same enzymes. After the 

transformation of compotent E.coli cells with the ligation mixture, transformant 

colonies were selected on LB-agar plates containing ampicillin. Plasmid DNA was 

prepared from ampicillin resistant colonies and they were checked for the presence of 

the 3’recA fragment by restriction enzyme digestion analysis. One of the plasmids 

which was confirmed to contain the 3’recA fragment, called “pCRII-3’recA”, was used 

for further experiments (figure 3.4). 
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Figure 3. 2: Amplifications of downstream and upstream fragments of the RecA gene. 
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Figure  3. 3: Construction of Pblu 5’recA vector 
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Figure 3. 4: Construction of PCRII 3’recA vector 

 

In order to clone the marker gene (tetracycline resistance gene), primers T3 and 

T5 with XhoI and XbaI extension respectively were designed for the amplification of the 

tetracycline resistant gene (tet) from the plasmid pBR322 (figure 3.5). The tet gene was 

used in order to monitor the integration of M13 into E.coli genome. Both the tet gene 

and the pCRII 3’recA plasmid described above were digested with XhoI and XbaI and 

were then ligated to each other to produce the plasmid PCRII 3’recA-Tet (Fig. 3. 6) 

  Primers M5 and M3 with EcoRI and SacI extension, respectively were also 

designed for the amplification of a 6,072 bp fragment on the M13 genome. This 
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fragment (M13�IG) contains all of the bacteriophage M13 protein coding regions 

(geneI, geneII, geneIII, geneIV, geneV, geneVI, geneVII, geneVIII, geneIX and geneX) 

except the intergenic region (IG) which contains the origin of replication and the 

packaging signal for the phage genome (figure 3.7.). M13�IG and the plasmid 

Pblu5’recA were both digested with SacI and EcoRI enzymes and ligated to to each 

other to obtain the plasmid pBlue5’recA M13 (Fig. 3. 8.). 

   pBluescriptKS+ vector carries a plasmid origin of replication and the IG region 

of the phage M13. Since plasmids carrying the M13 origin of replication can be 

packaged into M13 phage particles, such plasmids are also called as phagemids. For this 

reason, we decided to use pBluescriptKS+ in order to be able to confirm the 

functionality of the M13 genes present in the M13�IG fragment. Since M13�IG lacks 

the replication origin of M13, M13�IG cloned into the phagemid pBluescriptKS+ 

would have all the necessary sequences for the production of phage particles. Thus this 

construct would be able to produce phage particles in the bacteria it is transformed with 

and would give rise to plaque formations in a plaque assay confirming the functionality 

of the phage genes present on the PCR amplified M13�IG fragment. 

   Plasmid DNA from the ampicillin resistant colonies were analysed by restriction 

enzyme digestion and one of the colonies which was confirmed to contain the plasmid 

pBlu5’recA M13 was further subjected to plaque assay analysis in order to confirm the 

functionality of the cloned M13�IG DNA (figure 3.9).  

After the observation of plaque formation, both the 5’recA and the M13�IG 

sequences present on the pBlu5’recA M13 plasmid, were planned to be transferred into 

another plasmid vector (pUC18) which does not contain a bacteriophage replication 

origin, in order to construct the backbone for the homologous recombination cassette. 
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Figure. 3. 5: Amplification of Tet gene 
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Figure 3. 6: Construction of PCRII 3’recA Tet vector 
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Figure 3. 7: Amplification of M13 genes excluding IG region 



 44

 

 

Figure 3. 8: Construction of Pblu 5’recA m13 vector 
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Figure 3.9: Confirmation of the location of additional EcoRI site. Lanes 1. 1 kb 
DNAmarker; 2. Pblu 5’recA digested with EcoRI; 3. Second control of 
Pblu 5’recA  digestion; 4. M13mp19 digested with EcoRI; 4. Second 
control of M13mp19. 

 

 

 

 
 

Figure 3.10: Restriction digestion analyses of Pblu 5’recA M13. Lanes 1. 1 kb 
DNAmarker; 2. Pblu 5’recA m13 digested with SacI; 3Pblu 5’recA m13 
digested with EcoRI; 5. Pblu 5’recA m13 digested with EcoRI-SacI.  
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For this purpose, both the pBlu5’recA M13 and the pUC18 plasmids were 

digested with EcoRI and SacI. . According to the sequence data of the plasmid 

pBlu5’recA M13, digestion of this plasmid by EcoRI and SacI enzymes should produce 

two fragments with sizes of around 7.1 and 2,9kb. However, upon analysis of the 

digested fragments by agarose gel electrophoresis, three fragments of sizes 4.4, 2.7 and 

2,9kb were observed (fig. 3.10). Further digestion analysis of this plasmid and the M13 

genomic DNA with other restriction enzyme combinations (PstI, EcoRI and PstI-EcoRI) 

confirmed that there was an extra EcoRI site generated at the gene III region of the 

M13�IG fragment (data not shown), indicating the fact that a mutation was introduced 

into the plasmid pBlu5’recA M13 most probably during the PCR amplification of the 

M13�IG fragment. 

After this finding the plaque formation assay was repeated for E. coli cells that 

harboured the plasmid pBlu5’recA M13 and the results were compared with the results 

obtained with the E. coli cells infected with the wild type M13 phage particles in order 

to see if the mutation had any effect on the constract’s ability to produce phage 

particles. However, plaque formation was observed in both experiments and the number 

of plaques observed in each group were comparable. This result showed us that the 

mutation did not affect the function of M13 genes present in plasmid pBlu5’recA M13 

(figure 3.11). 

Generation of an extra EcoRI site in the pBlu5’recA M13 plasmid prevented the 

transfer of the 5’recA-M13�IG fragment on this plasmid to pUC18 vector. Thus, the 

initial strategy for the construction of the recombination cassette had to be modified. In 

the new strategy, pBlue5’recA M13 and PCRII 3’recA Tet plasmids were digested with 

ApaI and SacI restriction enzymes and 5’recA-M13�IG, and 3’recA-Tet fragments 

were purified after the fragments were seperated by the agarose gel electrophoresis. 

These two fragments were then ligated to each other to form a circular double stranded 

DNA molecule called “5’recA M13-3’RecA Tet” and used as the recombination 

cassette (figure 3.11). Since this molecule does not have a replication origin, it was not 

expected to be maintained in the cell as an independent plasmid upon its transfer into E. 

coli. Any tetracycline resistant colonies formed after the transformation of E. coli 

JM110 (recA+, F+) strain by electroporation would result from the integration of the 

molecule 5’recA M13-3’RecA Tet into the bacterial chromosome by homologous 

recombination (see figure 3.1a). 
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Figure 3.11:  Results of plaque formation assay A-) Pblu5’recA-M13 B-) M13 mp19  
  as positive control C-) Pbluescript KS+as negative control 
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Figure 3.12: Schematic representation of double stranded DNA molecules 
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3.3.1 Homologous Recombination 

 
Upon transformation of E. coli JM110 cells with the circular double stranded 

DNA molecule “5’recA M13 3’recA Tet” three tetracycline resistant colonies were 

observed after 48 hour of incubation. As described above, these colonies are expected to 

contain the 5’recA M13 3’recA Tet sequences integrated to their chromosomes. The 

possibility of the recombination events responsible for the integration are illustrated in 

figure 3.12. To prove the presence of the M13 genes in the E.coli chromosome, those 

three colonies were further analyzed by observing their plasmid profiles and PCR. 

In order to show that the tetracycline resistance did not orginate from a self 

replicating plasmid molecule inside the cells, plasmid DNA isolation was performed to 

all the three tetracycline resistant cells. The results of this isolation experiment did not 

show any evidence for the presence of a plasmid molecule in any of the colonies (data 

not shown). 
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Figure 3.13: Schematic representation of created homologous recombination events 
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Figure 3.14: PCR analysis of recombinant chromosomal DNA for the presence of 
5’recA-Tet fragment. Lanes 1. 1 kb DNA marker; 2. Recombinant 
colony 1; 3 recombinant colony 2; 4 Recombinant colony 3; 4. JM109 as 
negative control by using the primers T5, P35  

 
 

 

 
 

Figure 3.15: PCR analysis of recombinant chromosomal DNA for the presence of Tet   
marker gene. Lanes 1. 1 kb DNA marker; 2. Recombinant colony 1 3; 
PCRII 3’recA Tet as positive control; 4. JM109 as negative control by 
using the primers T3 and T5. 
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Figure 3.16: PCR analysis of recombinant chromosomal DNA for the presence of 

M13�IG. Lanes 1. 1 kb DNA marker; 2. Recombinant colony 1; 3 
recombinant colony 2; 4. M13mp19 as positive control; 5. Pblu 5’recA 
M13 as positive control; 6. JM109 as negative control by using the 
primers M3,M5 

 
Further analysis on these cells were performed by PCR by using primers that 

would amplify the sequences of the tetracycline resistance gene, M13�IG, and the 

combined sequences of tetracycline and 5’recA which would only be present in the 

integrated recombination cassette (figure 3.11). Upon PCR, the existence of bands 

corresponding to the fragments tet-5’rec A in all three recombinants showed the 

presence of the recombination cassette (See Figure 3.13). However, the M13�IG 

fragment was amplified in only the two of the recombinants (figure 3.14) and the tet 

sequence was amplified in only one of the recombinants (figure 3.15). This 

inconsistency could be partly explained by the impurities present in the genomic DNA 

templates used for PCR, affecting the efficiencies of the different primer pairs or by 

experimental errors. 

 In the observation of PCR product of M13�IG amplification reaction, a different 

profile was observed on positive control well. Two positive controls were used in this 

reaction as mentioned above. This time however, in the positive control M13�IG 

amplifications an unexpected product profile was obtained; it produced a much larger 

DNA fragment than the integrated fragment 

The confirmation of the functionality of the M13 genes was tested for the 

formation of plaques on recombinant colonies transformed with pBluscriptKS+ 
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phagemid DNA. If the cells expressed all the M13 genes in a functional form, those 

cells would be expected to form phage particles packaging the pBluscriptKS+ phagemid 

DNA and would give rise to plaque formations in a plaque assay. 

 However, although plaques were observed in the control assays where E. coli 

JM110 cells were infected with the wild type M13 phages, no plaque formation was 

observed in any of the recombinants during these assay.  
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CHAPTER 4 
 

DISCUSSION 
 

In this study, a new platform was aimed to be developed for the phage display 

technology. The strategy was novel and its advantages could have been enormous. 

However, although M13 genome that contained a deletion of the intergenic region was 

integrated into JM110 E.coli chromosome which was proved by number of analysis, 

M13 genome in E.coli chromosome did not support the production of phage particles 

upon transformation of the E. coli cells with a phagemid vector. 

There have been many reports described so far related to the instability of M13 

genome and the illegitimate recombination events that occured during the cloning 

experiments of M13  (Villette et al., 1996; French et al., 1992; Liu and Alberts, 1995). 

Phage display technology itself also suffers from deletion and insertion of random 

sequences and the loss of the genes coding for the desired polypeptides displayed on the 

phage surfaces  Also, there are several reports describing the toxicity of some of the 

M13 proteins to the E. coli cells (Russel et al.,2004; Sidhu, 2000). 

Thus it is highly possible that the insertion of a large DNA fragment containing 

the M13 genome together with the tetracycline resistance gene could have put the cells 

under a considerable strain interfering with their viability and forcing the integrated 

M13 sequences to mutate. This would ultimately lead to the selection of integrants 

carrying mutations leading to the loss functional M13 genes preventing the formation of 

phage particles. 

 We also observed some mutations during the cloning of M13 DNA during the 

preparation of the recombination cassette before the integration experiments. We cloned 

the M13 genome into three different plasmids which were pUC18, pCRXL-TOPO and 

pBluescriptKS+. Restriction analysis of the recombinant colonies obtained after the 

transformation of E. coli cells with the ligation mixtures of M13 genome with the 

relevant plasmids showed several insertions or deletions in the cloned plasmids (data 

not shown). However, we chose to continue our expirements by cloning in the 

pBluescriptKS+ plasmid (phagemid) because it seemed to form the most number of 

stable recombinant plasmids. Since pBluescript phagemid contains the intergenic region 

of M13, such recombinants can produce and release phage particles (see chapter 3, 
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figure 3.11) preventing the accumulation of phage proteins inside the cells that might be 

toxic for the cells. However, recombinants of the other plasmids cannot produce phage 

particles thus leading to the accumulation of toxic M13 proteins ultimately leading to 

cell death making the selection of only the cells carrying the mutated recombinant 

plasmids. 

On the other hand, during the integration experiments, we had to use a construct 

that does not contain the intergenic region of the M13 genome in order to force the 

construct to integrate into the chromosome. However, since a bacteria that contains an 

integrated copy of this constract lacks an M13 intergenic region, it will fail to produce 

phage particles leading to the accumulation of M13 toxic proteins inside the cells 

causing cell death. Thus the only bacteria that will be selected would be the ones which 

do not express the toxic M13 proteins due to mutations gained after the integration 

event.  

In order to overcome such problems the toxicities of each of the M13 genes on 

the E. coli cells should be investigated by cloning and expressing each of them 

separately in the cells. Then, the ones which are toxic should be eliminated from the 

recombination constracts and expressed in the phagemid genome that also carries the P3 

and the P3-fusion genes. Only then we believe that this strategy we tried to be 

developed in this study will be a success and a novel alternative to the current phage 

display strategies.  
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APPENDIX A 
 

CHEMICALS 
 

Table A.1 Chemicals Used in the Experiments (cont. on next page) 

 

CHEMICAL CODE 

Agar-Agar Applichem A0949 

Peptone from Casein Applichem A2210 

D (+)-Glucose Applichem A3666 

Yeast Extract Merck 1.03753 

Glycerol Applichem A2926 

Sodium chloride Applichem A2942 

Potassium phosphate  Applichem A2945 

MgSO4.7H2O Merck 1.05886 

Disodium hydrogen phosphate  Applichem A2943 

Ammonium sulfate Applichem A3585 

Cetyl trimethylammonium bromide Applichem A0805 

Tris Base Sigma T6066 

EDTA Applichem A2937 

Isopropanol Applichem A3928 

Proteinase K Applichem A3830 

Ethidium bromide Applichem A1151 

Ethanol Applichem A1151 

Taq DNA polymerase MBI, Fermentas EP0401 

EcoRI MBI, Fermentas ER0273 

SacI MBI, Fermentas ER1133 

PstI MBI, Fermentas ER0612 

ApaI MBI, Fermentas ER1412 

XhoI MBI, Fermentas ER0692 

XbaI MBI, Fermentas ER0682 

T4 DNA Ligase MBI, Fermentas EP0062 

CIAP MBI, Fermentas EF0342 
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dNTP set MBI, Fermentas R0181 

Ampicillin Applichem A0839 

Kanamycin Applichem A1493 

Tetracycline Applichem A2228 

X-Gal Applichem A4978 

IPTG Applichem A4773 

Agarose (Standard) Applichem A2114 

Lysozyme Applichem A3711 

Chloroform Applichem A3830 

Isoamyl alcohol Applichem A2610 

Sodium dodecyl sulphate  Applichem A2263 

Sodium hydroxide  Merck 1.06498 

Hydrochloric acid (HCl) Merck 1.00317 

Ammonium acetate Applichem A2936 

Phenol Applichem A1594 

1 kb DNA Ladder Gene RulerTM Fermentas SM0313 

D (+)-Sucrose Applichem A3935 

Potassium hydroxide  Amresco 1073B60 
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APPENDIX B 

 

RECIPIES FOR MEDIA USED IN EXPERIMENTS 
 

B.1. LURIA- BERTANI BROTH AND AGAR (LB) 
 

g/l 

Deionized H20, to 950 ml 

Tryptone, 10  

Yeast extract, 5  

NaCl, 10  

For solid medium  

Bacto-agar, 13  

 To prepare LB medium, ingredients are dissolved by stirring until the solutes 

have dissolved. The pH is adjusted to 7.0 with 1M NaOH. The volume of the solution is 

completed to 1 liter with deionized H20. Medium is sterilized by autoclaving for 20 m at 

15 psi on liquid cycle. 

 

B.2. SOC MEDIUM 
 

g/l 

Deionized H20, to 950 ml 

Tryptone, 20 

Yeast extract, 5  

NaCl, 0.5 

For solid medium  

Bacto-agar, 13 g 

 

Components are added into distilled water and mixed thoroughly. The pH is brought to 

7.3. Medium is sterilized by autoclaving 20 m at 15 psi on liquid cycle. After 

sterilization 20 ml of a sterile 1M solution of glucose (This solution is made by 18 g of 
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glucose in 90 ml of H20 and after the sugar has dissolved, adjust the volume of the 

solution to 100 ml with deionized H20 and sterilized by filter) 

 

B.3. MINIMAL MEDIUM (M9) 
 

B.3.A. 5X M9 MEDIUM 
 

g/l 

 

Na2HPO4, 30  

KH2PO4, 15 

NH 4Cl, 5 

CaCl2, 0.15 (optional) 

 

B.3. M9 PLATE 
 

15 g of agar is autoclaved in 800 ml of deionized H20 for 15 m. sterile concentrated 

minimal medium and carbon source was added into the sterile agar solution. 

 

B.4. 2X YT MEDIUM 
 

Deionized H20, to 950 ml 

Tryptone, 16 

Yeast extract, 10 

NaCl, 5 

For solid medium  

Bacto-agar, 13  

For soft agar  

Bacto-agar, 8 
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APPENDIX C 
 

BUFFERS AND STOCK SOLUTIONS 
.  

C.1. 50 X TAE 
 

242 g Tris base is dissolved in deionized water; 57.1 ml glacial acetic acid and 100ml 

0.5 M EDTA (pH 8.0) are added. Volume is adjusted to 1000 ml with deionized water. 

 

C.2. 1 X TAE 
 

20 ml of 50X TAE buffer is taken and the volume is adjusted to 1000 ml with deionized 

water to obtain 1000 ml 1X TAE buffer. 

 

C.3. 10 X TBE 
 

108 g Tris Base and 55 g boric acid were weighed. They were dissolved in nearly             

800 ml of deionized water and 40 ml 0,5 M EDTA pH 8,0 was added. The volume was 

brought to 1 L with deionized water 

 

C.4. 1X TBE 
 

100 ml 10X TBE was taken and the volume was brought to 1 liter with deionized 

water to obtain 1liter 1X TBE buffer 

 

C.5. CTAB/NaCl (10% CTAB in 0.7M NaCl) 
 

NaCl (4.1 g) is dissolved in 80 ml water and CTAB is added slowly while heating and 

stirring. Final volume is adjusted to 100 ml 

 

C.6.  1X TE (pH 8.0) 
 

10 mM Tris (pH 8.0), 1mM EDTA 
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C.7. Tris-HCl (1 M, pH 8.0) 
 

121.1 g Tris base is dissolved in 800 ml of deionized water. pH is adjusted to 8.0 with 

concentrated HCl. Volume is adjusted to 1000 ml with deionized water. The solution is 

sterilized by autoclaving. 

 

C.8. Tris-HCl (1M, pH 7.2) 
 

121.1 g Tris base was dissolved in 800 ml of deionized water. pH was adjusted to 7.5 

with concentrated HCl. Volume is brought to 1l with deionized water. 

 

C.9. EDTA (0.5 M, pH 7.5, 8.0 and 9.5) 
 

186.1 g of EDTA is dissolved in 800 ml of deionized water and pH is adjusted to 

desired value with 10 N NaOH. Volume is brought to 1000 ml with deionized water. 

The solution is sterilized by autoclaving. 

 

C.10. Sodium Acetate (3M, pH 4.8) 
 

408.1 g sodium acetate (3 H2O) is dissolved in 800 ml deionized water and the pH is 

adjusted to 4.8 by glacial acetic acid. Volume is adjusted to 1000 ml with distilled 

water. The solution is sterilized by autoclaving. 

 

C.11. Solution I 
 

50 mM glucose 

10 mM EDTA (pH 8.0) 

25 mM Tris.Cl (pH 8.0) 

Solution I is prepared in 100 ml of deionized H2O and sterilized by autoclaving for 20 

m at 15 psi on liquid cycle. 
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C.12. Solution II 
 

0.2 N NaOH (freshly diluted from 10 N stock) 

1% SDS 

 

C.13.  Solution III 
 

5M Potassium Acetate 

Glacial acetic acid 

H2O 

The resulting solution is 3M with respect to potassium and 5M with respect to acetate 

 

C.14. Ammonium Acetate (10M) 
 

770 g of ammonium acetate is dissolved in 800 ml of distilled water. Volume is 

adjusted to 1000ml. The solution is sterilized by filtration. 

 

C.15. Ethidium Bromide (10 mg/ml) 
 

1 g of ethidium bromide is dissolved in 100 ml of deionized water by stirring for several 

hours. The solution is stored in a dark bottle at room temperature. 

 

C.16. Phenol 
 

Phenol should be allowed to warm at room temperature, and it is melted at 68 °C. Equal 

volumes of buffer (usually 0.5 M Tris.Cl, pH 8.0, at room temperature) are added to the 

melted phenol. The mixture is stirred for 15 minutes and allowed to settle. When the 

two phases have separated, the aqueous (upper) phase is removed using a separation 

funnel. Then equal volume of 0.1 M Tris.Cl, pH 8.0, is added to the phenol. The 

mixture is again stirred for 15 minutes and allowed to settle. The aqueous phase is 

removed as described before. The extractions are repeated until the pH of the phenolic 

phase reached to �7.8. The pH is measured by using pH paper slips. After the phenol is 

equilibrated, the mixture is divided into aliquots. They are stored less than 100 mM 
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Tris.Cl (pH 8.0) at -20ºC. Before use, the phenol is melted at room temperature. 

Hydroxyquinoline and �-mercaptoethanol are added to a final concentration of 0.1% 

and 0.2 %, respectively. The phenol solution can be stored in this form at 4ºC. 

 

C.17. Chloroform-Isoamyl Alcohol Solution 
 

96 ml of chloroform was mixed with 4 ml of isoamyl alcohol. 

. 

C.18. Phenol: Chloroform: Isoamyl Alcohol (25:24:1) 
 

Equal volume of phenol and chloroform isoamyl alcohol (24:1) solutions are mixed. 

The solution is stored in a light-tight bottle at +4°C for periods up to 1 month. 

 

C.19. 6X Gel Loading Buffer (20 ml) 
 

2 ml of 10x TBE, 6 ml of glycerol and 12 ml deionized water are mixed. Bromophenol 

blue is added with toothpick until obtaining sufficient color of the solution. 

 

C.20. Polyethylene Glycol (PEG) Solution 
 

30 % (w/v) PEG 8000 

1.6 M NaCl 

 Store indefinitely at +4 0C. 
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APPENDIX D 

                     

PCR RECIPIES 
 

D.1 PCR MIXTURE 
 

Mg free Taq DNA polymerase buffer: 5 µl 

MgCl2 (25 mM) :3 µl 

Sterile deionized water: 35 µl 

Oligo forward (10 picomole/ µl): 1 µl 

Oligo reverse (10 picomole/ µl): 1 µl 

dNTP (2mM each) 10X: 5 µl 

Taq DNA polymerase: 0.25 µl (1.25 U) 
 

D.2 6X GEL LOADING BUFFER (20 ML) 
 

10x TBE 2 ml 

Glycerol 6 ml 

Deionized water 12 ml 

Bromophenol blue was added with toothpick until obtaining sufficient color of the 

solution. 
 

D.3 dNTP (10X) 
 

10 µl of each 100mM dATP, dCTP, dGTP and dTTP in separate vials were taken. They 

were mixed in 0,2 ml PCR tubes and 460 µl sterile deionized water was added. They 

were mixed gently and 2mM concentration of each was obtained and stored at 20 °C. 

 

D.4. RESTRICTION ENZYME MIXTURE 
 

Restriction enzyme buffer: 5 µl 

Sterile deionized water: 35µl 

DNA: 10 µl 

Restriction Enzyme: 0,5 µl (5U) 
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APPENDIX E 

 

OLIGONUCLEOTIDE PRIMERS 
 

 
P35 :CCT TCT CGG AGC TCA TCA AGT GTT TTG TAG AAA TTG TTG CC 
  
P33 :CCT TCT CGC TCG AGG CTC AAT CTG AAA GGT TCC TTT GCC 
 
P55 :CCT TCT CGG AAT TCC ATC GTG TTT GAA ATA GTC GCC G 
 
P53 :CCT TCT CGC TGC AGG CAA CCC GAA CTC AAC GCC GG 
 
M5 :CCT TCT CGC TGC AGT TTA ACG CGA ATT TTA ACA AAA TAT TAA 

CG 

M3 :CCT TCT CGG AGC TCC TAC AGG GCG CGT ACT ATG GTT GC 
  
T5 :CTT TCT CGC TCG AGT TCT CAT GTT TGA CAG CTT A 
 
T3 :CCT TCT CGT CTA GAT CAG GTC GAG GTG GCC C 
 
  


