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ABSTRACT 

 

A STUDY ON ISOTHERM CHARACTERISTICS OF ADSORBENT-

ADSORBATE PAIRS USED IN ADSORPTION HEAT PUMPS 

 

 Adsorption heat pumps are promising systems due to their ability to recover 

heat at low temperature levels and to provide cooling and/or heating effects. It has 

advantages such as using renewable energy sources, being environmental friendly, 

having no vibration and lower operation costs. 

 In this study, the most common pairs used in adsorption heat pumps were 

reviewed and their thermophysical and adsorption behaviors were discussed. The 

adsorption equilibrium phenomena were explained in details. The different 

experimental methods for determination of adsorption equilibrium for pairs were 

explained and compared.  

 The change of heat of adsorption according to the varying adsorbed amount 

was studied numerically for two different equilibrium equations. It is found that, the 

heat of adsorption for pairs fitting Dubinin-Astakhov equation has a decrease with 

increasing adsorbed amount, while the heat of adsorption for pairs fitting Freundlich 

equation does not depend on adsorbed amount.  

 A numerical study was performed to investigate the performances and cooling 

capacities of three different adsorption chillers for six different pairs. The results 

showed that when S40 silica gels - water pair is used, the chiller cooled with low 

temperature source gives the highest performances. 

 In the experimental section of the present study, a volumetric setup was 

designed and constructed. Experiments were performed for a conventional pair of 

silica gel – water. It was observed that the maximum adsorption capacity of the 

experimented silica gel –water pair was 21% (kg water vapor /kg silica gel) at 35 °C, 

19% (kg water vapor/kg silica gel) at 45 °C and 11% (kg water vapor /kg silica gel) at 

60 °C. 
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ÖZET 

 

ADSORPSİYONLU ISI POMPALARINDA KULLANILAN 

ADSORBENT-ADSORBAT ÇİFTLERİNİN İZOTERM 

KARAKTERİSTİKLERİ ÜZERİNE BİR ÇALIŞMA 
 

 Adsorpsiyonlu ısı pompaları düşük sıcaklıklardaki atık ısıları ve/veya 

yenilenebilir enerji kaynaklarını kullanabilme kabiliyetlerinden ötürü son günlerde 

oldukça önem kazanmıştır. Fosil kaynaklara bağımlı elektrik enerjisini 

kullanmadıkları, sarsıntısız ve uzun yıllar sorunsuz çalışabildikleri için oldukça büyük 

avantajları bulunmaktadır.  

 Bu çalışmada adsorpsiyonlu ısı pompalarında kullanılabilecek çiftler 

araştırılmış, ve bu çiftlerin termofiziksel özellikleri ve adsorpsiyon davranışları 

incelenmiştir. Adsorpsiyon kavramı ve adsorpsiyonda denge tayini için kullanılan 

deneysel metotlar detaylarıyla açıklanmış ve kıyaslanmıştır. 

 Çalışmanın deneysel kısmında, volumetrik metoda dayalı iki sistem dizayn 

edilmiş ve kurulmuştur. Deneyler adsorpsiyonlu ısı pompalarında sıklıkla kullanılan 

bir çift olan silika jel – su çifti ile gerçekleştirilmiş; sonuç olarak 35 °C‘de maksimum 

%21 (kg su/kg silika jel), 45 °C‘de maksimum %19 (kg su/kg silika jel) ve 60 °C‘de 

maksimum %11 (kg su/kg silika jel) adsorplama kabiliyetine sahip olduğu 

bulunmuştur. Bu silika jel – su çiftinin Tip II izotermi ile uyumlu olduğu gözlenmiştir. 

Bu izoterm tipi su buharının mikropor gözenekli silika jele adsorpsiyonunda 

beklenebilecek bir davranıştır. 

 Dubinin-Astakhov ve Freundlich denklemlerini kullanan iki farklı çiftin, 

adsorplama miktarının değişimine bağlı adsorplama ısısının değişimi numerik bir 

çalışma ile incelenmiştir. Çalışmanın sonucunda, Dubinin-Astakhov denklemine uyum 

gösteren çiftlin adsorpsiyon ısılarının artan adsorplama miktarıyla azaldığı, ancak, 

Freundlich denklemine uyum gösteren çiftin adsorpsiyon ısılarının adsorplama miktarı 

değişiminden bağımsız olarak her noktada sabit kaldığı bulunmuştur. 

 Ayrıca, altı farklı çift için üç farklı chiller dizaynı kullanılarak, chiller 

performansı ve soğutma kapasitesi üzerine numerik bir çalışma gerçekleştirilmiştir. 

Sonuç olarak, altı farklı çiftten S40 silika jel – su çiftini kullanan ve düşük sıcaklık 

kaynağı ile soğutulan chillerin en yüksek performans ve soğutma kapasitesine sahip 

olduğu bulunmuştur. 



vi 

 

TABLE OF CONTENTS 

 

LIST OF FIGURES..........................................................................................................ix 

 

LIST OF TABLES...........................................................................................................xii 

 

LIST OF SYMBOLS…..................................................................................................xiii 

 

CHAPTER 1. INTRODUCTION......................................................................................1 

 

CHAPTER 2. LITERATURE SURVEY..........................................................................5 

 2.1. Literature Survey on Employed Pairs......................................................5 

 2.2. Methods for Determination of Isotherms.................................................7 

2.2.1. Volumetric Method............................................................................7 

2.2.2. Gravimetric Method...........................................................................9 

2.2.3. Calorimetric Method........................................................................10 

2.2.4. Level Sensor Method.......................................................................12 

 2.3. The Performed Studies on Equilibrium Determination.........................12 

2.3.1. Calorimetric Study...........................................................................13 

2.3.2. Volumetric Studies..........................................................................14 

 

CHAPTER 3. ADSORPTION HEAT PUMP.................................................................21 

 3.1. Heat pumps............................................................................................21 

 3.2. Classification of Heat Pumps................................................................22 

3.2.1. Mechanical Heat Pump...................................................................22 

3.2.2. Absorption Heat Pump....................................................................24 

3.2.3. Adsorption Heat Pump....................................................................25 

3.2.3.1. Working Principle of Adsorption Heat Pump........................26 

3.2.4. Multi-bed Adsorption Heat Pump...................................................29  

3.2.5. Comparison Among Heat Pumps....................................................30 

 

CHAPTER 4. COMMON ADSORBENT-ADSORBATE PAIRS USED IN 

ADSORPTION HEAT PUMPS...............................................................32 



vii 

 

4.1. Adsorption.............................................................................................32 

 4.2. Adsorbents..............................................................................................34 

4.2.1. Properties of Common Adsorbents.................................................36 

4.2.1.1. Silica Gel................................................................................36 

4.2.1.2. Zeolite....................................................................................38 

4.2.1.3. Active Carbon........................................................................40 

4.2.1.4. New Working Materials.........................................................44 

 4.3. Adsorbates.............................................................................................48 

4.4. Required Properties................................................................................50 

       4.5. Common Pairs used in Adsorption Heat Pumps....................................51 

 4.5.1. Silica Gel – Water............................................................................52 

 4.5.2. Zeolite – Water.................................................................................53 

 4.5.3. Active Carbon – Methanol...............................................................53 

 4.5.4. Active Carbon – Ammonia…...........................................................54 

 4.5.4. Active Carbon – Ethanol..................................................................54 

 

CHAPTER 5. EQUILIBRIUM EQUATIONS AND DIAGRAMS FOR  

ADSORBENT-ADSORBATE PAIRS.....................................................55 

 5.1. Adsorption Equilibria.............................................................................55 

 5.2. Isotherm Types.......................................................................................56 

5.2.1. Type I Isotherm................................................................................57 

5.2.2. Type II Isotherm...............................................................................58 

5.2.3. Type III and V Isotherms.................................................................59 

5.2.4. Type IV Isotherm…….....................................................................60 

5.3. Adsorption Equilibrium Equations........................................................61 

5.3.1. Freundlich Equation.........................................................................61 

5.3.2. Dubinin – Astakhov Equation..........................................................63 

5.3.3. Dubinin - Radushkevich Equation...................................................66 

5.3.4. Langmuir Equation..........................................................................66 

5.3.5. Three-term Langmuir Equation.......................................................67 

5.3.6. Henry‘s Equation.............................................................................68 

5.3.7. Toth‘s Equation...............................................................................69 

5.3.8. Isoster Equation...............................................................................70 

5.3.9. Empirical Equation..........................................................................70 



viii 

 

           5.3.10. Mathematical Relations for Determination of Saturation             

  Pressure..........................................................................................71 

5.4. Heat of Adsorption................................................................................72 

  

CHAPTER 6. EFFECTS OF EQUILIBRIUM ON THE PERFORMANCE OF      

            ADSORPTION HEAT PUMPS................................................................75 

6.1. Numerical Study on Effect of Equilibrium on the Performance............75 

6.1.1. Results and Discussion of Numerical Study....................................79 

 

CHAPTER 7. EXPERIMENTAL STUDY.....................................................................84 

7.1. Components of Experimental Setup......................................................84 

7.2. Experimental Procedure.........................................................................90 

 

CHAPTER 8. RESULTS AND DISCUSSION...............................................................93 

8.1. Uncertainty Analysis..............................................................................93  

8.2. Isotherm Results.....................................................................................94 

       8.3. Effective Diffusivity............................................................................102 

 

CHAPTER 9. CONCLUSIONS....................................................................................106 

 

REFERENCES..............................................................................................................109 

 

APPENDICES 

APPENDIX A. ISOTHERM PLOTS FOR DIFFERENT EQUILIBRIUM 

      EQUATIONS REPORTED IN LITERATURE..................................116 

APPENDIX B. NUMERICAL STUDY FLOW CHART.............................................124 

APPENDIX C. MICROMERITICS ASAP 2010 SILICA GEL TEST RESULTS......124 

  

 

 

 

 

 

 

 



ix 

 

LIST OF FIGURES 

 

  Figure                        Page 

  Figure 2.1. Schematic view of volumetric method instruments......................................8 

  Figure 2.2. Schematic view of a two beam balance gravimetric instrument...................9 

  Figure 2.3. Schematic view of a sensor gas calorimeter................................................11 

  Figure 2.4. Schematic view of a level sensor adsorption device...................................12 

  Figure 2.5. Experimental apparatus used in the study of Li et al...................................13 

  Figure 2.6. Experimental apparatus used in the study of Ng et al.................................15 

  Figure 2.7. Experimental apparatus used in the study of Chua et al..............................16 

  Figure 2.8. Experimental apparatus used in the study of Solmuş et al..........................17 

  Figure 2.9. Experimental apparatus used in the study of Dawoud and Aristov............18 

  Figure 2.10. Experimental apparatus used in the study of Saha et al............................19 

  Figure 2.11. Experimental apparatus used in the study of Ülkü et al............................19 

  Figure 2.12. Adsorption isotherm result of water vapor adsorption on wool................20 

  Figure 3.1. Heat pump principle....................................................................................22 

  Figure 3.2. Mechanical heat pump cycle and its components.......................................23 

  Figure 3.3. Absorption heat pump cycle and its components........................................25 

  Figure 3.4. Adsorption Heat Pump Cycle......................................................................26 

  Figure 3.5. The ideal adsorption heat pump   cycle.......................................................27 

  Figure 3.6. Schematic view of a two-bed adsorption cooling system...........................30 

  Figure 4.1. Illustration of adsorption phenomena..........................................................32 

  Figure 4.2. Schematical view of pore dimensions.........................................................35 

  Figure 4.3. Illustration of a porous structure..................................................................36 

  Figure 4.4. Bonding structure of silica gel.....................................................................37 

  Figure 4.5. The structural units defining different zeolite types....................................39 

  Figure 4.6. Schematic structure of active carbon...........................................................41  

  Figure 4.7. Structure of active carbon............................................................................41 

  Figure 4.8. Schematic views of active carbon fiber and granular activated carbon......43 

  Figure 4.9. Comparison of 25 mbar isobars of different adsorbents.............................45 

  Figure 4.10. Comparison of 25 °C isotherm of FAMZ01 and FAMZ02......................46 

  Figure 4.11. Experimental water adsorption isotherm results for different AlPO  

         and SAPO composite adsorbents................................................................48 



x 

 

  Figure 5.1. Graphical representation types of adsorption equilibrium..........................56 

  Figure 5.2. Schematic representation of IUPAC isotherm classifications.....................57 

  Figure 5.3. Type II isotherm..........................................................................................58 

  Figure 5.4. Type III and Type V isotherms...................................................................59 

  Figure 5.5. Type IV isotherm….....................................................................................60 

  Figure 5.6. Graphical presentation of isotherms for different pairs at 30 °C, based 

        on Freundlich equation..................................................................................50 

  Figure 5.7. Graphical presentation of isotherms for different pairs at 30 °C, based  

        on Dubinin -Astakhov equation....................................................................65 

  Figure 5.8. Graphical presentation of isotherms for different pairs at 30 °C, based  

        on Henry‘s equation......................................................................................68 

  Figure 5.9. Graphical presentation of isotherms for different pairs at 30 °C, based  

        on Toth‘s equation........................................................................................69 

  Figure 5.10. Graphical presentation of isotherms for different pairs at 40 °C, based 

         on isoster equation.......................................................................................71 

  Figure 5.11. Heat of adsorption change with varying adsorbed amount.......................74 

  Figure 6.1. Schematical view of designed chillers cooled with (a) air, (b) cooling  

        tower and  (c) low temperature heat source..................................................78   

  Figure 6.2. Evaporator capacity results of Chiller-1 with six different pairs................80 

  Figure 6.3. COP results of Chiller-1 with six different pairs........................................80 

  Figure 6.4. Evaporator capacity results of Chiller-2 with six different pairs................80 

  Figure 6.5. COP results of Chiller-2 with six different pairs.........................................81 

  Figure 6.6. Evaporator capacity results of Chiller-3 with six different pairs................81 

  Figure 6.7. COP results of Chiller-3 with six different pairs.........................................82 

  Figure 6.8. Evaporator capacity results comparing chillers using S40 – water pair......82 

  Figure 6.9. COP results comparing chillers using S40 – water pair..............................72 

  Figure 7.1. Picture of first experimental setup...............................................................85 

  Figure 7.2. Picture of improved experimental setup......................................................86 

  Figure 7.3. Schematical view of the second experimental setup...................................87 

  Figure 7.4. Picture of pressure logging software...........................................................88 

  Figure 8.1. Leakage test results......................................................................................95 

  Figure 8.2. Condensation tests performed at 35 and 70 °C............…...........................96 

  Figure 8.3. Experimental result for the first 35 °C adsorption experiment...................97 

  Figure 8.4. Result for adsorption experiments at 35 °C including eleven pulses..........98 



xi 

 

  Figure 8.5. Adsorbed amount versus equilibrium pressure plot for 35°C  

       experiments....................................................................................................99 

  Figure 8.6. Adsorbed amount versus equilibrium pressure plot for 45°C  

       experiments..................................................................................................100 

  Figure 8.7. Adsorbed amount versus equilibrium pressure plot for 60°C  

       experiments..................................................................................................101 

  Figure 8.8. Isotherm plot of experimental results........................................................102 

  Figure 8.9. Uptake curves for each pulses of the second 60 °C experiment...............104 

  Figure 8.10. Comparison of experimental average uptake curve and analytical  

            result of calculated effective diffusivity................................................104 

  Figure 8.11. Average uptake curves of 35, 45 and 60 °C 

           experiments..............................................................................................105 



xii 

 

LIST OF TABLES 

 

  Table              Page 

  Table 2.1. Literature survey on employed adsorbent-adsorbate pairs..............................5 

  Table 4.1 Structural and thermophysical properties of silica gel types..........................37 

  Table 4.2. Structural and thermophysical properties of zeolite types.............................39 

  Table 4.3. Structural and thermophysical properties of active carbon types..................42 

  Table 4.4. Thermophysical properties of FAMZ011 and FAMZ02...............................47 

  Table 4.5. Adsorption capacity and heat of adsorption for water vapor adsorption  

        on different MOFs.........................................................................................48 

  Table 4.6. Some thermophysical properties of common adsorbates..............................39  

  Table 4.7. Thermophysical properties of some adsorbent-adsorbate pairs....................36 

  Table 5.1. Coefficients for Freundlich equation............................................................62   

  Table 5.2. Coefficients for modified Freundlich equation............................................62 

  Table 5.3. Coefficients for Dubinin – Astakhov equation.............................................64 

  Table 5.4. Coefficients for modified Dubinin – Astakhov equation.............................65 

  Table 5.5. Coefficients for Dubinin – Radushkevich equation......................................66 

  Table 5.6. Coefficients for three-term Langmuir equation............................................67 

  Table 5.7. Coefficients for Henry‘s equation.................................................................68 

  Table 5.8. Coefficients for Toth‘s equation...................................................................69 

  Table 5.9. Coefficients for isoster equation...................................................................70 

  Table 5.10. Constants of Antoine equation for three different adsorbates...................72 

  Table 5.11. Constants for simplified Antoine equation for three  

          different adsorbates....................................................................................72 

  Table 6.1. Coefficients for silica gel – water pairs fitting Dubinin - Astakhov and  

            Freundlich equations................................................................................79 

  Table 8.1. Accuracies and uncertainties of measured parameters.................................93 

  Table 8.2. Calculated effective mass diffusivity results of each experimental  

      temperature...................................................................................................103 

 

 



xiii 

 

LIST OF SYMBOLS 

 
c knee shape constant 

C∞ equilibrium concentration, kg/m
3
 

COP coefficient of performance 

cp specific heat, kJ/kgK 

D Diffusivity, m
2
/s 

DB dry bulb 

E diffusional activation energy, J/mol 

h enthalpy, kJ/kg 

Hads heat of adsorption kJ/kg 

K0 Henry's constant 

m mass, kg 

.

m  mass flow rate, kg/s 

n amount of adsorbate, mol adsorbate/kg adsorbent 

P pressure, Pa 

Psat saturation pressure, Pa 

Q heat transferred, kJ 

q adsorbed amount, kg adsorbate/kg adsorbent 

q* adsorbed amount at equilibrium, kg adsorbate/kg adsorbent 

q0 equilibrium adsorption coefficient, kg/kg 

Qab heat of isosteric heating process, kJ 

Qbc heat of isobaric desorption process, kJ 

Qcd heat of isosteric cooling process, kJ 

Qda heat of isobaric adsorption process, kJ 

qm monolayer coverage, kg adsorbate/kg adsorbent 

r particle radius, mm 

R gas constant, kJm
3
/kmolK 

T temperature, °C 

t Toth's constant 

W work done, kJ 

WB wet bulb 

  density, kg/m
3
 

 



xiv 

 

Subscripts  
 

C cooling 

cond condenser 

eff effective 

ev evaporator 

fg evaporation 

H high 

i in 

i number of elements 

L low 

l liquid 

max maximum 

min minimum 

o out 

R refrigeration 

s solid 

sat saturation 

  infinite 



1 

 

CHAPTER 1 

 

INTRODUCTION 

 

 Air - conditioning is a requirement for human to provide the comfort 

conditions. Heating and cooling systems are used for both human comfort and 

industrial applications. Several types of air - conditioning devices are produced by 

manufacturers. Heat pumps are preferred air - conditioning equipment because of their 

high thermal performances. 

 Heat pumps can be divided into two groups as mechanical and thermal heat 

pumps according to third energy source. The mechanical energy is used in mechanical 

heat pump as the third energy source, while the thermal driven heat pump operates 

with thermal energy sources.  

 Mechanical heat pump is widely used in the recent years due to its advantages 

such as high thermal efficiency and packed structure. However, it is found out that the 

refrigerants used in mechanical heat pump plays an important role in the depletion of 

the ozone layer and global warming. Mechanical heat pump operates with electrical 

power generally produced from fossil fuels. The growing need of energy forces 

researchers and manufacturers to investigate on environmental friendly devices with 

high energy performance that can operate with renewable energy resources.  

 Thermal driven heat pump has the advantage of using not only the renewable 

thermal sources such as solar and geothermal energy, but also the waste heat of 

industrial processes. It does not contain hazardous materials. Thermally driven heat 

pump can be classified into three groups as absorption, chemical and adsorption heat 

pumps.  The absorption and adsorption heat pumps were studied since 1970s. 

 An absorption heat pump basically consists of an evaporator, a condenser, an 

expansion valve, a generator and an absorber. The compressor of a mechanical heat 

pump is replaced by an absorber in this system. Absorption heat pump working fluid is 

a solution of two liquids with high and low boiling points. The most common pairs 

used in an absorption heat pump are ammonia - water and water - lithium bromide, as 

the refrigerant - absorbent pairs.  

http://en.wikipedia.org/wiki/Lithium_bromide
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Mechanical and absorption heat pumps are commonly studied, however 

research in the other category of heat pumps which are chemical heat pumps has 

gained momentum in recent years. Chemical heat pumps provide heat storage capacity 

and high heat of reaction when compared to the absorption heat pumps. They use 

reversible reactions between a gas and a salt that is part of a porous solid material 

inside a reactor (Wongsuwan 2001; Mbaye 1998).   

The life time of absorption and chemical heat pumps are shorter than adsorption 

heat pump due to the problem of salt corrosion and using chemicals. Moreover, the 

absorbent used in absorption system should be changed in every 4 to 5 years. In 

adsorption heat pump, the system does not require changing of the adsorbent-adsorbate 

pairs for a long period of time. The applicability of adsorption heat pumps and the 

availability of materials used for adsorption process which are mostly environmental-

friendly leaded the studies to progress on that area. The first studies on adsorption heat 

pumps took start up with Close and Duncle in 1977 and the first construction was 

performed by Tchernev in 1978 (Ülkü 1986). 

 An adsorption heat pump consists of an adsorbent bed, an evaporator, a 

condenser and an expansion valve. The adsorbent bed is filled with the adsorbent and 

the working fluid is used within the cycle. Basically, adsorption heat pump operates by 

cycling adsorbate between adsorber, condenser and evaporator (Demir 2008). In the 

adsorption heat pump cycle, adsorption phenomena play the same role of mechanical 

power, so that the working fluid can be circulated in the cycle without any mechanical 

power.  

The processes occurred in a cycle of and adsorption heat pump can be 

summarized as; evaporation, adsorption, desorption and condensation processes. A 

basic adsorption cycle consists of four thermodynamic steps as isosteric heating, 

isobaric desorption, isosteric cooling and isobaric adsorption. 

 Adsorption is an adhesion processes in which fluid (adsorbate) is transferred 

from the fluid phase to the surface of rigid particles (adsorbent). Adsorption may occur 

in two ways as chemical adsorption (chemisorption) and physical adsorption 

(physisorption). Physisorption is a reversible process, while chemisorption is 

irreversible. Physisorption is caused by Van der Waals forces and chemical adsorption 

or chemisorption involves valence forces. In adsorption heat pumps, the adsorption and 

desorption processes have to be reversible to provide the repetition of cycle. Therefore, 

the interaction between adsorbent and adsorbate must be a physical adsorption type. 
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The removal of adhered adsorbates from the surface adsorbent is called as desorption 

process. Adsorption is an exothermic process, while desorption is endothermic.  

 Since adsorption is a phenomena occurring between two phases (pair) and 

adsorption/desorption process occurs in adsorption heat pump; the properties of pair is 

an important issue. Each adsorption pair has specific characteristic properties. The 

behavior of adsorbents, adsorbates and interaction between these two should be 

investigated in order to select the right pair for cycle. 

 The aim of study this study is to give brief explanations on adsorption 

phenomena and working principle of adsorption heat pump and review on adsorbent-

adsorbate pairs used in adsorption heat pumps by researchers in recent years. In 

theoretical part of the study, the structure and thermophysical properties of those pairs 

are investigated and presented. A special attention is paid on the adsorption equilibria 

of different adsorbent-adsorbate pairs. Different equilibrium equations are reviewed 

and classified. In experimental part of the study, two experimental set up were 

designed and manufactured in order to find out adsorption equilibria of conventional 

silica gel – water pair. 

The performed studies on adsorption heat pumps were reviewed in literature 

and presented in Chapter 2. The methods used for determination of adsorption 

equilibrium are categorized and presented also in Chapter 2. The experimental studies 

on determination of equilibrium of common pairs performed by researchers are 

reviewed and presented in this chapter. 

 In Chapters 3 and 4 the working principle of adsorption heat pump, adsorption 

phenomena and properties of common adsorbents, adsorbates and pairs are given in 

details. The adsorption characteristics of pairs, equilibrium states and equations are 

explained in Chapter 5. Additionally the definition for heat of adsorption is presented. 

The change in heat of adsorption of a pair with varying adsorbed amount is studied 

numerically in Chapter 5. 

A numerical study on the adsorption chiller performances is performed within 

the study. The change of performance of an adsorption chiller is investigated, based on 

the effect of used pair. The COP of the adsorption chiller depending on the pair used 

and the type of chiller is studied and solved numerically. The description of the 

designed chillers, the equilibrium equations of pairs used and the numerical results are 

presented in Chapter 6 in details.  
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 The experimental part of this study is performed with two constructed 

experimental setups. The methodology of experiments was compatible with literature 

studies; unfortunately, the impediments faced during experiments prevented the 

persistence of experiments in first constructed setup. The design and equipments of 

setup was changed, therefore the procedure was changed. The improved setup, its 

components and experimental procedure is explained in details in Chapter 7. 

 Chapter 8 includes results and discussion for the experiments performed in both 

first and second setups. The adsorption behavior of silica gel - water pair and isotherm 

characteristic were discussed based on the experimental results. Chapter 9 gives the 

conclusions of studies performed. The evaluations and the comments made about the 

study are presented in this chapter. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 

 In this chapter, the pairs used in adsorption heat pumps are surveyed in the 

studies presented in literature. Furthermore, the methods for determination of 

adsorption equilibrium of these pairs are also investigated and categorized.  

 

2.1. Literature Survey on Employed Pairs 

 

 The structural and thermophysical properties of various adsorbents and 

adsorbates commonly used in adsorption heat pumps are going to be explained briefly 

within next chapter. The pair interactions and behaviors are also going to be 

mentioned. The adsorption heat pumps, adsorption chillers or ice making adsorption 

devices studied since 1982 are surveyed in this section. The pair used in the study, the 

aim of the device and their performance are listed below in Table 2.1. 

 

  Table 2.1. Literature survey on employed adsorbent-adsorbate pairs 

Year Researcher Pair Used Aim Product COP 

1982 Dupont et al. zeolite 13X - water Ice making 7 kg/day 0.04 - 0.14 

1984 Grenier et al. zeolite 13X - water Cooling - 0.086 

1986 Ülkü  natural zeolite – water Heating - 0.34 

1986 
Pons and 

Guilleminot  
active carbon – methanol Ice making 6 kg/day ≈ 0.12 

1987 Exell et al. active carbon – methanol Ice making 4 kg/day ≈ 0.1 

1987 Ülkü  natural zeolite – water Heating -  0.4 

1987 Pons and Grenier zeolite – water Ice making - ≈ 0.1 

1987 
Kluppel and 

Gurgel  
silica gel – water Cooling - 0.077 

1989 Ülkü and Mobedi 

active carbon – methanol 

Comparison - - active carbon – ammonia 

zeolite – water 

1993 Critoph  active carbon - ammonia Ice making 3 kg/day 0.04 

1993 Philip et al.  zeolite 13X - water Ice making - - 

1994 Headley et al.  active carbon - methanol Ice making 1 kg/day 0.02 

1996 Critoph  active carbon - ammonia Ice making - 0.3 

    (cont. on next page) 
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Table 2.1 (cont.). 

1998 Oertel and Fischer  silica gel - methanol Cooling - ≈ 0.3 

1998 Wang et al. active carbon – methanol Ice making 14 kg/day 0.15 - 0.23 

1999 Sumathy and Li  active carbon - methanol Ice making 4-5 kg/day 0.1- 0.12 

2000 Wang et al. active carbon - methanol Ice making 10 kg/day 0.04 

2001 Li et al.  active carbon - methanol Ice making 5-6 kg/day 0.12 - 0.14 

2001 Wang et al.  active carbon - methanol Cooling - 0.15 

2002 Li et al. zeolite 13X - water Cooling - 0.4 

2004 Restuccia  novel silica gel - water Cooling - 0.6 

2004 Xia et al. 
silica gel - water 2 stage 

- 0.28 
silica gel - methanol Cooling 

2005 Wang et al.  active carbon - methanol Cooling - 0.087 

2005 Wang  silica gel – water  Cooling 
RC: 7.15 

kW 
0.38 

2006 El-Sharkawy et al.  active carbon fiber - ethanol Cooling - - 

2006 Liu and Leong  
silica gel - water 2 stage SCP: ≈ 

42.7 W/kg 
1.35 

zeolite – water  Cooling 

2006 Luo and Dai silica gel – water  Cooling CP: 4.5 kW ≈ 0.26 

2007 Nunez et al. silica gel - water Cooling - 0.4 - 0.6 

2008 Daou et al. novel silica gel – water Cooling 
SCP: ≈ 60 

W/kg 
≈ 0.2 

2008 Demir silica gel – water 
Heating - 

Cooling 

SCP: ≈ 0.3 

W/kg 
≈ 0.54 

2008 Elnekave zeolite – water  Cooling 
P: ≈ 2000 

W/kg 
≈ 0.14 

2008 El-Sharkawy  active carbon – methanol Cooling 
SCE: 420 

kJ/kg 
- 

2008 Kubota et al. silica gel – water Cooling 
CP: 3.12 

kW 
≈ 0.30 

2008 Liu and Leong  zeolite – water Cooling  
SCP: 50 

W/kg 
≈ 0.45 

2009 Saha et al.  
silica gel - water Cooling CP: 11 kW 0.3 

novel silica gel – water  Comparison CP: 14 kW 0.4 

2009 San and Hsu  novel silica gel – water Cooling - ≈ 0.35 

2009 Wang and Zhang silica gel – water  Cooling 
SCP: 70 

kW/kg 
≈ 0.47 

2009 Xia et al. silica gel – water Cooling 
SCP: 90 

W/kg 
≈ 0.40 

2010 Grisel et al.  silica gel – water Cooling 
PD: 17    

kW/ m
3
 

≈ 0.62 

2011 Hassan et al.  active carbon – methanol  Cooling 
CP: 2.326 

kW 
0.211 

  

Near 2000s, the studies on silica gel – water pair came into prominence and the 

devices were aimed chilling medium or water. Oertel and Fischer (Sumathy et al. 

2003) have studied a rarely encountered pair which is silica gel – methanol. The COP 

of adsorption cooling device was found as 0.3. Since the availability and applicability 



7 

 

of water is more possible than methanol, the silica gel – methanol studies were rarely 

handled. 

 Among all the reviewed studies, the highest COP value was achieved by Grisel 

et al. in 2010 which is 0.62 (Grisel et al. 2010). The silica gel – water pair was used in 

the developed adsorption chiller. 

 

2.2. Methods for Determination of Isotherms 

 

 The adsorbed mass per unit mass of adsorbent is the characteristic equilibrium 

quantity for a porous solid. This characteristic quantity must be investigated for the 

studied pair. This characteristic state and adsorption equilibrium behavior of the pair 

can be determined by different experimental methods. 

 As a result of literature survey, there were found methods used to identify the 

adsorption equilibrium for a specified pair; such as volumetric, gravimetric and 

calorimetric methods. In this section, these most common methods are going to be 

defined, briefly. 

 

2.2.1. Volumetric Method 

 

 Volumetric method, which is also called as manometry, is the oldest method 

known so far. The first adsorption experiment using volumetric method was performed 

by C. W. Scheele in 1777, and the studies were proceeded by W. Ostwald in 1905 and 

J. Langmuir in 1912 (Gregg and Sing 1982). 

 Figure 2.1 illustrates the schematic view of equipment generally present in the 

volumetric method. The volumetric method adsorption instrument basically consists of 

a gas storage vessel and an adsorption container connected by a proper tube and a 

valve. The temperature of both vessels should be completely controlled by using 

devices such as water or oil bath. The vessels and tubes should be insulated well in 

order to prevent any temperature instability. The pressure and temperature measuring 

devices are placed to proper points. 

 For the studies with pressures under atmospheric pressure, a vacuum pump is 

used and connected to the system. All vessels and tubes should be manufactured of 

non-corrosion materials and inside surfaces should be polished. For vacuum systems 
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the glass would be a better choice than metallic materials. Sealing materials should be 

chosen according to the adsorptive gases used and the ranges of temperature and 

pressure of operation. 

 

 

Figure 2.1. Schematic view of volumetric method instruments  

(Source: Keller and Staudt 2005) 

  

 The volumetric gas adsorption experimental procedure can be summarized 

simply as; 

- evacuation of adsorbent sample vessel, 

- expansion of adsorptive to the adsorbent vessel, 

- adsorption of a portion of gas introduced to the adsorbent, 

- calculation of adsorbed amount by mass balance. 

 The experimental procedure in volumetric method can be explained as follows. 

A certain amount of gas is placed in the storage vessel (vapor vessel) and the 

adsorption container is evacuated. Upon opening the expansion valve, the gas expands 

to the adsorption container where it is partly adsorbed on the surface of the adsorbent. 

This process may last milliseconds, minutes, hours or even several days. After 

thermodynamic equilibrium, such as temperature and pressure inside the vessel has 

been realized, these data can be taken as a basis to calculate the mass of the gas 

adsorbed on the adsorbent. Adsorbed amount calculations of volumetric adsorption 

experiments are mainly performed using pressure differences (Keller and Staudt 2005). 
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2.2.2. Gravimetric Method 

   

 Gravimetric measurements are used both to characterize the porous media and 

to measure the adsorption equilibrium. The measurement is carried out with the regard 

of change in weight of adsorbent. The equilibrium adsorbed amount may decrease with 

respect to temperature and pressure. Hence, the sensitivity of the measuring device 

should be high in order to detect the difference. Automated instruments including 

microbalances are available for various purposes such as water vapor adsorption and 

thermo-gravimetry. 

 Gravimetric measurements of a pure gas onto an adsorbent may be performed 

by single or two beam balanced devices. Two beam microbalance devices (schematic 

view is illustrated in Figure (2.2) consist of two containers which are adsorbent and 

ballast vessels. These two containers are at balance with each other before the 

adsorption process. During the adsorption, since the adsorbent is filling with adsorbate, 

the weight of the first container is increased while the ballast container remains 

constant. The difference between the weights of two containers contributes the 

adsorbed amount. 

 

 

Figure 2.2. Schematic view of a two beam balance gravimetric instrument  

(Source: Keller and Staudt 2005) 

 

Single beam balance gravimetry devices differ from two beam balance with 

including only one container which adsorbent is placed. The adsorption of corrosive 
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gases like NH3, H2S or NOx onto porous materials can be determined by this device. 

The measurement arises with a magnetic field formed by an electromagnetic 

instrument placed onto the wall of adsorption chamber. The weight difference in the 

adsorption chamber is sensed by the magnetic field and the equilibrium is determined 

by this way (Keller and Staudt 2005). Magnetic suspension balance devices need a 

great sensitivity in the usage of instrument For example, the incline of the floor where 

the instrument is placed and any possible vibrations should be taken into consideration.  

   

2.2.3. Calorimetric Method 

 

 Gas adsorption calorimetry is a method for measurements of both heats and 

isotherms of adsorption or desorption processes. Thus, calorimeters can be used for 

determination of thermal equilibrium and mass equilibrium conditions. Types of 

calorimeters may be simply classified into four groups as adiabatic calorimeters, 

diathermal-conduction calorimeters, diathermal-compensation calorimeters and 

isoperibol calorimeters.   

 In the adiabatic adsorption calorimeter, the heat evolved on adsorption 

increases the temperature of the sample and container. The flow of heat is prevented to 

flow by a peripheral shield control of temperature. Thus the shield is maintained at the 

same temperature with the sample container. The temperature rise due to heat of 

adsorption is measured by a resistance thermometer attached to the sample container. 

This type of calorimeter can be useful for close adsorption systems at low temperatures 

(Rouquerol et al. 1999). 

 The diathermal-conduction adsorption calorimeter has two main types as phase-

change adsorption calorimeter and heat-flow adsorption microcalorimeter. However, it 

is not used nowadays; the temperature of adsorption calorimeter is imposed by the 

temperature of phase change in the first type. The most important type of isothermal 

calorimeter in current use is based on the principle of the heat flow meter, firstly 

improved by Tian and Calvet, and so called as heat-flow adsorption microcalorimeter. 

The Tian-Calvet calorimeter consists of up to 1000 thermocouples (thermopile) 

between the adsorbent container and the thermostat and the thermopile measures the 

heat flux between these two boundaries. This type of calorimeter is useful for open 

adsorption systems (Rouquerol et al. 1999).   



11 

 

 The diathermal-compensation and isoperibol adsorption calorimeters are now 

unused because of their complexity, stability and uncertainty problems.   

 In these four types of calorimeters, there are three main operational procedures 

to obtain the adsorption amount, thus the equilibrium conditions. Two of them are 

gravimetric and volumetric methods which are already mentioned in previous sections. 

The third one is gas-flow procedure in which the quantity of flow-rate of gas in the 

entrance and exit of the adsorbent container is measured and the adsorbed amount is 

obtained. 

   

 

 

Figure 2.3. Schematic view of a sensor gas calorimeter  

(Source: Keller and Staudt 2005) 

 

 With the improvements in determining the adsorption equilibrium, W. Langer 

adduced a new calorimeter for measurements of heats and isotherms of adsorption. 

This device is called as sensor gas calorimeter (SGC), since a reference gas which 

differs from the adsorptive and has no interaction with adsorption pair (i. e. He or N2) 

is surrounding the adsorption container. A schematic view of a SGC is illustrated in 

Figure 2.3. As seen in figure, valves and pressure measuring devices involving the 

reference gas are distinct from the adsorption chamber side. The heat evolved by the 



12 

 

adsorption process is sensed by the reference gas; hence, the heat of adsorption and 

adsorbed amount is determined by the reference gas (Keller and Staudt 2005).  

 

2.2.4. Level Sensor Method 

 

 In this method, the liquid level in the condenser/evaporator is measured by the 

level sensor, and this information, together with the value of the useful area of the 

adsorbate tank and the density of the refrigerant, is used to calculate the adsorption or 

desorption quantity. The precision in the measurement increases with the mass of 

adsorbent, because the amount desorbed/adsorbed, and thus, the variation of the liquid 

level inside tank also varies (Wang et al. 2009). A test rig with level sensor method is 

used by Dellero et al. and the schematic view of the device shown in Figure 2.4. 

 

 

 

Figure 2.4. Schematic view of a level sensor adsorption device  

(Source: Dellero et al. 1999) 

 

2.3. The Performed Studies on Equilibrium Determination 

 

The methods for determination of adsorption equilibrium can be classified as 

volumetric, gravimetric, calorimetric and level sensor methods, as mentioned above. 

The pairs experimentally studied and the methods employed in the presented literature 

studies will be discussed in this section. The procedure of investigations and results of 

studies are going to be presented. Although several studies based on volumetric 

method were available in literature, only a study based on calorimetric method was 

found.  
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2.3.1. Calorimetric Study 

 

An experimental study on adsorption kinetics and isotherm characteristics was 

performed by Li et al. (Li et al. 2007). The aim of the study was to estimate the effect 

of pore size on adsorption characteristics. Three types of silica gels (type A, B and C), 

manufactured by Qingdao Haiyang Chemicals, were investigated. The experimental 

studies were carried out by nitrogen gas in order to examine the physical properties and 

by water vapor in air in order to examine the adsorption kinetics and isotherm 

characteristics. The physical properties of silica gel were measured by the 

Micromeritics ASAP 2010 instrument, operates based on volumetric method. Type A 

silica gel was found to have microporous structure while type B and C silica gels were 

mesoporous. For the water vapor adsorption, experiments were carried out under 

atmospheric conditions by an instrument (see Fig. 2.5) constructed by the researchers 

using gravimetric method. 

 

 

 

Figure 2.5. Experimental apparatus used in the study of Li et al. 

(Source: Li et al. 2007) 

 

As seen from Figure 2.5, the air with varying relative humidity was introduced 

to silica gels and the change in the mass was recorded by time. In the study, type A 

silica gel was found to have a Type I isotherm, while type B and C silica gels had Type 
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V isotherm according to the IUPAC classification. The experimental data of the study 

for type A silica gel was fitted to Langmuir and Freundlich models. Type A silica gel 

was found to have a longer adsorption time than type B and C silica gels, while the 

maximum adsorption capacity for type A was greater than others. The relative 

humidity of air was also a parameter for adsorption rate; the greater relative humidity 

quantity refers to a shorter adsorption time.   

 

2.3.2. Volumetric Studies 

 

An experimental study was performed on investigation of silica gel – water pair 

for isotherm characteristics by Ng et al. (Ng et al. 2001). The investigation was done 

on three types of silica gel which are Fuji Davison of types A, 3A and RD. The 

constant-volume variable-pressure (CVVP) instrument was used to measure the 

characteristic properties (see Fig. 2.6). The regeneration tests were also applied to the 

pairs since the desorption time is crucial.  The results of study indicated that type 3A 

and RD silica gels were found to be better than type A silica gel due to shorter 

regeneration time. Between 70 and 90 °C, 75% regeneration could be achieved for type 

3A and RD silica gels. The all types were found to be fitted with the Henry‘s equation. 

The coefficients of mathematical isotherm equations were found based on the 

experimental results. They also found that at a temperature range between 60 and 70 

°C, type A silica gel was found to have better potential for cooling capacity; while at 

temperatures higher than 70 °C, types 3A and RD silica gels had a better cooling 

capacity.  

An experimental study on investigation of silica gel – water adsorption was 

performed by Chua et al. (Chua et al. 2002). The studied adsorbents were Fuji Davison 

type A and RD silica gels. The thermophysical properties of silica gel types were also 

examined besides the isotherm characteristics. The physical properties such as surface 

area, pore size and pore volume were measured by Micromeritics ASAP 2010 

instrument; the resulted quantities for both types were listed in the study. The 

thermophysical properties for both types were found to be similar to each other, while 

thermal conductivity of type RD was found greater than of type 3A. The adsorption 

experiments were performed with a CVVP apparatus (see Fig. 2.7) constructed by the 

researchers. The studied temperature and pressure ranges were 25-65 °C and 500-7000 
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Pa, respectively. Toth‘s equation was the best fitted to the experimental data to express 

the isotherm behavior. Constants of the correlation for both types were computed and 

presented in the study. The isosteric heat of adsorption value was found smaller than 

those found in literature, such as nearly 2700 kJ/kg. For the experiments at a 

temperature of 30 °C; type RD silica gel was found to have a maximum adsorption 

capacity of 0.45, while type A silica gel had a maximum adsorption capacity of 0.40. 

 

 

Figure 2.6. Experimental apparatus used in the study of Ng et al. 

(Source: Ng et al. 2001) 

 

Zeolites are classified in two groups as natural and artificial zeolites. Both can 

be used as adsorbent for adsorption heat pumps. Experimental studies using volumetric 

method on zeolites were also reported in literature.  

For instance, Özkan and Ülkü (Özkan and Ülkü 2005) experimentally studied 

the effect of HCl treatment on water vapor adsorption characteristics of natural zeolite. 

They used infrared and water vapor adsorption data, in the characterization of the CLI 

(clinoptilolite) and its HCl treated forms. They performed water adsorption 

experiments using volumetric apparatus (Omnisorp 100cx). They reported that 

clinoptilolite rich natural zeolite gives Type I isotherm, while a slight increase in 

adsorption at high relative pressure was observed. They also resulted that HCL 

treatment was not effective in the amount of adsorption and isotherm type.  
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Solmuş et al. (Solmuş et al. 2010) experimentally studied on the adsorption 

characteristics of a natural zeolite mined in Turkey. Maximum adsorption capacity and 

isosteric heat of adsorption for natural zeolite in the ranges of 40–150 °C temperature 

and 0.87–7.38 kPa pressure were investigated. An experimental apparatus was 

designed and constructed by researchers as seen in Figure 2.8. Since the system was a 

constant volume variable pressure apparatus, the adsorbed amount was determined by 

pressure change in the adsorbent vessel. The maximum adsorption capacity of natural 

zeolite was found to be nearly 0.12 (kg water/kg dry adsorbent) for low temperatures. 

The calculated isosteric heat of adsorption was found to vary from 2500 to 3800 kJ/kg 

water for adsorption capacities ranging from 0.12 to 0.02 kg water/kg dry adsorbent. 

 

 

Figure 2.7. Experimental apparatus used in the study of Chua et al. 

(Source: Chua et al. 2002) 

 

They also compared the cyclic adsorption capacity of the most common pairs 

such as natural zeolite – water, active carbon – methanol, silica gel – water and zeolite 

13X – water. They resulted that; the adsorbed amount change during the cycle of the 

investigated working pairs increases with increasing evaporator and regeneration 

temperatures and with decreasing condenser temperature. The activated carbon – 

methanol working pair was found to be the best among all pairs in terms of cyclic 

adsorption capacity change (∆qcycle). Required regeneration temperatures were lower 
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for activated carbon – methanol and silica gel – water since ∆qcycle of these pairs 

increases slightly for increases in regeneration temperature above 140 °C. 

The studies on adsorption characteristics of new generation materials are 

progressing in order to improve the performance of adsorption devices. 

 

 
 

Figure 2.8. Experimental apparatus used in the study of Solmuş et al. 

(Source: Solmuş et al. 2010) 
(E-1 oven; E-2 zeolite canister; E-3 thermocouple output; E-4 vacuum pump; E-5 feed 

water; E-6 water bath; E-7 V–C cooling system; E-8 electrical heater; E-9 

evaporator/condenser; E-10 circulation pump) 

 

For example, Dawoud and Aristov (Dawoud and Aristov 2003) performed an 

experimental study on comparison of water vapor adsorption characteristics of five 

different adsorbents including two novel materials. The microporous silica gel, 

mesoporous silica gel, SWS-1A, SWS-1L and alumina A1 were tested and the supplier 

was Borescov Institute of Catalysis. The testing device was a CVVP apparatus (see 

Fig. 2.9) constructed by the researchers. The adsorption kinetics and isotherm behavior 

were studied. SWSs were found to have a greater maximum adsorption capacity such 

as twice of others. However, the adsorption rate was smaller for impregnated 

adsorbents compared to the microporous and mesoporous silica gels. 

Aristov et al. (Aristov et al. 2002) also performed an experimental study on 

selective water sorbents (SWSs). The water adsorption amount was measured by 

CHAN C2000 thermal balance device for a temperature and pressure range with 20-50 

°C and 0.8-13 kPa respectively. SWS-1L (mesoporous silica gel with 33.7% CaCl2), 
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SWS-2L (mesoporous silica gel with 32% LiBr), SWS-1L (mesoporous silica gel with 

57% LiBr), and SWS-1L (microporous silica gel with 21.7% CaCl2) were the 

examined sorbent samples. As the result, the impregnated adsorbents were found to 

have an adsorption capacity near to 0.75 kg water/kg dry adsorbent which was a very 

high quantity when compared with adsorbents known so far. As a comparison between 

these four new generation materials, SWS-1L was found to have a greater capacity 

than others. They also denoted that, a better performance of the heat pumping systems 

was observed in comparison with the pure adsorbents and impregnation materials were 

highly competitive with the common working materials like silica gel, zeolite and 

active carbon. 

 

 

 

Figure 2.9. Experimental apparatus used in the study of Dawoud and Aristov 

(Source: Dawoud and Aristov 2003) 

 

Saha et al. (Saha et al. 2009) performed an experimental study on R-134a 

adsorption onto active carbon. R-134a was an unfamiliar adsorbate for adsorption heat 

pumps systems; hence the study was interesting among other determination studies. 

They constructed a volumetric test rig as shown in Figure 2.10. The study was 

performed in the temperature range of 5 to 70 °C and pressure range up to 12 bars. The 
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experimental data have found to be fitted with the Dubinin–Astakhov isotherm 

equation. The maximum adsorption capacity for R-134a onto active carbon was found 

to be 2.1 kg/kg. 

 

 

 

Figure 2.10. Experimental apparatus used in the study of Saha et al. 

(Source: Saha et al. 2009) 
(1: water bath, 2: adsorption cell, 3: thermocouple, 4: water circulator, 5: fine mesh, 6: 

valve, 7: mass flow controller, 8: vacuum gauge, 9: pressure transducer, 12: R-134a tank) 

 

 

Figure 2.11. Experimental apparatus used in the study of Ülkü et al. 

(Source: Ülkü et al. 1998) 
(1-Cahn 2000, 2-Edwards vacuum pump 3-Edwards Diffstak 250, 4-MKS 0–2 mbar pressure 

gauge, 5-Penning gauge, 6-EMV 251 pressure gauge, 7-water reservoir, 8-BRY needle valve, 

9-wool sample, 10-nicrome wire, 11-thermocouple, 12-recorder) 

 

Ülkü et al. (Ülkü et al. 1998) experimentally studied adsorption of water vapor 

on wool. The adsorption and desorption isotherms of water vapor for wool were 

investigated using both volumetric and gravimetric methods. Coulter Omnisorp 100CX 

instrument and Cahn 2000 electronic microbalance (see Fig. 2.11) were the 
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instruments used in experiments for volumetric and gravimetric methods, respectively. 

Adsorption isotherm was found to be fitted with B.E.T. model. Hysteresis (path 

difference) on desorption was observed. The average effective diffusion coefficient of 

water in wool was found as 8.4x10
-14 

m
2
/s at 25 °C temperature. The isotherm plots of 

performed experiments for water adsorption onto wool are given in Figure 2.12. Nearly 

20 % maximum adsorption capacity was achieved as it can be seen in figure. 

 

 

Figure 2.12. Adsorption isotherm result of water vapor adsorption on wool at 15 °C (∆) 

          and 25 °C (o) (Source: Ülkü et al. 1998) 
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CHAPTER 3 

 

ADSORPTION HEAT PUMP 

 

 Heating and cooling systems are widely used in industry and comfort 

applications. Improvement of these systems is an important research area due to the 

growing need of comfort conditions. Decrease in the fossil energy sources also leads 

improvements in this area. Attentions on the renewable energy and usage of low cost 

energy sources are increasing day by day. Heat pumps are one of the most common 

devices used for that purpose in heating and cooling systems. They are preferred 

because of their high COPs. Heat pumps are classified as mechanical and thermal 

driven heat pumps. Thermal driven heat pump can be grouped into three different types 

as absorption, chemical and adsorption heat pumps.  

 In this section, the components and working principle of the heat pumps are 

going to be expressed in details.   

 

3.1. Heat Pumps 

 

 The heat pump is a device which transfers heat from low to high temperature 

source. Heat transfer from low to high temperature source is only possible by a third 

energy source, according to the second law of thermodynamics. Figure 3.1 depicts heat 

pump and operating energy sources. 

 The measure of performance of a heat pump is expressed in terms of the 

Coefficient of Performance, COP. The COP relation for both heating and cooling 

processes can be defined as follows: 
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 QL denotes the heat taken from the low temperature heat reservoir, while QH 

refers to the heat transferred to the high temperature one. If the third energy source is 
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thermal energy, the transferred energy is represented by Qi. If the third energy source 

is mechanical, the transferred energy is expressed by Wi. 

 

 
 

Figure 3.1. Heat pump principle 

 

3.2. Classification of Heat Pumps 

 

 Heat pumps can be divided into two groups according to the employed third 

energy source. If the third energy source is mechanical, the heat pump is called as 

mechanical heat pump. If the third energy source is thermal energy, then the heat pump 

is called as thermal driven heat hump. Thermal driven heat pump can be divided into 

three groups as absorption, chemical and adsorption heat pumps. In thermal heat 

pumps, a reversible or irreversible reaction, whose energy can be stored, occurs. For 

example, a chemical heat pump uses reactions between a gas and a salt that is part of a 

porous solid material inside a reactor (Wongsuwan 2001; Mbaye 1998). Brief 

information on the mechanical and absorption heat pump systems are given while a 

detailed discussion on adsorption heat pump is presented within further sections. 

 

3.2.1. Mechanical Heat Pump  

 

 Heat pumps are classified in two groups (mechanical and thermal) as 

mentioned before. A mechanical heat pump consists of an expansion valve, a 

compressor, an evaporator and a condenser. Figure 3.2 depicts a mechanical heat pump 
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and its components.  The working fluid, refrigerant, flows through four components. 

Points 1, 2, 3 and 4 in the figure are the state points for the entrance and exit of 

components. 

 

 

Figure 3.2. Mechanical heat pump cycle and its components 

  

 The refrigerant is evaporated in the evaporator while it takes heat from its 

environment (QL). Then, it is pressurized and its temperature is increased in the 

compressor with the work done. The vapor with high pressure and temperature release 

heat to environment (QH) and is condensed in the condenser. Its pressure is decreased 

to the evaporator pressure in the expansion valve. The cycle is completed with the 

expansion process and it is repeated in this order.  

 The heats of evaporation and condensation achieved in a mechanical heat pump 

can be calculated by following equations: 
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In the equations, 
.

m expresses mass flow rate of refrigerant and h defines the 

enthalpy at the entrance or exit of each process. 

 The Coefficient of Performance relations for both cooling and heating 

processes are: 
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where, Qev, Qcond and W are cooling and heating capacities and work done by 

compressor, respectively. 

 

3.2.2. Absorption Heat Pump 

 

 The thermally driven heat pumps may involve adsorption or absorption 

processes. Absorption is a physical or chemical phenomenon which refers to the 

solution (or intimate contact) of gas with a liquid. In accordance to the principle of 

absorption, absorption heat pump working fluid is a solution of two liquids having a 

high and a low boiling point.  Most commonly used working fluids for absorption heat 

pumps are ammonia-water, lithium chloride-water and lithium bromide-water. 

Ammonia, lithium chloride and lithium bromide serve as the refrigerant where water 

serves as the transport medium. A schematic view of an absorption heat pump is 

presented in Figure 3.3. The working fluid (solution) is heated with high pressure and 

temperature in the generator. The fluid with low boiling point is vaporized and then 

transferred to the condenser. It releases heat to the environment (Qcond) while it is 

condensed. The pressure of condensed fluid is decreased in the expansion valve and it 

is transferred to the evaporator. It gains heat from the environment (Qevap) during 

vaporization. The vaporized fluid is absorbed onto the high boiling point fluid 

transferred from generator to absorber. The solution is pumped to the generator back 

and the cycle is completed. 

  The COP values for both heating and refrigeration processes of absorption heat 

pump are defined with the following relations (Çengel and Boles 2002): 

 

    
pumpgen

cond

H
WQ

Q
COP


                                                 (3.8) 

        
pumpgen

ev
R

WQ

Q
COP


                         (3.9) 

 

http://en.wikipedia.org/wiki/Phenomenon


25 

 

where, Qev, Qcond, Qgen and W are cooling and heating capacities, absorption heat taken 

from environment by generator and work done by compressor, respectively. 

 

 

 

Figure 3.3. Absorption heat pump cycle and its components 

 

3.2.3. Adsorption Heat Pump 

 

 Adsorption heat pump cycles were firstly defined by Faraday in 1848, while the 

commercial studies in this area activated in 1920s (Demir et al. 2008). The interest in 

adsorption heat pump increased after 1970s due to the oil crisis (Wang and Oliveira 

2006). Later, adsorption heat pump gained more interest because of ecological 

problems related to the use of CFC and HCFC refrigerants which deplete the ozone 

layer and contribute to the greenhouse effect. Adsorption heat pump can recover heat 

at low temperature levels and provide a cooling/heating effect. It can be a useful 

equipment to increase the performance of thermal systems in industry. Adsorption heat 

pump has advantages such as the use of waste heat or solar energy, being 

environmental friendly, having no vibration and lower operation costs when it is 

compared with mechanical vapor compression systems (Ülkü 1986). 

 A basic adsorption heat pump consists of four main components as; an 

adsorbent bed, which is a container filled with an adsorbent (such as zeolite, active 

carbon, silica gel, etc.), a condenser, an evaporator, and an expansion valve. Basically, 

adsorption heat pump operates by cycling adsorbate through these four components. In 
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the adsorption heat pump cycle, adsorbent bed plays the same role of mechanical 

power, so that the working fluid can be circulated in the cycle without any compressor. 

 The adsorption heat pump is a promising thermal energy storage device with 

storing the latent and sensible heat. The thermal energy can be stored in the adsorbent 

during desorption stage at high temperature level from any source (solar energy, waste 

heat, geothermal energy, etc.) and it is possible to use it during adsorption period 

(Demir 2008). 
 

 

Figure 3.4. Adsorption Heat Pump Cycle 

  

3.2.3.1. Working Principle of Adsorption Heat Pump 

 

The schematical view of an adsorption heat pump is illustrated in Figure 3.4. 

Two valves placed on the both sides of the adsorbent bed are necessary to fulfill the 

adsorption and desorption processes of a basic adsorption air-conditioning system. 

Adsorbent bed is constructed according to the corresponding design parameters and 

filled with the proper adsorbent of selected pair. The adsorbate of pair is placed into 

the evaporator. After the construction of the whole system, the system is vacuumed 

and all the valves within the system are fully closed.  

The cycle might be started with desorption process. At the beginning of the 

desorption process, the valve between adsorbent bed, which was saturated with the 
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adsorbate beforehand, and condenser is opened, as a result the adsorbate desorbed from 

adsorbent bed is condensed in the condenser. During condensation the fluid loses heat 

and rejects it to the environment (Qcon). After condensation, the fluid flows through 

expansion valve and expands. Evaporator evaporates the fluid to the vapor state. 

During evaporation fluid gains heat and ejects it from the environment (Qevap). After 

evaporation, fluid flows towards adsorption bed in order to be adsorbed onto the 

adsorbent particles. The valve between adsorbent bed and evaporator is closed during 

evaporation and the valve between the bed and condenser is closed. Since the 

adsorption is exothermic process, heat of adsorption is released during the process. The 

adsorption is completed and no more adsorbate can be adsorbed by the adsorbent when 

the level of fluid in the evaporator is constant. At the end of adsorption process, the 

cycle is completed.  The following cycle initiates with the desorption of the fluid, 

again, while the heat of desorption is ejected from the environment to the system 

(Wang et al. 2009). 

 

 
 

Figure 3.5. The ideal adsorption heat pump cycle (Clapeyron Diagram) 
 

 

 A basic adsorption cycle consists of four thermodynamic steps, which can be 

presented by Clapeyron diagram, as shown in Figure 3.5. The cycle begins with 

isosteric heating (a-b) process. The valves between the adsorbent bed and the 

condenser and evaporator are closed. The temperature of adsorbent bed is increased 

from Ta to Tb by heating the adsorbent bed without desorption. The amount of heat 



28 

 

which should be transferred to the adsorbent bed to increase temperature of the bed 

from Ta to Tb is calculated by the following equation:   

 

           )()( max abplsabpssab TTcqmTTcmQ                      (3.10)  

 

 After the isosteric heating of the adsorbent bed, the heating process is 

continued. The next process is isobaric desorption process. The valve between the 

adsorbent bed and condenser is opened. Desorption process is started and water vapor 

is condensed in the condenser, while the pressure of the cycle remains constant. The 

amount of heat drawn from the environment can be calculated by the following 

relation: 
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The third term of equation, here, denotes the heat of adsorption. Since the heat 

of adsorption is a function of adsorbed amount, the difference between maximum and 

minimum adsorbed amounts is taken into account.  

The next process is isosteric cooling. The valve between the condenser and 

adsorbent bed is closed and the temperature of adsorbent bed (Tc), which is the 

maximum temperature of the cycle, is decreased to Td. During this process both the 

pressure and temperature of the adsorbent bed are decreased to the evaporator 

conditions. The amount of heat for isosteric cooling process is evaluated by the 

following equation:  

 

)()( max dcplsdcpsscd TTcqmTTcmQ                     (3.12) 

 

The cycle is completed by the last process which is isobaric adsorption process. 

The valve between the adsorbent bed and evaporator is opened and adsorbate is 

evaporated. During adsorption of the adsorbate in the adsorbent, heat is released due to 

heat of adsorption. This generated heat should be removed from the adsorbent bed and 

the bed temperature should be decreased to Ta. The amount of heat released to 

environment for isobaric adsorption process is given by equation 3.13 (Demir 2008): 
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The performances of the adsorption air-conditioning devices are defined by 

COPs. The cooling and heating COPs of an adsorption heat pump can be determined 

by equations 3.14 and 3.15 (Demir 2008): 
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3.2.4. Multi-bed Adsorption Heat Pump 

 

An adsorption heat pump with a single bed is named as intermittent adsorption 

heat pump, since it can not provide heating or cooling effect continuously. Condenser 

is not used while adsorbate is evaporating and flowing through the adsorbent bed. 

Multi-bed adsorption heat pump is a solution for the primary problem of an 

intermittent adsorption heat pump. The continuous heating or cooling processes can be 

achieved with addition of another adsorption bed to the system. For a two bed 

adsorption heat pump; as soon as the adsorption is completed in the first bed, the valve 

between bed and evaporator is closed and heating process takes start. At the same time 

the valve between the second bed and evaporator is open and adsorption begins in the 

second bed. Thus, continuous evaporation and condensation processes are achieved. 

The schematical view of two bed adsorption chiller used by Wang and Chua (Wang 

and Chua 2007) in their experimental study can be a good example for illustration of 

these systems (see Fig. 3.6).  
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Figure 3.6.  Schematic view of a two-bed adsorption cooling system  

(Source: Wang and Chua 2007) 

 
3.2.5. Comparison Among Heat Pumps 

 

As it was mentioned before, heat pumps are classified as mechanical and 

thermal heat pumps. Thermal heat pumps are also classified as absorption, chemical 

and adsorption heat pumps. The selection of these three devices may be decided 

according to their advantages and disadvantages. The advantage and disadvantages of 

these pumps are given in this section.  

Advantages of mechanical heat pump are:  

1. having a compact construction, 

2. having low cost, 

3. well known working principle.  

Disadvantages of mechanical heat pump are: 

1. using hazardous refrigerants,  

2. being noisy,  

3. need of periodic maintenance.  

The absorption heat pump which is a type of thermal heat pump and it has such 

advantages:  

1. the  use of primary and thermal energy sources,  

2. continuous working principle,  

3. using no hazardous materials, 
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4. well known working principle. 

Disadvantages of this device are: 

1. need of high third heat source temperature,  

2. the large size of device (prevents applicability),  

3. using corrosive materials which may damage the system with time.   

The advantage of adsorption heat pump system can be listed as:  

1. using waste, solar or geothermal heat sources directly,  

2. ability to use low temperature heat source according to the pair used, 

3. having no moving components, thus vibration and noise are prevented,  

4. using non-hazardous fluids such as water and methanol,  

5. Since the adsorbents and adsorbates can be used for years, the maintenance 

need is minimum,  

6. It can store energy and use it when required. 

It has disadvantages such as: 

1. providing non-continuous heating or cooling in case of using single bed, 

2. working under vacuum conditions; therefore the leakage prevention needs 

high technology, 

3. having not very common commercial production. 

 



32 

 

CHAPTER 4 

 

COMMON ADSORBENT-ADSORBATE PAIRS USED IN 

ADSORPTION HEAT PUMPS 

 

4.1. Adsorption 

 

The first scientific and quantitative work on adsorption was performed as early 

as 1773, by Schele and Fontana. Its use for cooling and heating applications was 

started in 1848 by Michael Faraday (Zhong and Critoph 2005). Adsorption is a surface 

phenomenon occurring at the interface of two phases, a solid and a fluid, in which 

cohesive forces including Van der Waals forces and hydrogen bonding are included. 

Solid, and the fluid adsorbed on the solid surface are called as adsorbent and adsorbate, 

respectively.  

Adsorption is different from absorption. In absorption, a substance diffuses into 

a liquid or solid to form a solution; while adsorption is an adhesion process of a fluid 

onto surface of a solid. Figure 4.1 shows the adhesion of fluid particles onto the 

surface of solid phase. The concepts as adsorbate, adsorptive and adsorbates are 

shown. They will be explained in details in next sections. The term sorption 

encompasses both adsorption and desorption processes. The desorption is the reverse 

process of adsorption. 

 

 

Figure 4.1. Illustration of adsorption phenomena 

http://en.wikipedia.org/wiki/Absorption_(chemistry)
http://en.wikipedia.org/wiki/Sorption
http://en.wikipedia.org/wiki/Desorption


33 

 

Adsorption is present in many natural physical, biological, and chemical 

systems, and is widely used in industrial applications such as dehumidification and 

water purification. Adsorption is a sorption processes in which certain adsorbates are 

selectively transferred from the fluid phase to the surface of insoluble, rigid particles 

suspended in a vessel or packed in a column. 

Similar to surface tension, adsorption is a consequence of surface energy. In a 

bulk material, all the bonding requirements (ionic, covalent, or metallic) of the 

constituent atoms of the material are filled by other atoms in the material. However, 

atoms on the surface of the adsorbent are not wholly surrounded by other adsorbent 

atoms and therefore can attract adsorbates. The exact nature of the bonding depends on 

the details of the species involved, but the adsorption process is generally classified as 

a physical process referred to as physical adsorption, or physisorption, caused by Van 

der Waals forces, or a chemical process referred to as chemical adsorption or 

chemisorption, involving valency forces (Srivastava and Eames 1998). Chemical and 

physical adsorption can be distinguished by following properties; 

 Physisorption is generally reversible process but chemisorption is 

irreversible process. 

 Physisorption may occur as multilayer adsorption, chemisorption only 

takes place as monolayer adsorption. 

 Physisorption occurs with polarization of adsorbate molecules. In 

chemisorption, there is bond formation between adsorbate and surface 

of adsorbent. 

 Physisorption is always exothermic and evolved energy is not much 

larger than the energy of condensation of adsorptive. The energy of 

chemisorption is nearly the same as the energy in chemical reaction 

(Rouquerol et al. 1999). 

 The adsorption behavior such as maximum capacity, isotherm type and heat of 

adsorption depends on the properties of adsorbent and adsorbate and the interaction 

with each other. Maximum capacity can be defined as the possibility of maximum 

adsorbed adsorbate amount onto the corresponding adsorbent. Therefore it is a concept 

which is concerned to the interaction between adsorbent and adsorbate. Isotherm type 

is the definition of adsorption equilibrium in terms of plots at constant temperatures. 

http://en.wikipedia.org/wiki/Water_purification
http://en.wikipedia.org/wiki/Surface_tension
http://en.wikipedia.org/wiki/Surface_energy
http://en.wikipedia.org/wiki/Bulk_material
http://en.wikipedia.org/wiki/Ionic_bond
http://en.wikipedia.org/wiki/Covalent_bond
http://en.wikipedia.org/wiki/Metallic_bond
http://en.wikipedia.org/wiki/Atoms
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Since, adsorption is an exothermic process, there is a term called as heat of adsorption. 

It is the heat evolved by the pair during the adsorption process.   

 

4.2. Adsorbents  

 

 Adsorbents are the substances which are usually porous in nature and have high 

surface area. They can adsorb the adsorbate onto their surfaces by intermolecular 

forces. In order to decide the adsorbent being used, the properties of the adsorbent 

should be well known. The thermophysical requirements for an adsorbent in order to 

be used in an adsorption heat pump and their explanations can be listed as: 

 good compatibility with adsorbate, 

 high surface area: as the surface area gets larger, adsorption surface 

increases, 

 high adsorption capacity: depends on the interaction with adsorbate, 

 quick response of adsorption capacity to temperature change: the 

change of temperature during the operation of adsorption heat pump is 

an important parameter, 

 high thermal conductivity: the heat transferred along the bed depend on 

the conductivity of adsorbent,  

 high mass diffusivity: the diffusion of adsorbate through the pores of 

adsorbent should be high in order to achieve high power within the 

system, 

 thermal stability: the durability of material is important due to long life 

usage of the system. 

 Additionally, structural properties of adsorbent such as nature of material and 

pore dimensions are the noteworthy parameter that should be taken into consideration. 

Adsorbents can be classified into three groups by their structures, by the size of 

the pores inside and by the nature of their surfaces. 

1. By nature of their structure: 

 Amorphous adsorbents: They have a specific surface area in the 

range of 200-1000 m
2
/g, generally. Pore size distribution might be 

very wide. 
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 Crystalline adsorbents: The dimensions of the micropores are 

determined by the crystal framework. The crystals are generally 

quite small and they are aggregated with a suitable binder. 

2. By the size of their pores: 

 Microporous: adsorbents with pores having diameter smaller than 20 Å. 

 Mesoporous: adsorbents with pores having diameter between 20 Å and 

500 Å. 

 Macroporous: adsorbents with pores having diameter larger than 500 Å. 

Figure 4.2 and 4.3 show the macro-, meso- and micro- dimensions of a porous 

particle in order to illustrate the dimensions of pores. 

 

 

Figure 4.2. Schematical view of pore dimensions 

 

3. By the nature of their surfaces 

 Polar or hydrophilic:  Water which is a polar molecule is very strongly 

adsorbed due to electrostatic forces onto these adsorbents. 

 Non-polar of hydrophobic: Water is weakly adsorbed on any non-polar 

surfaces. 

The most common adsorbents used in adsorption heat pumps are zeolite, silica 

gel, active carbon and activated alumina. The physical structures and behaviors of 

adsorbents and adsorbates are crucial in selection of the proper working pair.  
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Figure 4.3. Illustration of a porous structure 

 

4.2.1. Properties of Common Adsorbents 

 

4.2.1.1. Silica Gel 

 

Silica gel (SiO2.xH2O) is a type of amorphous synthetic silica compound. It is a 

rigid, continuous net of colloidal silica, connected to very small grains of hydrated 

SiO4. Structure of silica gel is given as an illustration in Figure 4.4. The hydroxyl in 

the structure is the adsorption center because it has a polar structure and can form 

hydrogen bonds with polar oxides, such as water and alcohol. The adsorption ability of 

silica gel increases with the increasing polarity. One hydroxyl can adsorb one molecule 

of water (Wang et al. 2009).  

Silica gel retains chemically bonded traces of water (about 5%). If it is 

overheated (over 150 °C) and loses this water, its adsorption capacity is lost. 

Therefore, it is generally used in temperature applications under 130 °C. The removal 

of adsorbate from the surface of silica gel occurs at respectively lower temperatures 

such as 110-120 °C. Since desorption temperature of silica gel is not high, the 

maximum temperature of the bed that should be reached is relatively low. This is the 

most advantageous property of silica gel in order to use in an adsorption heat pump 

due to ability of using low temperature heat sources such as waste heat, solar and 

geothermal energy. Therefore, the decrease in cycle time occurs and higher COP 

values can be achieved in the adsorption heat pump device. 
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Figure 4.4. Bonding structure of silica gel 

 

Silica gel is available in various pore sizes. It has an average pore diameter of 

30 Å. Its average surface area is around 600 m
2
/g. It nearly has 0.180 W/mK of 

thermal conductivity. 

 Since the adsorption performance of silica gel depends mainly on its surface 

area and pore distribution, types of silica gel which are classified according to their 

pore sizes, should be investigated. The most commonly used silica gel types are Type 

A, Type B, Type 3A and Type RD. Some structural properties, such as specific surface 

area, pore size, pore volume, average pore diameter, apparent density, pH, mesh size 

and water content, and also thermo-physical properties such as specific heat capacity, 

thermal conductivity of common silica gel types are listed in Table 4.1 (Ng et al. 2001; 

Chua et al. 2002). Due to its high surface area and higher thermal conductivity, Type 

RD silica gel seems as the better one along these four types. 

 

Table 4.1. Structural and thermophysical properties of silica gel types 

  Type A Type B Type 3A Type RD 

Specific Surface Area (m
2
/g) 650 550 606 720 

Porous Volume (ml/g) 0.3 0.6 0.45 0.35 

Pore Size (nm) 0.8-5 0.7-5 - 0.8-7.5 

Micropore Volume (%) 57 - - 49 

Mesopore Volume (%) 43 - - 51 

Average Pore Diameter (nm) 2.2 5.2 3.1 2.1 

Apperant Density (kg/m
3
) 730 - 770 800 

pH  5 - 3.9 4 

Water Content (wt. %) <2.0 - 0.87 - 

Specific Heat Capacity (kJ/kg K) 0.921 - 0.921 0.921 

Thermal Conductivity (W/m K) 0.174 - 0.174 0.198 

Mesh Size 10-40 - 60-200 10-20 

Isotherm Type II V II I 

 

The surface characteristics and the pore structure of types are the determining 

factors which affect the adsorption equilibrium. Type A and type RD silica gels are the 

most preferred types and they have many physical similarities. Although type RD 
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silica gel has a slightly higher thermal conductivity than the type A silica gel, the most 

significant difference between these two types of silica gel is their maximum 

adsorption capacity features. Type RD silica gel had been commonly employed for the 

adsorption chiller as the adsorbent by the chiller manufacturers.  Chua et al. 

experimentally studied the isotherm characteristics of Fuji Davison type A and type 

RD silica gels. The experimental results were also compared by manufacturer‘s data. 

Type RD silica gel could achieve around 45% of water uptake at 30°C, while type A 

could adsorb around 40% at that temperature. 

Li et al. experimentally studied the isotherm characteristics of silica gel types. 

Silica gels used in this study were purchased from Qingdao Haiyang Chemical Co., 

Ltd and Special Silica Gel Factory (Qingdao,China). They resulted that, the isotherm 

of the water vapor on the A-type silica gel with an average pore diameter of 2 nm was 

of type I, which can be well described by the Langmuir model. The isotherm of the 

water vapor on the B-type and the C-type mesoporous silica gels with average pore 

diameters of 5.28 nm and 10.65 nm, respectively, were of type V (Li et al. 2007). 

 
 

4.2.1.2. Zeolite 

 

Zeolites are crystalline hydrated alumina silicates of group 1 and group 2 

elements. Crystalline structures are composed of tetrahedral units, at the center of 

silicon (Si) atom which is surrounded with four oxygen atoms. Molecular structures of 

different zeolites can be shown as in Fig. 4.5. In the figure, a is the chain of fibrous 

zeolites; b is the singly connected 4-ring chain; c is the doubly connected 4-ring chain; 

d is the 6-ring (single); e is the 6-ring (double) and f is the 4-4-1-1 heulandite unit. 

 In each drawing, the balls represent tetrahedra (SiO4
4-

 or AlO4
5-

) and the bars 

represent oxygen atoms shared by the tetrahedral structure (Gottardi and Galli 1985). 

 Zeolites are also known as molecular sieves. The term molecular sieve refers to 

a particular property of these materials, i.e., the ability to selectively sort molecules 

based primarily on a size exclusion process. This is due to a very regular pore structure 

of molecular dimensions. The maximum size of the molecular or ionic species that can 

enter the pores of a zeolite is controlled by the dimensions of the channels. These are 

conventionally defined by the ring size of the aperture, where, for example, the term 

"8-ring" refers to a closed loop that is built from 8 tetrahedrally coordinated silicon (or 

http://en.wikipedia.org/wiki/Molecular_sieve
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aluminum) atoms and 8 oxygen atoms. These rings are not always perfectly 

symmetrical due to a variety of effects, including strain induced by the bonding 

between units that are needed to produce the overall structure, or coordination of some 

of the oxygen atoms of the rings to cations within the structure. 

 

 
 

Figure 4.5. The structural units defining different zeolite types 

(Source: Gottardi and Galli 1985) 

 

  Zeolite molecular sieves are mostly microporous adsorbents and the pore sizes 

are uniform throughout the particle. The regularity of their pore size structure makes 

them especially convenient for adsorption applications. They have high surface area 

such as 800-1000 m
2
/g. They can adsorb polar and non-polar molecules if appropriate 

conditions are provided; and they can adsorb water vapor with high heats of adsorption 

even at very low concentrations (Ülkü 1991).  

 

Table 4.2. Structural and thermophysical properties of zeolite types 

 4A 5A 13X 
Natural  

Zeolite 

Specific Surface Area (m
2
/g) - ~ 600 ~ 700 - 

Porous Volume (ml/g) - - - - 

Pore Size (Å) 10-15 12 8 4 

Micropore Volume (%) 67 82 - - 

Mesopore Volume (%) 33 28 - - 

Average Pore Diameter (nm) - - - - 

Apperant Density (kg/m
3
) - - - 650-850 

Water Content (wt. %) 5 5 - - 

Specific Heat Capacity (kJ/kg) 1.07 1.07 1.07 - 

Thermal Conductivity (W/m K) - - - 0.155 

Isotherm Type I I I I 

 

Commercial zeolites are classified as natural and synthetic zeolites. The main 

usage of natural zeolite as adsorbent are as drying agents, deodorants, adsorbents for 
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air separation, ion exchangers for water purification especially for removing 

ammonium ion and heavy metal ions and for water softening, soil upgrading etc.   

The artificial zeolites 3A, 4A, 5A, 10X and 13X are the main types used for 

adsorption refrigeration. The 4A type zeolite contains Na
+
 ion and it permits molecules 

smaller then 4Å to enter through the blank sites. If K
+
 ion is replaced instead of Na

+
 

ion, the effective site size becomes 3Å. Under these conditions, molecules which are 

greater than H2O and NH3 molecules are not able to penetrate through the pores. This 

type is called as 3A (KA) zeolite. If Ca
+2

 ion is replaced instead of Na
+
 ions, in this 

case the site gets larger and it has a pore diameter around 5Å. This type is called as 5A 

(CaA) zeolite. Type X zeolites has much larger open sites and usually called as 13X 

(Suzuki 1990). Zeolite 13X is used mostly in case of its high adsorption capacity and 

average heat of adsorption which is about 4400 kJ/kg when it is used with water. The 

zeolites are usually employed in adsorption air conditioner systems with a heat source 

between 200-300 °C. Some thermophysical properties for several zeolite types are 

given in Table 4.2 (Demir et al. 2006; Tamainot-Telto et al. 2009). Type 13X zeolite is 

the most common zeolite used along these four types in adsorption heat pump studies. 

 

4.2.1.3. Active Carbon 

  

Activated carbons are produced through the activation of carbonaceous 

materials such as coal, wood, coconut shell, fossil oil, bone, peat and high polymers.. 

The activated carbon is composed of multiple carboatomic rings. The original 

carbonaceous material and applied activation process determines the functional groups 

on the surface of activated carbon and the adsorption performance is influenced by the 

functional groups that are connected to the carboatomic ring. Arene group connected to 

the ring increases adsorption, while sulfonic group decreases it.  

Activation method and technology also determines adsorbent‘s tridisperse 

porous texture (macroporous, microporous, mesoporous structure). However, activated 

carbons mostly have microporous structure. This adsorbent is available in various 

forms such as powdered, granular, molecular sieves and carbon fibers. The structure of 

activated carbon is near to the structure of graphite. The structure of active carbon is 

illustrated in Figures 4.6 and 4.7. 
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Figure 4.6. Schematic structure of active carbon  

 

Its surface feature distinguishes the activated carbon from other adsorbents. 

The whole surface of activated carbon is covered by an oxide matrix and by some 

inorganic materials (Zhong and Critoph 2005). The other unique surface property of 

activated carbon, in contrast to the other major adsorbents, is that its surface is 

nonpolar or only slightly polar as a result of the surface oxide groups and inorganic 

impurities. The average specific surface area of activated carbon is approximately 1000 

m
2
/g. The heat of adsorption of activated carbon pairs is lower than others. 

 

 
 

Figure 4.7. Structure of active carbon (SEM visualization)  

 

Because of its large, accessible internal surface and large pore volume, active 

carbon adsorbs more non-polar and weakly polar organic molecules than other 

adsorbents do. For example, the amount of methane adsorbed by activated carbon at 1 

atm and room temperature is approximately twice that adsorbed by an equal weight of 

molecular sieve 5A. The heat of adsorption, or bond strength, is generally lower on 

activated carbon than on other adsorbents. 

 Although active carbon has a nonpolar structure; it is not a hydrophobic 

adsorbent. The sorption of water vapor on activated carbon follows a Type V with a 

sigmoidal or S-shaped curve.  
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Table 4.3. Structural and thermophysical properties of active carbon types 
 

 
Active 

Carbon 

Granular 

Carbon 
A. C. Fibers 

Monolithic 

Carbon 

Specific Surface 

Area (m
2
/g) 

ACX21: 3000 

(Yaping and 

Li 1996) 

700 – 1500 

(Hamamoto et 

al. 2006) 

~ 250 (Hamamoto 

et al. 2006) 
- 

BET Surface 

Area 
- - 

895 (Tamainot-

Telto et al. 2009) 

ACF15: 900 

ACF20: 1610 

ACF25: 2420 (Cal 

et al. 1994) 

- 

Porous Volume 

(ml/g) 

1.5 (Yaping 

and Li 1996) 
- 

ACF15: 0.330 

ACF20: 0.628 

ACF25: 0.655 (Cal 

et al. 1994) 

- 

Pore Size (Å) - - 
9.8 (Tamainot-

Telto et al. 2009) 
- 

Micropore 

Volume (cm3/g) 
- - 

0.43 (Tamainot-

Telto et al. 2009) 
- 

Average Pore 

Diameter (nm) 

1.2 – 4.0 

(Hamamoto et 

al. 2006) 

1.2 -3.5 

(Hamamoto et 

al. 2006) 

ACFA20: 2.160 

ACFA15: 2.175 

(El-Sharkawy et al. 

2006) 

-- 

Density (kg/m
3
) 

450 (Yang 

2003) 

2000 (Hassan 

et al. 2011) 

366 – 500 

(Tamainot-

Telto et al. 

2009) 

466 -  500 

(Zhong and 

Critoph 2005) 

104-384 (Tamainot-

Telto et al. 2009) 

773 - 750 

(Zhong and 

Critoph 2005) 

LM127: 750 

LM128: 715 

(Tamainot-Telto 

and Critoph 

2001) 

Specific Heat 

(kJ/kgK) 

920 (Yang 

2003) 

711 (Hassan 

et al. 2011) 

6500 (Demir et 

al. 2006) 
- 

8000 (Tamainot-

Telto and 

Critoph 2001) 

Thermal 

Conductivity  

(W/m K) 

1.6 (Hassan et 

al. 2011) 

0.1 (Zhong and 

Critoph 2005) 

0.16 

(Tamainot-

Telto and 

Critoph 2001) 

ACF15: 0.104 (Cal 

et al. 1994) 

0.27-0.34 

(Zhong and 

Critoph 2005) 

0.40 (Demir et 

al. 2006) 

LM 127: 0.44 

LM128: 0.35 

(Tamainot-Telto 

and Critoph 

2001) 

Isotherm Type I I I - 

 

Active carbon fiber (ACF) is a type of active carbon with a higher adsorption 

capacity. Synthetic fibers such as polyacrylonitrile (PAN), coal tar (pitch), phenolic 
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resin and viscose rayon are carbonized at high temperature in inert atmosphere and 

activated carbon fiber is prepared by careful activation (Hamamoto et al. 2006). These 

carbon fibers have high tensile strength, high elasticity and contain considerable more 

graphite than activated carbon because a mesophase is usually formed during the 

carbonization process of the fibers. Adsorption rate of the fiber is also faster than that 

of the granule. This is attributed that outer surface area, which is 0.5 m
2
/g, of the fiber 

is higher than that of the granule. Figure 4.8 illustrates the porous structure difference 

between these two active carbon types. The outer surface area of the grain is 0.01 m
2
/g. 

The micro pores are exposed on the surface of a fiber. Therefore, refrigerant vapor 

reaches at the adsorbent site easily. 

 

 

    a) active carbon fiber                         b) granular active carbon 

 

Figure 4.8. Schematic views of active carbon fiber and granular activated carbon 

(Source: Hamamoto et al. 2006)  

 

Some structural and thermo-physical properties for four different types of 

active carbons are given in Table 4.3. Each type of active carbon has better properties 

for different cases. For example monolithic carbon has higher specific capacity than 

other types, while ACX21 has much higher specific surface are than others. The 

selection of right active carbon has to be done according to the parameters and 

requirements of the adsorption heat pump. 
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4.2.1.4. New Working Materials 

 

The adsorption behavior properties of pairs lead the differences in performance 

of adsorption conditioning devices, as mentioned before. As soon as the properties are 

improved, the performance of these devices would be increased. The discovery of new 

microporous materials for the use in adsorption heat pump processes is now promising 

research topic in order to achieve more efficient adsorption processes and have higher 

efficiencies in adsorption air-conditioners. Exciting improvements and numerous 

publications on these studies were presented in literature. 

The new type porous materials are produced with the improvements of 

conventional adsorbents. In example, a family of new composite sorbents has been 

developed. These materials are called selective water sorbents (SWSs). They are two-

phase systems which consist of a porous host material with pores (silica gel) and salt 

compounds (CaCl2, LiBr, etc.) impregnated to its pores (Aristov et al. 2002; Aristov 

and Gordeeva 2009). The salt interacts with adsorbate to increase the adsorption 

capacity. Since SWS is a silica gel based matrix, it is commonly paired with water in 

reported literature studies. 

The production of these novel materials is assessed by impregnation process. 

The impregnation process starts with the preparation of an aqueous solution of salt. 

The solution was kept under ambient temperature for two hours and stirred up for 

facilitating and accelerating the dissolution process, and preventing crystallization. The 

process continues with the immersion of the host matrix in that solution and kept in for 

twelve hours in order to let salt to penetrate into the pores of adsorbent. The last step is 

the drying process. The silica gel + solution material is dried under an average 

temperature of 80 °C; the water is removed throughout the matrix. The preparation of 

‗a salt in a porous matrix‘ is completed by that way (Daou et al. 2008). 

The impregnated adsorbents (SWS‘s) are named according to their host 

matrices and salts; in example SWS-1L is the name of calcium chloride (1) 

impregnated to mesoporous silica gel (L). SWS-2L is the name of lithium bromide (2) 

impregnated to mesoporous silica gel (L) and SWS-1S is the name of calcium chloride 

(1) impregnated to microporous silica gel (L).The researchers experimentally studied 

the performance of SWS‘s. Aristov et al. resulted that composite materials based on 

CaCl2 and LiBr as the impregnated salts and on microporous and mesoporous silica 
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gels as the host materials were able to adsorb up to 75% by weight. Figure 4.9 shows 

the comparison of isobar plots of conventional silica gels and SWSs which were 

experimentally performed by Aristov et al. (Aristov et al. 2002). As it can be seen 

clearly, at the same pressure and temperature, impregnated materials have higher 

adsorption capacities than the conventional ones. SWS-2L has the biggest adsorption 

capacity along three selective sorbents. The regeneration temperature was found to be 

between 70 and 120 °C. Thus, SWS materials were applicable for low temperature heat 

sources. The disadvantage for these materials was found as the low diffusion rate. As 

soon as the rate is decreased, the complete adsorption time is increased so that the 

cycle time for refrigeration is increasing.  

Another novel adsorbent studied on is a zeolite based material which is named 

as functional adsorbent material (FAM). FAM-Z01 is a molecular sieve having one-

dimensional structure with 0.73 nm windows and its framework consists of AlO4, PO4 

and FeO4 tetrahedrons, where Al and P atoms are partially substituted by Fe atoms. 

FAM-Z01 was synthesized from iron-containing aluminophosphate gels in the 

presence of organic amines under the hydrothermal condition. 

 

 

Figure 4.9. Comparison of 25 mbar isobars of different adsorbents 

(Source: Aristov et al. 2002) 
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 FAM-Z02 is a novel molecular sieve having three-dimensional structure. The 

structure has large ellipsoidal cages. Small guest molecules, such as water, can diffuse 

into the cages through 0.38 nm windows. FAM-Z02 framework consists of AlO4, PO4 

and SiO4 tetrahedrons, where Al and P atoms are partially substituted by Si atoms.  

 Water vapor adsorption isotherms and physical properties of FAM-Z01 and 

FAM-Z02 were studied experimentally by Kakiuchi et al. (Kakiuchi et al. 2004) and 

the adsorbents were found to have different behaviors than other conventional 

adsorbents. Figure 4.10 and Table 4.4 give the isotherm graph and some physical 

properties of their experimental results, respectively. As seen in Figure 4.10, at low 

relative pressure ranges, FAMs can adsorb high amounts of water vapor compared to 

conventional silica gel and active carbons. Water vapor adsorption isotherm of 

FAMZ01 gives type V isotherm, while FAMZ02 is near to type I isotherm. The knee 

shape for both adsorbents is sharper than conventional adsorbent isotherms. From the 

table, it can be seen that thermophysical properties of FAMZ02 are mostly higher than 

FAMZ01‘s; therefore a higher adsorption capacity was achieved by FAMZ02 as seen 

from its isotherm plot. 

 

 

Figure 4.10. Comparison of 25 °C isotherm of FAMZ01 and FAMZ02  

(Source: Kakiuchi et al. 2004) 

  

 Metal-Organic Frameworks (MOFs) are also new studied materials emerging 

class of microporous materials possessing unique features such as huge surface areas, 

large pore volumes. With improvements on studies, extremely high surface areas up to 
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5000 m
2
/g have now been reported for several MOFs. According to the elements 

inside, MOFs may be named as MIL100, MIL101 etc. As the result of experimental 

studies, MIL101 was found to have an impressive water loading of 103 % at 40 °C and 

5.6 kPa, which is the largest water adsorption capacity reported so far (Henninger et al. 

2011). Table 4.5 shows the water adsorption capacity and heat of adsorption data for 

several MOF types. As seen, the minimum water vapor adsorption is for any type of 

MOF is even near to 60 %. Adsorption capacity values are extremely higher than the 

water adsorption capacities of conventional adsorbents (Bauer et al. 2009). 

 AIPO adsorbents are also novel materials which are the improved forms of 

zeolite molecular sieves. They were found to provide promising sorption properties 

among typical boundary conditions of adsorption refrigerators. The structures of AlPO 

zeolites are formed by altering (AlO4)
-
 and (PO4)

+
 tetrahedrons resulting hydro-philic 

properties. S-shaped water sorption isotherms and low desorption temperatures have 

been measured for different types of AlPO. Presence of aluminum in the adsorbent 

increases the thermal conductivity of the material and it possesses higher power due to 

lower cyclic times.  

  

Table 4.4. Thermophysical properties of FAMZ011 and FAMZ02 

  FAMZ01 FAMZ02 

Bulk Density g/ml 0.6-0.7 0.6-0.7 

Particle size Μm 100-2000 100-2000 

Thermal conductivity W/mK 
0.113 (303 K) 

0.123 (343 K) 

0.117 (303 K) 

0.128 (363 K) 

Heat of adsorption 

(H20, 298 K) 

kJ/mol 56.0 58.3 

kJ/g H20 3.11 3.24 

Specific heat J/gK 
0.805 (303 K) 

0.896 (343 K) 

0.822 (303 K) 

0.942 (363 K) 

  

 Incorporation of silicon atoms into an AlPO framework forms another novel 

material which is called as SAPO. High adsorption capacities at specific operating 

conditions have been measured for different AlPO and SAPO structures (Bauer et al. 

2009). Figure 4.11 shows the isotherm graph for experimental results of study 

performed by Bauer et al. (Bauer et al. 2009). Maximum adsorption capacities of 0.07–

0.20 g adsorbed water per gram AlPO(Al) or SAPO(Al) composite adsorbent are 

reached varying according to the layer thicknesses. 
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Table 4.5. Adsorption capacity and heat of adsorption for water vapor adsorption on 

       different MOFs (Source: Henninger et al. 2011) 
  

 
Relative 

Pressure 

Adsorption Capacity 

(kg/kg) 

Heat of Adsorption 

(kJ/mol) 

MIL-101 (Cr) 0.921 1.01 46.6 

MIL-101 0.9 1.03 45.13 

MIL-100 (Al) 0.899 0.568 - 

MIL-100 (Fe) 0.9 0.651 48.83 

 

 In this section, the studies on novel materials and the adsorption behaviors of 

materials were summarized. The usage of these novel materials in adsorption heat 

pumps will be applicable as soon as the experimental studies are performed on this 

area. 

                         

 

 

Figure 4.11. Experimental water adsorption isotherm results for different AlPO(Al) 

           and SAPO(Al) composite adsorbents [1-4: SAPO-34, 5: SAPO-18, 

           AIPO-18, AIPO-5] (Source: Bauer et al. 2009) 

   

4.3. Adsorbates 

 

Adsorbable substance in the fluid phase is called as adsorptive. Adsorptive 

tends to diffuse into the pores of the adsorbent. The substance in the adsorbed state is 

called adsorbate. The commonly used adsorbates for adsorption heat pumps are water, 

methanol, ethanol and ammonia. The thermophysical properties of a proper adsorbate 

which should be considered are (Sumathy et al. 2003): 
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 latent heat, 

 freezing and boiling point, 

 saturation vapor pressure, 

 viscosity, 

 non-toxicity, non-flammability and non-corruption, 

 good thermal stability. 

Some thermophysical properties of adsorbates such as boiling point, latent heat 

of vaporization and density, for adsorption systems are shown in Table 4.6. 

 
Table 4.6. Some thermophysical properties of common adsorbates  

(Source: Perry and Green 2008) 

a 

Adsorbate 
Chemical 

Formula 

Normal 

Boiling 

Point 

(°C) 

Normal 

Freezing 

Point 

Molecular 

Weight 

Water H2O 100 0 18.01 

Ammonia NH3 -34 -78 17.03 

Methanol CH3OH 65 -97 32.04 

Ethanol C2H5OH 79 -114 46.07 

R-134a C2F4H2 -26.3 -103.3 102.03 

Diethyl ether C4H10O 34.6 -116.3 74.12 

        

b 

Adsorbate 

Latent Heat of 

Vaporization 

(kJ/kg) 

Density        

ρ       

(kg/m
3
) 

Specific 

Heat 

(kJ/kgK) 

Thermal 

Conductivity 

(W/mK) 

Water 2258 958 4.186 0.609 

Ammonia 1368 681 4.391 0.507 

Methanol 1102 791 1.917 0.202 

Ethanol 842 789 2.442 0.171 

R-134a 215 4.25 - - 

Diethyl ether - 558 1.611 - 

 

Adsorbates with boiling point below -10 °C at 1 atm are positive pressure 

refrigerants, whereas the other ones are vacuum refrigerants. Ammonia is an example 

of positive pressure refrigerant. Methanol is normally used in association with 

activated carbons or activated carbon fibers. Water could be considered as a perfect 

refrigerant, except for its low saturation pressure and for the impossibility to produce 

temperatures below 0 °C. Water is normally employed in pair with silica gel or zeolite 
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(Wang et al. 2009). Ethanol is commonly employed with active carbon as the 

adsorbent, however after 2000s; it was also seen as paired off with silica gel, in 

literature. R-134a and diethyl ether are also newly studied fluids. They were used with 

active carbon, by Saha and Al-Ghouti (Saha et al. 2009; Al-Ghouti et al. 2010); 

however, R1-134a is a non-environmental friendly and diethyl ether is a corrosive 

fluid. Besides, for these two adsorbates, adsorption equilibrium properties were not 

reported yet. 

 The saturation pressure quantities for varying temperatures of these common 

adsorbates are used in the equilibrium determination relations. The saturation pressure 

equations and equation constants are given in Section 5.3.10 for the common 

adsorbates used in adsorption heat pumps. 

 

4.4. Required Properties 

 

The selection of appropriate adsorbent-adsorbate pair is vitally important for an 

adsorption heat pump system. Main requirements for an adsorbate are having high 

latent heat, non-corrosivity, non-toxicity and, good thermal and chemical stability 

within the working temperature and pressure ranges. On the other hand, adsorbents 

should have high adsorption capacity, high thermal conductivity and diffusivity, and 

also thermal stability.  

After decision on adsorbent and adsorbates, the behavior of pair and interaction 

between them due to adsorption should be investigated. The adsorption and desorption 

temperatures and maximum adsorption capacity as well as evaporation and 

condensation temperatures, hysterisis upon thermal cycling, cyclic repeatability, heat 

of adsorption, diffusion rate of adsorbate in adsorbent particle and isotherm type 

should be the considering features for selection of a proper adsorbent-adsorbate pair 

(Gregg and Sing 1982). 

In adsorption heat pumps, both the adsorption and desorption processes are 

used so that the process should be reversible to provide repetition of the same cycle. 

Therefore, the interaction between adsorbent and adsorbate must be a physical type 

adsorption. Silica gel-water, zeolite-water, active carbon-methanol, active carbon-

ammonia and activated alumina-water are the common adsorbent-adsorbate pairs used 

in adsorption heat pump systems (Srivastava and Eames 1998). 
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4.5. Common Pairs used in Adsorption Heat Pumps 

 

Gas adsorption systems normally do not only differ in their adsorption capacity, 

but also in their kinetic behavior, in example, spontaneity of uptake or release of gas 

upon increase or decrease of adsorptive gas pressure (Keller and Staudt 2005). The 

structures and properties of common adsorbents and adsorbates are presented in details 

in previous section. The investigation of affinity of adsorbent and adsorbate is an 

important issue due to its usage in an adsorption heat pump. 

 

Table 4.7. Thermophysical properties of some common adsorbent-adsorbate pairs 
 

Adsorbent – 

adsorbate 

Maximum 

adsorption 

capacity 

(kg/kg) 

Average heat 

of adsorption 

(kJ/kg) 

Adsorbent 

specific 

heat 

(kj/kg) 

Energy 

density 

(kj/kg) 

Temp. 

range 

(°C) 

Silica gel – water 0.37 2560 0.88 1000 30-150 

Silica Gel – water 0.20 2500 1.045 600 20-130 

Activated alumina 

– water 
0.19 2480 1.00 660 30-250 

Zeolite 4A – water 0.22 4400 1.05 1250 30-350 

Zeolite 5A – water 0.22 4180 1.05 1200 30-350 

Zeolite 10A – 

water 
0.20 4000 - 897 50-250 

Zeolite MgA – 

water 
0.29 3400 1.06 800 60-250 

Zeolite 13X – 

water 
0.27 - 0.84 930 20-300 

Zeolite 13X – 

water 
0.27 3400 1.06 1200 30-350 

Zeolite 13X – 

water 
0.30 4400 0.92 1290 30-350 

Zeolite 4A – 

methanol 
0.16 2300 1.07 - - 

Zeolite 5A – 

methanol 
0.17 2300 1.07 - - 

Zeolite 13X – 

methanol 
0.20 2400 1.07 - - 

Activate carbon - 

methanol 
0.32 1400 0.9 590 20-140 
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The most common pairs used in adsorption heat pumps are silica gel – water, 

zeolite – water, active carbon – methanol, active carbon – ammonia and active carbon 

– ethanol. The detailed information about these common pair behaviors will be given 

in this section. Some thermophysical properties for common adsorbent -adsorbate pairs 

used in solar adsorption heat pumps will be given in Table 4.7 (Gregg and Sing 1982; 

Ülkü and Mobedi 1989). 

As an overview of Table 4.7, it could be seen that the maximum adsorption 

capacity among all pairs is achieved by active carbon-methanol pair. Zeolite-water pair 

has high heat of adsorption quantities. The working temperature range is small for 

silica gel-water pair due to structure of silica gel. The properties for the pair vary 

according to the type of adsorbent selected. Even the same type of an adsorbent may 

vary according to the manufacturer. As seen, silica gel-water and zeolite 13X-water 

pairs are presented with different thermophysical properties in the table. This is due to 

the change on structure of adsorbent in case they are produced by different 

manufacturers. Detailed information about pairs is given separately in further sections.   

 

4.5.1. Silica Gel – Water 

 

 Since early 1980s, the work on silica gel – water systems have been popular 

and a lot of study was carried out. Silica gel-water is a low temperature working pair, 

which can be driven by about 75 °C heat source. For adsorption based air-conditioning 

systems the isotherm of silica gel is more advantageous, allowing one to operate the 

process in a wide rage of pressure (0.1 < P/Psat < 0.6) with fairly large amounts of 

water vapor to be either adsorbed or desorbed upon pressure increase or decrease in 

this region (Keller and Staudt 2005). Silica gel-water refrigeration system is better to 

be applied in the air-conditioning with large circulation flow rate of chilled water, 

where a higher evaporating temperature can be used (Sumathy et al. 2003).  

 The average heat of adsorption for this pair is about 2500 kJ/kg and the 

desorption temperature is lower than other pairs. The maximum adsorption of water 

vapor onto pure silica gel is about 25% kg water/kg silica gel for atmospheric 

pressures.  

As the disadvantage of the pair, it does not work at temperatures below 0 °C 

(Wang et al. 2009) and it can not be used in ice-making adsorption refrigerators.  
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4.5.2. Zeolite – Water 

 

Zeolite – water pair is preferable for its high adsorption capacity. The average 

value of adsorption heat for zeolite – water pair is higher than that of silica gel – water 

pair, and is about 2700-4200kJ/kg. Natural zeolites with a heat of adsorption of 2800 

kJ/kg were found to be more suitable for cooling systems than synthetic zeolites 

having a heat of adsorption of 4200kJ/kg (BenAmar et al. 1996). This is due to the fact 

that with lower heat of adsorption, the adsorbent bed can be cooled more effectively.  

Zeolite is an adsorbent which is stable at high temperatures. Hence, zeolite – 

water pair can be used to recover heat at temperature above 200°C. At the same time, it 

is a disadvantage due to need of high temperature heating sources for desorption. The 

disadvantage of the pair is similar to the disadvantage of the silica gel – water pair and 

it can not work at evaporation temperatures below 0 °C. The pair should be used at 

vacuum conditions; therefore the systems constructed for using zeolite–water pair 

requires great attention to prevent leakage. 

 

4.5.3. Active Carbon – Methanol 

 

Active carbon – methanol pair is the most common pair used in solar 

adsorption applications because of its high cyclic adsorption capacity. The pair 

possesses a high vapor pressure in the adsorbent bed. A higher vapor pressure would 

result a larger overall heat transfer coefficient. As soon as the heat transfer coefficient 

increases, cycle time decreases. The desorption temperature of this pair is low.  It leads 

a lower heat source for desorption process, so that the renewable energy sources are 

applicable.  It has been reported in literature that maximum COP for the devices using 

activated carbon is achieved when it is paired off with methanol. Over 150°C, 

activated carbon would catalyze methanol to decompose into dimethyl ether, thus the 

working temperature range of active carbon-methanol pair is small. 

Active carbon fiber – methanol pair has an adsorption capacity reaching up to 

0.55 kg of methanol/kg of ACF. Disadvantages of active carbon-methanol systems are 

need of high vacuum in the system, the use of methanol which can act as a corrosive 

fluid through the system and active carbon has a very low thermal conductivity which 

is near to thermal conductivity of insulation materials (Sumathy et al. 2003). 
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4.5.4. Active Carbon – Ammonia 

  

Active carbon – ammonia pair works at high pressure such as 1.6 MPa, unlike 

other pairs. Systems using this pair should be designed according to high pressures. 

Working at high pressure has an advantage as shortening the adsorption time due to 

increasing heat and mass transfer. The reported maximum adsorption capacity is 

around 0.4 kg ammonia/kg active carbon. This pair was not preferable previously, 

because of toxicity of ammonia and its irritant smell. Even at low concentrations, 

ammonia is a corrosive chemical. But recently, activated carbon – ammonia is a 

promising pair due to the high cooling capacity of ammonia, high heat and mass 

transfer performance and suitability for high temperature heat sources (Sumathy et al. 

2003). 

 

4.5.5 Active Carbon – Ethanol 

 

 The high adsorption capacity of the active carbon – ethanol pair makes it 

possible to use as the working pair in adsorption cooling systems. It has an adsorption 

capacity near to 45 % kg ethanol/kg active carbon for 40 °C temperature. Isosteric heat 

of adsorption for the pair is approximately 1100 kJ/kg. The desorption temperature is 

relatively higher than silica gel – water pair while it is considerably lower than zeolite 

– water pair. Active carbon-ethanol pair operates under low pressure like others except 

active carbon – ammonia pair. The working pressure range is between 0.01 and 40 

kPa. The systems using this pair should also be designed for the low pressure operation 

conditions. 
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CHAPTER 5 

 

EQUILIBRIUM EQUATIONS AND DIAGRAMS FOR  

ADSORBENT-ADSORBATE PAIRS 

 

5.1. Adsorption Equilibria 

 

 The amount of vapor taken up by the adsorbent at specified temperature and 

pressure is described as adsorption equilibria. Equilibrium in adsorption process 

depends on the nature of the adsorbent like surface characteristic and pore structure, 

the nature of the adsorbate and the working temperature and the pressure ranges.  

 Adsorption equilibria between adsorbents and adsorbates can be estimated by 

various theoretical and empirical approaches. Experimental adsorption equilibria can 

be represented by equilibrium equations and plots.  

 The plot of amount adsorbed as a function of pressure at constant temperature 

represents the adsorption isotherm. The adsorbed amount is a function of pressure at 

constant temperature as it can be seen in Figure 5.1 (a), 

 

                  TPfq )(                                  (5.1) 

 

 An isotherm is the most common plot type that is used to define the adsorption 

equilibrium. On the other hand, the plot of adsorbed amount as a function of 

temperature at constant pressure illustrates the adsorption isobar as in Figure 5.1 (b), 

            

                 PTfq )(                                  (5.2) 

 

 Adsorption isoster is the plot of pressure as a function of temperature (see Fig. 

5.1 (c)). When the adsorbed amount is constant, the pressure is a function of 

temperature, 

 

           wTfP )(                                   (5.3) 
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Figure 5.1. Graphical representation types of adsorption equilibrium 

a) isotherm, b) isobar, c) isoster 

 

5.2. Isotherm Types  

 

The most common method of presenting equilibrium data is the adsorption 

isotherm plot. Although adsorption isotherms with various shapes have been reported 

in literature, there exist six basic types. The six IUPAC (International Union of Pure 

and Applied Chemistry) standard adsorption isotherms are shown in Figure 5.2. There 

exist five basic types which are defined by S. Brunauer, P. H. Emmett, E. Teller 

(BET), L. S. Deming and W. S. Deming (Suzuki 1990). Type VI isotherm is proposed 

further by S. W. Sing in 1982. It is a rarely encountered one which may also be named 

as the stepped isotherm (Gregg and Sing 1982). It occurs with layer by layer 

adsorption on a highly uniform surface. 

Adsorption isotherm types, in principle, may yield valuable information about 

the surface area and pore structure of the adsorbent. Five basic isotherm types with 

their common properties will be explained in details in next sections. 

 

http://en.wikipedia.org/w/index.php?title=Stephen_Brunauer&action=edit&redlink=1
http://en.wikipedia.org/wiki/Paul_H._Emmett
http://en.wikipedia.org/wiki/Edward_Teller
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Figure 5.2. Schematic representation of IUPAC isotherm classifications 

 

5.2.1. Type I Isotherm 

 

 The Type I isotherm structure is generally valid for adsorbents in which 

micropore structure is dominant through its pores. If an adsorbent contains micropore 

(pores with diameters smaller than 20 Å, as mentioned in Chapter 3), the potential 

fields from neighboring walls will overlap and the interaction energy of the solid with 

the gas molecule will be correspondingly enhanced. Thus, the interaction will be 

stronger enough to completely fill the pores at low relative pressure. As a result, the 

adsorbate concentration in an adsorbent particle with Type I isotherm increases rapidly 

at low relative pressures; however after a specified relative pressure the adsorbate 

concentration does not vary and becomes almost constant. The main reason for 

asymptotic behavior of adsorbate concentration at high relative pressure is that the 

adsorbent pores and adsorbate molecules have approximately the same sizes. The 

adsorbate concentration remains constant over a certain relative pressure value, since 
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the pores are so narrow that they cannot accommodate more than a single molecular 

layer on the walls, as seen from figure of Type Isotherm I (see Fig. 5.2).  

 Most common adsorbents which obey Type Isotherm I are molecular sieve 

zeolites, active carbon and a few types of silica gel. Type I isotherms exhibit no 

hysteresis generally. Hysterisis for a pair can be defined as following different 

isotherm paths for adsorption and desorption processes. 

 

5.2.2. Type II Isotherm 

 

 Type II isotherm is a type of gas adsorption by non-porous adsorbents. The 

adsorbate is capable of filling the surface of adsorbent by a monolayer. The 

distribution of single molecules on the wall is defined as the monolayer adsorption.  

 

 

Figure 5.3. Type II isotherm (A: c=1, B: c=11, C: c=100, D: c=10000) 

 

 Type II isotherm has a knee shape at low relative pressures and a plateau in the 

middle and rise again at high relative pressures. The shape of the knee depends on the 

value of c, which can be defined as the following equation:  

 

         RT

H

ec



                      (5.4) 
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 Here; ∆H, R and T denote the net heat of adsorption, gas constant and 

temperature, respectively. It can be seen from Figure 5.3 that as c is increasing knee 

shape is becoming sharper (Gregg and Sing 1982). 

 

5.2.3. Type III and V Isotherms 

 

 Figure 5.4 depicts type III and type V isotherms. These isotherms do not exhibit 

knee shape on the curve like other isotherms. This is an indicative of weak adsorbent-

adsorbate interactions. Both are characterized by convexity towards y-axis. Type III 

isotherm keeps the convexity until the high relative pressures, while type V isotherm 

has an inflection point at very high values. After bending over, the adsorbed amount 

remains nearly constant; however there may be a final upward sweep which is 

attributable to adsorption in macropores. 

 

 
       a          b 

 

Figure 5.4. Type III (a) and Type V (b) isotherms 

   

 For both isotherms, the weak interaction between the adsorbent and adsorbate 

will cause small uptake at low relative pressures. But once an adsorbate molecule is 

adsorbed, the forces between adsorbate molecules will cause more adsorption of 

further molecules. A multilayer adsorption is expected in adsorbent-adsorbate pair with 

Type III and V isotherms. This increase leads to the convexity of the isotherm. Type 

III isotherm may be given by non-porous or macroporous adsorbents and Type V 

isotherm is given by mesoporous or macroporous adsorbents. These isotherms may 
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also originate through the adsorption of polar adsorbate molecules. Since water has a 

polar structure, it may give such type of isotherm as an adsorbate with having weak 

interaction between adsorbent. As seen in Figure 5.4.b, Type V isotherm features a 

hysteresis loop generated by the capillary condensation of the adsorbate in the 

mesopores of the solid. Hysteresis loop is generated when desorption behavior of the 

pair is different than the behavior of adsorption. The lower branch (ABC) represents 

the adsorption, while the upper branch (AFC) represents the desorption process of the 

pair.  

 

5.2.4. Type IV Isotherm 

 

 Type IV isotherm also features a hysteresis loop. The lower branch represents 

the adsorption, while the upper branch represents the desorption process of the pair.  

  

 

Figure 5.5. Type IV isotherm 

  

 In Figure 5.5, both type IV and type II isotherms are plotted, in order to 

compare these two isotherms. Points ABCNG is the plot of Type II. Points ABDEG 

shows the adsorption process of the pair, while points ABDJF shows the desorption 

process of the pair for type IV. Type IV isotherm plot may show a variation at very 

high relative pressures for different pairs, such points H and H'.   
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5.3. Adsorption Equilibrium Equations 

 

 Adsorption quantity which depends on pressure and temperature may also be 

defined by equations as mentioned before. There are several models defined to fit 

experimental data and utilize the behavior of the adsorption pair in literature. The most 

common equilibrium equations are Freundlich, Dubinin-Astakhov, Langmuir, Henry‘s 

and Toth‘s relations. The proposed relation defines the behavior of the adsorption pair. 

The coefficients of the equations are estimated according to the experimental studies of 

the related pairs. In this section, the most common equations and their coefficients 

which are estimated in literature by the experimental studies will be given. As will be 

seen, the equations content various coefficients which are different not only for 

different working pairs, but also for the same working pair having different brand and 

type of the adsorbent. 

 

5.3.1. Freundlich Equation 

 

 Considering the literature studies on pairs used in adsorption heat pumps, 

Freundlich equation is the most common equation used for silica gel – water pair. The 

relation is as follows: 
 

n

satP

P
kq

1

* 









                         (5.5) 

 

 Here q* denotes the equilibrium adsorbed amount, P is pressure and Psat is the 

saturation pressure at a specific temperature in kPa, k and n are dimensionless equation 

constants. Table 5.1 includes the coefficients of Freundlich equation for pairs with 

different types of silica gel used in adsorption heat pumps. 

The different coefficients for Freundlich equations which are experimentally 

estimated in literature are plotted on the same diagram. Figure 5.6 shows the 

Freundlich plots of different silica gel – water pairs. Three silica gel – water pairs 

(silica gel (Xia et al. 2008) –water type A silica gel – water, type RD silica gel – water) 

show Type I isotherm, while the silica gel – water pair studied by Afonso and Silveira 

(Afonso and Silveira 2005) shows Type III isotherm. That means, silica gel studied by 
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Xia et al., type A silica and type RD silica gels are adsorbents with dominant 

micropore structure. The other silica gel probably has a non-porous structure and it is 

capable of filling its pores by monolayer.  

 

Table 5.1. Coefficients for Freundlich equation   

  

 Type RD silica gel – water pair gives has the highest adsorption capacity. At 

P/Psat = 0.6 type A silica gel has an equilibrium adsorbed amount such as 0.2, the pair 

studied by Xia et al. has an equilibrium adsorbed amount such as 0.3; while type RD 

silica gel has a capacity which is almost 0.6. 

 

Table 5.2. Coefficients for modified Freundlich equation 

A0 -14.2904 B0 36.1487 

A1 0.1546 B1 -0.382 

A2 -0.00055498 B2 0.0013016 

A3 0.000000675 B3 -0.000001415 

 

 The modified Freundlich equation may also be used for adsorption heat pump 

systems, especially for silica gel – water pair. The equation is given below as 5.5.  
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satTB

satP
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                                   (5.5) 

  
3
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2
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3

3

2

210)( TBTBTBBTB s                                  (5.7) 

 

Pair Adsorbent Type 

Temp. 

Range 

(°C) 

Pressure 

Range 

(kPa) 

k n 

Silica gel - water - (08Xia et al. 2008) 25-90 0.3-20 0.444 1.346 

Silica gel - water 
- (05Afonso and Silveira 

2005) 
- - 0.355 0.79 

Silica gel - water 

Type A, RD (06Liu and 

Leong 2006; 06Liu and 

Leong 2006; 09Saha et al. 

2009) 

- - 0.346 1.6 

Silica gel - water 
Type RD (09Saha et al. 

2009) 
- - 0.552 1.6 
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 Where, A0 to A3 and B0 to B3 are coefficients of A(Ts) and B(Ts) equations 

respectively, which are functions of saturation temperature. P is pressure and Psat is the 

saturation pressure at specified temperature in Pa; T is temperature in K. Table 5.2 

includes the coefficients of modified Freundlich equation for silica gel – water pair 

(silica gel type is not mentioned) which are distinguished by the experimental study of 

Xia et al. (Xia et al. 2008). 

 

 

Figure 5.6. Graphical presentation of isotherms for different pairs at 30 °C, based on 

         Freundlich equation 

 
  

5.3.2. Dubinin – Astakhov Equation 

  

 Dubinin – Astakhov (DA) equation is commonly used in adsorption processes 

occurring in micropores of the adsorbent (Wang et al. 2009). Equation is given as; 
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where, q* denotes the equilibrium adsorbed amount, P is pressure and Psat is the 

saturation pressure at T in kPa; q0, D and n are dimensionless equation coefficients. 
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 Table 5.3 gives the coefficients for Dubinin-Astakhov equation for different 

pairs used in adsorption heat pumps.  

 

Table 5.3. Coefficients for Dubinin – Astakhov equation 

Pair Adsorbent Type q0 D n 

Silica gel - water 
- (Afonso and 

Silveira 2005) 
0.301 0.0226 1.08 

Silica gel - water 
S0 (Daou et al. 

2008) 
0.35 0.000006 1.7 

Silica gel - water 
S40 (Daou et al. 

2008) 
0.68 0.0000156 1.65 

Silica gel - water - (Xia et al. 2008) 0.348 0.449 1.609 

Active carbon - methanol 
AC 35 (Boubakri 

1985) 
0.407 0.000000322 2.195 

Active carbon - ethanol 

ACF A-20 (El-

Sharkawy et al. 

2006) 

0.797 0.000001716 2 

Active carbon – ethanol 

ACF A-15 (El-

Sharkawy et al. 

2006) 

0.570 0.000001067 2 

Active carbon - ammonia 
AX21 (BenAmar 

et al. 1996) 
0.549 0.000001617 2 

 

 Three different types of silica gels with water as an adsorbate, and two different 

types of active carbons with ammonia and methanol as adsorbates were experimentally 

studied and found to be fitting DA equation, in literature. Here, these pairs were 

plotted and illustrated in Figure 5.8. As seen in the figure, the silica gel water pair, 

which is also plotted with Freundlich equation and commented on, is similar with Type 

III isotherm with Dubinin – Astakhov equation. That means this pair can be defined by 

both equations and it is resulted as the pair has Type III isotherm behavior. The 

adsorbed amount in silica gel begins to increase at very high relative pressure such as 

P/Psat = 0.8. The other four pairs are similar to Type I isotherm which means that the 

adsorbent pores are mostly in micro dimensions. The highest adsorption capacity for 

these for pairs is belong to the S40 type silica gel – water pair which may reach up to 

70 % adsorption at high relative pressures. They all show an asymptotic behavior. The 

adsorbed amount of type S0 silica gel – water and AC35 active carbon – methanol 

pairs remains nearly constant right after P/Psat = 0.3; while the increase in adsorbed 

amount of AX21 active carbon – ammonia and S40 silica gel – water pair is carried on 

up to P/Psat = 0.8.  
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Figure 5.7. Graphical presentation of isotherms for different pairs at 30 °C, based on 

         Dubinin -Astakhov equation 

 

 A modified type of Dubinin-Astakhov equation was defined to be fitted for 

active carbon – ethanol pair as: 
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 The equation coefficients which are presented in literature are given in Table 

5.4 for two different pairs.
 

 

Table 5.4. Coefficients for modified Dubinin – Astakhov equation 

Pair Adsorbent Type q0 E n 

Active carbon – R134a - (Saha et al. 2009) 
0.00164 

(m
3
/kg) 

8460 (J/mol) 1.3 

Active carbon – ethanol 

Active carbon 

powder (Makimoto 

et al. 2011) 

1.17 

(kg/kg) 
5184 (J/mol) 2.15 
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5.3.3. Dubinin - Radushkevich Equation 

 

 Dubinin – Astakhov equation is the modified form of Dubinin – Radushkevich 

equation and this equation is as follows:  
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 In the relation, q* denotes the equilibrium adsorbed amount, T is temperature 

and Tsat is the saturation temperature in K; q0, k and n are dimensionless constants. 

Table 5.5 includes the coefficients of Dubinin-Radushkevich equation for active 

carbon – ammonia pair used in adsorption heat pumps (BenAmar et al. 1996). 

 

Table 5.5. Coefficients for Dubinin – Radushkevich equation 
 

Pair Adsorbent Type 

Temp. 

Range 

(°C) 

Press. 

Range 

(kPa) 

q0 k n 

Active carbon – 

ammonia 

- (Chahbani et al. 

2004) 
- - 0.270 4.3772 1.1935 

Active carbon – 

ammonia 

LM128 

(Tamainot-Telto 

et al. 2009) 

- - 0.333 3.696 0.99 

Active carbon – 

ammonia 

LM127 

(Tamainot-Telto 

et al. 2009) 

- - 0.362 3.657 0.94 

Zeolite – water  
ROTA Natural 

zeolite 
40-150 0.87-7.38 0.122 5.052 1.4 

 

5.3.4. Langmuir Equation 

 

 Langmuir equation is a conventional relation for determination of pair 

adsorption.  The equation is as following for Langmuir approach: 

 

             
1






bC

bqC
q m

langmuir                                  (5.11) 

 

 Where, C∞ can be calculated with the ideal gas relation at equilibrium pressure. 

The b is Langmuir constant and qm is monolayer coverage. The monolayer coverage 
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and Langmuir constant can be found by plotting C∞/qlangmuir versus C∞ graph. Demir 

(Demir 2008)  found Langmuir constant and monolayer coverage for silica gel – water 

pair by the result of his experimental study as 42.97 and 5.675, respectively.  

 

5.3.5. Three-term Langmuir Equation 

 

 Three-term Langmuir equation (eqn. 4.10) is used to define the isotherm of 

zeolite NaX and 13X – water pairs, commonly. By substituting the equations 5.13 to 

5.16 into equation 5.12 the isotherm is distinguished for different temperatures. 
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 Here, q* denotes equilibrium adsorbed amount; P is pressure in Pa; T is 

temperature in K; q, a, b, c and E‘s are dimensionless coefficients of related equations. 

The coefficient values for zeolite NaX – water and zeolite 13X – water pairs are given 

in Table 5.6 (BenAmar et al. 1996; Makni et al. 2011). 

 

Table 5.6. Coefficients for three-term Langmuir equation 
 

 

 

 

 

 

 

 

 

 

 13X – water  NaX – water   13X – water  NaX – water  

a0 0.152 0.07 c0 -0.896 -0.687 

a1 -155.36 -119.9 c1 843.85 -775.7 

a2 63700 63690 c2 -254000 -254200 

a3 -8450000 -8450000 c3 27800000 27750000 

b01 1.508E-10 1.508E-10 E1 7726.58 7726.58 

b02 5.417E-10 5.417E-10 E2 6074.71 6074.71 

b03 1.707E-10 1.707E-10 E3 5392.17 5392.17 
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5.3.6. Henry’s Equation 

 

 Henry‘s equation is commonly used in the analysis of adsorption heat pump for 

the silica gel – water pair. The equation is a function of temperature and pressure and it 

distinguishes from others with including the isosteric heat of adsorption quantity as a 

variable. The equation is given as; 

 

               q*  PRTHK ads )/(exp0                                              (5.17) 

 

 Here, q* denotes equilibrium adsorbed amount in kg/kg; P is pressure in Pa; T 

is temperature in K; R is gas constant in kJ/kgK; adsH is isosteric heat of adsorption in 

kJ/kg; 0K  is a constant in Pa
-1

. Coefficients of Henry‘s equation for three types of 

silica gel when it is paired with water are given in Table 5.7. Furthermore the isotherm 

plots for these constants are given in Figure 5.8 (Ng et al. 2001). 

 

 

Figure 5.8. Graphical presentation of isotherms for different pairs at 30 °C, based on 

         Henry‘s equation 

 

Table 5.7. Coefficients for Henry‘s equation 

Pair 

Temp. 

Range 

(°C) 

Pressure 

Range 

(kPa) 

Adsorbent Type K0 (Pa
-1

) 
∆H 

(kJ/kg) 

Silica gel - water 30-60 0.5-6.5 Type 3A 5.2E-12 2380 

Silica gel - water 30-60 0.5-6.5 Type RD 5.5E-12 2370 

Silica gel - water 30-60 0.5-6.5 Type RD (2) 2E-12 2510 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1
P/Psat

q
* 

(k
g

/k
g

)

3A silica gel - water

Type RD silica gel - water

Type RD silica gel - water (2)



69 

 

5.3.7. Toth’s Equation  

 

 Toth‘s equation is a rarely encountered equation and it is derived from Henry‘s 

equation. It is also related with the isosteric heat of adsorption of pair. The equation is 

given below; 
 
 

           q*
   tt

adsm

ads

PRTHqK

PRTHK
/1

0

0

)/exp(/1

)/exp(




                                           (5.18) 

 

 q*, again, denotes equilibrium adsorbed amount in kg/kg; qm denotes the 

monolayer coverage (kg/kg); P is pressure in Pa; T is temperature in K; R is gas 

constant in kJ/kgK; adsH is isosteric heat of adsorption in kJ/kg; 0K  is a constant in 

Pa
-1

; t is dimensionless Toth‘s constant. Coefficients of Toth‘s equation for two types 

of silica gel when it is paired with water are given in Table 5.8. The isotherm plots for 

these constants are given in Figure 5.9 (Chua et al. 2002). 

 
Table 5.8. Coefficients for Toth‘s equation 

 

Pair 
Adsorbent 

Type 

Temp. 

Range 

(°C) 

Pressure 

Range 

(kPa) 

K0 (Pa
-1

) 
∆H 

(kJ/kg) 
qm t 

Silica gel - water Type A 25-65 0.5-7 4.65E-10 2710 0.40 10 

Silica gel - water Type RD 25-65 0.5-7 7.3E-10 2693 0.45 12 

 

 

Figure 5.9. Graphical presentation of isotherms for different pairs at 30 °C, based on 

         Toth‘s equation 
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5.3.8. Isoster Equation 

 

 Isoster equation is applicable for specified pairs with constants given in Table 

5.9 (San and Lin 2008; Ülkü 1986; Ülkü et al. 1986). Isotherm plots for isoster 

equation using these constants are given in Figure 5.10.  The equation series are given 

as;  

lnP = a(q) + [b(q)/T]                                             (5.19) 

    a(q) = a0 + a1q + a2q
2
 + a3q

3
+ a4q

4
                                       (5.20) 

    
b(q) = b0 +b1q + b2q

2
 +b3q+

3
b4q

4
                       (5.21) 

 

where, P is pressure in mbar; T is temperature in K; a and b are functions of q; and P is 

function of a, b and T.  

 

Table 5.9. Coefficients for isoster equation 
 

Pair 
Adsorbent 

Type 
a0 a1 a2 a3 a4 

Zeolite - water 13X 13.4244 110.854 -731.76 1644.8 0 

Zeolite – water 
natural 

zeolite 
73.25 -2772 55890 -472600 1437000 

Active carbon 

- methanol 
- 20.3305 6.53035 -16.6841 52.3793 0 

Pair 
Adsorbent 

Type 
b0 b1 b2 b3 b4 

Zeolite – water 13X -7373.78 6722.92 5624.47 -3486.7 0 

Zeolite - water 
natural 

zeolite 
-30860 1277000 24680000 206800000 627900000 

Active carbon 

– methanol 
- -6003.58 6315.16 -26058.7 40537.9 0 

 

4.3.9. Empirical Equation 

 

 In literature, an empirical equation is defined (San and Lin 2008) for silica gel – 

water pair which is; 

 

       q

sat

q

sat PxqPP
28.10exp2843.028.10exp2843.01 91.29)112.2(/

               (5.22) 
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 Here, q denotes the adsorbed amount in kg/kg while P is specified pressure and 

Psat is saturation pressure at specified temperature in atm. This equation is followed by 

another empirical saturation pressure equation which will be given in Section 5.3.10. 

 

 

Figure 5.10. Graphical presentation of isotherms for different pairs at 40 °C, based on 

           isoster equation  

 

5.3.10. Mathematical Relations for Determination of Saturation     

     Pressure  

 

 The isothermal and isosteric relations for adsorbent – adsorbate pairs used in 

adsorption heat pumps are given in previous sections. In order to apply the equations, 

primarily, the saturation pressure and temperature values should be calculated. The 

saturation pressure as a function of temperature can be found with the Antoine 

equation relation which is; 

                
CT

B
AP

sat

sat
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ln                               (5.23) 

 

 Here, Psat is the saturation pressure in mmHg; T is temperature in K; A, B and 

C are component-specific constants. Table 5.10 includes the Antoine constants of 

water and ethanol (Yang et al. 2006). 
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Table 5.10. Constants of Antoine equation for three different adsorbates 

Adsorbate A B C 

Water 18.3036 3816.44 -46.13 

Ethanol 18.9119 3803.98 -41.68 

  

A simplified form of Antoine equation may be given as; 

 

                            

sat

sat
T

b
aP ln                                      (5.24) 

 

 Here, Psat is the saturation pressure in Pa; T is temperature in K; a and b are 

component-specific constants. Table 5.11 includes the constants of common adsorbates 

used in adsorption heat pumps (Liu and Leong 2006; San and Lin 2008). 

 

Table 5.11. Constants for simplified Antoine equation for three different adsorbates 

Adsorbate a b 

Water 25.1948 5098.26 

Methanol 20.8400 4696.00 

Ammonia  23.0300 2748.39 

  

 An empirical saturation pressure equation and a corresponding equation for 

silica gel – water pair is defined in literature (San and Lin 2008). The equations are; 
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              Tz  27.6470                                              (5.25) 

 

 Where, Psat is the saturation pressure in Pa; T is temperature in K; z0 is the 

function of T; a1, a2, and a3 are equation constants. This saturation relation is only 

applicable for the empirical equation given (5.22) which is an equilibrium equation for 

silica gel – water pair.  

 

5.4. Heat of Adsorption 

 

 Adsorption is a spontaneous process with loss in the freedom of the adsorbate 

molecules, resulting a decrease in the free energy and in the entropy of the system and 
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as a result, it is an exothermic process and while adsorption is going on, heat, called as 

heat of adsorption, is evolved.  

 The heat of adsorption indicates the strength of the forces binding adsorbed 

molecules to the surface of the adsorbent. It depends on temperature, pressure and 

surface coverage. Heat of adsorption may be defined in three ways. 

 Differential Heat of Adsorption (change in integral heat of adsorption 

with change in loading), 

 Integral Heat of Adsorption (total heat released from initial state to final 

state of adsorbate loading, at constant temperature), 

 Isosteric Heat of Adsorption (defined by using adsorption isosters and 

Clausius-Clapeyron relationship) are three terms which are often used in 

adsorption. 

 In physical adsorption, heat of adsorption depends on to the change of the state 

from adsorptive to adsorbate. The differential molar enthalpy of adsorption can be 

expressed by differential of enthalpy of adsorptive and adsorbate. The differential heat 

of adsorption is: 
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 Where, ha  is differential enthalpy in adsorbed phase in J/mol, Q is heat 

transferred in W/kgs, an is amount of adsorbate, mol/kgs, V is the volume of the 

system in m
3
, and P is pressure in kPa.  

 The integral heat of adsorption is obtained by integrating the differential heat of 

adsorption against amount of adsorbate. 
, 

                
an

aaa hdnH
0

                                           (5.27) 

 

where, Ha  is the integral enthalpy of adsorbed phase in J/kgg. 

 The integral heat of adsorption can be calculated by the means of Clausius-

Clapeyron relationship at a constant adsorbate loading: 
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 The difference between differential heat of adsorption and isosteric heat of 

adsorption is so small, indeed. Thus, these two concepts can be considered as identical. 

 

 

Figure 5.11. Heat of adsorption change with varying adsorbed amount 

 

A numerical study on the change of heat of adsorption with varying adsorbed 

amount was performed for five different silica gel - water pairs. The calculations are 

performed according to the Dubinin-Astakhov (DA) and Freundlich (F) equations by 

using FORTAN software. Figure 5.11 represents the resultant plot for heat of 

adsorption variation with the change of adsorbed amount (q). The heat of adsorption 

for three pairs fitting Freundlich equation was found to be constant at 2354 kJ/kg, for 

all values of q. However, the pairs fitting Dubinin-Astakhov equation had a decrease 

with increasing adsorption amount. S0 silica gel - water pair has higher heat of 

adsorption values for the adsorbed amounts lower than 0.1; while S40 silica gel - water 

pair has higher heat of adsorption values for the adsorbed amounts higher than 0.2. 
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CHAPTER 6 

 

EFFECTS OF EQUILIBRIUM ON THE PERFORMANCE 

OF ADSORPTION HEAT PUMPS 

 

The pair used in an adsorption heat pump affects the thermal performance of 

adsorption air-conditioning device; since the equilibrium behavior of the pair depends 

on the interaction between the adsorbent and adsorbate. In this chapter, the performed 

numerical study on the effect of pair on the thermal performance of adsorption chiller 

is presented. 

The processes which occur in an adsorbent bed of an adsorption chiller are 

isobaric adsorption, isosteric heating, isobaric desorption and isosteric cooling as 

mentioned before. The heat transfer relations between adsorbent bed and surrounding 

during processes were presented in Chapter 3. The additional relations are evaporator 

and condenser capacities and they can be calculated by the following equations; 

  

            )(minmax )( evfgsev hwwmQ                                (6.1)   

             )(minmax )( condfgscond hwwmQ                  (6.2)   

 

6.1. Numerical Study on Effect of Equilibrium on the Performance 

  

A numerical study was performed to investigate the thermal performance 

change of an adsorption chiller depending on two parameters as the employed pair and 

the cooling type of adsorbent bed and condenser.  

Since the main advantage of using adsorption air-conditioning systems are the 

possibility of using renewable heat sources such as solar, geothermal and waste heat; 

the adsorption chillers were designed to be heated with solar energy, in this numerical 

study. 

The temperature of the high temperature heat source should be higher than the 

maximum bed temperature (i.e. point c, see Fig. 3.5). For example, if the maximum 
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attainable temperature of a flat plate solar collector was around 90 °C, the maximum 

temperature of adsorbent bed (Tc) could be nearly 85 °C (Yıldırım et al. 2011). 

The minimum adsorbent bed temperature depends on the type of low 

temperature heat source. The bed and condenser in the chiller might be cooled with air, 

cooling tower or low temperature heat source reservoir. For example, if the average 

summer temperature is assumed as 35 °C for Izmir, the minimum temperature of 

adsorbent bed can be nearly 45 °C; for an air cooled chiller. If the adsorbent bed was 

cooled with a cooling tower, the minimum bed temperature would be around 35 °C; 

while it would be around 30 °C in case of cooling with a lower temperature heat source 

(i.e. with a temperature of 25 °C) such as a river (Yıldırım et al. 2011). 

The designed condenser should be cooled by the similar options. The minimum 

condenser temperatures would be 40, 35 or 30 °C similar to the adsorbent bed. The 

condenser temperature is important since the high level pressure of cycle depends on 

this temperature.  

Evaporation temperature was another parameter that should be considered for 

the design of the adsorption chiller. It was assumed that, the water enters to the 

evaporator heating coil at 12 °C and leaves at 8 °C. Therefore, the evaporation 

temperature might be around 3 °C. 

In this study, the performance analysis was performed for three different 

adsorption chillers as mentioned below. The COPs and cooling capacities for different 

pairs were evaluated for summer conditions in İzmir. 

In Chiller 1, the adsorbent bed and the condenser were assumed to be cooled 

with air. Thus, the minimum adsorbent bed temperature and condenser temperature 

were assumed as 40 °C. Since the high level cycle pressure depends on the condenser 

temperature, the high level pressure of the cycle obtained for Chiller 1 is 7.37 kPa. In 

Chiller 2, adsorbent bed and condenser were assumed to be cooled with a cooling 

tower. Thus, the minimum bed and condenser temperatures that could be achieved are 

around 35 °C. The adsorbate (water) has a 5.81 kPa saturation pressure as a high level 

cycle pressure.  In Chiller 3, the adsorbent bed and the condenser were cooled with a 

low temperature heat source such as a river which is around 25 °C temperature, thus 

the minimum temperature of adsorbent bed and condenser are 30 °C. Therefore the 

high level cycle pressure is 4.24 kPa. These three adsorption chillers are illustrated 

schematically in Figure 6.1. 
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c 
 

Figure 6.1. Schematical view of designed chillers cooled with air (a), cooling tower 

(b) and low temperature heat source (c) 

 

The evaporation temperature is another parameter to be considered for the 

design of an adsorption chiller. If the inlet and exit temperatures of the chilled water 

are assumed 12 and 8 °C, respectively; the evaporation temperature might be around 3 

°C. For evaporation temperature with 3 °C, the low level cycle pressure is 0.767 kPa. 

The numerical study was performed using a computer program written by 

FORTRAN. The heat transfer relations mentioned in previous section, adsorption 

equilibrium equations, cooling capacity and COP relations were used to determine the 

performance and capacities depending on the maximum cycle temperature (Tc). The 

steps for the numerical study is shown as a flow chart in Appendix B. 

In three different types of adsorption chillers, silica gel – water and modified 

silica gel (S0 and S40) – water pairs were studied. Freundlich and Dubinin – Astakhov 

equations with corresponding coefficients (reported in literature) were used. The 

studied pairs, equations and their coefficients used in calculations are listed in Table 

6.1. 
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   Table 6.1. Coefficients for silica gel – water pairs fitting  Dubinin-Astakhov (a) 

                and Freundlich (b) equations 

a 

 q0 D n 

S0 – water 0.35 0.000006 1.7 

S40 – water 0.68 0.0000156 1.65 

 

b 

 k n 

Silica gel 1 – water 0.346 1.6 

Silica gel 2 – water 0.355 0.79 

Silica gel 3 – water 0.444 1.346 

Silica gel 4 – water 0.552 1.6 

 

 

6.1.1. Results and Discussion of Numerical Study 

  

 The results of the numerical study are presented by the graphs. X-axis in all 

plots is the maximum bed temperature (Tc).  

Figure 6.2 and 6.3 show that, Chiller 1 has higher evaporation capacities and 

COPs at lower temperature ranges when modified silica gel (S40 and S0) – water pairs 

are used. For the chiller 1 with S40 – water pair, when the maximum temperature of 

the cycle is 108 °C; the evaporation capacity increases to 300 MJ and COP increases to 

0.8. Silica gel 4 (type RD) – water pair has the maximum COP and evaporator capacity 

values among four different silica gel – water pairs fitting Freundlich equation. 

Figure 6.4 and 6.5 are the plots for the second designed chiller. Similar to the 

first chiller, modified silica gel (S40 and S0) – water pairs have better performances 

than conventional silica gels. When the maximum temperature of the cycle of Chiller 2 

is 95 °C, the evaporation capacity and COP increase to 600 MJ and 0.9, respectively, 

when S40 – water pair is used. 
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Figure 6.2. Evaporator capacity results of Chiller-1 with six different pairs 

 

 

 

Figure 6.3. COP results of Chiller-1 with six different pairs 

 

 

 

Figure 6.4. Evaporator capacity results of Chiller-2 with six different pairs 
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Figure 6.5. COP results graph of Chiller-2 with six different pairs 

 

 

 The results for Chiller 3 are different than other chillers as it can be seen in 

Figures 6.6 and 6.7. In this chiller, S0 silica gel has a behavior very similar to the 

conventional silica gels. The temperature ranges were again lower than the 

conventional ones; however the evaporation capacity and COP values were very close 

to values of silica gel 4. 

 

 
 

Figure 6.6. Evaporator capacity results of Chiller-3 with six different pairs 
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bed temperature. Chiller 3 has a better performance compared to Chiller 1 and 2. As 

the minimum bed and condenser temperatures decrease, the performance of the chiller 

increases.  

 

 

Figure 6.7. COP results of Chiller-3 with six different pairs 
 

 

Coefficients of performances achieved from three chillers are given in Figure 

6.9 as a plot of COP versus maximum bed temperature when S40 –water pair is used. 

COP quantities for all chillers have a typical behavior, as it can be seen from the plot. 

The COP value increases with increase of maximum bed temperature; however after a 

specified temperature it remains constant. For example, the COP of chiller 1, 2 and 3 

does not change after 95, 85 and 75 °C.  

 

 

Figure 6.8. Evaporator capacity results comparing chillers using S40 – water pair 
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 This study was performed to investigate the effect of different pairs on the 

adsorption chiller thermal performance. The effect of cooling type on thermal 

performance of chillers was also examined. As a result of the study, Chiller 3 using the 

modified silica gel (S40) – water pair was found to have the best performance along 18 

different designs. Chiller 3 has the highest evaporation capacity and efficiency since 

the adsorbent bed and condenser are cooled by low level temperature source as 25 C.  

S40 – water pair has the best performance because of its high adsorption capacity. 

 

 

Figure 6.9. COP results comparing chillers using S40 – water pair 
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CHAPTER 7 

 

EXPERIMENTAL STUDY 

  

 The thermo physical properties and equilibrium state of a pair should be well 

known in order to be able to provide high efficiencies in an adsorption heat pump. The 

aim of this experimental study was to investigate the adsorption characteristics, such as 

adsorption capacity, equilibrium behavior, the isotherm type and effective diffusivity 

of silica gel - water pair which is a commonly used pair in adsorption heat pumps. The 

methods reported in literature for determination of equilibrium state of adsorbent-

adsorbate pair were briefly explained in Chapter 2. In this study, a volumetric method 

was used. The equipment used in volumetric method has more availability and the 

construction of the system and methodology of the experiments are more applicable. 

Gravimetric and micro-calorimetric methods are more complex for construction and 

performing the experiments. 

 A volumetric setup was designed and constructed; several experiments were 

performed, however the obtained results were not very successful. That is why this 

experimental setup was revised and the second experimental setup was constructed. 

 The second experimental setup is going to be described in this chapter, briefly. 

The components of the experimental setup, their functions and the experimental 

procedure are explained in details. The results of experiments are explained in Chapter 

8.  

 

7.1. Components of Experimental Setup 

 

 The first experimental setup is illustrated as a picture in Figure 7.1. The 

apparatus consists of nine components as liquid vessel, vapor vessel, adsorbent vessel, 

three manual and two solenoid valves, two pressure (vacuum) transducers, pressure 

scanning and controlling device with a data logging software, vacuum pump, electrical 

heater and temperature controller. 
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Figure 7.1. Picture of the first experimental setup 

 

An experiment was performed with this setup at 60 °C. Unfortunately, some 

unexpected errors occurred during the experiments. The solenoid valves were defected 

over time, therefore the operation of solenoid valves have failed, and the flow of water 

vapor from one vessel to another became out of control. Since the calculations for 

adsorbed amount was performed with ideal gas equation by using the obtained water 

vapor pressure difference at each pulse, the continuous water vapor flow caused the 

calculated results to be unpredictable. The deterioration of the equipment in the system 

prevented the experiments to be performed for other temperatures. Thus, the first 

constructed volumetric setup could not be used. The setup was demounted and a new 

setup with manual, air-tight valves was constructed. 

 The components of the second experimental setup were identical with the first 

one except a few improvements applied. Figure 7.2 is the picture of the second 

experimental setup with all components and connections. Figure 7.3 is the schematical 

view of the second experimental apparatus. The main components of the second 

system are a liquid vessel, a vapor vessel, an adsorbent vessel, three manual valves, a 

pressure (vacuum) transducer, a pressure scanning and controlling device connected to 

a data logging software, a vacuum pump, three electrical heaters, temperature 

controller, a temperature scanning and logging device. The components are described 

in details below. 
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 - Liquid vessel: 

 The liquid vessel (Vessel 1, see Fig. 7.3) contains water in liquid phase. It has a 

cylindrical shape with dimensions of 320 mm length and 50 mm diameter (Swagelok 

304 L-500). It has a volume of 500 ml and contains water in liquid phase.  

 - Vapor vessel: 

 The vapor vessel (Vessel 2) contains water in vapor phase. It was a sample 

cylinder (Swagelok 304 L-50) with dimensions of 70 mm length and 35 mm diameter 

and a volume of 50 ml. The adsorptive was vaporized in the liquid vessel (Vessel 1) 

and stored in vapor phase in this vessel. A manual valve (V1) was placed between the 

liquid and vapor vessels. 

 

 
 

 Figure 7.2. Picture of improved experimental setup 

 

 - Adsorbent vessel: 

 This vessel (Vessel 3) was used for the placement of silica gel particles and it 

was the bed where adsorption takes place. It was a sample cylinder (Swagelok 304 L-

50) with dimensions of 70 mm length and 35 mm diameter and it has a volume of 50 

ml. Vessel 3 was located horizontally, in order to keep the silica gel particles on a  

horizontal plane and prevent their accumulation. A valve (V2) was placed between 

vapor vessel and adsorbent vessel; while another valve (V3) was placed between 

vacuum pump and adsorbent vessel. 
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Figure 7.3. Schematical view of improved experimental setup 

 

 - Valves: 

 There were three manual valves (V1, V2 and V3) in the setup in order to 

manipulate the flow of the water vapor between vessels. The valves were Swagelok 

Bellows Sealed Valves for ¼'' pipes.  

 - Pressure transducers: 

 The pressure (vacuum) transducer connected to the vapor vessel was a MKS 

Series 902P vacuum transducer with a range from 13.332 Pa to 133 kPa, and an 

accuracy of 1% of reading. 

 - Pressure logging: 

 Pressure transducer was connected to a digital scanning and controlling device. 

The pressure readings were received to MKS Series PDR 900-1 controller. It was 

connected to the computer having software of MKS Series to collect the data. MKS 

PDR 900-1 had a display range from 10
-10

 Torr to 1500 Torr (from 0 kPa to 199.98 

kPa). The pressures were scanned at adjusted time intervals and logged to a Microsoft 

Excel worksheet. A picture of pressure logging software is shown in Figure 7.4. 

 - Vacuum pump: 

 The system purge and desorption of adsorbent particles were obtained with a 

vacuum pump. Varian – Turbo-V 70 SH100 vacuum pump with 50m
3
/hr pumping and 

1425 rpm operating speeds was used to evacuate the system, and it had an operating 

range from 1 atm to 10
-3

 torr. 

 

 



88 

 

 - Heating elements and temperature controllers: 

 Three vessels and pipes between components were wrapped around and heated 

with three flexible electrical heaters. Cole-Parmer Flexible, small-diameter, fiberglass 

insulated heating cords with 24 inches of length and 562 watts, 120 VAC were used.  

 

 
 

Figure 7.4. Picture of the pressure logging software 

 
 

 The flexible electrical heating cords were connected to a temperature controller 

panel. Three PID type temperature controllers manufactured by ORDEL and named as 

PC441 were used in the controller panel to upload the time depending temperature 

programs and maintain a constant temperature. The temperature distribution at the 

entire system should have been homogenous and it must be kept constant during the 

experiment, since the adsorbed amount strongly depends on temperature. The 

temperature feedback of the controller was supplied by thermocouples. Three Cole-

Parmer K-type thermocouples were placed on the outer walls of three vessels. An 

additional heater fan was used to heat the space around the system to prevent water 

condensation. 

 An additional temperature scanning and logging device which was Cole-Parmer 

Digi-Sense scanning thermometer with twelve channels was used. This device was 

connected to another computer and Scanlink 2.0 software is used to log the 

temperature data. The temperature loggings were achieved with three other Cole-

Parmer K-type thermocouples. The first thermocouple was used for measuring the 

temperature of vessel 2, the second thermocouple was used for temperature of vessel 3 
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and the last one was used for the ambient temperature. The temperatures were scanned 

for every 10 seconds and logged to a WordPad file by the software. 

 - Adsorption pair: 

 The silica gel particles used in experiments were supplied from Merck Co. 

Some adsorption properties of silica gel particles were examined by Micromeritics 

ASAP2010. The surface area, pore volume and average pore diameters were 

investigated using nitrogen as the adsorptive gas. Micromeritics results (structural 

properties and isotherm plot) are illustrated in Appendix C. The equivalent diameter of 

supplied silica gel granules varied between 3 - 5 mm. The silica gel particles were 

exposed to screening process with multi-storey sieves by a shaker. The layers of the 

sieve were used to separate the silica gel particles with decreasing diameters. In the 

experiments, 0.3 grams of silica gel particles with diameters between 0.3 and 0.4 mm 

were used. De-ionized pure water was placed to the liquid vessel. 

 After the complement of setup construction and electrical connections, the next 

step was sealing process. In order to obtain adsorption equilibria at different 

temperatures less than 100 
o
C, the experiments should be performed at low pressure. 

Air leakage may take place in the system during the experiment. The first measure to 

prevent the leakage was using stainless steel vacuum equipment and wrapping Teflon 

tapes on the joints of pipes and valves. The vacuum test was applied to the system and 

the leakage rate was found high for applicability of adsorption experiments. Various 

types of sealing materials were tried in the system. The test of different methods for 

leakage prevention took very long time as eight months. The supply of sealing 

material, sealing and evacuating processes, and leakage test steps were repeated after 

each failure. Finally, Loctite red gasket was found to be the best insulation material, 

thus it was applied on every joint. The detection of leakage locations for an evacuated 

system was considerably difficult. Water bubble check, performed by the compression 

of air into the system, could give an idea about the leakage location. After detection of 

leakage points, the sealing materials were applied to these specific points. The results 

of leakage rate and achieved improvements within the system will be presented in 

Results and Discussion chapter. 

 After the sealants were applied to connections and dried, the heating cords were 

wrapped and the heat insulation was employed. The all system was covered with fiber 

insulation pads and wrapped with heat resisting tapes. The grey cover around the 

equipment seen on the pictures (Figure 7.1 and 7.2) is the insulation tape. The heat 
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insulation was important to provide homogenous temperature along the system and 

also to prevent condensation of water vapor at the inner surface of the setup. 

 

7.2. Experimental Procedure 

 

 The employed method for adsorption experiments was volumetric method, as 

mentioned before. Here the application of the volumetric method for the experiments is 

going to be presented.  

 The first step of experiments was the leakage test. The experiments were 

performed under low pressures from 5 Pa to 20 kPa. The air leakage possibility from 

the environment into the system should be taken into account. The next step of the 

experimental study was the condensation check. The amount of adsorbed water vapor 

onto silica gel was calculated with the pressure change observed by the decrease of 

water vapor in the adsorbent bed and water vapor vessel. Ideal gas law was used to 

determine the amount of adsorption from pressure difference. The difference between 

the initial and final pressures indicates the amount of water vapor adsorbed onto silica 

gel. Any condensation within the setup reduces the pressure. Therefore, the pressure 

difference may involve both adsorbed and condensed amount and it causes inaccurate 

results for the calculated adsorbed amount. Since it is difficult to predict or calculate 

condensed amount during the adsorption experiment, the net adsorbed amount of water 

vapor will not be known. 

 The condensation may occur on the inner walls of experimental setup, 

especially on the walls of joints, elbows, or fittings. At the locations close to ambient, 

if any temperature drop occurs, water may be condensed. The joints near the valves 

and vacuum transducers were the most probable locations which may cause 

condensation occurrence.  

 In order to prevent condensation, the space around setup was heated by an 

external electrical heater fan. Setting liquid vessel temperature below the experiment 

temperature may also reduce the possibility of condensation occurrence, since the 

remaining surfaces of setup had higher temperature than the temperature of liquid 

vessel.  

 The observation and calculation of condensation rate during the adsorption 

experiments were impossible in the designed system. The condensation test was done 
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to check the condensation rate at the inner surface of setup equipments, before the 

adsorption experiments, which means before the placement of silica gel into the 

adsorbent vessel.  

 The following procedure was followed to determine the rate of condensation 

before the adsorption experiments: 

 The liquid vessel was filled with deionized pure water. 

 The liquid vessel valve (V1) was fully closed, while V2 wad opened. 

 The remaining portions of the system were heated up to test 

temperature. 

 The whole system was evacuated and purged completely. It should be 

mentioned again that no silica gel exists in the system. 

 After completing vacuum procedure which was about 12 hours, the 

vacuum (V3) valve was fully closed. 

 The pressure recording was started. 

 V1 valve was opened for about 10 minutes to let the water to vaporize 

and flow through the system. 

 V1 valve was closed when the pressure was stabilized. 

 The recorded pressure data was tabulated or shown by a graph. 

 The decrease of vapor pressure indicates the condensation occurrence 

within the system. 

 The condensation test procedure was repeated for different experimental 

temperatures. 

The result of the performed condensation test is given in Results and 

Discussion chapter. After the completion of condensation test, adsorption experiments 

were performed. Since the condensation experiments were performed without 

adsorbent inside the system, silica gel was placed into the system. The sealing step, 

wrapping the electrical heater around the adsorbent bed and thermal isolation were 

repeated. After the certainty of lack of leakage and condensation, the adsorption 

experiment was performed. 

 Adsorption experiments were performed with the following steps: 

 All three valves were closed, 

 Temperature and pressure loggings were on, 
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 Temperature controllers connected to vessel 2 and vessel 3 were set 

to105 °C desorption temperature and run, 

 Vacuum pump was turned on, 

 V3 and V2 were opened in turn, 

 Evacuating was continued for 24 hours at 105 °C, 

 After 24 hours the temperature controllers were set to the experiment 

temperature; while evacuation continued, 

 When the temperature of the system reached to the equilibrium 

experiment temperature; V2 and V3 were closed in turn, 

 Vacuum pump was closed, 

 V1 was opened for approximately 5 minutes and then closed, 

 Pressure of vessel 2 was checked for approximately 5 minutes, for the 

observation of condensation, 

 If no pressure drop was observed, V2 was opened for approximately 15 

minutes, and then closed. 

 A set of experiment begins with opening V1 and ends up with closing V2; the 

sets were repeated until the maximum adsorption capacity was achieved. The measured 

pressure at the end of each set defines the equilibrium pressure. The difference 

between the amount of water vapor at the beginning and at the end of a set defines the 

adsorbed amount. The experiments were performed for 35, 45 and 60°C temperatures. 

Each experiment was repeated three times to validate the achieved results. The 

experimental results achieved at every step and the comments on the results are going 

to be discussed in the next chapter. 
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 CHAPTER 8 

 

RESULTS AND DISCUSSION 

 

 The silica gel - water adsorption experiments were performed in the volumetric 

experimental setup which was described in previous chapter. The pressure change with 

time was logged and plotted. The adsorption equilibrium points were determined 

according to the adsorbed amounts at the equilibrium pressures. The results of 

performed studies such as leakage and condensation tests, adsorption experiments and 

also the diffusivity results are presented with either plots or calculations in this chapter. 

  

8.1. Uncertainty Analysis 

 

 Uncertainty analysis deals with assessing the uncertainty in a measurement. 

The experimental results might be affected by errors due to instrumentation or 

methodology. The uncertainty of the result of a measurement expresses the lack of 

exact knowledge for the value of the measured quantity. Uncertainty of a measurement 

is mostly based on the accuracy and precision of the measuring device. 

 In this study, the basic equation for calculation of adsorbed amount is evaluated 

using ideal gas law equation, and it can be shown as; 
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                                              (8.1) 

 

Table 8.1. Accuracies and uncertainties of measured parameters 

Measurement Device Accuracy Uncertainty 

Pressure MKS 902P 1 %   0.01 

Volume - 1 %   0.01 

Mass Precisa XB 220A 0.0001 %   0.000001 

Temperature K-type Thermocouple 0.3 %   0.003 

 
 

 As can be seen from the equation, the calculation depends on pressure, volume, 

mass and temperature parameters. Therefore, the uncertainty analysis should be 

performed based on the accuracy of devices used to measure the quantities of these 
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parameters. Table 8.1 shows the accuracy and corresponding uncertainty values of 

measuring devices used in experiments.  

 Uncertainty of experimental results can be calculated by the following 

equations; 
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 Therefore, 
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 The uncertainty of this experimental study is found 0.0144. The achieved 

calculations and results should be evaluated considering this uncertainty quantity.  

 

8.2. Isotherm Results 

 

 The results section for the experiments can be started with the illustration of 

leakage rate versus time (Figure 8.1). The time axis is limited with 1200 minutes, since 

the experiments were ended in around 1100 minutes. The dashed line with a leakage 

rate of 4.205 Pa/min shows the result of the first vacuum test. The adsorption 

experiments could not be performed with this leakage rate, thus some further 

improvements were done to reduce leakage. After improvement, the leakage test was 

repeated. The line with the leakage rate of 1.316 Pa/min shows the results of the 

second vacuum test. The achieved leakage rate was again not satisfactory and further 

measures were applied once more. The line with leakage rate of 0.535 Pa/min was the 

results of the third and last vacuum test. The value of 0.535 Pa/min was an acceptable 

leakage rate; therefore, the next step which was condensation test was performed. 
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The graph of condensation test for 35 and 70 °C is illustrated in Figure 8.2. At 

the beginning of the experiment (for about 170 minutes), the system was again checked 

for the leakage (up to point ―a‖ for 35 °C, point ―A‖ for 70 °C). After 170 minutes, V1 

valve was opened and water vapor was introduced to the vapor vessel. After 

stabilization of pressure (point ―b‖ for 35 °C, point ―B‖ for 70 °C), V1 valve was 

closed, After a period of time, V2 valve was opened (at point ―c‖ for 35 °C, point ―C‖ 

for 70 °C). A sudden pressure drop occurred because the volume was doubled after 

opening V2 valve. No pressure drop was observed for both 35 and 70 °C experiments. 

Therefore, no condensation occurred in the system, which means adsorption 

experiments could be performed. 

 

 

Figure 8.1. Leakage test results 

 

Figure 8.3 indicates the result of experiment performed at 35 °C. It shows the 

pressure change during the experiment. Every vertical line between low and high 

pressures represents the new pulses (i.e., introducing new water vapor amount to the 

adsorbent vessel). Figure 8.4 shows the same graph for a narrow period of 250 

minutes. The first eleven pulses can clearly be seen in this figure. The observation of 

constant pressure indicates the achievement of equilibrium state for each pulse. For the 

first pulse, the vapor vessel pressure was stable at 3378 Pa, then, V2 valve was opened. 

Water vapor flowed to the adsorbent bed.  By opening of V2 valve, the volume of tank 

was doubled and the adsorption process was started. The pressure suddenly dropped to 
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nearly 15 Pa and remained constant at 5.33 Pa which is equilibrium pressure. For the 

second pulse, after the observation of stable pressure, V2 valve was closed.  The V1 

valve was opened and the vapor vessel was filled with water vapor. After stabilizing 

the vapor pressure in the vapor vessel, V1 valve was closed. Any pressure change in 

the vessel 2 was checked by waiting for 5 minutes. V2 valve was opened when no drop 

was observed. A pressure drop occurs due to the doubling of volume and the 

adsorption was started again. The sets (pulses) were repeated for 68 times and 

experiment ended after 18 hours.  

 

 

Figure 8.2. Condensation tests performed at 35 and 70 °C 

 

 The adsorbed amounts were calculated by using ideal gas law. The method for 

calculations was as follows; 

 For the first pulse, 

 3378 Pa was read for the vapor vessel. After opening V2, the volume was 

doubled and the pressure dropped to 3378/2=1689 Pa, the final pressure was observed 

as 5.33 Pa. The following calculation procedure was performed,  

 

mRTPV   

V = 50ml+50ml+4ml = 104 ml = 0.104x10
-3

 m
3     

(volume of vapor vessel + adsorbent 

vessel + pipes) 

R = 0.461 m
3
Pa/gK 
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T = 308.15 K 

Pinitial = 3378 Pa, Peq = 5.33 Pa, ∆P = 3372.67 Pa, for the first pulse 
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Figure 8.3. Experimental result for the first 35 °C adsorption experiment 

  

 For the second pulse the procedure is a little bit different. 5.33 Pa was the 

equilibrium pressure in adsorbent bed and vapor vessel (which was not adsorbed). 

Therefore the mass of remaining water vapor is; 

mRTPV   
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Figure 8.4. Result for adsorption experiments at 35 °C including eleven pulses 

   

 

 This amount existed in the adsorbent vessel and it was not adsorbed. With the 

second pulse and opening of V1 valve, the observed pressure in the vapor vessel was 

3426 Pa, 

mRTPV   
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 Therefore, the total adsorbate concentration for the first and second part for Peq 

= 16 Pa can be calculated as follows:  

3
3

2,

2 1014.4
3.0

10244.1 


 x
x

m

m
q

silicagel

ndads

nd ,  

%824.0100)1014.41010.4()( 33

212   xxqqq nd  kg water/kg silica gel 

 Similarly, further calculations for 68 pulses were performed and the obtained 

equilibrium points at equilibrium pressures were plotted.  

 

 

Figure 8.5. Adsorbed amount versus equilibrium pressure plot for 35°C experiments 

 

Two further experiments at 35 °C were performed for the reliability of the 

experiment. Equilibrium adsorbed amount (i.e., q) versus equilibrium pressures were 

plotted for three performed experiments at 35 °C. The obtained graphs are observed in 

Figure 8.5. The figure also involves the comparison between present study and 

Demir‘s study, since he studied on the same pair using the same silica gel. The blue 

points in the figure depict the equilibrium points achieved by Demir (Demir 2008). An 

excellent agreement between the present results and Demir‘s study can be observed 

indicating correctness of the present experimental study.  
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 As it can be seen from the figure, a knee shape is observed for the pressures 

below 500 Pa. After that, a slight convexity is observed up to 3000 Pa; while an 

upward trend is observed for the pressures higher than 3 kPa. For 4000 Pa, the 

maximum adsorbed amount was found around 20 % (kg water vapor/kg silica gel). 

 After 35 °C, two experiments for 45 °C and two experiments for 60 °C were 

performed in a similar way. Figure 8.6 illustrates the results for 45 °C temperature. The 

results of performed experiments could not be compared with Demir‘s study, since 

experiment for 45 °C temperature was not available in his study. The results of two 

performed experiments are in a good agreement with each other. The first experiment 

was ended at 3600 Pa, while the second experiment was performed until 6000 Pa 

equilibrium pressure. At 6000 Pa pressure, around 19 % (kg water vapor/kg silica gel) 

adsorbate concentration was achieved.  

  

 

Figure 8.6. Adsorbed amount versus equilibrium pressure plot for 45°C experiments 

  

 Figure 8.7 shows the experimental results of 60 °C experiments. As seen, two 

experiments were performed and the obtained results were compared with the result of 

Demir‘s at 60 °C. Two performed experiments are in a good agreement between each 

other. The first experiment was ended at equilibrium pressure of 5000 Pa while second 

experiment lasted until equilibrium pressure of 10000 Pa. At 60 °C and 10 kPa 

equilibrium pressure, around 11 % (kg water vapor/kg silica gel) adsorption capacity 

was achieved. For the pressures below 2000 Pa, a good agreement between Demir‘s 
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and present study was observed. For the region after 2000 Pa, the adsorbed amount 

increases with pressure in the results of present study, however it becomes constant in 

the results of Demir‘s study. The reason of this difference may be due to the difference 

of particle sizes. Demir performed experiments with particles having 3-5 mm 

diameters; while in present study the particles have nearly 0.35 mm diameter. The 

diffusion through the pores might have been affected by the clogged pores for the 

larger particles; therefore the adsorption capacity would also be affected. 

 

 

Figure 8.7. Adsorbed amount versus equilibrium pressure plot for 60°C experiments 

 

 Isotherms of pairs are plotted as adsorbed amount versus relative pressure and 

types of isotherms were classified by IUPAC, as mentioned in Chapter 5. In Figure 8.8, 

the isotherm plots are given for all performed experiments at three different 

temperatures. They are almost fitting to each other, as expected. As having a knee 

shape for lower relative pressures and a convexity for further pressures, the isotherm 

may be classified as Type II isotherm. This isotherm behavior is compatible with water 

vapor adsorption onto microporous silica gel defined in literature (Gregg and Sing 

1982). 

 The experimental results were properly fitting Freundlich equation with 

constants k=0.2958 and n=1. Therefore the isotherm equation becomes: 
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 The isotherm equation based on adsorbed amount versus relative pressure was 

plotted and compared with the obtained results. A good agreement between results of 

isotherm equation and experiments can be seen (see Fig. 8.8). 

 

 

Figure 8.8. Isotherm plot of experimental results 

  

8.3. Effective Diffusivity 

 

 The mass transfer of adsorbate flow through the porous adsorbent is performed 

by diffusion mechanism. Diffusion process involves mechanisms such as micropore 

diffusion, macropore diffusion and surface diffusion etc.  

 The effective mass diffusivity describes the rate of diffusion through the pore 

space of porous media. It involves all diffusion mechanisms. The effective diffusivity 

can be evaluated using solid diffusion model which is: 

 

    





















r

q
Dr

rr

1

t

q
eff

2

2
                             (8.6) 

0

2

4

6

8

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Relative Pressure (P/Psat)

A
d

s
o

rb
e

d
 A

m
o

u
n

t 
(%

 k
g

/k
g

)

35 °C (First Experiment)

35 °C (Second Experiment)

35 °C (Third Experiment)

45 °C (First Experiment)

45 °C (Second Experiment)

60 °C (First Experiment)

60 °C (Second Experiment)

Numerical Result

http://en.wikipedia.org/wiki/Porous_media


103 

 

 The initial and boundary conditions of Eq. 8.2 can be written as; 

 

    At  r = 0   0
r

q





                                (8.6.a) 

    At   r = rp   qq                        (8.6.b) 

    At   t = 0  0q                                     (8.6.c) 

  

 Analytical solution of Equation 8.2 can be defined by Equation 8.3. Deff of an 

adsorbate into a single particle can be calculated using this equation. 
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 The left side of the equation, which is a non-dimensional term, defines the 

uptake of adsorption process. The uptake curves for each pulses of each experiment 

were plotted on the same graph, as shown in Figure 8.9. This figure belongs to the 

second 60 °C experiment having 15 pulses. As seen from the figure, uptakes slightly 

depend on concentration. As particle adsorbs adsorbate, diffusivity through the pores 

decreases. Since the curves are very near to each others; the average of uptake curves 

was used to calculate effective mass diffusivity. As a result, the effective diffusivity of 

water vapor into a silica gel particle was found as 1.90x10
-10

 m
2
/s at 60 °C by using 

eqn. 8.7. The comparison between the uptake curve based on average of experimental 

results and the uptake curve based on the calculated effective diffusivity is given in 

Figure 8.10. The analytical result is found to be compatible with experimental one. 

 

      Table 8.2. Calculated effective mass diffusivity results of each experimental  

            temperature 

  Deff (m
2
/s) 

35 °C 1.35 E-10 

45 °C 1.54 E-10 

60 °C 1.90 E-10 
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Figure 8.9. Uptake curves for each pulses of the second 60 °C experiment 

 

 The average uptake curves for the studied temperatures are given in Figure 

8.11. The diffusion rate in the adsorbent particle increases with temperature. This is 

due to the increase of activation energies of water molecules. The effective diffusivity 

calculations for the other experimented temperatures were calculated by the same 

method and the results are listed in Table 8.2. The adsorption capacity of the pair 

decreases with increase of temperature, while the effective mass diffusivity increases 

with temperature. 

 

 

Figure 8.10. Comparison of experimental average uptake curve and analytical result of    
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Figure 8.11. Average uptake curves of 35, 45 and 60 °C experiments
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CHAPTER 9 

 

CONCLUSIONS 

 

 Adsorption heat pumps gained importance due to the growing energy demand. 

In this study, the importance of adsorption heat pump, its working principle and 

advantages are explained in detail. Since the main principle of these systems is based 

on adsorption phenomena, the adsorbent-adsorbate pairs used in the system have also 

great importance. The most common pairs used in the adsorption heat pumps and novel 

materials being studied and reported in literature were reviewed. 

 In order to select a suitable pair for an adsorption heat pump, the requirements 

for adsorbent and adsorbate and their affinity to each other should be well known. The 

structural and thermophysical properties, such as surface area, pore structure and 

dimensions, thermal conductivity of the most common adsorbents, such as silica gel, 

zeolite, and active carbon, were investigated and presented. The studies on novel 

promising adsorbents which have very high adsorption capacities were also searched 

and discussed. Physical properties for commonly used adsorbates such as water, 

methanol, and ammonia were also given. The interaction between an adsorbent and 

adsorbate is the most important issue for the pair selection of an adsorption heat pump. 

After discussion on the properties of adsorbents and adsorbates, separately, the 

equilibrium behaviors of the common pairs were also studied. Maximum adsorption 

capacity, isotherm type and the heat of adsorption of the pairs reported in literature 

were given in details. 

 The remarks which might be concluded in accordance with the performed 

investigations on adsorption pair can be listed as; 

 The selection of  a suitable pair is significant for the achievement of 

high performance adsorption heat pump,  

 The structure, thermophysical properties, equilibrium behavior of  a 

desired adsorbent-adsorbate pair should be investigated for the specific 

temperature and pressure ranges, since the decision on the  pair depends on the 

temperature and pressure conditions of the adsorption air-conditioning system, 



107 

 

 The adsorption equilibrium determination of the pair should be 

investigated before the design of system. 

  The review on the reported studies in literature shows that among different 

adsorbent-adsorbate pairs (silica gel - water, active carbon - ammonia, active carbon - 

methanol, zeolite - methanol and zeolite – water) the pair of  silica gel - water  was 

widely used. The silica gel –water pair has advantage of lower desorption temperature 

enabling operation with a low heat source such as solar, geothermal energy and/or 

waste heat. 

   There are several equations defining equilibrium state of adsorbent-adsorbate 

pairs. Freundlich, Dubinin – Astakhov, Dubinin – Radushkevich, Lagmuir, Henry‘s 

and Toth‘s equations are a few examples of proposed equations. Freundlich, Henry‘s 

and Toth‘s equations are the most probable fitting equations for silica gel – water pair. 

 The determination methods of adsorption equilibrium were investigated and 

presented as a literature survey chapter. Gravimetry, calorimetry and volumetry are the 

methods used for determination of adsorption equilibrium. Details about the methods 

were discussed and several reported studies in literature were reviewed. The literature 

survey showed that the volumetric method was the most common one in order to 

determine adsorption equilibrium of adsorbent-adsorbate pairs.  

 A numerical study was performed to investigate the effect of six different silica 

gel – water pairs on the performance of adsorption heat pump. Three different chillers 

using six different pairs were numerically studied and their performances were 

evaluated, and results were presented. 

 The following remarks may be concluded in accordance with the performed 

numerical study for three different adsorption chillers with six different pairs; 

 The performance and cooling capacity of the chiller depends both on the 

pair and the type adsorbent bed and condenser cooling, 

 A higher performance and a higher cooling capacity are achieved by 

using pair with higher adsorption capacities, 

 As the temperature of heat source which cools condenser and adsorbent 

bed of the chiller decreases, both the performance and cooling capacity 

increases, 

 Finally, the performance of the chiller increases with increasing 

maximum bed temperature, but it remains constant after a specified point. 
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 An experimental work was also performed to determine adsorption equilibrium 

for silica gel-water. The volumetric method was chosen. An experimental setup was 

designed and constructed based on the volumetric method. There were serious 

difficulties with maintaining vacuum in the setup. Many designs and sealants were 

examined and finally a setup with very small leakage rate was achieved.  

 The experiments were performed for 35, 45 and 60 °C isotherm temperatures. 

The experimental procedure and obtained results were presented.  

 The remarks that could be concluded in accordance with the results of 

adsorption experimental study are; 

  Silica gel - water pair used in experiments are found to be compatible 

with Type II isotherm (based on IUPAC classification), 

 The maximum achieved adsorption capacities were around 21%, 19% 

and 11% kg water vapor/kg silica gel, for 35, 45 and 60 °C; respectively. 

 These adsorption capacity values are lower than the capacities of silica 

gel (i.e. type RD silica gel) - water pairs reported in literature. 

 The experimented pair may not be proper to be used in an adsorption 

heat pump due to its low adsorption capacity. 

 Therefore a much better silica gel having capacities more than 25-30% 

for 30-35 °C might be used for the application of an adsorption heat pump. 

 Effective mass diffusivity was found based on these experimental 

studies. Deff were found as 1.35x10
-10

, 1.54x10
-10

 and 1.90x10
-10

 m
2
/s for 35, 45 

and 60 °C; respectively. 
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APPENDIX A 

 

ISOTHERM PLOTS FOR DIFFERENT EQUILIBRIUM 

EQUATIONS REPORTED IN LITERATURE 
 

 

 
Figure A.1. Freundlich Equation isotherms for silica gel – water pair with coefficients 

         k=0.346, n=1.6 

 

 
Figure A.2. Freundlich Equation isotherms for silica gel – water pair with coefficients 

         k=0.355, n=0.79 
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Figure A.3. Freundlich Equation isotherms for silica gel – water pair with coefficients  

         k=0.444, n=1.346  

 

 

 

 
Figure A.4. Freundlich Equation isotherms for silica gel – water pair with coefficients 

         k=0.552, n=1.6  
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Figure A.5. Modified Freundlich Equation isotherms for silica gel – water pair 

 

 

 

 

 

 
 

 

Figure A.6. Dubinin - Astakhov Equation isotherms for silica gel – water pair with 

          coefficients q0=0.68, D=1.56E-5, n=1.65 
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Figure A.7. Dubinin - Astakhov Equation isotherms for silica gel – water pair with 

         coefficients q0=0.35, D=6E-6, n=1.65 

 

 

 
 

Figure A.8. Dubinin - Astakhov Equation isotherms for silica gel – water pair with 

          coefficients q0=0.301, D=0.0226, n=1.08 
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Figure A.9. Dubinin - Astakhov Equation isotherms for active carbon - methanol pair 

         with coefficients q0=0.407, D=3.22E-7, n=2.195 
 

 

 

 

 
 

Figure A.10. Dubinin - Astakhov Equation isotherms for active carbon - ammonia pair 

           with coefficients q0=0.549, D=1.617E-6, n=2 
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Figure A.11. Henry‘s Equation isotherms for  Type 3A silica gel - water pair 
 

 

 

 

 

 
 

Figure A.12. Henry‘s Equation isotherms for Type RD silica gel - water pair 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

P (kPa)

q
* 

(k
g

/k
g

)

30 °C

40 °C

50 °C

60 °C

80 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

0 4 8 12 16 20

P (kPa)

q
* 

(k
g

/k
g

)

30 °C

40 °C

50 °C

60 °C

80 °C



122 

 

 
Figure A.13. Henry‘s Equation isotherms for Type RD silica gel (2) - water pair 

 

 

 

 

 

 

 
 

Figure A.14. Toth‘s Equation isotherms for Type A silica gel - water pair 
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Figure A.15. Toth‘s Equation isotherms for Type RD silica gel - water pair 
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APPENDIX B 

 

NUMERICAL STUDY FLOW CHART 

 

 
 

Figure B.1. Flow chart of the numerical study on effect of equilibrium on the          

           performance of adsorption chiller 
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APPENDIX C 

 

MICROMERITICS ASAP 2010 SILICA GEL TEST 

RESULTS 

 

 
 

Figure C.1. Nitrogen adsorption onto silica gel isotherm plot  

(red curve: silica gel used in experimental study, black curve: BASF silica gel)  
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