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ABSTRACT 
 

DEVELOPMENT OF A 3-D LAMINAR NAVIER-STOKES SOLVER 
FOR SEPARATED CHANNEL FLOWS 

 
This study involves the development of a 3-D laminar Navier-Stokes solver with 

finite volume method in C++ language and investigation of 3-D separated channel 

flows. The missing parts of 3-D numerical implementation in Computational Fluid 

Dynamic books and articles are tried to be revealed within this study. To achieve these, 

the details of the discretization methods, implementation of boundary conditions and 

solution algorithm are explained. Besides, a more generalized form of the coefficients 

of the discretized momentum and pressure correction equations including boundary 

nodes are proposed. The use of artificial viscosity method achieves converting the 

conventional channel geometry into different channel geometries. Validation of the 

code is made investigating developing channel flow, artificial viscosity method and 

backward facing step flow. There exists an excellent agreement between present study 

and analytical results and experimental data. The simulation of a 3-D backward facing 

step is given in detail and the flow structure behind the step geometry is investigated. It 

was showed that complex three-dimensional flow develops behind the step with reverse 

and swirling flow regions. The "jet-like" flow and the impingement to the bottom wall 

are found to be responsible from the minimum on the reattachment line where the 

streamwise component of the wall shear stress is zero.  The effect of channel expansion 

ratio on flow structure and pressure recovery is investigated and it is found that as 

expansion ratio increases, the reattachment line moves toward downstream of channel 

and the expansion loss coefficient increases. 
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ÖZET 
 

DUVARDAN AYRILMIŞ KANAL AKIŞLARI İÇİN 3 BOYUTLU 
LAMİNER NAVIER-STOKES ÇÖZÜCÜSÜ GELİŞTİRİLMESİ 

 
 Bu çalışma 3 boyutlu laminar Navier-Stokes denklemleri çözücüsünün sonlu 

hacim metodu kullanılarak C++ dilinde geliştirilmesini ve 3 boyutlu duvardan ayrılan 

kanal akışlarının incelenmesini içermektedir. Bu çalışma ile hesaplamalı akışkanlar 

dinamiği kitaplarında ve ilgili makalelerdeki 3 boyutlu nümerik uygulamalardaki eksik 

kısımlar açığa çıkarılmaya çalışılmıştır. Bunun için, diskritizasyon metodlarının, sınır 

koşullarının uygulamasının ve çözüm algoritmasının detayları verilmiştir. Bunların 

yanında, diskritize edilmiş momentum ve basınç düzeltme denklemlerindeki katsayılar 

için, sınır koşullarını içeren, daha genel bir metod önerilmiştir. Yapay viskozite 

metodunun kullanımı, standart bir kanal geometrisini, farklı kanal geometrilerine 

çevirmeyi sağlamıştır. Kodun doğrulanması ise gelişmekte olan kanal akışı, yapay 

viskozite metodu ve geri basamak akışı incelenerek yapılmıştır. Şu anki çalışma ve 

deneysel veriler ile analitik sonuçlar arasında çok tutarlı sonuçlar görülmüştür. 3 

boyutlu geri basamak akışının simülasyanu ayrıntılı olarak verilmiş ve basamağın 

arkasındaki karmaşık akış yapısı incelenmiştir. Basamak arkasında 3 boyutlu geri dönen 

ve kıvrılan akış yapıları görülmüştür.  Akış içinde görülen jet tarzı ve duvara çarpan 

yapı, kanal alt duvarında akış yönündeki kayma geriliminin sıfır olduğu noktaların 

oluşturduğu, akışın duvara tekrardan birleşme çizgisinde görülen minimum noktanın 

sebebi olarak yorumlanmıştır. Kanal genişleme oranının akış yapısına ve basınç geri 

kazanımına olan etkisi incelenmiş ve genişleme oranı arttıkça akışın tekrardan birleşme 

çizgisinin akıntı yönünde ilerlediği ve genişleme kayıp katsayısının da arttığı 

görülmüştür. 
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CHAPTER 1 

 

INTRODUCTION 

 
 The science has devoted itself to understand the nature and, sometimes, to 

control it which are possible with deep researches and investigations. Numerical 

simulation is one of the tools to accomplish the aim of science and it is a practical and 

viable alternative to experimental and theoretical tools with the aid of increasing 

computer power. With this increase, more complex models can be added for the 

problem or more discretization points to the simulation to increase the accuracy. 

 Numerical simulation avoids using complicated experimental setups, and the 

theoretical tools are limited to solve some problems in closed form. Nevertheless, they 

are dependent on each other, i.e., good numerical simulations require good physical and 

mathematical models describing the problem which are based on the experiments and 

some theoretical background. The most reliable information about a physical 

phenomenon is obtained with experimentation and therefore numerical solutions should 

be validated against the results of the experiments. However, it should be noted that 

some experiments are extremely expensive and sometimes impossible to obtain 

complete information. Besides these, the measuring equipments are not free from errors 

as well. It is also difficult or even sometimes impossible to obtain all the needed 

information by experiments. If the mathematical description is adequate then a 

numerical approach may be superior to experiment but if the mathematical description 

has not completed yet, there is an uncertainty about the extent to which the computed 

results would agree with reality. It is doubtless that for investigation of a new basic 

phenomenon, experiment leads and computation follows. The numerical simulation is 

the intersection of the physical and mathematical models, numerical methods and 

computer science (Figure 1.1).  

Currently numerical simulations are utilized in several scientific, engineering 

and industrial areas such as the analysis of stability in mechanical structures, 

optimization of chemical reactions and combustion processes, simulation of 3-D DNA 

structures, meteorological prediction and design of engineering devices involving fluid 
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flow and/or heat transfer phenomenon as in stated in the study of Kaufmann et al. 

(1993). 

The aim of this study is to develop a three-dimensional Navier-Stokes flow 

solver written in C++ language and investigate the separated flows in a channel. The 

main objective is to reveal all the details of a flow solver which are missing in the 

literature and commercial codes. Commercial codes are easy to use programs, however 

they can be called as "black boxes" requiring inputs and giving outputs. Development of 

a homemade solver enables us to understand the basics of it as being inside the "black 

box”. It gives the control to the developer and after that it is easier to add new steps to 

the code. To work in new application areas requires a good knowledge of the 

fundamentals and the aim of this study is to reveal these fundamentals in computational 

fluid dynamics area. 

 

 

 

Figure 1.1. The location of numerical simulation (NS) in science. 

 

  

 The beginning of twentieth century is the time when the numerical methods such 

as finite difference to solve ordinary and partial differential equations had been 

developed. But the interest in computational study has increased in 1960s with the 

power of high-speed computers.  

 The beginning of computational fluid dynamics (CFD), is attributed to the first 

definitive work of Richardson (1910) who introduced the point iterative schemes to 

solve Laplace’s Equation and biharmonic equation numerically. Some sources show the 
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beginning of numerical analysis as the paper of Courant, Friedrichs and Lewy (1928) in 

which the questions of “uniqueness” and “existence” were addressed for the numerical 

solution of partial differential equations. 

 After World War II, the number of researches on numerical solution of fluid 

dynamics problems has increased. Professor Jhon von Neumann worked on the stability 

of numerical methods for solving time marching problems and he introduced artificial 

viscosity scheme with Richtemyer (1950). In 1970s and 1980s, different discretization 

schemes are introduced. Not only the techniques to discretize the equations had been 

developed, but also the solution algorithms to solve the resulting equations had been 

introduced and the studies of Patankar (1980) are very important in the solution 

algorithm literature. The studies of J.C. Tannehill, R. W. MacCormack, P. J. Roache, T. 

J. Chung, A. J. Baker, D. A. Anderson and K. A. Hoffman have added many tools in to 

the Computational Fluid Dynamics area. 

 Since 1960, the Navier-Stokes Equations have been solved numerically and 

today there are numerous solvers dealing with different types of flows. They are both 

commercial and open source codes. The well known commercial codes are FLUENT, 

STAR-CD, ANSYS CFX. They can handle very complicated problems. The problem 

with these codes is the difficulty to understand the code and implement the needed 

subroutines. There exist also open-source codes that can handle Navier-Stokes or 

similar type equations. They are developed by the users and the most common one is 

OPEN-FOAM in which you should use their style to add new things and it is difficult to 

understand the code also the number of the open-source codes are very limited. 

However, a code written for academic purposes is more valuable than using commercial 

software or a code written by someone else. One of the powerful academic study 

purposed flow solvers is the “Navier-Stokes Stanford University Solver (NSSUS)”. It 

solves the three dimensional Unsteady Reynolds Averaged Navier-Stokes (URANS) 

type equations.  

 Problem tackled in this study is channel flows with separation and recirculation 

regions. The nature of the separation and the consequent flow recirculation are problems 

of the most fundamental interest in the fluid dynamics. The flow over obstacles, fences, 

steps have been investigated both numerically and experimentally since these problems 

are the basic configurations of the separation and recirculation. Although the geometry 

boundaries are simple, the flows are rather complex. As the free stream passes over the 

obstacle, the flow separates at the corner and then reattaches at the bottom-wall 
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downstream. The flow reverses behind the obstacle and a boundary layer redevelops 

downstream of the reattachment. A secondary reversed flow on the roof wall occurs at 

some low or moderate Reynolds numbers as can be seen in Figure 1.2. The deviation 

exists between the two-dimensional numerical simulations and the experimental data in 

some low-Reynolds-number flows, because of the side wall effects. This makes the 

flow three dimensional (3-D). 

 The investigation of separated and reattached flows is very important. They 

occur in many heat exchanging devices such as electronic and power generating 

equipments, in pieces of electronic cooling equipment, cooling of nuclear reactors, 

cooling of turbine blades, flow in vertical plates with ribs, flow in wide angle diffusers 

and valves. The mixing of high and low energy fluids occur mostly in the reattached 

flow region therefore improving the heat transfer performances of these devises. The 

separation phenomenon is also used for understanding of onset of transition to 

turbulence.  

 For several decades, separated flows are under investigation and the most 

popular one is backward facing step geometry. Figure 1.2 shows the step geometry, 

separation region, primary recirculation bubble, reattachment point and recirculation 

attached to the roof. Since the reattachment length is given as a global feature of this 

flow, it is used for both validation and comparison of the numerical codes. Most of the 

published work is for 2-D and 3-D flow simulations are rare both because of its 

complexity and high computational cost. 

A popular study for the backward facing step geometry was done by Armaly et 

al. (1983). This study based on both experimental and theoretical investigations and 

they reported the velocity measurements and reattachment points for laminar flows in 

channels utilizing Laser-Doppler (LDA) measurement technique up to Reynolds 

number of 8000. They showed that a secondary recirculation zone attached to the roof 

(Figure 1.2) occurs beyond the Re>400. Armaly et al. (2003) published their 

measurements in three-dimensional laminar separated flow revealing a swirling "jet-

like" flow near the side wall in the separating shear layer and the impingement of flow 

on the stepped wall. The measurement in that study covered a range of Reynolds 

number between 98.5 and 525. Nie and Armaly (2003) presented numerical simulations 

for incompressible three-dimensional laminar forced convection flow adjacent to 

backward facing step in rectangular duct to examine the reattachment region of the 

separated flow on the stepped wall.  The effects of step height for the same flow is 
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studied by Nie and Armaly (2002) showing that the size of the primary recirculation 

region and the maximum on the Nusselt number distribution near the side wall 

increased as step height increased for Reynolds number of 343. 

 

 

 
Figure 1.2. Flow over a backward facing step  

(Source: Saldana, 2005). 
 

     

Kim and Moin (1985) computed the flow over a backward-facing step showing a 

relation between the reattachment length and Reynolds number and they compared their 

numerical results with the experimental data of Armaly et al. (1983) in a good 

agreement. 

Gartling (1990) solved steady and incompressible backward facing step flow as 

a test problem for outflow boundary condition. He developed a solution procedure 

utilizing Galerkin-based finite element method and compared his results with the 

numerical results of Kim and Moin (1985). 

Williams and Baker (1997) simulated laminar flow over a 3D backward facing 

step. The main interest of this steady was the characterization of three-dimensional 

vortices in the primary separation region for 100 ≤ Re ≤ 800. They showed that the side 

walls are responsible for the creation of wall-jet pointing from the side-wall to the 

center of the channel. 
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Chiang and Sheu (1999) made a numerical revisit of backward facing step flow. 

They solved steady-laminar Navier Stokes equations for a channel geometry and flow 

conditions reported by Armaly et al. (1983) in the range of 100 ≤ Re ≤ 1000. They 

revealed that the flow at the symmetry plane developed into two-dimensional for 

Re=800 and the channel width is 100 times of the upstream step-height. They also 

presented the topological features of the flow using critical point theory.   

Vogel and Eaton (1985) worked experimentally on the backward step geometry. 

They measured combined heat transfer and fluid dynamics in a separated and 

reattaching boundary layer with emphasis on the near wall region for 13000 ≤ Re ≤ 

42000. They showed that reattachment increases the heat transfer coefficient by a factor 

of two and they obtained the maximum heat transfer coefficient slightly upstream of 

reattachment where the highest turbulence intensity was measured. Adams and Eaton 

(1988) published their LDA study of the backward facing step including the effects of 

velocity bias. The aim of the study was providing structural information and test data 

for modelers. Fessler and Eaton (1997) investigated the flow field in a vertically 

downward, single sided sudden expansion with a fully developed channel flow inlet of 

Reynolds number 13800. They used dense particles to measure their response via LDA 

to turbulent flow field after the sudden expansion.  

Le and Moin (1997) performed direct numerical simulations of turbulent flow 

over a backward facing step at a Reynolds number of 5100. They showed the strong 

stream-wise vorticity structures and gave the instantaneous velocity field to reveal the 

variation of oscillating reattachment length.   

 Saldana (2005) worked on the numerical simulation of mixed convection over a 

three-dimensional horizontal backward facing step. He investigated the effects of 

buoyancy force to the velocity field and temperature distribution. He used the velocity 

profiles of a developing channel flow to validate its code against the data given in the 

study of Shah and London (1978). 
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CHAPTER 2 

 

MATHEMATICAL MODEL DESCRIPTION 

 
The equations governing the incompressible Newtonian fluid flow are 

conservation of mass, also known as continuity and conservation of momentum. The 

equations contain mechanical pressure and three velocity components to be determined 

from these set of equations.  

 

2.1. Conservation of Mass 

 
Conservation of mass is called as continuity equation due to the continuum 

assumptions, i.e., density and velocity may be defined at every point in space. The basic 

idea behind this law is that the mass of a material region is constant, in other words the 

time rate of change of mass of a material region is zero as given in Eq. (2.1). 

 

     ∫ ==
MR

MR dV
dt
d

dt
dM 0ρ         (2.1) 

 

The surface of the material region (Figure 2.1) moves with the local fluid 

velocity iv . The time differentiation at right hand side of Eq. (2.1) can be moved into the 

integration by using Leibnitz’s theorem, i.e., the derivative with respect to time can be 

moved inside the integral if a surface integral is added to compensate for the motion of 

the boundary moving with velocity w which is equal to v. 

 

   ∫∫ =+∂
MR

ii
MR

dSvndV 00 ρρ         (2.2) 

 

 



 8 

 

Figure 2.1. Material region (MR) and local fluid. 

 
 

The second term in Eq. (2.2) is a surface integral and it can be converted into 

volume integral applying the Gauss’s theorem (Eq. (3.3)) and the sum of the two 

integrals gives Eq. (2.3). 

 

    ( )[ ] 00 =∂+∂∫ dVv
MR

ii ρρ         (2.3) 

 

Since the choice of the integration region is arbitrary, Eq. (2.3) is zero if the 

integrand is zero. Then the differential form of the conservation of mass can be written 

in index notation as follow: 

 

         ( ) 00 =∂+∂ ii ρνρ        (2.4) 

 

The first term in Eq. (2.4) is the rate of change of mass per unit volume at a 

fixed point in space. The second term includes three parts in it; these are the net mass 

flow rates out of the element in x, y and z directions. They are also called as the 

convective terms. 

If the flow is steady, the first term in Eq. (2.4) drops out, and then the equation 

turns into the following form. 
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  ( ) 0=∂ ii ρν          (2.5) 

 

If the density is constant (incompressible flow) in addition to steady flow, Eq. 

(2.4) turns into even simpler form of velocity solenoidality. 

 

   0)( =∂ ii ν          (2.6) 

 

2.2. Conservation of Momentum: The Navier-Stokes Equations 

 
The conservation of momentum principle is that the time rate of change of the 

linear momentum of a material region is equal to the sum of the forces on the region. 

Newton’s second law, which relates the acceleration of a particle to the applied force, is 

a special case of the conservation of momentum principle. The force can be stated as the 

sum of two types of forces which are body and surface forces. The body forces apply to 

the entire mass (bulk) of the material and they arise usually from external fields such as 

gravity, electromagnetic and magnetohydrodynamic effects. On the other hand, the 

surface forces act on the boundary surface and simulate the effect of the outside fluid 

upon the inside fluid as an actual surface force. In other words, the effect of the outside 

fluid is replaced with a surface force acting on the boundary of the inside fluid.  

If biF ,  represents the body force per unit mass and iR  represents the surface 

force per unit area on the bounding surface of material region (MR), then the sum of 

two forces on the region gives the total force as given in Eq. (2.7). 

 

    ∫∫ =+
MR

i
MR

bi regionmaterialaonForceNetdSRdVF ,ρ       (2.7) 

 

Since the net force on a material region is equal the time rate of chance of 

momentum of the region, then the conservation of momentum principle can be written 

as given in Eq. (2.8). 

 

                                             ∫∫∫ +=
MR

i
MR

bi
MR

i dSRdVFdVv
dt
d

,ρρ        (2.8) 
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The time differentiation on the left-hand side of the Eq. (2.8) can be moved into 

the integral by Leibnitz’s and Gauss’ theorem. The result is given in Eq. (2.9). 

  

           ( ) ( )[ ] ∫ ∫∫ +=∂+∂ dSRdVFdVvvv ibiijji ,0 ρρρ                  (2.9) 

 

The surface forces are the external stresses on the sides of the fluid element. The 

stress is defined in terms of pressure which creates a normal stress and nine viscous 

stress components for a three dimensional fluid element. The stress tensor ijT  can be 

broken into two parts by subtracting out the thermodynamic pressure, tp , as given in 

Eq. (2.10).   

 

            ijijtij pT τδ +−=                 (2.10) 

 

The term ijδ  in Eq. (2.10) is the Kronecker delta function and viscous stresses 

are denoted by the stress tensor ijτ . The stress tensor is given as 

 

      
















=

zzzyzx

yzyyyx

xzxyxx

ij

τττ
τττ
τττ

τ     (2.11) 

 

The rows represent the forces in each direction. Taking the divergence of the 

row vectors, ( xzxyxx τττ ,, ), ( yzyyyx τττ ,, ) and ( zzzyzx τττ ,, ) gives the surface force vector 

in x, y and z directions. Then the term representing the surface forces in Eq. (2.9) can be 

written in terms of pressure and viscous stress tensor.  

 

               ( )dSpndSTndSR ijijtiijii ∫∫ ∫ +−== τδ                (2.12) 

 

After converting the surface integral in Eq. (2.12) into control volume integral 

using Gauss’ theorem and equating the thermodynamic pressure to mechanical pressure 

using the Stoke’s assumption that the average normal stress is zero, Eq. (2.9) can be 
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written as in Eq. (2.13) and collecting the terms under the same control volume 

integration results with Eq. (2.14). 

 

                         ( ) ( )[ ] ( )dVpdVFdVvvv jijibiijji ∫ ∫∫ ∂+∂−+=∂+∂ τρρρ ,0     (2.13) 

 

        ( ) ( )[ ] 0,0 =∂−∂+−∂+∂∫ dVpFvvv jijibiijji τρρρ     (2.14) 

 

Since the choice of the integration region is arbitrary, Eq. (2.14) is zero if the 

integrand is zero. Considering the body force as just gravitational, the conservation of 

momentum can be written as in Eq. (2.15). 

 

        ijjii TgD ∂+= ρνρ 0          (2.15) 

 

In Eq. (2.15), the term D0 is called the total derivative which signifies the 

Lagrangian acceleration of a material particle. Stress tensor ijT  should be expressed in 

terms of velocity and this expression depends on some physical models. This study 

deals with the Newtonian fluids for which the viscous stresses are linearly proportional 

to the rates of deformation. Stokes’ assumptions set in at this point for all gases and 

most common fluids: 

i. The fluid is continuous and the stress tensor ijT  is at most a linear 

function of the strain rate tensor ijε . 

ii.  The fluid has isotropic properties, i.e., its properties are 

independent of direction; therefore the deformation law is 

independent of the coordinate axes in which it is expressed. 

iii.                   If the strain rates are zero, the deformation law must reduce to the 

hydrostatic pressure condition, ijij pT δ−= . 

Considering these assumptions, the general form of the deformation law for a 

Newtonian fluid can be written as follow. 

 

    iiij
i

j

j

i
ijij xx

pT νλδ
νν

µδ ∂+










∂

∂
+

∂
∂

+−=                               (2.16) 
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In Eq. (2.16), ijδ is the Kronecker delta function, µ  is the first viscosity which is 

also called as dynamic viscosity and λ is the second viscosity which is also known as 

bulk viscosity. The detailed derivations for the stress tensor components, strain rate 

tensor components and the relation between first and second viscosities can be found in 

books of Panton (1984) and White (2006). 

 The momentum equation for a Newtonian fluid can be obtained by substituting 

Eq. (2.16) into Eq. (2.15). The outcome is the famous Navier-Stokes Equations which 

are given in the following set of equations. 

 

             

















∂
∂

+
∂
∂

∂
∂

+

















∂
∂

+
∂
∂

∂
∂

+





 ⋅∇+

∂
∂

∂
∂

+
∂
∂

−=

z
u

x
w

z

x
v

y
u

y
V

x
u

xx
pg

Dt
Du

x

µ

µλµρρ
rr

2
 (2.17a) 
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


∂
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+
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∂
∂

+



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
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∂
∂

+
∂
∂

∂
∂

+





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∂
∂

∂
∂

+
∂
∂

−=

y
w

z
v

z

y
u

x
v

x
V

y
v
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Dt
Dv

y

µ

µλµρρ
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  (2.17b) 
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+
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w

x
V
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w
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pg

Dt
Dw

z

µ

µλµρρ
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 (2.17c) 

 

Rewriting the equation set (2.18) in index notation; 

 

      ])([0 iiijjiijjiii pgD νλδννµρνρ ∂+∂+∂∂+∂+=       (2.18) 

 

If the fluid is incompressible, the term iiν∂  vanishes in Eq. (2.18) due to the 

continuity equation given in Eq. (2.6). If the dynamic viscosity is constant too, then the 

equation takes a simple form of the Navier-Stokes equation for constant viscosity and 

density as in Eq. (2.19). 
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     ( )jiijjiii pgD ννµρνρ ∂+∂∂+∂+=0    (2.19) 

 

This study uses the following assumptions for the mathematical model 

described. 

i. Steady state 

ii. Laminar and incompressible flow 

iii.        Constant property, i.e., constant density and constant viscosity 

iv. No gravitational effect 

v. No viscous dissipation (heating) 

 

With these assumptions the continuity and momentum equations take the following 

forms within their symbolic notation. 

 

Continuity equation: 

 

         0=
∂
∂

+
∂
∂

+
∂
∂

z
w

y
v

x
u       (2.20) 

 

Momentum equations: 

 

( ) ( ) ( )
x
P

z
u

y
u

x
uwu

z
vu

y
uu

x ∂
∂

−







∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2

µρρρ  (2.21a) 

( ) ( ) ( )
y
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z
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y
v
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vwv

z
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x ∂
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






∂
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+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
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2

2

2

2

2
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µρρρ  (2.21b)

 ( ) ( ) ( )
z
P

z
w

y
w

x
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z
vw

y
uw

x ∂
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−







∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2

µρρρ  (2.21c) 

 

Even with the assumptions given above, the Eq. (2.20) and (2.21) are not easy to 

solve because the momentum equations involve nonlinear terms, they are coupled 

within itself and with continuity equation and there is a pressure term in momentum 

equations, which has not a separate equation. Therefore, numerical approximation is the 

only way to reach the solution in most of the applications.  
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CHAPTER 3 

 

NUMERICAL IMPLEMENTATION 

 
3.1. Introduction 

 
The mathematical description of a physical problem generally is a set of partial 

differential equations which are nonlinear in nature in case of flow problems. The 

nonlinearity of the governing equations makes impossible to obtain an analytical 

solution. Fortunately numerical methods promise that the implications of the 

mathematical model can be worked out for almost any practical problem.  With the 

numerical methods, what is solved is not the differential equations directly, but the 

algebraic equations derived from the discretized form of these equations and this makes 

the numerical methods so powerful and applicable. Numerical method treats its basic 

unknowns as the values of the dependent variable at a finite number of locations in the 

computational domain. The obtained algebraic linear system of equations is solved to 

find the values at those points with a proper solution algorithm.  

 

3.2. The General Transport Equation 

 
The steady form of the general transport equation is given in Eq. (3.1). In this 

equation, ϕ represents the dependent variable. If ϕ takes the value of 1, it turns out to be 

the conservation of mass equation and if it takes the value of u, v, w, then it represents 

the x, y and z direction momentum equations respectively. In Eq. (3.1), the left hand 

side includes the convective terms, and the right hand side includes the diffusive and 

source terms. The diffusion coefficient Г and the source term S vary depending on the 

meaning of the dependent variable ϕ. 

 

        ( ) φφ φφρ S
xx

u
x ii

i
i

+







∂
∂

Γ
∂
∂

=
∂
∂        (3.1) 
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 The dependent variables are calculated at the chosen grid points by solving the 

linear algebraic equations derived from Eq. (3.1). In this derivation, the variation of 

dependent variable ϕ among the grid points should be employed. This variation is 

generally calculated including a small region in terms of ϕ values at the grid points 

within and around the region. To achieve this, the calculation domain is subdivided into 

a number of sub-domains or elements.  There are many methods employed for the 

division of the domain into sub-domains and regions. The most well known methods are 

finite difference method, finite element method, method of weighted residuals and finite 

volume method.  

 

3.3. The Finite Volume Method 

 
 Finite volume method is one of the discretization methods used to solve the 

partial differential equations. The basic idea behind the finite volume method is to 

divide the computational domain into a number of non-overlapping control volumes. 

The computational domain (e.g. channel volume) and a few exaggerated sub-control 

volumes are shown in Figure 3.1. The sub-control volumes are surrounded by their 

neighboring control volumes.  

The finite volume method leads itself to direct physical interpretation. The 

differential equation is integrated over all the sub-control volumes and the piecewise 

profiles expressing the variation of ϕ between the grid points are used to evaluate the 

required integrals. The result is the discretized equation containing the values of ϕ for a 

group of grid points. 
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Figure 3.1. The basic control volume division of the computational domain. 

 

 

 Since the differential equation is integrated over the control volumes, the 

integral for the sub-control volumes are conservative, i.e., the integral conservation of 

mass, momentum and energy are exactly satisfied over any group of control volume and 

over the whole calculation domain. There is an exact balance among the control volume 

and its neighbors. Finite volume methods, due to this property, are called conservative 

in their nature. 

The schematic representation of one of the control volumes is given in Figure 

3.2 showing its neighbors. The capital letters show the centers of the neighboring 

control volumes and the small letters represent the locations of the faces of the control 

volumes. As shown in Figure 3.2, w represents the west face of the control volume 

represented by the P nodal point. A three dimensional control volume has six 

neighboring control volumes which are west (W), east (E), north (N), south (S), front 

(F), back (B) control volumes, and it has six control volume faces which are west (w), 

east (e), north (n), south (s), front (f) and back (b) faces. 

The key step of the finite volume method is the integration of Eq. (3.1) over a 

three-dimensional control volume. Taking the integral of both sides of the Eq.(3.1) 

results with Eq. (3.2).  This procedure is applied to all the nodal points in the domain. 
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Figure 3.2. Schematic view of a control volume with neighboring points and faces. 

 

 

         ( ) dVS
xx

u
x VCiiVC

i
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φφ φφρ ∫∫∫ +







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=
∂
∂

...

                (3.2) 

 

The divergence theorem of Gauss states that the volume integrals can be 

transformed into surface integrals over the entire bounding surface of the control 

volume. This theorem can be written for any vector x as; 

 

    ∫∫ •=
AVC

dAxndVxdiv rrr

.

)(                (3.3) 

 

Equation (3.3) has a direct physical interpretation. The term xn rr
•  is the 

component of xr in the direction of the vector nr normal to surface element dA. The 

integral of the divergence of a vector over a volume is equal to the component of that 

vector in the direction normal to the surface bounding the volume integrated over the 

whole surface A. With this theorem, the order of the derivative is reduced by one and 

this makes the numerical solution procedure easier. Applying this method to the volume 

integrals of Eq. (3.2) turns them into surface integrals as in Eq. (3.4). 
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       (3.4) 

 

The term on the left hand side of Eq. (3.4) is the net rate of change of ϕ in the 

fluid element due to convection and the first term on the right hand side of the Eq. (3.4) 

is the net rate of change of ϕ in the fluid element due to diffusion. The last term on the 

Eq. (3.4) is the net rate of creation of ϕ inside the control volume due to sources.  

The integration in Eq. (3.4) yields the variation of ϕ in the control volume due to 

interaction with its neighboring nodal points, the convective and diffusive flux across 

the control faces and the change in the source term as given in Eq. (3.5). It is a 

statement of the conservation of a fluid property for a finite size control volume.   
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     (3.5) 

 

The effect of the combined convective and diffusive fluxes is given in the square 

brackets in Eq. (3.5). The values of the dependent variables are calculated at the nodal 

points, however in Eq. (3.5), the values are for the control volume faces and therefore 

they should be evaluated at the faces utilizing the value of the neighboring nodal points.  

Evaluation of the values of the dependent variable ϕ is very important in Finite 

Volume Method. There exist several methods to evaluate the values at the faces and 

these methods are called discretization schemes. The simplest one is approximating the 

values at the faces assuming linear changes. One of the simple forms is known as 

central differencing scheme and it evaluates the value at the face as the average of the 

two neighboring nodal points’ values. This procedure can be applied to both convection 

and gradient terms. The other well-known yet slightly more complicated schemes are 

upwind, hybrid, power law and exponential (exact) schemes which are compared in 

later sections.  
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To make the calculations easier, two new variables F and D are introduced here. 

F represents the convective mass flux and D represents the diffusion conductance flux at 

the cell faces. The “i” refers to the corresponding face in Eq. (3.6) and Eq. (3.7).  

 

  AuF ii ∆= ρ           (3.6) 

 

  A
x

D
i

i ∆
∆

Γ
= φ          (3.7) 

 

The values of the dependent variable at different faces are written in terms of the 

neighboring nodal points with the chosen discretization scheme. Then Eq. (3.5) includes 

only the values of the dependent variable ϕ at the nodal points, i.e., ϕE , ϕW, ϕN, ϕS, ϕF, ϕB 

and ϕP. With the aid of discretization scheme, the Eq. (3.5) turns into an equation 

including ϕ at the nodal points and the new variables F and D. The resulting equation 

can be combined into common parenthesis of the dependent variables at the nodes with 

their related coefficient in the parenthesis. Then the general form of the nodal equation 

is written in the form of Eq.(3.8).  

 

   baaaaaaa BBFFSSNNWWEEPP ++++++= φφφφφφφ          (3.8) 

 

The sub index “P” refers to the nodal point whose value calculated according to 

the values of the neighboring variables and source term. The last term in Eq. (3.8) is the 

source term where  

 

            dxdydzSb φ=          (3.9) 

 

In practical situations, the source term may be a function of dependent variable 

ϕ. In the finite volume method, the source term is approximated by means of linear 

form. 

 

      Ppu SSdxdydzS φ+=        (3.10) 
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The coefficients of the dependent variables are related with the discretization 

scheme applied to the differential equation. The general formula for these coefficients 

can be written as  

 

    [ ]0,)( iiii FPADa ±+=        (3.11) 

 

where P is the cell Peclet number which is the ratio of F to D which gives the strength 

of convection over diffusion. The Function A is determined according to the 

discretization scheme chosen. Table 3.1 gives the expressions of this function with 

respect to various schemes. 

The derivation of Eq. (3.11) can be found in the work of Patankar (1980). Figure 

3.3 compares the consequences of various schemes for a 1-D convection diffusion 

problem. The values of ϕP is plotted for given values of ϕE=1 and ϕW=0 by different 

schemes for various values of the cell Peclet number P. 

 

Table 3.1. The function A(|P|) for different schemes  
(Source: Patankar, 1980). 

Scheme      Formula for A(|P|) 

Central difference     1-0.5|P| 

Upwind      1 

Hybrid       [| 0, 1-0.5|P| |] 

Power law      [| 0, (1-0.1|P|)5 |] 

Exponential (exact)     |P|/[exp(|P|)-1] 

 
 

The results of the schemes suggest that all the schemes except central 

differencing scheme gives physically meaningful results. As can be deduced from Fig. 

3.3, the results of the power law scheme and the exact solution are too close to one 

another, therefore, in this study, power law discretization scheme is used for the 

discretization of convective terms. It should be noted that, the central differencing 

scheme can be used in the solutions by refining the grid dimension. This refinement 

reduces the cell Peclet number (P) below two in which range the central differencing 

scheme is stable. However, this procedure requires use of too much grid points in the 

computational domain which is not demanded for the practical applications. The 



 21 

physically meaningful results with finite number of grid points depend on some 

properties such as conservativeness, boundedness and transportiveness. The definitions 

of these properties can be found in the book of Malalasekera (2007). It should be noted 

that the power law scheme is fully conservative, unconditionally bounded and it 

satisfies the transportiveness requirement. One disadvantage of the scheme is that the 

accuracy in terms of Taylor series truncation error is only first order. 

 

 

                
Figure 3.3. Prediction of ϕP by the various schemes for a range of Peclet numbers 

(Source: Patankar, 1980). 
 

 

The Power Law scheme is given by Eq. (3.12). In this equation, the function A 

takes the larger value between the two choices, i.e., if zero is greater than the other 

option, function A takes the value of zero. 
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The function A can be put into Eq.(3.11) to evaluate the a coefficients of 

neighboring nodes. In Eq.(3.11), the sign of the convective term depends on the flow 

direction. Normally, it is assumed that the flow is from west to east, or south to north or 
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back to front with respect to the flow conditions. Therefore, the a coefficient can be 

written for the neighboring nodal points with its proper sign in front of the convective 

term as in equations from Eq. (3.13) to Eq. (3.14). 

 

   ( ) [ ]0,eeeE FPADa −+=      (3.13a) 

 

   ( ) [ ]0,wwwW FPADa ++=      (3.13b) 

 

   ( ) [ ]0,nnnN FPADa −+=      (3.13c) 

 

   ( ) [ ]0,sssS FPADa ++=      (3.13d) 

 

   ( ) [ ]0,fffF FPADa −+=      (3.13e) 

 

   ( ) [ ]0,bbbB FPADa ++=      (3.13f) 

  

After evaluating the coefficients of neighbors, the coefficient of node P which is 

the point that is calculated at that instant should be evaluated. Since the a coefficients 

include the dependent variable ϕ at nodal point P because of the evaluation of the 

variation of it, the coefficient of dependent variable at P is also dependent on its 

neighboring nodal points. The formula for a coefficient at P is given generally for the 

internal nodal points in the studies of Patankar (1980) and Malalasekera (2007). In this 

study, we propose more generalized form of this coefficient including the effects of the 

boundary nodes. The evaluation of these coefficients are not so clear in literature, 

because every author assumes its own style and do not give every detail. The proposed 

a coefficient at the nodal point P is given in Eq. (3.14). 

 

           PBFSNWEP SFaaaaaaa −∆++++++=        (3.14) 

 

In Eq. (3.14), the term SP is the source term coming from its linear form which is 

given in Eq. (3.10). This term changes according to the boundary conditions. The 

evaluation of this term will be explained under the Boundary Conditions section. 
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The general form of the discretized general transport equation (Eq. (3.1)) can be 

written as in the following form. 

 

       ∑
=

+=
6

1i
PiiPp baa φφ        (3.15) 

 

Note that the term bP in Eq. (3.15) should not be confused with the term b in Eq. 

(3.8). Here, the coefficient b is the source term coming from the linearized form of it 

and this term does only include the portion which is independent from ϕ. 

 

3.3. Discretization of Navier-Stokes Equations 

 

3.3.1. Momentum Equation 

 
The momentum equation for a Newtonian fluid can be written in index notation 

as given in Eq. (3.16). 
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In Eq. (3.16), sub-index i refers to the direction interested. For z-direction ϕi 

becomes w (velocity component in z-direction) and xi becomes z. Discretized form of 

this equation can be obtained by applying the procedure explained in section 3.2 as; 
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    (3.17) 

 

This equation is valid for the three dimensions. The differences in these three 

equations are the dependent variable term ϕ and the pressure term Pr, which is the 

related pressure and is the main momentum source term in most of the engineering 
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problems. The term PP is the pressure at nodal point P which is the node whose 

dependent value is computed at that instant. The Pr would take the three values as given 

in Table 3.2. The evaluation of the pressure gradient term is given in section 4.2.  

 

 

Table 3.2. The values of Pr in Eq. (3.17). 

Direction      Pr 

x-direction      PW 

y-direction      PS 

z-direction      PB 

 

 

The velocity gradients seen in the right hand side of Eq. (3.17) is evaluated using 

the central differencing scheme since these gradient terms are diffusive terms and the 

distribution of the transported quantity by diffusion occurs along its gradients in all 

directions whereas convection occurs in the flow direction. Although central 

differencing works very well for diffusion terms, the convection terms require 

discretization schemes identifying flow direction and the relative strength of convection 

to diffusion. Therefore, the convective terms are discretized using Power Law scheme, 

while diffusion terms are discretized using central differencing scheme in this study. 

After evaluating the velocity gradient terms and replacing related terms with F and D, 

Eq. (3.17) is written as, 
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 (3.18) 

 

Note that the small letters indicate the values at the faces, while capital ones 

refer to the values at the related nodes. The values of the F at each of the faces are given 

through Eq. (3.19a) and Eq. (3.19f). The D coefficients at each of the faces are given 

through Eq. (3.20a) and Eq. (3.20c) for constant density and constant dynamic viscosity. 

The evaluation of the D’s will be different for case of a non-constant viscosity. 
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            ( ) [ ]EPee uuzyuAF +∆∆== *)*(**5.0 ρρ    (3.19a) 

 

            ( ) [ ]WPww uuzyuAF +∆∆== *)*(**5.0 ρρ   (3.19b) 

 

            ( ) [ ]NPnn vvzxvAF +∆∆== *)*(**5.0 ρρ    (3.19c) 

 

            ( ) [ ]SPss vvzxvAF +∆∆== *)*(**5.0 ρρ    (3.19d) 

 

            ( ) [ ]FPff wwyxwAF +∆∆== *)*(**5.0 ρρ   (3.19e) 

 

            ( ) [ ]BPbb wwyxwAF +∆∆== *)*(**5.0 ρρ   (3.19f) 

 

           ( ) zy
xx

ADD we ∆∆
∆

=
∆

== *µµ    (3.20a) 

 

           ( ) zx
yy

ADD sn ∆∆
∆

=
∆

== *µµ    (3.20b) 

 

           ( ) yx
zz

ADD bf ∆∆
∆

=
∆

== *µµ    (3.20c) 

 

Defining all the required terms, the general form of the discretized momentum 

equations can be written as in Eq. (3.21). 
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PPriiPP bAPPaa φφ        (3.21) 

 

3.3.2. Continuity Equation 

 
Three dimensional continuity equation is given as in Eq. (3.22). Integrating Eq. 

(3.22) over the three dimensional control volume and applying the Gauss’ Divergence 

theorem, the discretized form of the continuity equation is written as in Eq. (3.23). 
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( ) ( ) ( ) ( ) ( ) ( ) 0=−+−+− bfsnwe wAwAvAvAuAuA ρρρρρρ     (3.23) 

 

3.3. Grid Arrangement 

 
The arrangement of grid is very crucial in finite volume method. At first glance, 

keeping all the dependent variables at the same nodal point is seemed to be the simplest 

method. This arrangement is known as “Collocated Grid” arrangement. It enables to 

easy implementation for complex geometries and it reduces the memory requirement as 

all the variables are kept at the same location. However, this grid arrangement can 

produce unrealistic wavy velocity and pressure distributions. These problems can be 

avoided by using different control volumes for different dependent variables, also 

known as “Staggered Grid”, which is our choice for this study and it is widely used in 

computational fluid dynamics applications. In this arrangement the nodal locations for 

the velocity components are arranged such that they are located on the control volume 

faces of the main grid in which the pressure and other scalar variables are stored. The 

schematic three dimensional view of this grid arrangement is shown in Figure 3.4.  

The control volumes for the three velocity components are shifted from the main 

control volume of P in the direction of arrows shown in Figure 3.4. Since every control 

volume keeps its variable on its geometric center, the locations of the velocities 

coincide with faces of the control volume for P. The grid arrangement can be 

understand easily if the arrangement is given in the two dimensional planes of the 

computational domain. Figures 3.5, 3.6 and 3.7 are given for this purpose. The shaded 

areas shown in these figures are the representative control volumes for pressure and 

velocities. 

 

 



 27 

 

Figure 3.4. Three-dimensional staggered grid arrangement. 

 

 

 

 

Figure 3.5. Staggered grid arrangement on x-y plane. 
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Figure 3.6. Staggered grid arrangement on y-z plane. 

 
 
 
 

 

Figure 3.7. Staggered grid arrangement on x-z plane. 
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The use of staggered grid arrangement has several advantages: 

1) Any wavy or unrealistic velocity distributions that satisfy the mass conservation 

equation are avoided. 

2) The natural driving force for any velocity component is the result of pressure 

difference between two adjacent grid points. 

3) The staggered grid arrangement generates the velocity components at the exact 

locations where they are required for the computation of the transport of the 

convection and diffusion; therefore there is no need for extra interpolation. 
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CHAPTER 4  

 

SOLUTION ALGORITHM 

 
4.1. Introduction 

 
Numerical solution of Navier-Stokes equations is not direct as the just 

convection and conduction problems since the latter does not contain any coupling, 

extra unknown such as pressure in Navier Stokes and they can be solved directly as 

stated in the numerical implementation section without any special solution algorithm. 

Solution for the Navier-Stokes equations, on the other hand, involves more as it has 

several problems: 

 

i. There is pressure gradient term in the momentum equations which is very 

important due to physical implementation for the momentum equations, 

but there is no separate transport equation to compute the pressure.  

ii. The convective terms in the momentum equation contain nonlinear 

quantities. 

iii. The equations are internally coupled as the velocity components are 

presented in each of the momentum and continuity equations. 

 

There are basically two different solution methods used in CFD. These are 

segregated and coupled solution methods. In segregated solution method, momentum 

equations in each direction and pressure equation are solved sequentially, i.e., they are 

segregated from one another. On the other hand, in coupled solution method, the 

equations are solved simultaneously instead of sequentially. Besides these, the 

segregated solver bases on the pressure while the coupled solver bases on the density. 

Therefore, the coupled solver is recommended if a strong inter-dependence exists 

among density, energy, momentum, and/or species. Within this study, the segregated 

solver is preferred as the problems of this study are low speed flows, there is no 

coupling between density and momentum equations and the segregated solver gives 

faster solution for this type of problems.   
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The non-linearity and internal coupling can be handled by solving these 

equations iteratively if the pressure field is known. However, it is not known in almost 

all problems. If the problem is compressible flow problem, then the continuity equation 

can be used directly for the computation of the density distribution and from that the 

pressure field can be calculated as it can be expressed in terms of an equation of state. 

In the case of incompressible flow, there is no such a link connecting pressure via a 

state equation since the density is constant. Nevertheless a proper pressure field 

distribution must satisfy the momentum equation and the velocity field found from the 

momentum equation then satisfies the continuity equation. From this statement it can be 

deduced that pressure field is indirectly specified via the continuity equation. All of 

these problems can be achieved by a proper solution algorithm. One of the solution 

algorithms was presented by Patankar and Spalding (1972) as SIMPLE algorithm which 

stands for Semi-Implicit Method for Pressure Linked Equations. In this study, The 

SIMPLE algorithm is utilized to solve the set of equations.  

 

4.2. Simple Method 

 
The SIMPLE algorithm is a guess and correct procedure for the computation of 

velocity and pressure field in the domain. The convective fluxes at the volume faces are 

evaluated from the guessed velocity components. A guessed pressure field is used to 

solve the momentum equations. The continuity equation is used for the pressure 

correction equation which is used to correct the velocity and pressure field. At the start 

of the solution, the values are guessed values, after that point on the velocity 

components and pressure field are corrected to reach the desired values. Throughout the 

computations, the next guessed values are the ones obtained from the previous iteration 

of the computation algorithm. In this manner, the velocity and pressure field can be 

obtained up to the defined convergence criteria. 

 

4.2.1. Derivation of Pressure Correction Equation 

 
The general discretized form of the momentum equation is given in Eq. (3.12). It 

can be rewritten for the three velocity components as in Eq. (4.1a, b, c). 
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            ∑ +∆⋅∆⋅−+= buzyPPuaua PWnbnbPP )(                 (4.1a) 

 

            ∑ +∆⋅∆⋅−+= bvzxPPvava PSnbnbPP )(                (4.1b) 

 

            ∑ +∆⋅∆⋅−+= bwyxPPwawa PBnbnbPP )(                 (4.1c) 

 

To initiate the solution, the velocity field and the pressure field are guessed first 

and from these guessed values, the Eq. (4.1) turns into guessed form of these equations 

which are given in Eq.(4.2a, b and c). 

 

              ∑ +∆⋅∆⋅−+= buzyPPuaua PWnbnbPP )( ****                 (4.2a) 

 

               ∑ +∆⋅∆⋅−+= bvzxPPvava PSnbnbPP )( ****        (4.2b) 

 

             ∑ +∆⋅∆⋅−+= bwyxPPwawa PBnbnbPP )( ****                           (4.2c) 

 

Define the pressure correction, p’, as the difference between the correct pressure 

field, p, and guessed pressure field, p*. 

 

  '* ppp +=           (4.3) 

 

With the same convention, define the velocity corrections u’, v’ and w’ to relate 

to the correct velocities and guessed ones. 

 

   '* uuu +=          (4.4a) 

 

   '* vvv +=        (4.4b) 

 

  '* www +=        (4.4c) 
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The guessed form of the momentum equations which are given in Eq. (4.2) is 

subtracted from the correct form of the discretized momentum equations given in Eq. 

(4.1). 

 

              [ ]∑ ∆⋅∆⋅−−−+−=− zyPPPPuuauua PPWWnbnbnbPPP )()()()( ****          (4.5a) 

 

              [ ]∑ ∆⋅∆⋅−−−+−=− zxPPPPvvavva PPSSnbnbnbPPP )()()()( ****        (4.5b) 

 

                   [ ]∑ ∆⋅∆⋅−−−+−=− yxPPPPwwawwa PPBBnbnbnbPPP )()()()( ****           (4.5c) 

 

From the definitions of Eq. (4.3) and Eq. (4.4), the Eq.(4.5) can be written as in 

Eq.(4.6).   

 

      ∑ ∆⋅∆⋅−+= zyPPuaua PWnbnbPP )( ''''       (4.6a) 

 

      ∑ ∆⋅∆⋅−+= zxPPvava PSnbnbPP )( ''''      (4.6b) 

 

     ∑ ∆⋅∆⋅−+= yxPPwawa PBnbnbPP )( ''''      (4.6c) 

 

The main approximation of SIMPLE method takes action at this point: for the 

computational convenience, the method drops the terms involving the neighboring 

nodal points in Eq. (4.6). If the neighboring relations, (anbu’nb) are kept in the Eq.(4.6), 

they have to be expressed in terms of the pressure and velocity corrections of their 

neighbors. All the neighbors require their neighbors and the velocity correction 

equations which are given in Eq. (4.6) would involve all the nodal points in the 

calculation domain and eventually the resulting pressure correction equation would 

become unmanageable. With this omission, the pressure correction equation would 

obey the rule of one-variable at a time procedure as in the general ϕ equation. 

Actually, the omission of this term is the basis of the name of the SIMPLE 

method; i.e., this term represents an implicit effect of the pressure correction velocity 

field. The pressure corrections at the neighboring locations correct them and the 
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corrected values of the neighbors alter the velocity of the node under consideration, 

therefore the effect of the neighbors are included partially, i.e., implicitly. 

At the end of the computation what is obtained is the correct solution. As long as 

the final velocity field satisfies the continuity, the procedure for the pressure correction 

equation becomes irrelevant with the converged solution.     

With this main approximation of SIMPLE method, Eq. (4.6) is written as follow. 

 

                                                   zyPPua PWPP ∆⋅∆⋅−= )( '''                  (4.7a) 

 

                                                   zxPPva PSPP ∆⋅∆⋅−= )( '''                 (4.7b) 

 

                                                  yxPPwa PBPP ∆⋅∆⋅−= )( '''         (4.7c) 

 

Within Eq. (4.7), the corrected velocities are in terms of P’ and from Eq. (4.4), 

the correct velocities can be written in terms of the corrected version of velocities and 

pressure. Then the correct velocity components can be written as; 
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p

PS
Pp a

zxPPvv ∆⋅∆⋅−
+=

)( ''
*                 (4.8b) 

 

                                                
p

PS
Pp a

yxPPww ∆⋅∆⋅−
+=

)( ''
*                  (4.8c) 

 

The discretized form of the continuity equation is given in Eq. (3.23). The 

continuity equation is evaluated at the nodal point P and as can be seen in the 

discretized form of the continuity equation, it uses the velocity values at the six faces of 

the control volume. The use of Staggered Grid arrangement enables to use these values 

directly where they are calculated. Since the velocity components are calculated at the 

faces of the control volume for pressure, they are ready to use without any interpolation.  
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To form the pressure correction equation, the velocities in terms of corrected 

velocity and corrected pressure which are given in Eq. (4.8) are put into Eq. (3.23). 

Collecting the related terms and rearranging the resulting equation, the pressure 

correction equation can be written as in the form of the equation for velocities. 

 

      bpPapPapPapPapPapPapPap BBFFSSNNWWEEPP ++++++= '''''''      (4.9) 

 

The term ap refers the related coefficient of pressure correction term and bp is 

the source term arising from any error in the continuity due to the guessed pressure 

field. The coefficients in front of the pressure correction values are given in Eq. (4.10).  

 

        
E

E a
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W a
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= ρ     (4.10b) 

 

        
N

N a
zxap

2)( ∆⋅∆
= ρ     (4.10c) 

 

        
S

S a
zxap

2)( ∆⋅∆
= ρ     (4.10d) 

 

        
F

F a
yxap

2)( ∆⋅∆
= ρ     (4.10e) 

 

        
B

B a
yxap

2)( ∆⋅∆
= ρ     (4.10f) 

 

The a coefficients in Eq. (4.10) are given in the momentum equations. The 

coefficient of the pressure correction at nodal point P is the summation of the 

coefficients of the neighboring nodal points’ coefficients (Eq. (4.11)).  
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 BFSNWEP apapapapapapap +++++=         (4.11) 

 

For internal nodes, the source term in the pressure correction equation is given in 

Eq. (4.12). The evaluations of these coefficients will be different for the boundary nodes 

and they are explained in the related section. 

        

  ( ) ( ) ( )******
fbnsew uuyxuuzxuuzybp −⋅∆⋅∆⋅+−⋅∆⋅∆⋅+−⋅∆⋅∆⋅= ρρρ       (4.12) 

 

4.2.2. Solution Algorithm of SIMPLE Method 

 
The execution order of the SIMPLE method is given below: 

 

1. Guess the pressure field, p*, and velocity field, u*, v* and w* to initiate the 

method.  

2. Solve the momentum equations to find the new guessed velocity field using the 

ones at step 1.  

3. Evaluate the pressure correction equation by using the values found in step 2. 

With this step, the pressure correction, p’, values are calculated for all the nodes 

in the computational domain. 

4. Correct the pressure using Eq. (4.3).  

5. Correct the velocity components using Eq. (4.8). 

6. Solve all other discretised transport equations such as temperature distribution 

and turbulence quantities if they influence the flow field through fluid 

properties, source terms, etc.  

7. Set the pressure as a new guessed pressure field in the domain and return to step 

2 until the convergence criteria is satisfied, in that case the continuity equation 

should be satisfied.   

 

4.3. On the Iterative Nature of the SIMPLE Method and Pressure 
       Correction Equation 

 
The iterative procedure applied in this study is to solve coupled nonlinear 

equations. The equations are turned into linear algebraic equations and they are solved 
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by iteration. During the iterations, the related coefficients are recalculated and the 

equations are solved again and again until reaching the final solution. Every iteration is 

an intermediate stage and at every stage all the algebraic equations are solved to find the 

dependent variables. The correct solution may be obtained with a direct solution method 

if applicable but this would be very time consuming. The iterative technique greatly 

simplifies the construction of the numerical method and provides a way in which one 

can handle any nonlinearity and coupling.   

The pressure correction equation is an intermediate stage that leads to the correct 

pressure field but it has no direct effect on the final solution. Therefore the formulation 

of the pressure correction equation is not so important as long as the converged solution 

is reached. However, the convergence rate depends on the formulation of the pressure 

correction equation. Omission of too many terms may result with divergence. 

The pressure correction equation derived in Eq. (4.9) is also prone to divergence 

if no under-relaxation is applied.  Therefore, the pressure correction and the velocity 

corrections are both under-relaxed according to the following equations. 

 

           '* PPP Pα+=        (4.13) 

 

                                         ])''(*[)1( APP PrP −++−= φφαφαφ φφ      (4.14)   

 

The under-relaxation factor, α, is normally should be kept between 0 and 1. A 

value close to 1 results in a fast convergence but is also prone to divergence; on the 

other hand, a value close to 0 keeps the iterations converging but may result in an 

unnecessarily extensive computation time. Therefore, in this study, an algorithm called 

“auto-relaxation” is developed in which relaxation factor is adjusted in a controlled 

manner. With the aid of auto-relaxation algorithm, the under-relaxation factors are 

adjusted during the computation time. Checking the convergence history of the current 

program, it tries to adjust the under-relaxation factor in such a way that both the 

program is prevented from divergence and the computation time is reduced. The 

algorithm automatically saves the results at some iteration intervals and uses these 

values to recover the program in case of any probable divergence. Normally, the under-

relaxation factors for the velocities are taking the value of 0.7 while the one for pressure 

is limited to maximum of 0.6.  
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 In the case of constant density and steady flow situation, the normal velocities 

are given at all boundaries. Considering the staggered grid arrangement, no calculation 

is made at boundaries therefore no boundary pressure is specified and all the boundary 

coefficients related with that boundary becomes zero. As a result, the pressure 

correction P’ and (P’ + constant) would both satisfy the pressure correction equation 

which means that no unique absolute value of P’ is obtained. However, during the 

momentum equation calculations, the differences in the pressure nodes are used, not 

their absolute values. Therefore, adding a constant to pressure does not change the 

result. The pressure in this case may be called as relative variable.  

 The direct question that may arise from this statement is that the values of the 

pressure correction equation are not unique and the question is that can it be solved or 

not. Mathematically, if you set up the resulting linear system of pressure correction 

equations in the form of Ax=b, the coefficient matrix A will be singular and when 

trying to find a direct solution, it gives the singularity problem and gives no solution 

with a direct methods. In that case, if the absolute value of it is not unique, does the 

pressure correction equation converge to a solution? Fortunately, the iterative procedure 

ensures this. But, in this case, the absolute value depends on the initial guess of the 

pressure correction equation in the computational domain. To prevent any of these 

problems, the following is what is done in this study. 

 

i) The values of the pressure correction at every node is made equal to 

zero before entering the calculation loop of the pressure correction to 

prevent p’ to have large absolute values. 

ii) Pressure at a point P of one of the control volumes is set to some 

reference value and all the other values of p are forced to be calculated 

relative to the reference value. This also makes the solution unique.  

  

4.4. Solution of Linear System of Equations 

 
The linear system of equations for three components of velocity and pressure 

correction equations should be solved during the computation. Any linear system of 

equations can be solved directly or indirectly. The most common direct methods are 

Inverse matrix method, Cramer’s rule and Gaussian Elimination. These methods try to 
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give the exact solution of the system. The problem with these methods is that if the size 

of the system is very large and sparse as in the case of this study, it is very time and 

computer memory consuming. Besides this, if the system has a singularity, the direct 

methods give no solution.  

The iterative methods are more suitable in these cases. They are good at solving 

large and sparse systems. The iterative methods can be divided into two categories as 

stationary and non-stationary methods. The non-stationary methods use successive 

approximations to obtain the solution of the set using orthogonal vectors as in conjugate 

gradient methods. Most of the computational fluid dynamics methods use the stationary 

methods which include Gauss-Seidel point by point iteration method, Jacobi iteration 

method, successive over relaxation and successive under relaxation methods. They are 

easier to implement since there is no need to construct the set of equations in the form 

of Ax=b, but they are slower compared with the other methods especially for the sets 

arising from the three-dimensional computational domains. The solver-subroutines of 

the developed code include the previously mentioned stationary-iterative solution 

methods. 

 

4.5. Convergence Criterion  

  
An iterative process is said to have converged if the successive iterations will not 

produce any change in the value of the dependent variables. The termination is 

determined by a convergence criterion which is specified by the user. There are several 

methods to find a proper convergence criteria and it depends on the nature of the 

problem and aim of the computation. The most common one is looking at the relative 

change in the calculated values between two successive iterations being greater than a 

certain small number. The relative change of all the grid point values can be used as a 

convergence criterion. If heavy under-relaxation is applied during the calculation, this 

method may be misleading as the change between the successive iterations is slowed 

down by under-relaxation. In that case, the solution may seem as converged although 

the calculated values between two successive iterations differ.  

 In this study, physically more meaningful method is applied to monitor the 

convergence. What is monitored is how perfectly the discretized equations are satisfied 

by the current values of the dependent variables. This may be called as “residual” of 
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that equation. The criterion for the dependent variable and pressure are given in Eq. 

(4.15) and Eq. (4.16). 
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                    [ ] P
nodes

fbyxnszxewzyP wwAvvAuuAR ερ ≤−+−+−= ∑ −−− )()()(          (4.16) 

 

The epsilon value is chosen generally as 10-8 in this study. The choice of the 

epsilon is very crucial during the calculations. It should be noted that if the under-

relaxation factors are too small, the epsilon values should be small too to compensate 

this effect. It would be wise to check during the runs whether the solution has 

converged or not, because there may be some situations that these epsilon values may 

not be sufficient for the correctly converged solution. Since the problems of this study 

are in a channel and the flow is allowed to develop fully, one of the checks for the 

convergence may be to look whether the flow develops fully at the channel exit or not. 

 

 

 



 41 

CHAPTER 5 

 

BOUNDARY CONDITIONS AND THEIR 

IMPLEMENTATION 

 
The boundary conditions used in this study are mostly no-slip boundary 

condition, inlet boundary condition, outflow boundary condition and symmetry 

boundary condition. Their use and implementation are crucial in the numerical 

application because the problem is solved with these boundary conditions. A simple 

methodology is developed to implement these boundary conditions for the boundary 

nodes. Even if the boundary conditions are the same, their implementation is different 

for different locations. For instance, for one of the velocity components, there exist 8 

corner, 12 edge and 6 face nodes using the boundary values whose locations are 

different (Figure 5.1). Since 3 velocity components and 1 pressure correction equation 

are solved, this means 104 different implementations at the boundary nodes. 

 

 

 

Figure 5.1. Boundary nodes for the u-velocity component. 
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5.1. No Slip Boundary Condition 

 
No slip boundary condition is the condition applied at the stationary solid walls. 

If the problem is confined, as the walls of the channel in this study, the velocity 

components on the wall are set to zero as given in Eq. (5.1).  

 

    0=
wall

φ          (5.1) 

 

The configuration of the location of the wall and the velocity components are 

shown in Figure 5.2 for w and v velocity components. 

 

 

 
Figure 5.2. Configuration of w and v-velocity components adjacent to the wall. Dashed  

                    lines show the edges of the velocity control volumes.  
 

 

The values of the velocities are set to zero for this boundary condition. Since the 

velocities are known at these locations, there is no need to solve pressure correction 

equation there. While solving the equations adjacent to the boundary conditions, the 

related coefficients are adjusted to implement the related boundary condition. The 

procedure is as follow: 

 

i. If one of the neighboring value is known, set the momentum coefficient 

a of that neighbor to zero. 

ii. Add D±F coefficients to the a momentum coefficient at P. 

iii. Add ui*(D±F) to source term b for the known neighbor value. Here, 

since the velocity is zero, this will add nothing to source term b. 

However, if the wall is moving or there is a suction and/or injection on 

the wall, it is implemented directly with this procedure. 
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iv. For the pressure correction equation, set the coefficient for pressure ap 

at related boundary to zero and use velocity directly, not the guessed 

one in the calculations. No extra implementation is required. 

 

5.2. Inlet Boundary Condition 

 
At the inlet boundary, flow variables are specified. At the inlet either the 

pressure or inlet velocities are specified. If the exact details of the flow distribution are 

unknown, but the boundary values of pressure are known, the solution may be obtained 

from this pressure inlet boundary condition. If the velocity components are known on 

the inlet section instead of pressure, then inlet velocity boundary condition is used as in 

this study. That is the inlet velocity profile is prescribed at the inlet boundary (Eq. 

(5.2)). Since the velocity components are given, the pressure corrections at these points 

are zero meaning that no calculation of any momentum equation at these points is 

needed. The schematic diagram of the inlet boundary is given in Figure 5.3 for w and v 

velocity components.   

 

               0φφ =
inlet

         (5.2) 

 

The procedure is same as with the procedure for no-slip boundary condition. The 

only difference is that at least one of the velocity components must be different from 

zero.  Figure 5.4 shows where the related velocity components are calculated with their 

symbols. 

 

 

 
Figure 5.3. Schematic diagram of the inlet boundary. Dashed lines show the edges of  

                      the velocity control volumes.  
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Figure 5.4. Schematic diagram of the velocity nodes adjacent to the inlet boundary, 

                       symbols show where the related velocities are computed. Dashed lines 
                       show the edges of the velocity control volumes. 

 

5.3. Outflow Boundary Condition 

 
 When the location of the outlet section is far enough from any disturbance, the 

flow reaches its fully developed condition and at that location the outflow boundary 

condition can be used. With the outflow boundary condition, it can be stated that there 

is no change in the flow direction for the dependent variables. Practically, the gradients 

of all the variables in the flow direction are set to zero at that location as given in Eq. 

(5.3).  

 

  0=
∂
∂

outletz
φ          (5.3) 

With this boundary condition, there is no calculation for the velocity 

components and pressure correction at the outlet. No change in the gradient is 

implemented as making the velocity components equal to the previous nodes in the flow 

direction as can be seen in Figure 5.5.  The procedure is as follow: 

 

i. Make the gradients of dependent variables in flow direction equal to 

zero, i.e., 0=
∂
∂

z
φ . This means that previousout

previousout

z
φφ

φφ
=⇒=

∆
−

0 . In 

other words, the values of the dependent variables at the outlet are made 

equal to the values of the previous nodes. 
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ii. For the boundary nodes in which the velocities are calculated adjacent to 

the outlet boundary, the momentum coefficient a at the front neighbor is 

set to zero.  

iii. There is nothing to add to the momentum coefficient a for the outflow 

side and nothing to add for the source term b. 

iv. Since the outflow condition used, the velocity components are taken 

from the previous nodes, therefore there is no pressure correction 

equation to be solved at these locations; the pressure correction is zero 

there.  

 

 

 
Figure 5.5. Outflow velocity components for w and v-velocity, symbols show where 

     the related velocities are computed. Dashed lines show the edges of the 
          velocity control volumes. 

 

5.4. Symmetry Boundary Condition 

 
The symmetry boundary condition is used when there is a flow in which the 

flow pattern is symmetric in one or more directions. In this study, the advantage of 

symmetry boundary condition is used since it decreases the computational node number 

at least by half. Physically, a symmetry boundary condition is a location where there is 

no flow across the boundary and no scalar flux across the boundary. The schematic 

view of this boundary is shown in Figure 5.6.   

The ghost cells seen in Figure 5.6 are used in the calculation, however they are 

not calculated separately, their value is taken from its symmetric peer (The blue velocity 

arrows shown in Figure 5.6. are symmetric peers for w-velocity). The values on the 

ghost cells are taken from the neighbors adjacent to the symmetry plane. The normal 

velocity is zero on the symmetry plane; that is u-velocity on the symmetry plane is zero. 
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The related velocity component here is the orange one. The symmetric pairs can bee 

seen in Figure 5.6. 

 

 

 
Figure 5.6. Velocity components adjacent to symmetry plane, circles represent w 

             velocity, rectangles represent u-velocity components. Representative 
             velocity vectors show the symmetry about the symmetry plane.  
 

 

Since the velocity value on the symmetry plane is zero, there is no velocity 

vector on it. The mathematical definition is given in Eq. (5.4). It states that there is zero 

normal velocity and zero normal gradients of all variables at a symmetry plane. 

 

         

0

0

=
∂
∂

=

planesymmetry

t

planesymmetryn

n
φ

φ

                  (5.4) 

 

The procedure for the implementation is as follow: 

 

i. For the calculation of the momentum equation adjacent to the 

symmetry plane, set the related a momentum coefficient to zero 

since the values on the ghost cells are known from the previous 

iteration.  

ii. Add D±F coefficients to the momentum coefficient a at P. 

iii. Add ui*(D±F) to source term b for the known neighbor value.  

iv. In the pressure correction equation, set the related ap coefficient 

for pressure to zero; no further modification is required. 
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CHAPTER 6 

 

CODE VALIDATION 

 
Due to the inherent assumptions, linearizations and discretizations, every CFD 

code is prone to inaccuracies whether small or large. After developing the code, 

numerical validation must be done in order to justify its correctness. The ultimate way 

of testing a CFD code is a comparison between its output and experimental data and/or 

the analytical solution if exists. One of the methods reporting the validation study is to 

choose a target quantity and to compare the results. If the difference between computed 

and experimental results and/or analytical solution looks sufficiently small, the CFD 

code is considered to be validated. In this chapter, only the problem descriptions and 

results are given, the details of the developed code, the properties of the computer used 

throughout this study and the average iteration time can be found in Appendix A.  
 

6.1. Developing Channel Flow 

 
The problems of this study are for separated channel flows. Therefore, validating 

the code for a three dimensional developing channel flow is the first task to show how 

the code deals with this relatively simpler flow. The most valuable work done on the 

three dimensional laminar flows in ducts are the work of Shah & London (1978) and the 

work of Ravi Shankar et al. (1993).  Numerical results for a developing channel flow 

are also given in the study of Saldana (2005). 

 

6.1.1. Problem Description 

 
The problem is a pure forced convective developing flow in a square channel 

with a uniform inlet velocity. The geometry of the computational domain is shown in 

Fig. 6.1. The Reynolds number based on the hydraulic diameter is chosen as 100 with 

the purpose of comparing the computational results with literature. To make the flow 

reach to its fully developed condition, the channel length, Ldc, is set to 40 times to its 
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hydraulic diameter and the results of the computation show that this length is sufficient 

to assume a fully developed flow at outlet of the channel.  
 

 

 
Figure 6.1. Developing channel flow geometry, SP: symmetry plane, O: outlet plane. 

 

6.1.2. Boundary Conditions 

 
A uniform inlet velocity boundary condition is given at the inlet. The axial 

velocity component at all the inlet nodes is set to uniform velocity and the other two 

components of the velocity are set to zero. The problem is geometrically symmetric, 

therefore only the half of the domain is solved and symmetry boundary condition is 

applied at the symmetry plane shown in Figure 6.1. At the walls, no slip boundary 

condition is applied and at the outlet, outflow boundary condition is applied. The 

mathematical definitions of the boundary conditions are given in Table 6.1. 

 

 

Table 6.1. Boundary conditions of developing channel flow. 

 Boundary condition Mathematical definition 
Inlet Inlet velocity u=v=0, w=w0 
Walls No slip u=v=w=0 

Symmetry plane Symmetry u=0, 0=
∂
∂

=
∂
∂

x
w

x
v  

Outlet Outflow 0=
∂
∂

=
∂
∂

=
∂
∂

z
w

z
v

z
u  
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6.1.3. Results and Discussion 

 
The computational grid is first chosen to be uniform and the control volume 

numbers in x, y and z directions are chosen to be 20, 40 and 200 respectively, making a 

total of 1.6x105 control volumes. If the symmetry boundary condition was not 

implemented then 3.2x105 would be required. The convergence criterion is set to be 10-8 

for all three velocity components and pressure. 

Theoretical studies of Shah and London (1978) give the values of Fanning 

Friction Factor and maximum velocity at the outlet. These type of integral quantities 

and specific values of velocity are classical choices for CFD code validation. Fanning 

friction factor, named after J. T. Fanning, is a dimensionless parameter used in fluid 

flow calculations and it is defined as in Eq. (6.1) where 0,, wρτ  are wall shear stress, 

density and average velocity respectively. 

 

2
0

2
w

f Fanning ρ
τ

=          (6.1) 

 

The Fanning Friction Factor should not be confused with Darcy Friction Factor 

which are very similar quantities. Darcy Friction Factor is four times the Fanning 

Friction Factor. 

 

 

2/2
0w

D
dz
dp

f
h

Darcy ρ

−
=         (6.2) 

 

where Dh is the hydraulic diameter which is defined in Eq. (6.3). 

 

   
P
A

D c
h

4
=          (6.3) 

 

Table 6.2 gives the comparison between current numerical computations and 

theses theoretical results. The percent error is found to be less than 0.4 and this shows 

that the code is trustable for the forced convection in a channel.  



 50 

 

 

Table 6.2. Comparison of wmax /w0 for the developing square channel flow. 

            fRe (Fanning)  fRe(Darcy)  wmax/w0 

 

Shah and London(1978)      14.2270   -   2.0962 

Incropera et al. (2007)       -               57   - 

Present study           14.1970   56.789   2.0908 

Error (%)           0.2113       0.3716   0.2583 

 

 

In addition to the comparison made in Table 6.2, we compare the axial velocity 

at the outlet with the analytical velocity distribution given in the book of Frank M. 

White (2006). The constant velocity contours are given in Figure 6.2 at the outlet x-y 

plane. The present numerical computations match very well with the analytical velocity 

distribution for the fully developed non-circular duct flow and this one way validates 

the developed code. 
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Figure 6.2. Axial velocity contour comparison of present study and the analytical 

                         velocity distribution given by Shah & London (1978) in the book of 
                         White (2006), velocity labels are in m/s. 
 

 

Figure 6.3 shows the axial velocity profiles on the symmetry plane at different z 

locations (flow direction). The velocity profile is not parabolic in the developing region, 

but at the channel exit where it develops fully, the profile is parabolic.  
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Figure 6.3. Stream-wise velocity profiles on the symmetry plane for different  

                            locations.  

 

6.2. Artificial Viscosity Method 

 
A code developed for a constant area channel flow can easily be adapted to any 

geometry with rectangular features by artificial viscosity method in which walls are 

modeled as a fluid with very high viscosity. For example, to simulate a solid region in 

the domain, it is known that the velocity components in this domain are zero.  One of 

the two methods to achieve this is use of large source terms and the other method is 

artificial viscosity method which is the use of very high dynamic viscosity in that 

control volumes such that the control volumes behave as if they are solid in that region. 
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Figure 6.4. Location of control volumes in artificial viscosity method. 

 

 

An example for this type of arrangement is shown in Figure 6.4. The control 

volumes shown in the figure are for the scalar quantities, such as pressure density and 

viscosity. Using very high viscosity value inside the inactive or artificially solid region, 

the desired solid effect can be created. A few representative control volumes for the 

high viscosity values are shown in Figure 6.4 with dots inside the control volumes. The 

locations of the velocity components and scalars (point P) are shown in the magnified 

portion of the corner of the forward facing step. The high viscosity values are kept 

inside the domain at location P while the velocity components are kept on the walls of 

the step. If the viscosity values at these points evaluated properly, the velocities on the 

step should be zero because of the no-slip condition. 

 

6.2.1. Evaluation of Viscosity at Interface 

 
The problem of artificial viscosity method is the large discontinuities between 

the zones of normal viscosity and artificial viscosity. The interface viscosity should be 

evaluated in such a way that the flow should not be affected from this discontinuity. 
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The interface viscosity can be calculated by assuming a linear variation between 

related control volumes. The interface viscosity of control volumes P and E (Figure 6.5) 

can be calculated as in Eq. (6.4). 

 

 

 

Figure 6.5. Interface for the P and E control volumes. 

 

 

    EePee ff µµµ )1( −+=         (6.4) 

 

where ef  is the interpolation factor defined as follows: 

 

   
PE

eE
e z

zf
δ
δ

=             (6.5) 

 

where zδ  in Eq. (6.5) is the horizontal distance between the points defined in sub-index. 

If the grid is uniform, ef becomes 0.5 meaning that interface viscosity is calculated 

taking the arithmetic mean of the two control volumes’ viscosity values or a linear 

variation for non-uniform grid arrangement adjacent to the artificial boundary.  This 

type of calculation would result with a very high viscosity at the interface which is not 

desired since intended wall location would move up between the interface and the first 

boundary node in this case. Fortunately, taking the harmonic mean of related control 

volumes can handle the viscosity at the interface correctly and handles the abrupt 

change without requiring an excessively fine grid in the vicinity of the change. The 

harmonic mean is calculated as given in Eq. (6.6). 
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Since very high viscosity value is used with this method and let this be Pµ , then 

the first term in Eq. (6.6) becomes very small and the high viscosity does not affect the 

calculations as in the case of linear variation method. Here the interface viscosity is not 

all dependent on the viscosity value at P. Besides this, eµ   is not equal directly to Eµ , 

but 1/ ef times of it.  

For the three dimensional calculations, the locations of the six neighboring 

control volume locations are very different for different interfaces and different velocity 

components. While calculating the interface velocities, the neighboring control volumes 

enter into the calculation. For example, Figure 6.6 shows the control volumes where 

viscosity is kept and the location of u-velocity on the x-y plane. While evaluating the 

momentum equation for the u-control volume (shaded control volume in Fig. 6.6), one 

of the required interface viscosity is, for instance, the north face of the u-control 

volume.  

 

 

 
Figure 6.6. Location of viscosity values and u-velocity component, (a) viscosities at 

     their local points, (b) and (c) at interfaces. 
 

 

To calculate the interface viscosity at the north face of u-control volume, first 

the interface viscosity between nodes for 1µ  and 2µ  should be calculated using Eq. 

(6.6), and then the interface viscosity between nodes for 3µ  and 4µ  is computed which 

result in 12µ  and 34µ  respectively (Figure 6.6 (b)). The interface viscosity at the north 

face, nµ  (Figure 6.6 (c)), of the u-control volume is obtained using again Eq. (6.6) with 

interface viscosities 12µ  and 34µ . All the velocity components and faces require this 

type of interface viscosity evaluation.  
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6.2.2. Validation of the Artificial Viscosity Method 

 
To validate the artificial viscosity method, developing channel flow is used. The 

same problem is prepared once with a true no-slip boundary condition and then again 

with an artificially solidified wall with a very high viscosity. The geometries of the two 

test cases are shown in Figure 6.7. The height of the channel for the normal test case is 

set to h and the one with artificial viscosity is set to 2h in which the bottom portion is 

filled with high viscosity of 1050 kg/ms. With this arrangement, it is expected that the 

region filled with high viscosity behaves as if solid and two solutions give the same 

exact answer.  

The number of control volumes used in normal test case is 1 x 104 and the 

number of control volumes used in the test case with artificial viscosity is 2 x 104. With 

this control volume arrangement, it is ensured that all the control volume sizes are equal 

in both of the test cases; therefore the number of control volumes in the second test case 

is twice the number of control volumes of the normal test case.  

The boundary conditions for the normal test are same as with the developing 

channel flow except the Reynolds number is set to 400 in this case. As for the test case 

with artificial viscosity method, the inlet velocity profile is uniform for the range of y=h 

to y=2h and zero for the range of y=0 to y=h. If shaded region would not be filled with 

very high viscosity fluid, it would be expected that the flow behaved as if there would 

be a sudden expansion. 

The validation of the application of the method is made comparing the axial 

velocities on the symmetry plane at different z locations. The second test case does not 

behave as if there is a sudden expansion, but it gives the same result with the normal 

test case. The streamwise velocity profiles on the symmetry plane at different z 

locations are shown in Figure 6.8. The results from the both cases match perfectly well 

and this validates the application of the method for any irregular shape inside the 

computational domain converting the regular channel geometry artificially into 

geometrically different channels.   
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Figure 6.7. The geometry of the test problems for artificial viscosity method,  

top: normal test, bottom: test with artificial viscosity. 
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Figure 6.8. Streamwise velocity profiles on the symmetry plane for different  

                            z-locations. 

 

6.3. Backward Facing Step Flow 

 
Flow separation and the subsequent reattachment is one of the fundamental 

research topics in fluid dynamics. To investigate the details of separation and 

reattachment phenomenon, some set of geometric test cases has been developed for the 

researchers. These are flow in a pipe with sudden expansion, flow in a pipe including an 

obstacle such as an orifice, flow over an obstacle such as step or fence in a channel and 

flow in a channel with a sudden expansion which is also called as backward facing step 

flow in a channel. Among these geometric configurations, the backward facing step is 

very popular benchmarking problem and validation test problem for the numerical 

studies. Although the geometry is simple, the flow contains most of the complexities 

that are encountered in other separated flow geometries. Most of the studies for 

backward facing step flow is in 2-D, however all the actual systems containing the step 

geometry is 3-D, therefore there is a need to understand the 3-D vortical flow structure 

behind the step. 
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 The main aim of investigation of this type of flow problem is due to its 

simplicity in its geometry, complexity in its flow structure and availability of reliable 

experimental data.  The objective of the current test case is investigate steady laminar 

flow over 3-D backward facing step and make comparison with the experiments as a 

validation of the developed solver.  

 

6.3.1. Problem Description 

 
The problem is a forced convection over a 3-D backward facing step in a 

channel. The schematic view of the computational domain is shown in Figure 6.9. The 

step geometry and flow conditions are chosen according to the study of Armaly et al. 

(2003) due to the ease of comparison of the results and the validation of the code 

developed. The upstream height of the duct, h, is 0.01 m, the step height, s, is 0.01 m 

and the width of the channel, W, is 0.08 m. The aspect ratio and expansion ratio are 

given in Eq. (6.1) and Eq. (6.2).   

The length of the step, Ls, is 0.02 m and the length of the downstream of the 

step, Ld, is set to 0.5 m which is 50 times of the step height to ensure a fully developed 

conditions at the outlet plane. The choice of the upstream length of the step is for 

preventing the inflow from the effects of sudden expansion.  

The problem is geometrically symmetric in span-wise direction (x-direction), 

therefore the half of the computational domain is solved using L=W/2 portion of the 

channel. The coordinate system is put at the bottom corner of the step and the y-z plane 

at x=W/2 is the symmetry plane. 
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Figure 6.9. Geometry of the backward facing step channel, SP: symmetry plane,  

                         O: outlet plane. 
  

 

The flow of air is simulated in this problem and its physical properties are 

evaluated as constants throughout the simulation as density, ρ , is 1.205 kg/m3 and 

dynamic viscosity, µ  is 1.81 x 10-5 kg/ms. The validation tests are made for Reynolds 

number (defined in Eq. 6.3) of 343.  

 

 
µ

ρ hw02
Re =          (6.3) 

 

6.3.2. Boundary Conditions 

 
At the inlet section of the channel, fully developed velocity profile is used. The 

velocity distribution is given analytically in the book of White (2006) and Eq. (6.4) 

gives the fully developed velocity distribution used for the inlet boundary condition. 

The u and v velocity components are set to zero at inlet. For a rectangular cross section 

shown in Figure 6.10, bybaxa ≤≤−≤≤− , : 
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In Eq. (6.4b), Q is the volumetric flow rate and it is known from the inlet 

boundary condition. The pressure gradient term in Eq. (6.4a) is calculated from Eq. 

(6.4b) and then the velocity distribution is computed with Eq. (6.4a). 
 

 

 
Figure 6.10. Rectangular cross section for fully developed channel flow. 

 

 

Because of the symmetry of the problem in the span-wise direction, symmetry 

boundary condition is applied at x=W/2 y-z plane. At the walls of the channel no-slip 

boundary condition is applied and at the outlet plane, outflow boundary condition is 

used. The locations of the boundaries and the mathematical definitions of the boundary 

conditions are given in Table 6.3. 

 

 

Table 6.3. Boundary conditions of backward facing step flow. 

 Boundary condition Mathematical definition 
Inlet Inlet velocity u=v=0, w=w(x,y) (Eq. 6.2) 
Walls No slip u=v=w=0 

Symmetry plane Symmetry u=0, 0=
∂
∂

=
∂
∂

x
w

x
v  

Outlet Outflow 0=
∂
∂

=
∂
∂

=
∂
∂

z
w

z
v

z
u  
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 6.3.3. Grid Setup 

 
Non-uniform staggered grid arrangement is used for the backward facing step 

flow. The grid is highly concentrated close to the step and adjacent to the walls in order 

to assure the accuracy of the numerical simulation. What is desired for non-uniform grid 

generation is constructing a fine grid in the regions of strong gradients such as walls and 

step corner and a coarse grid for the regions where the variations of the dependent 

variables are small, for example far from the step. There are several non-uniform grid 

generation schemes such as successive ratio, exponential and logarithmic schemes and 

they are used in commercial softwares too. The successive ratio schemes may produce 

very big sized coarser grids compared to exponential and logarithmic ones if the 

computational domain is too long. The choice of the grid generation scheme, however, 

should depend on the details of the problem. In this study, we utilized a successive ratio 

logic because the size of the coarser grids produced near the outlet plane do not affect 

the solution of the problems of this study. But it should be noted that, if any problem is 

suspected from the size of the coarser grids, the exponential or logarithmic schemes 

may be tried.  

To generate non-uniform grid, a basic mathematical approach is applied. At this 

point, where the control volume faces are located should be defined. The two practices 

are seen in the literature: practice A and practice B (Patankar, 1980). In practice A, the 

grid points are located first, and then the faces are located midway between the grid 

points. In Practice B, the faces are located first and then the grid points are placed at the 

centers of the control volumes as shown in Figure 6.11 (dots are the grid points and the 

vertical lines are the faces.). For uniform grid, both of the practices are identical. For 

non-uniform grid arrangement, both of them have pros and cons. For example in 

Practice A, the evaluation of the gradients at the faces are very accurate,  since the faces 

are midway between grid points, however the nodes are may not be at the center of the 

control volume therefore the value of the variable kept at this location may not be a 

good representative of the control volume. In Practice B, there is not a problem like this 

since the nodes are at the geometric center of the control volumes. However, the control 

volume faces are not midway between the nodes and the evaluation of the gradients 

requires special attention. Although there is a disadvantage like this, it is more 

convenient to use Practice B as the control volumes are the basic elements of the finite 
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volume method. Besides this, Practice A requires half control volumes around the 

boundary grid points while the computational domain is filled with regular control 

volumes with Practice B, since the locations of the faces are determined first. It is easier 

to fill the domain, more importantly; the boundary control volume faces coincide with 

the boundary or any discontinuity in the material as in the case of artificial viscosity 

method. Considering all these pros and cons, Practice B is selected to be used in this 

study. 

To generate the non-uniform grid with Practice B, i.e., to locate the control 

volume faces first; we should find a relation for the distance of the faces to the 

boundary. If the first control volume is the starting control volume with length of x∆  

for this arrangement, then the length of the next control volumes are multiplied with an 

expansion factor “r” which is kept between 1 and 1.5. Therefore the size of the next 

control volume is always greater than the previous one. The schematic view is shown in 

Figure 6.11.   

 

 

 

Figure 6.11. The schematic view of the non-uniform grid arrangement. 

 

 

If a distance of L is divided into N control volumes with x∆  being the length of 

the first control volume, then the sum of the lengths of the sub-control volumes should 

give the total length L (Eq. (6.5)). 

 

           Lxrrrxrrxrx =+∆+∆+∆+∆ ....))(()(        (6.5) 

 

Eq. (6.5) can be written as in Eq. (6.6). 

 

            Lrxrxrxrxr N =++∆+∆+∆+∆ −13210 ......        (6.6) 
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Writing Eq. (6.6) in summation form, Eq. (6.7) is obtained. The summation is 

the finite geometric series and it can directly be written in terms of r and N as in the 

right hand side of Eq. (6.7). 
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= 1
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        (6.7) 

 

From Eq. (6.7), an equation for x∆ is written as follows. 

 

            Nr
rLx

−
−

=∆
1
1           (6.8) 

 

Since Eq. (6.8) gives the distance between the starting boundary and the end of 

the control volume (right end of control volume in Figure 6.11), Eq. (6.8) can be 

generalized to give the distance of the end of the ith control volume to the starting 

boundary, Li. The non-uniform grid setup is made with Eq. (6.9).  

 

 N

i

i r
rLL

−
−

=
1
1          (6.9) 

 

The 3-D grid arrangement using Eq. (6.9) is shown in Figure 6.12. The location 

z=0 m is the end of the step and y=0.01 m is the corner of the step. As can be seen from 

the magnified portion of the grid in Figure 6.12, the size of control volumes are bigger 

in z-direction from inlet to the edge of the step since before the edge of the step, the 

flow is coming as fully developed and there is nothing special to investigate before the 

edge of the step. 
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Figure 6.12. Grid arrangement of backward facing step flow geometry. 

 

6.3.4. Results and Discussion 

 
The simulations performed here are for Re=343 and most of the researchers have 

used the experimental data of Armaly et al. for computational validation studies. The 

target quantity for the validation is the reattachment length for 3-D flow. For 2-D 

simulation there is only one value for the reattachment point but for 3-D case, the 

reattachment points form a line called “zw-line” on the wall. This is the location where 

the stream-wise component of the wall shear stress (
0

/
=

∂∂
y

ywµ ) is equal to zero and at 

this location the stream-wise velocity component changes sign from positive to 

negative.  For the grid independence study, the zw-line is chosen as target quantity. 

Figure 6.13 shows the comparison for the so-called zw-line for both uniform and 

non-uniform grid arrangements. Although the control volume number for both of the 

cases is equal, the uniform grid cannot catch the flow details. Fortunately, there is a 

perfect agreement for non-uniform grid arrangement with experimental data of Armaly 

et al. (2003) and this validates the present numerical study.  
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The plot in Figure 6.13 is obtained after investigating 17 different grid 

arrangements of which constitutes the grid independence study.   

 

 

Figure 6.13. Comparison of uniform and non-uniform grid on the zw-line. 

 

 

Firstly, the effect of number of control volumes Nx, Ny and Nz in x, y and z-

directions are investigated. Table 6.4 gives the details of different grid densities for the 

comparison of effect of Nx. 

 

 

Table 6.4. Grid details of the different grid sets for the effect of Nx. 

Grid   Nx, Ny, Nz   Δxmin   Δxmax 

Grid C1  20, 40, 150   8.7409e-04                 0.0038 

Grid A1  30, 40, 150   3.5310e-04                 0.0033 

Grid C2  40, 40, 150   1.5441e-05                 0.0031 

Grid C3  50, 40, 150   6.9714e-05             0.0030 
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The effect of Nx on target quantity zw-line is compared in Figure 6.14. As shown 

in the magnified plot, the grid with 20 control volumes in x-direction cannot catch the 

correct location of zero wall shear stress at a location around z/s takes its minimum 

value. For Grid A1, C2 and C3, computed locations are very close to the experiment 

and since Grid A1 can catch the detail with less number of control volumes in x-

direction than Grid C2 and C3, Nx is chosen to be 30 in x-direction.  

After determining the number of control volumes in x-direction, the next 

comparison is made on the effect of number of control volume in y-direction, Ny. The 

details of the grids comparing the effect of Ny can be found in Table 6.5. 

 

 

 

Figure 6.14. Effect of Nx on the zw-line distribution. 

 
 
 

Figure 6.15 shows the effect of Ny on the zw-line for different grid densities in y-

direction. There is a shift to the left of the zw-line for the results of grids B1 and B2. 

However, The results for grids A1 and B3 matches very well with the experimental data 

and there is not so much difference between the results of Grid A1 and B3, therefore the 
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number of control volumes in y-direction is chosen as 40 so as to decrease 

computational memory compared for a number of control volumes of 60 for grid B3.  

 

 

Table 6.5. Grid details of the different grid sets for the effect of Ny. 

Grid   Nx, Ny, Nz   Δymin   Δymax 

Grid B1  30, 20, 150   5.0229e-04                 0.0017 

Grid B2  30, 28, 150   2.4400e-04                 0.0015 

Grid A1  30, 40, 150   9.1592e-05                 0.0014 

Grid B3  30, 60, 150   1.9628e-05             0.0013 

 
 

 

 

 

Figure 6.15. Effect of Ny on the zw-line distribution. 
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The effect of number of control volume in z-direction is compared with three 

different grid densities in z-direction and details of them are given in Table 6.6. For this 

comparison, the number of control volumes in x and y directions are fixed to 30 and 40, 

but the effect of Ny is investigated. The results are shown in Figure 6.16.  While grid 

D1 cannot catch the zw-line, the grids A1 and D2 matches very well. Since the results 

for grids A1 and D2 are very close to each other, the less number of control volume 

which is 150 in z-direction is chosen.  

 

 

Table 6.6. Grid details of the different grid sets for the effect of Nz. 

Grid   Nx, Ny, Nz   Δzmin   Δzmax 

      Grid D1         30, 40, 100         1.5000e-03       0.0130 

Grid A1  30, 40, 150   4.0689e-04                 0.0126 

Grid D2  30, 40, 180   1.9074e-04             0.0124 

       

 

After determining the number of control volumes in x, y and z-directions, the 

expansion factors for non-uniform grid arrangement should be determined. To choose 

the factors, the effects of different expansion factors for the three directions are 

compared investigating the effect of the expansion factors on the target quantity. 

Table 6.7 and 6.8 give the details of the different grid densities arising from the 

different expansion factor combinations. While an expansion factor very close to 1 

means a grid like a uniform grid, an expansion factor close 1.5 creates a grid 

arrangement very concentrated near the boundary, in other word as the expansion factor 

increases, a dense grid is obtained near boundaries but a coarse grid is created far from 

the boundary. Therefore, a suitable combination of expansion factors should be chosen 

such that it is dense enough near boundaries and not too much coarse far from the 

boundary, but this is not the only factor affecting the choice; the target quantity should 

be match with the experiment as well. 
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Figure 6.16. Effect of Nz on the zw-line distribution. 

 

 

  

Table 6. 7. Expansion factors of the different grid sets for Nx=30,  Ny=40, Nz=150. 

Grid    rx   ry   rz 

Grid A1   1.08   1.35   1.025 

Grid A2   1.08   1.35   1.035 

Grid A3   1.08   1.45   1.025 

Grid A4   1.15   1.35   1.025 

Grid A5   1.20   1.35   1.025 

Grid A6   1.00   1.00   1.000 

Grid A7   1.08   1.05   1.025 

Grid A8   1.08   1.25   1.025 
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Table 6.8. Minimum and maximum dimensions of control volumes for Grid A.  

Grid  Δxmin                  Δxmax                  Δymin                  Δymax                  Δzmin                  Δzmax 

Grid A1 3.5310e-04   0.0033        9.1592e-05   0.0014         4.0689e-04   0.0126 

Grid A2 3.5310e-04   0.0033        9.1592e-05   0.0014         1.4286e-04   0.0170                       

Grid A3 3.5310e-04   0.0033          5.6131e-05   0.0016  4.0689e-04   0.0126 

Grid A4 9.2008e-05   0.0053         9.1592e-05    0.0014         4.0689e-04   0.0126 

Grid A5 3.3844e-05   0.0067       9.1592e-05    0.0014         4.0689e-04   0.0126 

Grid A6 0.00133        0.00133       0.0005           0.0005         0.00346        0.00346 

Grid A7 3.5310e-04   0.0033       3.9752e-04   6.1669e-04   4.0689e-04   0.0126 

Grid A8 3.5310e-04   0.0033         1.5036e-04    0.0011  4.0689e-04   0.0126

    

 

 

 

Figure 6.17. Effect of  rx on the zw-line distribution. 
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The effect of different expansion factors in x-direction is showed investigating 

grids A1, A4 and A5 in Figure 6.17. As can be deduced out from this plot, there is no so 

much difference for these grid densities, therefore one of the three can be chosen, but 

the smallest one is chosen because it creates grid closer to a uniform grid preventing any 

effect of aspect ratio differences in x-direction for all of the control volumes. 

The comparison for the effect of expansion factor in y-direction is made using 

the grids A1, A3, A7 and A8. The expansion factor for grid A7 is 1.05 and very close to 

1, therefore it cannot use the advantage of non-uniform grid as much as others. The 

difference between grid A7 and experimental data can be seen in Figure 6.18. The 

expansion factor for grid A3 is 1.45, which is found as big for this run as shown in 

figure. However, the results of grids A1 and A8 are very close to each other.  The 

choice of expansion factor between the two is made based on the magnified view of the 

plot near symmetry plane. Since the results for grid A1 matches at the center better than 

grid A8, the expansion factor is determined as 1.35 in y-direction. 

 

 

 

Figure 6.18. Effect of ry on the zw-line distribution. 

 
 
 

z/s 
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Figure 6.19. Effect of rz on the zw-line distribution. 

 
 

The final comparison is made to determine the expansion factor in z-direction 

which is the flow direction and the longest dimension. For this comparison, grids A1 

and A2 are compared and the results are shown in Figure 6.19. Since there is no so 

much difference between the two grid arrangements, the smaller expansion factor which 

is 1.025 chosen for z-direction for the same reason stated for x-direction expansion 

factor. 

Completing the decision for the expansion factor in z-direction, the grid 

independence study is over and the other flow structures in the backward facing step 

flow are investigated with Grid A1. At this point it should be stated that Grid A1 uses 

1.8 x 105 grid points. If the results of this grid arrangement is tried to reach with 

uniform grid arrangement, 3.15 x 107 grid points should be used to catch the same 

details of the smallest control volumes size of the non-uniform grid at each direction.    

Figure 6.20 shows the streamwise velocity (w) profiles at different z-locations 

on symmetry plane. The present study agrees very well with the study of Saldana & 

Anand (2004). The location z/s=-2 is the inlet and the velocity profile is fully developed 
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there. The recirculation zone can be identified clearly at location z/s=5.  The location 

z/s=0 is the edge of the step and up to y/s=1 is the wall of the step on which the velocity 

component should be zero. The present study agrees very well with this boundary 

condition such that the velocity is zero on the vertical wall of the step. This also proves 

the correctness of the artificial viscosity method applied for this solution. The location 

z/s=25 is the mid section of the channel. Since the flow has passed the recirculation 

zone, it starts to redevelop throughout the outlet of the channel.  

Streamwise distributions of w-velocity component on different y-planes are 

given in Figure 6.21 and the numerical computations agree with the experimental data 

of Armaly et al. (2003). From the velocity distributions on figure 6.21, it can be 

deduced that there is velocity peak at around x/L=0.25 at y-planes below the step. This 

peak is seen for the y-planes equal to y=s and below of it. There is no such a peak for 

the locations above the corner of the step. These peaks show that there is a jet-like flow 

adjacent to the side wall and this type of flow is the reason of the minimum that appears 

on the zw-line in Figure 6.14.  At location y/s=1.6, there is a reverse flow for x/L<0.1. 
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Figure 6. 20. Stream-wise velocity component at different z planes on the symmetry 

         plane, (top): Saldana & Anand (2004), (bottom): present study. 
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Figure 6.21. Span-wise distribution of w-velocity components on different y-planes, 

                        Lines: present study, Symbols: Armaly et al. (2003). 
 

 

Streamlines are the lines that are instantaneously tangent everywhere to the 

velocity vector of the flow. These lines show the direction a fluid element will travel at 

any point in any time for steady flows. Figure 6.22 shows a few representative 3D 

streamlines representing the flow path of particles with no mass. The streamlines start 

from the inlet plane and they take different forms downstream of the step. Streamlines 

A and B impinges on the bottom wall and this “jet-like” flow structure is a significant 

feature of 3-D backward facing step flow. After the impingement, streamline B 

continues its flow redeveloping downstream of the flow while the streamline A moves 

upwards, goes back and return to the flow direction back forming a swirling flow region 

near the side wall. This “jet-like” flow is the reason of the maximum and minimum on 

the zw-line. The particles on streamline D move into the primary recirculation zone 

directly and they make a swirling motion increasing in size to the center of the channel 

(symmetry plane) and then join to the flow downstream of the channel. There are 2 

more streamlines adjacent to streamline C. While streamline C joins to the recirculation 

after impingement, the two streamlines adjacent to streamline C join to the redeveloping 
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flow.  Figure 6.23 shows three different rake of streamlines. Though the starting 

positions of the streamlines are close to one another, the flow patterns are very different. 

Especially, streamlines closer to the side wall move rapidly inside the primary 

recirculation zone. 

 

 

 

Figure 6.22. Streamlines showing the flow structure behind the step. 

 
 
 

The primary recirculation bubble can be seen in the stream-wise velocity 

contours given in Figure 6.24. The recirculation seen in streamline A in figure 6.22 can 

be seen in the w-velocity contour at x=0.0025 m and the shape of zw-line is very clear. 

The location of reattachment point starting from center decreases to its minimum at 

location x=0.01 m corresponding to x/L=0.25 in Figure 6.13 and then increases near the 

side wall taking its maximum. The profile of the recirculation bubble in span-wise 

direction can be seen in Figure 6.25. The blue colored contours show the reverse flow. 

The recirculation region ends before z=0.1 m as seen in both Figures 6.24 and 6.25. 

After that location, flow redevelops throughout the outlet plane.   
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Figure 6.23. Rake of streamlines starting from x=0.001 m, x=0.002 m and x=0.003 m  

                       from top to bottom. 
 

 

 

 

Figure 6.24. Streamwise velocity contours on different y-z planes. 
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Figure 6.25. Axial velocity contours at different x-y planes. 

 

 

The separating flow at the corner of the step reattaches at the bottom wall 

forming the primary recirculation zone. The swirling flow in the span-wise direction 

and the other recirculation zones in the channel are the cause of adverse pressure 

gradient developing in the flow due to the sudden expansion at the step. Figure 6.26 and 

6.27 show pressure distribution on several planes. The high pressure seen at location 

around z=0.1 m is due to the impinging flow at that region. The flow direction is 

affected from a few parameters. These are pressure gradient, inertial forces and viscous 

forces. If the pressure is enough to overcome the effects of other forces, some of the 

flow goes back and some continue to its way in the redeveloping region of the 

downstream of the channel as seen in the very high pressure regions near the bottom 

wall. However, although the pressure values are high at location around z=0.1 m from 

bottom to top wall, there are some regions where the flow does not change its direction 

because at these locations inertial and viscous forces dominate over high pressure there.  

The vorticity lines which are the lines tangent to the vorticity vectors ( ux rr
∇ ) for 

three different rakes are shown in figure 6.28. Using right-hand rule, the direction of the 
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flow can be deduced looking at the vorticity lines. The lines just outside the 

recirculation bubble show the direction of the flow to out, i.e., the flow is in the axial 

direction; however the vorticity lines inside the bubble show that the flow direction near 

bottom wall is to inside, i.e., the flow direction is reverse.   

 

 

 

Figure 6.26. Pressure distributions on x-z planes. 
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Figure 6.27. Pressure distributions on y-z planes. 

 
 
 
 

 

Figure 6.28. Vorticity lines inside and just outside the recirculation bubble.    
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The final investigation is made on the effects of expansion ratio (ER) on the 

flow structure. The simulations are made using four different ER with a constant 

Reynolds number of 343 which is achieved by setting the same average inlet velocity 

and total channel height for all of the cases. Table 6.9 gives the details of the step height 

(s), upstream channel length (h), ER and AR values for different geometries. The effect 

of ER on the primary reattachment length is shown in Figure 6.29 in which the current 

computational results are compared with the numerical results of Nie et al. (2002) for 

ER 2.5, 2.0, 1.67 and the results match very well. The axial velocity contours for 

different ER values are shown in Figure 6.30 where the difference in the reattachment 

length can be seen easily. From both of the figures, it is easily deduced that as ER 

increases, the primary reattachment length increases as well.  

 

 

Table 6.9. Details of the geometries for different expansion ratios. 

        Geometry      s (m)  h (m)      ER   AR      

              1         0.004            0.016               1.25                20 

              2                  0.008            0.012    1.67   10 

              3                  0.010            0.010    2.00  8.00 

              4                  0.012            0.008    2.50  6.67 
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Figure 6. 29. Effect of ER on zw-line. 
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Figure 6.30. Axial velocity contours at x=0.02 m for different ERs. 

 
 

To show the flow structure behind the step, some streamlines starting from inlet 

are presented in Figure 6.31. When ER=1.25, there is no reverse flow adjacent to the 

side wall, however there exist for the others. As ER increases, the size of the 

recirculation bubble increases, the location of the impingement of “jet-like” flow on the 

bottom wall moves further downstream of the step. For ER bigger than 1.25, the 

impinging flow rebounds and moves upward and the location of the impingement on the 

top wall is also moves further downstream as ER increases. 
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Figure 6.31. Streamlines showing the flow structure for different ERs. 
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Due to sudden expansion, there is a pressure recovery in channel with the 

decrease in mean velocity and it is represented by a pressure recovery coefficient, CP, 

which is the ratio of static pressure rise to inlet dynamic pressure (Eq. (6.10)).  
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The sudden change in geometry increases the loss of recovery and the expansion 

loss coefficient, Ke, is defined as given in Eq. (6.11). 
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11       (6.11) 

 

The term in parenthesis in Eq. (6.11) represents the ideal (frictionless) pressure 

recovery coefficient; therefore the loss is the difference between ideal and actual values. 

The data of the change of the expansion loss coefficient with respect to ER for a 2-D 

sudden expansion flow is given by Fox et al. (2003). Although the problems are not the 

same, they are very similar to each other. The calculations for present study are made at 

the symmetry plane and the results are compared in Figure 6.32. The present results are 

consistent with the data given by Fox, therefore it can be stated that, as expansion ratio 

increases, the expansion loss coefficient increases as well. 
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Figure 6.32. Expansion loss coefficient for flow through sudden area changes. 
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CHAPTER 7 

 

CONCLUSION 

 
The development of a 3-D laminar Navier Stokes solver and the validation of it 

were presented in this study. The solver has been designed in such a way that it can deal 

with separated channel flows by means of artificial viscosity method. The development 

of this solver involves starting from a scratch and dealing with all the subroutines of the 

solver and gives the chance of understanding all the details of the flow solver. Since the 

commercial versions of this type of programs are "black boxes", this study has revealed 

the important facts inside that black box. That the developed solver being three-

dimensional makes the development a bit complex but it gives the chance of examining 

actual flows in 3-D. 

 The textbooks and courses on the CFD area tend to be theoretical and the 

simplest examples such as 1-D and 2-D conduction and convection problems are given. 

The details of 3-D cases are always overlooked. In articles, on the other hand, the 

authors assume that the reader has the basic knowledge and they do not give the details 

of the numerical application. They discuss mostly on the computational results obtained 

by their code. With this study, we have tried to close these gaps.    

 The solver code is developed with C++ language and it utilizes one main routine 

and twenty one subroutines. All the routines are responsible from the calculation of a 

part of the solution algorithm. The resulting linear algebraic equations are solved via 

iterative methods and it is terminated when the convergence criteria is achieved. Finite 

volume method is applied throughout this study and the details of discretization 

methods, boundary conditions' implementation and the solution algorithm were given in 

detail. We proposed a more generalized form of the coefficients of discretized 

momentum and pressure correction equations including the effects of boundaries.   

 The first validation of the code was made testing it for a developing channel 

flow to show that the code is capable of dealing with forced convection in a channel. 

Although the flow is simple, it is a valuable test case to just show that the code can 

handle three dimensional problems. The results agree very well with the analytical 

results given by Shah and London (1978) and Incorpera et al. (2007).  



 89 

 To augment the use of code, we applied the artificial viscosity method with 

which the code for conventional channel geometry is easily converted into 

geometrically different channel geometries. Since this method uses very high viscosity 

in the regions where an artificial solid region is created, the evaluation of the interface 

viscosity in 3-D case is given in detail which is missing in literature. To validate the use 

of artificial viscosity method, the results of a developing channel flow with filled bed of 

high viscosity region were compared against the normal case and the agreement was 

perfect validating the use of the method. 

 Another test problem was chosen to be more complex to show how the code 

handles complex flow structures in 3-D.  This problem is a backward facing step flow. 

The reason behind the choice of this problem was the simplicity of the geometry, 

inherent complex flow structures of the separated flow from the edge of the step, to 

verify experimental data to validate the current code and to show the application of the 

artificial viscosity method in this relatively more complex flow. After grid 

independence study for 17 different grid density, the target quantity, zw-line, was 

compared against the experimental data given by Armaly et al. (1983), Li (2001) and 

Armaly et al. (2003) to justify the use of our developed computer code. Results showed 

that there was generally excellent agreement between the present results and the 

experimental data. The investigation of the flow structure was made with 3-D 

streamlines, velocity and pressure contours, velocity profiles and vorticity lines. It was 

showed that complex three-dimensional flow develops behind the step with reverse and 

swirling flow regions. The "jet-like" flow and the impingement to the bottom wall were 

found to be responsible from the minimum on the zw-line. The investigation of effects 

of expansion ratio (ER) on the flow structure revealed that, as the ER increases, the size 

of primary recirculation bubble increases, reattachment length moves downstream of the 

channel and because of the sudden expansion, the expansion loss coefficient increases 

as well.  

 All in all, this study has provided us with revealing the details of a 3-D flow 

solver and with the investigation of complex flow structures behind a backward facing 

step separated from the edge in 3-D. With the aid of artificial viscosity method, the 

conventional code written for a simple channel flow can handle very different 

geometries in a channel. Since all the subroutines of the code are known, it is easy to 

implement new variations on it.  
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For future studies with this solver; 

 

• The grid generator subroutine should be improved to deal with unstructured 

grids. 

• The adaptive grid refinement technique may be implemented in to the grid 

generator subroutine in order to save computational time and user does not 

have to have apriori knowledge of the flow during the grid generation. 

• The iterative linear equation solver choices should be increased to decrease the 

run-times especially the pressure correction solver since it is the most time 

consuming part of the simulations.  

• Parallel programming may be implemented to speed up the solvers. Although 

the Massage Passing Interface (MPI) and OpenMP were applied for 

parallelizing the code in this study, it requires deeper research for 3-D 

applications. 

• Heat and chemical transport can be added. 

• The code should be improved to solve unsteady problems. 

• The code may be expanded to solve compressible, two phase and turbulent 

flows. 
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APPENDIX A 

 

NAVIER STOKES SOLVER 3D (NSS3D) 

 
NSS3D is a solver code has written in C++ language with one main routine and 

twenty one subroutines to solve 3-D laminar Navier-Stokes equations. The solution 

algorithm of NSS3D is build upon the SIMPLE algorithm of Patankar (1980). Table A.1 

gives the properties of the computer on which the programs are worked and the average 

run time of one iteration for the grid A-1 of backward facing step flow. 

 

 

Table A.1. Properties of the computer used and average time per iteration. 

          Properties                   

               Processor            Intel(R) Xeon(R) CPU 

        E5450 @ 2.50 GHz 

               Installed memory (RAM)                 8.00 GB 

               System type     64-bit operating system 

              Average time per iteration    3.2 sec   

 

 

Figure A-1 shows the flowchart of the program in which the names and locations 

of the subroutines can be found. The explanations of all the routines are given below. 

 

main.cpp: Main routine is the master of the subroutines. The variables and arrays are 

defined in it. It calls the required subroutines according to the flowchart in Figure A-1. 

Besides, the auto-relaxation is made on this routine.  
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Figure A.1. Flow chart of NSS3D. 

 
 
gengrid.cpp: The grid set up is made within this subroutine. It is capable of setting both 

uniform and nonuniform grids with choices of symmetric, diverging and converging 

non-uniform grids. With this routine, any desired non-uniform grid can be created. 

 

mzero.cpp: It equates all the elements of the three-dimensional arrays to zero. 

 

invelu.cpp & invelv.cpp & invelw.cpp: These subroutines set the velocity values at the 

inlet boundary. They can either set to a constant value or read the velocity profile from a 

file.  
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init.cpp: It initializes the velocity components at all nodes to either the inlet velocity 

profile or to a constant value. 

 
 
readdata.cpp: This subroutine reads velocity and pressure data from a file and it 

enables to read computed data in case of any interruption to continue to run from point 

of interruption.  

 

mflowi.cpp: It calculates mass flow rate at inlet to use it for mass flow rate correction at 

outlet. 

 

corrmfr.cpp: It computes the outlet mass flow rate at intermediate stages and corrects 

it with respect to inlet mass flow rate. 

 

fdcoefm.cpp: It computes the F and D coefficients of momentum equations. 

 

acoefm.cpp: It computes the a coefficients of momentum equations and the source term 

b. 

 

solveru.cpp & solverv.cpp & solverw.cpp: These are the iterative solvers for u, v and 

w velocity components. 

 

acoefp.cpp: It computes the ap coefficients of pressure correction equation and the 

source term bp. 

 

solverp.cpp: It solves the pressure correction equation iteratively.  

 

corrpuvw.cpp: This subroutine corrects the pressure, and velocity components 

computed in the solvers. 

 

checkconv.cpp: It checks whether the computed pressure and velocity components 

reached to the convergence criteria or not. 
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autorelaxation: It is a code arranging the relaxation factors checking the convergence 

history. It uses two subroutines which are autorecover.cpp and autosave.cpp. 

 

autosave.cpp: It saves the results automatically in user defined intervals to use them in 

case of any divergence. 

 

autorecover.cpp: In case of divergence, it recovers all the pressure and velocity values 

to the last auto saved ones and the program reduces the relaxation factors and continues 

with these data. 

 

writeresults.cpp: It writes the converged results to file.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


