
 

 

 

  

 

 

SEPARATION OF STIMULUS-SPECIFIC 

PATTERNS IN  

ELECTROENCEPHALOGRAPHY DATA 

USING QUASI-SUPERVISED LEARNING 
 

 

 

 

 

 

A Thesis Submitted to 

the Graduate School of Engineering and Sciences of 

İzmir Institute of Technology 

in Partial Fulfillment of the Requirements for the Degree of 
 

MASTER OF SCIENCE 

 

in Electronics and Communication Engineering 

 

 

 

by 

Başak Esin KÖKTÜRK 

 

 

 

 

 

 

 

December 2011 

İZMİR 
 

 

 

 

 

 

 

 

 

 



 

 

We approve the thesis of Başak Esin KÖKTÜRK 

 

 

 

 

    

______________________________ 

 

Assoc. Prof. Dr. Bilge KARAÇALI 

Supervisor 

 

 

 

 

 

 

______________________________ 

 

Prof. Dr. Murat ÖZGÖREN 

Committee Member 

 

 

 

 

 

 

______________________________ 

   

Assist. Prof. Dr. Mustafa Aziz ALTINKAYA 

Committee Member 

 

 

 

 

 

 

 

5 December 2011 

 

 

   

 

 

______________________________  _______________________ 
  

Prof. Dr. Ferit Acar SAVACI              Prof. Dr. R. Tuğrul SENGER 

Head of the Department of               Dean of the Graduate School of 

Electrical and Electronics Engineering                          Engineering and Sciences 



 

 

ACKNOWLEDGEMENTS 

 

 I would like to express my gratitude to my advisor Assoc. Prof. Dr. Bilge 

Karaçalı not only for his guidance but also for his support, trust and recommendations 

and encouragement throughout my thesis study.  

 I also appreciate to Prof. Dr. Murat Özgören for his guidance and 

recommendations. 

  I would also like to express my gratitude to my committee members, Assist. 

Prof. Dr. Mustafa Aziz Altınkaya, Assoc. Prof. Dr. Mehmet Engin and Assist. Prof. Dr.  

Zübeyir Ünlü for their guidance and contributions.  

 I am grateful to my lab mates Devrim Önder and Tunca Doğan for their patient 

and helps to me. They always deal with my thesis and offer suggestions. 

  I thank to all my friends especially to Kağan Kılıçaslan and Dilek Çetin for 

their unfailing encouragement, neverending friendship and support. 

 I thank my parents their endless encouragement and loving support during my 

whole life. 

 My warmest thanks go to Onur Parlak on whose shoulder I can cry. 

 

 

 

 

 

  

 



iv 

 

ABSTRACT 

 

SEPARATION OF STIMULUS-SPECIFIC PATTERNS IN 

ELECTROENCEPHALOGRAPHY DATA USING  

QUASI-SUPERVISED LEARNING 

   

  In this study separation of the electroencephalography data recorded under 

different visual stimuli is investigated using the quasi-supervised learning algorithm. 

The quasi-supervised learning algorithm estimates the posterior probabilities associated 

with the different stimuli, thus identifying the EEG data samples that are exclusively 

specific to their respective stimuli directly and automatically from the data. The data 

used in this study contains 32 channels EEG recording under six different visual stimuli 

in random successive order. In our study, we have first constructed EEG profiles to 

represent instantaneous brain activity from the EEG data by various combinations of 

independent component analysis and the wavelet transform following data pre-

processing. Then, we have applied the binary and M-ary quasi-supervised learning to 

identify condition-specific EEG profiles in different comparison scenarios. The results 

reveal that the quasi-supervised learning algorithm is successful in capturing the 

distinction between the samples. In addition, feature extraction using independent 

component analysis increased the performance of the quasi-supervised learning and the 

wavelet decomposition revealed the different frequency bands of the features, making 

more explicit the separation of the samples. The best results we obtained by combining 

the wavelet decomposition and the independent component analysis before the quasi-

supervised learning algorithm. 
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ÖZET 

 

ELECTROENSEFALOGRAM VERİLERİNDE UYARANA BAĞLI 

ÖRÜNTÜLERİN YARIGÜDÜMLÜ ÖĞRENME İLE AYRIŞTIRILMASI 

 

Bu çalışmada, değişik görüntü uyaranları altında kaydedilmiş 

elektroensefalografi verilerinin yarıgüdümlü öğrenme yöntemi ile ayrıştırılması ele 

alınmıştır. Yarı-güdümlü öğrenme yöntemi değişik uyaranlara bağımlı olasılıkları 

tahmin etmekte böylelikle de EEG veri örneklerinin otomatik olarak ait oldukları 

sınıfları belirlemektedir. Bu çalışmada ardışık olarak rastgele sıralanmış altı farklı 

görüntü uyaranı altında çekilmiş 32 kanallı EEG verisi kullanılmıştır. Çalışmamızda 

öncelikle anlık beyin aktivitelerine karşılık gelen EEG verileri bağımsız bileşen analizi 

ve dalgacık dönüşümünün değişik kombinasyonları ile ön işlemden geçirilmiştir. 

Ardından ikili ve çoklu yarı-güdümlü öğrenme yöntemi uygulanarak karşılaştırma 

senaryoları ile koşula özgü EEG profilleri tanımlanmıştır. Elde ettiğimiz sonuçlar 

göstermektedir ki, yarı güdümlü öğrenme algoritması örnekler arasındaki ayırımı 

yakalamakta ve anormalliklerin tesbitinde başarılıdır. Bağımsız bileşen analizinin yarı-

güdümlü öğrenme yönteminin performansını arttırmada başarılı olmasının yanı sıra 

dalgacık dönüşümü ile değişik frekans bantlarının  belirlenmesi örnekler arası ayrımı 

belirginleştirir. En iyi sonuçlar yarı-güdümlü öğrenme yönteminden önce bağımsız 

bileşen analizi ve dalgacık dönüşümünün kombine edilerek uygulanması ile elde edilir. 
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CHAPTER 1 

 

INTRODUCTION 

 

Brain is the center of the nervous system in all vertebrate animals and most of 

the invertebrate animals. It has a very complex structure and it is the most important 

organ. It contains 100 billion nerve cells and they produce electrical activity. This 

electrical activity is important to understand the brain function and the associated 

signals can be recorded for monitoring by neuroimaging methods such as 

electroencephalography (EEG) which records electrical activity, functional magnetic 

resonance (fMRI) which measures changes in cerebral blood oxygenation levels [1], 

magnetoencephalography (MEG) which measures the magnetic fields [2] and so on. 

Brain imaging methods provide opportunity to study the brain function.  

The electrical activity of the brain was known in the early nineteenth century, 

recorded first in 1928 by Hans Berger. This recording is the primitive 

electroencephalography.  

In recent years, development of EEG technology increased its ability to read 

brain activity data from the head simultaneously. It has some disadvantages in the 

spatial resolution but the temporal solution of the EEG is superior, since EEG is the 

record of time series electrical activity signals that are captured by many electrodes. 

EEG is fast and it can record complex activity in the brain after a stimulus onset. This 

feature makes it popular for brain-computer interface applications as well as in medical 

research on various diseases such as epilepsy, Parkinson and Alzheimer’s diseases [3-

5].  
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Figure 1. Conventional EEG representation. Measured voltages (in µV) are shown 

against time (in seconds) for seven electrodes (P7, P8, T7, T8, C3, C4, Cz) 

 

 

According to the Web of Science Database (data collected in 24.10.2011), the 

numbers of publications with EEG-related topics were as follows: 

 

 

Table 1.  Numbers of publications with EEG-related topics 

Keyword Hits/Publications 

EEG 54.279 

Brain activity pattern 16.736 

EEG Classification 3.091 

Brain-Computer Interface 2.703 

 

 

The numbers show that; understanding brain function, especially using EEG, is a 

very popular research area. EEG data classification and the extraction of brain activity 

patterns address detection of diseases such as alcoholism, schizophrenia and the 

Alzheimer’s Disease. For instance, in alcoholic patients, the distinctions between 
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stimuli-specific brain activity patterns or samples of attention task problems are 

difficult. They exhibit a higher overlap between stimuli or tasks than normal subjects 

[6]. EEG research is important not only in detection of diseases but also in brain-

computer interface applications. In physically disabled subjects, the brain function is 

intact but they are unable to carry out physical tasks using muscular activity. Brain-

computer interface systems aim to provide them the ability to give commands to a 

computer directly through EEG. Since the brain functions are complex and contain 

many background information, classification of EEG data is challenging.  

There are many classification methods that are used in brain-computer interface 

applications [7]. In EEG classification problems, generally supervised learning 

algorithms are used and they bring their own set of challenges. In supervised learning 

algorithms, before the algorithm is applied to the data, many preprocessing steps are 

needed. For example; in a stimuli-specific brain activity pattern classification problem, 

an expert must determine the stimuli-specific activity patterns’ characteristic regions 

and manually extract the successful trials from the data as a training dataset for the 

classification algorithm. This preprocessing entails manual subtraction of data and is 

subject to interpretation differences by different experts. 

In this study, we have applied an analytical method to understand the EEG 

behavior and extract the information about distinctions between samples according to a 

visual stimulus. This analytical method, Quasi-Supervised Learning Algorithm [6] , 

estimates the posterior probabilities of each sample according to a stimulus. It’s a new 

formulation for pattern recognition problems and we used this method in conjunction 

with the independent component analysis (ICA) [8] and the wavelet transform (WT) [9]. 

Independent component analysis and wavelet transform are used commonly in EEG 

classification problems to enhance different feature characteristics [10]. We used the 

independent component analysis and the wavelet transform in a similar fashion to 

construct profile vectors on instantaneous EEG data, and employed the quasi-supervised 

learning algorithm to identify the profiles that are specific to different visual stimuli. 

The remainder of this thesis is organized as follows. Chapter 2 provides 

background information on electroencephalography, the independent component 

analysis and the wavelet transformation. Chapter 3 provides the original quasi-

supervised learning algorithm along with the M-ary quasi-supervised learning 

algorithm. In Chapter 4, the data used in this thesis is described along with the 

experiment setup. The results of the experiments can be found in Chapter 5. Chapter 6  
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provides a concluding summary of the study and closes with potential directions for 

future research. 
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CHAPTER 2 

 

BACKGROUND 

 

 In this chapter, background information on electroencephalography along with 

independent component analysis and the wavelet transform commonly used in EEG 

data analysis is represented. The first section introduces the electrical activity in the 

brain, the history of the electroencephalography, recording techniques of the 

electroencephalography and the event-related potentials. In the second section, 

independent component analysis algorithm is clarified, followed by the wavelet 

transformation and wavelet decomposition in the third section.  

 

2.1. Electroencephalogram 

 

The word ‘electroencephalogram’ (EEG) originally denoted the graphs that 

show the signals obtained by currents that flow during excited states of the synapses 

[11]. In other words, EEG refers to the recording of the electrical activity among the 

neurons in the brain. Over the years, the EEG has come to be used to refer to the 

recorded signal itself. 

 

2.1.1. The Brain Structure 

 

The brain consists of about 10
10 

nerve cells. Nerve cells respond to sensory 

stimuli and transmit information. In the human brain, each nerve cell is connected 

approximately to 10.000 other nerve cells [12]. Communication among these nerve cells 

or neurons is provided through electrical activity between dendrites and axons. 

Dendrites are specialized for receiving inputs from other neurons. Via the axon, 

impulses are sent to other neurons’ dendrites. There is a special interface among two 

neurons called a synapse. The electrical activity and communication among neurons 

occurs in the synapses. When neurons are activated, synaptic currents are produced. 
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Figure 2. Electrical Signal Production
1
 

 

 

The information is transmitted between neurons via action potentials (APs). APs 

are caused by transfer of ions across the membrane along the axon. APs can be created 

in different types of stimuli; such as chemical, light, pressure, touch etc. To trigger an 

AP, a stimulus must be applied higher than the activation threshold. When stimuli 

strength exceeds the threshold, an AP appears and travels along the nerve. 

 

The formation process of an AP involves several steps (see in Fig-3) [12] 

1- The spike of an AP is caused by the opening of Na
+ 

channels.  

2- Up to 20 mV of membrane potential the Na
+ 

ions flow into the cell 

membrane. This process is called membrane depolarization.  

3- When the membrane potential exceeds the +30 mV, Na
+
 channels close and 

K
+ 

channels open. 

4- The membrane begins to repolarize back towards the rest potential due to the 

open K
+
 channels. 

5- Repolarization process continues until -90 mV. This level is called as 

hyperpolarization. In hyperpolarization, generation of a new action potential 

is prevented.  

                                                 
1
 Available on : http://www.culverco.com/sse/images/body/1-4ci.gif 

http://www.culverco.com/sse/images/body/1-4ci.gif
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6- After hyperpolarization, Na+/K+ ions comes to equilibrium and the membrane 

potential returns to the resting state -70 mV. 

 

 

 

Figure 3. Change of the membrane potential after an stimuli onset 

(Source: Charand 2011) 

 

 

One neuron can generate a small amount of electrical activity and cannot be 

measured from the scalp. When a large group of neurons activate simultaneously, 

however, they can generate enough electrical activity to be detected by electrodes 

positioned on the scalp. These activities generate the EEG signal. 

 

2.1.1.1. Brain Rhythms 

 

EEG signal is a combination of the rhythmic activities in the brain with different 

characteristic frequency bands. The limits between these frequency bands, however, are 

not strict. They can change with age or due to the effects of drugs [14]. The signal has a 

very broad frequency range but the main clinical and physiologic activities are observed 

between 0.5 Hz – 30 Hz. Some frequency–based categories of the EEG signal are 

described in Table 2. 
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Table 2. EEG frequency bands  

(Source: Lofhede 2009) 

 

Name Frequency 

Limits 

Location Properties 

δ (delta) 0.5-4 Hz Widespread Occurs in infants and during deep 

sleep or anesthesia. 

θ (theta) 4-8 Hz Mainly in 

parietal and 

temporal lobes 

Most prominent in small children 

and during drowsiness or sleep 

α (alpha) 8-13 Hz Rear half of 

the head 

Occur during awake and resting 

state, high amplitude when eyes 

closed.  

β (beta) Above 13 Hz Most common 

in frontal and 

central regions 

Often divided in two sub-bands, of 

which the higher frequencies 

appear during tension and intense 

activation of the CNS and the 

lower are attenuated during mental 

activity. 

 

 

Delta (δ) waves occur in the range between 0.5 Hz – 4 Hz and can be seen in 

infants during deep sleep or under anesthesia. Delta waves can be confused easily with 

artefacts caused by muscular activity. Theta waves lie between 4 Hz – 8 Hz and they 

occur in the parietal and temporal lobes of the brain. It is dominated in small children, 

during drowsiness or sleep and also seen in meditation. Theta waves play an important 

role in childhood, if the theta waves are dominant in the awake adult, there is likely an 

abnormality caused by  various pathological problems [12]. The principal resting 

rhythm of the brain is the alpha rhythm. It lies between 8 Hz – 13 Hz  and is common in 

wakeful, resting adults. The EEG power in the alpha waves range is related to cognitive 

performance and brain maturity [7]. The alpha waves exhibit high amplitudes when the 

eyes are closed; when the subject opens the eyes or receive an alert; the amplitude of the 

alpha waves diminishes. Beta waves are the electrical activity of the brain at a 

frequency than 13 Hz and are common in the frontal and the central regions of the scalp. 

Generally, they are seen in the waking and active thinking periods. The beta waves are 

predominant while solving a problem or during an attention requiring task. When a 

person is in panic, the amplitude of the beta waves increase. 
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2.1.2. History of the Electroencephalogram 

 
A German neurologist, Hans Berger (1873-1941), became interested in the 

electrical activity in the brain when he was studying temperature changes in the dog 

cortex [15]. He used radio equipment to amplify the brain electrical activity and 

recorded it on graph paper in 1924. His first report in 1929 included the alpha rhythm 

which is the major component of the electroencephalography signal. 

During the 1930’s, the first EEG recording of sleep was also taken by Berger. 

The first biological amplifier was designed by Jan Friedrich Toennies and in 1932, a 

differential amplifier was produced by the Rockefeller foundation. At the same time 

frame, another research group in Berlin led by Korn Müller, provided more precise EEG 

signal recording using this amplifier. They succeed in multi-channel recording. 

Multichannel recording using a large number of electrodes allows covering a wider 

brain region. The first epileptic spikes were observed by Fisher and Löwenbach in 1934 

[12]. 

 

2.1.3. Usage of the Electroencephalogram 

 

Understanding the brain is difficult because of its complexity and that of the 

processes that are controlled by it. The cheapest and the most painless method of 

monitoring the brain activity is EEG. This monitoring capability creates a visualization 

opportunity to help disabled individuals. This area is investigated by the growing brain-

computer interfacing field. 

EEG is also used in the evaluation of the brain disorders. Most commonly, it has 

been used to show the type and the location of the activity in the brain during critical 

events such as a seizure, or in confusion, under coma, tumors and long-term difficulties 

with thinking and memory. It is also an effective method for early detection of the 

Alzheimer’s Disease [16, 17]. Since 1930s, EEG is the main technique for detecting 

epilepsy [18]. 
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2.1.4. Recording of the Electroencephalogram 

 

In the clinical practice, several channels of EEG are recorded simultaneously 

from various locations on the scalp to analyze activities of the different brain regions 

[19]. To record the EEG signal, a conductive gel is applied on the scalp followed by the 

placement of the electrodes. Generally, to measure a voltage signal, at least two 

electrodes have to be used: one of them as the active electrode and the other as the 

ground. But EEG signals are measured with differential amplifiers where time 

differences between two electrodes are amplified and the ground electrode is held 

separate. High quality amplifiers must be used since the brain potentials are very small 

and the interference caused by the electrical equipment in the vicinity can disrupt the 

measured brain signals. 

The electrodes are often placed according to the 10-20 international electrode 

placement system with 21 electrodes (illustrated in Fig-4) recommended by The 

International Federation of Societies for Electroencephalography and Clinical 

Neurophysiology [19]. In this placement system, the “10-20” term defines the electrode 

locations by dividing the head into 10% and %20 intervals from the nasion to the inion. 

First letter of the electrode name indicates the position of the electrode. The letter F is 

used for the frontal lobe, C for the central lobe, P for the parietal lobe, O for the 

occipital and T for the temporal lobe. For the left hemisphere, odd numbers are used 

while the even numbers are used for the right hemisphere. These numbers increase with 

increased distance from the central lobe and Z denotes the midline electrodes [11]. 

 



11 

 

 

 

 

Figure 4. A - B. The international 10-20 electrode placement system C.  Extension of  

standard positions  over 70 electrodes 
2
 

  

                                                 
2
 Available on: 

http://www.bci2000.org/wiki/index.php/User_Tutorial:EEG_Measurement_Setup 

http://www.bci2000.org/wiki/index.php/User_Tutorial:EEG_Measurement_Setup
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2.1.5. Event Related Potentials 

 

Event-related potentials (ERPs) are the brain’s response under any internal or 

external stimuli (visual, auditory, etc.) or thought. The first ERP recording from an 

awake individual was taken in 1935. The first study on ERP waveforms was published 

in 1962 by Galambos et al [9]. After 1964, the modern era of the ERP studies began 

with Walter et al. who found the first cognitive ERP component that explained the 

contingent negative variations component of ERP [15]. This proved that consistent 

patterns could be obtained in spite of the large background data and noise. Another 

important discovery was the finding of the P300 component by Sutton et al. in 1965 

[16]. According to their results, the unpredictable stimuli create large amplitude 

responses but the predictable stimuli responses were smaller. The P300 signal can be 

affected by various factors such as the attention level, task difficulty, subject age, 

stimuli occurrence probability and so on. 

ERPs have been used in the literature to understand the brain “language”. Under 

identical stimuli, the same brain responses are expected. But when a stimulus is applied, 

the brain not only focuses the stimulus but it thinks and works in the background, 

causing differing brain responses. To make matters worse, the ERPs’ amplitudes are 

typically much smaller than the background EEG data. Furthermore, the ERP changes 

according to the changing  stimuli, and for different stimuli different ERP signals are 

generated [2].   

The ERPs can be present in either P300 or N100 and N400. The digits refer to 

time in miliseconds after the stimulus onset and the letters P and N indicate the signal 

amplitude; positive or negative. After 100ms following the stimulus onset, the ERP 

signal begins to form and makes a peak at around 300ms, called the P300. In Figure 5, 

ERP is shown after a stimulus onset. 
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Figure 5. The ERP signal after stimulus onset
3
 

 

2.2. Independent Component Analysis 

 

One of the main problems in multivariate data is finding a suitable 

representation of the random vectors. This problem can be addressed by a variety of 

transformations like the principal component analysis, factor analysis and the projection 

pursuit. Independent Component Analysis (ICA) is an alternative method that finds a 

refined linear representation of non-Gaussian data. The components identified by the 

independent component analysis are required to be as statistically independent as 

possible. 

 The technical challenge behind independent component analysis can be 

illustrated by the cocktail party problem. Consider two people speaking simultaneously 

in a room and two microphones recording the sound signals from different locations. 

The recordings can be defined as the time signals       and      ; and each of these 

recordings correspond to a weighted mixture of the two speakers. These mixed speech 

signals can be expressed as  

 

               +         (2.1) 

                                         (2.2) 

                                                 
3
 Adopted from : http://en.wikipedia.org/wiki/File:ComponentsofERP.svg 

http://en.wikipedia.org/wiki/File:ComponentsofERP.svg
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where                 denote the mixture rate parameters according to distance. The 

goal of the independent component analysis task is to recover the source signals       

and      , the speech signals of speakers; using only the recorded signals       and 

     .      

 EEG recordings resemble the cocktail party problem as the data consists of 

electric potentials recorded from different locations on the scalp corresponding to 

weighted mixtures of unknown sources. The number of electrodes, however, is smaller 

than the number of potential sources (neurons), complicating the analysis. The electric 

signals propagate in the brain, making the voltage recordings at the electrodes mixed 

signals of the electrical activity in the brain. Independent component analysis can be 

used to find independent source signals from the full record [8]. It can be also used to 

eliminate the time correlation between the different EEG channels and for feature 

extraction [21]. 

Consider   linear mixtures of   independent components, where the observed 

mixtures are denoted by                    . Then, the     observation can be 

expressed as 

 

                                     for             (2.3) 

 

For simplicity, we take each time instance as a sample and drop the time symbol   . In 

this way, we can treat each mixture    and each independent component    as random 

variables; so the Equation 2.3 can be expressed using a matrix notation. 

Let   denote the random vector whose elements are the mixtures            

and   denote the random vector of the sources           . Let also the matrix   be the 

mixture matrix with elements    . Using the matrix notation, the Equation 2.3 can be 

expressed as  

 

      

 

(2.4) 

The ICA problem represents the task of recovering the source signals   give to 

observation vectors  . To this end, ICA assumes the components    to be statistically 

independent, and tries to find source signals that appear as independent from each other 

as possible. 
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Theoretically, two random variables    and    are independent if the 

information about    does not give any information about   , and vice versa. This can 

be expressed by  

 

                       

 

(2.5) 

where          denote the joint probability distribution function (pdf) of    and   , and 

      and       denote the respective marginal distribution functions. 

There are different ways of finding independent components, such as 

maximization of non-Gaussanity, minimization of mutual information, as well as 

maximum likelihood estimation. Since the sum of independent random variables tends 

towards a Gaussian distribution by the Central Limit Theorem, independent components 

can be identified as those that are maximally non-Gaussian. There are several 

approaches to measure non-Gaussianity. Kurtosis is the fourth order moment    of a 

distribution and defined as 

 

          {  }     {  }   

 

(2.6) 

Kurtosis can be described as the degree of peakedness of a distribution [22]. For a 

Gaussian distribution  ,  {  }     {  }   so the kurtosis of a Gaussian distribution 

becomes zero. Thus, for measure the non-Gaussianity, kurtosis must be different than 

zero. It can be positive or negative; if kurtosis is positive, the random variables are 

super-Gaussian. Otherwise, the random variables are called as sub-Gaussian. Kurtosis 

can be very sensitive to outliers. Sometimes it can be depend on only a few observations 

of in the tails of a distribution [23]. Kurtosis is thus not a robust measure of the non-

Gaussianity. 

Negentropy can also be used to measure non-Gaussianity, and it is defined via 

the entropy of a random variable. The Shannon entropy   of a random variable   is 

defined as 

 

       ∑       

 

           

 

(2.7) 
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where    are the possible values of   [24]. The definition of the entropy can be 

generalized for continuous-valued random variables or vectors in the form of a 

differential entropy. The differential entropy      of a random vector   with density 

     is 

 

 
      ∫              (2.8) 

 

Negentropy is known as the negative entropy or syntropy. That negentropy is 

defined as  

 

       (      )       

 

(2.9) 

 

Gaussian variable has the largest entropy among all random variables of equal 

variance is among the fundamental results of information theory [8]. As a result, non-

Gaussianity can be measured using negentropy, since negentropy is zero for a Gaussian 

variable and non-negative for non-Gaussian variables. 

The main disadvantage of negentropy is the computational cost, because the 

estimation of negentropy requires estimating the underlying probability density 

function. 

As an alternative to maximization of non-Gaussianity, the ICA problem can be 

addressed by minimizing the mutual information between the recovered sources. Mutual 

information is a natural measure of the dependency between random variables. It is 

always non-negative, and when the random variables are independent, it is zero. 

The mutual information   between the random variables    where            

is defined using the (differential) entropy as follows: 

 

 
               ∑          

 

   

 (2.10) 

 

Since mutual information is the natural information theoretic measure of the 

independency of a random variable from another, the independent sources can be 

determined by an unknown transformation minimizing the mutual information.  
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Finally, the maximum likelihood strategy to the ICA problem is closely 

connected to infomax principle. Denoting by               
  the separation 

matrix that recovers the independent components, the log-likelihood takes the form 

 

 

   ∑∑     (  
     )            

 

   

 

   

 

 

(2.11) 

where    are the density function of source signal   , and               , are 

the observations. [24]. 

In a close parallel, the infomax principle is based on maximizing the output 

entropy. Consider a neural network with input   whose output form is      
    where 

the    is a non-linear scalar function and    is the weight vector. The infomax principle 

maximizes the output entropy , 

 

          
           

     (2.12) 

 

when the non-linear scalar function of   
    is chosen as the cumulative distribution 

functions matched with the densities    , i.e.            . 

While there exists several algorithms that address the ICA task, one of the most 

well-known is the FastICA algorithm. The FastICA algorithm is based on the 

maximization of a contrast function. It finds a direction vector  , which maximizes 

non-Gaussianity with projection    . Let the function      be the derivative of a non-

quadratic nonlinearity. Valid choices include                  and         

            where the corresponding non-quadratic functions are       

 

  
                 and           ( 

  

 
) with       , though generally taken 

to be 1. 

The FastICA algorithm follows this steps [8]: 

1. Choose an initial weight vector  . 

2. Let     {       }   {       }   

3. Let   
  

|    |
 

4. If not converged, go to step 2. 

Convergence is achieved when the direction of old and new values of   are same. 
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2.3. Wavelet Transform 

 

The wavelet transform decomposes a signal onto a set of basis functions that are 

called wavelets. Wavelets can be used in different applications such as signal analysis 

[25], image processing [26, 27], and data compression [28]. Wavelets are mathematical 

functions that decompose time data into different frequency bands while preserving the 

time information.  This provides advantages beside the traditional Fourier Transform. 

Since the Fourier Transform tends to fail to localize signal discontinuities or spikes in 

time. Wavelets can be used to decompose a signal at various resolutions; this process is 

named as multiresolution signal decomposition [9]. For instance, an EEG signal can be 

considered as a superposition of different components at different scales in different 

times [29]. 

The wavelet transform   of a signal      is defined as the correlation between 

the signal and a wavelet function   as  

 

 
      ∫     

 

√   

 

  

  (
   

 
)   (2.13) 

 

where * denotes the complex conjugation,   is the scaling variable and   represent the 

translation variable of the wavelet. These two variables are associated with the 

frequency and time localization of the wavelet function. 

The expression above can be rewriten by defining the wavelet function as 

 

 
         

 

√   
 (

   

 
) (2.14) 

 

providing 

 

 
     ∫       

        
 

  

 
(2.15) 

 

Computing the continuous wavelet transform the signal for every possible   and   

values requires more computational effort compared to the discrete wavelet 
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transformation. In a discrete wavelet transform, the scale parameter   and the 

translation parameter   are taken at discrete values based on powers of two defined as 

 

                      for all         (2.16) 

 

Then, Equation 2.14 becomes 

 

 
          

 

  (       )   for all         (2.17) 

 

In this configuration the discrete wavelet transform of a signal can be computed very 

efficiently using conventional filtering and subsampling operations [30]. 

In the first step; for a given discrete signal   of length  , two sets of coefficients 

are produced; approximation coefficients     and detailed coefficients      These 

coefficients are obtained by filtering the signal   by a low-pass filter and a high-pass 

filter, followed by downsampling with a factor 2. In every level of the decomposition, 

these filtering and downsampling operations are applied repeating to the approximation 

coefficients of the previous level (see Figure-6). The wavelet decomposition of an EEG 

signal using a Daubechies wavelet of order 4 is shown in Figure-8. 
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Figure 7.  The sub-band coding algorithm of discrete wavelet transform 
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Figure 8. Sub-bands of an EEG channel with 4-tap Daubechies wavelet with 4 level. 
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CHAPTER 3 

 

QUASI-SUPERVISED LEARNING ALGORITHM 

 

Supervised learning algorithms need a ground truth datasets prepared by an 

expert containing labels for all samples. This process can be laborious; however, the 

labels can be varied from expert to expert. The interpretation differences between 

experts cause the different labeling. The quasi-supervised learning algorithm (QSL) is 

proposed to avoid this interpretation differences and reduce the workload. 

 

3.1. The Binary Quasi-Supervised Learning Algorithm 

 

Briefly, the quasi-supervised learning algorithm estimates the posterior 

probabilities of data groups at each sample in the combined dataset [6]. In an 

abnormality detection application, there are two groups of data; the first one has only 

normal samples and the other has unlabeled samples. The posterior probabilities of 

these groups at individual samples can be used as a measure of the resemblance between 

the samples in the unlabeled dataset and the normal samples. Specifically, the unknown 

abnormal samples must have low normal dataset posterior probabilities, and using a 

suitable threshold, abnormal samples can thus be recognized automatically. 

 

3.1.1. Likelihood Ratio Estimation via the Nearest Neighbour Rule 

 

Given a reference set   {     } of points       and their respective class 

labels    {   } representing the classes    and   ,           , a nearest neighbour 

classifier is defined by  

 

          with                            (3.1) 

 

for    , where        denotes the distance metric on  . 
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Let {  }            be a collection of independent and identically 

distributed reference sets, consisting of   points from each of the two classes. Define 

      and       by 

 

      
∑      

       
   

 
     and           

∑      
       

   

 
 

(3.2) 

 

where              is 1 when           holds and 0 otherwise. It can be shown that 

for sufficiently large  ,  

 

      
         

                   
    and         

         

                   
 (3.3) 

 

where           and           represent the class conditional probability densities 

for the classes    and   . Note also that by the Bayes rule,       and       also 

compute the posterior probabilities         and        , respectively. Furthermore, the 

ratio of       and       provides 

 

     

     
 

         

         
 (3.4) 

 

the likelihood ratio. 

 In this formulation, the accuracy of the estimated posterior probabilities at a 

sample depends on  , the number of successive random nearest neighbour 

classifications. Since the reference set is formed with    samples with   samples from 

each class, the total number of distinct reference sets that can be formed is (  
 
)(  

 
) 

where    and    denote the number of points in the set {  } belonging to the respective 

classes. 

 

3.1.2. Analytical Computation of the Posterior Probabilities 

 

Let       represent the fraction of times a point   is assigned to    after a 

nearest neighbor classification based on all distinct reference sets containing   parts 

from each class. Consider the distance            between   and each sample    for 
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          and let      be the ordered sequence of all {  } with             

    . Similarly let      be the sequence of labels of      producing the     . Let also   

denote a reference set constructed by   points chosen randomly from each class among 

the points {  }. Then,       coincides with the probabilty   {   } of assigning   to 

the class    in a nearest neighbor classification based on the random reference set  , 

 

          {   } 

 

(3.5) 

Note that the term    {   } can be decomposed conditionally on whether or 

not the point      is in   as 

 

        {      } (      )     {      }Pr{y=0|      } (3.6) 

 

Since    {          } is 1 if       , and 0 otherwise. For notational simplicity, 

we can define    as the joint event                     Carrying at the same 

decomposition for    {      } provides  

 

   {      }    {      |  }  (      )  ... 

   {         }   {      } 
(3.7) 

 

In general, 

 

   {        }    {      |    }  (      )  ... 

   {           }   {      } 
(3.8) 

 

Furthermore, since   must have at least    data points,   from each class, the 

decomposition does not need to be carried out beyond some    given by 

 

 

       {  ∑             

 

    

     ∑           

 

    

  } (3.9) 

 

as   {       |     }    and   {       |     }   .  
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The following algorithm elucidates the computation of       when   {   } 

based on {     } where             

 Compute            

 Sort {  }                  and determine the {  } and {  } according to 

the sorted distances. 

 Determine   , and set   {   |     }   (       ) 

 Calculate   {   |   
}    {        |  }  (        )     {       

    }   {        } for                  

 Finally compute 

         {      } (      )     +    {      }   {      } 

Note that    {           } can be calculated by 

 

 

  {      |    }      {      |    }    
(  

   

 
) (  

   

 
)

(  
 

 
) (  

 

 
)

        (3.10) 

 

where   
 
 represents the number of points that belong to    in the set 

{                  }  and   
 
 denotes the number of points in the same set that belong 

to    .  

 

   
   ∑           

    and   
   ∑           

    (3.11) 

 

Clearly when        ,   
       

    and   
      

 
; and similarly when       , 

  
       

 
 and   

      
     This provides 

 

 

  {      |    }  

{
 

 
 

  
               

 

  
               

 (3.12) 

 

Finally note that the posterior probabilities can be calculated for any    by carrying out 

the algorithm above for      based on collection of parts        {  }. 
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3.1.3. Class Overlap Measures 

 

In abnormality detection and classification problems, class-overlap measures 

provide information about the separability of the classes. Good classification, in 

particular, can be constructed with small-class overlaps. 

 There are several measures of class overlap that can be computed using the 

estimated posterior probabilities. One of them is         that computes the log-

likelihood ratio of two classes at a point    , given by 

 

 
           (

     

     
)   (3.13) 

 

for all   with         and        . When   is in the region where the two classes 

overlap the ratio          ⁄  goes to one and         goes to zero.  

Another way of measuring the class-overlap or similarity between the 

underlying distributions is using an affinity measure. One of the affinity measures 

between distributions is the Henze-Penroze affinity that computes the integral, 

 

 
∫

           

           
  

 

 (3.14) 

 

for any given probability distributions       and      . The integral goes to one when 

            for all  . Based on Equation 3.14 the measure             can be 

formulated as 

 

 
                       

                  

                      
 (3.15) 

 

When                     ,               ⁄  and             approaches  

When   clearly belongs to one of    or   , then             goes to zero. 

Finally;       can be defined as another measure of the class overlap. On the 

differences between distributions using       and       by 
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 (3.16) 

 

Note that this measure is similar to         at the region where the two distributions 

overlap,           goes to zero. It’s advantage against to      is that it can be 

computed for all   even when       or        is equal to zero.  

 

3.1.4. Selection of the Optimal Reference Set Size   

 

The accuracy of the algorithm that estimates the posterior probabilities of the 

two classes at individual samples is related to the reference set size. Recall that 

  denotes the number of samples from each class in the reference sets that drive the 

nearest neighbor classifications. Ideally; the best   provides the minimum class overlap. 

So,      and       should never be around zero and          must be zero for all   . 

In addition   must be chosen as small as possible to avoid too flexible nearest neighbor 

classifications. 

In order to choose the optimal reference set size under these considerations, the 

following cost function must be minimized: 

 

       ∑            

 

    
(3.17) 

 

The reason behind the first term is related with the aim of the quasi-supervised learning 

algorithm to minimize the class overlap. The second term aims to reduce reference set 

size for a better generalization ability. The scaling factor 4 in front of the first term 

balances two scenarios; First, when the classes overlap entirely,  

 ∑        

 

       

In turn, when all samples are included in the reference set,     . 
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3.2. M-ary Quasi-Supervised Learning Algorithm 

 

Supervised learning algorithms aim at producing a learning model for 

classification from a labeled dataset. Several successful techniques are applied to binary 

classification, but in machine learning, multiclass classification is the more complex and 

special case of classification with a choice of several class labels for each sample. In the 

literature, most multiclass supervised learning algorithms are configured as multiple 

“one against the others” classifications. 

The motivation behind the quasi-supervised learning algorithm is abnormality 

detection by estimating posterior probabilities. Abnormality detection can be thought of 

as a binary problem because the task is to determine whether a sample belongs to the 

normal class or not. But the quasi-supervised learning algorithm can be adopted for a 

multi-class labeling problem easily thanks to the learning algorithm’s generality that 

derives from nearest neighbour classification. 

 

3.2.1. Methodology of M-ary Quasi-Supervised Learning Algorithm 

 

Suppose we have   classes           , represented in the collection  

{     } with     {       }             . Suppose that a random reference set   has 

  samples from each class and allows nearest neighbor classification of a sample   into 

one of              Let the functions                     represents the probability 

of assigning   to the possible classes by 

 

   { }     {   } 

  

  { }     {   } 

(3.18) 

 

As before, consider the sorted distances      for a point      and their class 

labels are       These probability represented by       can be decomposed conditionally 

on whether or not the point      is in  , providing 

 

         {      } (      )     {      }Pr{y=1|      } (3.19) 
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Again, for notational simplicity, define    as the joint event                  

 . Carrying the same decomposition strategy further to   {      } provides 

 

   {      }    {      |  }  (      )  ... 

   {         }   {      } 
(3.20) 

 

Since   must have at least   data points from each class, the decomposition does 

not need to be carried out beyond a    given by  

 

 
       {  ∑             

 

    

     ∑               

 

    

   

  ∑           

 

    

  } 

 

(3.21) 

 

Finally, the following modified algorithm computes the probabilities       for 

          for a given   based on the dataset {     } where            and for a 

fixed    

 Compute            

 Sort {  }                  and determine the corresponding sequences 

{    } and {    } 

 Identify the   , and set   {   |     }   (       ) 

 Calculate   {   |   
}    {        |  }  (        )     {       

    }   {        }  for                   

 Identify         {      } (      )     {      }   {      } 

In a general form   {            } can be calculated by 

 

    {            }      {      |    } 

   
(  

   

 
) (  

   

 
)     

   

 
 

(  
 

 
) (  

 

 
)    

 

 
 

 
(3.22) 
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where   
 
 indicates the number of    points in the set                    for   

       , 

 

  
  ∑         

 

   

 (3.23) 

 

Since when       ,   
      

     and   
      

 
 for    , we obtain 

 

   {            }  

{
 
 

 
 

 

  
               

 
 

  
               

 (3.24) 

 

which can be used in the     step of the algorithm. 

 

3.2.2. Evaluating the M-ary Class Overlap  

 

A class overlap measure is important for M-ary quasi-supervised learning 

algorithm as well, since the classes are desired to be as separable as possible. A 

generalization of the log-likelihood ratio to measure the class overlap for M-ary quasi-

supervised learning   
   can be defined by 

 

 
  

          (
     

∑      
 
   

) (3.25) 

 

for each class label    Clearly, when       
 

 
;   

    is positive, and otherwise it is 

negative. An overlap measure that is independent of a class label can be defined, 

however, based on the Shannon entropy on the posterior probability computed by 

                   . Thus, for a point  , we define         by 

 

 

         
 

     
∑              

 

   

 (3.26) 
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3.2.3. Selection of the Optimal Reference Set Size   

 

As before, the accuracy of the algorithm above is related with the reference set 

size. In a multiclass problem, a new cost function must be defined on the entropy-based 

class overlap measure. Such a cost function can be defined as : 

 

 
     

 

     
∑          
 

      (3.27) 

   

Again, this cost function must be minimized to determine the optimum reference set 

size. First term of the cost function penalizes the overlap between the classes, and the 

second term penalizes large  .   
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CHAPTER 4 

 

THE EEG DATASET 

 

The dataset that was used in this thesis was originally used in a brain-computer 

interface study for disabled subjects [31]. In the EEG experiment, the subjects were 

facing a laptop screen on which six images were flashed successively in a random order 

(see in Figure 9). The images were that of a television, a telephone, a lamp, a door, a 

window and a radio. The images were selected according to an application scenario 

aiming to allow users control electrical appliances via a brain-computer interface 

system. 

During the experiment, the images were flashed randomly and with only one 

image at a time. The duration of an image flash was 100ms and for the following 

300ms, the screen was blank. 

The dataset was recorded at 2048 Hz sampling frequency from a total of 32 

electrodes. The electrodes were placed according to the 10-20 international electrode 

placement protocol shown in Figure 4. 

The dataset was provided for download in the MATLAB format, and obtained 

from the web page of Multi Media Signal Processing Group of École Polytechnique 

Fédéralede Lausanne [32]. 

The EEG data was recorded on five disabled and four healthy subjects in total. 

In this thesis, data from one of the healthy subjects was used. All subjects were Ph.D. 

students at the laboratory where the experiment was carried out, were males and with on 

average age of 30 years   2.3 years. 
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Figure 9. The images that were flashed in the experiment, representing the different 

visual stimuli 
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CHAPTER 5 

 

EXPERIMENT SETUP AND RESULTS 

 

In this chapter; we describe the experiment setup and the results obtained in the 

experiments. First, we detail the pre-processing operations carried out on the EEG data 

as preparation for the subsequent analyses. Then we elaborate on the results obtained on 

the data in terms of various comparison scenarios. The EEG recording which we choose 

was taken from normal subject with 1 minute duration. It has 10 seconds baseline 

between 15
th

 and 25
th 

seconds.  

 

5.1. EEG Data Pre-processing 

 

 As a first step, we have resampled the EEG data from 2048Hz down to 128Hz in 

order to reduce the computational load.  Next, we have removed the affine component 

by fitting a first order polynomial to all EEG channels to eliminate the effects of 

streaming time from the analysis. Finally, each channel normalized to unit variance. 

 

5.2. Construction of EEG Profiles 

 

After the affine fitting and the normalization, to increase the separation 

performance of the quasi-supervised learning EEG profiles were constructed using 

independent component analysis and the wavelet decomposition. Independent 

component analysis was applied to data to obtain independent signal constitutions. To 

derive multi-scale signal components the wavelet decomposition was used that 

described in Figure 8. Also to get more distinct EEG profiles, independent component 

analysis and the wavelet decomposition were used together to obtain multi-scale signal 

components that were statistically independent from each other.  

The feature construction is explained in the Figure 11. 
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Figure 10. The original EEG channel signal and the signal after affine component 

removed 
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5.3. Visual Stimuli vs Baseline  

 

In this part, we compare the effects of the visual stimuli on the data. To this end, 

we carried out a binary comparison between the first 15 seconds that contained visual 

stimuli and the subsequent 10 seconds of EEG recording against a blank screen that 

constitutes the baseline data. For this 25 second data, we applied the binary quasi-

supervised learning algorithm on the EEG profiles obtained from the pre-processed data 

along with those constructed following the independent component analysis, the 

wavelet decomposition, and the independent component analysis on the wavelet 

decomposition signals. 

In these experiments, the visual stimuli area (0-15 second) was taken as the first 

class and the baseline area (15-25 second) was taken as the second class. Note that in a 

perfect separation case the estimated posterior probability of a sample is one when its 

label is same with the posterior probability class and zero otherwise. But brain has a 

complex structure and it does not behave according to the ideal scheme. By using quasi-

 Figure 11. Feature construction of the EEG data 
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supervised learning algorithm toolbox, we obtained the differences and abnormalities 

between samples (see Figure 12). 

We observed some abnormality around the fifth second and thirteenth second. 

The posterior probability curve made some raises unexpectedly. This can be caused by 

many reason such as the subject could think different objects from that image, he could 

have different thoughts. Also this abnormality can be caused by the equipment or the 

conditions. 

As seen from the Figure 12, passing from the visual stimuli area to baseline area 

is not restrict. The stimuli effect continues in the beginning of the baseline region with 

decreasing. This transition seen in the Figure 13 more detailed.  

 

Figure 12. The class labels and the estimated posterior probabilities of a time series 

EEG data. 
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The independent component analysis extracts the independent components from 

data and makes features more explicit. To increase the separation performance  in our 

dataset before applying quasi-supervised learning algorithm, we applied independent 

component analysis to the EEG profiles and reduced the feature number and organized 

the data in independent as possible from each other.  

 

Figure 13. The zoomed in transition region between stimuli area and baseline area. 
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Figure 14. The posterior probability curves of the time series EEG data after 

independent components analysis was applied. 
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Figure 15. Transition region between stimuli area and baseline area after independent 

component analysis was applied. 

 

 

As seen in the previous two sections, the quasi-supervised learning algorithm is 

successful in finding differences between samples observed under varying stimulus 

conditions, different feature extraction methods help to see these differences more 

clearly. Indeed, the quasi-supervised learning algorithm applied to the wavelet 

decomposition-based EEG profiles produced smoother posterior probability curves, 

indicating better separation of the two conditions in classification. 
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Figure 16. The posterior probability curves of the time series EEG data after wavelet 

decomposition was applied. 
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Figure 17. Transition region between stimuli area and baseline area after wavelet 

decomposition. 
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Using the wavelet decomposition-based EEG profiles, also increased 

dimensionality of the learning problem as well as computational cost because of adding 

many new features. The use of independent component analysis in this step is a feature 

reduction tool that projects the data into a lower dimensional space without sacrificing 

the data. 

The posterior probabilities curves obtained by this strategy indicate an even 

sharper transition between the conditions, arguably due to the lower dimensionality.  

Figure 18. The posterior probability curves of the time series EEG data after wavelet 

decomposition was applied to independent component identified profiles. 
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Figure 19. Transition region between stimuli area and baseline area after wavelet 

decomposition was applied to independent component identified 

profiles. 
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5.4 Visual Stimuli vs Blank Screen 

 

In this section, we investigated the differences between the different visual 

stimulus samples and samples observed during the blank screen. The different visual 

stimulus areas were labeled with the number of the flashed image. The blank screen 

areas between the images were labeled as the seventh stimulus. After labeling among 

the quasi-supervised learning algorithm was actual on the varying EEG profiles. 

 The optimum reference set size   is chosen by line search with the cost 

minimization.  The optimum reference set size    was determined to be 35 on the 

assisted EEG profiles (Fig-20). The posterior probabilities of each image class label 

were estimated using this reference set size (Fig-21). To visualize of the resulting 

separation, we constructed a confusion matrix and assigned an image label to all 

samples using maximum a posteriori rule. According to the confusion matrix in Table 2, 

the separation performance was %31.82. Note that while a confusion matrix can be a 

performance measure for a classification algorithm, that we only used this 

representation to make a comparison between the methods that we use in this thesis. 

Also, the quasi-supervised learning algorithm provides another class overlap measures 

in the log-likelihood ratio that rises when the samples are distinct. (Fig-22)  

 

Table 3. Confusion Matrix of Visual Stimuli vs Blank Screen Using Quasi-Supervised 

Learning Algorithm 

 

R
ea

l 
L

ab
el

s 

Estimated Labels 
Total 

 1 2 3 4 5 6 7 

1 77 0 0 0 0 0 0 77 

2 0 91 0 0 0 0 0 91 

3 0 0 77 0 0 0 0 77 

4 0 0 0 63 0 0 0 63 

5 0 0 0 0 91 0 0 91 

6 0 0 0 0 0 90 0 90 

7 194 202 215 177 252 269 122 1431 

Total 176 293 292 240 343 359 122 1920 
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Figure 20. The plot of      for n =1,...,60. The functional      attained its minimum 

value at     . 
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Figure 21. The posterior probability curves obtained with the labeling system which is 

described in section 5.2.1 
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When applied to the EEG profiles produced by independent component analysis, 

the optimum reference set size    ike section one, we applied independent component 

analysis to this experiment setup and search out the details between samples. We 

applied the independent component analysis and then determined the optimum reference 

set size   as 35 (Fig-23). After determining the optimum   we estimated the posterior 

probabilities of each sample according to the image classes (Fig-24), calculate the 

confusion matrix (Table 3) and the log-likelihood ratios (Fig-25). The algorithm 

performance was measured as %33.23. We can say that independent component 

analysis make clear the features.  

 

Figure 22. The class overlap measures according to stimuli 
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Table 4. Confusion Matrix of Visual Stimuli vs Blank Screen Using Quasi-Supervised   

Learning Algorithm after Independent Component Analysis 

 

R
ea

l 
L
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el

s 

Estimated Labels 
Total 

 1 2 3 4 5 6 7 

1 77 0 0 0 0 0 0 77 

2 0 91 0 0 0 0 0 91 

3 0 0 77 0 0 0 0 77 

4 0 0 0 63 0 0 0 63 

5 0 0 0 0 91 0 0 91 

6 0 0 0 0 0 90 0 90 

7 235 186 217 167 236 241 149 1431 

Total 312 277 294 230 327 331 149 1920 

 

 

 

Figure 23. The plot of 𝑬 𝒏  for n =1,...,60 after independent components are 

identified. The functional 𝑬 𝒏  attained its minimum value at 𝒏  𝟑𝟓. 
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Figure 24. The posterior probability curves after independent component analysis was 

applied to data with the labeling system which was described in section 5.3 
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In the previous part, we applied the wavelet decomposition before using quasi-

supervised learning algorithm. The results showed that wavelet decomposition creates 

more distinct areas between the different classes. Because of this we decided to apply 

same method in this experiment. Again, the optimum reference set size was calculated 

and the optimum   was chosen as 27 (Fig-26). The algorithm performance is calculated 

as % 32.76. There were some peaks like noise in posterior probability curves in the 

previous sections but wavelet decomposition reduced this effect and more smooth 

curves were created. 

 

Figure 25. The class overlap measures according to stimuli after independent 

component analysis was applied to data. 
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Table 5. Confusion Matrix of Visual Stimuli vs Blank Screen Using Quasi-Supervised   

Learning Algorithm after Wavelet Decomposition 
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Estimated Labels 
Total 

  1 2 3 4 5 6 7 

1 77 0 0 0 0 0 0 77 

2 0 91 0 0 0 0 0 91 

3 0 0 77 0 0 0 0 77 

4 0 0 0 63 0 0 0 63 

5 0 0 0 0 91 0 0 91 

6 0 0 0 0 0 90 0 90 

7 180 247 188 139 252 285 140 1431 

Total 257 338 265 202 343 375 140  1920 

Figure 26. The plot of 𝑬 𝒏  for n =1,...,60 after the wavelet decomposition is applied 

to data.  The functional 𝑬 𝒏  attained its minimum value at 𝒏  𝟐𝟕. 
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Figure 27. The posterior probability curves after wavelet decomposition was applied to 

data with the labeling system which is described in section 5.4 
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Figure 28. The class overlap measures according to stimuli after wavelet decomposition 

was applied to data. 
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As we described in the section 5.1, we applied independent component analysis 

to data which expanded using wavelet decomposition. After the feature reduction by 

independent component analysis we applied the quasi-supervised learning algorithm 

and the algorithm performance increased to %59.64 when the reference set size   

chosen as 42. 

 

Table 6. Confusion Matrix of Visual Stimuli vs Blank Screen Using Quasi-Supervised   

Learning Algorithm after Wavelet Decomposition 

 

 

R
ea

l L
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Estimated Labels 
Total 

  1 2 3 4 5 6 7 

1 77 0 0 0 0 0 0 77 

2 0 91 0 0 0 0 0 91 

3 0 0 77 0 0 0 0 77 

4 0 0 0 63 0 0 0 63 

5 0 0 0 0 91 0 0 91 

6 0 0 0 0 0 90 0 90 

7 137 101 131 60 128 218 656 1431 

Total 214 192 208 123 219 308 656  1920 

 

 

 

All results show that, the visual stimuli classification did not change. Always 

same number of sample is classified as with image class labels but the blank screen 

classification changed. As seen from the posterior probability curves the posterior 

probability of the seventh class (when the screen is blank) never went to one. It moved 

around the 0.5. This show us the samples which are labeled with their own stimuli label 

can be used in the classification algorithms as train data.  

From posterior probability curves we also see that, a visual stimuli effect was 

not only in the time interval which was on the screen (100ms), it continued when the 

screen went to blank. So we decided to change our labeling system and applied all 

methods the new labeled data. 
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Figure 29. The plot of 𝑬 𝒏  for n =1,...,60 after independent component analysis was 

applied to wavelet decomposition-based EEG profiles. The functional 𝑬 𝒏  
attained its minimum value at 𝒏  𝟒𝟐. 
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Figure 30.  The posterior probability curves wavelet decomposition and independent 

component analysis was applied to data with the labeling system which is 

described in section 5.4 
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Figure 31. The class overlap measures according to stimuli after wavelet decomposition 

and independent component analysis was applied to data. 
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5.5. Differences of Visual Stimuli 

 

 The results in the section 5.3 show that, the visual stimuli effect continues after 

the stimulus offset and it proceeds until the other stimulus was onset. That suggests that 

a better labeling system which covers the stimulus time with the blank screen interval 

following the stimulus offset. In other words, in the new experiments, we labeled the 

400ms after the stimulus onset with the stimuli image index. After labeling we run the 

same algorithms in section 5.4.  

Under this new labeling setting, the M-ary quasi-supervised learning algorithm 

on the original EEG profiles obtained a separation performance of %95.31. In this case 

the optimum reference set size was determined be 49.  

 

Table 7. Confusion Matrix of  Differences Between Visual Stimuli Using Quasi-

Supervised   Learning Algorithm  

 

 

R
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l L
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Estimated Labels 
Total 

  1 2 3 4 5 6 

1 293 1 0 4 3 4 305 

2 9 343 2 3 1 2 360 

3 5 0 289 4 9 1 308 

4 0 0 6 249 2 0 257 

5 2 1 3 4 319 3 332 

6 1 8 4 5 3 337 358 

Total 310 353 304 269 337 347  1920 
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Figure 32. The plot of 𝑬 𝒏  for n =1,...,200. The functional 𝑬 𝒏  attained its minimum 

value at  𝒏  𝟒𝟗. 
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Figure 33. The posterior probability curves with the labeling system which is described in 

section 5.5 
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The separation of the stimulus using the independent component analysis 

profiles. In this experiments the optimum reference set size was 56 , and the separation 

performance was %97.81. This shows that independent component analysis makes more 

explicit the features of the samples, and provides more qualified input data to supervised 

learning algorithms. 

 

 

 

  

Figure 34. The class overlap measures according to stimuli 
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Table 8.  Confusion Matrix of Differences between Visual Stimuli after Independent 

Component Analysis Using Quasi-Supervised   Learning Algorithm 

 

 

R
ea

l L
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s 

Estimated Labels 
Total 

  1 2 3 4 5 6 

1 298 1 0 0 2 4 305 

2 3 355 0 2 0 0 360 

3 1 0 300 3 3 1 308 

4 0 0 2 254 1 0 257 

5 0 2 0 4 325 1 332 

6 3 3 0 1 5 346 358 

Total 305 361 302 264 336 352  1920 

 

 

 

 

 

 

 Figure 35. The plot of 𝑬 𝒏  for n =1,...,200 after independent component analysis 

applied to data. The functional 𝑬 𝒏  attained its minimum value at 

 𝒏  𝟓𝟔. 
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Figure 36. The posterior probability curves after independent component analysis is 

applied to data with the labeling system which is described in section 5.5 
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Figure 37. The class overlap measures according to stimuli after independent 

component analysis is applied. 
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The separation performance was improved further using EEG profiles based on 

the wavelet decomposition the optimal reference set size   was 48 (see Figure 38). The 

separation performance was calculated as %98.39. 

 

Table 9. Confusion Matrix of  Differences Between Visual Stimuli After Wavelet 

Decomposition Using Quasi-Supervised Learning Algorithm 

 

 
R

ea
l L

ab
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s 

Estimated Labels 
Total 

  1 2 3 4 5 6 

1 302 0 0 0 1 2 305 

2 3 352 0 2 1 2 360 

3 0 0 297 2 9 0 308 

4 0 1 0 255 1 0 257 

5 0 0 2 3 327 0 332 

6 0 1 0 1 0 356 358 

Total 305 354 299 263 339 360  1920 

 

 

 

 
  

Figure 38. The plot of 𝑬 𝒏  for n =1,...,200 for wavelet decomposition-based EEG 

profiles. The functional 𝑬 𝒏  attained its minimum value at 𝒏  𝟒𝟖  
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Figure 39. The posterior probability curves wavelet decomposition is applied to data 

with the labeling system which is described in section 5.5 
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Figure 40. The class overlap measure according to stimuli after wavelet decomposition 

is applied. 



69 

 

The EEG profiles obtained by applying independent component analysis and the 

wavelet profiles produced greatest improvement on the separation performance between 

the different stimuli. The results show that separation performance increased to %99.64, 

with a reference set size of 77. The posterior probability curves reveal that the abnormal 

samples are between the 7-12 seconds. 

 

Table 10. Confusion Matrix of Differences between Visual Stimuli after Wavelet 

Decomposition and Independent Component Analysis Using Quasi-

Supervised Learning Algorithm 
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Estimated Labels 
Total 

  1 2 3 4 5 6 

1 308 0 0 0 0 0 308 

2 0 358 0 2 0 0 360 

3 0 0 308 0 0 0 308 

4 0 0 0 257 0 0 257 

5 0 0 2 0 330 0 332 

6 0 0 1 1 1 355 358 

Total 308 358 311 260 331 355 1920 
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Figure 41. The plot of 𝑬 𝒏  for n =1,...,200 for independent component analysis and 

the wavelet decomposition is applied to data. The functional 𝑬 𝒏  is 

attained its minimum value at 𝒏  𝟕𝟕  
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Figure 42. The posterior probability curves wavelet decomposition and independent 

component analysis were applied to data with the labeling system which is 

described in section 5.5 
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Figure 43. The class overlap measures according to stimuli after wavelet 

decomposition and independent component analysis were applied. 
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5.6. Target Image vs Other Images 

 

 In the experiment, the subject was asked to count the number of times the fourth 

image was shown. In order to use the separation between the expectant stimuli and the 

others, we have carried out the final experiment of this thesis. To this end, we labeled 

the samples recorded with the images as 1, and the target image interval were labeled as 

2. Then we repeated the analytical steps used in previous sections. 

We performed the binary quasi-supervised algorithm and identify the target 

image samples. The algorithm performance is calculated as %90.73.  

 

Figure 44. T he posterior probability curves of the data that the target image and other 

images compared. 
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Figure 45. The posterior probability curves of the data which described in section 5.6 

after independent component analysis. 

 

As we know from the previous results, independent component analysis is 

successful for the determine features. So, in this experiment we used the independent 

component analysis before the quasi-supervised learning algorithm and the algorithm 

performance increase to %93.65.  
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Figure 46. The posterior probability curves of the data which described in section 5.6 

after wavelet decomposition. 

 

 

 

In this section the data was expand again with the wavelet transform which was 

described in the previous sections and the quasi-supervised learning algorithm was 

applied. This process increased the algorithm performance to %94.95. 
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Figure 47. The posterior probability curves of the data which described in section 5.6 

after wavelet decomposition and independent component analysis. 

 

 

As we know, the combination of independent component analysis and wavelet 

decomposition. When we applied this algorithm to data, in the target image 

identification algorithm performance became %97.97. 
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CHAPTER 6 

 

CONCLUSION 

 

We demonstrated that binary and M-ary quasi-supervised learning algorithm is 

successful to automatically measure the separation of stimuli-specific brain activity 

patterns in EEG. 

In this study, the EEG dataset recorded under randomly flashed six different 

images was used to obtain the separation of stimuli-specific brain activity patterns using 

quasi-supervised learning. Different EEG profiles were constructed by using the EEG 

data using independent component analysis and the wavelet decomposition. Separation 

between the samples of the data was measured using quasi-supervised learning for 

different scenarios with constructed EEG profiles. Identification independent signals 

and derivation of the multi-scale signals increased the separation performance of the 

quasi-supervised learning. The most effective distinction between samples was obtained 

with the combination of independent component analysis and wavelet decomposition 

when independent component analysis was applied to wavelet decomposition-based 

EEG profiles.  

 For future work, the separation of the different EEG dataset (e.g. recorded under 

both visual and auditory stimuli) using quasi-supervised learning can be investigated. 

This provides the automation of determination stimuli-specific brain activity patterns 

and brain-computer interface applications. 
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