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ABSTRACT 

 

BRAIN LIPID PROFILING OF TRIPLY MOUSE MODEL WITH THE 

DEFICIENCIES OF SIALIDASE NEU1, NEU4 AND  

β-HEXOSAMINIDASE A ENZYMES 
 

Tay-Sachs disease is a severe lysosomal storage disorder caused by mutations in 

the HEXA gene coding for α subunit of lysosomal β-hexosaminidase A enzyme, which 

converts GM2 to GM3 ganglioside. HexA
-/-

 mice, depleted of β-hexosaminidase A 

enzyme, remain asymptomatic to 1 year of age, so it was thought there is a difference 

between human and mice lipid degradation. Previously identified a novel ganglioside 

metabolizing sialidase, Neu4, is abundantly expressed in mouse brain neurons. It was 

demonstrated that mice with targeted disruption of both HexA and Neu4 genes (HexA
-/- 

Neu4
-/-

) show accumulating GM2 ganglioside and epileptic seizures with 40% 

penetrance. Since all mice didn’t show symptoms, it was suggested that Neu4 is not the 

only sialidase contributing to the metabolic bypass in HexA
-/-

 mice (Seyrantepe et al. 

2010). Therefore, we studied the role of another sialidase Neu 1 in glycolipid 

degradation. We profiled brain glycolipid content of triple deficient mouse model with 

the deficiency of β-Hexosaminidase A (0% activity), sialidase Neu4 (0% activity) and 

sialidase Neu 1 (10% activity) (NeoIn) by thin layer chromatography. Analysis of both 

double (HexA
-/-

NeoIn
-/-

) and triple (HexA
-/-

Neu4
-/-

NeoIn
-/-

) mice models showed that 

sialidase Neu 1 deficency causes not significant difference in brain lipid profile and 

though also other sialidase/sialidases might have role in glycolipid degradation pathway 

in mice. 
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ÖZET 

 

SĠALĠDAZ NEU1 VE NEU4 ĠLE β-HEKZOSAMĠNĠDAZ A 

ENZĠM EKSĠKLĠĞĠ OLAN FARE MODELĠNDE BEYĠN LĠPĠD 

PROFĠLĠNĠN ÇIKARILMASI 

 

Tay-Sachs hastalığı GM2 gangliosidinden sialik asidi uzaklaştırarak GM3’e 

dönüştüren β-Hekzosaminidaz A enziminin α alt ünitesini kodlayan HEXA genindeki 

mutasyonların sebep olduğu ölümcül bir lizozomal depo hastalığıdır. β-Hekzosaminidaz 

A eksikliği olan Tay-Sachs hastalığının fare modeli (HexA
-/-

) yaratılmış, bu farelerde 

kısıtlı bir GM2 birikimi olmasına rağmen hastalık bulguları gözlenmemiştir. Bu durumda 

insan ile fare arasında lipidlerin yıkım yolaklarının farklı olduğu, HexA
-/-

 farelerde bir 

ya da daha fazla sialidaz enziminin yer aldığı bir bypass mekanizması ile GM2’nin 

yıkılarak birikmediği ileri sürülmüştür (Sango et al. 1995). Bu hipotezi test etmek amacı 

ile yaratılan β-Hekzosaminidaz A ve sialidaz Neu 4 eksikliği olan farelerin (HexA
-/-

Neu4
-/-

) %40’ının beyinlerinde belirgin miktarda artan GM2 ile bağlantılı epileptik 

krizler gözlenmiştir (Seyrantepe et al. 2010). Krizler tüm farelerde gözlenmediği için 

başka sialidaz ve/veya sialidazların bu yolakta yer alabileceği düşünülmüştür. 

Çalışmamızda bu hipotezi test etmek için üç enzim eksikliği olan (β-Hekzosaminidaz 

A- (%0 aktif), sialidaz Neu4- (%0) aktif ve sialidaz Neu1- (%10 aktif) (NeoIn) farelerin 

beyin lipid profilleri karşılaştırılmıştır. Ġnce tabaka kromotografisi ile yapılan 

analizlerde hem ikili (HexA
-/-

NeoIn
-/-

) hem de üçlü (HexA
-/-

Neu4
-/-

NeoIn
-/-

) enzim 

eksikliği olan farelerde, sialidaz Neu 1 eksikliği, beyin gangliosid içeriklerinde çok hafif 

bir farklılığa yol açmıştır. Bu da sialidaz Neu 1’in ve ayrıca diğer sialidaz/sialidazların 

fare gangliosid yıkım yolağında rol alabileceğini düşündürmektedir.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Glycolipids 

 

Glycolipids are glycosylated form of lipids that derive from a hydrophobic 

moiety such as ceramide by the addition of one or more monosaccharide residues 

(Chester 1997). Glycolipids are found in all animal cell plasma membranes, and 

constitute 5% of the lipid molecules in the outer leaflet of the membrane. Glycolipids in 

the plasma membrane bind extracellular matrix, serve as receptors for external 

molecules, protect the membrane integrity from environmental affects, such as low pH 

and degradative enzymes, and in neurons glycolipids may also play a role in electrical 

insulation (Hakomori 1986; Quinn and Cherry 1992). When needed, glycolipids are 

synthesized in the lumen of Golgi apparatus by the sequential addition of sugar groups 

to the newly synthesized lipid molecules. Later, they are degraded in lysosomes by 

enzymes that remove sugar residues (James 2007).  

 

1.2. Sphingolipids 

 

Sphingolipids are complex glycolipids having the core structure of sphingosine 

which is an 18-carbon amino alcohol with an unsaturated hycdrocarbon chain (Carter et 

al. 1947). Sphingolipids are divided into three groups; I) ceramide, II) sphingomylein 

and III) glycosphingolipid (Klenk and Fauenstein 1951; Yamakama and Suzuki 1951). 

(Figure 1.1) These three differ in the groups that attached to sphingosine. Sphingolipids 

are found in the external layer of the membrane (Feizi 1985) and build cell surface by 

anchoring carbohydrate groups to plasma membrane (Kolter and Sandhoff 1999). 
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Figure 1.1. Structures of (A) ceramide, (B) sphingomyelin (have phosphocholine group) and (C) 

glycosphingolipid (have sugar group) 

 

1.2.1. Glycosphingolipids 

 

Glycosphingolipids (GSLs) are subgroup of glycolipids that has ceramide as the 

hydrophobic lipid moiety (Stults et al. 1989). They derived from glucosylceramide 

(GlcCer) or galactosylceramide (GalCer) (Coetzee et al. 1998). Amoung all tissues, the 

highest concentration of GSLs are found in the central nervous system tissues mostly 

contributing to the formation and stabilation of myelin protein which covers neurons 

(Yu and Saito 1989; Coetzee et al. 1998).  

GSLs are mostly found on the outer leaflet of the plasma membrane and have 

roles in cell to cell interaction (Roseman 1971; Hakomori 1970), malignant 

transformation of cell (Hakomori 1973; Fishman 1975), cell differentiation (Varki 

1993), signalling pathway (Hakomori 1990; Nagai and Tsuji 1994), cell adhession 

(Hidari et al. 1996), and cell death (Kohyama-Koganeya et al. 2004; Segui et al. 2006). 

GSLs are also important for intracellular protein trafficking, for instance protein 

transport from Golgi to melanosomes (intracellular melanin pigment containing 

membraneous structure) (Sprong et al. 2001). Since they have varies roles in different 

cell types, the pattern of glycosphingolipids varies especially during cell differentiation 

(Yu 1994). GSLs have a high melting temperature because of high saturation of 

hydrocarbon chains (Hoekstra et al. 2003). This property let them to self-associate in the 
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fluid plasma membrane (Ramstedt and Slotte 2006) to function in counted cellular 

processes (Simons and Ikonen 1997; Hancock 2006). 

GSLs are highly heterogeneous and they show a big diversity depending on their 

carbohydrate structures and lipid moieties (Lingwood 2000). There are two families of 

glycosphingolipids that derived from glycosylceramide; the neutral glycosphingolipids 

and the acidic glycosphingolipids.  

 

1.2.1.1. Neutral Glycosphingolipids 

 

Neutral glycosphingolipids are glycosphingolipids without sialic acid or sulfate 

groups on their carbohydrate chains. Glucosylceramide, galactosylceramide, 

lactosylceramide, trihexosylceramide, phosphatidyletanolamine, phosphatidylcholine, 

plasmalogens, cholesterol, ceramide, sphingomyelin and cerebroside (Denny et al. 

2007) are all in this group.  

 

1.2.1.2. Acidic Glycosphingolipids 

 

Acidic glycosphingolipids include gangliosides (the ones with sialic acid group 

attached to carbohydrate chain), cardiolipin, phosphatidylserine, phosphatidylinositol, 

phosphatidic acid and sulfatides (the ones with sulfate group attached to carbohydrate 

chain) (Lloyd and Furukawa 1998; Denny et al. 2007). 

 

1.2.1.2.1. Gangliosides  

 

Gangliosides are known as being complex glycosphingolipid which 

characteristically phosphorous free and contain sialic acid (N-acetylneuraminic acid) 

(NANA or SA or Neu5Ac or NeuAc) (Varki and Schauer 2001) (Figure 1.2), on their 

carbohydrate chain that consists of glucose, galactose and N-acetylgalactosamine 

residues (Klenk 1942) (Figure1.3). Gangliosides were firstly purified (Klenk 1935) and 

investigated from the brain of a patient with the Niemann-Pick disease (Klenk 1939) 

which is caused by the deficiency of sphingomyelinase enzyme resulting in the 

accumulation of sphingomyelin, cholesterol, and other kinds of lipids within the cells 
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and tissues of affected individuals (Schneider and Kennedy 1967). However, whole 

ganglioside structure became clear almost 3 decades later (Kuhn and Wiegandt 1963), 

after elucidation of sphingosine (Carter 1947) and sialic acid structures (Gottschalk 

1955). Gangliosides are found in all vertebrate cells (Yu and Saito 1989; Hakomori 

2001) as well as invertebrate cells (Sugita 1979; Smirnova and Kochetkov 1980; 

Zvezdina et al. 1989; Huwiler et al. 2000; Saito et al. 2001). Although they are abundant 

in brain (Leeden and Yu 1982; Svennerholm 1984; van Echten and Sandhoff 1989), 

they also exist in red blood cell stroma (Yamakawa 1951; Klenk and Wolter 1952), 

spleen (Klenk and Rennkamp 1942; Klenk 1959), human liver (Nilsson and 

Svennerholm 1982), human kidney (Rauvala 1976), porcine testis (Suzuki et al. 1975), 

rat testis (Keenan et al. 1972) and bovine testis (Bushway et al. 1977). They are not 

determined in some plants and microorganisms (Sperling and Heinz 2003; Warnecke 

and Heinz 2003; Lynch and Dunn 2004). 

 

 

 

Figure 1.2. Structure of sialic acid 

 

With a big saccharidic head group and double hydrophobic tails, gangliosides 

are categorized as complex lipids. The core molecule of gangliosides is ceramide which 

is found in all sphingolipids (Karlsson 1970). Sialic acids can be attached to core 

structure of glycosphingolipid in several positions which causes the heterogeneity 

amoung gangliosides. Additional diversity of the gangliosides arises from their 

hydrophobic components, fatty acids, connections, sequence and long chain bases as 

well as their carbohydrate moieties (Sonnino et al. 2006). Also the ceramide part of the 

lipid contributes this diversity by variations of alkyl chain length, the hydroxylation 

degree and desaturation (Lingwood 2000). 188 different ganglisosides have been 

identified in vertebrates so far (Yu et al. 2007). 
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Figure 1.3. Schematic presentations of major gangliosides 

(Adapted from: Woods and Jackson 2006) 

 

1.2.1.2.1.1. Metabolism of Gangliosides 

 

Synthesis of all glycosphingolipids including gangliosides is revealed at 

intracellular membranes (Kolter and Sandhoff 1999; Riboni et al. 1997). The synthesis 

is started by enzymes that are active at the cytosolic face of the endoplasmic reticulum 

membrane (Mandon et al. 1992) with the formation of ceramide (Kolter and Sandhoff 

1999; Merrill 2002) and further modifications take place in the Golgi apparatus as a 

stepwise addition of extra carbohydrate groups (Maccioni 2007). Newly synthesized 

gangliosides are then transported to plasma membrane by the help of exocytotic 

membrane flow (van Meer and Lisman 2002).  Beside this flow a possible transport of 

vesicles that contain gangliosides from the Golgi apparatus to plasma membrane and 

from plasma membrane to the lysosomes was also speculated (Forman and Ledeen 

1972; Landa et al. 1981; Miller-Prodraza and Fishman 1982). 

According to their sialic acids groups gangliosides are classified into asialo-, a-, 

b-, and c- series which have no, one, two and three sialic acid residue(s) linked to their 

inner galactose, respectively (Figure 1.4). Also there are α-series gangliosides which 

have sialic acid(s) in their inner N-acetylgalactosamine residue instead of galactose 

residue (Nakamura et al. 1988). The nomenclature of gangliosides is done according to 
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Svennerholm. In this perspective ganglioside is shown as Gxyz. G indicates 

ganglioside, x indicates the number of sialic acid residues, y indicates the migration 

order in a certain chromatographic system and z indicates the position of sialic acid(s) 

linkage (a, b or c) (Svennerholm 1963, 1994). 

 

 

 

Figure 1.4. Example of asialo, a- , b- and c- series gangliosides 

 

Ganglioside synthesis in lumen of the Golgi apparatus is cathalized by numerous 

glycosytransferases and galactosyltransferases that are specific to substrates. Because 

addition of monosaccharides is revealed in the lumen of the Golgi apparatus, these 

carbohydrate groups outstretch into the extracellular space where is topologically 

equivalent to the Golgi lumen (Kaufman et al. 1968; Roseman 1970; Keenan et al. 

1974; Lloyd and Furukawa 1998; Kolter and Sandhoff 1999; Maccioni et al. 1999). 

Most gangliosides are synthesized from lactosylceramide (LacCer) while ganglioside 

GM4 is derived from galactosylceramide (GalCer). 

First reaction is revealed by enzyme lactosylceramide sialyltransferase (ST-I or 

GM3 synthase) with the addition of a sialic acid to LacCer. This reaction forms the 

simplest ganglioside, GM3 (monoasiloganglioside). GD3 (diasiloganglioside) and GT3 

(triasiloganglioside) are synthesized from GM3 and GD3 by stepwise addition of sialic 

acid with the enzymes of GM3 sialyltransferase (ST-II or GD3 synthase) and GD3 

sialyltransferase (STIII or GT3 synthase), respectively. These synthesized gangliosides, 

GM3, GD3 and GT3, act as precursors and form complex gangliosides by addition of sugar 

groups with different galactosyltransferase (GalT), sialyltransferase (ST) and N-

acetylgalactosamineyltransferase (GalNAcT) enzymes (Yu et al. 2011) (Figure 1.5). 
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There is a balance between anabolism and catabolism of gangliosides as seen in 

all biomolecules’ metabolism in the cell. Gangliosides are transported to acidic 

compartments, lysosomes, of cells by endocytosis (Kolter and Sandhoff 1996) and 

degraded by a complex mechanism that involves enzymes, activator proteins 

(sphingolipids activator proteins –SAPs) and negatively charged lipids (Kolter and 

Sandhoff 1999). Dolicol phosphate found in late endosome and lysosomes membrane 

(Cojnacki and Dallner 1988; Kobayashi et al. 1998) is an example of negatively charged 

lipid which was shown to enhance the degradation of glycosylceramide (Wilkening et 

al. 1998). Until now, five SAPs have been determined which are encoded from two 

different genes. One gene produces GM2 activator protein (GM2-AP) (Fürst and Sandhoff 

1992; Swallow et al. 1993), and second gene produces prosaposin protein which is 

further processed to four homologous proteins (SAP-A, -B, -C, -D) by proteolytic 

cleavage (Nakano et al. 1989; Fürst and Sandhoff 1992; Sandhoff and Kolter 1996; 

Kolter and Sandhoff 1999). The anabolism and catabolism reactions of gangliosides 

differ in one aspect. In anabolism of gangliosides, both substrates of glycolipids and 

enzymes are membrane-bound, but in catabolism of gangliosides, enzymes are soluble 

in lysosome. This shows the requirement of activator proteins that have an important 

role in catabolism reactions but not in anabolism reactions (Kolter and Sandhoff 1999). 

 

 

 

Figure 1.5. Synthesis pathways of gangliosides 

(Adapted from: Yu et al. 2011) 
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1.2.1.2.1.2. Functions of Gangliosides 

 

In cells, gangliosides are mostly found on the outer leaflets of the plasma 

membranes (Steck and Dawson 1974; Ledeen 1978) (Figure 1.6). Their concentrations 

on neuronal membranes are ten times higher than concentrations in non-neuronal cells 

(10-20 % of the total lipid on neuronal plasma membrane consists of gangliosides) 

(Ledeen 1985).  

 

 

Figure 1.6. Schematic representation of cell membrane site which is enriched in gangliosides and 

cholesterol (Source: Malchiodi-Albedi et al. 2011) 

 

Gangliosides are mostly found in dynamic membrane structures in plasma 

membrane, called lipid rafts (Simons and Ikonen 1997; Simons and Toomre 2000; 

Kasahara et al. 2000; van der Goot and Harder 2001; Vyas et al. 2001; Prinetti et al. 

2001; Pike 2006; Fujita et al. 2007; Hanzal-Bayer and Hancock 2007) and caveolae 

(Anderson 1998) which are characterized by high concentration of glycosphingolipids 

and cholosterols (Hakomori et al. 1998). Gangliosides can affect the physico-chemical 

properties of the plasma membrane such as fluidity (Bertoli et al. 1981; Uchida et al. 

1981), or thermotropic features (Masserini and Freire 1986) and the activity of some 

plasma membrane bound-enzymes such as kinases (Partington and Daly 1979; Davis 

and Daly 1980; Leon et al. 1981; Goldenrig et al. 1985; Kreutter et al. 1987; Chan 1988, 

1989; Yates et al. 1989; Bassi et al. 1991). They also involve in cell signaling (Roisen et 

al. 1981; Rybak et al. 1983; Tsuji et al. 1983; Bremer et al. 1984), cell to cell 

interactions (Hakomori and Igarashi 1995), and binding of viruses, toxins and hormones 

to cell (Wolley and Gommi 1965; Haywood 1974; Van Heyningen 1974; Mullin et al. 

1976; Meldolesi et al. 1976). Because they are enriched in neurons it was also suggested 
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they have a role in neurotransmitter release (Zitman et al. 2010) which involves the 

function of voltage gated Ca
2+

 channels (Kaja et al. 2007). Colocalization of Ca
2+

 

channels with gangliosides in lipid raft (Chamberlain et al. 2001; Lang et al. 2001; 

Salaun et al. 2004; Taverna et al. 2004; Davies et al. 2006) has been reported. In this 

aspect it was shown that plasma membrane localized GM1 also influences the Ca
2+

 

homeostasis by different mechanism(s) (Fang et al. 2002; Wu et al. 2004).  

Beside plasma membrane, it has been reported that rat liver hepatocytes’ nuclear 

membrane has 10 % of ganglioside concentration to plasma membrane; dominantly 

having GM1 and GM3 (Matyas and Morre 1987) while others reported that GM1 and GD1a 

are the major gangliosides found in nuclear envelope (Ledeen and Wu 2006). It also 

was reported that GM3, GD3, and GT1b gangliosides exist in the nuclei of bovine 

mammary gland which inhibit both the activity of protein kinase C (histone 

phosphorylation) and the phosphorylation of nuclear substrate (Katoh et al. 1993). In 

addition to plasma membrane, the association of GM1 with nuclear Na
+
/Ca

2+
 exchanger 

has been shown that nuclear GM1 possess an important role in Ca
2+

 homeostasis (Ledeen 

and Wu 2006; Ledeen and Wu 2008).  

Although gangliosides are abundant in neurons, they are found in different 

patterns and levels in different nervous systems (Schwarz and Futerman 1996; 

Ogawagoto and Abe 1998). For example GM1 is expressed highly in ventral comparing 

to dorsal root nerves myelin (Ogawa-Goto et al. 1992), GQ1b is high in oculomotor nerve 

(Chiba et al. 1997), GQ1b, GT1a and GD1b is found in neuromuscular junction of human 

extra ocular muscles but not found in axial and limb muscles (Liu et al. 2009). Some 

gangliosides are shown in dendritic and somatic sites of cerebellar Purkinje cells and 

retina neurons but they are not found in axons and presynaptic terminals of nerves 

(Schwarz and Futerman 1996). These also suggest gangliosides to have region specific 

functions (Svennerholm 1994). 

Gangliosides are involved in pathology of many disorders such as lysosomal 

storage diseases. These disorders occur via distrupted gangliosides synthesis or break 

down and autoimmunity against gangliosides (Plomp and Willison 2009). When 

gangliosides are recognized as foreign by immune system these reactions cause 

neurological symptoms (Willison and Yuki 2002). Guillain-Barre syndrome is an 

autoimmune disease that results from the activation of immune system to cell surface 
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gangliosides (Kaida et al. 2009). In addition, influenza A viruses recognize sialic acid 

residues of ganglioside to enter the host cell and cause disease (Suzuki 2005).  

Some other studies show that there is also disrupted ganglioside metabolism in 

Huntington’s disease (Desplats et al. 2007), multiple sclerosis (Marconi et al. 2006) and 

Alzheimer’s disease (Ariga et al. 2008). In Huntington’s disease, studies with transgenic 

mice models revealed that there is a reduction in GM1 ganglioside, decrease in 

cerebrosides and sulfatides but no change in cholesterol level (Desplats et al. 2007). 

These reduced lipids are enriched in myelin content of neurons (Sandhoff et al. 1971; 

Seyfried and Yu 1980; Kaye et al. 1992) and these differences was thought to lead 

detected abnormalities in myelin content of mice model of Huntignton’s disease. Also 

reduced gene expression of GM2/GD2 synthase and GM1b/GD1a/GT1b synthase and lower 

levels of their products were observed. All these differences seen in gangliosides may 

cause apoptosis and distruption of Ca
2+

 signaling, which are hallmarks of Huntington’s 

disease (Desplats et al. 2007). Beside Huntignton’s disease, in Alzheimer’s disease, 

specific GM1 ganglioside bound form of amyloid-β (Aβ) peptide, the known cause of 

disease pathology, were identified. GM1 ganglioside bound Aβ peptides were thought to 

be responsible for the early changes in brain of patients (Yanagisawa et al. 1997). This 

involment of gangliosides in accumulation and aggregations in Aβ peptide was also 

supported by other studies (Bernardo et al. 2009; Matsuzaki et al. 2010).  

Noteworthy evidences of gangliosides having role in cancer are also reported. It 

was shown that ganglioside GD1a induces angiogenesis and promotes cell survival, 

growth and migration on respond to growth factor (Mukherjee et al. 2008) whereas 

ganglioside GM3 supresses angiogenesis (Kanda et al. 1994). In neuroblastoma cells it 

has been reported that there are gangliosides with highly hydroxylated ceramide 

(Ladisch et al. 1989). In another study it was suggested that concentration of 

ganglioside GM3 and GD3 can enhance integrin-dependent adhesion which may promote 

tumor cell growth (Zheng et al. 1993; Cheresh et al. 1987). Some other studies revealed 

that GM3 inhibits endothelial growth factor receptor kinase whereas N-acetyl GM3 

enhances activity of this kinase (Hanai et al. 1988) and serine kinase which together 

induce cell proliferation (Zhou et al. 1994). It was also reported that tumor cells have 

greater gangliosides than normal cells (Sjoberg et al. 1995). Therefore, high 

concentration of gangliosides in blood is associated to inhibition of patients’ immune 

responses that cause tumor growth (Ladisch et al. 1994). 



11 

 

1.2.1.2.1.3. Sialidases and Degradation of Gangliosides 

 

Sialidases also called neurominidases are a family of glycohydrolytic enzymes 

that function in catabolism of sialoglycoconjugates by removing sialic acid residues 

(Saito and Yu 1995). By their activity against sialiated biomolecules, sialidases are 

important for many biological processes such as cell proliferation/ differentiation, cell 

adhesion, clearance of plasma proteins and modification of receptors beside catabolism 

of gangliosides and glycoproteins (Schauer et al. 1995; Saito et al. 1995; Reuter and 

Gabius 1996). 

Mammalian sialidases are classified into different groups according to their 

subcellular localization; cytosolic (Miyagi and Tsuiki 1985), lysosomal (Miyagi and 

Tsuiki 1984; Seyrantepe et al. 2004), lysosomal membrane associated, plasma 

membrane associated (Miyagi et al. 1990) and mitochondrial (Yamaguchi et al. 2005). 

Sialidases also differ in substrate specificity and immunological properties (Miyagi and 

Tsuiki 1985; Miyagi et al 1990). Mammalian sialidases are encoded by four different 

genes called Neu 1, Neu 2, Neu 3 and Neu 4. The quantitative real time PCR analysis 

shows that Neu 1 has highest expression level, 10-20 times higher that those of Neu 3 

and Neu 4 whereas Neu 2 has really low expression level, only four-to ten-thousandth 

of the Neu 1 (Yamaguchi et al. 2005). 

Sialidase Neu 1 is the lysosomal sialidase (Miyagi and Tsuiki 1984) which is 

encoded by the gene located in short (p) arm of chromosome 6 at position 21.3 (Oohira 

et al. 1985). Neu 1 makes complex with β-galactosidese (β-GAL) and lysosomal 

carboxypeptidase Cathepsin A (CathA). CathA protect Neu 1 and β-GAL against 

proteolytic degradation in lysosome and activate Neu 1 (Pshezhetsky and Ashmarina 

2001). It was shown with immunoelectron microscopy analysis that sialidase Neu 1 is 

present on the plasma membrane and in intracellular vesicles in addition to lysosome 

membrane and lysosomal lumen (Vinogradova et al. 1998). Deficiency of sialidase Neu 

1 results in sialidosis (mucolipidosis I) which is autosomal recessive lysosomal storage 

disorder (d’Azzo et al. 2001; Thomas 2001). Sialidosis patients are divided into two 

subgroup, type I is a relatively mild, late onset form whereas type II is early onset, 

severe and neuropathic form (Thomas 2001). In the patients due to deficiency of 

sialidase enzyme, accumulation of undegraded sialylated oligosaccarides and 

glycoproteins in lysosomes and excretion in urine is seen (Thomas 2001). Since some 
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patients with accumulation of GM3 and GD3 gangliosides in systemic organs (Ulrich-Bott 

et al. 1987) and in the brain (Yoshino et al. 1990) was reported, it was suggested that 

sialidase Neu 1 is also involved in the degradation pathway of gangliosides beside its 

known substrates. Clinically similar disease called galactosialidosis resulting from the 

secondary deficiency of Neu 1 that is caused by the genetic defects in CathA gene 

(d’Azzo et al. 2001).  

Sialidase Neu 2 is mostly found in skeletal muscle. Neu 2 is a cytosolic protein 

and active against glycopeptides and gangliosides (Miyagi and Tsuiki 1985; Monti et al. 

1991; Tringali et al. 2004). Although its exact function is not known, it was reported in 

several studies that Neu 2 has selective activity against GM3 ganglioside (Sato and 

Miyagi 1996; Akita et al. 1997; Fanzani et al. 2003).  

Sialidase Neu 3 is integral membrane protein which is found in caveolae 

microdomains of plasma membrane (Wada et al. 1999; Monti et al. 2000; Wang et al. 

2002). Highest expression is seen in adrenal gland, skeletal muscles, heart, testis and 

thymus (Wada et al. 1999; Monti et al. 2000). Neu 3 is mostly active against GM1 and 

GD1a gangliosides (Schneider-Jakob and Cantz 1991). In addition,  sialidase Neu 3 

desialates GM2 and GM3 gangliosides to asilo derivatives in vitro (Igdoura et al. 1999; 

Li et al. 2001). It is thought that Neu 3 involves in the modulation of gangliosides’ 

oligosaccharide chains on the cell surface. These modulations of gangliosides are 

important for transformation, cell contact formation (Kopitz et al. 1996; Kopitz et al. 

1998), differentiation (Wu and Ledeen 1991), insulin signaling (Sasaki et al. 2003), 

carcinogenesis and apoptosis (Kakugawa et al. 2002).  

Sialidase Neu 4 is recently identified sialidase located in 2
nd

 chromosome, 

having broad substrate specificity against glycoproteins, oligosaccharides and sialylated 

glycolipids. Also elimination of undigested substrates of Neu 1 and restoration of 

normal morphological phenotype in Neu 1 deficient sialidosis fibroblasts after the 

overexpression of Neu 4 revealed that Neu 4 is active against a majority of endogenous 

substrates of sialidase Neu 1 (Seyrantepe et al. 2004). This enzyme was shown to be 

located both in lysosomal lumen by the mannose 6-phospate receptor (Seyrantepe et al. 

2004) and inner and outer membranes of mitochondria (Yamaguchi et al. 2005). In 

contrast to sialidase Neu 1, sialidase Neu 4 does not require additional accessory 

proteins for its enzymatic activity (Seyrantepe et al. 2004). Neu 4 has two isoforms 

which differ from each other with terminal amino acid residues that target enzyme to 
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mitochondria. Also isoforms are expressed in a tissue-spesific manner; brain, muscle 

and kidney contain both isoforms whereas the liver and colon contain dominantly the 

short form of sialidase Neu 4. The mitochondrial targeted long form of Neu 4 is thought 

to be involved in cell apoptosis or neural differentiation by regulating the apoptosis-

related ganglioside GD3 level (Hasegawa et al. 2007).  

Although Neu 2 and Neu 3 were shown to desialylate glycolipids in vitro (Li et 

al. 2001; Tringali et al. 2004) they are not involved in ganglioside catabolism in 

lysosomes because of their localization. In addition, sialidase Neu 4 was shown to clear 

undegraded sialylated glycoconjugates in cultured fibroblasts of sialidosis and 

galactosialidosis patients, it was thought that Neu 4 is the enzyme responsible for 

sialylated glycolipids degradation (Seyrantepe et al. 2004). 

 

1.3.    Lysosomal Storage Diseases 

 

Lysosomes are vesicular systems which have low internal pH with many 

hydrolytic enzymes (De Duve et al. 1955). Lysosomes are responsible for the 

breakdown of substrates (De Duve and Wattiaux 1966). The membranes of lysosomes 

have transport systems to carry biomolecules between inside of the organelle and the 

cytosol, and also have proton pumps to maintain asidic pH in the lumen (Arai et al. 

1993). The lysosomal enzymes are glycoproteins (proteins that have carbohydrate 

groups attach to them) which are synthesized in rough endoplasmic reticulum. Since 

these enzymes are degradative enzymes, they are firstly synthesized in inactive form 

and stay inactive until they reach to the lysosomes. The translocations of these enzymes 

from endoplasmic reticulum to Golgi and from Golgi to lysosomes require the signal 

sequences and sugar residues called mannose 6-phosphate on their N-terminal sites 

(Tabas and Kornfeld 1980; Hasilik et al. 1980). 

Lysosomal storage diseases (LSDs) are a group of rare inherited metabolic 

disorders that result from a distruption in the lysosomal degradation pathway of 

biomolecules. With three exceptions (Hunter’s disease, Fabry’s disease and Danon 

disease), all LSDs are inherited in autosomal recessive manner (Sugie et al. 2003). To 

date, more than 40 lysosomal storage diseases have been recognized and the incidences 

of these disaeases are approximately 1 in 7000 - 8000 live births (Winchester et al. 

2000) (Table 1.1.).  



14 

 

Distruption in lysosomal degradation can occur due to the deficiency of a 

specific lysosomal enzyme which has acid hydrolase function (Neufeld 1991; Kolter 

and Sandhoff 1998), a cofactor protein, a protein that involved in the post-translational 

modification, or a protein that involved in the transport of lysosomal protein 

(Winchester et al. 2000). As a consequence of dysfunction, uncatabolized substrate of 

associated enzyme accumulates in lysosomes. The accumulation (storage) of substrate 

may cause cellular toxicity (Neufeld 1991; Winchester et al. 2000). The storage is 

progressive so the disease symptoms worsen over time (Wraith 2002). Storage can 

occur in various cell types and affected individuals can show mild or severe 

abnormalities or can die at an early age (Barton et al. 1990, 1991). The severity of the 

phenotype is also related to the residual activity of the responsible enzyme. It was 

proposed that there is a “critical threshold” of the enzyme activity which determines the 

storage of the substrate in lysosomes. When the activity of the enzyme decreases below 

the threshold level, it can not degrade all substrates and storage occurs (Conzelmann 

and Sandhoff 1983). In general, lower residual activity causes earlier age of onset or 

more severe phenotype of the disease. The accumulated subsrates form typical 

histochemical and ultrastructural changes in the cell. These structures are characterized 

as vacuoles (lysosomes) which contain undegraded subsrates (biomolecules), and they 

are the hallmarks of the storage in related disorders. The first storage bodies were 

defined in Tay-Sachs’ disease (Terry and Weiss 1963). 

 

1.3.1. Tay – Sachs Disease 

 

Tay-Sachs disease is one of GM2 gangliosidosis. It is caused by mutations in 

HEXA gene (Sandhoff et al. 1989) that is located in the long arm of 15
th

 chromosome 

(Gilbert et al. 1975). HexA gene encodes α-subunit of lysosomal β-hexosaminidase A 

(HexA) enzyme which removes N-acetyl-galactosamine residues from GM2 gangliosides 

converting to ganglioside GM3 for further degradation. Sandhoff disease is another GM2 

gangliosidosis which results from the mutations in HEXB gene encoding β subunit of β-

hexosaminidase A enzyme located in long arm of 5
th

 chromosome (Gilbert et al. 1975) 

as well as GM2A gene encoding GM2 activator protein (Gravel et al. 1995). These two 

genes’ products (α and β subunits) constitute iso-forms of HexA enzyme; αβ, ββ and αα 

(Figure 1.7). Because GM2 can only be degraded by αβ isoenzyme; deficient of both 
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HEXA and HEXB gene result in accumulation of GM2 ganglioside (Gravel et al. 1995). 

When this accumulation in membranous cytoplasmic bodies (MCB) reaches critical 

values in cells, this disturbs cytoarchitecture and causes apoptosis of neurons (Huang et 

al. 1997).  

 

 

Table 1.1. Some of the diseases that result from enzyme defects in ganglioside degradation pathway  

 

Disease Defected enzyme(s) Affected lipid(s) 

Farber's disease Acid ceramides Ceramide 

Niemann-Pick Disease 

(types A and B) 
Sphingomyelinase Sphingomyelin 

Krabbe’s Disease Galactosylceramidase 
Galactosylceramide 

Galactosylsphingosine 

Metachromatic 

leukodystophy 
Sulfatidase (Arylsulfatase A) Sulfatide 

Gaucher's Disease Glucosylceramidase 
Glucosylceramide 

Glucosylsphingosine 

Fabry's Disease 
α-Galactosidase A 

(Trihexosylceramidase) 

Trihexosylceramide (gal-

gal-glc-cer) 

Digalactosylceramide 

GM1 gangliosidosis 
GM1-ganglioside β-

galactosidase 

GM1 ganglioside 

Galactose rich fragments of 

glycoproteins 

Tay-Sachs Disease β-Hexosaminidase A GM2 ganglioside 

Sandhoff's Disease β-Hexosaminidase A and B 

GM2 ganglioside 

Asialo-GM2 ganglioside 

Globoside 

 

 

In the patients of Tay-Sachs disease progressive neuronal degeneration, muscle 

weakness, blindless and epilepsy are seen. Tay-sachs patients die in the second to fourth 

year of their life (Gravel et al. 2001). Sandhoff disease is more severe that Tay-Sachs, 

because of the absence of ββ isoenzyme that degrades some other substrates such as 

oligosaccharides and glycosaminoglycans in other organs (Gravel et al. 1995). Less 

frequently juvenile and adult forms of the disease are seen and characterized with later 

onset and milder symptoms (Sandhoff et al. 1989). 
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1.3.1.1. Mouse Models of GM2 Gangliosidosis 

 

Mouse models of diseases are indispensable tools both to study the pathogenesis 

of the diseases and to improve therapeutic approaches to cure the disease. Mouse 

models mostly mimic the human diseases; besides spontaneous models (mucolipidosis 

in cat) (Bosshard et al. 1996), there are also induced mutants such as β-Hexosaminidase 

β-subunit (Hexb) deficiency (Sango et al. 1996; Phaneuf et al. 1996), galactosialidosis 

(Zhou et al. 1995) and total sphingolipids activator deficiency (Fujita et al. 1996). 

However, some mouse models of the human diseases such as β-Galactosidase deficient 

mouse model of GM1 gangliosidosis (Hahn et al. 1997; Matsuda et al. 1997) and β-

hexosaminidase deficient mice of Tay-sach’s disease (Yamanaka et al. 1994; Cohen-

Tannoudji et al. 1995; Phaneuf et al. 1996) because some degradation pathways of 

substrates are different in mouse and human (Suzuki and Mansson 1998). 

 

 

 

Figure 1.7. Formation of hexosaminidase isoenzymes from HexA and HexB gene products 

 

In the deficiency of lysosomal β-Galactosidase (β-GAL) enzyme in humans 

GM1-gangliosidosis occur (Suzuki et al. 1995). GM1-gangliosidosis is a neurological 

disorder but it affects not only the central nervous system but also the peripheral organs. 

Only GM1 ganglioside is accumulated in patient’s tissues. However, beside GM1 

ganglioside, a significant level of accumulated GA1 glycolipid (asialyted form of GM1 
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ganglioside) was also observed in the brain of mouse model of GM1 gangliosidosis 

(Suzuki and Chen 1967; Suzuki and Kamoshita 1969). These observations suggest that 

some murine neurominidases are active toward the GM1 ganglioside which is not 

detected in human. Responsible neurominidases convert GM1 ganglioside to GA1 

ganglioside by removing its sialic acid residue, and cause accumulation of these two 

biomolecules in mice as distinct from human (Hanh et al. 1997). 

Similarly β-Hexosaminidase deficient mouse model (HexA
-/-

) generated by 

homologous recombination in embryonic stem cells to study Tay-Sachs disease, 

unexpectedly didn’t show disease phenotype (Yamanaka et al. 1994; Cohen-Tannoudj 

et al. 1995; Sango et al. 1995; Sango et al. 1996; Phaneuf et al. 1996). The behavioral 

and motor coordination of these mice were the same with wild type mice (HexA
+/+

) at 

least 1 year of life span. All neurons were affected in Tay-Sachs patients, however, only 

a limited accumulation of GM2 ganglioside and the membranous cytoplasmic bodies 

were present in the brain of HexA mice. Most brain sites such as cerebellum and 

spinalganglia were storage free (Yamanaka et al. 1994; Cohen-Tannoudji et al. 1995; 

Phaneuf et al. 1996). Another difference was that while human Tay-Sachs samples were 

positive for increased apoptosis, HexA deficient mice showed no change in apoptosis. 

This apoptosis difference was associated with the GM2 accumulation, because when 

there was no accumulation and apoptosis; symptoms of the disease were not observed 

(Huang et al.1997). This inequality revealed that there may be differences in the 

metabolic pathway of GM2 ganglioside catabolizing GM2 ganglioside via glycolipid GA2 

(asialyted form of GM2 ganglioside) bypassing GM3 routed degradation in mice 

(Yamakana et al. 1994) (Figure 1.8). It has been proposed that the activities of sialidases 

which remove sialic acid residue of GM2 converting to GA2 which is further degradated 

by β-Hexosaminidase A enzyme to lactosylceramide by passing degradation pathway 

(Sango et al. 1996; Phaneuf et al. 1996). Previously HexB activity was thought to be 

responsible for this GM2-degradation (Burg et al. 1983). Then it was shown that HexB 

was not able to degrade GM2 to GM3. Instead it had an activity towards GA2 (which is 

formed by the activity of sialidases), convert it to lactosylceramide by removing N-

acetyl galactosamine residue, only in the presence of an extra protein; mouse GM2 

activator protein (mM2act). The same report showed that GA2 was not hydrolyzed by 

either human or mouse HexA and the human GM2 activator protein (hM2act) did not 

function as mouse GM2 activator protein (Yuziuk et al. 1998). This alternative pathway 
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was also supported by HexB deficient mice. In the HexB deficient mice (the model of 

Sandhoff disease), accumulation of GM2 ganglioside and GA2 ganglioside can not be 

stopped because the alternative pathway was also blocked (Sango et al. 1996). 

Depending on the absence of HexB activity (both αβ and ββ isoenzymes are deficient) 

symptoms of the diseases seen in human was observed (Huang et al.1997). In HexA 

deficient mice, there was no accumulation of either GM2 or GA2 (Riboni et al. 1995) 

suggesting the existence of an alternative pathway in mice which is different from 

human where sialidases have particular roles. 

 

 

 

Figure 1.8. Metabolic by-pass in ganglioside degradation pathway in HexA deficient Tay-Sachs mouse 

model (Adapted from: Sango et al. 1995) 

 

To enlighten the metabolic bypass pathway in HexA mice and to find which 

sialidase or sialidases have a role in converting GM2 to GA2, several studies have been 

done. Since the in vitro activity through gangliosides, sialidase Neu 1 was thought as a 

candidate for catalyzing ganglioside into asialilayted form (Hiraiwa et al. 1987; 

Schneider-Jakob and Cantz 1991; Fingerhut et al. 1992; Hiraiwa et al. 1998). However 

it was not seen an accumulation of ganglioside either in galactosialidosis patients 

(d’Azzo et al. 2001; Thomas 2001) or knouckout mouse model of sialidosis (Zhou et al. 
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1995; de Geest et al. 2002). The role of sialidase Neu 4 has been investigated because of 

its in vitro degradative activity against several gangliosides including GM2 (Seyrantepe 

et. al. 2004). In mouse model with the Neu 4 deficiency, lysosomal storage was shown 

in lung and spleen with microscopic investigation. In addition, abnormal ganglioside 

pattern in brain was shown by thin layer chromatography analysis. In another study it 

was shown that overexpression of sialidase Neu 4 restores normal morphological 

phenotype and repaires the abnormal metabolism of GM2 via GA2 in the neuroglia cells 

from Tay-Sachs patients indicating that sialidase Neu 4 might have a role in 

desialylation of glycolipids in the HexA deficient mice (Seyrantepe et al. 2008). 

Therefore, mouse was generated with the deficiencies of both Neu 4 and HexA. The 

significantly higher level of GM2 ganglioside in lysosomes of neurons has been shown in 

double knockout mice (Figure 1.9). Most importantly mice with Neu 4 and HexA 

enzyme deficiency have epileptic seizures (hallmark of Tay-Sachs patients) which were 

not observed in mice with single HexA enzyme deficiency. Since only 40 % of mice 

with double enzyme deficiency have seizures, it has been proposed that Neu 4 is a 

modulator gene and it is not the only sialidase contributes the metabolic bypass seen in 

the HexA deficient mice (Seyrantepe et al. 2010).  

 

 

 

 

Figure 1.9. Hippocampal neurons electron micrograph of Neu4
-/-

HexA
-/- 

with seizures – accumulation of 

whorls of membranes in lysosomes is similar to Tay-Sach’s disease pathology (Source: 

Seyrantepe et al. 2010) 
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1.4. Aim of the Study 

  

The aim of my project is to profile brain glycolipids of mouse model (triply) 

with the deficiencies of three enzymes (β-Hexosaminidase A, sialidase Neu 4 and 

sialidase Neu 1). Although β-Hexosaminidase A and sialidase Neu 4 coding genes are 

completely knocked-out, there is about 10 % activity of normal sialidase Neu 1 in triply 

mouse model (Seyrantepe et al. 2010). The brain glycolipid profile of mutant mice with 

the deficiencies of two enzymes (β-Hexosaminidase A and sialidase Neu4) were 

previously reported (Seyrantepe et al. 2010). In this study we aimed to see the affect of 

additional sialidase Neu 1 on glycolipids, especially ganglioside degradation.  
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

2.1. Animals 

 

Triply mice that have three enzyme deficiencies (Neu4
-/-

HexA
-/-

NeoIn
-/-

) were 

generated by Assoc. Prof. Volkan Seyrantepe during his post-doctoral training and 

donated by Prof. Alexey V. Pshezhetsky (Centre Hospitaliere Universitaire Sainte-

Justine, University of Montreal, Montreal, Quebec, Canada). These mice were 

generated by breeding double knockout mice with the deficiency of Neu4
-/-

 and HexA
-/- 

with hypomorphic mouse model with reduced sialidase Neu 1 activity (Seyrantepe et al. 

2010). In hypomorphic mouse model the distrupted gene is not the sialidase Neu 1 gene 

(Seyrantepe et al. 2009). In these mice the Cathepsin A coding gene is changed and has 

neomycine cassette inserted in its noncoding region (Seyrantepe et al. 2008).  This 

insertion caused a decrease in the CathA mRNA level consistent with the reported 

hypomorphic (partial loss of function) effects of Neo gene (Carmeliet et al. 1996; 

Meyers et al. 1998; Moran et al. 1999). Therefore the decrease of CathA protein 

expression caused highly reduction of normal sialidase Neu1 activity (Seyrantepe et al. 

2009). In this study hypomorphic mouse of Neu 1 was named as NeoIn mouse since it 

has neo cassette in the CathA gene, and hypomorphic allele was named as NeoIn allele. 

Triply mice were breeded with wild type mice strain C57/Black6 to obtain 

heterozygous females and males. We have breeded further to obtain single deficient 

(Neu4
-/-

, HexA
-/-

, NeoIn
-/-

), double deficient (Neu4
-/-

HexA
-/-

, HexA
-/-

NeoIn
-/-

 and Neu4
-/-

NeoIn
-/-

) as well as triple deficient mice. In these crossings mostly brothers and sisters 

were mated with each other to have mice in the same genetic background (Table 2.1.). 

 

 

 

 

 

 



22 

 

Table 2.1. Crossing of mice 

 

Breeding pairs Expected genotypes in F1 generation 

♀    Neu4
-/- 

HexA
-/-

 NeoIn
-/-

 
  Neu4

+/-
 HexA

+/-
 NeoIn

+/-
 

♂    WT (Neu4
+/+ 

HexA
+/+

NeoIn
+/+

)
 
 

  

Breeding pairs Expected genotypes in F2 generation 

♀   Neu4
+/-

 HexA
+/-

 NeoIn
+/-

 Neu4
+/+ 

HexA
+/+

 NeoIn
+/+

 

♂   Neu4
+/-

 HexA
+/-

 NeoIn
+/-

 Neu4
+/-

 HexA
+/-

 NeoIn
+/-

 

 Neu4
+/+ 

HexA
+/+

 NeoIn
+/-

 

 Neu4
+/+ 

HexA
+/-

 NeoIn
+/+

 

 Neu4
+/+ 

HexA
+/-

 NeoIn
+/-

 

 Neu4
+/- 

HexA
+/+

 NeoIn
+/+

 

 Neu4
+/- 

HexA
+/+

 NeoIn
+/+

 

 Neu4
+/- 

HexA
+/-

 NeoIn
+/+

 

 Neu4
+/+ 

HexA
+/+

 NeoIn
-/-

 

 Neu4
+/+ 

HexA
+/-

 NeoIn
-/-

 

 Neu4
+/- 

HexA
+/+

 NeoIn
-/-

 

 Neu4
+/- 

HexA
+/-

 NeoIn
-/-

 

 Neu4
+/+ 

HexA
-/-

 NeoIn
+/+

 

 Neu4
+/+ 

HexA
-/-

 NeoIn
+/-

 

 Neu4
+/- 

HexA
-/-

 NeoIn
+/+

 

 Neu4
+/- 

HexA
-/- 

NeoIn
+/-

 

 Neu4
+/+ 

HexA
-/-

 NeoIn
-/-

 

 Neu4
+/- 

HexA
-/-

 NeoIn
-/-

 

 Neu4
-/- 

HexA
+/+

 NeoIn
+/+

 

 Neu4
-/- 

HexA
+/+

 NeoIn
+/-

 

 Neu4
-/- 

HexA
+/-

 NeoIn
+/+

 

 Neu4
-/- 

HexA
+/-

 NeoIn
+/-

 

 Neu4
-/- 

HexA
+/+

 NeoIn
-/-

 

 Neu4
-/- 

HexA
+/-

 NeoIn
-/-

 

 Neu4
-/- 

HexA
-/-

 NeoIn
+/+

 

 Neu4
-/- 

HexA
-/-

 NeoIn
+/-

 

 Neu4
-/- 

HexA
-/-

 NeoIn
-/-
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We set five different pairs of breeding from the F1 generation. These 

heterozygous mice produce F2 generation but not the all expected genotypes were 

gotten in F2 generation. Further breedings were done and desired mice with deficiency 

were gotten in F3, F4 generations. During the process of reproducing mice, totally 274 

mice were genotypyed for three alleles and 11 breedings to get Neu 4 deficient mice, 14 

breedings to get HexA deficient mice, 2 breedings to get Neu 4, HexA double deficient 

mice, 2 breedings to get HexA, NeoIn double deficient mice, 2 breedings to get triple 

deficient mice and 16 breedings to get control mice were set from F2, F3, F4 

generations.    

 

2.2. Genotyping of Mice 

 

The genotypes of mice were determined from the genomic DNA that was 

extracted from mice’s tail. The isolation of genomic DNA is done by following steps. 

Tails taken from mouse were put in eppendorf tubes and 500µl lysis buffer (consist of 

10% 1M Tris pH 7.6, 2.5% 0.2M EDTA, 20% SDS, 4% 5M NaCl) with 12µl Proteinase 

K (from 25µg/µl solution) were added. Samples were incubated overnight in incubator 

shaker at 55˚C at 70 rpm. The next day samples were centrifuged at 14.000 rpm for 10 

minutes. Supernatant were transfered into new eppendorf tubes and same volume 100% 

isopropanol was added on each sample. DNA was collected and transfered into a new 

ependorf that contains 70% ethanol. After 1 minute centrifugation at 14.000rpm 

supernatant was removed and the remaining ethanol was totally air dried for 10 minutes. 

DNAs were dissolved in 200µl ultra pure water and incubated at 55˚C for 1 hour. Then 

concentrations of DNA were measured with Nanodrop spectrophotometer (ND-1000). 

The PCR for Neu4 and HexA were performed with 100ng genomic DNA in the 25µl 

reaction mix containing 50pmol of each primer, 10mM of each dNTPs, 1.5 units Taq 

polymerase (New England Biolab), 1.5mM MgCl2, 10mM Tris-HCl and 50mM KCl 

buffer containing 10% DMSO. Allele specific primers for wild type and mutant allele 

were used for detection of Neu4 and HexA alleles (Table 2.1). Conditions for PCR are; 

1 cycle 30 seconds at 95˚C; 30 cycles 30 seconds at 95˚C, 45 seconds at 60˚C, 45 

seconds at 72˚C; and 1 cycle 5 minutes at 72˚C.  

The PCR for NeoIn were performed with 100ng genomic DNA in the 50µl 

reaction mix containing 50pmol of each primer, 10mM of each dNTPs, 2.5 units Taq 
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polymerase (New England Biolab), 1.5mM MgCl2, 10mM Tris-HCl and 50mM KCl 

buffer. A couple of primers were used for proliferate mutant and wild type NeoIn allele 

(Table 2.2). Conditions for PCR is; 1 cycle 5 minutes seconds at 92˚C; 30 cycles 45 

seconds at 92˚C, 45 seconds at 57˚C, 45 seconds at 72˚C; and 1 cycle 5 minutes at 72˚C.  

Because mutant allele has an NdeI enzyme recognition site, genotype of NeoIn allele 

revealed after digestion of PCR product in a 20µl reaction mix containing 20 units NdeI 

(New England Biolabs) enzyme, 1X buffer by incubation overnight at 37˚C. 

 

 

Table 2.2. Sequences of used primers in genotyping 

 

Gene Primer Name Primer sequence 

Neu4 Neu4F CTCTTCTTCATTGCCGTGCT 

 Neu4R GACAAGGAGAGCCTCTGGTG 

 NeoF GCCGAATATCATGGTGGAAA 

HexA HexAF GGCCAGATACAATCATACAG 

 HexAR CTGTCCACATACTCTCCCCACAT 

 PGK CACCAAAGAAGGGAGCCGGT 

NeoIn ScreenF GGTGGCGGAGAACAATTATG 

 ScreenR AACAGAAGTGGCACCCTGAC 

 

 

After PCR is completed all PCR samples were run on 1% agarose gel whereas 

digestion reaction of NeoIn was run on 2% agarose gel to visualize alleles.  

 

2.3. Brain Tissues 

 

Age matched single, double and triple deficient mice as well as control mice (2-

3 months, 5-6 months, 8-9 months and 12 months) were sacrificed by servical 

dislocation. 100mg brain tissue from their right and left cerebral hemispheres (Figure 

2.1) were removed, immediately frozen on dry ice and kept in -80˚C until needed. 
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Figure 2.1. Main sites of brain and the region that samples were collected for lipid extraction 

 

2.4. Lipid Extraction 

 

To isolate total lipids from brain tissue an optimized form of Folch lipid 

extraction method was used (Folch et al. 1956, 1957). 100mg brain tissue was 

homogenizated in 1ml methanol using Heidolph SilentCrusher M Politron Homogenizer 

at 14.000rpm for nearly 20 seconds. After that additional 1.5ml methanol and 2.5ml 

chloroform (final chloroform: methanol concentration ratio is 1:1) are added to samples. 

It was mixed by vortex and kept in 4˚C for overnight. In the next day sample was 

centrifuged at 2000rpm at room temperature (RT) for 5 minutes. Pellet that contains cell 

debris, proteins etc was removed by centrifugation and supernatant which contains 

lipids was transferred into a new glass tube. This methanol/chloroform mixture was 

evaporated with N2 flow with keeping tube in 55˚C water bath that eases evaporation. 

The pellet proceeded into the wash step that let us to separate acidic glycosiphingolipids 

from neutral glycosphingolipids. It was firstly dissolved into 1ml methanol, 1ml 

chloroform and 650µl 1X PBS, vortexed and centrifuged at 2000rpm at RT for 5 

minutes. Upper phase was taken into a new glass tube.  650µl methanol and 650µl 1X 

PBS was added to the lower phase, it was vortexed and centrifuged at 2000rpm at RT 

for 5 minutes. The upper phase was added to the tube that contains previously taken 

solution. Then the lower phase was lastly washed with 650µl methanol and 650µl 

dH2O, vortexed and centrifuged at 2000rpm at RT for 5 minutes. And the last upper 

phase was added to the tube that contains other upper phases. The remaining lower 

phase was kept +4˚C for other experiments (neutral lipid extraction). These collected 

upper phases contain polar lipids; sulfatides and gangliosides.  
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2.4.1. Isolation of Gangliosides from Total Lipids  

 

To extract ganglioside from other lipids, Supelclean LC-18 column (Supelco) 

was used. Columns were placed on the Chromabond Vacuum manifold (Macherey-

Nagel) and vacuum was fixed to 3-4Hg. For equilibration, each column was washed 

with firstly 2ml chloroform, then with 2ml methanol and finally with 2ml methanol: 1X 

PBS (1:1) solution. The previously collected upper phases of were applied to columns 

and after flowed through the columns were washed with 10ml ultra pure water. Samples 

were then eluted with 4ml methanol and 4ml methanol: chloroform (1:1) in low vacuum 

(<3Hg). Eluted samples were evaporated with N2 flow before loading to thin layer 

chromatography plate.  

 

2.4.2. Isolation Of Neutral Lipids 

 

Neutral lipids were isolated from the lower phases that were left after upper 

phases were collected by sequential centrifugation in isolation of asidic lipids. The 

lower phase was evaporated with N2 flow. 250µl chloroform and 250µl methanol 

containing 0,5N NaOH were added onto evaporated sample. The tube was covered and 

incubated 2 hours at 37˚C. Then 850µl chloroform and 250µl methanol containing 0,5N 

HCl and 430µl water were added into the same tube. It was mixed by vortex and phases 

were separated with centrifugation for 5 minutes at 2000rpm. The upper phase was 

discarded and the lower phase which contains non-hydrolysable lipids 

(glycosphingolipids and ceramides) was evaporated with N2 flow before loading to thin 

layer chromatography plate. 

 

2.5. Thin Layer Chromatography 

 

Thin Layer Chromatography (TLC) is a method used to separate biomolecules 

based on their structures and weights. It is used to analyse especially oligosaccharides 

and glycolipid content in different body fluids such as urine and tissues. There are two 

phases in TLC; mobile phase and a stationary phase. The mobile phase consists of 

organic and/or aqueous solvents where as the stationay phase is a solid adsorbent such 
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as silica and cellulose which is coated onto a thin layer support such as aluminium or 

glass (Fried and Sherma 2005).  

Thin layer chromatography tank (Camag) was prepared 2.5 hours earlier than 

running. This time was needed for equilibrium of the tank to form a vaporous 

environment by the evaporaiton of solutions. Different solvent mixtures were used for 

different glycosphingolipids; chloroform: methanol: 22% CaCl2 (55: 45: 10) mixture for 

acidic glycosphingolipids and chloroform: methanol: ammonia: water (65: 35: 2: 3) 

mixture for neutral glycosphingolipids. To load the samples to the silica covered glass 

thin layer chromatography plates (Merck), nitrogen dried samples were solved in 250µl 

methanol: chloroform (1:1) solution. 100µl sample were loaded to the TLC plate. The 

plate was put into the tank and the samples were runned until 3mm left for solution to 

reach to the top of the plate.  

 

2.6. Staining with Orcinol / Resorcinol and Visualization 

 

Both orcinol and resorcinol (Sigma) (Figure 2.2) dyes were prepared freshly. For 

10ml orcinol dye solution 0,04g orcinol was solved in 10ml 25% sulfuric acid (2.52ml 

H2SO4 and 7.52ml deiyonised water). Orcinol forms a colorless solution and the 

stabilization of it took 5 minutes.  

For resorcinol, firstly a stable stock solution was prepared. For this 1gr 

resorcinol was dissolved in 50ml ultrapure water. When resorcinol staining was needed 

this stock was used. For 20ml resorcinol reagent, 2ml resorcinol stable solution was 

mixed with 16ml pure HCl (37%) and 100µl 0,1M CuS04. And the volume was 

completed to 20ml with ultrapure water. The stabilization of resorcinol took 4 hours. 

 

 

 

Figure 2.2. Structure of orcinol and resorcinol reagents 
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Orcinol and resorcinol reagents were prepared in 50ml glass TLC sprayer 

(Sigma). Dyes were sprayed on the plates after run was completed and the plate was 

completely dried by air flow. Then for both dyes the plates were put into the preheated 

oven. In orcinol staining plates were incubated at 120˚C for 10 minutes without a glass 

cover but in resorcinol staining plates were incubated in 120˚C oven for 30 minutes 

with a glass cover. After staining, lipids were identified by comparing with brain 

ganglioside standarts (Avanti Polar Lipids). Images of plates were taken with the 

VersaDoc™ Imaging System.  
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CHAPTER 3 

 

RESULTS 

 

3.1. Genotyping of Mice 

 

The genotypes of mice for Neu4 and HexA alleles were determined by the PCR 

done with allele specific primers (Figure 3.1). For genotyping NeoIn allele, digestion 

reaction was also performed (Figure 3.2) 

 

      

 

Figure 3.1. Gel images of (A) HexA PCR products and (B) Neu4 PCR products 
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Figure 3.2. Gel image of NdeI digested PCR products of NeoIn allele 

 

3.2. Thin Layer Chromatography 

 

Thin layer chromatography analyses were optimized for our laboratory 

conditions and then all samples were analyzed in that consitions as decribed in the 

material method chapter.  

Firstly age matched double deficient for HexA and NeoIn mice’s gangliosides 

were analyzed with thin layer chromatography and orcinol staining as well as control 

and single deficient counterparts (Figure 3.3). TLC was then done for older mice with 

the same deficiencies (Figure 3.4). 

Secondly age matched triple deficient mouse with its control, single HexA and 

Neu4 deficient and HexA Neu4 double deficient counterparts’ gangliosides were 

analyzed with thin layer chromatography and orcinol staining (Figure 3.5). TLC was 

also done for older mice with the same deficiencies (Figure 3.6). 

After gangliosides, neutral glycosphingolipids of each sample were isolated and 

analyzed with thin layer chromatography with orcinol staining (Figure 3.7A, 3.7B and 

Figure 3.8A, 3.8B). 
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Figure 3.3. Thin layer chromatography and orcinol staining for gangliosides of 2.5 months HexANeoIn 

double deficient mice with its control and single HexA and NeoIn deficient counterparts 

(Samples are; wild type, Neu4
+/-

HexA
+/-

NeoIn
+/+

, ♀, 2.5 months; HexA deficient Neu4
+/+ 

HexA
-/-

NeoIn
+/-

, ♀, 2 months; NeoIn deficient, Neu4
+/+

HexA
+/-

NeoIn
-/-

, ♀, 2.5 months; 

HexANeoIn double deficient, Neu4
+/-

HexA
-/-

NeoIn
-/-

, ♂, 2 months, respectively.) 
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Figure 3.4. Thin layer chromatography and orcinol staining for gangliosides of 4.5 months HexANeoIn 

double deficient mice with its control and single HexA and NeoIn deficient counterparts 

(Samples are; wild type, Neu4
+/-

HexA
+/-

NeoIn
+/-

, ♂, 4.5 months; HexA deficient Neu4
+/-

HexA
-/-

NeoIn
+/-

, ♀, 4.5 months; NeoIn deficient, Neu4
+/+

HexA
+/-

NeoIn
-/-

, ♂, 4.5 months; 

HexANeoIn double deficient, Neu4
+/-

HexA
-/-

NeoIn
-/-

, ♀, 4.5 months, respectively.) 
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Figure 3.5. Thin layer chromatography and orcinol staining for gangliosides of 4.5 months triple deficient 

mice with its control, single HexA and Neu4 deficient and Neu4HexA double deficient 

counterparts (Samples are; wild type, Neu4
+/+

HexA
+/-

NeoIn
+/+

, ♂, 4.5 months; HexA 

deficient, Neu4
+/+

HexA
-/-

NeoIn
+/+

, ♀, 4.5 months; Neu4 deficient, Neu4
-/-

HexA
+/+

NeoIn
+/+

, 

♂, 5 months; Neu4HexA double deficient, Neu4
-/-

HexA
-/-

NeoIn
+/-

, ♂, 4.5 months; triple 

deficient, Neu4
-/-

HexA
-/-

NeoIn
-/-

, ♂, 4.5 months, respectively.) 
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Figure 3.6. Thin layer chromatography and orcinol staining for gangliosides of 8 – 12 months triple 

deficient mice with its control, single HexA and Neu4 deficient and Neu4HexA double 

deficient counterparts (Samples are; wild type C57/Black6, Neu4
+/+

HexA
+/+

NeoIn
+/+

, ♂, 12 

months; HexA deficient, Neu4
+/-

HexA
-/-

NeoIn
+/-

, ♀, 8.5 months; Neu4 deficient, Neu4
-/-

HexA
+/-

NeoIn
+/-

, ♂, 8 months; Neu4HexA double deficient, Neu4
-/-

HexA
-/-

NeoIn
+/-

, ♂, 8 

months; triple deficient, Neu4
-/-

HexA
-/-

NeoIn
-/-

, ♀, 12 months, respectively.) 
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Figure 3.7. A) Thin layer chromatography and orcinol staining for neutal glycosphigolipids of 2.5 months 

HexANeoIn double deficient mice with its control and single HexA and NeoIn deficient 

counterparts (Samples are; wild type, Neu4
+/- 

HexA
+/- 

NeoIn
+/+

, ♀, 2.5 months; HexA 

deficient Neu4
+/+

HexA
-/-

NeoIn
+/-

, ♀, 2 months; NeoIn deficient, Neu4
+/+

HexA
+/-

NeoIn
-/-

,♀, 

2.5 months; HexANeoIn double deficient, Neu4
+/-

HexA
-/-

NeoIn
-/-

, ♂, 2 months, respectively.) 

B) Thin layer chromatography and orcinol staining for neutal glycosphigolipids of 4.5 

months HexANeoIn double deficient mice with its control and single HexA and NeoIn 

deficient counterparts (Samples are; wild type, Neu4
+/-

HexA
+/-

NeoIn
+/-

, ♂, 4.5 months; HexA 

deficient Neu4
+/-

HexA
-/-

NeoIn
+/-

,  ♀, 4.5 months; NeoIn deficient, Neu4
+/+

HexA
+/-

NeoIn
-/-

,  

♂, 4.5 months; HexANeoIn double deficient, Neu4
+/-

HexA
-/-

NeoIn
-/-

, ♀,  4.5 months, 

respectively.) 
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Figure 3.8. A) Thin layer chromatography and orcinol staining for neutal glycosphigolipids of 4.5 months 

triple deficient mice with its control, single HexA and Neu4 deficient and Neu4HexA double 

deficient counterparts (Samples are; wild type, Neu4
+/+

HexA
+/-

NeoIn
+/+

, ♂, 4.5 months; 

HexA deficient, Neu4
+/+

HexA
-/-

NeoIn
+/+

, ♀, 4.5 months; Neu4 deficient, Neu4
-/-

HexA
+/+

NeoIn
+/+

, ♂, 5 months; Neu4HexA double deficient, Neu4
-/-

HexA
-/-

NeoIn
+/-

, ♂, 4.5 

months; triple deficient, Neu4
-/-

HexA
-/-

NeoIn
-/-

, ♂, 4.5 months, respectively.) B) Thin layer 

chromatography and orcinol staining for neutal glycosphigolipids of 8 – 12 months  triple 

deficient mice with its control, single HexA and Neu4 deficient and Neu4 HexA double 

deficient counterparts (Samples are; wild type C57/Black6, Neu4
+/+

HexA
+/+

NeoIn
+/+

, ♂, 12 

months; HexA deficient, Neu4
+/-

HexA
-/-

NeoIn
+/-

, ♀, 8.5 months; Neu4 deficient, Neu4
-/-

HexA
+/-

NeoIn
+/-

, ♂, 8 months; Neu4HexA double deficient, Neu4
-/-

HexA
-/-

NeoIn
+/-

, ♂, 8 

months; triple deficient, Neu4
-/-

HexA
-/-

NeoIn
-/-

, ♀, 12 months, respectively.) 
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CHAPTER 4 

 

DISCUSSION 

 

Tay-Sachs disease is a severe lysosomal storage disorder caused by mutations in 

the HexA gene coding (Sandhoff et al. 1989) for α subunit of lysosomal β-

hexosaminidase A enzyme, which converts GM2 ganglioside to GM3 ganglioside. 

Patients have progressive neuronal degeneration, muscle weakness, blindless and 

epilepsy. They die in the second to fourth year of their life (Gravel et al. 2001). 

However generated HexA
-/-

 mice, depleted of β-hexosaminidase A enzyme, although 

there is GM2 accumulation remain asymptomatic to 1 year of age which suggests there is 

a metabolic bypass. 

Previously identified a novel ganglioside metabolizing sialidase, Neu 4, is 

abundantly expressed in mouse brain neurons and has activity against gangliosides like 

GM2. In mouse model with the Neu4 deficiency, lysosomal storage was shown in lung 

and spleen with microscopic investigation. In addition, abnormal ganglioside pattern 

(increased GM1a and decreased GM1 levels) in brain was shown by thin layer 

chromatography analysis (Seyrantepe et al. 2008). Then it was demonstrated that mice 

model with targeted disruption of both Neu4 and HexA genes (Neu4
-/-

HexA
-/-

) have 

multiple degenerating neurons in the cortex and hippocampus and multiple layers of 

cortical neurons accumulating GM2 ganglioside. Since not all mice did show symptoms 

such as epileptic seizures, it was suggested that sialidase Neu4 is modulator gene 

product and it’s not the only sialidase contributing to the metabolic bypass in HexA
-/-

 

mice (Seyrantepe et al. 2010). Therefore, it was suggested that other sialidase and/or 

sialidases such as lysosomal sialidase Neu 1 might have a role in metabolic bypass. In 

this study we profiled brain ganglioside of mice models with the deficiencies of three 

enzymes (β-Hexosaminidase A, sialidase Neu4 and sialidase Neu1 (–NeoIn-)). In the 

mice that studied on, the enzymes β-Hexosaminidase A and sialidase Neu 4 have 0% 

enzyme activities according to wild type mice but sialidase Neu 1 enzyme activity is 

approximately 10% (Seyrantepe et al. 2010). 

To isolate total lipids from brain tissue an optimized form of Folch lipid 

extraction method was used (Folch et al. 1956, 1957). Tissue was homogenized with 
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chloroform: methanol, cell debris was removed by centrifugation and the supernatant 

was washed first with different ratio of water and salt solution and then with the 

chloroform: methanol mix. The washing procedure of supernatant removes all the non-

lipide contaminants from the samples (Folch et al. 1956). Polar lipids such as sulfatides 

and phosphatidyl serine cause contamination of the ganglioside mixture in the upper 

phase (Daun 1952; Svennerholm 1956) which was removed by using C18 columns that 

only retain gangliosides. The gangliosides were eluted from column with choloroform-

methonol for further studies (Svennerholm 1957). The usage of chloroform: methanol in 

isolation of lipids, especially for membrane lipids, is cruial. Because chloroform 

seperates lipids from proteins in the membrane by disturbing the interactions and 

hydrogen bonds between lipids and proteins. And also polar lipids such as 

phospholipids and glycosphingolipids (gangliosides) can dissolve in such polar solvents 

(Schmid and Hunter 1971). Beside ganglioside, group of asidic lipids include sulfatides, 

cardiolipin, phosphatidylserine, phosphatidylinositol, phosphatidyletanolamine, and 

phosphatidic acid as mentioned in the introduction part. Since we are mainly interested 

in gangliosides we need to separate gangliosides from other acidic lipids. 

Thin layer chromatography analysis of gangliosides done with 2 – 2.5 months 

aged mice that are single deficient of HexA, NeoIn and double deficient of HexA and 

NeoIn (Figure 3.3) showed that HexA deficient mice and double deficient mice have 

increased level of GM2 in comparison to wiltype mouse. The accumulation of GM2 

ganglioside was shown before in HexA
-/-

 mice (Yamanaka et al. 1994; Cohen-

Tannoudji et al. 1995; Phaneuf et al. 1996), but there was no significant difference 

between double deficient (HexA
-/-

,NeoIn
-/-

) mouse and the HexA
-/-

 mouse in glycolipids 

content especially in GM2. To see the affect of age on accumulation, 4 – 4.5 months 

mice’s brain gangliosides were analyzed. In this TLC (Figure 3.4) it was seen that the 

pattern of gangliosides were similar to 2 – 2.5 months aged ones (Figure 3.3). HexA
-/-

 

and HexA
-/-

NeoIn
-/-

 double deficient had accumulation of GM2 as seen in 2 – 2.5 months 

aged ones. Also we observed no difference between single HexA
-/-

 and HexA
-/-

NeoIn
-/-

 

mice in the content of other gangliosides such as GM1, GD1a, GD1b and GT1b in both ages 

(Figure 3.3, 3.4). 

After comparing single HexA
-/-

 with double deficient HexA
-/-

NeoIn
-/-

 mice we 

analyzed triple deficient HexA
-/-

Neu4
-/-

NeoIn
-/- 

mice to see the additional affect of 

deficiency of sialidase Neu 1 on the ganglioside degradation pathway. In this analysis 
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mice with sialidase Neu 4 deficiency (single HexA
-/-

, double HexA
-/-

Neu4
-/- 

or triple 

HexA
-/-

Neu4
-/-

NeoIn
-/-

) showed a decreased level of GM1 ganglioside in comparison to 

wild type age-matched mouse (Figure 3.5). This is because of the activity of sialidase 

Neu4 on ganglioside GD1a degradation and this role Neu 4 on ganglioside degradation 

pathway was previously shown (Seyrantepe et al. 2008). Also Neu4
-/-

HexA
-/-

 double 

deficient mice showed increased level of GM2 ganglioside compared to wildtype and 

single HexA
-/- 

mice, as previously shown (Seyrantepe et al. 2010). In the triple deficient 

(HexA
-/-

Neu4
-/-

NeoIn
-/-

) mice there was slightly difference in the content of ganglioside 

in comparison to double deficient Neu4
-/-

HexA
-/-

 mice. Moreover, triple mouse’s 

ganglioside pattern was different from the single HexA
-/-

 mice, but it was similar to the 

double deficient Neu4
-/-

HexA
-/-

 mouse’s ganglioside pattern. This difference was the 

result of sialidase Neu 4 deficiency, not the result of the sialidase Neu 1 deficiency. To 

clarify whether the accumulation can be worsening over time or not, we also studied 8 – 

12 months aged mice with the same deficiencies. Again we didn’t observe different 

ganglioside pattern in the triple deficient mice when compared to the double deficient 

Neu4
-/-

HexA
-/-

 mice (Figure 3.6).  

Besides orcinol staining all plates were also stained with resorcinol to analyze 

the asialo-series gangliosides such as GA1, GA2. Since GA2 is the key ganglioside in the 

bypass pathway (Seyrantepe et al. 2008), we wanted to determine whether GA2 levels 

differ between mice models or not.   

In addition to the gangliosides, we aimed to analyze neutral glycosphingolipids 

but as seen in TLC results (Figure 3.7A, B and 3.8A, B) we didn’t get affective 

separation on TLC. Therefore, we couldn’t compare the neutral glycosphingolipids 

content in different deficient mice brain.  

In this study we didn’t observe significant affect of sialidase Neu 1 on 

ganglioside metabolism in mouse models. However according to all these results we can 

not exclude the possible role of sialidase Neu 1 in ganglioside degradation pathway in 

mouse. Since double deficient mice have 10% of normal sialidase Neu 1 activity, we 

speculate that sialidase Neu 1 is acting still enough to degrade GM2 in analyzed mice so 

there is no excessive accumulation is observed. It was reported that there is a “critical 

threshold” of the enzyme activity that determines the storage of the substrate in 

lysosomes (Conzelmann and Sandhoff 1983), so 10% activity might be enouh to 

degrade GM2. Additionally, may be sialidase Neu1 is not the only sialidase and beside 
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sialidase Neu 1, other sialidases such as sialidase Neu 2 and/or sialidase Neu 3 may be 

involved  in ganglioside degradation pathway in mouse.  

 

4.1. Future Perspective 

 

In the future, we aim further analyses of deficient mice (Neu4
-/-

HexA
-/-

NeoIn
-/-

). 

We will focus on neutral sphingolipids to compare to see the role of sialidase Neu 1 in 

mice. Lipidomics based researches such as mass spectrophotometer profiling of lipid 

will be used to analyze these triple deficient mice to determine new lipids. Mass 

spectrophotometer is more sensitive method and can be used as an alternative to the 

TLC.  Additionally, knockout mouse model of sialidase Neu 1 (enzyme activity will be 

0% of the normal) can be generated and breeded with HexA deficient mice to obtain 

double (HexA
-/-

,Neu1
-/-

) knockout mice. Since sialidase Neu 1 activity will be 

completely lost, these mice can reveal the potential affect of sialidase Neu 1 in that 

degration pathway in mice. Besides Neu 1, knockout mouse models of sialidase Neu 2 

and sialidase Neu 3 can be generated and breeded with HexA
-/-

 mice to obtain double 

(HexA
-/-

,Neu2
-/-

 and HexA
-/-

,Neu3
-/-

)  and triple (HexA
-/-

,Neu2
-/-

,Neu3
-/-

)  knockout 

mice. Newly generated mouse models can be analyzed to enlight the role of sialidase in 

mice ganglioside degradation pathway that differs from human. 
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