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Prof. Dr. Oğuz YILMAZ Prof. Dr. R. Tuğrul SENGER
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ABSTRACT

THE INITIAL STAGES OF GRAVITY DRIVEN FLOWS

During the initial stage of dam breaking; the liquid flow and the free surface shape

are investigated. We used small-time approximation for this investigation and derived the

leading order solution of classical dam-break problem. But this solution is not valid in a

small vicinity of the corner point (the intersection point between the initially vertical free

surface and the horizontal rigid bottom).

The dimension of this vicinity is estimated with the help of a local analysis of

the this outer solution close to the corner point. Streched local coordinates are used in

this vicinity to resolve the flow singularity and to derive the leading order inner solution

(which describes the formation of the jet flow along the bottom) and the correction to the

leading order.

This asymptotic solution obtained is expected to be helpful in the analysis of de-

veloped gravity driven flows.
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ÖZET

YERÇEKİMİ ETKİSİNDE HAREKET EDEN AKIŞLARIN İLK ANLARI

Baraj yıkılmasının ilk anlarındaki sıvı akışı ve serbest su yüzeyi şekli araştırıldı.

Bu araştırma için küçük-zaman yaklaşımını kullanıldık ve klasik baraj-yıkılması problem-

inin birinci mertebeden çözümünü elde ettik. Ama bu çözüm köşe noktasının (başlangıçta

dikey olan serbest su yüzeyi ve yatay katı zeminin kesişim noktası) küçük bir komşuluğunda

geçerli değildi.

Bu komşuluğun boyutları, bu dış çözümün köşe noktasının yakınlarında bölgesel

analizinin yardımı ile hesaplandı. Bu komşulukta genişletilmiş bölgesel koordinatlar kul-

lanılarak akışın tekilliği çözüldü ve birinci mertebeden iç çözüm (zemindeki püsküren

akışın oluşumunu tanımlayan) ve birinci mertebe çözüme yapılan ilave elde edildi.

Bu asimptotik çözümün elde edilmesinin yer çekimi etkisi altındaki akışların anal-

izinde yardımcı olması bekleniyor.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2. BASIC CONCEPTS IN FLUID DYNAMICS . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1. Euler’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2. Incompressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3. Euler’s Equations for Incompressible Flows . . . . . . . . . . . . . . . . . . . . . 7

2.2. Vorticity: Irrotational Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1. Vorticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2. Potential Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3. Bernoulli’s Equation for Unsteady Irrotational Flow . . . . . . . . . . . . 9

CHAPTER 3. DAM-BREAKING PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1. Nonlinear Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1. Equations of Motion (2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2. Boundary and Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2. Non-Dimensionalizing the Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3. Boundary Value Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

CHAPTER 4. SMALL-TIME BEHAVIOUR OF THE DAM-BREAKING

PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1. Small-Time Behaviour (t → 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2. The Leading Order Boundary Value Problem . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1. The Leading Order Solution & Singularity . . . . . . . . . . . . . . . . . . . . . . 23

4.3. Outer Matching Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.1. Behaviour of the Leading Order Solution Near the Singular

Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



CHAPTER 5. THE INNER VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1. Inner Region Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.1. Equations of the Problem in Inner Variables . . . . . . . . . . . . . . . . . . . . . 30

5.2. Expansion of the Inner Region Problem in Time . . . . . . . . . . . . . . . . . . . . 33

5.3. Solution of the Second Order Inner Region Problem . . . . . . . . . . . . . . . . 35

5.3.1. Reformulation and the Mellin Transform of the Boundary

Value Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

CHAPTER 6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

APPENDIX A. SEPERATION OF VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

APPENDIX B. SUMMATION OF SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

APPENDIX C. MELLIN TRANSFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

APPENDIX D. DIFFERENCE EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

APPENDIX E. GAMMA FUNCTION AND ITS PROPERTIES . . . . . . . . . . . . . . . . . . . . . 56

APPENDIX F. RESIDUE THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vii



LIST OF FIGURES

Figure Page

Figure 1.1. Flow region at the initial time instant t′ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 4.1. First order outer solution of ξ for t = 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 4.2. New coordinate axes ξ, η and the inner region . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 5.1. The function ξ∗ as r →∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 5.2. The function ξ in inner region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 6.1. The function ξ with inner and outer solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

viii



LIST OF TABLES

Table Page

Table 5.1. Table of ξ∗ as r →∞ for small r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 5.2. Table of ξ∗ as r →∞ for large r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 5.3. Table of ξ∗ as r → 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 5.4. Comparison of the solutions of ξ(y, t) near intersection point . . . . . . . . . . . . 44

ix



CHAPTER 1

INTRODUCTION

In this thesis, we consider the unsteady problem of gravity-driven flow, which is

generated when a vertical dam in front of a liquid region is suddenly removed. Initially the

liquid is at rest and lay on the region x′ > 0, −H < y′ < 0 (see Figure 1.1). Throughout

a prime stands for dimensional variables and H is the liquid depth. The upper part of the

liquid boundary, x′ > 0, y′ = 0, is the initial position of the liquid free surface. The side

wall, x′ = 0, −H < y′ < 0, represents a dam. The lower horizontal boundary, y′ = −H

represents the rigid bottom. Initially the pressure distribution in the liquid is hydrostatic,

p′(x′, y′, 0) = −ρ0gy′, where ρ0 is the liquid density and g is the gravitational acceleration

and at the initial time instant, t′ = 0, the dam is instantly removed and the gravity-driven

flow starts. The liquid is assumed incompressible and inviscid.

Here we have two free-surfaces of the flow region, which vary in time and have

to be determined as part of solution. We denote the upper part of the free-surface as

y′ = η′(x′, t′), x′ > 0 and for the other part of the free-surface we use the notation

x′ = ξ′(y′, t′), which is initially vertical. The free-surface y′ = η′ is a function of x′ and t′

since a liquid particle on it changes its position with time. By the same reason, x′ = ξ′ is

a function of y′ and t′. The flow region is bounded by these free-surfaces and by the rigid

bottom y′ = −H .

Figure 1.1. Flow region at the initial time instant t′ = 0

In this dam-break problem, we aim to construct a uniformly valid small-time solu-
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tion which holds for arbitrary parameter values by using matched asymptotic expansions.

The solution in time as power series should be considered ’outer’ solutions, which are

needed to be corrected with ’inner’ solutions near the intersection point. The outer and

inner asymptotic solutions have to be matched in such a way to get a solution which is

uniformly valid in the whole flow domain.

Gravity-driven flows due to dam breaking were studied by Pohle (1950) and Stoker

(1957) using the Lagrangian description. Pohle (1950) wrote ”Many hydrodynamic prob-

lems consider flows in which the region occupied by the fluid is a variable function of

time. The Euler representation is difficult to apply to such problems. The Lagrangian rep-

resentation, however, has the far-reaching advantage that the independent space variables

are the initial coordinates of the particles: the region occupied by the fluid is therefore

a fixed region.” This statement is true if there are no intersection points between rigid

boundaries and free surfaces of the liquid. However, this is not the case for many im-

portant problems of hydrodynamics including the dam-break problem, the water-entry

problem and problems of floating or free-surface piercing bodies. This is due to the fact

that close to the intersection points one needs to specify which liquid particles originally

belonging to the free surface may be found later on the rigid boundary. In other words,

it is true that the flow region is fixed in the Lagrangian variables but the subdivision of

the region boundary into ”free surface” and ”rigid boundary” is unknown and has to be

obtained as part of the solution. This makes the analysis of the dam-break problem in

the Lagrangian variables not so attractive as it was expected by Pohle (1950) and Stoker

(1957).

In the paper, written by Pohle (1950), Pohle expanded the liquid displacement and

the hydrodynamic pressure in power series in the time t′ and analyzed only the leading-

order terms. It is written in this paper (Pohle 1957) that the calculated profile of the

water surface for small times can be expected to be a reasonable approximation to the

physical problem except in the neighborhood of the singular point (which is the point

of intersection with the rigid bottom). Thus Pohle (1957) derived a small-time solution

close to the bottom in Lagrangian variables which exhibits a non-physical shape of water

surface. A similar behaviour of the free surface close to the intersection point can also be

calculated in Eulerian variables. In both cases this solution will be the outer solution. We

are unaware of attempts to construct the inner solutions of dam-break problem either in

Lagrangian or Eulerian variables.

However, such an inner solution was successfully derived in a relevant problem

concerning a uniformly accelerating wavemaker by King & Needham (1994). In this

2



thesis, we use the methodology and findings from this paper and apply them to our dam-

break problem.

In Chapter 2, we give some basic concepts in fluid dynamics which will be used

in the formulation of the problem and the steps of the solution.

In Chapter 3, we formulate the dam-breaking problem, derive the boundary and

initial conditions and obtain dimensional non-linear boundary value problem. Then we

non-dimensionalized this problem and obtained dimensionless non-linear boundary value

problem.

In Chapter 4, we investigated the small-time behaviour of this dam-breaking prob-

lem. By this small-time behaviour, we obtained the leading-order linear boundary value

problem and the leading order solution which has a singularity close the intersection point

(corner point). Then we analyzed the behaviour of the leading order solution near the sin-

gular point and obtained the outer matching conditions.

In Chapter 5, we specified the dimensions of the inner region and wrote the prob-

lem in inner variables. Then we considered the small-time behaviour of the inner region

problem and obtained the leading order and second order inner region problem. By this

analysis, we obtained the exact solution to the leading-order problem and the solution of

the second order inner region problem.

3



CHAPTER 2

BASIC CONCEPTS IN FLUID DYNAMICS

2.1. Equations of Motion

2.1.1. Euler’s Equations

Let D be a region in two or three dimensional space filled with a fluid and our

object is to describe the motion of such a fluid. Let x′ is a point in D and consider the

particle of fluid moving through x′ at time t′. Relative to standard Euclidean coordinates

in space, we write x′ = (x′, y′, z′). Imagine a particle in the fluid; this particle traverses

a well-defined trajectory. Let u′((x)′, t′) denote the velocity of the particle of fluid that is

moving through x′ at time t′. Thus, for each fixed time, u′ is a vector field on D and we

call u′ velocity field of the fluid. For each time t′, assume that the fluid has a well-defined

mass density ρ = ρ(x′, t′). Thus, if W is any subregion of the flow region (D), the mass

of fluid in W at time t′ is given by

m(W, t′) =

∫

W

ρ(x′, t′) dV , (2.1)

where dV is the volume element in the plane or in space.

We shall assume that the functions u′ and ρ are smooth enough so that the stan-

dard operations of calculus may be performed on them and the assumption that ρ exists is

a continuum assumption.

Our derivation of the equations is based on three basic principles:

• mass is neither created nor destroyed (conservation of mass);

• the rate of change of momentum of a portion of the fluid equals the force applied to

it (balance of momentum);

• energy is neither created nor destroyed (conservation of energy).

i) Conservation of Mass:

4



Let W be a fixed subregion of D (W does not change with time). The rate of

change of mass in W is

d

dt′
m(W, t′) =

d

dt′

∫

W

ρ(x′, t′)dV =

∫

W

∂ρ

∂t′
(x′, t′)dV . (2.2)

Let ∂W denote the boundary of W, assumed to be smooth; let n′ denote the unit outward

normal defined at points of ∂W , u′ denote the velocity vector s.t. u′ = (u′, v′) and dA

denote the area element on ∂W . The volume flow rate across ∂W per unit area is u′ · n′

and the mass flow rate per unit area is ρu′ · n′.

The principle of conservation of mass can be more precisely stated as follows:

The rate of increase of mass in W equals the rate at which mass is crossing ∂W in the

inward direction; i.e.,

∫

W

∂ρ

∂t′
dV = −

∫

∂W

ρu′ · n′dA . (2.3)

This is the integral form of the law of conservation of mass. By the divergence theorem,

this statement is equivalent to

∫

W

[
∂ρ

∂t′
+ div(ρu′)

]
dV = 0 . (2.4)

Because this is to hold for all W, it is equivalent to

∂ρ

∂t′
+ div(ρu′) = 0 (2.5)

The last equation is the differential form of the law of conservation of mass, also known

as the continuity equation.

ii) Balance of Momentum:

If W is a region in the fluid at a particular instant of time t′, the total force exerted

5



on the fluid inside W by means of stress on its boundary is

S∂W = force on W = −
∫

∂W

p′n′dA (2.6)

where p′ is the pressure. Then, the divergence theorem gives

S∂W = −
∫

W

∇′p′dV. (2.7)

If b(x′, t′) denotes the given body force per unit mass, the total body force is

B =

∫

W

ρbdV. (2.8)

Thus, on any piece of fluid material,

force per unit volume = −∇′p′ + ρb (2.9)

By Newton’s second law (force = mass × acceleration) we are led to the differential

form of the law of balance of momentum:

ρ
Du′

Dt′
= −∇′p′ + ρb . (2.10)

where D
Dt′ = ∂

∂t′ +u′ ·∇ is material derivative; the rate of change of ’following the fluid’.

iii) Conservation of Energy:

For fluid moving in a domain D, with velocity field u′, the kinetic energy contained

in a region W ⊂ D is

Ekinetic =
1

2

∫

W

ρ ‖ u′ ‖2 dV. (2.11)

6



We assume that total energy of the fluid can be written as

Etotal = Ekinetic + Einternal, (2.12)

1

2

D

Dt′
‖ u′ ‖2 = u′

∂u′

∂t′
+ u′(u′ · ∇)u′. (2.13)

2.1.2. Incompressibility

Consider a fixed closed surface S drawn in the fluid, with unit outward normal n′.

Fluid will be entering the enclosed region V at some places on S, and leaving it at others.

The velocity component along the outward normal is u′ ·n′, so the volume of fluid leaving

through a small surface element δS in unit time is u′ · n′δS. The net volume rate at which

fluid is leaving V is therefore

∫

S

u′ · n′dS .

But this must be zero for an incompressible fluid, and on using the divergence theorem

we find that

∫

V

∇′ · u′dV = 0.

Since this must be true for all regions V in the fluid, we conclude that

∇′ · u′ = 0 (2.14)

everywhere in the fluid, which is known as incompressibility condition.

7



2.1.3. Euler’s Equations for Incompressible Flows

The equations

ρ
Du′

Dt′
= −∇′p′ + ρg , (2.15)

∇′ · u′ = 0 (2.16)

are known as Euler’s equation of motion for an incompressible fluid. The gravitational

force, being conservative, can be written as the gradient of a potential s.t. g = −∇′χ.

Using the definition of material derivative, we may rewrite equation (2.15) in the form

∂u′

∂t′
+ (u′ · ∇′)u′ = −∇′(p′

ρ
+ χ

)
, (2.17)

where we assume that ρ is constant. Furthermore by using the identity

(u′ · ∇′)u′ = (∇′ ∧ u′) ∧ u′ +∇(
1

2
u′2) (2.18)

the momentum equation takes the form

∂u′

∂t′
+ (∇′ ∧ u′) ∧ u′ = −∇′(p′

ρ
+

1

2
u′2 + χ

)
. (2.19)

2.2. Vorticity: Irrotational Flow

2.2.1. Vorticity

Definition 2.1 The vorticity ω is defined as

ω = ∇′ ∧ u′

8



and it is a concept of central importance in fluid dynamics. The vorticity is, by definition,

zero for an irrotational flow.

We consider vorticity first in the context of two-dimensional flow, for if

u′ = [u′(x′, y′, t′), v′(x′, y′, t′), 0]

then ω is (0, 0, ω), where

ω =
∂v′

∂x′
− ∂u′

∂y′
. (2.20)

2.2.2. Potential Flow

Definition 2.2 (Velocity Potential)

The velocity potential φ′ is something that exists only if ∇′ ∧ u′ = 0 and it is defined at

any point P by

φ′ =
∫ P

O

u′ · dx′ (2.21)

where O is some arbitrary fixed point. In a simply connected fluid region φ′ is inde-

pendent of the path between O and P, thus a single-valued function of position. Partial

differentiation of the equation (2.21) gives

u′ = ∇′φ′, (2.22)

and the vector identity ∇′ ∧∇′φ′ = 0 confirms that this flow is irrotational, as desired.

Such an inviscid, irrotational flow is called a potential flow.

9



2.2.3. Bernoulli’s Equation for Unsteady Irrotational Flow

If the flow is irrotational, so that u′ = ∇′φ′, the second term of the Euler’s equation

(2.19) vanishes and we are left with

∂

∂t′
∇′φ′ = −∇′(p′

ρ
+

1

2
u′2 + χ

)
(2.23)

where χ = gy′ in the present context. Integration gives

∂φ′

∂t′
+

p′

ρ
+

1

2
u′2 + χ = G(t), (2.24)

where G(t) is an arbitrary function of time alone and equation (2.24) is called Bernoulli’s

equation for unsteady irrotational flow.

10



CHAPTER 3

DAM-BREAKING PROBLEM

3.1. Nonlinear Problem

3.1.1. Equations of Motion (2D)

For the formulation of the problem, we use Euler’s equations of motion for in-

compressible flows (2.15) and (2.16). Since the problem we consider is two-dimensional,

the equation (2.15) becomes

∂u′

∂t′
+ u′ · ∇′u′ = −1

ρ
∇′p′ + ~g

in vector notation and

∂u′

∂t′
+ u′

∂u′

∂x′
+ v′

∂u′

∂y′
= −1

ρ

∂p′

∂x′
, (3.1)

∂v′

∂t′
+ u′

∂v′

∂x′
+ v′

∂v′

∂y′
= −1

ρ

∂p′

∂y′
− g (3.2)

in component form. The equation of continuity (2.16) becomes

∂u′

∂x′
+

∂v′

∂y′
= 0. (3.3)

Hence we have three main equations; (3.3), (3.1), (3.2) for the formulation of the problem

∂u′

∂x′
+

∂v′

∂y′
= 0 ,

∂u′

∂t′
+ u′

∂u′

∂x′
+ v′

∂u′

∂y′
= −1

ρ

∂p′

∂x′
,

∂v′

∂t′
+ u′

∂v′

∂x′
+ v′

∂v′

∂y′
= −1

ρ

∂p′

∂y′
− g .
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3.1.2. Boundary and Initial Conditions

At the initial time instant the liquid is at rest. Thus the velocity components and the

free surfaces at the initial time (t′ = 0) are zero and pressure distribution is hydrostatic.

Then we have three initial conditions for this problem such that;

u′(x′, y′, 0) = v′(x′, y′, 0) = 0, η′(x′, 0) = ξ′(y′, 0) = 0

and p′(x′, y′, 0) = −ρgy′ .

}
(3.4)

Furthermore we have four free-surface conditions (two for each surface), two of them

are kinematic boundary conditions and the others are dynamic boundary conditions. For

the kinematic boundary condition at the free-surfaces we know that fluid particles on

the surface must remain on the surface. Thus if we define the quantities F (x′, y′, t′) =

y′ − η′(x′, t′) and G(x′, y′, t′) = x′ − ξ′(y′, t′) we may then claim that F (x′, y′, t′) and

G(x′, y′, t′) remain constant (in fact, zero) for any particular fluid particle on the free

surface. It follows that
DF

Dt′
= 0 and

DG

Dt′
= 0 on the free-surfaces y′ = η′(x′, t′) and

x′ = ξ′(y′, t′) respectively, i.e.

∂F

∂t′
+ (u′ · ∇′)F = 0 on y′ = η′(x′, t′) ,

∂G

∂t′
+ (u′ · ∇′)G = 0 on x′ = ξ′(y′, t′)

which are equivalent to

∂y′

∂t′
=

∂η′

∂t′
+

∂η′

∂x′
∂x′

∂t′
on y′ = η′(x′, t′) , (3.5)

∂x′

∂t′
=

∂ξ′

∂t′
+

∂ξ′

∂y′
∂y′

∂t′
on x′ = ξ′(y′, t′) . (3.6)

The dynamic condition is that, the pressure on the free-surfaces is atmospheric. These

conditions can be written as

12



1) on y′ = η′(x′, t′)

v′ =
∂η′

∂t′
+ u′

∂η′

∂x′

}
kinematic condition , (3.7)

p′(x′, η′, t′) = 0
}

dynamic condition . (3.8)

2) on x′ = ξ′(y′, t′)

u′ = v′
∂ξ′

∂y′
+

∂ξ′

∂t′

}
kinematic condition , (3.9)

p′(ξ′, y′, t′) = 0
}

dynamic condition . (3.10)

Hence we get the mathematical statement of the problem (dimensional, non-linear) such

that

u′x′ + v′y′ = 0 ,

u′t′ + u′u′x′ + v′u′y′ = −1

ρ
p′x′ ,

v′t′ + u′v′x′ + v′v′y′ = −1

ρ
p′y′ − g ,

v′ = η′t′ + u′η′x′ , p′ = 0 on y′ = η′(x′, t′),

u′ = ξ′t′ + v′ξ′y′ , p′ = 0 on x′ = ξ′(y′, t′),

v′(x′,−H, t′) = 0,

η′(x′, 0) = ξ′(y′, 0) = u′(x′, y′, 0) = v′(x′, y′, 0) = 0,

as x′ →∞, u′, v′ → 0 and p′ → −ρgy′.
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3.2. Non-Dimensionalizing the Equations

In asymptotical analysis, dimensionless equations are used. Thus we use the fol-

lowing transformations to non-dimensionalize the equations (3.1) - (3.10),

x′ = Hx , η′ = Hη , (3.11)

y′ = Hy , ξ′ = Hξ , (3.12)

t′ = Tt , p′ = pρgH . (3.13)

Then the velocity components, the derivatives of the velocity with respect to time and

coordinate axes, the derivatives of pressure and free-surfaces with respect to coordinate

axes become as follows,

u′ =
∂x′

∂t′
=

∂(xH)

∂(tT )
=

H

T

∂x

∂t
=

H

T
u ,

v′ =
∂y′

∂t′
=

∂(yH)

∂(tT )
=

H

T

∂y

∂t
=

H

T
v ,

∂u′

∂x′
=

∂(H
T

u)

∂(xH)
=

1

T

∂u

∂x
.

Similarly,

∂u′

∂y′
=

1

T

∂u

∂y
,

∂v′

∂x′
=

1

T

∂v

∂x
,

∂v′

∂y′
=

1

T

∂v

∂y
,

∂u′

∂t′
=

∂(H
T

u)

∂(tT )
=

H

T 2

∂u

∂t
,

∂v′

∂t′
=

H

T 2

∂v

∂t

∂p′

∂x′
=

∂(pρgH)

∂(xH)
= ρg

∂p

∂x
,

∂η′

∂x′
=

∂(ηH)

∂(xH)
=

∂η

∂x
,

∂ξ′

∂y′
=

∂ξ

∂y
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∂η′

∂t′
=

∂(ηH)

∂(tT )
=

H

T

∂η

∂t
,

∂ξ′

∂t′
=

H

T

∂ξ

∂t
.

For simplicity let us use the notation ux instead of
∂u

∂x
and so on. Then the incompress-

ibility condition (3.3) becomes

1

T
ux +

1

T
vy = 0,

ux + vy = 0. (3.14)

First of Euler’s equations (3.1) becomes

H

T 2
ut +

H

T
u

1

T
ux +

H

T
v

1

T
uy = −1

ρ
ρgpx ,

ut + uux + vuy = −T 2

H
gpx ,

and choosing T 2 =
H

g
,

ut + uux + vuy = −px . (3.15)

Similarly second of Euler’s equations (3.2) becomes

H

T 2
vt +

H

T
u

1

T
vx +

H

T
v

1

T
vy = −1

ρ
ρgpy − g ,

vt + uvx + vvy = −T 2

H
gpy − T 2

H
g ,

vt + uvx + vvy = −py − 1 . (3.16)
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And the initial conditions (3.17) become

u(x, y, 0) = v(x, y, 0) = 0, η(x, 0) = ξ(y, 0) = 0

and p(x, y, 0) = −y .

}
(3.17)

The kinematic and dynamic free-surface conditions in (3.7)-(3.8) and (3.9)-(3.10) be-

come,

on y = η(x, t),

H

T
v =

H

T
ηt +

H

T
uηx ,

v = ηt + uηx

}
kinematic condition , (3.18)

p(x, η, t) = 0
}

dynamic condition . (3.19)

on x = ξ(y, t),

H

T
u =

H

T
ξt +

H

T
vξy ,

u = ξt + vξy

}
kinematic condition , (3.20)

p(ξ, y, t) = 0
}

dynamic condition . (3.21)
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3.3. Boundary Value Problem

A mathematical statement of the problem can now be written as a dimensionless nonlinear

boundary value problem in the form

ux + vy = 0 , (3.22)

ut + uux + vuy = −px , (3.23)

vt + uvx + vvy = −py − 1 , (3.24)

v = ηt + uηx , p = 0 on y = η(x, t), (3.25)

u = ξt + vξy , p = 0 on x = ξ(y, t), (3.26)

v(x,−1, t) = 0 (3.27)

η(x, 0) = ξ(y, 0) = 0, u(x, y, 0) = v(x, y, 0) = 0, (3.28)

as x →∞, u, v → 0 and p → −y (3.29)

The solution domain for this set of equations is described as

D(t) = {(x, y) : −1 ≤ y ≤ η(x, t) , ξ(y, t) ≤ x ≤ ∞}.

There are three governing equations (3.22-3.24), six boundary conditions (3.25-3.27 and

3.29) and four initial conditions (3.28). The unknowns are u, v, p, ξ, η.
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CHAPTER 4

SMALL-TIME BEHAVIOUR OF THE DAM-BREAKING

PROBLEM

4.1. Small-Time Behaviour (t → 0)

A small-time solution to (3.22) - (3.28) may be developed by posing the expansions

u = u0(x, y) + tu1(x, y) + O(t2), v = v0(x, y) + tv1(x, y) + O(t2),

η = η0(x) + tη1(x) + t2η2(x) + O(t3), ξ = ξ0(y) + tξ1(y) + t2ξ2(y) + O(t3),

p = p0(x, y) + tp1(x, y) + O(t2)

as t → 0 with x = O(1).

Since u(x, y, 0) = 0 and v(x, y, 0) = 0, we conclude that u0 = 0 and v0 = 0.Similarly

since η(x, 0) = 0 and ξ(y, 0) = 0, we conclude that η0 = 0 and ξ0 = 0. Now the

small-time solution expansions to (3.22) - (3.28) can be written as

u = tu1(x, y) + O(t2), v = tv1(x, y) + O(t2) , (4.1)

η = tη1(x) + t2η2(x) + O(t3), ξ = tξ1(y) + t2ξ2(y) + O(t3) , (4.2)

p = p0(x, y) + tp1(x, y) + O(t2) (4.3)

as t → 0 with x = O(1). Then substitute the above expansions into the equations (3.22)

- (3.28).

From the incompressibility condition (3.22) we have

tu1,x + tv1,y + t2u2,x + t2v2,y + . . . = 0

which gives,
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u1,x + v1,y = 0 (of order t) , (4.4)

u2,x + v2,y = 0 (of order t2) . (4.5)

From the first of Euler’s equations (3.23) we have

u1 + 2tu2 + . . . + (tu1 + t2u2 + . . .)(tu1,x + t2u2,x + . . .) +

(tv1 + t2v2 + . . .)(tu1,y + t2u2,y + . . .) = −p0,x − tp1,x − . . .

which gives,

u1 = −p0,x (of order 1) , (4.6)

u2 = −1

2
p1,x (of order t) . (4.7)

From the second of Euler’s equations (3.24) we have

v1 + 2tv2 + . . . + (tu1 + t2u2 + . . .)(tv1,x + t2v2,x + . . .) +

(tv1 + t2v2 + . . .)(tv1,y + t2v2,y + . . .) = −p0,y − tp1,y − . . .− 1

which gives,

v1 = −p0,y − 1 (of order 1) , (4.8)

v2 = −1

2
p1,y (of order t) . (4.9)

From the kinematic boundary condition on y = η(x, t) (3.25) we have

tv1(x, η(x, t)) + t2v2(x, η(x, t)) + . . . = (η1 + 2tη2 + 3t2η3 + . . .)

+(tu1(x, η(x, t)) + t2u2(x, η(x, t)) + . . .)(tη1,x + t2η2,x + . . .) ,
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by using the Taylor series expansions of vi(x, η(x, t)) and ui(x, η(x, t)) for i = 1, 2, . . .

about y = η(x, t) = 0, we have

t
[
v1(x, 0) + v1,y(x, 0)η(x, t) + . . .

]
+ t2

[
v2(x, 0) + v2,y(x, 0)η(x, t) + . . .

]
+ . . . =

(η1 + 2tη2 + 3t2η3 + . . .) +
[
t(u1(x, 0) + u1,y(x, 0)η(x, t) + . . .) +

t2(u2(x, 0) + u2,y(x, 0)η(x, t) + . . .) + . . .
]
(tη1,x + t2η2,x + . . .)

where η(x, t) = tη1 + t2η2 + O(t3) and we get,

η1(x) = 0 (of order 1) , x > 0 , (4.10)

v1(x, 0) = 2η2(x) (of order t) , x > 0 . (4.11)

On the other hand since p = 0 by the dynamic boundary condition on y = η(x, t) we have

p = p0(x, η(x, t)) + tp1(x, η(x, t)) + t2p2(x, η(x, t)) + . . . = 0

by using the Taylor series expansion of pi(x, η(x, t)) for i = 0, 1, . . . about y = η(x, t) =

0, we have

[
p0(x, 0) + p0,y(x, 0)η(x, t) + . . .

]
+ t

[
p1(x, 0) + p1,y(x, 0)η(x, t) + . . .

]
+

t2
[
(p2(x, 0) + p2,y(x, 0)η(x, t) + . . .)

]
+ . . . = 0

where η(x, t) = tη1 + t2η2 + O(t3) and we get,

p0(x, 0) = 0 (of order 1) , x > 0 , (4.12)

p1(x, 0) = 0 (of order t) , x > 0 , (4.13)

p2(x, 0) = −p0,y(x, 0)η2 (of order t2) , x > 0 . (4.14)
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From the kinematic boundary condition on x = ξ(y, t) (3.26) we have

tu1(ξ(y, t), y) + t2u2(ξ(y, t), y) + . . . = (ξ1 + 2tξ2 + 3t2ξ3 + . . .)

+(tv1(ξ(y, t), y) + t2v2(ξ(y, t), y) + . . .)(tξ1,y + t2ξ2,y + . . .)

by using the Taylor series expansions of vi(ξ(y, t), y) and ui(ξ(y, t), y) for i = 1, 2, . . .

about x = ξ(y, t) = 0 , we have

t
[
u1(0, y) + u1,x(0, y)ξ(y, t) + . . .

]
+ t2

[
u2(0, y) + u2,x(0, y)ξ(y, t) + . . .

]
+ . . . =

(ξ1 + 2tξ2 + 3t2ξ3 + . . .) +
[
t(v1(0, y) + v1,x(0, y)ξ(y, t) + . . .) +

t2(v2(0, y) + v2,x(0, y)ξ(y, t) + . . .) + . . .
]
(tξ1,y + t2ξ2,y + . . .)

where ξ(y, t) = tξ1 + t2ξ2 + O(t3) and we get,

ξ1(y) = 0 (of order 1) , (4.15)

u1(0, y) = 2ξ2(y) (of order t) . (4.16)

On the other hand since p = 0 by the dynamic boundary condition on x = ξ(y, t) we have

p = p0(ξ(y, t), y) + tp1(ξ(y, t), y) + t2p2(ξ(y, t), y) + . . . = 0

by using the Taylor series expansion of pi(ξ(y, t), y) for i = 0, 1, . . . about x = ξ(y, t) =

0, we have

[
p0(0, y) + p0,x(0, y)ξ(y, t) + . . .

]
+ t

[
p1(0, y) + p1,x(0, y)ξ(y, t)

]
+

t2
[
p2(0, y) + p2,x(0, y)ξ(y, t) + . . .

]
+ . . . = 0
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where ξ(y, t) = tξ1 + t2ξ2 + O(t3) and we get,

p0(0, y) = 0 (of order 1) , (4.17)

p1(0, y) = 0 (of order t) , (4.18)

p2(0, y) = −p0,x(0, y)ξ2 (of order t2) . (4.19)

Therefore using the equations (4.10) and (4.15), small-time solution expansions to (3.22)

- (3.28) must be written as

u = tu1(x, y) + O(t2), v = tv1(x, y) + O(t2) , (4.20)

η = t2η2(x) + O(t3), ξ = t2ξ2(y) + O(t3) , (4.21)

p = p0(x, y) + tp1(x, y) + O(t2) (4.22)

as t → 0 with x = O(1).

And the condition v(x,−1, t) = 0 can be written as tv1(x,−1) + t2v2(x,−1) + . . . = 0

which gives the following,

v1(x,−1) = 0 (of order t) , (4.23)

v2(x,−1) = 0 (of order t2) . (4.24)

4.2. The Leading Order Boundary Value Problem

At the leading order, we find the following boundary value problem

u1,x + v1,y = 0,

u1 = −p0,x , v1 = −p0,y − 1,

v1(x,−1) = 0 , η2 = 1
2
v1(x, 0) , ξ2 = 1

2
u1(0, y) ,

p0(x, 0) = 0 , p0(0, y) = 0





(4.25)

with u1, v1 → 0 and p0 → −y as x →∞.
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Then the problem (4.25) is equivalent to the boundary value problem

∆p0 = 0,

p0,y(x,−1) = −1 , p0(x, 0) = 0 , p0(0, y) = 0

}
(4.26)

with u1, v1 → 0 and p0 → −y as x →∞.

4.2.1. The Leading Order Solution & Singularity

Solution to the problem (4.26) may be found by the standard ”separation of variables”

method (see Appendix A) in the form

p0(x, y) = −y +
∞∑

n=0

8(−1)n

(2n + 1)2π2
sin

(
(2n + 1)

π

2
y

)
e−(2n+1)π

2
x . (4.27)

Then since v1 = −p0,y − 1 and u1 = −p0,x, we get

v1(x, y) = − 4

π
Re

[ ∞∑
n=0

(−1)n

2n + 1
e−(2n+1)π

2
xei(2n+1)π

2
y

]
,

u1(x, y) =
4

π
Im

[ ∞∑
n=0

(−1)n

2n + 1
e−(2n+1)π

2
xei(2n+1)π

2
y

]

where Re(z) denotes the real part of z and Im(z) the imaginary part. On the other hand

since 2η2 = v1(x, 0) = −p0,y(x, 0)− 1, we get

η2 = − 2

π

∞∑
n=0

(−1)n(e−
π
2
x)2n+1

2n + 1
, (4.28)

and similarly since 2ξ2 = u1(0, y) = −p0,x(0, y), we get

ξ2 =
2

π
Im

∞∑
n=0

(−1)n(ei π
2
y)2n+1

2n + 1
. (4.29)
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The series in (4.28) and (4.29) can be summed exactly (see Appendix B) to give

η2 = − 2

π
arctan(e−

π
2
x) , ξ2 =

1

π
log(tan

π

4
(1 + y)) (4.30)

and we see that ξ2 reveals a singularity in the free-surface elevation as y → −1 (see Figure

4.1).

Figure 4.1. First order outer solution of ξ for t = 0.001

4.3. Outer Matching Conditions

This non-uniformity in the expansion about the point (0,−1) suggest that the ex-

pansions (4.1)-(4.3) are outer expansions to this problem. To correctly capture the be-

havior in the neighborhood of the point (0,−1) we require an inner region in which

x, y = o(1) as t → 0. To motivate the form of the inner expansion we require the lo-

cal behavior of the pressure p0 as (x2 + y2)
1
2 → 0. First of all we change the variables,

ξ = x and η = y + 1, to translate the origin to the singularity and then use the polar coor-

dinates ξ = ρ cos θ and η = ρ sin θ where (ρ, θ) are the standard polar coordinates based

at the cartesian origin (Figure 4.2). Thus we require the local behavior of the pressure p0

as (ξ2 + η2)
1
2 → 0 (i.e. as ρ → 0) in the quarter plane 0 ≤ ρ ≤ ∞, 0 ≤ θ ≤ π

2
.
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Figure 4.2. New coordinate axes ξ, η and the inner region

4.3.1. Behaviour of the Leading Order Solution Near the Singular

Point

For the new coordinate axes ξ and η, the pressure p0 becomes

p0(ξ, η) = 1− η +
∞∑

n=0

8(−1)n

(2n + 1)2π2
sin

(
(2n + 1)

π

2
(η − 1)

)
e−(2n+1)π

2
ξ .

Then by using the standard polar coordinates and letting p0 = P , the pressure P and the

derivative of P with respect to θ becomes

P (ρ, θ) = 1− ρ sin θ +
∞∑

n=0

8(−1)n

(2n + 1)2π2
sin

(
(2n + 1)

π

2
(ρ sin θ − 1)

)
e−(2n+1)π

2
ρ cos θ

and

Pθ(ρ, θ) = −ρ cos θ +
∞∑

n=0

4(−1)nρ

(2n + 1)π
cos

(
(2n + 1)

π

2
(ρ sin θ − 1)− θ

)
e−(2n+1)π

2
ρ cos θ .

On the boundaries of the quarter plane,

Pθ = −ρ on θ = 0 clearly.
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On the other hand on θ = π
2
,

Pθ =
∞∑

n=0

4(−1)nρ

(2n + 1)π
cos

[
(2n + 1)

π

2
(ρ− 1)− π

2

]
,

=
∞∑

n=0

4(−1)nρ

(2n + 1)π
sin

[
(2n + 1)

π

2
(ρ− 1)

]
,

=
4ρ

π
Im

∞∑
n=0

(−1)n

2n + 1
(ei π

2
(ρ−1))2n+1 ,

=
4ρ

π
Im arctan(ei π

2
(ρ−1)) ,

=
2ρ

π
log(tan

π

4
ρ) .

Since we consider the local behavior of the pressure as ρ → 0, expand tan π
4
ρ into Taylor

series at ρ = 0,

Pθ =
2ρ

π
log

(
π

4
ρ +

(π
4
ρ)3

3
+ . . .

)
,

Pθ =
2ρ

π

[
log(

π

4
ρ) + O(ρ2)

]
.

Thus

Pθ =
2ρ

π
log ρ +

2ρ

π
log(

π

4
) + O(ρ3) on θ =

π

2

and

P = 0 on θ =
π

2
.

Hence we are led to consider the following boundary problem in the quarter plane 0 ≤
ρ ≤ ∞, 0 ≤ θ ≤ π

2
:

∆P = 0 ,

Pθ = −ρ on θ = 0, P = 0 on θ = π
2

,

and Pθ =
2

π
ρ log ρ +

2

π
ρ log

π

4
+ O(ρ3) on θ =

π

2
.





(4.31)

As we are interested in the solution for small ρ, we pose a coordinate expansion of the

form

P = ρ(log ρ)g(θ) + ρh(θ) + O(ρ) as ρ → 0 ,
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and by using the polar form of the Laplace equation, we have

∆P =
1

ρ
g(θ) +

1

ρ

(
log ρg(θ) + g(θ) + h(θ)

)
+

1

ρ2

(
ρ log ρg′′(θ) + ρh′′(θ)

)
= 0 ,

which gives

g(θ) + g′′(θ) = 0 (order
log ρ

ρ
) , (4.32)

2g(θ) + h(θ) + h′′(θ) = 0 (order
1

ρ
) . (4.33)

Then by using (4.32), (4.33) and the boundary conditions in (4.31), general solutions of

g(θ) and h(θ) are

g(θ) =
−2

π
cos θ ,

h(θ) = − sin θ +
2

π

(
1− log(

π

4
) cos θ +

2

π
θ sin θ

)
.

Hence as ρ → 0,

P = ρ log ρ

(
− 2

π
cos θ

)
+ ρ

(
− sin θ +

2

π
(1− log(

π

4
)) +

2

π
θ sin θ

)
+ o(ρ) . (4.34)

Next, we shall find the behavior of ξ2 near the singular point. The closed-form expression

of ξ2 (4.30) in the new coordinate axes ξ and η becomes

ξ2 =
1

π
log(tan

π

4
η) .

For the behavior of ξ2 as ρ → 0, we expand tan π
4
η into Taylor Series at η = 0,

ξ2 =
1

π
log

(
π

4
η +

(π
4
η)3

3
+ . . .

)
,

ξ2 =
1

π
log

π

4
+

1

π
log η + O(η2) .

Thus we have the asymptotic matching conditions (limiting values of the outer solution
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as ρ → 0) that will be needed later on such that

p0 = ρ log ρ

(
− 2

π
cos θ

)
+ ρ

(
− sin θ +

2

π
(1− log(

π

4
)) +

2

π
θ sin θ

)
+ o(ρ),

(4.35)

ξ2 =
1

π
log

π

4
+

1

π
log η + O(η2) as η = ρ → 0.

This indicates that p0 = O(ρ log ρ) and ξ2 = O(log ρ) as ρ → 0.

The fluid velocities in the corner region are calculated from (4.25) by the equations

u1 = −p0,ξ and v1 = −p0,η − 1. Then by chain rule, we get derivatives of P with

respect to ξ and η such that

p0,ξ =

[
− log ρ

2

π
cos θ − 2

π
cos θ − sin θ +

2

π
(1− log

π

4
) cos θ +

2

π
θ sin θ

]
cos θ

−
[
ρ log ρ

2

π
sin θ − ρ cos θ − 2

π
ρ(1− log

π

4
) sin θ +

2

π
ρ sin θ +

2

π
ρθ cos θ

]
sin θ

ρ
,

p0,ξ = − 2

π
log ρ− 2

π
log

π

4
, (4.36)

and

p0,η =

[
− log ρ

2

π
cos θ − 2

π
cos θ − sin θ +

2

π
(1− log

π

4
) cos θ +

2

π
θ sin θ

]
sin θ

−
[
ρ log ρ

2

π
sin θ − ρ cos θ − 2

π
ρ(1− log

π

4
) sin θ +

2

π
ρ cos θ +

2

π
ρθ cos θ

]
cos θ

ρ
,

p0,η = −1 +
2

π
θ . (4.37)

Thus by using (4.36) and (4.37) the velocity components u1, v1 becomes

u1 =
2

π
log ρ +

2

π
log

π

4
, (4.38)

v1 = − 2

π
θ , (4.39)

28



as ρ → 0. This indicates that u1 = O(log ρ) and v1 = O(1) as ρ → 0.
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CHAPTER 5

THE INNER VARIABLES

5.1. Inner Region Problem

In order to construct an inner solution to this problem when ξ, η = o(1) as t → 0,

it is useful to examine where the magnitude of terms retained in deriving the velocity com-

ponents (3.22)-(3.24) is equal to the terms neglected. The local analysis of the Chapter 4

shows that as ρ = (ξ2 + η2)
1
2 → 0;

u = O(t log ρ) since u = tu1 + O(t2) , (5.1)

v = O(t) since v = tv1 + O(t2) , (5.2)

P = O(ρ log ρ) by (4.35) , (5.3)

ξ = O(t2 log ρ) since ξ = t2ξ2 + O(t3) . (5.4)

Thus a typical retained term in (3.24) is vt = O(1) whereas a typical neglected term,

which represents fluid inertia, is uvx = O((t2 log ρ)/ρ). These two terms are of equal

magnitude when t2 log ρ = O(ρ). If this is solved iteratively (by Newton-Raphson

method), it is clear that when ρ = O(−t2 log t), inertial terms are important and that

in this region v = O(t), u = O(t log t), p = O(t2 log2 t) and ξ = O(t2 log t). These

estimates motivate the introduction of the following inner variables:

X = − ξ

t2 log t
, Y = − η

t2 log t
, U = u, V = v, P = p. (5.5)
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5.1.1. Equations of the Problem in Inner Variables

By using (3.22), which is equivalent to uξ + vη = 0, (5.5) leads to

∂U

∂X

∂X

∂ξ
+

∂V

∂Y

∂Y

∂η
= 0 ,

UX

(
− 1

t2 log t

)
+ VY

(
− 1

t2 log t

)
= 0 ,

UX + VY = 0 .

Similarly by using (3.23), which is equivalent to ut + uuξ + vuη = −pξ, (5.5) leads to

∂U

∂t

∂t

∂t
+

∂U

∂X

∂X

∂t
+

∂U

∂Y

∂Y

∂t
+ U

(
∂U

∂X

∂X

∂ξ

)
+ V

(
∂U

∂Y

∂Y

∂η

)
= − ∂P

∂X

∂X

∂ξ
,

Ut + UX

(
ξ
2t log t + t

(t2 log t)2

)
+ UY

(
η
2t log t + t

(t2 log t)2

)
+ UUX

(
− 1

t2 log t

)

+V UY

(
− 1

t2 log t

)
= −PX

(
− 1

t2 log t

)
,

Ut −X

(
2

t
+

1

t log t

)
UX − Y

(
2

t
+

1

t log t

)
UY − 1

t2 log t
UUX

− 1

t2 log t
V UY =

1

t2 log t
PX .

Similarly by using (3.24), which is equivalent to vt + uvξ + vvη = −pη−1, (5.5) leads to

∂V

∂t

∂t

∂t
+

∂V

∂X

∂X

∂t
+

∂V

∂Y

∂Y

∂t
+ U

(
∂V

∂X

∂X

∂ξ

)
+ V

(
∂V

∂Y

∂Y

∂η

)
= −∂P

∂Y

∂Y

∂η
− 1 ,

Vt + VX

(
ξ
2t log t + t

(t2 log t)2

)
+ VY

(
η
2t log t + t

(t2 log t)2

)
+ UVX

(
− 1

t2 log t

)

+V VY

(
− 1

t2 log t

)
= −PY

(
− 1

t2 log t

)
− 1 ,
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Vt −X

(
2

t
+

1

t log t

)
VX − Y

(
2

t
+

1

t log t

)
VY − 1

t2 log t
UVX

− 1

t2 log t
V VY =

1

t2 log t
PY − 1.

And the free-surface conditions (3.18 and 3.19), which are equivalent to V = ηt + uηξ

and p = 0 on y = η(x, t), become

V =
∂η

∂t

∂t

∂t
+

∂η

∂X

∂X

∂t
+ U

∂η

∂X

∂X

∂ξ
,

V = ηt −X

(
2

t
+

1

t log t

)
ηX −

(
− 1

t2 log t

)
UηX and P = 0.

Similarly (3.20) and (3.21), which are equivalent to u = ξt+vξη and p = 0 on x = ξ(y, t),

become

U =
∂ξ

∂t

∂t

∂t
+

∂ξ

∂Y

∂Y

∂t
+ V

∂ξ

∂Y

∂Y

∂η
,

U = ξt − Y

(
2

t
+

1

t log t

)
ξY −

(
− 1

t2 log t

)
V ξY and P = 0.

Hence we have the inner region problem;

UX + VY = 0,

Ut −X

(
2

t
+

1

t log t

)
UX − Y

(
2

t
+

1

t log t

)
UY − 1

t2 log t
UUX

− 1

t2 log t
V UY =

1

t2 log t
PX ,

Vt −X

(
2

t
+

1

t log t

)
VX − Y

(
2

t
+

1

t log t

)
VY − 1

t2 log t
UVX

− 1

t2 log t
V VY =

1

t2 log t
PY − 1,





(5.6)
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in 0 ≤ Y < ∞, X ≥ ξ(Y, t)/(−t2 log t) and subject to free-surface conditions in the

form

U = ξt − Y

(
2

t
+

1

t log t

)
ξY −

(
− 1

t2 log t

)
V ξY and P = 0. (5.7)

5.2. Expansion of the Inner Region Problem in Time

Matching conditions (4.35) and the equations u1 = −Pξ and v1 = −Pη−1 should

be written in terms of the inner variables and be applied as R = (X2 + Y 2)
1
2 →∞. Here

by using the relation ρ = −Rt2 log t, we get

P =
2

π
R log R cos θt2 log t +

4

π
R cos θt2(log t)2

+
2

π
R cos θ log(− log t)t2 log t + R sin θt2 log t

− 2

π
R cos θt2 log t +

2

π
R cos θ log(

π

4
)t2 log t− 2

π
Rθ sin θt2 log t,

ξ =
log Y

π
t2 +

2

π
t2 log t +

log(− log t)

π
t2 +

log(π
4
)

π
t2,

U = P1,Xt log t + P2,Xt,

V = P1,Y t log t + (P2,Y − 1)t.





(5.8)

Thus we proceed with the solution to the inner problem by posing expansions of the form

P = t2(log t)2P1 + t2 log tP2 + o(t2 log t) , ξ = t2 log tξ1 + t2ξ2 + o(t2), (5.9)

U = t log tU1 + tU2 + o(t) , V = t log tV1 + tV2 + o(t) (5.10)

as t → 0 with X, Y = O(1). If we substitute the above expansions into the inner region

problem (5.6)-(5.7), at the leading order we obtain
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U1,X + V1,Y = 0,

U1 − 2XU1,X − 2Y U1,Y − U1U1,X − V1U1,Y = P1,X ,

V1 − 2XV1,X − 2Y V1,Y − U1V1,X − V1V1,Y = P1,Y ,





(5.11)

in the domain 0 ≤ Y < ∞, X > −ξ1, subject to the free-surface conditions on X = −ξ1,

U1 = 2ξ1 − 2Y ξ1,Y − V1ξ1,Y and P1 = 0. (5.12)

Appropriate matching conditions are by the equations (5.8) that

P1 ∼ 4

π
X , ξ1 ∼ 2

π
, U1 ∼ 4

π
, V1 ∼ 0 as (X2 + Y 2)

1
2 →∞. (5.13)

These matching conditions must be the solution or a part of the solution of the leading

order problem. By this fact, the exact solution to this problem is

U1 ≡ 4

π
, V1 ≡ 0 , P1 ≡ 4

π

(
X +

2

π

)
, ξ1 ≡ 2

π
. (5.14)

Similarly, the next equations in the hierarchy generated by our perturbation process gives

the second order problem,

U2,X + V2,Y = 0,

4
π

+ U2 − 2XU2,X − 2Y U2,Y − 4
π
U2,X = P2,X ,

V2 − 2XV2,X − 2Y V2,Y − 4
π
V2,X = P2,Y − 1,





(5.15)
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to be solved in the fixed domain 0 ≤ Y < ∞, X > − 2
π

. The free-surface conditions on

X = − 2
π

are

P2 =
4

π
ξ2 , U2 =

2

π
+ 2ξ2 − 2Y ξ2,Y (5.16)

and matching conditions are by the equations (5.8) that

P2 ∼ 2

π

{
(λ− 1)X + log RX + (

π

2
− θ)Y

}
, ξ2 ∼ 1

π
(λ + log Y ), (5.17)

U2 ∼ 2

π
λ− 1 + log R , V2 ∼ − 2

π
θ, (5.18)

as (X2 + Y 2)
1
2 → ∞. Where λ = log(− log t) + log(π

4
) is regarded as a constant in the

light of the Van Dyke matching principle as applied to series containing logarithms. Here

(R, θ) are the usual polar coordinates with respect to the Cartesian coordinates (X,Y).

An exact solution to the above quarter-plane problem (5.15)-(5.18) can be found

using an integral transform method.

5.3. Solution of the Second Order Inner Region Problem

5.3.1. Reformulation and the Mellin Transform of the Boundary

Value Problem

The boundary value problem in the quarter-plane defined by (5.15)-(5.18) is not

straightforward to solve. To proceed we define new dependent and independent variables

by

u = U2 +
4

π
, v = V2, p = P2 − Y, ξ = ξ2, X = x− 2

π
, y = Y.
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This reformulation gives the more symmetric system of equations for (5.15)-(5.16),

ux + vy = 0,

u− 2xux − 2yuy = px,

v − 2xvx − 2yvy = py





(5.19)

in the domain 0 ≤ y < ∞, 0 < x < ∞ and subject to the free-surface conditions

p(0, y) =
4

π
ξ − y , u(0, y) =

6

π
+ 2ξ − 2yξy . (5.20)

Eliminating the pressures in (5.19) gives a vorticity (ζ) equation in the form

ζ + 2xζx + 2yζy = 0, (5.21)

where ζ = uy − vx. Equation (5.21) is readily solved by the method of characteristics,

which shows that dζ/dx = −ζ/2x on the curves dy/dx = y/x. As the vorticity is

bounded and the outer flow is irrotational the only solution of (5.21) is ζ ≡ 0.

This enables us to introduce a velocity potential φ such that u = φx, v = φy. Upon

integration of the equations in (5.19) we find that p = p0 + 3φ− 2xφx − 2yφy, where p0

is a constant pressure which could be found by higher-order matching. By this velocity

potential, our quarter-plane problem (5.15)-(5.18) becomes

∆φ = 0

with the free-surface conditions on x = 0 in the form

p0 + 3φ− 2yφy =
4

π
ξ − y ,

φx =
6

π
+ 2ξ − 2yξy

the free-surface condition on y = 0

φy = 0

and a matching condition as (x2 + y2)
1
2 →∞,

φ ∼ 2

π

{
x log(x2 + y2)

1
2 − y tan−1(

y

x
) + (λ + 1)x

}
+ o((x2 + y2)

1
2 ),

ξ ∼ 1

π
(log y + λ) + o(1).





(5.22)
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Since φ is unbounded as r → ∞, some further manipulations are necessary before using

integral transforms to solve this linear boundary value problem. We use standard polar

coordinates (r, θ) based at the Cartesian origin and redefine the potential and free surface

by

φ = φ +
2

π

{
r cos θ log r − θr sin θ + (λ + 1)r cos θ

}
,

ξ = ξ +
1

π
(log r + λ),





(5.23)

so that φ is harmonic with φθ(r, 0) = 0 and the free-surface conditions on θ = π
2

can be

written from (5.22) by using (5.23) as

p0 + 3φ− 2rφr =
4

π

{
ξ +

1

π
(log r + λ)

}
, (5.24)

1

r
φθ = −2ξ + 2rξr. (5.25)

Here we can easily see the conditions ξ = o(1) and φ = o(r) apply as r → ∞. The

condition φ = o(r) is still not good enough for a transform technique to be applied. Thus,

if we make an estimation by taking into account the problem, a coordinate expansion

must be in the form φ = A log r + B + O(1/r) for r À 1. By substituting this estimated

expansion into the problem, we get the coordinate expansion as φ = (4/3π2) log r + B +

O(1/r) where B is a constant related to p0 and λ, and ξ = O(1/r2). (B = (4/3π2)λ +

(8/9π2) − (p0/3)). We now make a further redefinition of the potential (to obtain both

the potential and free-surface vanishing as r →∞) using

φ∗ = φ− 4

6π2
log(1 + r2)−B, ξ∗ = ξ. (5.26)

Here we write log(1 + r2) instead of log r as r → ∞ to avoid introducing a singularity

for r → 0. Then we obtain φ∗ = O(1/r) as r → ∞ and the following boundary value

problem:

37



∆φ∗ = − 4

6π2
∆ log(1 + r2)

subject to φ∗θ = 0 and free-surface conditions on θ =
π

2

3φ∗ − 2rφ∗r =
4

π
ξ∗ + F ∗(r),

1

r
φ∗θ = −2ξ∗ + 2rξ∗r ,

where F ∗(r) =
4

3π2

{
3 log r − 3

2
log(1 + r2) +

2r2

1 + r2
− 2

}
.





(5.27)

We now construct a solution to this problem with φ∗ = O(1), ξ∗ = O(log r) as r → 0

and φ∗ = O(1/r), ξ∗ = O(1/r2) as r →∞ by using Mellin transforms.

The Mellin transform is a type of Fourier transform which can be derived by some

substitutions from the Fourier transform (see Appendix C). The Mellin Transform of φ∗

and ξ∗ are defined in the usual way as

µ[φ∗(r, θ)] = φ̂(p, θ) =

∫ ∞

0

rp−1φ∗(r, θ)dr, (5.28)

µ[ξ∗(r)] = ξ̂(p) =

∫ ∞

0

rp−1ξ∗(r)dr. (5.29)

Given φ∗ = O(1), ξ∗ = O(log r) as r → 0 and φ∗ = O(1/r), ξ∗ = O(1/r2) as r → ∞
we expect φ̂ to exist and be analytic in the strip 0 < Re(p) < 1 of the complex p-plane; ξ̂

will similarly be analytic in 0 < Re(p) < 2.

Taking transforms of both sides of the equation ∆φ∗ = − 4
6π2∆ log(1 + r2) and by using

’integration by parts’ (see Appendix C), we have

{
∂2

∂θ2
+ (p− 2)2

}
φ̂(p− 2, θ) =

2(p− 2)

3π sin(π
2
p)

which can be equivalently written as

{
∂2

∂θ2
+ p2

}
φ̂(p, θ) = − 2p

3π sin(π
2
p)

. (5.30)
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The general solution of this ordinary differential equation can be obtained by the method

of ’variation of parameters’ as

φ̂(p, θ) = A(p) sin(pθ) + B(p) cos(pθ)− 2

3πp sin(π
2
p)

. (5.31)

Similarly taking the Mellin transform of the boundary condition φ∗θ = 0 on θ = 0 gives

the transformed boundary condition φ̂θ = 0 on θ = 0. Transforming the free-surface

conditions on θ = π
2

results in

(3 + 2p)φ̂(p,
π

2
) =

4

π
ξ̂(p)− 4(3 + 2p)

6πp sin(π
2
p)

, (5.32)

φ̂θ(p− 1,
π

2
) = −2(1 + p)ξ̂(p). (5.33)

Application of the boundary condition φ̂θ = 0 on θ = 0 to the general solution (5.31)

gives A(p) = 0. Then by the boundary conditions (5.32) and (5.33) we get two equations

respectively

B(p) =
4ξ̂(p)

π(3 + 2p) cos(π
2
p)

, B(p− 1) = − 2(1 + p)ξ̂(p)

(p− 1) cos(π
2
p)

which yields the following difference equation

B(p)

B(p− 1)
= − 2(p− 1)

π(3 + 2p)(1 + p)
. (5.34)

The solution to this difference equation is readily obtained by the standard methods (see

Appendix D) as

B(p) =
b(p)(−1)pΓ(p)

πpΓ(p + 5
2
)Γ(p + 2)

, (5.35)

where b(p) is a solution of b(p)/b(p − 1) = 1 and is as yet undetermined. This solution
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gives the transform of the free-surface elevation,

ξ̂(p) = − b(p)(−1)p−1 cos(π
2
p)

2p(p + 1)πp−1Γ(p + 3
2
)
. (5.36)

To determine b(p) and hence complete the transform solution we firstly examine the be-

haviour of ξ̂(p) as |p| → ∞ and choose b(p) so as to ensure convergence of the Mellin

inversion integral. Using Stirling’s approximation to the Γ-function for large |p| = |µ+iτ |
(see Appendix E) we have

ξ̂(µ + iτ) =





O

(
b(µ + iτ)

τµ+3eiτ log τ

)
, τ → +∞

O

(
b(µ + iτ)e−2πτ

τµ+3eiτ log τ

)
, τ → −∞.

(5.37)

It is clear from this behaviour that to ensure convergence of the inversion integral we

require µ > −3 and

b(µ + iτ) =

{
O(1), τ → +∞

O(e2πτ ), τ → −∞.
(5.38)

A function of period 1 which has this property is

b(p) =
C

(−1)p sin πp
(5.39)

where C is a constant. With this justification for the choice of b(p) and by using the

following Mellin inversion formulas of ξ̂(p) and φ̂(p, θ)

µ−1[ξ̂(p)] = ξ∗(r) =
1

2πi

∫ c+i∞

c−i∞
r−pξ̂(p)dp ,

µ−1[φ̂(p, θ)] = φ∗(r, θ) =
1

2πi

∫ c+i∞

c−i∞
r−pφ̂(p, θ)dp
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we have,

ξ∗(r) =
Cπ

4

1

2πi

∫ c+i∞

c−i∞

(1/πr)p

p(1 + p)sin(π
2
p)Γ(p + 3

2
)
dp (5.40)

for (0 < c < 2) ,

(5.41)

φ∗(r, θ) =
1

2πi

∫ d+i∞

d−i∞

{
C cos pθ

πp sin(πp)p(1 + p)Γ(p + 5
2
)
− 2

3π sin(π
2
p)

}
r−pdp

for (0 < d < 1) .

Of particular interest now is the form of free-surface that this integral solution represents.

The line integral (5.41) may be turned into a counter integral in Re(p) > 0 by noting that

the integrand decays on the semicircle p = Reiθ,−π
2

< θ < π
2

and as a simple application

of residue theorem (see Appendix F), gives

ξ∗(r) = −C

2

∞∑
n=1

(−1)n(1/πr)2n

2n(2n + 1)Γ(2n + 3
2
)
. (5.42)

The ratio test reveals that this series is convergent for all r 6= 0. In fact for large r the

series is asymptotic and ξ∗ = O(1/r2) clearly from (5.42) as expected. At r = 0 the

above series diverges and a rather different approach to the evaluation of ξ∗ is needed for

small r as we can see from the tables of ξ∗ (Table 5.1, 5.2 and Figure 5.1)

Table 5.1. Table of ξ∗ as r →∞ for small r

ξ∗ r = 10−5 r = 10−3 r = 10−2

n = 1 1, 43340153× 107 1433, 40153 14, 3340153
n = 2 −2, 766360613× 1014 −2, 764927354× 106 −262, 3020603
n = 3 3, 73347886× 1021 3, 730714209× 109 3471, 177076
n = 4 −3, 461390054× 1028 −3, 457659713× 1012 −31142, 72719
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Table 5.2. Table of ξ∗ as r →∞ for large r

ξ∗ r = 10−1 r = 0, 5 r = 1 r = 2
n = 1 0, 143340153 0, 005733606121 0, 00143340153 0, 0003583503826
n = 2 0, 1156765455 0, 005689344349 0, 00143063517 0, 000358177485
n = 3 0, 1194100246 0, 005689583292 0, 001430638903 0, 0003581775434
n = 4 0, 1190638856 0, 005689582406 0, 0014306389 0, 0003581775434
n = 5 0, 1190868988 0, 005689582408 0, 0014306389
n = 6 0, 119085755 0, 005689582408
n = 7 0, 119085799
n = 8 0, 1190857977
n = 9 0, 1190857977

Since the line integral can not be made into a contour integral by addition of a

semicircle in the left-p-plane (due to the growth in the gamma function) we consider a

rectangular contour as shown in Figure F.2. The contribution from the line segments L1

and L2 can be made arbitrarily small owing to the estimate (5.37) and the use of ML

lemma. Accordingly we obtain

ξ∗(r) =
Cπ

4

{
1

2πi

∫ −c′+i∞

−c′−i∞

(1/πr)p

p(p + 1) sin(π
2
p)Γ(p + 3

2
)
dp + Res(p = 0,−1)

}
(5.43)

where 1 < c′ < 2. This integral is bounded above by

∣∣∣∣
1

2πi

∫ −c′+i∞

−c′−i∞

(1/πr)p

p(p + 1) sin(π
2
p)Γ(p + 3

2
)
dp

∣∣∣∣ ≤ D(πr)c′ (5.44)

where D is an O(1) constant. Evaluating the residues at the double pole and single pole at

p = 0,−1 leads to the following asymptotic expansion, valid as r → 0,

ξ∗(r) =
Cπ

4

{
2

πΓ(3
2
)

(
log(

1

πr
)− 1− Γ′(3

2
)

Γ(3
2
)

)}
+ o(r). (5.45)

We can see this expression of ξ∗ is valid for small r from the Table (5.3).
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Table 5.3. Table of ξ∗ as r → 0

r = 10−2 r = 10−3 r = 10−4 r = 10−10 r = 10−100

ξ∗ 0, 7794213341 1, 505288349 2, 23751709 6, 635052144 72, 59925604

Figure 5.1. The function ξ∗ as r →∞

Recalling that the physical free-surface elevation was ξ2 = ξ∗ + (1/π)(log r + λ),

we can eliminate the logarithmic term by the choice C = 1/
√

π. Thus we get the form of

free surface ξ∗(r) for small r

ξ2 =
1

π

{
log(− log t) + log(

1

4
)− 1− Γ′(3

2
)

Γ(3
2
)

+
π2r

4

}
+ o(r), (5.46)

and the form of free surface ξ∗(r) for large r

ξ2 =
1

π

{
log r + log(− log t) + log(

π

4
)

}
− 1

2
√

π

∞∑
n=1

(−1)n(1/πr)2n

2n(2n + 1)Γ(2n + 3
2
)
. (5.47)

The solution is found to contain no singularities, so that only two asymptotic regions

are necessary and confirms our choice of solution of the leading order problem. The
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correction to the leading order free-surface elevation, ξ2(Y ) can be written as

ξ2(Y ) =
1

π
(log Y + λ) +

√
π

4

1

2πi

∫ c+i∞

c−i∞

(1/πY )p

p(1 + p)sin(π
2
p)Γ(p + 3

2
)
dp (5.48)

with 0 < c < 2. The integral appearing in (5.48) is of O(1/Y 2) as Y →∞ so that ξ2(Y )

matches the outer solution as Y →∞ satisfactorily as we see from the Table (5.4).

Table 5.4. Comparison of the solutions of ξ(y, t) near intersection point

Outer Solution Inner Solution
y = −0.4 −0.000343406 −0.000383189
y = −0.6 −0.000572539 −0.00058969
y = −0.8 −0.000938495 −0.000942706
y = −0.9 −0.00129468 −0.00129572
y = −0.99 −0.00246841 −0.00246781
y = −0.999 −0.00364112 −0.00358329
y = −0.9999 −0.00481382 −0.003893
y = −0.99991 −0, 00486748 −0.0038951
y = −0.99992 −0.00492746 −0.0038974
y = −0.99993 −0.00499547 −0.0039002
y = −0.99994 −0.00507398 −0.00390249
y = −0.99995 −0.00516683 −0.00390493
y = −0.99996 −0.00528048 −0.00390739
y = −0.99997 −0.00542699 +0.8004156
y = −0.99998 −0.0056335 1.06512× 109

And as Y → 0 we can show that

ξ2(Y ) =
1

π

{
log(− log t) + log(

1

4
)− 1− Γ′(3

2
)

Γ(3
2
)

+
π2Y

4

}
+ o(Y ), (5.49)

Equation (5.49) gives the free-surface in a linear manner.

By using the inner solutions of ξ, we have the following graph. Figure 5.2 is

drawn by using inner solution of ξ as Y → ∞ between (−0.995,−0.99997) and in-

ner solution of ξ as Y → 0 between (−0.99997,−1) for t = 0.05366531459995, t =

0.0491934955049954, t = 0.0447213595499958 respectively.
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Figure 5.2. The function ξ in inner region
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CHAPTER 6

CONCLUSION

In this work asymptotic solution of the two-dimensional dam-break problem was

studied. We derived the leading-order asymptotic solution of the two-dimensional dam-

break problem by the same methodology of the paper King & Needham (1994) and get

the same solution as Korobkin & Yilmaz (2009).

In the first part, starting from mathematical formulation of the dam-break problem,

the leading-order dam-break problem is solved and the singularity near the intersection

(corner) point is analyzed. This introduced the necessity of the inner solution. The be-

havior of the solution (outer solution) near the intersection point analyzed in order to

construct an inner region and thereby an inner solution.

In the second part, the dimensions of the inner region are specified appropriately

which reveals a leading-order and correction to the leading order in the inner region.

The exact solution to the leading-order inner region problem was derived by using the

corresponding asymptotic matching conditions of the outer solution. Using an integral

transform method, the correction to the leading order is obtained in two form which valid

for small r and large r.

Finally, we compare the outer solution and the inner solution for large r of the free-

surface ξ , such that they matche on a small part of the neighbourhood of the intersection

point as we see from table (5.4). We sketched the graph of the free-surface near the

intersection point for t = 0.05366531459995 (see Figure 6.1).

Figure 6.1. The function ξ with inner and outer solutions
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APPENDIX A

SEPARATION OF VARIABLES

A.1. Solution of the Leading Order Outer Problem Using Separation

of Variables

Problem:

∆p0 = 0,

p0,y(x,−1) = −1 , p0(x, 0) = 0 , p0(0, y) = 0

with u1, v1 → 0 and p0 → −y as x →∞.

Solution:

If we replace p0(x, y) = X(x)Y (y) into equation 4p0 = 0 and dividing X(x)Y (y) we

get,

Xxx

X
+

Yyy

Y
= 0

or equivalently

Xxx

X
= −Yyy

Y
= λ2 for some constant λ ≥ 0

which means

Xxx(x)− λ2Xx = 0, (A.1)

Yyy(y) + λ2Yy = 0. (A.2)

From the solution of equations (A.1) and (A.2) we get,

X(x) = c1e
λx + c2e

−λx, (A.3)

Y (y) = c3y + c4 sin(λy) (A.4)
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or equivalently

p0(x, y) = c5 sin(λy)eλx + c6 sin(λy)e−λx for λ > 0. (A.5)

Applying the boundary condition at infinity, we get c5 = 0, then

p0(x, y) = c3y + c6 sin(λy)e−λx for λ ≥ 0. (A.6)

Applying the boundary condition at y = −1, we get c3 = −1 and λ = (2n + 1)π
2

for

n = 0, 1, . . . Similarly if the boundary condition at x = 0 is applied to the equation (A.6),

we get c6 =
8(−1)n

(2n + 1)2
π2 for n = 0, 1, . . . which gives the series solution of the above

boundary value problem.

p0(x, y) = −y +
∞∑

n=0

8(−1)n

(2n + 1)2π2
sin

(
(2n + 1)

π

2
y

)
e−(2n+1)π

2
x . (A.7)
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APPENDIX B

SUMMATION OF SERIES

B.1. Useful Identities for the Summation

The below identities are useful on the steps of the exact summation of the series:

• tan−1(ix) = i tanh−1(x) ,

• tanh−1(x) =
1

2
log

(
1 + x

1− x

)
,

•
∣∣∣∣
1− eix

1 + eix

∣∣∣∣ = tan(
x

2
) .

B.2. Summation of the Leading Order Solutions of Free Surfaces in

Outer Region

Since η2(x) = 1
2
(−∂P0

∂y
(x, 0)− 1);

η2(x) = − 2

π

∞∑
n=0

(−1)n(e−
π
2
x)2n+1

2n + 1
,

η2(x) = − 2

π
tan−1(e−

π
2
x) .
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Since ξ2(y) = −1
2

∂P0

∂x
(0, y);

ξ2(y) =
2

π
Im

∞∑
n=0

(−1)n(ei π
2
y)2n+1

2n + 1
,

=
2

π
Im tan−1(ei π

2
y) ,

=
2

π
Im[−i tanh−1(ei π

2
(1+y))] ,

=
2

π
Im[− i

2
log

(
1 + ei π

2
(1+y)

1− ei π
2
(1+y)

)
] ,

=
2

π
Im[

i

2
log

(
1− ei π

2
(1+y)

1 + ei π
2
(1+y)

)
] ,

=
2

π

1

2
log

∣∣∣∣
1− ei π

2
(1+y)

1 + ei π
2
(1+y)

)

∣∣∣∣ ,

=
1

π
log

(
tan

π

4
(1 + y)

)
.
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APPENDIX C

MELLIN TRANSFORM

C.1. Derivation of the Mellin Transform from Standard Fourier

Transform

The standard Fourier transform of a function g(ξ) is defined by

F [g(ξ)] = G(α) =
1√
2π

∫ ∞

ξ=−∞
e−iαξg(ξ)dξ (C.1)

and the inverse Fourier transform of G(α) is defined by

F−1[G(α)] = g(ξ) =
1√
2π

∫ ∞

α=−∞
eiαξG(α)dα. (C.2)

If we do the substitutions ξ = log x and α = ip − ic (p is a complex number and c is a

real number) to the equations (C.1) and (C.2) we get

G(α) = G(ip− ic) =
1√
2π

∫ ∞

x=0

xp−c−1g(log x)dx, (C.3)

g(ξ) = g(log x) =
1√
2πi

∫ c+iα

p=c−iα

xc−pG(ip− ic)dp. (C.4)

Moreover if we do the substitutions
1√
2π

x−cg(log x) = f(x) and G(ip − ic) = f̂(p) to

the equations (C.3) and (C.4) we get the definition of the Mellin transform and the inverse

Mellin transform

f̂(p) =

∫ ∞

x=0

xp−1f(x)dx, (C.5)

f(x) =
1

2πi

∫ c+iα

p=c−iα

x−pf̂(p)dp. (C.6)
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We can also denote the Mellin transform of the function f(x) as µ[f(x)] and the inverse

Mellin transform of the function f̂(p) as µ−1[f̂(p)].

C.2. Mellin Transform of the Equation ∆φ∗ = − 4
6π2∆ log(1 + r2)

By using the definition of Laplace operator in polar form

∆φ∗ =
∂2

∂r2
φ∗ +

1

r

∂

∂r
φ∗ +

1

r2

∂2

∂θ2
φ∗.

Applying Mellin transform to this three terms, we have

∫ ∞

0

rp−1 ∂2

∂r2
φ∗dr

︸ ︷︷ ︸
+

∫ ∞

0

rp−1 1

r

∂

∂r
φ∗dr

︸ ︷︷ ︸
+

∫ ∞

0

rp−1 1

r2

∂2

∂θ2
φ∗dr

︸ ︷︷ ︸
I1 I2 I3

Using ’integration by parts’,

I1 = lima→∞[rp−1 ∂

∂r
φ∗]

∣∣a
r=0

−
∫ ∞

0

(p− 1)rp−2 ∂

∂r
φ∗dr

= −(p− 1)

(
lima→∞[rp−2 ∂

∂r
φ∗]

∣∣a
r=0

−
∫ ∞

0

(p− 2)rp−3φ∗dr

)

= (p− 1)(p− 2)

∫ ∞

0

rp−3φ∗dr

= (p− 1)(p− 2)φ̂(p− 2, 0).

Similarly

I2 = lima→∞[rp−2φ∗]
∣∣a
r=0

−
∫ ∞

0

(p− 2)rp−3φ∗dr

= −(p− 2)

∫ ∞

0

rp−3φ∗dr

= −(p− 2)φ̂(p− 2, 0)

and
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I3 =

∫ ∞

0

rp−3 ∂2

∂θ2
φ∗dr

=
∂2

∂θ2

∫ ∞

0

rp−3φ∗dr

=
∂2

∂θ2
φ̂(p− 2, 0)

Thus the left-hand side of the equation ∆φ∗ = − 4
6π2∆ log(1 + r2) becomes

{
∂2

∂θ2
+ (p− 2)2

}
φ̂(p− 2, 0)

Apply Mellin transform to the right-hand side,

− 2

3π2

∫ ∞

0

rp−1 4

(1 + r2)2
dr = −(p− 2)π csc(

π

2
p)

for 0 < Re(p) < 4. Hence, Mellin transform of the equation ∆φ∗ = − 4
6π2∆ log(1 + r2)

gives

{
∂2

∂θ2
+ (p− 2)2

}
φ̂(p− 2, 0) =

2(p− 2)

3π sin(π
2
p)

.
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APPENDIX D

DIFFERENCE EQUATIONS

Definition D.1 The general form of the linear difference equation of first order is

yk+1 − pkyk = qk , (D.1)

where pk and qk are given functions. If qk is identically zero, then the difference equation

becomes homogeneous, otherwise inhomogeneous.

The general solution of the equation (D.1) consists of the sum of the solution to the ho-

mogeneous equation and any particular solution of the inhomogeneous equation.

D.1. Solution of the yk+1 = R(k)yk Type Difference Equations

Let Rk be a rational function of k. It can be represented as follows:

Rk =
C(k − α1)(k − α2) · · · (k − αn)

(k − β1)(k − β2) · · · (k − βm)
,

where C and the α’s and β’s are constants. Since

Γ(k + 1− αi) = (k − αi)Γ(k − αi) ,

it is clear that the equation

yk+1 = R(k)yk

has the solution

yk = ACk Γ(k − α1)Γ(k − α2) · · ·Γ(k − αn)

Γ(k − β1)Γ(k − β2) · · ·Γ(k − βm)
,

where A is an arbitrary constant.
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APPENDIX E

GAMMA FUNCTION AND ITS PROPERTIES

E.1. Definition of the Gamma Function

If the real part of the complex number z is positive (Re(z) > 0), the Gamma function can

be defined as

Γ(z) =

∫ ∞

0

tz−1e−tdt.

E.2. Stirling’s Approximation to the Gamma Function for Large z

Γ(z) ∼ e−zzz− 1
2 (2π)

1
2

(
1 +

1

12z
+

1

288z2
− 139

51840z3
− 571

2488320z4
+ · · ·

)

as z →∞ in |argz| < π.
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APPENDIX F

RESIDUE THEOREM

F.1. Residue Theorem

If a function f has only a finite number of singular points interior to a given simple

closed contour C, then they must be isolated. The following theorem is a precise statement

of the fact that if, moreover, f is analytic on C and C is described in the positive sense,

then the value of the integral of f around C is 2πi times the sum of the residues at those

singular points.

Theorem F.1 If C is a positively oriented simple closed contour within and on which a

function is analytic except for a finite number of singular points zk (k = 1, 2, . . . , n)

interior to C, then

∫

C
f(z)dz = 2πi

n∑

k=1

Resz=zk
f(z). (F.1)

F.2. Evaluation of the Complex Integral (5.41) on the Semi-Circle

Figure F.1. The semi-circle contour.

By using the Residue theorem; integral over the semi-circle in the negative orientation is

equals to −2πi times sum of the residues at poles inside the semi-circle. We can easily
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see that the integral over CR → 0 as R →∞ such that

∣∣∣∣
∫

CR

(1/πr)p

p(p + 1) sin π
2
pΓ(p + 3

2
)
dp

∣∣∣∣ (F.2)

Let p = Reiθ, −π/2 < θ < π/2, (F.2) becomes;

∣∣∣∣
∫

CR

(1/πr)Reiθ

Reiθ(Reiθ + 1) sin π
2
ReiθΓ(Reiθ + 3

2
)
d(Reiθ)

∣∣∣∣

(by using Stirling’s approximation of Gamma function for large p)

≤ πR(1/πr)R cos θ

R(1 + Reiθ)e−(R cos θ+ 3
2
)(Reiθ + 3

2
)

≤ πe
3
2 (e/πr)R cos θ

(1 + Reiθ)e(R cos θ+1) log(Reiθ+ 3
2 )

which tends to zero as R →∞.

For the integration over IR, there is infinitely many poles at p = 2n, n = 0, 1, 2, . . .

from sine function and poles at n = 0,−1. We calculate the residues at poles p = 2n,

n = 1, 2, . . . which are in our semi-circle. Hence we get

∫ c+i∞

c−i∞

(1/πr)p

p(p + 1) sin π
2
pΓ(p + 3

2
)
dp

=

∫

IR

(1/πr)p

p(p + 1) sin π
2
pΓ(p + 3

2
)
dp

= −2πi
2

π

∞∑
n=1

(−1)n(1/πr)2n

2n(2n + 1)Γ(2n + 3
2
)
.
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F.3. Evaluation of the Complex Integral (5.41) on the Rectangular

Region

Figure F.2. The rectangular contour.

Integral over L1 and L2 tends to zero. Thus our integral (over L3) equals to {integral over

L4}+2πi{Res(p = 0,−1)}. Since integral over L4 is bounded by D(πr)c′ , we have

∫ c+i∞

c−i∞

(1/πr)p

p(p + 1) sin π
2
pΓ(p + 3

2
)
dp = 2πiRes(p = 0,−1) + o(r).

Applying two times ’l’hospital rule’ we get the residue at the double pole p = 0,

Res(p = 0) =
2

πΓ(3
2
)

{
log(

1

πr
)− 1− Γ′(3

2
)

Γ(3
2
)

}

and the residue at the single pole p = −1,

Res(p = −1) =
πr

Γ(1
2
)

Hence

∫ c+i∞

c−i∞

(1/πr)p

p(p + 1) sin π
2
pΓ(p + 3

2
)
dp = 2πi

2

πΓ(3
2
)

{
log(

1

πr
)− 1− Γ′(3

2
)

Γ(3
2
)

+
π2r

4

}
+ o(r).
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