
OPERATOR SPLITTING METHODS FOR
NON-AUTONOMOUS DIFFERENTIAL

EQUATIONS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of
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Committee Member

16 December 2011
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ABSTRACT

OPERATOR SPLITTING METHODS FOR NON-AUTONOMOUS DIFFERENTIAL
EQUATIONS

In this thesis, convergency and stability analysis are studied for the non-autonomo-

us differential equations. Not only classical operator splitting methods; Lie Trother split-

ting, symmetrically weighted splitting and Strang splitting but also iterative splitting

method which is recent popular technique of operator splitting methods are considered.

We concentrate on how to improve the operator splitting methods with the help of the

Magnus expansion. In addition, we construct a new symmetric iterative splitting scheme.

Then, we also study its convergence properties by using the concepts of stability, con-

sistency and order. For this purpose, we use C0 semigroup techniques. Finally, several

numerical examples are illustrated in order to confirm our theoretical results by compar-

ing the new symmetric iterative splitting method with frequently used operator splitting

methods.
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ÖZET

ZAMANA BAǦLI DENKLEMLER İÇİN OPERATÖR AYIRMA METODLARI

Bu tezde zamana bağlı denklemler için yakınsaklık ve kararlılık analizleri incelen-

miştir. Sadece klasik operatör ayırma methodları; Lie Trother splitting, symmetrically

weighted splitting ve Strang splitting değil aynı zamanda operatör ayırma metodlarının

son zamanlarda popüler olan tekniği iterative splitting metodu da ele alınmıştır. Operatör

ayırma metodlarını Magnus seri açılımı ile nasıl geliştirildiğine yoğunlaşılmıştır. Buna

ek olarak, yeni bir simetrik iterative splitting şeması oluşturulmuştur. Sonra bu metodun

kararlılık, tutarlılık ve mertebe konseptleri ile yakınsaklık özellikleri üzerine çalışılmıştır.

Bu amaçla, C0 yarıgrup teknikleri kullanılmıştır. Son olarak, teorik sonuçları doğrulamak

için yeni simetrik iterative splitting methodu ile sık kullanılan operatör ayırma methodları

karşılaştırılarak nümerik örnekler gösterilmiştir.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

Operator splitting is a widely used procedure in the numerical solution of large

systems of partial differential equations. It can be regarded as a time-discretization method.

Thus, it can be called as time splitting method. The basic idea behind the operator splitting

methods is based on splitting of complex problem into simpler sub-problems. Then, each

of which are solved by an efficient method. The connections between the sub-systems are

the initial conditions. Instead of the original problem, we deal with simpler sub-problem.

Thus, this technique gives rise to error which is called splitting error. This error can be

estimated theoretically.

The idea of sequential splitting, which is known as Lie-Trotter splitting, dates back

to the 1950s. In (Bagrinovskii and Gudunov, 1957), this method was first applied to a

partial differential equations. During the years 1960-1970, the first splitting methods were

developed. They were in connection with finite difference methods. A renovation of the

methods was done in the 1980s while using the methods for complex processes underlying

partial differential methods (Crandall and Majda, 1980). The simplest kind is sequential

splitting, which, in terms of the local splitting error, is the first order accurate in time.

A second order and, therefore, more popular method is Strang splitting in (Marchuk,

1968), (Strang, 1968). In (Strang, 1963), Strang proposed a splitting method where a

weighted sum of splitting solutions, obtained by different ordering of the sub-operators,

are computed at each time step. The symmetrically weighted sequential (SWS) splitting is

second order accurate, as popular as Strang splitting. Its analysis can be found by Csomós

et al. in (Csomós et al., 2003). There is another sort of splitting method, iterative splitting,

which is recently popular technique of operator splitting methods. The earliest detection

of iterative method era 1995s, (Kelly, 1995), was seemingly far in advance of its time.

In (Kanney et al., 2003), they focused on the convergence of iterative splitting procedure

for nonlinear reactive transport problems. In (Faragó and Geiser, 2007), they suggest a

new scheme which is based on the combination of splitting time interval and traditional

iterative operator splitting. Then, this technique is used in (Geiser, 2008); (Geiser, 2008).

In the current study, we propose a new method which is found by the combining with the
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Magnus expansion and the iterative operator splitting which is suggested in (Faragó and

Geiser, 2007).

Magnus integrators are an interesting class of numerical methods for Hamiltonian

problems. The problem which Magnus expansion (ME) solves has a history dating back

at least to the study of Peano, by the end of 19th century, and Baker at the beginning of

the 20th. They combine the theory of differential equations with an algebraic formula-

tion. In connection with these treatments from the beginning, is the study of so called

Baker-Campbell-Hausdorff formula. (Magnus, 1954) have been considered as birth cer-

tificate of Magnus Expansion. The work of Pechukas and Light gave for the first time

a more specific convergence analysis of the problem than the ambiguous considerations

in Magnus paper. Wei and Norman did the same for existence problem. The study of

Robinson, (Robinson, 1963), seems to be the first application of the ME to a physical

problem. During the years between 1971 and 1990, ME was successfully applied to a

wide spectrum of fields in Physics and Chemistry. In the last decay of 20th century ME

has been adapted for specific types of equations: Floquet theory, stochastic differential

equations etc. In numerical analysis, using ME as a geometric integrator along the lines

of work pioneered by Iserles and Nørsett in (Iserles and Nørsett, 1999).

In this thesis, to discuss the analysis and applications, we concentrate on an ap-

proximate solution of non-autonomous systems of the following form

d

dt
u(t) = A(t)u(t), t ≥ 0

u(0) = u0 ∈ X

on some (complex) Banach space X with the norm ∥.∥X←X . Since the Magnus expansion

(Blanes et al., 2008); (Blanes and Moan, 2006) is an attractive and widely applied method

of solving explicitly time-dependent problems, in order to solve such non-autonomous

system, as a numerical method, we apply operator splitting methods combining with Mag-

nus expansion. It is often the case that A(t) = T+V (t), where only the potential operator

V (t) is time-dependent and T is the differential operator see (Baye et al., 2003); (Baye

et al., 2004); (Chin and Chen, 2002); (Aguilera-Navarro et al., 1990); (Chin and Anisi-

mov, 2006). To analyze the convergence of the given methods, we study on two different

approaches;

• For the case of T and V (t) are bounded, we use Taylor series expansion.

• For the case of T is unbounded and V (t) is bounded, we use C0 semigroup ap-

2



proaches

The idea of using strongly continuous semigroup (C0 semigroup) approaches for

the convergency of operator splitting methods as an abstract homogeneous Cauchy prob-

lem goes back at least to Pazy in (Pazy, 1983). Bjørhus analyze the operator splitting

method for the linear inhomogeneous abstract Cauchy problem in (Bjørhus, 1998). In

the paper (Bátkai et al., 2011), they investigate the convergence of operator splitting

methods by using evolution semigroups. You can also see (Jahnke and Lubich, 2000);

(Hansen and Ostermann, 2009) for obtaining estimates on the order of convergence. By

this to investigate the convergence of any method, the concepts of stability, consistency

and order are used. Both (Geiser and Tanoğlu, 2011) and (Geiser, 2008) deal with the

consistency of different splitting schemes has been thoroughly investigated in the terms of

the local splitting error for autonomous systems. In addition, the convergence of iterative

splitting method for the autonomous case in (Gücüyenen and Tanoğlu, 2011). In this

thesis, we focused on the convergence of introduced splitting methods and especially the

convergence of the new iterative splitting method.

1.2. Layout of the Thesis

Our aim is to develop and analyze the operator splitting methods combining with

Magnus expansion. In particular, we focused on iterative splitting method. The main

object of this thesis will be two fold: First, we construct a new symmetric iterative split-

ting scheme for non-autonomous problem. Second, its convergence properties are ana-

lyzed using the concepts of stability, consistency, and order as an abstract Cauchy problem

via analytic semigroup approach. Finally, we test these schemes on several numerical ex-

amples to confirm our theoretical results.

The purpose of Chapter 2 is to present Magnus expansion for solving the time-

dependent part of problem. We also give some conditions for convergence of Magnus

expansion (ME). The next step in present thesis is to combine Magnus expansion with

operator splitting methods. Thus, Chapter 3 introduces the operator splitting methods,

which are based on Magnus expansions. In the first, we give the algorithm of traditional

operator splitting methods. Then we embedded ME into operator splitting methods. We

concentrate on to construct a new algorithm for the iterative splitting method which has

time-symmetry property.

In Chapter 4, the consistency of the methods are discussed. Not only bounded

3



case but also unbounded case is considered. Chapter 5 deals with in detail the stability

issue for general case of the splitting methods, which are introduced in previously. We

study this issue as an abstract Cauchy problem. In Chapter 6, we present the convergence

results of the splitting methods which follow the line of telescoping identity and ”Lady

windermere’s fan” argument.

In Chapter 7, we give some numerical examples to confirm our theoretical re-

sults and to demonstrate the effectiveness of suggested scheme. For this purpose, we use

ODEs and PDEs. Since ME is an attractive and widely applied method of solving explic-

itly harmonic oscillator, we test our method in Matheui equation. We compare our new

scheme with traditional schemes in this test problem. Since its efficiency, we apply it into

Schrödinger equation. We present the results as tables and figures.

Finally, we conclude with a brief discussion of the study fulfilled in Chapter 8.

4



CHAPTER 2

MAGNUS EXPANSION

In the present chapter, we summarize a brief overview of Magnus expansion (ME).

In order to present our point of view of ME, we may distinguish two main directions :

• We report the recurrence formulation of Magnus expansion.

• For what values of t does the series converge ? We describe this question as the

convergence problem. Thus, in Section 2.2 we will sum up the convergence condi-

tions for the ME.

2.1. Magnus Expansion

The Magnus integrator was introduced as a tool to solve non-autonomous linear

differential equations for linear operators of the form

du

dt
= A(t)u(t) , (2.1)

with solution

u(t) = exp(Ω(t))u(0). (2.2)

This can be expressed as:

u(t) = T
(
exp(

∫ t

0

A(s) ds

)
u(0) , (2.3)

where the time-ordering operator T is given in (Dyson, 2008).

5



The Magnus expansion is defined as:

Ω(t) =
∞∑
n=1

Ωn(t) , (2.4)

where the first few terms are (Blanes et al., 2008):

Ω1(t) =

∫ t

0

dt1A1

Ω2(t) =
1

2

∫ t

0

dt1

∫ t1

0

dt2[A1, A2]

Ω3(t) =
1

6

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3([A1, [A2, A3] + [A3, [A1, A2]])

· · · · · · etc. (2.5)

where An = A(tn). In practice, it is more useful to define the nth order Magnus operator

Ω[n](t) = Ω(t) +O(tn+1) (2.6)

such that

u(t) = exp
[
Ω[n](t)

]
u(0) +O(tn+1). (2.7)

Thus, the second-order Magnus operator is

Ω[1](t) =

∫ t

0

dt1A(t1)

= etA(
1
2
t) +O(t3) (2.8)

or

Ω[1](t) =

∫ t

0

dt1A(t1)

= e
t(A(t))+(A(0))

2 +O(t3). (2.9)

6



and a fourth-order Magnus operator (Blanes et al., 2008); (Blanes and Moan, 2006) is

Ω[4](t) =
1

2
t(A1 + A2)− c3t

2[A1, A2] (2.10)

where A1 = A(c1t), A2 = A(c2t) and

c1 =
1

2
−

√
3

6
, c2 =

1

2
+

√
3

6
, c3 =

√
3

12
. (2.11)

The necessity of doing time integrations and evaluating nested commutators make Mag-

nus integrators beyond the fourth-order rather complex.

Remark 2.1 The Magnus expansion can be generalized in different ways, e.g., commuta-

torless expansion, Volsamber iterative method, Floquet-Magnus expansion, etc. (Blanes

et al., 2008). However, none reduces the number of needed operators at high orders.

2.2. Convergency of Magnus Expansion

To study the convergence of the Magnus expansion, we investigate the conditions

on A(t). In the pioneering work Wilhelm Magnus studied its convergence in 1954. He

proposed the Magnus series does not converge unless t is sufficiently small value. In

literature, many bounds to the actual radius of convergence in terms of A(t) have been

obtained. For achieving this radius, the following statement is used.

Proposition 2.1 If Ωm(t) denotes the homogeneous element with m− 1 commutators in

the Magnus series, then Ω(t) =
∑∞

m=1 is absolutely convergent for 0 ≤ t < T ,

T = max

{
t ≥ 0 :

∫ t

0

∥A(s)∥2ds < rc

}
. (2.12)

Both Pechukas and Light (Pechukas and Light, 2008) and Karasev and Mosolova

(Karasev and Mosolova, 1977) obtained rc = ln 2 = 0.6931.... In 1987, Strichartz

(Strichartz, 1987) had rediscovered the explicit expression for Ωn found by Bialynicki-

Birula et al. (Bialynicki-Birula et al., 1969), stated in terms of Lie brackets. He used this

7



to prove rc = 1. This bound is improved independently in 1998 by Blanes et al. (Blanes

et al., 1998) and Moan (Moan, 1998) as rc = 1.086868.... In 2001, Moan and Oteo

(Moan and Oteo, 2001) derived the bound rc = 2 by similar techniques, except that they

avoided the use of commutators as they seemed to introduce needless complications in

the convergence bound. Finally, Moan and Niesen have been able to prove that rc = π if

only real matrices are involved.
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CHAPTER 3

OPERATOR SPLITTING METHODS BASED ON MAGNUS

EXPANSION

Operator splitting is a powerful method for the numerical investigation of complex

time-dependent models. In this chapter, we embedded the Magnus expansion into the op-

erator splitting methods. In what follows, we introduce four possible splitting procedures.

Finally, the new symmetric iterative splitting scheme will be given.

3.1. Lie-Trotter Splitting Based on Magnus Expansion

We consider the following problem,

∂u

∂t
= A(t)u(t), u(0) = u0, a ≤ t ≤ b. (3.1)

The operator A(t) of the problem (3.1) can be splitted as a sum T +V (t). We, then, solve

differential equation with the simplest splitting methods which is called as sequential

splitting, defined by the following sequence of sub-problems:

∂u∗(t)

∂t
= V (t)u∗(t) with t ∈ [tn, tn+1] and u∗(tn) = un

sp, (3.2)

∂u∗∗(t)

∂t
= Tu∗∗(t) with t ∈ [tn, tn+1] and u∗∗(tn) = u∗(tn+1) (3.3)

for n = 0, 1, ..., N − 1 whereby u0
sp = u0 is given from (3.1). The approximated split

solution at the point t = tn+1 is defined as un+1
sp = u∗∗(tn+1). Let us denote the split

solution of Lie-Trotter splitting (3.2, 3.3) as Usp(tn+1) = u∗∗(tn+1) on each sub-interval

[tn, tn+1]. For simplicity denote the split solution Usp(h) on (0, h] where h is the splitting

time step. The split solution can be written in terms of the fundamental set of solutions of

9



each sub equations (3.2, 3.3) as

Usp(h) = eTh eΩV (h)u0 (3.4)

where the exponent ΩV (h) is an infinite sum of nested integrals and commutators belongs

to the time dependent operator V (t) explained in Section (2.1). To analyze the order of the

Lie-Trotter splitting, we need to compare (3.4) with the exact solution of unsplit problem

which we will write in the form

u(h) = eΩA(h)u0 (3.5)

where the exponent ΩA(h) is an infinite sum of nested integrals and commutators belong

to the time dependent operator A(t) explained in Section (2.1). If we rearranged the

equation (3.5) by substituting the ΩA(h) then, we have

u(h) = ehA(h/2)u0. (3.6)

3.2. Symmetrically Weighted Splitting Based on Magnus Expansion

We consider A(t) = T + V (t). The weighted splitting can be obtained by using

two sequential splittings as in the following algorithm:

∂u∗(t)

∂t
= V (t)u∗(t) with t ∈ [tn, tn+1] and u∗(tn) = un

sp, (3.7)

∂u∗∗(t)

∂t
= Tu∗∗(t) with t ∈ [tn, tn+1] and u∗∗(tn) = u∗(tn+1) (3.8)

and

∂v∗(t)

∂t
= Tv∗(t) with t ∈ [tn, tn+1] and v∗(tn) = vnsp, (3.9)

∂v∗∗(t)

∂t
= V (t)v∗∗(t) with t ∈ [tn, tn+1] and v∗∗(tn) = v∗(tn+1) (3.10)
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for n = 0, 1, ..., N − 1 whereby u0
sp = u0 is given from (3.1). The approximated split

solution at the point t = tn+1 is defined as un+1
sp = u∗∗(tn+1). Let us denote the split

solution of Lie-Trotter splitting (3.2, 3.3) as Usp(tn+1) = u∗∗(tn+1) on each sub-interval

[tn, tn+1]. The split solution can be written in terms of the fundamental set of solutions of

each sub equations (3.9, 3.10) as

U∗sp(h) = eΩV (h) eThu0. (3.11)

The numerical solution is computed as a weighted average of the solutions obtained by the

two sequential splitting steps. Let us denote the split solution of symmetrically weighted

splitting(SWS) as Usw(tn+1) on sub-interval. Therefore, we can write the split solution as

follows,

Usw(h) =
Usp(h) + U∗sp(h)

2

Usw(h) =
eTh eΩV (h) + eΩV (h) eTh

2
u0. (3.12)

3.3. Strang Splitting Based on Magnus Expansion

We split the A(t) as in previous techniques. Then, we apply another splitting

technique which is known as Strang-Marchuk splitting, where for one splitting time-step

three sub-problems should be solved:

∂u∗(t)

∂t
= Tu∗(t), with t ∈ [tn, tn+1/2] and u∗(tn) = un

sp (3.13)

∂u∗∗(t)

∂t
= V (t)u∗(t), with t ∈ [tn, tn+1] and u∗∗(tn) = u∗(tn+1/2), (3.14)

∂ũ(t)

∂t
= T ũ(t), with t ∈ [tn+1/2, tn+1] and ũ(tn+1/2) = u∗∗(tn+1) (3.15)

for n = 0, 1, ..., N − 1 whereby u0
sp = u0 is given from (3.1). The approximated split

solution at the point t = tn+1 is defined as un+1
sp = u∗∗(tn+1). Let us denote the split

solution of Strang Marchuk splitting (3.2, 3.3) as Usm(tn+1) = ũ(tn+1) on each sub-

interval [tn, tn+1]. For simplicity denote the split solution Usm(h) on (0, h] where h is the
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splitting time step. The split solution can be written in terms of the fundamental set of

solutions of each sub equations (3.13, 3.15) as

Usm(h) = eTh/2 eΩV (h) eTh/2u0. (3.16)

Example 3.1 By substituting the ΩV (h) as in equation (2.8) which is given in section

(2.1), we get

eΩ
[2](h) = eh[T+V (h/2)]

= e
1
2
hT ehV (h/2)e

1
2
hT +O(h3). (3.17)

3.4. Iterative Splitting Method

In the present section, we will introduce traditional iterative splitting method. In

this thesis our main focus is to create a new scheme for iterative splitting method. In the

subsection 3.5, we develop the proposed method.

3.4.1. Algorithm for Iterative Splitting

In this section, we summarize brief overview the iterative splitting scheme. We

consider the following problem,

∂u

∂t
= (A+B)u(t), u(0) = u0. (3.18)

where A and B are linear operators and u0 is initial condition.

The method is based on iteration by fixing the splitting discretization step size

h on time interval [tn, tn+1]. The following algorithms are then solved consecutively for

i = 1, 3, . . . , 2p+ 1.
∂ui

∂t
= Aui(t) +Bui−1(t) with ui(tn) = un, (3.19)

∂ui+1

∂t
= Aui(t) +Bui+1(t) with ui+1(tn) = un (3.20)
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where un is the known split approximation at time level t = tn and u0 ≡ 0 is our initial

guess. The split approximation at the time-level t = tn+1 is defined as un+1 = u2p+2(tn),

see (Geiser, 2009); (Faragó and Geiser, 2007).

The exact solutions of this system of equation then can be written by using the

variation of constant formula as follows:

ui(t) = exp(At)u0 +

∫ t

0

exp((t− s)A)Bui−1(s) ds (3.21)

ui+1(t) = exp(Bt)u0 +

∫ t

0

exp((t− s)B)Aui(s) ds. (3.22)

We summarize our algorithm in the following steps:

• Step 1: Consider the time interval [t0, tend], divide it into N subintervals so that

time step is h = (tend − t0)/N .

• Step 2: On each subinterval, [tn, tn + h], n = 0, 1..N , use the algorithm by consid-

ering the initial conditions for each step as u(t0) = u0, ui(tn) = ui−1(tn) = u(tn),

ui(tn + h) = eA(tn+h)u0 + A−1Bui−1(tn+1)− A−1ehABui−1(tn)

ui+1(tn + h) = eB(tn+h)u0 +B−1Aui(tn+1)−B−1ehBAui(tn)

where tn+1 denotes tn + h.

• Step 3: Check the condition

|ui − ui−1| ≤ Tol,

if it is satisfied stop the iteration on this interval,

• Step 4: ui(tn + h) → u(tn + h)

• Step 5: Repeat this procedure for the next interval until the desired time T is

achieved.

Theorem 3.1 Let A, B ∈ L(X), where X is a Banach space, be given linear bounded

operators. The Cauchy problem is in (3.18). Then the problem has a unique solution. The

error bounds of the iterations (3.19), (3.20) are given by
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• for i is odd

∥ei∥ ≤ (K1.∥A∥)
i−1
2 .(K2.∥B∥)

i+1
2 .∥e0∥

ti

i!
, (3.23)

• for i is even

∥ei∥ ≤ (K1.∥A∥)
i
2 .(K2.∥B∥)

i
2 .∥e0∥

ti

i!
(3.24)

where ∥e0∥ is the difference between the exact solution and initial guess,

∥exp(At)∥ ≤ K1, ∥exp(Bt)∥ ≤ K2 for t ≥ 0.

Proof The algorithms of the method are given by

u′i(t) = Aui(t) +Bui−1(t) (3.25)

u′i+1(t) = Aui(t) +Bui+1(t) (3.26)

with initial condition ui(0) = u0 and ui+1(0) = u0 where i = 1, 3, . . . , 2p+ 1 for [0, t].

For the first iteration, from the variation of constant formula, we have

=⇒ u1(t) = eAtu0 +

∫ t

0

eA(t−s)Bu0 ds, (3.27)

and we know the exact solution

=⇒ u(t) = eAtu0 +

∫ t

0

eA(t−s)Be(A+B)su0 ds. (3.28)

For the second iteration, from the variation of constant formula, we have

=⇒ u2(t) = eBtu0 +

∫ t

0

eB(t−s)Au1 ds (3.29)
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and we know the exact solution

=⇒ u(t) = eBtu0 +

∫ t

0

eB(t−s)Ae(A+B)su0 ds. (3.30)

Let’s denote ei = u(t) − ui(t). Assume that A, B are linear bounded operators and

∥exp(At)∥ ≤ K1, ∥exp(Bt)∥ ≤ K2 for t ≥ 0.

For i = 1, we have the error bound

∥u(t)− u1(t)∥ = ∥
∫ t

0

eA(t−s)B(e(A+B)su0 − u0) ds∥ (3.31)

∥e1∥ = ∥
∫ t

0

eA(t−s)Be0 ds∥ (3.32)

∥e1∥ ≤ K1.∥B∥.∥e0∥t, (3.33)

for i = 2, we get

∥u(t)− u2(t)∥ = ∥
∫ t

0

eB(t−s)A(e(A+B)su0 − u1) ds∥ (3.34)

∥e2∥ = ∥
∫ t

0

eB(t−s)A(e1) ds∥ (3.35)

∥e2∥ ≤ K2

∫ t

0

∥A∥.∥e1∥ ds (3.36)

∥e2∥ ≤ K2.K1.∥A∥.∥B∥.∥e0∥
t2

2
(3.37)

and for i = 3

∥u(t)− u3(t)∥ = ∥
∫ t

0

eA(t−s)B(e(A+B)su0 − u2) ds∥ (3.38)

∥e3∥ = ∥
∫ t

0

eA(t−s)Be2 ds∥ (3.39)

∥e3∥ ≤ K1

∫ t

0

∥B∥.∥e2∥ ds (3.40)

∥e3∥ ≤ K1.K2.K1.∥B∥.∥A∥.∥B∥.∥e0∥
t3

6
(3.41)

then by induction we get:
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For i is odd

∥ei∥ ≤ (K1.∥A∥)
i−1
2 .(K2.∥B∥)

i+1
2 .∥e0∥

ti

i!
(3.42)

For i is even

∥ei∥ ≤ (K1.∥A∥)
i
2 .(K2.∥B∥)

i
2 .∥e0∥

ti

i!
. (3.43)

Note that in (Faragó et al., 2008) they give the same error bounds implicitly. This explicit

form can be found in (Gücüyenen and Tanoğlu, 2011). �

Remark 3.1 Iterative splitting method provides the higher order accuracy in approxi-

mate solution with increasing number of iteration steps.

3.5. New Symmetric Iterative Splitting Method

Let us consider the initial value problem (IVP ) given in (3.1) on the time interval

[0, tend] where tend ∈ R. We assume for A(t) a two-term splitting

T + V (t).

Let us divide the integration interval [0, tend] in N equal parts by the points t0, t1, ...., tn,

where the length of each interval is h = tn+1 − tn = tend/N, j = 0, 1..N − 1. The

approximated solution and exact solution at time t = tn are U(tn) and u(tn), respectively.

Our technique is close to that used in (Blanes and Ponsoda, 2008). We apply

second order iterative process described as below on each subinterval [tn, tn+1],

u̇1 = Tu1 + V (t)U(t0) u1(tn) = U(tn) (3.44)

u̇2 = Tu1 + V (t)u2 u2(tn) = U(tn) (3.45)

where u2(tn) = U(tn) denotes the numerical approximation to the true solution u(tn) at
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the time t = tn and U(t0) = u0. The formal solution of the sub equations given in (3.44)

and (3.45) on the time interval [t, t+ h] can be written by

ui(t+ h) = Φi(t+ h, t)ui(t) +

∫ t+h

t

Φi (t+ h, s)Fi(s) ds, i = 1, 2

where F1 = V (t)U(t) and F2 = Tu1(t+ h). Furthermore, Φi is given as follows

Φ1(t+ h, t) = e(h)T

Φ2(t+ h, t) = e
h
2
[V (t+h)+V (t)]

which is the second order approximation of the Magnus series given in equation (2.9).

Next we use the trapezoidal rule to approximate the integral

∫ t+h

t

Φi Fi ds =
h

2
[Fi(t+ h) + Φi(t+ h, t)Fi(t)] +O(h3). (3.46)

Note that Φi(t + h, t + h) = I. After combining approximation (3.46) with the iterative

schemes (3.44), (3.45) and rearranging expressions, we get the first order approximation

u1(tn + h) = eTh[u1(tn) +
h

2
V (tn)u0(tn)] +

h

2
V (tn + h)u0(tn) (3.47)

and the second order approximation,

u2(tn + h) = e
h
2
[V (tn+h)+V (tn)][U(tn) +

h

2
Tu1(tn)] +

h

2
Tu1(tn + h) (3.48)

where Un+1 = u2(tn + h). Repeat this procedure for next interval until the desired time

tend is reached.

Proposition 3.1 New iterative scheme preserve the time-symmetry property.

Proof

The time- symmetry preservation can be easily seen by interchanging tn+1,
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ui(tn+1), h by tn, ui(tn), −h, respectively.

un
1 = e−hT [un+1

1 − h

2
V (tn+1)u

n
0 ]−

h

2
V (tn)u

n
0 . (3.49)

By rearranging the equation (3.49), we have

ehT [un
1 +

h

2
V (tn)u

n
0 ] = [un+1

1 − h

2
V (tn+1)u

n
0 ]

un+1
1 = ehT [un

1 +
h

2
V (tn)u

n
0 ] +

h

2
V (tn+1)u

n
0 .

Similarly, when we consider the second order scheme to prove the time symmetry prop-

erty, we use the same procedure as above.

un
2 = e−

h
2
[V (tn)+V (tn+1)][un+1

2 − h

2
Tun+1

1 ]− h

2
Tun

1 . (3.50)

When we arrange the equation (3.50) for un+1
2 , they are equivalent to equations in (3.45).

�
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CHAPTER 4

CONSISTENCY ANALYSIS OF OPERATOR SPLITTING

METHODS

In chapter (3), we obtained modified first and second order splitting methods with

the help of the Magnus expansion. This chapter is related to find the error bound for these

methods. We will study on the following equation

d

dt
u(t) = A(t)u(t) = (T + V (t))u(t), 0 ≤ t ≤ tend (4.1)

u(0) = u0 ∈ X.

where X is any Banach space and A(t) = T + V (t).

4.1. Consistency Analysis for Bounded Operators

The main idea of this section is to analyze the error bounds for the bounded oper-

ators, T and V (t). These bounds are represented with the help of Taylor expansion in the

following subsections.

4.1.1. Error Analysis of Lie Trotter Splitting

Proposition 4.1 The Lie-Trotter splitting is at least first order for the system of equation

given as (4.1) with the error bound

∥u(h)− Usp(h)∥ ≤ A1h
2. (4.2)

Here A1 only depends on ∥[T, V (h/2)]∥ and ∥u0∥.
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Proof The numerical split solution (3.4) takes the following form after using the Taylor

expansion for eTh and the second order Magnus expansion as in (2.8) for eΩV (h)

Usp(h) = (I + Th+
1

2
T 2h2 +O(h3))(I + V (

h

2
)h+

1

2
V 2(

h

2
)h2 +O(h3))u0.(4.3)

After collecting the terms under the powers of h, we have

Usp(h) = (I + (T + V (
h

2
))h+ (

1

2
V 2(

h

2
) + TV (

h

2
) +

1

2
T 2)h2 +O(h3))u0.(4.4)

We will approximate the exact solution (3.5) up to the second order also according

to Magnus expansion which is proposed in (2.8). This yields

u(h) = (I + (T + V (
h

2
))h+

1

2
(V 2(

h

2
) + TV (

h

2
) + V (

h

2
)T + T 2)h2

+ O(h3))u0 (4.5)

where A(t) = T + V (t). In order to find the error bound, we compare (4.4) with the

exact solution (4.5). Subtracting (4.4) from (4.5) leads to

u(h)− Usp(h) =
1

2
(TV (

h

2
)− V (

h

2
)T )h2 u0 +O(h3). (4.6)

Hence, the error bound of Lie-Trotter splitting is

∥u(h)− Usp(h)∥ ≤ 1

2
∥[T, V (h/2)]∥∥u0∥h2. (4.7)

�
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4.1.2. Error Analysis of Strang Splitting

Proposition 4.2 The Strang-Marchuk splitting is at least second order for the system of

equation given as (4.1) with the error bound

∥u(h)− Usm(h)∥ ≤ A2h
3

where A2 is a function of ∥T∥, ∥u0∥ and ∥V(t)∥.

Proof The numerical split solution which is defined in equation (3.16) as Strang split-

ting takes the following form after using the Taylor expansion for eTh and the second

order Magnus expansion which is given in equation (2.8) for eΩV (h)

Usm(h) = (I +
1

2
Th+

1

8
T 2h2 +

1

48
T 3h3 +O(h4))(I + V (

h

2
)h+

1

2
V 2(

h

2
)h2

+
1

6
V 3(

h

2
)h3 +O(h4))(I +

1

2
Th+

1

8
T 2h2 +

1

48
T 3h3 +O(h4))u0.

After collecting the terms under the powers of h, we have

Usm(h) =

[
I + (T + V (

h

2
))h+ (

1

2
V 2(

h

2
) +

T

2
V (

h

2
) + V (

h

2
)
T

2
+

1

2
T 2)h2

+

(
1

6
V 3(

h

2
) +

T 2V (h
2
) + V (h

2
)T 2

8
+

TV 2(h
2
)V 2(h

2
)T

4

+
TV (h

2
)T

4
+

1

6
T 3

)
h3

]
u0 +O(h4). (4.8)

We will approximate the exact solution by using Magnus expansion as in numerical solu-

tion. This yields

u(h) =

[
I + (T + V (

h

2
))h+

1

2
(V 2(

h

2
) + TV (

h

2
) + V (

h

2
)T + T 2)h2

+
1

6

(
V 3(

h

2
) + T 2V (

h

2
) + TV (

h

2
)T + TV 2(

h

2
) + V (

h

2
)T 2

+ V (
h

2
)TV (

h

2
) + V 2(

h

2
)T + T 3

)
h3
]
u0 +O(h4) (4.9)

where A(t) = T + V (t).
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Substraction the (4.9) and (4.8) leads to

u(h)− Usm(h) = [
1

24
(T 2V (

h

2
) + V (

h

2
)T 2)

− 1

12
(TV 2(

h

2
) + V 2(

h

2
)T + TV (

h

2
)T ) +

1

6
V (

h

2
)TV (

h

2
)]h3u0

+ O(h4). (4.10)

The error bound of Strang splitting is obtained as

∥u(h)− Usm(h)∥ ≤ 1

12
∥T 2V (

h

2
)∥+ 1

6
∥TV 2(

h

2
)∥

+
1

12
∥TV (

h

2
)T∥+ 1

6
∥V (

h

2
)TV (

h

2
)∥∥u0∥h3. (4.11)

�

4.1.3. Error Analysis of Symmetrically Weighted Splitting

Proposition 4.3 The Symmetrically weighted splitting is at least second order for the

system of equation given as (4.1) with the error bound

∥u(h)− Usw(h)∥ ≤ A3h
3. (4.12)

where A3 depends on ∥[T, [V (h
2
), T ]]∥ and ∥[V(h

2
), [V(h

2
),T]]∥ and ∥u0∥.

Proof

The symmetrically weighted splitting solution in (3.9, 3.10) takes the form

U∗sp(h) = (I + V (
h

2
)h+

1

2
V 2(

h

2
)h2 +

1

6
V 3(

h

2
)h3 +O(h4))(I + Th

+
1

2
T 2h2 +

1

6
T 3h3 +O(h4))u0.

(4.13)
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After collecting the terms under the powers of h, we have

U∗sp(h) =
[
I + (T + V (

h

2
))h+ (

1

2
V 2(

h

2
) + TV (

h

2
) +

1

2
T 2)h2

+

(
1

6
V 3(

h

2
) +

1

2
V 2(

h

2
)T

+
1

2
V (

h

2
)T 2 +

1

6
T 3

)
h3 +O(h4)

]
u0. (4.14)

and the symmetrically weighted solution is

Usw(h) =
Usp(h) + U∗sp(h)

2
u0,

or equal to

Usw(h) =

[
I + (T + V (

h

2
))h+

1

2
(V 2(

h

2
) + TV (

h

2
) + V (

h

2
)T + T 2)h2

+

(
1

6
V 3(

h

2
) +

1

4
TV 2(

h

2
) +

1

4
T 2V (

h

2
) +

1

4
V (

h

2
)T 2

+
1

4
V 2(

h

2
)T +

1

6
T 3

)
h3
)
u0 +O(h4). (4.15)

We know the exact solution is

u(h) =

[
I + (T + V (

h

2
))h+

1

2
(V 2(

h

2
) + TV (

h

2
) + V (

h

2
)T + T 2)h2

+
1

6

(
V 3(

h

2
) + T 2V (

h

2
) + TV (

h

2
)T + TV 2(

h

2
) + V (

h

2
)T 2

+ V (
h

2
)TV (

h

2
) + V 2(

h

2
)T + T 3

)
h3
]
u0 +O(h4) (4.16)

Subtracting (4.15) from (4.16) leads to

u(h)− Usw(h) =
1

12
([T, [V (

h

2
), T ]] + [V (

h

2
), [V (

h

2
), T ]])u0h

3 +O(h4). (4.17)

Therefore, symmetrically weighted splitting is bounded by

∥u(h)− Usw(h)∥ ≤ 1

12
(∥[T, [V (

h

2
), T ]]∥+ ∥[V (

h

2
), [V (

h

2
), T ]]∥)∥u0∥h3. (4.18)

�
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4.1.4. Error Analysis of Iterative Splitting

The operator A(t) of the problem (4.1) can be splitted as a sum T + V (t). We,

then, solve the following algorithms consecutively for i = 1, 3, . . . , 2p+ 1.

∂ui(t)

∂t
= Tui(t) + V (t)ui−1(t) t ∈ [tn, tn+1] and ui(tn) = un

sp, (4.19)

∂ui+1(t)

∂t
= Tui(t) + V (t)ui+1(t) t ∈ [tn, tn+1] and ui+1(tn) = un

sp (4.20)

for n = 0, 1, ..., N − 1 whereby u0
sp = u0 is given from (4.1) and u0 ≡ 0 is our initial

guess. The split approximation at the time-level t = tn+1 is defined as Un+1
itsp = ui+1(tn),

see (Geiser, 2009); (Faragó and Geiser, 2007).

Proposition 4.4 The iterative splitting is at first order if we consider one iteration for the

system of equation given as (4.1) with the error bound

∥u(h)− Uitsp(h)∥ ≤ A4h
2. (4.21)

Here A4 depends on ∥T∥ and ∥V (t)∥.

Proof

Each sub equation, (4.19) and (4.20) have the following solutions

u1(h) = eThu0 +

∫ h

0

eT (h−s)V (s)u0 for each [0, h], (4.22)

If we use the Taylor expansion for eTh, then (4.22) yields

u1(h) = (I + Th+
1

2
T 2h2)(I +

∫ h

0

(I − Ts)V (s)ds)u0.
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Due to midpoint rule for approximating integral in (4.23), one obtains

u1(h) = (I + Th+
1

2
T 2h2)(

I + h(V (
h

2
)− h

2
TV (

h

2
))
)
u0 +O(h3). (4.23)

By rearranging the equation above, we have

u1(h) = (I + (V (
h

2
) + T )h+

1

2
h2(T 2 + 2TV (

h

2
) + V 2(

h

2
)))u0

+ O(h3) (4.24)

where Uitsp(h) = u1(h). The exact solution is

u(h) = (I + (T + V (
h

2
))h+

1

2
(V 2(

h

2
) + TV (

h

2
) + V (

h

2
)T + T 2)h2)u0

+ O(h3). (4.25)

The error of the iterative splitting method is obtained by subtracting (4.24) from (4.25).

One obtains

∥u(h)− Uitsp(h)∥ ≤ 1

2
(∥[T, V (

h

2
)]∥∥u0∥h2. (4.26)

�

Proposition 4.5 The iterative splitting is at first order if we consider two iterations for

the system of equation given as (4.1) with the error bound

∥u(h)− Uitsp(h)∥ ≤ A5h
3 (4.27)

where A5 depends on ∥T∥ and ∥V (t)∥.

Proof The proof follows the line of previous one. �
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4.2. Consistency Analysis for Unbounded Operators

In this section, our main aim is to illustrate the error bounds for operators which

are assumed T is unbounded and V (t) is bounded in Eq.(4.1). To obtain these bounds, we

commence with describing semigroup theory and employed assumptions. Then, we will

give error bounds the given methods.

4.2.1. Semigroup Theory

In the current subsection, we will summarize semigroup theory, since it will be

used to get some basic assumptions in the next subsection. This theory is developed to

solve operator ODE. Consider the initial value problem,

∂u(t)

∂t
= Au(t) with t ∈ [0, tend], u(0) = u0, (4.28)

with given matrix A ∈ Rn×n. The solution of equation above can be written as following,

u(t) = etAu0. (4.29)

In preceding section, we represented if A is a linear bounded operator in Banach space,

U(t) still has this form. However, in many interesting cases, it is unbounded which don’t

admit this form. This to some extend shows the richness of semigroup theory.

For its application, semigroup theory uses abstract methods of operator theory to

treat initial boundary value problems for linear and nonlinear equations that describe the

evolution of a system.

Theorem 4.1 (Gelfand) Denote σ(M) = {λ ∈ C|λI − M is not invertible} to be the

spectrum of bounded linear operator A. We have

• σ(A) is closed bounded nonempty set in C

• Let | σ(M) |= maxλ∈σ(M) | λ |. We have σ(M) = limk→∞ | Mk | 1k .

Remark 4.1 For any power series, f(z) =
∑

anz
n, suppose the convergence circle of

f is B(0, R). Then if R >| σ(M) |, f(M) =
∑

anM
n is well-defined. For instance,
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eM =
∑

Mn

n!
is well defined for any bounded operator M.

Definition 4.1 A one-parameter strongly continuous semigroup of operators over a real

or complex Banach space X is a map such that,

S : X 7→ X

i S(0)=I

ii for all t, s ≥ 0 S(t+ s) = S(t)S(s)

iii ∀x ∈ X such that ∥S(t)x− x∥ → 0 as t → 0.

The first two axioms are algebraic, and state that S(t) is a representation of the semigroup

(X,X); the last is topological, and states that the map S(t) is continuous in the strong

operator topology.

Theorem 4.2 S(t) be one-parameter semigroup of operator that is strongly continuous

at t = 0 then, there exist constants b, k such that S(t) ≤ bekt.

Definition 4.2 The infinitesimal generator A of S(t) is given by:

Ax := lim
t↓0

1

t
(S(t)x− x)

whenever the limit exists and D(A) is its domain.

Theorem 4.3 S(t) be a strongly continuous semigroup of operators. Then,

• It is uniquely determined by its infinitesimal generator.

• if x ∈ D(A) then S(t)x ∈ D(A) and AS(t)x = S(t)Ax.

• D(An) is dense for any n ∈ N, where D(An) := {u ∈ D(An−1)|An−1u ∈ D(A)}.

• A is closed operator.

For bounded linear operator M, the resolvent set is the complement of spectrum

σ(M), denote by ρ(M). So for any λ ∈ ρ(M), λI −M is invertible. And its resolvent is

R(λ) = (λI −M)−1. However for unbounded operator A, we need change the definition

to λI−A is bijective between D(A) and X . The resolvent of A is still R(λ) = (λI−A)−1,
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but the map is X 7→ D(A). For any λ ∈ C whose real part is bigger than k( where

| S(t) |≤ bekt), we can define Laplace transform of S(t) by L(λ)x =
∫∞
0

e−λtS(t)xdt.

The following theorem states the properties of the resolvent of A.

Theorem 4.4 (Hille-Yosida) The infinitesimal generator A of contractions,i.e. | S(t) |≤
1 for all t ≥ 0 has every positive, real in its resolvent and | R(λ) |=| (λI − A)−1 |≤ 1

λ
.

The detailed proof of this theorem can be found in (Pazy, 1983).

4.2.2. Assumptions

For our analysis we need the following assumptions:

Assumption 4.1 Suppose that closed linear operator A(t) : D → X where D is dense

subset of X and that A(t) is uniformly sectorial for 0 ≤ t ≤ tend. Then, there exist

constants a ∈ R, 0 < φ < π/2,and M1 ≥ 1 such that Sφ(a) = {λ ∈ C : | arg(a− λ) |≤
φ} ∪ {a},

∥(λI − A(t))−1∥X←X ≤ M1

| (a− λ) |
for any λ ∈ C \ Sφ(a). (4.30)

Then for fixed 0 ≤ s ≤ tend, the analytic semigroup etA(s)satisfy ∥ etA(s) ∥≤ Meωt for

some constants ω < 0 and M ≥ 1. Our general references on semigroups are (Oster-

mann et al., 2006), (Bátkai et al., 2011).

Assumption 4.2 Let D(T ) = D(A(t)). We assume that T is linear closed operator and

that generates a strongly continuous semigroup etT on X. By semi group property, we

assume ∥ eTt ∥≤ 1.

Assumption 4.3 We assume that V (t) is bounded linear operator on X. Then we get

eΩV (t) ≤ et∥V (t)∥ where ΩV (t) ≈ Ω2(t) with the help of the equation (2.9). As the con-

vergence of Magnus expansion is guaranteed if ∥ Ω(t) ∥< π. The details can be found in

(Moan and Niesen, 2008).

Lemma 4.1 Let T be an infinitesimal generator of a C0 semigroup S(t), t ≥ 0. Let

tend > 0. If for any V (t)U ∈ D(T ) satisfying V (t)U, TV (t)U ∈ C1([0, tend];X) then the
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solution of problem satisfies u(t) ∈ D(A2(t)) for 0 ≤ t ≤ tend whenever u0 ∈ D(A2(t)),

and we have

sup
0≤t≤tend

∥T iu(t)∥ ≤ Ei(tend), i = 0, 1, 2 (4.31)

where Ei depends on the specific choice of tend, T, V (t)U and u0. For the detailed proof

see (Bjørhus, 1998).

Assumption 4.4 We assume that there are non-negative constants C̃, R with

sup
0≤t≤tend

∥V (t)∥ ≤ C̃.

∥u∥ ≤ R on 0 ≤ t ≤ tend.

4.2.3. Analysis

Under the assumptions which are given in previous subsection, we will analyze

the consistency. In order to get the error bounds we use the techniques are close to that

use in (Jahnke and Lubich, 2000); (Hansen et al., 2008).

4.2.3.1. Lie-Trotter Splitting

Proposition 4.6 Let Assumption 4.2 and 4.4 be fulfilled. Then, the Lie Trotter splitting

method is first order accuracy, i.e., the local error satisfies the bound

∥u(h)− U(h)∥ ≤ C1h
2 (4.32)

where C1 is a function of C̃ and R.

Proof We start from the variation of constant formula for the exact solution

u(h) = eThu0 +

∫ h

0

eT (h)V (h− s)u(h− s)ds.
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By using midpoint rule for approximating integral, we get

u(h) = eThu0 + heT (h)V (h/2)u(h/2) +O(h2).

Taylor expansion of u(0 + h/2) at t = 0 leads to

u(h) = eThu0 + heT (h)V (h/2)u(0) +O(h2). (4.33)

On the one hand, the split solution is given by

U(h) = eThu0 + heThV (h/2)u0 + F1. (4.34)

where

F1 =
h2

2
eThV 2(h/2)u0 +O(h3).

Due to our assumptions F1 is bounded by h2

2
C̃2, i.e. F1 ≤ h2

2
C̃2.

The proof follows the subtracting numerical solution in equation (4.34) from the

exact solution given in (4.33). Henceforth, we have

∥u(h)− U(h)∥ ≤ F1 +O(h2)

∥u(h)− U(h)∥ ≤ C1h
2 (4.35)

where C1 is function of C̃ and R. �

4.2.3.2. Strang Splitting

We, now, show that Strang splitting method is consistent for the abstract Cauchy

problem in 4.1 under the assumptions which we determined in the subsection 4.2.2.
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Proposition 4.7 Let Assumption 4.2 and 4.4 be fulfilled. Then, the Strang-Marchuk split-

ting is second order accuracy, i.e., the local error satisfies the bound

∥u(h)− U(h)∥ ≤ C2h
3

where C2 is a function of C̃3, R.

Proof

We start with the numerical solution. Using Taylor expansion with the help of the

equation (2.8) for eΩV (h) leads

U(h) = eT
h
2 (I + hV (h/2) +

h2

2
V 2(h/2) +

h3

6
V 3(h/2) +O(h4))eT

h
2 u0

= eThu0 + heT
h
2V (h/2)eT

h
2 u0 +

h2

2
eT

h
2V 2(h/2)eT

h
2 u0 + F2 (4.36)

where F2 =
h3

6
eT

h
2V 3(h/2)eT

h
2 u0 +O(h4). The bound of F2 follows the line of Assump-

tion 4.2 and 4.4 and it is defined as

F2 ≤
h3

6
C̃3 ∥u0∥.

On the other side, as in proof of proposition 4.6, we represent the variation of

constant formula for the exact solution. Expressing the last term of integral, we substitute

the u(h) by the same formula, at the end of this process we have

u(h) = eThu0 +

∫ h

0

eT (h−s)V (s)eTsu0 ds

+

∫ h

0

∫ s

0

eT (h−s)V (s)eT (s−ρ)V (ρ)eTρu(ρ)dρ ds. (4.37)
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We define g1(s) = eT (h−s)V (s)eTsu0 and g2(s, ρ) = eT (h−s)V (s)eT (s−ρ)V (ρ)eTρu(ρ).

With the aid of g1(s), g2(s, ρ) the equation (4.37) can be rewritten as

u(h) = eThu0 +

∫ h

0

g1(s)u0 ds

+

∫ h

0

∫ s

0

g2(s, ρ)dρ ds. (4.38)

We use midpoint rule to approximate the integrals. Hence we obtain

u(h) = eThu0 + h(eT
h
2V (h/2)eT

h
2 +O(h2))

+
h2

2
eT

h
2V (h/2)V (h/2)eT

h
2 u(h/2) +O(h3).

Again using Taylor expansion of u(0 + h/2) at t = 0 leads to

u(h) = eThu0 + h(eT
h
2V (h/2)eT

h
2 ) +

h2

2
eT

h
2V 2(h/2)eT

h
2 u0

+ O(h3). (4.39)

By subtracting (4.36) from (4.39), one obtains

∥u(h)− U(h)∥ ≤ ∥F1∥+O(h3)

∥u(h)− U(h)∥ ≤ C2h
3 (4.40)

where C2 depends on eTh, V (h/2) and R. Therefore, by means of our assumptions,

C2 is bounded by a function of C̃3 and R. �
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4.2.3.3. Symmetrically Weighted Splitting

Proposition 4.8 Let Assumption 4.2 and 4.4 be fulfilled. Then, the symmetrically weighted

splitting is second order accuracy, i.e., the local error satisfies the bound

∥u(h)− U(h)∥ ≤ C3h
3.

Proof

The proof proceeds by starting numerical solution. As in proof proposition 4.7,

using exponential series with the help of the equation (2.8) for eΩV (h) leads to

U(h) =
eTh(I + hV (h/2) + h2

2
V 2(h/2)) + (I + hV (h/2) + h2

2
V 2(h/2))eTh

2
u0

+ O(h3)

= eThu0 +
h

2
(eThV (h/2) + V (h/2)eTh)u0 +

h2

4
(eThV 2(h/2) + V 2(h/2)eTh)u0

+ O(h3). (4.41)

Consequently, by variation of constants formula ,we obtain the following repre-

sentation of exact solution:

u(h) = eThu0 +

∫ h

0

eT (h−s)V (s)eTsu0 ds

+

∫ h

0

∫ s

0

eT (h−s)V (s)eT (s−ρ)V (ρ)eTρu0dρ ds+ F2

where

F3 =

∫ h

0

eT (h−s)V (s)

∫ s

0

eT (s−ρ)V (ρ)

∫ ρ

0

eT (ρ− ξ)V (ξ)u(ξ)dξ dρ ds

which is bounded by ∥F3∥ ≤ h3

6
C̃3 ∥R∥. We define g(s) = eT (h−s)V (s)eTsu0 and ω(s, ρ) =

eT (h−s)V (s)eT (s−ρ)V (ρ)eTρu0. By using trapezium rule to approximate the integrals, i.e.

we substitute h
2
(g(h) + g(0)) for the second term and substitute h2

4
(ω(0, 0) + ω(h, h)) for
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the last term, one obtains

u(h) = eThu0 +
h

2
(V (h)eTh + eThV (0))u0 +

h2

4
(eThV 2(0) + V 2(h)eTh)u0 +O(h3).

We use Taylor expansion of V (h/2 + h/2) at h/2 and also V (h/2− h/2) at h/2 leads to

u(h) = eThu0 +
h

2
(V (h/2)eTh + eThV (h/2))u0

+
h2

4
(eThV 2(h/2) + V 2(h/2)eTh)u0 +O(h3). (4.42)

In order to get the order of this method, we take a look at the error ej = ∥u(tj)− U(tj)∥.

Subtracting 4.41 from and using the assumptions leads to

∥u(h)− U(h)∥ ≤ C3h
3. (4.43)

Here C3 is a function of C̃ and R. �

4.2.4. Symmetric Iterative Splitting

Proposition 4.9 The symmetric iterative splitting is first order if we consider only one

iteration given in (3.44) with the error bound

∥u(h)− U(h)∥ ≤ Kh2 (4.44)

Here K only depends on C̃, R,E1(tend).

Proof

We define the local error by ej = U(tj)− u(tj), j = 0, 1, 2, . . . , n. For simplicity,

we only consider the time interval [0,h]. The exact solution of the equation (4.1) can be

written as,

u(h) = eThu0 +

∫ h

0

eThV (h− s)u(h− s)ds. (4.45)
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We derive the error bound for the equation (4.1) by using first order iterative splitting

scheme.Thus, the numerical solution of (4.1),

U(h) = eThu0 +

∫ h

0

eThV (h− s)u0ds. (4.46)

By subtracting (4.46) from (4.45) leads to

∥u(h)− U(h)∥ = ∥
∫ h

0

eThV (h− s)[u(h− s)− u0]ds∥

≤ hC̃∥u(h− s)− u0∥ (4.47)

where C̃ = sup0≤t≤tend
∥V (t)∥. To obtain the error bound for ∥u(h) − u0∥ we use the

Lemma 4.1 and Assumption 4.4 ,

u(h) = u0 +

∫ h

0

A(s)u(s)ds

∥u(h)− u0∥ = h∥A(s)u∥ = h∥(T + V (s))u∥ ≤ h ∥ Tu ∥ + ∥ V (s)u ∥

∥u(h)− u0∥ ≤ h(E1(tend) + C̃R). (4.48)

By substituting (4.48) in the equation (4.47), we have

∥u(h)− U(h)∥ ≤ h2C̃(E1(tend) + C̃R) = Kh2 (4.49)

where K = C̃(E1(tend) + C̃R). �

Proposition 4.10 The symmetric iterative splitting is the second order if we consider two

iterations given in (3.45) with the error bound

∥u(h)− U(h)∥ ≤ K̃h3 (4.50)

Here K̃ only depends on C̃, R,E1(tend).
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Proof

We write the equation for second order iterative splitting as follows,

U(h) = eThu0 +

∫ h

0

eThV (h− s)u1ds. (4.51)

For estimating the error bound, we subtract the (4.51) from the equation (4.45), remaining

term is

∥u(h)− U(h)∥ = ∥
∫ h

0

eThV (h− s)[u(h− s)− u1]ds∥

≤ hC̃∥u(h− s)− u1∥. (4.52)

Here u1 is the solution of the equation in (3.44). The proof follows that of the bound of

∥u(t− s)− u1∥ in (4.49), we have

∥u(h)− U(h)∥ ≤ h3C̃2(E1(tend) + C̃R) = h3K̃. (4.53)

�
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CHAPTER 5

STABILITY ANALYSIS FOR OPERATOR SPLITTING

METHODS

This chapter deals with the stability of any linear ordinary differential equation

(ODE). We investigate this subject in two main fold. Firstly, the autonomous case is

considered both bounded and unbounded operators. In the sequel, non-autonomous case

is discussed.

5.1. Stability for Autonomous Linear ODE Systems

In this section, we summarize the stability issue in order not to ruin the general

flow of thesis. Our main reference on stability of linear autonomous differential equations

is the book Hundsdorfer and Verwer, see (Hundsdorfer and Verwer, 2003). To analyze

the stability of autonomous differential equations, we focused on the equation in (4.28)

with the exact solution (4.29).

5.1.1. Stability Analysis for Bounded Operators

In the present subsection, we take a look at properties of ODEs and particularly at

influence of perturbations at such systems. Consider the (IVP) in 4.28 with exact solution

. Then, take into account perturbed system,

∂Ũ(t)

∂t
= AŨ(t) + g(t) with t ∈ [0, tend], Ũ(0) = Ũ0. (5.1)

Then by subtracting equation (4.29) from the solution of equation (5.1) which is found by

using variation of constant formula, leads to

δ(t) = etAδ(0) +

∫ t

0

e(t−s)Aδ(s)ds (5.2)
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where δ(t) denotes to Ũ(t)− U(t). Then, the norm estimation can be found as

∥δ(t)∥ ≤ ∥etA∥∥δ(0)∥+
∫ t

0

∥e(t−s)A∥ds max
0≤s≤t

∥δ(s)∥.

As a result, if we have the following stability condition,

∥etA∥ ≤ Ketw for all t ≥ 0,

with constants K > 0 and w ∈ R. Therefore, we obtain

∥δ(t)∥ ≤ Ketw∥δ(0)∥+ K

t
(etw − 1) max

0≤s≤t
∥δ(s)∥, (5.3)

with arranging (etw − 1)/w = t in case w = 0. This inequality shows that the overall

error ∥δ(t)∥ can be bounded in terms of error ∥δ(0)∥ and perturbations ∥δ(s)∥, 0 ≤ s ≤ t.

In general, the term stability will be used to indicate that small perturbations give a small

overall effect. Next, we concentrate on bound for ∥etA∥. Suppose that A is diagonalizable,

that is A = PΛP−1, where Λ = diag(λk). Hence, the norm as follows,

∥etA∥ ≤ ∥P∥∥Λ∥∥P−1∥ = cond(P ) max
1≤k≤t

| etλk | . (5.4)

Consequently, if we know that cond(P ) = ∥P∥∥P−1∥ ≤ K and Re(λk) ≤ w, then (5.3)

follows with

w = max
1≤≤k≤m≤

| etλk | . (5.5)

In particular, if A is a normal matrix, i.e. A∗A = AA∗ where A∗ denotes conjugate

transpose of A, then the eigenvectors of P is unitary. Since etA = PetΛP−1, the matrix

etA is also normal. Thus

∥etA∥2 = max
1≤k≤m

| etλk | .
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Suppose for A, two-term splitting in equation (4.28) as

A = A1 + A2. (5.6)

The solution of (4.28) is given by

U(tn+1) = ehAU(tn) (5.7)

where h = tn+1 − tn on each subintervals [tn, tn+1], where n = 0, 1, ..N − 1. Instead of

full A, if we wish to use only A1 and A2 separately , then (5.7) can be approximated by

Un+1 = ehA2ehA1Un (5.8)

where Un denotes to U(tn). With regard to stability, if we have ∥etAk∥ ≤ 1, k = 1, 2,

then it follows that ∥Un+1∥ ≤ ∥Un∥ for the equation (5.8). General stability results under

the weaker condition that ∥etAk∥ ≤ K for 0 ≤ h ≤ tend. In general, if the matrix A is not

normal, an estimate cond(U) in some suitable norm may be difficult to obtain. Therefore

we will look a more general concept to get bounds for ∥etA∥. A useful concept for stability

results with non-normal matrices is the logarithmic norm of a matrix A in Rm×m, defined

as

µ(A) = lim
t↓0

∥I + tA∥
t

. (5.9)

In terms of logarithmic matrix norms, ∥etAk∥ ≤ 1 means that µ(Ak) ≤ 0.
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5.1.2. Stability Analysis for Unbounded Operators

Consider the linear abstract Cauchy problem in a Banach space X ,

d

dt
u = Au+ f(t), t > 0 (5.10)

u(0) = u0. (5.11)

Let ∥.∥ be the norm in X , and let ∥.∥Ł(X) denote the corresponding induced operator

norm. Let A be a densely defined closed linear operator in X for which there exist real

constants M ≥ 1 and w such that the resolvent set ρ(A) satisfies ρ(A) ⊃ (w,∞), and we

have resolvent condition

∥(λI − A)−n∥Ł(X) ≤ M

(λ− w)n
, for λ > w, n = 1, 2, ... (5.12)

These are necessary and sufficient conditions for A to be the infinitesimal generator of C0

semigroup of bounded linear operator, which we denote by S(t), t ≥ 0, satisfying

∥S(t)∥Ł(X) ≤ Mewt (5.13)

(Pazy, 1983). Then, if u0 ∈ D(A) and f ∈ C1([0, tend], X), our Cauchy problem has

unique solution [0, tend] given by

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s)ds. (5.14)

where S(t) = eAt is a C0 semigroup. If we define F by

F (t, h) =

∫ t

h

S(t− s)f(s)ds t ≥ h ≥ 0, (5.15)
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we can write (5.14) as

u(t) = S(t)u0 + F (t, 0). (5.16)

Assume that,

A = A1 + A2 D(A) = D(A1) = D(A2) (5.17)

where A1 and A2 are infinitesimal generators of such C0-semigroups {S1(t)}t≥0 and

{S2(t)}t≥0,respectively. Let f1, f2 ∈ C1([0, tend], X). By using the notation u(t−) :=

limε↓0 u(t − ε) and we choose to approximate u(tn) by u2(tn), where u1 and u2 are de-

fined piecewise on the intervals [tn, tn+1] where tn = nh, n = 0, 1, 2, ...[tend/h],

d

dt
u1 = Au1 + f1 tn < t < tn+1 (5.18)

u2(tn) = u1(tn+1−)

and

d

dt
u2 = Au2 + f2 tn < t < tn+1 (5.19)

u1(tn) = u2(tn−).

Here we note that (5.18) and (5.19)are called mild solution. We use the convention that

u2(0−) = U0 ∈ D(A1) where U0 ≈ u0 and if we denote the approximation u2(tn−) by

Un, a single step of the operator splitting method can be expressed in the form

Un+1 = S2(h)S1(h)Un + S2(h)F1(tn+1, tn) + F2(tn+1, tn). (5.20)
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Iterating on this expression, we can formulate the method in terms of U0 as

Un+1 = (S2(h)S1(h))
n+1U0 +

n∑
j=0

(S2(h)S1(h))
j

× [S2(h)F1(tn−j+1) + F2(tn−j+1, tn−j)]. (5.21)

Definition 5.1 The method is said to be stable on [0,T] if there are constants KT , h
′ such

that

∥(Sspl(h))
j∥ = ∥[S2(h)S1(h)]

j∥Ł(X) ≤ KT (5.22)

for all j = 0, 1, 2, ... and 0 < h < h′ satisfying jh ≤ tend.

It is important to note that the verification of the stability of a particular splitting is not

entirely trivial. Using the naiver estimate

∥[S2(h)S1(h)]
j∥ ≤ ∥S1(h)∥j∥S2(h)∥j (5.23)

and simply plugging in the growth estimates of S1(t) and S2(t), by using (5.13),

∥[S2(h)S1(h)]
j∥ ≤ (M1e

w1h)j(M2e
w2h)j = (M1M2)

je(w1+w2)hj. (5.24)

The right-hand side is unbounded as j → ∞, jh ≤ tend if and only if M1M2 > 1. Thus

we get a sufficient condition for stability: The method is stable if S1 and S2 satisfy the

growth estimates

∥S1(t)∥ ≤ ew1t , ∥S2(t)∥ ≤ ew2t. (5.25)
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5.2. Stability for Non-autonomous Linear ODE Systems

In the present section, we analyze the stability behavior of the operator splitting

schemes introduced in chapter (3). For deducing the stabilities of the schemes, we use

both the formulation which are obtained from the algorithms in Chapter (3) and the as-

sumptions which are given in Subsection (4.2.2) for equation (4.1).

5.2.1. Stability Analysis of Sequential Splitting

We are primarily interested in the sequential splitting. It is also known as Lie-

Trotter splitting. As a first step towards to stability of this scheme, we rewrite the formu-

lation as

Usq(tn+1) = eTh eΩV (h)Usq(tn).

In the following proposition we analyze the stability of this procedure.

Proposition 5.1 The sequential splitting is stable on [0, tend] with the bound

∥ Un
sq ∥≤ etendC̃∥u0∥.

Proof The proof is an immediate consequence of the Assumptions 4.2 and 4.4.

∥Usq(h)∥ = ∥eTh eΩV (h)u0∥

∥Usq(h)∥ = ∥eTh∥∥eΩV (h)∥∥u0∥

∥Usq(h)∥ ≤ ∥ehC̃∥∥u0∥.

By successively we get the stability of the scheme as

∥Un
sq(h)∥ ≤ enhC̃∥u0∥

∥Un
sq(h)∥ ≤ etendC̃∥u0∥. (5.26)

�
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5.2.2. Stability Analysis of Strang-Marchuk Splitting

In order to obtain a stability condition for Strang-Marchuk splitting which is given

by

Usm(tn+1) = eTh/2 eΩV (h) eTh/2Usm(tn) (5.27)

where Usm(t0) = u(t0) = u0.

Proposition 5.2 The Strang-Marchuk splitting is stable on [0, tend] with the bound

∥ Un
sm ∥≤ B1

where B1 only depends on tend, C̃ and ∥u0∥.

Proof The proof proceeds by applying the following procedure,

∥Usm(h)∥ = ∥eTh/2 eΩV (h) eTh/2u0∥

∥Usm(h)∥ = ∥eTh/2∥∥eΩV (h)∥∥eTh/2∥∥u0∥

by using both Proposition 4.2 and Assumption 4.4, we get

∥Usm(h)∥ ≤ ehC̃∥u0∥

By induction one can see that

∥Un
sm(h)∥ ≤ enhC̃∥u0∥

∥Un
sm(h)∥ ≤ etendC̃∥u0∥ (5.28)

The proof is concluded. �
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5.2.3. Stability Analysis of Symmetrically Weighted Splitting

Our purpose is to show that symmetrically weighted splitting method is stable for

the abstract Cauchy problem in 3.1 under the assumptions which we determined previ-

ously. To prove the assertion, we rewrite the following formula

Usw(tn+1) =
eTh eΩV (h) + eΩV (h) eTh

2
Usw(tn) (5.29)

where Usw(t0) = u0.

Proposition 5.3 The symmetrically weighted splitting scheme is stable on [0, tend] with

the bound

∥ Un
sw ∥≤ B2

where B2 only depends on tend, C̃ and ∥u0∥.

Proof The statement of Proposition 5.3 remains valid under the Assumption 4.2 and

Assumption 4.4

∥Usw(h)∥ = ∥e
Th eΩV (h) + eΩV (h) eTh

2
u0∥

∥Usw(h)∥ ≤ ∥e
Th eΩV (h)∥+ ∥eΩV (h) eTh∥

2
∥u0∥

∥Usw(h)∥ ≤ ∥ehC̃∥+ ∥ehC̃∥
2

∥u0∥

∥Usw(h)∥ ≤ ∥ehC̃∥ ∥u0∥.

Recursively, we get the following stability condition

∥Un
sw(h)∥ ≤ enhC̃∥u0∥

∥Un
sw(h)∥ ≤ etendC̃∥u0∥. (5.30)

�
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5.2.4. Stability Analysis of Symmetric Iterative Splitting

Proposition 5.4 The symmetric second order iterative splitting scheme is stable on [0, tend]

with the bound

∥ Un ∥≤ etendC̃∥u0∥+ he2hC̃E1(tend)(
1− etendC̃

1− ehC̃
).

Proof

For proving the stability bounds above, we employ the standard techniques. For

this purpose, we start with the needed auxiliary stability bound of the first order iterative

splitting as in following proof,

U1 = U(h) = eThU0 + F1, U0 = u0 (5.31)

where

F1 =

∫ h

0

eThV (h− s)u0

which is bounded by ∥F1∥ ≤ hC̃∥u0∥ where C̃ = sup0≤t≤tend
∥V (t)∥. By rearranging

the equation (4.28),

∥U1∥ = ∥eThU0 + F1∥

∥U1∥ ≤ ∥eThU0∥+ ∥F1∥

∥U1∥ ≤ ∥u0∥+ ∥hC̃u0∥ = (1 + hC̃)∥u0∥. (5.32)

Recursively we get the stability polynomial for iterative scheme at first order,

∥Un∥ ≤ (1 + hC̃)n∥u0∥ = etendC̃∥u0∥. (5.33)

On the other hand, for finding the stability result of the second order iterative splitting we

use closeness and linearity of T . It follows as,

U1 = eΩV (h)U0 + F2 (5.34)
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where

F2 =

∫ h

0

Φ2(t, s)Tu1

which is bounded by ∥F2∥ ≤ he2hC̃∥Tu1∥. Since T is closed operator and for all i =

1, 2...n, by using Lemma 4.1, ∥TU∥ ≤ E1(tend) . Substituting the bound of F2 into the

(4.29) leads to

∥U1∥ ≤ ∥eΩV (h)U0∥+ ∥F2∥

∥U1∥ ≤ ∥eh
(V (h)+V (0))

2 U0∥+ he2hC̃E1(tend)

∥U1∥ ≤ ∥ehC̃U0∥+ he2hC̃E1(tend)

∥U1∥ ≤ ∥ehC̃U0∥+ hĤ (5.35)

where Ĥ = e2hC̃E1(tend).

By recursively,

∥U1∥ ≤ ∥ehC̃U0∥+ hĤ

∥Un∥ ≤ enhC̃∥u0∥+ hĤ[1 + ehC̃ + . . .+ eh(n−1)C̃ ]

∥Un∥ ≤ enhC̃∥u0∥+ hĤ
n−1∑
i=0

eihC̃

∥Un∥ ≤ etendC̃∥u0∥+ hĤ(
1− etendC̃

1− ehC̃
)

∥Un∥ ≤ etendC̃∥u0∥+ hŜ (5.36)

where Ŝ = e2hC̃E1(tend)(
1−etendC̃

1−ehC̃
) and C̃ = sup0≤t≤tend ∥V(t)∥.

�
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CHAPTER 6

CONVERGENCY ANALYSIS FOR OPERATOR

SPLITTING METHODS

The aim of this chapter is to collect the results of Chapter 5 and Chapter 5. We

investigate convergence issues of the given methods. In particular, we focused on our

proposed method

6.1. Convergence analysis of the Traditional Methods

Objective. We are concerned with deducing an estimate for the global error

yN − y(tend) of an exponential operator splitting method when applied to the initial value

problem (3.1); to this purpose, we follow a standard approach based on a Lady Winder-

mere’s Fan argument as follows.

Local error and order. In the present situation, the local error equals

dn = D(hn−1)y(tn−1) = (ϕ(hn−1)− E(hn−1))y(tn−1), 1 ≤ n ≤ N, (6.1)

Therefore, the numerical method is consistent of order p whenever the defect op-

erator D fulfills

D(h) = O(hp+1) (6.2)

Theorem 6.1 Lady Windermere’s Fan. In order to relate the global and local error, we

employ the telescopic identity,

yN − y(tN) =
N−1∏
j=0

ϕ(hj)(y0 − y(t0)) +
N∑

n=1

N−1∏
j=n

ϕ(hj)dn (6.3)
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Proof The validity of relation (6.3) is verified by a short calculation as follows

N−1∏
j=0

ϕ(hj)(y0 − y(t0)) +
N∑

n=1

N−1∏
j=n

ϕ(hj)dn

=
N−1∏
j=0

ϕ(hj)(y0 − y(t0)) +
N∑

n=1

N−1∏
j=n

ϕ(hj)(ϕ(hn−1)− E(hn−1))y(tn−1)

=
N−1∏
j=0

ϕ(hj)y0 −
N−1∏
j=0

ϕ(hj)y(t0)

+
N∑

n=1

N−1∏
j=n−1

ϕ(hj)y(tn−1)−
N∑

n=1

N−1∏
j=n

ϕ(hj)y(tn)

= yN −
N−1∏
j=0

ϕ(hj)y(t0) +
N−1∑
n=0

N−1∏
j=n

ϕ(hj)y(tn)−
N∑

n=1

N−1∏
j=n

ϕ(hj)y(tn)

= yN −
N−1∏
j=0

ϕ(hj)y(t0) +
N−1∏
j=0

ϕ(hj)y(t0)− y(tN)

= yN − y(tN).

�

Proposition 6.1 The traditional splitting schemes are convergent.

Proof The proof of this assertion follows the line of the given theorem above. In terms

of theorem, if a scheme is consistent and stable then it is convergent. In chapter 4 and 5

we gave the conditions which are desired. As a result, the schemes which are known as

Lie Trotter, Strang splitting and symmetrically weighted splitting are convergent with the

aid of the Lady Windermere’s Fan Argument. �

6.2. Convergency of Proposed Method

In this subsection we consider convergency for proposed scheme of iterative split-

ting method. With the help of telescoping identity, we will prove the following statement.

Proposition 6.2 The global error of iterative splitting is bounded by

∥Un(h)− un(h)∥ ≤ Gh2
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Here G only depends on tend, ∥ u0 ∥, R and C̃.

Proof

We use the following insignificant modification of theorem in (Jahnke and Altıntan,

2004). We can show by induction that the error after n > 0 steps,

Un(h)− un(h) =
n−1∑
i=0

U i
h(Uh − uh)e

(n−1−i)Ω(h)u0 (6.4)

where Uh is iterative scheme. Since ∥U i
h∥ ≤ ∥etendC̃u0 + hŜ∥ and e(n−1−i)Ω(h)u0 =

u(tn−1−i), this yields

∥Un(h)− un(h)∥ ≤
n−1∑
i=0

∥etendC̃∥u0∥+ hŜ∥∥(Uh − un
h)un−1−i∥

≤ (etendC̃∥u0∥+ ∥hŜ∥)
n−1∑
i=0

∥Uh − un
h∥∥un−1−i∥ (6.5)

and it follows from Proposition 5.4 that

∥Un(h)− un(h)∥ ≤ h2G+O(h3) (6.6)

where G = tendRetendC̃∥u0∥. Here R denotes to bound of ∥u(tn−1−i)∥. �
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CHAPTER 7

NUMERICAL EXPERIMENTS

This Chapter deals with numerical experiments. We compare our new symmet-

ric iterative splitting method(SISM) with standard splitting methods. Throughout this

section, SISMi denotes ith order symmetric iterative splitting. The examples include

Mathieu equation, radial Schrödinger equation and a complex Schrödinger equation. All

computations are done in Mathworks MATLAB. The codes will be given in Appendix

part.

7.1. Mathieu equation

We first consider the Mathieu equation,

q′′ + (ω2 − ε cos(t))q = 0. (7.1)

Now the time dependent oscillator corresponds to

A(t) =

(
0 1

−(ω2 − ε cos t) 0

)
=

(
0 1

−ω2 0

)
+

(
0 0

ε cos t 0

)
(7.2)

≡ T + V (t). (7.3)

We take as initial condition p(0) = 1.75 and q(0) = 0, integrate up to tend = 10 and

measure the average error for different time steps.
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h SISM1/Order Lie Trotter/Order
0.1 0.0610 0.1015

0.01 0.0066 (0.9658) 0.0105 (0.9853)
0.001 6.6819e-004 (0.9946) 0.0011 (0.9798)

Table 7.1. Comparison of errors for several h on [0, 10] interval with various methods
where ω = 0.6 and ε = 0.3. The expected order is 1.

Another table deals with the comparison of second order methods.

h SISM2/ order Strang Splitting/ order SWS/ order
0.1 9.8067e-004 0.0011 0.0062

0.01 8.3542e-006 (2.0696) 1.0839e-005 (2.0064) 6.3187e-005 (1.9918)
0.001 8.2197e-008 (2.0070) 1.0801e-007 (2.7672) 6.3309e-007 (1.9992)

Table 7.2. Comparison of errors for different h on [0, 10] interval with several meth-
ods where ω = 0.6 and ε = 0.3. Accepted exact solution is fourth order
Magnus expansion. The expected order is 2.

The numerically observed order in the discrete L∞ norm is approximately 1 and 2,

which is supported by propositions in chapter 4. This number is in perfect agreement with

table 7.2. We also observed in Table 7.2 that second order proposed iterative splitting

scheme(SISM2) is more efficient than not only Strang splitting but also symmetrically

weighted splitting.
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Figure 7.1. Comparison of 2nd order Magnus and first order approximation for equa-
tion (7.1) for various schemes for small time step h = 0.01 on [0, 10].
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Figure 7.2. Comparison of 2nd order Magnus and first order approximation for equa-
tion (7.1) for various schemes for small time step h = 0.01 on [0, 10].

53



7.2. Radial Schrödinger equation

Consider the radial Schrödinger equation, (Chin and Anisimov, 2006)

∂2u

∂r2
= f(r, e)u(r) (7.4)

where

f(r, E) = 2V (r)− 2E +
l(l + 1)

r2
. (7.5)

The Eqn. (7.4) can be transformed as a harmonic oscillator with a time dependent spring

constant after relabeling r → t and u(r) → q(t) and defining

k(t, E) = −f(t, E). (7.6)

By redefining the variables as u(t) = q(t) and u̇(t) = p(t), and Y (t) = (q(t), p(t)), Eqn.

(7.4) can be put into the system of equation as

Ẏ (t) = A(t)Y (t) (7.7)

and Hamiltonian of the system reads as

H =
1

2
p2 +

1

2
k(t, E)q2. (7.8)

For specific example, the ground state of hydrogen atom can be modeled as Schrodinger

equation with the parameters l = 0, E = −1/2, V (t) = −1/(t − a), a is arbitrary

constant. Now the time dependent oscillator corresponds to

A(t) =

(
0 1

f(t) 0

)
=

(
0 1

0 0

)
+

(
0 0

f(t) 0

)
≡ T + V (t), (7.9)
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with

f(t) = (1− 2

t− a
). (7.10)

The exact solution for this model with the initial conditions q(0) = −a, p(0) = 1 + a,

a = 0 is

q(t) = (t− a)e−t. (7.11)

The comparison of exact solution and first order methods is illustrated in Figure 7.2. In

addition, we compare exact solution with the second order methods in Figure 7.2. These

computations are exhibited in for tend = 6 and h = 0.0001.
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Figure 7.3. Comparison first order methods for equation (7.4) for small time step h =
0.0001 on [0, 6].
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Figure 7.4. Comparison of exact and approximation solution for equation (7.4) for var-
ious schemes for small time step h = 0.0001 on [0, 6].

The following table deals with the errors of methods for radial Schrödinger equa-

tion. The errors at the endpoint t = 6 are computed in a discrete L∞ norm.

h Iterative Splitting 2 Strang Splitting SWS Magnus 4 Magnus 2
0.001 4.1483e-002 4.1666e-002 4.1580e-002 4.1554e-002 4.1646e-002
0.0001 4.1677e-003 4.1699e-003 4.1689e-003 4.1686e-003 4.1697e-003

Table 7.3. Comparison of errors for several h on [0, 6] interval with several methods
where a = −0.001 with exact solution.

We notice that our scheme is more efficient than fourth order Magnus expansion. The following

figure is the comparison of Magnus Expansion and SISM method.
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Figure 7.5. Comparison fourth order Magnus expansion and second order SISM for
equation (7.4) for small time step h = 0.0001 on [0, 6].

7.3. Schrödinger Equation

Another experiment is time dependent Schrödinger equation as following form,

i~
∂ψ(x, t)

∂t
= Ĥψ(x, t)

where ψ(x, t) denotes the probability amplitude for the particle to be found at position xat time t

and Ĥ is the Hamiltonian operator for a single particle in a potential.

In our study, we choose one-dimensional harmonic oscillator in the finite time interval

t ∈ [0, tend] has the form

i
∂ψ(x, t)

∂t
=

(
− 1

2

∂2

∂x
+
ω2(t)(x2 − 1)

2

)
ψ(x, t) (7.12)

ψ0(x) =
4

√
1

π
exp

(
− 1

2
x2
)

with ω2(t) = 4− 3e−t.

We take into account the system as following form, u̇

v̇

 =

 0 A(t, x)

−A(t, x) 0

 u

v


where ψ(x, t) = u(x, t) + iv(x, t),then consider the splitting methods with ODE system split

in the form,T corresponds to spatial derivative ∂2ψ(x, t)/∂x2, we use the second order center
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difference scheme in order to approximate it, thus we get 2N × 2N system. u̇

v̇

 =

 0 T

−T 0

 u

v

+

 0 V (t, x)

−V (t, x) 0

 u

v


For exhibited figure, we suppose that the system is defined in the interval x ∈ [−10, 10], which
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Figure 7.6. The probability of density, |Ψ(x, t)|2, for the particle in (7.12) with ω2(t) =
4− 3e−t by using the symmetric iterative splitting.

is split into N = 100 parts of length ∆x = 0.2. We integrate the system using proposed method

with the time-step size ∆t = 0.03 up to final time t = 3.

We apply this method for the same problem with different potential. We choose potential

as ω2(t) = cos2(t) for equation (7.12). In the following figure, we suppose that the system is

defined in the interval x ∈ [−20, 20], which is split into N = 100 parts of length ∆x = 0.4. We

integrate the system using SISM2 with the time-step size ∆t = 0.05 up to final time t = 5.
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Figure 7.7. The probability of density, |Ψ(x, t)|2, for the particle in (7.12) with ω2(t) =
cos2(t) by using SISM2.
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CHAPTER 8

CONCLUSION

In this thesis, we introduced the operator splitting methods; sequential splitting, Strang

splitting, symmetrically weighted splitting and iterative splitting methods which are obtained by

combining with Magnus expansion. We have developed the new symmetric iterative splitting

method (SISM) for non-autonomous systems with the help of the Magnus expansion.

We have also discussed the consistency and stability properties for the standard splitting

methods. In the linear bounded case for the operators we have studied by means of Taylor expan-

sion and in the linear unbounded case, we use the semigroup properties. Then, we investigated the

convergence issue of the introduced schemes. For that purpose, we use both Lady Windermere’s

Fan Argument and telescoping identity.

To confirm the theoretical results, we apply the new scheme into a test problem by com-

paring traditional operator splitting methods. The method also provides the higher order accuracy

in approximate solution with increasing number of iteration steps.

Not only proposed method but also traditional methods of operator splitting are applied to

physical problems. We found out that our new scheme is applicable for obtaining the numerical

solution of the harmonic oscillators for example Schrödinger equation in quantum mechanics since

it preserves the time symmetry.

Finally, numerical experiments reveal that our proposed method is efficient. It can be seen

in Table 7.1 and Table 7.2. In Figures 7.3 and 7.3 illustrated the probability of density for the

particle which is defined by the equation 7.12. This indicates that our scheme preserves not only

time symmetry but also probability density. Thus, the new scheme is easily adapted to solve such

problems numerically.

60



REFERENCES
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APPENDIX A

MAT-LAB CODES

A.1. Codes for Mathieu equation

FIRST ORDER METHODS FOR MATHIEU EQUATION

clear all;

close all;

E=0.3;

w=0.6;

h=0.01;

tson =10; t=0:h:tson ;

N=tson/h;

p0=1.75;

q0=0;

C0=[p0;q0];

At=zeros(N+1,1); At(1)=p0;

AAt=zeros(N+1,1); AAt(1)=p0;

T=[0,1;-wˆ2,0];

%%%%%%%%%% magnus-2 %%%%%%%%%%%%%%%

yini=C0;

for k=2:N+1,

H=expm(h*(T+mat(E,t(k)+h/2)))*yini;

yini=H;

AAt(k)=yini(1,1);

end

%Lie-Trother

L(:,1)=C0; L1(:,1)=C0; lie(1)=p0;

for i=2:N+1

A1=mat(E,t(i)+(h/2));

L1(:,i)=expm(h*A1)*L1(:,i-1);

L(:,i)=expm(T*h)*L1(:,i);
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L1=L;

lie(i)=L1(1,i);

end

% Iterative order 1

IT(:,1)=C0; Itr(1)=p0; IT1(:,1)=C0;

for i=2:N+1

IT(:,i)=expm(T*h)*(IT(:,i-1));

IT1(:,i)=(expm((h/2)*(mat(E,t(i)+h)+

mat(E,t(i))))*(IT1(:,i-1)

+((h/2)*T*IT(:,i-1))))+((h/2)*T*IT(:,i));

IT=IT1;

Itr(i)=IT1(1,i);

end

% Errors

for i=1:N+1

EL(i)=abs(lie(i)-AAt(i));

EI(i)=abs(Itr(i)-AAt(i));

end

nmL=max(EL)

nmI=max(EI)

figure(1)

plot(t,AAt,t,lie,’r’,t,Itr,’g’)

legend(’magnus’,’Lie’,’SISM_1’)

xlabel(’t’)

ylabel(’q’)

% figure(2)

% plot(t,EL,t,EI,’r’)

% legend(’errlie’,’errItr’)

SECOND ORDER METHODS FOR MATHIEU EQUATION

clear all;

close all;
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E=0.3;

w=0.6;

h=0.1;

tson =10; t=0:h:tson ;

N=tson/h;

p0=1.75;

q0=0;

C0=[p0;q0];

At=zeros(N+1,1); At(1)=p0;

AAt=zeros(N+1,1); AAt(1)=p0;

T=[0,1;-wˆ2,0];

%%%%%%%%% magnus-4 %%%%%%%%%%%%

c1=(1/2)-(sqrt(3)/6);

c2=(1/2)+(sqrt(3)/6);

yini2=C0;

for k=2:N+1,

A1=T+mat(E,t(k)+c1*h);

A2=T+mat(E,t(k)+c2*h);

F=expm(((h/2)*(A1+A2))-((sqrt(3)/12)*(hˆ2)*commut(A1,A2))

+((1/80)*(hˆ3)*commut(A1-A2,commut(A1,A2))))*yini2

; yini2=F; At(k)=yini2(1,1); end

%%%%%%%%%%%%% magnus-2 %%%%%%%%%%%%%%%

yini=C0;

for k=2:N+1,

H=expm(h*mat1(E,t(k)+h,w))*yini;

yini=H;

AAt(k)=yini(1,1);

end

% symmetrically weighted splitting

SW1(:,1)=C0; SWS(:,1)=C0;

SW2(:,1)=C0; Swsss(1)=p0;

for i=2:N+1
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H1=mat(E,t(i)+(h/2));

SW1(:,i)=expm(T*h)*expm(h*H1)*SWS(:,i-1);

SW2(:,i)=expm(h*H1)*expm(T*h)*SWS(:,i-1);

SWS(:,i)=(SW1(:,i)+SW2(:,i))/2;

Swsss(i)=SWS(1,i);

end

% Strang-Marchuk Splitting

ST=zeros(2,N+1);

ST(:,1)=C0; Str(1)=p0;ST1(:,1)=C0;ST2(:,1)=C0;

for i=2:N+1

H=mat(E,t(i)+(h/2));

A1=expm((h)*H);

ST(:,i)=expm(T*(h/2))*A1*expm(T*(h/2))*ST(:,i-1);

Str(i)=ST(1,i);

end

% Iterative 2

IT2=zeros(2,N+1);ITS=zeros(2,N+1);

IT1=zeros(2,N+1); Tr2=zeros(1,N+1);

IT2(:,1)=C0; IT1(:,1)=C0; Tr2(1)=p0;

ITS(:,1)=C0;

for i=2:N+1

% IT2(:,i)=(expm(T*h)*(IT2(:,i-1)+((h/2)*mat(E,t(i))*C0)))

%+((h/2)*mat(E,t(i)+h)*C0);

% ITS(:,i)=(expm((h/2)*(mat(E,t(i)+h)

%+mat(E,t(i))))*(ITS(:,i-1)+((h/2)*T*IT2(:,i-1))))

%+((h/2)*T*IT2(:,i));

% C0=ITS(:,i);

% IT2=ITS;

% Tr2(i)=ITS(1,i);

%%%%%%%%%%

IT2(:,i)=(expm((h/2)*(mat(E,t(i)+h)

+mat(E,t(i))))*(IT2(:,i-1)+((h/2)*T*C0)))+((h/2)*T*C0);
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ITS(:,i)=(expm(h*T)*(ITS(:,i-1)+((h/2)*mat(E,t(i))

*IT2(:,i-1))))+((h/2)*mat(E,t(i)+h)*IT2(:,i));

C0=ITS(:,i); IT2=ITS; Tr2(i)=ITS(1,i); end

for i=1:N+1

ESt(i)=abs(At(i)-Str(i));

ESw(i)=abs(At(i)-Swsss(i));

EIt(i)=abs(At(i)-Tr2(i));

EM2(i)=abs(At(i)-AAt(i));

end

%COMP=[ESt,ESw,EIt]

strang=max(ESt)

sim=max(ESw)

tr=max(EIt)

M2=max(EM2)

plot(t,At,t,Swsss,’y’,t,Str,’g’,t,Tr2,’r’)

legend(’Magnus_2’,’SWS’,’Strang’,’SISM_2’)

xlabel(’t’)

ylabel(’q’)

THE PROGRAMMES WHICH ARE USED IN FIRST AND SECOND ORDER METHODS

%%%%%%% mat

%time dependent part

function y=mat(ep,it)

K=zeros(2);

K(2,1)=ep*cos(it);

y=K;

%%%%%%% commut

% commutators

function y=commut(A,B)

K1=zeros(2);

K1=A*B-B*A;

y=K1;
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A.2. Codes for Radial Schrödinger equation

FIRST ORDER METHODS

clear all;

close all;

h=0.0001;

a=-0.001;

tson =6; t=0:h:tson ;

N=tson/h;

p0=-a;

q0=1+a;

C0=[p0;q0];

At=zeros(N+1,1); At(1)=p0;

AAt=zeros(N+1,1); AAt(1)=p0;

T=[0,1;0,0];

%%%%%%%%%%% Exact Solution %%%%%%%%%%%%%

PP=zeros(N+1,1);

for i=1:N+1

PP(i)=(t(i)-a)*exp(-t(i));

end

%Lie-Trother

L(:,1)=C0; L1(:,1)=C0; lie(1)=p0;

for i=2:N+1

A1=std(a,t(i)+(h/2));

L1(:,i)=expm(T*h)*expm(h*A1)*L1(:,i-1);

lie(i)=L1(1,i);

end

%%%%%%%%%% magnus-2 %%%%%%%%%%

yini=C0;

for k=2:N+1,

H=expm(h*(T+std(a,t(k)+(h/2))))*yini;

yini=H;
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AAt(k)=yini(1,1);

end

% Iterative order 1

IT(:,1)=C0; Itr(1)=p0; IT1(:,1)=C0;

for i=2:N+1

% IT(:,i)=expm(T*h)*(IT(:,i-1));

% IT1(:,i)=(expm((h/2)*(std(a,t(i)+h)

%+std(a,t(i))))*(IT1(:,i-1)+((h/2)*T*IT(:,i-1))))

%+((h/2)*T*IT(:,i));

% IT=IT1;

% Itr(i)=IT1(1,i);

IT(:,i)=expm((h/2)

*((std(a,t(i)+h)+std(a,t(i)))))*IT(:,i-1);

IT1(:,i)=(expm(T*h))*(IT1(:,i-1)

+((h/2)*std(a,t(i))*IT(:,i-1)))

+((h/2)*(std(a,t(i)+h)*IT(:,i)));

IT=IT1;

Itr(i)=IT1(1,i);

end

% Errors

for i=1:N+1

EL(i)=abs(lie(i)-PP(i));

EI(i)=abs(Itr(i)-PP(i));

EM2(i)=abs(AAt(i)-PP(i));

end

nmL=max(EL)

nmI=max(EI)

nmG=max(EM2)

% plot(t,PP,t,Itr,’-.’,t,lie,’+’)

plot(t,PP); hold on; plot(t,Itr,’-.’);

hold on; plot(t,lie,’r’);

legend(’exact’,’SISM_1’,’Lie-Trotter’)

71



xlabel(’t’) ylabel(’q’)

SECOND ORDER METHODS

clear all;

close all;

h=0.0001;

a=-0.001;

tson =6; t0=0; t=t0:h:tson ;

N=(tson-t0)/h;

p0=-a;

q0=1+a;

C0=[p0;q0];

At=zeros(N+1,1); At(1)=p0;

AAt=zeros(N+1,1); AAt(1)=p0;

T=[0,1;0,0];

%%%%%%%%%%%%% Exact Solution %%%%%%%%%%%%%%%

PP=zeros(N+1,1);

for i=1:N+1

PP(i)=(t(i)-a)*exp(-t(i));

end

%%%%%%%%%%%%%%% magnus-4 %%%%%%%%%%%%%%%%%

c1=(1/2)-(sqrt(3)/6);

c2=(1/2)+(sqrt(3)/6);

yini2=C0;

for k=2:N+1,

A1=T+std(a,t(k)+c1*h);

A2=T+std(a,t(k)+c2*h);

F=expm(((h/2)*(A1+A2))-((sqrt(3)/12)*(hˆ2)*commut(A1,A2))

+((1/80)*(hˆ3)*commut(A1-A2,commut(A1,A2))))*yini2 ;

yini2=F;

At(k)=yini2(1,1);

end

%%%%%%%%%%%%%%%%% magnus-2 %%%%%%%%%%%%%%%%%%
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yini=C0;

for k=2:N+1,

H=expm(h*(T+std(a,t(k)+(h/2))))*yini;

yini=H;

AAt(k)=yini(1,1);

end

% symmetrically weighted

SWS(:,1)=C0; Swsss(1)=p0;

GG=expm(h*T);

for i=2:N+1

H1=std(a,t(i)+(h/2));

AAa=GG*expm(h*H1)*SWS(:,i-1);

BBb=expm(h*H1)*GG*SWS(:,i-1);

SWS(:,i)=(AAa+BBb)/2;

Swsss(i)=SWS(1,i);

end

% Strang Splitting

ST=zeros(2,N+1);

ST(:,1)=C0; Str(1)=p0;ST1(:,1)=C0;ST2(:,1)=C0;

YO=expm(T*(h/2));

for i=2:N+1

H=std(a,t(i)+(h/2));

A1=expm((h)*H);

ST(:,i)=YO*A1*YO*ST(:,i-1);

Str(i)=ST(1,i);

end

% Iterative 2

IT2=zeros(2,N+1);ITS=zeros(2,N+1);

IT1=zeros(2,N+1); Tr2=zeros(1,N+1);

IT2(:,1)=C0; IT1(:,1)=C0; Tr2(1)=p0;

ITS(:,1)=C0;
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for i=2:N+1

IT1(:,i)=expm((h/2)

*((std(a,t(i)+h)+std(a,t(i)))))*IT1(:,i-1);

IT2(:,i)=(GG*(IT2(:,i-1)+((h/2)*std(a,t(i))*IT1(:,i-1))))

+((h/2)*std(a,t(i)+h)*IT1(:,i));

ITS(:,i)=(expm((h/2)*(std(a,t(i)+h)

+std(a,t(i))))

*(ITS(:,i-1)+((h/2)*T*IT2(:,i-1))))+((h/2)*T*IT2(:,i));

IT2=ITS;

IT1=ITS;

Tr2(i)=ITS(1,i);

%%%%%%%%%%

% IT2(:,i)=(expm((h/2)*(std(a,t(i)+h)+std(a,t(i))))

%*(IT2(:,i-1)+((h/2)*T*IT2(:,i-1))))+((h/2)*T*IT2(:,i-1));

% ITS(:,i)=(GG*(ITS(:,i-1)+((h/2)*std(a,t(i))*IT2(:,i-1))))

%+((h/2)*std(a,t(i)+h)*IT2(:,i));

% IT2=ITS;

% ITS=ITS;

% Tr2(i)=ITS(1,i);

%%%%%%%%%%%

end

% Runge-Kutta4 for testing

%RUNG(:,1)=C0; RK2(1)=p0;

%

%for i=2:N+1

% KUTTA=T+(std(a,t(i)));

% KUT=T+(std(a,t(i)+h));

% tild=RUNG(:,i-1)+(h*KUTTA*RUNG(:,i-1));

% RUNG(:,i)=RUNG(:,i-1)

% +((h/2)*(KUTTA*RUNG(:,i-1)+(KUT*tild)));

% RK2(i)=RUNG(1,i);

%end
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for i=1:N+1

ESt(i)=abs(PP(i)-Str(i));

ESw(i)=abs(PP(i)-Swsss(i));

EIt(i)=abs(PP(i)-Tr2(i));

EM2(i)=abs(PP(i)-AAt(i));

EM4(i)=abs(PP(i)-At(i));

%ERK2(i)=abs(PP(i)-RK2(i));

end

% COMP=[ESt,ESw,EIt]

format short e

strang=max(ESt)

sim=max(ESw)

tr=max(EIt)

M2=max(EM2)

M44=max(EM4)

%Runge=max(ERK2)

plot(t,PP,’m’,t,Swsss,’y’,t,Str,’g’,t,Tr2,t,At)

legend(’Exact’,’SWS’,’Strang’,’SISM_2’,’magnus4’)

xlabel(’t’)

ylabel(’q’)

% plot(t,PP,t,At,’g’,t,Tr2,’r’)

% legend(’Exact’,’Magnus-4’,’SISM_2’)

THE PROGRAMME WHICH IS USED IN FIRST AND SECOND ORDER METHODS

%%%%%%% std

%time dependent part

function y=std(a,it)

K=zeros(2);

K(2,1)=1-(2/(it-a));

y=K;
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A.3. Codes for Schrödinger Equation

FIRST ORDER METHODS

clear all;

close all;

N=100; t0=0; tson=3; h=(tson-t0)/(N);

x0=-10; xson=10; dx=(xson-x0)/N;

ep=1;

t=t0:h:tson;

x=x0:dx:xson;

%%%%%%%%%initial condition

coeff=0.751125544;

C0=zeros(N+1,1);

for i=1:N+1

C0(i)=coeff*exp((-1/2)*(((ep*x(i)))ˆ2));

% C0(i)=sin(x(i));

end

%%%%%%%%%%%%%% scalar matrix %%%%%%%%%%%%%%%%%%%

n=N; UU=toeplitz([-2 1 0 0 zeros(1,n-3)], [-2 1 0 0 zeros(1,n-3)]);

US=(1/((dx)ˆ2))*full(UU); BB=(-1/2)*US;

T=[zeros(N+1) BB;-BB zeros(N+1)];

%%%%%%%%%%%%% Time-dependent matrix %%%%%%%%%%%%%%%

H=zeros(N+1,N+1); R1=zeros(N+1,N+1); R2=zeros(N+1,N+1);

for i=1:N+1

H(i,i)=shrodin(t(i)+(h/2),x(i));

end

H1=[zeros(N+1) H;-H zeros(N+1)]; % the matrix

% for iterative splitting time dependent matrix

KT=zeros(N+1,N+1); KT1=zeros(N+1,N+1);

for i=1:N+1

KT(i,i)=shrodin(t(i)+(h),x(i));
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KT1(i,i)=shrodin(t(i),x(i));

end

KTT=[zeros(N+1) KT;-KT zeros(N+1)];

KT11=[zeros(N+1) KT1;-KT1 zeros(N+1)];

%%%%%%%%%%%%% Initial Condition %%%%%%%%%%%%%%

yini=[C0;zeros(N+1,1)];

yini1=yini;

%%%%%%%%%%%%%%% magnus-2 %%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% No-splitting %%%%%%%%%%%%%%%%

yini2=yini; AAt(:,1)=yini;

for k=2:N+1,

R=expm(h*(T+H1))*yini2;

yini2=R;

AAt(:,k)=yini2;

end

%%%%%%%%%%%%% METHODS %%%%%%%%%%%%%%%%%%%%%

%Lie-Trother

L(:,1)=yini; L1(:,1)=yini;

for i=2:N+1

L1(:,i)=expm(h*H1)*L1(:,i-1);

L(:,i)=expm(T*h)*L1(:,i);

L1=L;

end

% Iterative order 1

IT(:,1)=yini; IT1(:,1)=yini; Y0=zeros(size(yini));

for i=2:N+1

IT(:,i)=expm(T*h)

*(IT(:,i-1)+(h/2)*KT11*Y0)+((h/2)*KTT*Y0);

IT1(:,i)=(expm((h/2)*(KTT+KT11))*(IT1(:,i-1)

+((h/2)*T*IT(:,i-1))))+((h/2)*T*IT(:,i));

Y0=IT1(:,i);
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IT=IT1;

% IT(:,i)=expm((h/2)*(KTT+KT11))*(IT(:,i-1));

% IT1(:,i)=(expm(T*h)*(IT1(:,i-1)

%+((h/2)*KT11*IT(:,i-1))))+((h/2)*KTT*IT(:,i));

% IT=IT1;

% IT(:,i)=expm((h/2)*((mat(E,t(i)+h)

%+mat(E,t(i)))))*(IT(:,i-1));

% IT1(:,i)=(expm(T*h))*(IT1(:,i-1)

%+((h/2)*mat(E,t(i))*IT(:,i-1)))

%+((h/2)*(mat(E,t(i)+h)*IT(:,i)));

end

for i=1:N+1

UL(i)=L1(i,end);

UI(i)=IT1(i,end);

EX2(i)=AAt(i,end);

end

for i=1:N+1

ELie(i)=abs(UL(i)-EX2(i));

EIt(i)=abs(UI(i)-EX2(i));

end

lie=max(ELie)

tr=max(EIt)

plot(t,EX2,t,UL,’r’,t,UI,’g’)

legend(’Magnus’,’Lie-Trotter’,’Iterative’)

break

SECOND ORDER METHODS

%%shrödinger equation with the potential is 4-3exp(-t)

clear all;

close all;

78



N=100; t0=0; tson=3; h=(tson-t0)/(N);

x0=-10; xson=10; dx=(xson-x0)/N;

ep=1;

t=t0:h:tson;

x=x0:dx:xson;

%%%%%%%%%initial condition

coeff=0.751125544;

C0=zeros(N+1,1);

for i=1:N+1

C0(i)=coeff*exp((-1/2)*(((ep*x(i)))ˆ2));

end

%%%%%%%%%%%%% scalar matrix %%%%%%%%%%%%%%%%

n=N;

UU=toeplitz([-2 1 0 0 zeros(1,n-3)],

[-2 1 0 0 zeros(1,n-3)]);

US=(1/((dx)ˆ2))*full(UU);

BB=(-1/2)*US;

T=[zeros(N+1) BB;-BB zeros(N+1)];

%%%%%%%%%% Time-dependent matrix %%%%%%%%%

H=zeros(N+1,N+1); R1=zeros(N+1,N+1); R2=zeros(N+1,N+1);

for i=1:N+1

H(i,i)=shrodin(t(i)+(h/2),x(i));

end

H1=[zeros(N+1) H;-H zeros(N+1)]; % the matrix

% for iterative splitting

KT=zeros(N+1,N+1); KT1=zeros(N+1,N+1);

for i=1:N+1

KT(i,i)=shrodin(t(i)+(h),x(i));

KT1(i,i)=shrodin(t(i),x(i));

end

KTT=[zeros(N+1) KT;-KT zeros(N+1)];

KT11=[zeros(N+1) KT1;-KT1 zeros(N+1)];

KUT=T+KTT;

KUTTA=T+KT11;
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%%%%%%%%%%%%% Initial Condition %%%%%%%%%%%%

yini=[C0;zeros(N+1,1)];

yini1=yini;

%%%%%%%%%%%%%%%% magnus-4 %%%%%%%%%%%%%%

%Attt(:,1)=yini;

% M1=zeros(N+1,N+1); M2=zeros(N+1,N+1);

% c1=(1/2)-(sqrt(3)/6);

% c2=(1/2)+(sqrt(3)/6);

% for i=1:N+1

% M1(i,i)=shrodin(t(i)+c1*h,x(i));

% M2(i,i)=shrodin(t(i)+c2*h,x(i));

% end

% M11=[zeros(N+1) M1;-M1 zeros(N+1)];

% M22=[zeros(N+1) M2;-M2 zeros(N+1)];

% A1=T+M11;

% A2=T+M22;

% for k=2:N+1,

% F=expm(((h/2)*(A1+A2))-((sqrt(3)/12)*(hˆ2)*commut(A1,A2))

+((1/80)*(hˆ3)*commut(A1-A2,commut(A1,A2))))*yini1 ;

% yini1=F;

% Attt(:,k)=yini1;

% end

%%%%%%%%%%%%% magnus-2 %%%%%%%%%%%%%%%%%

% %%%%%%%%%%% No-splitting %%%%%%%%%%%%%%%%%%

yini2=yini; AAt(:,1)=yini;

for k=2:N+1,

R=expm(h*(T+H1))*yini2;

yini2=R;

AAt(:,k)=yini2;

end

% %%%%%%%%%%%%%% METHODS %%%%%%%%%%%%%%%%%%%

% symmetrically weighted

SW1(:,:,1)=yini; SWS(:,:,1)=yini;

SW2(:,:,1)=yini; K1= expm(h*H1); GG=expm(T*h);
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for i=2:N+1

SW1(:,:,i)=GG*K1*SWS(:,:,i-1);

SW2(:,:,i)=K1*GG*SWS(:,:,i-1);

SWS(:,:,i)=(SW1(:,:,i)+SW2(:,:,i))/2;

end

% Strang Splitting

ST(:,:,1)=yini;

for i=2:N+1

ST(:,:,i)=expm(T*(h/2))*K1*expm(T*(h/2))*ST(:,:,i-1);

end

% % Iterative 2

% GG=expm(T*h);

% JJ=expm((h/2)*(KT11+KTT));

% % IT2(:,1)=yini; IT1(:,1)=yini;

% % ITS(:,1)=yini;

% IT2(:,:,1)=yini; IT1(:,:,1)=yini;

% ITS(:,:,1)=yini;

for i=2:N+1

%%This part can be used for the probability for different

%% potential at a certain time.

% % IT1(:,i)=JJ*(IT1(:,i-1));

% % IT2(:,i)=(GG*(IT2(:,i-1)+

% %(h/2)*KT11*IT1(:,i-1)))+((h/2)*KTT*IT1(:,i));

% % ITS(:,i)=(JJ*(ITS(:,i-1)

% %+((h/2)*(T)*IT2(:,i-1))))+((h/2)*T*IT2(:,i)) ;

% % IT1=ITS;

% % IT2=ITS;

% %%%%%%%%%%%%%

IT1(:,:,i)=JJ*(IT1(:,:,i-1));

IT2(:,:,i)=(GG*(IT2(:,:,i-1)+(h/2)*KT11*IT1(:,:,i-1)))

+((h/2)*KTT*IT1(:,:,i));

ITS(:,:,i)=(JJ*(ITS(:,:,i-1)+((h/2)*(T)*IT2(:,:,i-1))))

+((h/2)*T*IT2(:,:,i));
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IT1=ITS;

IT2=ITS;

end

%%%%%%%Runge-Kutta

% RUNG(:,1)=yini;

% for i=2:N

% tild=RUNG(:,i-1)+(h*KUTTA*RUNG(:,i-1));

% RUNG(:,i)=RUNG(:,i-1)+((h/2)*

%(KUTTA*RUNG(:,i-1)+(KUT*tild)));

% end

%%%Probability part

for i=1:N+1

ENEIT(i,:,:)= (ITS(i,:,:).ˆ2 +ITS(N+1+i,:,:).ˆ2);

%ENESTR(i,:,:)= (ST(i,:,:).ˆ2 +ST(N+1+i,:,:).ˆ2);

%ENESWS(i,:,:)= (SWS(i,:,:).ˆ2 +SWS(N+1+i,:,:).ˆ2);

%%prob. for certain time

%ENEIT(i,:)= (ITS(i,:).ˆ2 +ITS(N+1+i,:).ˆ2);

end

figure(1)

[X,Y] = meshgrid(t0:h:tson, x0:dx:xson);

Z = ENEIT;

surf(X,Y,Z)

xlabel(’t’)

ylabel(’x’)

zlabel(’probability density’)

%figure(2)

%

%[X,Y] = meshgrid(t0:h:tson, x0:dx:xson);

%Z = ENESWS;

%surf(X,Y,Z)

%xlabel(’t’)

%ylabel(’x’)
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%zlabel(’probability density of SWS’)

%figure(3)

%[X,Y] = meshgrid(t0:h:tson, x0:dx:xson);

%Z = ENESTR;

%surf(X,Y,Z)

%xlabel(’t’)

%ylabel(’x’)

%zlabel(’probability density of SMS’)

%%%%plottin for probability for a certain time

%plot(x,ENEIT(:,end),x,ENEIT(:,1),’r’)% figure

% legend(’t=t_{end}’,’t=t_0’)

% xlabel(’x’)

% ylabel(’probability’)

%break

THE PROGRAMME WHICH IS USED IN FIRST AND SECOND ORDER METHODS

%time dependent part

function y=shrodin(t,x)

ep=1;

K=ep*((4-(3*(exp(-t))))*((xˆ2)-1))/2;

%K=ep*((cos(t))ˆ2)*((xˆ2)-1))/2;

y=K;
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