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ABSTRACT

DEVELOPMENT OF A 3-D LAMINAR NAVIER-STOKES SOLVER
FOR SEPARATED CHANNEL FLOWS

This study involves the development of a 3-D laminar Navier-Stokes solver with
finite volume method in C++ language and investigation of 3-D separated channel
flows. The missing parts of 3-D numerical implementation in Computational Fluid
Dynamic books and articles are tried to be revealed within this study. To achieve these,
the details of the discretization methods, implementation of boundary conditions and
solution algorithm are explained. Besides, a more generalized form of the coefficients
of the discretized momentum and pressure correction equations including boundary
nodes are proposed. The use of artificial viscosity method achieves converting the
conventional channel geometry into different channel geometries. Validation of the
code is made investigating developing channel flow, artificial viscosity method and
backward facing step flow. There exists an excellent agreement between present study
and analytical results and experimental data. The simulation of a 3-D backward facing
step is given in detail and the flow structure behind the step geometry is investigated. It
was showed that complex three-dimensional flow develops behind the step with reverse
and swirling flow regions. The "jet-like" flow and the impingement to the bottom wall
are found to be responsible from the minimum on the reattachment line where the
streamwise component of the wall shear stressis zero. The effect of channel expansion
ratio on flow structure and pressure recovery is investigated and it is found that as
expansion ratio increases, the reattachment line moves toward downstream of channel

and the expansion loss coefficient increases.



OZET

DUVARDAN AYRILMIS KANAL AKISLARI ICIN 3BOYUTLU
LAMINER NAVIER-STOKES COZUCUSU GELISTIRILMESI

Bu c¢alisma 3 boyutlu laminar Navier-Stokes denklemleri ¢ozicuslntn sonlu
hacim metodu kullanilarak C++ dilinde gelistirilmesini ve 3 boyutlu duvardan ayrilan
kanal akislarinin incelenmesini icermektedir. Bu calisma ile hesaplamali akiskanlar
dinamigi kitaplarinda ve ilgili makalelerdeki 3 boyutlu nimerik uygulamalardaki eksik
kisimlar agiga ¢ikarilmaya calisilmistir. Bunun igin, diskritizasyon metodlarinin, sinir
kosullarinin uygulamasimn ve ¢6zim algoritmasinin detaylart verilmistir. Bunlarin
yaninda, diskritize edilmis momentum ve basing dizeltme denklemlerindeki katsayilar
icin, simr kosullarim iceren, daha genel bir metod Onerilmistir. Yapay viskozite
metodunun kullanimi, standart bir kanal geometrisini, farklt kanal geometrilerine
cevirmeyi saglamistir. Kodun dogrulanmasi ise gelismekte olan kanal akisi, yapay
viskozite metodu ve geri basamak akisi incelenerek yapilmistir. Su anki calisma ve
deneysel veriler ile analitik sonuclar arasinda ¢ok tutarli sonuclar gortlmustar. 3
boyutlu geri basamak akisinin similasyanu ayrintili olarak verilmis ve basamagin
arkasindaki karmasik akis yapisi incelenmistir. Basamak arkasinda 3 boyutlu geri donen
ve kivrilan akis yapilart gorilmuistir. Akis icinde gortlen jet tarzi ve duvara garpan
yapi, kanal alt duvarinda akis yonindeki kayma geriliminin sifir oldugu noktalarin
olusturdugu, akisin duvara tekrardan birlesme cizgisinde gorilen minimum noktanmin
sebebi olarak yorumlanmistir. Kanal genisleme orammin akis yapisina ve basing geri
kazanimina olan etkisi incelenmis ve genisleme oram arttikga akisin tekrardan birlesme
cizgisinin akinti yéniunde ilerledigi ve genisleme kayip katsayisimn da arttigi

goralmustr.
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CHAPTER 1

INTRODUCTION

The science has devoted itself to understand the nature and, sometimes, to
control it which are possible with deep researches and investigations. Numerical
simulation is one of the tools to accomplish the aim of science and it is a practical and
viable alternative to experimental and theoretical tools with the aid of increasing
computer power. With this increase, more complex models can be added for the
problem or more discretization points to the simulation to increase the accuracy.

Numerical ssimulation avoids using complicated experimental setups, and the
theoretical tools are limited to solve some problems in closed form. Nevertheless, they
are dependent on each other, i.e., good numerical simulations require good physical and
mathematical models describing the problem which are based on the experiments and
some theoretical background. The most reliable information about a physica
phenomenon is obtained with experimentation and therefore numerical solutions should
be validated against the results of the experiments. However, it should be noted that
some experiments are extremely expensive and sometimes impossible to obtain
complete information. Besides these, the measuring equipments are not free from errors
as well. It is also difficult or even sometimes impossible to obtain all the needed
information by experiments. If the mathematical description is adequate then a
numerical approach may be superior to experiment but if the mathematical description
has not completed yet, there is an uncertainty about the extent to which the computed
results would agree with reality. It is doubtless that for investigation of a new basic
phenomenon, experiment leads and computation follows. The numerical simulation is
the intersection of the physical and mathematical models, numerica methods and
computer science (Figure 1.1).

Currently numerical simulations are utilized in several scientific, engineering
and industrial areas such as the analysis of stability in mechanical structures,
optimization of chemical reactions and combustion processes, simulation of 3-D DNA
structures, meteorological prediction and design of engineering devices involving fluid



flow and/or heat transfer phenomenon as in stated in the study of Kaufmann et al.
(1993).

The aim of this study is to develop a three-dimensional Navier-Stokes flow
solver written in C++ language and investigate the separated flows in a channel. The
main objective is to reveal all the details of a flow solver which are missing in the
literature and commercial codes. Commercial codes are easy to use programs, however
they can be called as "black boxes" requiring inputs and giving outputs. Development of
a homemade solver enables us to understand the basics of it as being inside the "black
box”. It gives the control to the developer and after that it is easier to add new steps to
the code. To work in new application areas requires a good knowledge of the
fundamentals and the aim of this study isto reveal these fundamentals in computational

fluid dynamics area.

Mumerical
Methods
M5
Physical and Computer
Mathematical P
Modeling

Figure 1.1. The location of numerical simulation (NS) in science.

The beginning of twentieth century is the time when the numerical methods such
as finite difference to solve ordinary and partial differential equations had been
developed. But the interest in computational study has increased in 1960s with the
power of high-speed computers.

The beginning of computational fluid dynamics (CFD), is attributed to the first
definitive work of Richardson (1910) who introduced the point iterative schemes to
solve Laplace’ s Equation and biharmonic equation numerically. Some sources show the

2



beginning of numerical analysis as the paper of Courant, Friedrichs and Lewy (1928) in
which the questions of “uniqueness’ and “existence” were addressed for the numerical
solution of partial differential equations.

After World War I1, the number of researches on numerical solution of fluid
dynamics problems has increased. Professor Jhon von Neumann worked on the stability
of numerical methods for solving time marching problems and he introduced artificial
viscosity scheme with Richtemyer (1950). In 1970s and 1980s, different discretization
schemes are introduced. Not only the techniques to discretize the equations had been
developed, but also the solution algorithms to solve the resulting equations had been
introduced and the studies of Patankar (1980) are very important in the solution
algorithm literature. The studies of J.C. Tannehill, R. W. MacCormack, P. J. Roache, T.
J. Chung, A. J. Baker, D. A. Anderson and K. A. Hoffman have added many toolsin to
the Computational Fluid Dynamics area.

Since 1960, the Navier-Stokes Equations have been solved numericaly and
today there are numerous solvers dealing with different types of flows. They are both
commercial and open source codes. The well known commercia codes are FLUENT,
STAR-CD, ANSYS CFX. They can handle very complicated problems. The problem
with these codes is the difficulty to understand the code and implement the needed
subroutines. There exist also open-source codes that can handle Navier-Stokes or
similar type equations. They are developed by the users and the most common one is
OPEN-FOAM in which you should use their style to add new things and it is difficult to
understand the code also the number of the open-source codes are very limited.
However, a code written for academic purposes is more valuable than using commercial
software or a code written by someone else. One of the powerful academic study
purposed flow solvers is the “Navier-Stokes Stanford University Solver (NSSUS)”. It
solves the three dimensional Unsteady Reynolds Averaged Navier-Stokes (URANS)
type equations.

Problem tackled in this study is channel flows with separation and recircul ation
regions. The nature of the separation and the consequent flow recirculation are problems
of the most fundamental interest in the fluid dynamics. The flow over obstacles, fences,
steps have been investigated both numerically and experimentally since these problems
are the basic configurations of the separation and recirculation. Although the geometry
boundaries are simple, the flows are rather complex. As the free stream passes over the

obstacle, the flow separates at the corner and then reattaches at the bottom-wall
3



downstream. The flow reverses behind the obstacle and a boundary layer redevelops
downstream of the reattachment. A secondary reversed flow on the roof wall occurs at
some low or moderate Reynolds numbers as can be seen in Figure 1.2. The deviation
exists between the two-dimensional numerical simulations and the experimental datain
some low-Reynolds-number flows, because of the side wall effects. This makes the
flow three dimensiona (3-D).

The investigation of separated and reattached flows is very important. They
occur in many heat exchanging devices such as electronic and power generating
equipments, in pieces of electronic cooling equipment, cooling of nuclear reactors,
cooling of turbine blades, flow in vertical plates with ribs, flow in wide angle diffusers
and valves. The mixing of high and low energy fluids occur mostly in the reattached
flow region therefore improving the heat transfer performances of these devises. The
separation phenomenon is also used for understanding of onset of transition to
turbulence.

For several decades, separated flows are under investigation and the most
popular one is backward facing step geometry. Figure 1.2 shows the step geometry,
separation region, primary recirculation bubble, reattachment point and recirculation
attached to the roof. Since the reattachment length is given as a global feature of this
flow, it is used for both validation and comparison of the numerical codes. Most of the
published work is for 2-D and 3-D flow simulations are rare both because of its
complexity and high computational cost.

A popular study for the backward facing step geometry was done by Armaly et
al. (1983). This study based on both experimental and theoretical investigations and
they reported the velocity measurements and reattachment points for laminar flows in
channels utilizing Laser-Doppler (LDA) measurement technique up to Reynolds
number of 8000. They showed that a secondary recirculation zone attached to the roof
(Figure 1.2) occurs beyond the Re>400. Armaly et al. (2003) published their
measurements in three-dimensional laminar separated flow reveaing a swirling "jet-
like" flow near the side wall in the separating shear layer and the impingement of flow
on the stepped wall. The measurement in that study covered a range of Reynolds
number between 98.5 and 525. Nie and Armaly (2003) presented numerical simulations
for incompressible three-dimensional laminar forced convection flow adjacent to
backward facing step in rectangular duct to examine the reattachment region of the

separated flow on the stepped wall. The effects of step height for the same flow is
4



studied by Nie and Armaly (2002) showing that the size of the primary recirculation
region and the maximum on the Nusselt number distribution near the side wall
increased as step height increased for Reynolds number of 343.

Re-circulation attached to the roof
.

Dividing stream-line
L4 .
H-s Flow Reattacgment pomt

LA %Q -----------------------------
izt.x é

le— 7/ —PH"— Separated region

»
—>

|
I"

L)
Primary re-circulation zone

Figure 1.2. Flow over a backward facing step
(Source: Saldana, 2005).

Kim and Moin (1985) computed the flow over a backward-facing step showing a
relation between the reattachment length and Reynolds number and they compared their
numerical results with the experimental data of Armaly et al. (1983) in a good
agreement.

Gartling (1990) solved steady and incompressible backward facing step flow as
a test problem for outflow boundary condition. He developed a solution procedure
utilizing Galerkin-based finite element method and compared his results with the
numerical results of Kim and Moin (1985).

Williams and Baker (1997) simulated laminar flow over a 3D backward facing
step. The main interest of this steady was the characterization of three-dimensional
vortices in the primary separation region for 100 < Re < 800. They showed that the side
walls are responsible for the creation of wall-jet pointing from the side-wall to the

center of the channel.



Chiang and Sheu (1999) made a numerical revisit of backward facing step flow.
They solved steady-laminar Navier Stokes equations for a channel geometry and flow
conditions reported by Armaly et al. (1983) in the range of 100 < Re < 1000. They
revealed that the flow at the symmetry plane developed into two-dimensional for
Re=800 and the channel width is 100 times of the upstream step-height. They also
presented the topological features of the flow using critical point theory.

Vogel and Eaton (1985) worked experimentally on the backward step geometry.
They measured combined heat transfer and fluid dynamics in a separated and
reattaching boundary layer with emphasis on the near wall region for 13000 < Re <
42000. They showed that reattachment increases the heat transfer coefficient by a factor
of two and they obtained the maximum heat transfer coefficient slightly upstream of
reattachment where the highest turbulence intensity was measured. Adams and Eaton
(1988) published their LDA study of the backward facing step including the effects of
velocity bias. The aim of the study was providing structural information and test data
for modelers. Fessler and Eaton (1997) investigated the flow field in a verticaly
downward, single sided sudden expansion with a fully developed channel flow inlet of
Reynolds number 13800. They used dense particles to measure their response via LDA
to turbulent flow field after the sudden expansion.

Le and Moin (1997) performed direct numerical ssimulations of turbulent flow
over a backward facing step at a Reynolds number of 5100. They showed the strong
stream-wise vorticity structures and gave the instantaneous velocity field to reveal the
variation of oscillating reattachment length.

Saldana (2005) worked on the numerical simulation of mixed convection over a
three-dimensional horizontal backward facing step. He investigated the effects of
buoyancy force to the velocity field and temperature distribution. He used the velocity
profiles of a developing channel flow to validate its code against the data given in the
study of Shah and London (1978).



CHAPTER 2

MATHEMATICAL MODEL DESCRIPTION

The equations governing the incompressible Newtonian fluid flow are
conservation of mass, also known as continuity and conservation of momentum. The
equations contain mechanical pressure and three velocity components to be determined

from these set of equations.
2.1. Conservation of Mass

Conservation of mass is called as continuity equation due to the continuum
assumptions, i.e., density and velocity may be defined at every point in space. The basic
idea behind this law is that the mass of a material region is constant, in other words the

time rate of change of mass of amateria region iszero asgivenin Eq. (2.1).

dM e _ d

= g av =0 (2.1)

MR

The surface of the material region (Figure 2.1) moves with the loca fluid
velocity v, . The time differentiation at right hand side of Eqg. (2.1) can be moved into the
integration by using Leibnitz’'s theorem, i.e., the derivative with respect to time can be
moved inside the integral if a surface integral is added to compensate for the motion of

the boundary moving with velocity w which isequal tov.

FlordV + v,rds=0 (2.2)
MR MR



Figure 2.1. Material region (MR) and local fluid.

The second term in Eq. (2.2) is a surface integral and it can be converted into
volume integral applying the Gauss's theorem (Eq. (3.3)) and the sum of the two
integrals gives Eq. (2.3).

JTer + 1. (rv)lav =0 (2.3)

Since the choice of the integration region is arbitrary, Eq. (2.3) is zero if the
integrand is zero. Then the differential form of the conservation of mass can be written

in index notation as follow:
Tr +9,(rn,)=0 (2.4)

The first term in Eq. (2.4) is the rate of change of mass per unit volume at a
fixed point in space. The second term includes three parts in it; these are the net mass
flow rates out of the element in x, y and z directions. They are aso called as the
convective terms.

If the flow is steady, the first term in Eq. (2.4) drops out, and then the equation

turnsinto the following form.



T.(rn;)=0 (2.5)

If the density is constant (incompressible flow) in addition to steady flow, Eq.
(2.4) turnsinto even simpler form of velocity solenoidality.

i) =0 (2.6)
2.2. Conservation of Momentum: The Navier-Stokes Equations

The conservation of momentum principle is that the time rate of change of the
linear momentum of a material region is equal to the sum of the forces on the region.
Newton’s second law, which relates the acceleration of a particle to the applied force, is
aspecial case of the conservation of momentum principle. The force can be stated as the
sum of two types of forces which are body and surface forces. The body forces apply to
the entire mass (bulk) of the material and they arise usually from externa fields such as
gravity, electromagnetic and magnetohydrodynamic effects. On the other hand, the
surface forces act on the boundary surface and simulate the effect of the outside fluid
upon the inside fluid as an actual surface force. In other words, the effect of the outside
fluid is replaced with a surface force acting on the boundary of the inside fluid.

If F, represents the body force per unit mass and R represents the surface

force per unit area on the bounding surface of material region (MR), then the sum of

two forces on the region gives the total force as given in Eq. (2.7).

Cf F,dV + Cﬁds = Net Force on a material region (2.7)

MR MR

Since the net force on a material region is equa the time rate of chance of
momentum of the region, then the conservation of momentum principle can be written

asgivenin Eq. (2.8).

% Judv = FF,dV + ¢RdS (2.8)
MR

MR MR



The time differentiation on the left-hand side of the Eq. (2.8) can be moved into
theintegral by Leibnitz's and Gauss' theorem. The result isgivenin Eq. (2.9).

clo(rv)+ 9, (rvv )RV = ¢rF,av + ¢Rds (29)

The surface forces are the external stresses on the sides of the fluid element. The
stress is defined in terms of pressure which creates a normal stress and nine viscous

stress components for a three dimensional fluid element. The stress tensor T; can be

broken into two parts by subtracting out the thermodynamic pressure, p,, as given in

Eq. (2.10).
T =-pd, +t, (2.10)

The term d;; in Eq. (2.10) is the Kronecker delta function and viscous stresses

are denoted by the stresstensor t ;. The stress tensor is given as

(2.12)

The rows represent the forces in each direction. Taking the divergence of the

row vectors, (t .t .t ), (t,.t,.t,)and(t,.t,,t,) dgivesthe surface force vector

in X, y and z directions. Then the term representing the surface forces in Eg. (2.9) can be
written in terms of pressure and viscous stress tensor.

(RAS=¢nT,dS=¢n (- pd, +t, Bs (2.12)

After converting the surface integral in Eg. (2.12) into control volume integral
using Gauss theorem and equating the thermodynamic pressure to mechanical pressure

using the Stoke's assumption that the average normal stress is zero, Eq. (2.9) can be

10



written as in Eg. (2.13) and collecting the terms under the same control volume
integration results with Eq. (2.14).

clmo(rv)+ 1, (rviv Jlav = ¢rrav + ¢C T+ 1t v (2.13)
mo(rv) +9,(rvv)- rR, +0p- Tt v =0 (2.14)

Since the choice of the integration region is arbitrary, Eq. (2.14) is zero if the
integrand is zero. Considering the body force as just gravitational, the conservation of

momentum can be written asin Eq. (2.15).
rDhn; =rg, +1,T; (2.15)

In Eq. (2.15), the term Dy is called the total derivative which signifies the

Lagrangian acceleration of a materia particle. Stress tensor T; should be expressed in

terms of velocity and this expression depends on some physica models. This study
deals with the Newtonian fluids for which the viscous stresses are linearly proportional
to the rates of deformation. Stokes' assumptions set in at this point for all gases and
most common fluids:

I Thefluid is continuous and the stress tensor T; is at most alinear
function of the strain rate tensore;; .

I. The fluid has isotropic properties, i.e, its properties are
independent of direction; therefore the deformation law is
independent of the coordinate axesin which it is expressed.

Iii. If the strain rates are zero, the deformation law must reduce to the
hydrostatic pressure condition, T;, =- pd;.

Considering these assumptions, the genera form of the deformation law for a

Newtonian fluid can be written as follow.

&n, Tn; 0
T =-pd, n1é—' —=+d. 1 T, 2.16
ij p ij + ﬂxj + ﬂxi 5+ ij TI|ﬂ| ( )

11



In Eq. (2.16), d; isthe Kronecker deltafunction, i isthefirst viscosity whichiis

also called as dynamic viscosity and | is the second viscosity which is aso known as
bulk viscosity. The detailed derivations for the stress tensor components, strain rate
tensor components and the relation between first and second viscosities can be found in
books of Panton (1984) and White (2006).

The momentum equation for a Newtonian fluid can be obtained by substituting
Eqg. (2.16) into Eq. (2.15). The outcome is the famous Navier-Stokes Equations which

are given in the following set of equations.

r%:rgX ij 1?&32mﬂ—+lN>%\|/FO+1?gngaTTu EVOU
X Xe X o We ely ™ (2.17a)
‘ﬂ é ad]w flu gl
128 12l
Dv _ P, T v 1€ v ‘ﬂuou
r—=rg,- —+— m—+
Dt Y
Ty ﬂyg z ﬂxengﬂx ﬂym (2.17b)
T €é v ﬂwou
‘Hzerrg‘ﬂz 'HYraj
rD—W—rgZ ﬂp+la§m—+lN>§;0+le aéT_vv+‘ﬂuou
Dt 2 12& 1z o ™E &N Tzd
(2.17¢)
‘ﬂe aaw ‘ﬂwou
ﬂYe ﬂz ﬂym
Rewriting the equation set (2.18) in index notation;
(DN, =rg, +1,p+1,[m(n, +9n;)+d;! Tn,] (2.18)

If the fluid is incompressible, the term fn, vanishes in Eq. (2.18) due to the

continuity equation given in Eq. (2.6). If the dynamic viscosity is constant too, then the
equation takes a simple form of the Navier-Stokes equation for constant viscosity and
density asin Eqg. (2.19).

12



rDoni:rgi+ﬂip+nﬂj(ﬂjni+ﬂinj) (219)

This study uses the following assumptions for the mathematical model

described.

iv.

V.

Steady state

Laminar and incompressible flow

Constant property, i.e., constant density and constant viscosity
No gravitational effect

No viscous dissipation (heating)

With these assumptions the continuity and momentum equations take the following

forms within their symbolic notation.

Continuity equation:

Tu v w_g (2.20)
x Ty 19z
q q u ﬂ u ‘ﬂ uo ‘HP
—\ruu)+— rvu rwu 2.21a
‘ﬂx( )t ﬂy( ngﬂx Ty? ﬂz g Tx ( )
q q 2y ‘ﬂ \Y ﬂ vo P
ruv)+— rw +— rwv - — 2.21b
‘HX( ) ﬂy( rTgﬂx TIy? ﬂz g Ty ( )
q 9 2w ‘H w ‘ﬂ wo ‘HP
—(ruw)+— rvw +— rvvw 2.21c
ﬂx( )+ y( ngﬂx y2 22 5 9z (2.210)

Even with the assumptions given above, the Eq. (2.20) and (2.21) are not easy to

solve because the momentum equations involve nonlinear terms, they are coupled

within itself and with continuity equation and there is a pressure term in momentum

equations, which has not a separate equation. Therefore, numerical approximation is the

only way to reach the solution in most of the applications.
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CHAPTER 3

NUMERICAL IMPLEMENTATION

3.1. Introduction

The mathematical description of a physical problem generaly is a set of partia
differentia equations which are nonlinear in nature in case of flow problems. The
nonlinearity of the governing equations makes impossible to obtain an analytical
solution. Fortunately numerical methods promise that the implications of the
mathematical model can be worked out for amost any practical problem. With the
numerical methods, what is solved is not the differential equations directly, but the
algebraic equations derived from the discretized form of these equations and this makes
the numerical methods so powerful and applicable. Numerical method treats its basic
unknowns as the values of the dependent variable at a finite number of locations in the
computational domain. The obtained algebraic linear system of equations is solved to

find the values at those points with a proper solution algorithm.
3.2. The General Transport Equation

The steady form of the genera transport equation is given in Eq. (3.1). In this
equation, ¢ represents the dependent variable. If ¢ takes the value of 1, it turns out to be
the conservation of mass equation and if it takes the value of u, v, w, then it represents
the X, y and z direction momentum equations respectively. In Eq. (3.1), the left hand
side includes the convective terms, and the right hand side includes the diffusive and
source terms. The diffusion coefficient I and the source term S vary depending on the

meaning of the dependent variable ¢.

acrTu)=0 86 Jordes @
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The dependent variables are calculated at the chosen grid points by solving the
linear algebraic equations derived from Eq. (3.1). In this derivation, the variation of
dependent variable ¢ among the grid points should be employed. This variation is
generally calculated including a small region in terms of ¢ values at the grid points
within and around the region. To achieve this, the calculation domain is subdivided into
a number of sub-domains or elements. There are many methods employed for the
division of the domain into sub-domains and regions. The most well known methods are
finite difference method, finite element method, method of weighted residuals and finite

volume method.

3.3. The Finite Volume M ethod

Finite volume method is one of the discretization methods used to solve the
partial differential equations. The basic idea behind the finite volume method is to
divide the computational domain into a number of non-overlapping control volumes.
The computational domain (e.g. channel volume) and a few exaggerated sub-control
volumes are shown in Figure 3.1. The sub-control volumes are surrounded by their
neighboring control volumes.

The finite volume method leads itself to direct physical interpretation. The
differential equation is integrated over all the sub-control volumes and the piecewise
profiles expressing the variation of ¢ between the grid points are used to evaluate the
required integrals. The result is the discretized equation containing the values of ¢ for a
group of grid points.

15



z

Figure 3.1. The basic control volume division of the computational domain.

Since the differentia equation is integrated over the control volumes, the
integral for the sub-control volumes are conservative, i.e., the integral conservation of
mass, momentum and energy are exactly satisfied over any group of control volume and
over the whole calculation domain. There is an exact balance among the control volume
and its neighbors. Finite volume methods, due to this property, are called conservative
in their nature.

The schematic representation of one of the control volumes is given in Figure
3.2 showing its neighbors. The capital letters show the centers of the neighboring
control volumes and the small letters represent the locations of the faces of the control
volumes. As shown in Figure 3.2, w represents the west face of the control volume
represented by the P nodal point. A three dimensional control volume has six
neighboring control volumes which are west (W), east (E), north (N), south (S), front
(F), back (B) control volumes, and it has six control volume faces which are west (w),
east (e), north (n), south (s), front (f) and back (b) faces.

The key step of the finite volume method is the integration of Eq. (3.1) over a
three-dimensional control volume. Taking the integral of both sides of the Eq.(3.1)
results with EqQ. (3.2). Thisprocedureis applied to all the nodal pointsin the domain.

16



O (rfu)= 0 3 £9 12 §Sav (32)

i @ cv

The divergence theorem of Gauss states that the volume integrals can be
transformed into surface integrals over the entire bounding surface of the control

volume. This theorem can be written for any vector x as;

SvV()AV = 1 - xdA 323)

A

Equation (3.3) has a direct physical interpretation. The term n- x is the
component of xin the direction of the vector nnormal to surface element dA. The
integral of the divergence of a vector over a volume is equal to the component of that
vector in the direction normal to the surface bounding the volume integrated over the
whole surface A. With this theorem, the order of the derivative is reduced by one and
this makes the numerical solution procedure easier. Applying this method to the volume

integrals of Eqg. (3.2) turnsthem into surface integrals asin Eqg. (3.4).
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on-(rfu)=gn-§8 g 13 oS v (34

The term on the left hand side of Eq. (3.4) is the net rate of change of ¢ in the
fluid element due to convection and the first term on the right hand side of the Eq. (3.4)
is the net rate of change of ¢ in the fluid element due to diffusion. The last term on the
Eq. (3.4) isthe net rate of creation of ¢ inside the control volume due to sources.

The integration in EQ. (3.4) yields the variation of ¢ in the control volume due to
interaction with its neighboring nodal points, the convective and diffusive flux across
the control faces and the change in the source term as given in Eq. (3.5). It is a

statement of the conservation of afluid property for afinite size control volume.

é f u f u
gruf q XHedZdy 8 uf - q _XH dzdy

é
dxdz- & vf dxdz (3.5
gr q LJ e q YUS
+ St - G I8 ey - Wf-%—f dxdly = § cxdydz
g 1zt 8' 1zt

The effect of the combined convective and diffusive fluxesis given in the square
brackets in Eq. (3.5). The values of the dependent variables are calculated at the nodal
points, however in Eqg. (3.5), the values are for the control volume faces and therefore
they should be evaluated at the faces utilizing the value of the neighboring nodal points.

Evaluation of the values of the dependent variable ¢ is very important in Finite
Volume Method. There exist several methods to evaluate the values at the faces and
these methods are called discretization schemes. The simplest one is approximating the
values at the faces assuming linear changes. One of the simple forms is known as
central differencing scheme and it evaluates the value at the face as the average of the
two neighboring nodal points values. This procedure can be applied to both convection
and gradient terms. The other well-known yet slightly more complicated schemes are
upwind, hybrid, power law and exponential (exact) schemes which are compared in

|ater sections.

18



To make the calculations easier, two new variables F and D are introduced here.
F represents the convective mass flux and D represents the diffusion conductance flux at
the cell faces. The “i” refers to the corresponding facein Eq. (3.6) and Eq. (3.7).

F. =ruDA (3.6)
_G
D, _§DA (3.7)

The values of the dependent variable at different faces are written in terms of the
neighboring nodal points with the chosen discretization scheme. Then Eqg. (3.5) includes
only the values of the dependent variable ¢ at the nodal points, i.e., ¢, dw, On, ds OF ds
and ¢p. With the aid of discretization scheme, the Eqg. (3.5) turns into an equation
including ¢ at the nodal points and the new variables F and D. The resulting equation
can be combined into common parenthesis of the dependent variables at the nodes with
their related coefficient in the parenthesis. Then the general form of the nodal equation
iswritten in the form of Eq.(3.8).

af, =af . +a,f, +tafytafs+af +a,f;+b (3.8
The sub index “P’ refers to the nodal point whose value calculated according to
the values of the neighboring variables and source term. The last term in Eq. (3.8) isthe
source term where
b=S dxdydz (3.9
In practical situations, the source term may be a function of dependent variable
¢. In the finite volume method, the source term is approximated by means of linear

form.

Sdxdydz =S, +S,f , (3.10)
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The coefficients of the dependent variables are related with the discretization
scheme applied to the differential equation. The general formula for these coefficients

can be written as
a =D A(R|) +[+F.0] (3.11)

where P is the cell Peclet number which is the ratio of F to D which gives the strength
of convection over diffusion. The Function A is determined according to the
discretization scheme chosen. Table 3.1 gives the expressions of this function with
respect to various schemes.

The derivation of Eg. (3.11) can be found in the work of Patankar (1980). Figure
3.3 compares the consequences of various schemes for a 1-D convection diffusion
problem. The values of ¢p is plotted for given values of ¢e=1 and ¢w=0 by different

schemes for various values of the cell Peclet number P.

Table 3.1. The function A(|P]) for different schemes
(Source: Patankar, 1980).

Scheme Formulafor A(|P])
Central difference 1-0.5|P|

Upwind 1

Hybrid [10, 1-0.5/P []
Power law [10, (1-0.1P)° ]
Exponential (exact) IPI/[exp(|Pl)-1]

The results of the schemes suggest that al the schemes except centra
differencing scheme gives physically meaningful results. As can be deduced from Fig.
3.3, the results of the power law scheme and the exact solution are too close to one
another, therefore, in this study, power law discretization scheme is used for the
discretization of convective terms. It should be noted that, the central differencing
scheme can be used in the solutions by refining the grid dimension. This refinement
reduces the cell Peclet number (P) below two in which range the central differencing
scheme is stable. However, this procedure requires use of too much grid points in the

computational domain which is not demanded for the practical applications. The

20



physically meaningful results with finite number of grid points depend on some
properties such as conservativeness, boundedness and transportiveness. The definitions
of these properties can be found in the book of Malalasekera (2007). It should be noted
that the power law scheme is fully conservative, unconditionally bounded and it
satisfies the transportiveness requirement. One disadvantage of the scheme is that the

accuracy in terms of Taylor series truncation error isonly first order.

T+ 1] T T3 —r—¥r 11 1T T 17

A | diff A i
Central difference Hybrid
1.0pF -
— 'j-u-.__‘
0.8 ypwind T
0.6k Exact u

(also power law)
Exact

bp 04t {also power law)
0.2
0.0
Hybrid \~Central difference
—0.2F I \\ -
PR ST TR N U SN MU SHNN NUSN SN NN NN N SEN NN SN SN S |
—-10 -5 0 5 10
P

Figure 3.3. Prediction of ¢p by the various schemes for a range of Peclet numbers
(Source: Patankar, 1980).

The Power Law scheme is given by Eq. (3.12). In this equation, the function A
takes the larger value between the two choices, i.e., if zero is greater than the other

option, function A takes the value of zero.

(3.12)

O Ch C

ﬂo (0.1 P ]§§1 01*$F%
szxa

The function A can be put into Eq.(3.11) to evaluate the a coefficients of
neighboring nodes. In Eq.(3.11), the sign of the convective term depends on the flow
direction. Normally, it is assumed that the flow is from west to east, or south to north or
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back to front with respect to the flow conditions. Therefore, the a coefficient can be
written for the neighboring nodal points with its proper sign in front of the convective

term as in equations from Eg. (3.13) to Eqg. (3.14).

a. =D, A(P)+[- F..0] (3.133)
a, =D AP )+ [+ F,.0f (3.13b)
a, =D,A[R,|)+[- F,q] (3.13¢)
as = D, A(P)+[+F..q] (3.13d)
a. =D, AP, |)+[- F, 0] (3.13¢)
a, = D, A(R)+[+F,.q] (3.13f)

After evaluating the coefficients of neighbors, the coefficient of node P which is
the point that is calculated at that instant should be evaluated. Since the a coefficients
include the dependent variable ¢ at nodal point P because of the evaluation of the
variation of it, the coefficient of dependent variable at P is aso dependent on its
neighboring nodal points. The formula for a coefficient at P is given generaly for the
internal nodal points in the studies of Patankar (1980) and Malalasekera (2007). In this
study, we propose more generalized form of this coefficient including the effects of the
boundary nodes. The evaluation of these coefficients are not so clear in literature,
because every author assumes its own style and do not give every detail. The proposed
a coefficient at the nodal point Pisgivenin Eqg. (3.14).

a, =a; +a, ta, +tas+a. +ta; +DF - S, (3.14)

In Eq. (3.14), the term Sp is the source term coming from its linear form whichis
given in Eg. (3.10). This term changes according to the boundary conditions. The

evaluation of thisterm will be explained under the Boundary Conditions section.
22



The genera form of the discretized genera transport equation (Eg. (3.1)) can be

written asin the following form.

6
= af, +b, (3.15)

i=1

Note that the term bp in Eq. (3.15) should not be confused with the term b in Eq.
(3.8). Here, the coefficient b is the source term coming from the linearized form of it

and this term does only include the portion which is independent from ¢.
3.3. Discretization of Navier-Stokes Equations
3.3.1. Momentum Equation

The momentum equation for a Newtonian fluid can be written in index notation
asgivenin Eq. (3.16).

1 l Tee It
ruf, J+—(rvf, J+—(rwf, )=—
x ul) ﬂy( |) ﬂZ( |) ﬂg

1f . o ﬂae‘ﬂf 0 ‘ﬂaeﬂg_ﬁ (3.16)

o WE 5 126 2o x
In EQ. (3.16), sub-index i refers to the direction interested. For z-direction ¢;
becomes w (velocity component in z-direction) and x; becomes z. Discretized form of

this equation can be obtained by applying the procedure explained in section 3.2 as;

(ruA)f, - (rua)f, +(rva)f, - (rvA)f,

Tt 0 Mo & ,70
+(rwA) f . - (rwA) f rrA—— - nA—— +eMmMA—= 3.17
( )f f ( ) g ™o g ™a, e ( )
CEATO @0 MO p p)ra
Ty e zg & g

This equation is valid for the three dimensions. The differences in these three
equations are the dependent variable term ¢ and the pressure term P, which is the

related pressure and is the main momentum source term in most of the engineering
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problems. The term Pp is the pressure at nodal point P which is the node whose
dependent value is computed at that instant. The P, would take the three values as given

in Table 3.2. The evaluation of the pressure gradient term is given in section 4.2.

Table 3.2. Thevaues of P; in Eq. (3.17).

Direction P
x-direction Pw
y-direction Ps
z-direction Ps

The velocity gradients seen in the right hand side of Eq. (3.17) is evauated using
the central differencing scheme since these gradient terms are diffusive terms and the
distribution of the transported quantity by diffusion occurs along its gradients in all
directions whereas convection occurs in the flow direction. Although central
differencing works very well for diffusion terms, the convection terms require
discretization schemes identifying flow direction and the relative strength of convection
to diffusion. Therefore, the convective terms are discretized using Power Law scheme,
while diffusion terms are discretized using central differencing scheme in this study.
After evaluating the velocity gradient terms and replacing related terms with F and D,
Eq. (3.17) iswritten as,

Ff.-Ff,tFf,-Ff. +F . f,-Ff, =D,(fc-fs)-D,(fs-fy) (318
+D,(fn-Tp)- Dsfp-Ts)+Di(fr-fp)- Dyfp-fe)+(R-F)A
Note that the small letters indicate the values at the faces, while capital ones
refer to the values at the related nodes. The values of the F at each of the faces are given
through Eg. (3.19a) and Eq. (3.19f). The D coefficients at each of the faces are given
through Eq. (3.20a) and Eq. (3.20c) for constant density and constant dynamic viscosity.

The evaluation of the D’ swill be different for case of a non-constant viscosity.
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F, =(ruA), =0.5*r * (Dy* D2)*[u, +u]
F, =(ruA), =05*r * (Dy* D2)* [u, +u,,]
F, =(rvA), =05* r * (Dx* D2)* [v, +V, |
F, = (rvA), =0.5* r * (Dx* D2)* [v,, + V]

F, =(rwA), =0.5* r * (Dx* Dy)* [w, + W, ]

F, = (rwA), =0.5% r * (Dx* Dy)* [W, + W]

(ma)

D =D =2 1=__ * Dz

e w D)( D)(w

D, =D, =™ - " ey
Dy Dy
nA) _

Df:Db:%:Em*w

(3.19a)

(3.19h)

(3.190)

(3.19d)

(3.19)

(3.19f)

(3.20)

(3.20b)

(3.200)

Defining all the required terms, the general form of the discretized momentum

equations can be written asin Eq. (3.21).

6
af,=a af, +(P - B,)A+b,

i=1

3.3.2. Continuity Equation

(3.21)

Three dimensional continuity equation is given as in Eq. (3.22). Integrating EQ.

(3.22) over the three dimensional control volume and applying the Gauss Divergence

theorem, the discretized form of the continuity equation iswritten asin Eq. (3.23).
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%(ru)+ﬂ1y(rv)+%(rw):0 (322)

(ruA), - (rua), +(rvA), - (rvA), +(rwA), - (rwA), =0 (3.23)

3.3. Grid Arrangement

The arrangement of grid is very crucial in finite volume method. At first glance,
keeping all the dependent variables at the same nodal point is seemed to be the simplest
method. This arrangement is known as “Collocated Grid” arrangement. It enables to
easy implementation for complex geometries and it reduces the memory requirement as
al the variables are kept at the same location. However, this grid arrangement can
produce unrealistic wavy velocity and pressure distributions. These problems can be
avoided by using different control volumes for different dependent variables, aso
known as “ Staggered Grid”, which is our choice for this study and it is widely used in
computational fluid dynamics applications. In this arrangement the nodal locations for
the velocity components are arranged such that they are located on the control volume
faces of the main grid in which the pressure and other scalar variables are stored. The
schematic three dimensional view of this grid arrangement is shown in Figure 3.4.

The control volumes for the three velocity components are shifted from the main
control volume of P in the direction of arrows shown in Figure 3.4. Since every control
volume keeps its variable on its geometric center, the locations of the velocities
coincide with faces of the control volume for P. The grid arrangement can be
understand easily if the arrangement is given in the two dimensiona planes of the
computational domain. Figures 3.5, 3.6 and 3.7 are given for this purpose. The shaded
areas shown in these figures are the representative control volumes for pressure and

velocities.
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Figure 3.4. Three-dimensional staggered grid arrangement.
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v-velocity C.V.
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Figure 3.5. Staggered grid arrangement on x-y plane.
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Figure 3.6. Staggered grid arrangement on y-z plane.
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Figure 3.7. Staggered grid arrangement on x-z plane.
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The use of staggered grid arrangement has several advantages:

1)

2)

3)

Any wavy or unrealistic velocity distributions that satisfy the mass conservation
equation are avoided.

The natural driving force for any velocity component is the result of pressure
difference between two adjacent grid points.

The staggered grid arrangement generates the velocity components at the exact
locations where they are required for the computation of the transport of the

convection and diffusion; therefore there is no need for extrainterpolation.
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CHAPTER 4

SOLUTION ALGORITHM

4.1. Introduction

Numerical solution of Navier-Stokes equations is not direct as the just
convection and conduction problems since the latter does not contain any coupling,
extra unknown such as pressure in Navier Stokes and they can be solved directly as
stated in the numerical implementation section without any specia solution algorithm.
Solution for the Navier-Stokes equations, on the other hand, involves more as it has
severa problems:

I Thereis pressure gradient term in the momentum equations which isvery
important due to physical implementation for the momentum equations,
but there is no separate transport equation to compute the pressure.

ii. The convective terms in the momentum equation contain nonlinear
quantities.

Iii. The equations are internally coupled as the velocity components are
presented in each of the momentum and continuity equations.

There are basicadly two different solution methods used in CFD. These are
segregated and coupled solution methods. In segregated solution method, momentum
equations in each direction and pressure equation are solved sequentialy, i.e., they are
segregated from one another. On the other hand, in coupled solution method, the
equations are solved simultaneously instead of sequentially. Besides these, the
segregated solver bases on the pressure while the coupled solver bases on the density.
Therefore, the coupled solver is recommended if a strong inter-dependence exists
among density, energy, momentum, and/or species. Within this study, the segregated
solver is preferred as the problems of this study are low speed flows, there is no
coupling between density and momentum equations and the segregated solver gives
faster solution for this type of problems.

30



The non-linearity and internal coupling can be handled by solving these
equations iteratively if the pressure field is known. However, it is not known in almost
all problems. If the problem is compressible flow problem, then the continuity equation
can be used directly for the computation of the density distribution and from that the
pressure field can be calculated as it can be expressed in terms of an equation of state.
In the case of incompressible flow, there is no such a link connecting pressure via a
state equation since the density is constant. Nevertheless a proper pressure field
distribution must satisfy the momentum equation and the velocity field found from the
momentum equation then satisfies the continuity equation. From this statement it can be
deduced that pressure field is indirectly specified via the continuity equation. All of
these problems can be achieved by a proper solution algorithm. One of the solution
algorithms was presented by Patankar and Spalding (1972) as SIMPLE algorithm which
stands for Semi-Implicit Method for Pressure Linked Equations. In this study, The
SIMPLE agorithm is utilized to solve the set of equations.

4.2. Simple M ethod

The SIMPLE algorithm is a guess and correct procedure for the computation of
velocity and pressure field in the domain. The convective fluxes at the volume faces are
evaluated from the guessed velocity components. A guessed pressure field is used to
solve the momentum equations. The continuity equation is used for the pressure
correction equation which is used to correct the velocity and pressure field. At the start
of the solution, the values are guessed values, after that point on the velocity
components and pressure field are corrected to reach the desired values. Throughout the
computations, the next guessed values are the ones obtained from the previous iteration
of the computation algorithm. In this manner, the velocity and pressure field can be

obtained up to the defined convergence criteria.

4.2.1. Derivation of Pressure Correction Equation

The general discretized form of the momentum equation is given in Eq. (3.12). It

can be rewritten for the three velocity components asin Eq. (4.1a, b, c).
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apUp = é Uy, +(Ry - F)XDy>Dz+bu (4.18)

8:Vp = Q Vo + (Ps - o) X000z +bv (4.1b)

a,W, = § a,W,, + (P, - Pp)Dx>Dy +bw (4.1¢)

To initiate the solution, the velocity field and the pressure field are guessed first
and from these guessed values, the Eq. (4.1) turns into guessed form of these equations
which are givenin Eq.(4.2a, b and c).

2:Up = @ AUy, +(Ry - L) *Dy>Dz+bu (4.29)
aVv, =g aVy, + (P - P)xDxxDz+bv (4.2b)
aW, = Q a W, +(P; - P.)xDx>Dy +bw (4.2c)

Define the pressure correction, p’, as the difference between the correct pressure
field, p, and guessed pressure field, p*.

p=p*+p (4.3)

With the same convention, define the velocity correctionsu’, v’ and w’ to relate
to the correct velocities and guessed ones.

u=u*+u' (4.49)
V=V*+V (4.4b)
W= w* +w' (4.4c)
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The guessed form of the momentum equations which are given in Eq. (4.2) is
subtracted from the correct form of the discretized momentum equations given in Eq.
(4.2).

8 (Up - Up) = @ 8y, (U, - Upy) +[(Py - R) - (P - B))]>Dy>Dz (4.59)

85 (Vp = Vo) = Q 8 (Vi - Vi) +[(Ps - FX) - (Po - )] xOx>Dz (4.5b)

8 (Wo - W,) = Q 8, (Wy, - W) +[(Pg - P3)- (Po- B)PDxoDy  (4.50)

From the definitions of Eg. (4.3) and Eq. (4.4), the Eq.(4.5) can be written asin
Eq.(4.6).

3y = @ Ayl +(Ry - Py)XDy>Dz (4.69)
a:Vp = & AV, + (P - B) X000z (4.6b)
3, = § 2, Wi, +(Ps - Py)Dx>Dy (4.6¢)

The main approximation of SIMPLE method takes action at this point: for the
computational convenience, the method drops the terms involving the neighboring
nodal pointsin Eq. (4.6). If the neighboring relations, (a,U'ny) are kept in the Eq.(4.6),
they have to be expressed in terms of the pressure and velocity corrections of their
neighbors. All the neighbors require their neighbors and the velocity correction
equations which are given in Eq. (4.6) would involve al the nodal points in the
calculation domain and eventualy the resulting pressure correction equation would
become unmanageable. With this omission, the pressure correction equation would
obey the rule of one-variable at atime procedure asin the general ¢ equation.

Actualy, the omission of this term is the basis of the name of the SIMPLE
method; i.e., this term represents an implicit effect of the pressure correction velocity
field. The pressure corrections at the neighboring locations correct them and the
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corrected values of the neighbors ater the velocity of the node under consideration,
therefore the effect of the neighbors are included partialy, i.e., implicitly.

At the end of the computation what is obtained is the correct solution. Aslong as
the final velocity field satisfies the continuity, the procedure for the pressure correction
equation becomes irrelevant with the converged solution.

With this main approximation of SIMPLE method, Eqg. (4.6) iswritten as follow.

aUp = (R, - F)>Dy>Dz (4.79)
av, = (P - B)>xDx>Dz (4.7b)
apw, = (P, - B)>XDx>Dy (4.7c)

Within Eq. (4.7), the corrected velocities are in terms of P and from Eq. (4.4),
the correct velocities can be written in terms of the corrected version of velocities and

pressure. Then the correct velocity components can be written as;

u, =u, + (Ry - P;) Dy>0z (4.83)
P

v, =v, + s P;) DDz (4.8b)
p

W, = W, + (Fs- PP; D0y (4.8c)

The discretized form of the continuity equation is given in Eq. (3.23). The
continuity equation is evaluated at the nodal point P and as can be seen in the
discretized form of the continuity equation, it uses the velocity values at the six faces of
the control volume. The use of Staggered Grid arrangement enables to use these values
directly where they are calculated. Since the velocity components are calculated at the

faces of the control volume for pressure, they are ready to use without any interpolation.
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To form the pressure correction equation, the velocities in terms of corrected
velocity and corrected pressure which are given in Eq. (4.8) are put into Eq. (3.23).
Collecting the related terms and rearranging the resulting equation, the pressure

correction equation can be written as in the form of the equation for velocities.

ap,P, = ap:P. +ap, Ry, +ap, Py +apsPs +ap. P: +ap,P, +bp (4.9)

The term ap refers the related coefficient of pressure correction term and bp is
the source term arising from any error in the continuity due to the guessed pressure

field. The coefficientsin front of the pressure correction values are given in Eq. (4.10).

ap =r M (4.109)
g

Ay =12 (4.100)

N=T M (4100)
ay

aps =T ©o07)” (4.10d)
s

ap: =r M (4106)
a.

apg = r M (4.101‘)
g

The a coefficients in Eqg. (4.10) are given in the momentum equations. The
coefficient of the pressure correction a nodal point P is the summation of the

coefficients of the neighboring nodal points' coefficients (Eqg. (4.11)).
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app = ape tapy +apy +aps tape +apg (4.11)

For internal nodes, the source term in the pressure correction equation isgiven in
Eq. (4.12). The evaluations of these coefficients will be different for the boundary nodes

and they are explained in the related section.

bp=r ><Dy><Dz><(u:V- u;)+r ><Dx><Dz><(uS u;)+r ><Dx><Dy>‘(ub uf) (4.12)

4.2.2. Solution Algorithm of SIMPLE Method

The execution order of the SIMPLE method is given below:

1. Guess the pressure field, p*, and velocity field, u*, v* and w* to initiate the
method.

2. Solve the momentum equations to find the new guessed velocity field using the
ones at step 1.

3. Evaluate the pressure correction equation by using the values found in step 2.
With this step, the pressure correction, p’, values are calculated for al the nodes
in the computational domain.

4. Correct the pressure using Eqg. (4.3).

5. Correct the velocity components using Eq. (4.8).

6. Solve al other discretised transport equations such as temperature distribution
and turbulence quantities if they influence the flow field through fluid
properties, source terms, etc.

7. Set the pressure as a new guessed pressure field in the domain and return to step
2 until the convergence criteria is satisfied, in that case the continuity equation
should be satisfied.

4.3. On thelterative Nature of the SSIMPLE Method and Pressure
Correction Equation

The iterative procedure applied in this study is to solve coupled nonlinear

equations. The equations are turned into linear algebraic equations and they are solved
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by iteration. During the iterations, the related coefficients are recalculated and the
equations are solved again and again until reaching the final solution. Every iteration is
an intermediate stage and at every stage all the algebraic equations are solved to find the
dependent variables. The correct solution may be obtained with a direct solution method
if applicable but this would be very time consuming. The iterative technique greatly
simplifies the construction of the numerical method and provides a way in which one
can handle any nonlinearity and coupling.

The pressure correction equation is an intermediate stage that leads to the correct
pressure field but it has no direct effect on the final solution. Therefore the formulation
of the pressure correction equation is not so important as long as the converged solution
is reached. However, the convergence rate depends on the formulation of the pressure
correction equation. Omission of too many terms may result with divergence.

The pressure correction equation derived in Eg. (4.9) is aso prone to divergence
If no under-relaxation is applied. Therefore, the pressure correction and the velocity

corrections are both under-relaxed according to the following equations.

P=P*+a,P' (4.13)

f =@-a,)f +a,[f *+ ,(P-B")Al (4.14)

The under-relaxation factor, a, is normally should be kept between 0 and 1. A
value close to 1 results in a fast convergence but is also prone to divergence; on the
other hand, a value close to O keeps the iterations converging but may result in an
unnecessarily extensive computation time. Therefore, in this study, an algorithm called
“auto-relaxation” is developed in which relaxation factor is adjusted in a controlled
manner. With the aid of auto-relaxation algorithm, the under-relaxation factors are
adjusted during the computation time. Checking the convergence history of the current
program, it tries to adjust the under-relaxation factor in such a way that both the
program is prevented from divergence and the computation time is reduced. The
algorithm automatically saves the results at some iteration intervals and uses these
values to recover the program in case of any probable divergence. Normally, the under-
relaxation factors for the velocities are taking the value of 0.7 while the one for pressure

islimited to maximum of 0.6.
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In the case of constant density and steady flow situation, the normal velocities
are given at al boundaries. Considering the staggered grid arrangement, no calculation
is made at boundaries therefore no boundary pressure is specified and all the boundary
coefficients related with that boundary becomes zero. As a result, the pressure
correction P and (P + constant) would both satisfy the pressure correction equation
which means that no unique absolute value of P is obtained. However, during the
momentum equation calculations, the differences in the pressure nodes are used, not
their absolute values. Therefore, adding a constant to pressure does not change the
result. The pressure in this case may be called as relative variable.

The direct question that may arise from this statement is that the values of the
pressure correction eguation are not unique and the question is that can it be solved or
not. Mathematically, if you set up the resulting linear system of pressure correction
equations in the form of Ax=Db, the coefficient matrix A will be singular and when
trying to find a direct solution, it gives the singularity problem and gives no solution
with a direct methods. In that case, if the absolute value of it is not unique, does the
pressure correction equation converge to a solution? Fortunately, the iterative procedure
ensures this. But, in this case, the absolute value depends on the initial guess of the
pressure correction equation in the computational domain. To prevent any of these
problems, the following iswhat is done in this study.

1) The values of the pressure correction at every node is made equal to
zero before entering the calculation loop of the pressure correction to
prevent p’ to have large absolute values.

i) Pressure at a point P of one of the control volumes is set to some
reference value and all the other values of p are forced to be calculated

relative to the reference value. This also makes the solution unique.

4.4. Solution of Linear System of Equations

The linear system of equations for three components of velocity and pressure
correction equations should be solved during the computation. Any linear system of
equations can be solved directly or indirectly. The most common direct methods are

Inverse matrix method, Cramer’s rule and Gaussian Elimination. These methods try to
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give the exact solution of the system. The problem with these methods is that if the size
of the system is very large and sparse as in the case of this study, it is very time and
computer memory consuming. Besides this, if the system has a singularity, the direct
methods give no solution.

The iterative methods are more suitable in these cases. They are good at solving
large and sparse systems. The iterative methods can be divided into two categories as
stationary and non-stationary methods. The non-stationary methods use successive
approximations to obtain the solution of the set using orthogonal vectors as in conjugate
gradient methods. Most of the computational fluid dynamics methods use the stationary
methods which include Gauss-Seidel point by point iteration method, Jacobi iteration
method, successive over relaxation and successive under relaxation methods. They are
easier to implement since there is no need to construct the set of equations in the form
of Ax=Db, but they are slower compared with the other methods especially for the sets
arising from the three-dimensional computational domains. The solver-subroutines of
the developed code include the previousy mentioned stationary-iterative solution
methods.

4.5. Convergence Criterion

An iterative processis said to have converged if the successive iterations will not
produce any change in the value of the dependent variables. The termination is
determined by a convergence criterion which is specified by the user. There are several
methods to find a proper convergence criteria and it depends on the nature of the
problem and aim of the computation. The most common one is looking at the relative
change in the calculated values between two successive iterations being greater than a
certain small number. The relative change of al the grid point values can be used as a
convergence criterion. If heavy under-relaxation is applied during the calculation, this
method may be misleading as the change between the successive iterations is slowed
down by under-relaxation. In that case, the solution may seem as converged although
the calculated values between two successive iterations differ.

In this study, physically more meaningful method is applied to monitor the
convergence. What is monitored is how perfectly the discretized equations are satisfied
by the current values of the dependent variables. This may be called as “residual” of
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that equation. The criterion for the dependent variable and pressure are given in Eq.
(4.15) and Eq. (4.16).

é. |apf P|' (é. |anbf nb|+A(Pf-1' R )+bf )
Rf - nodes -
a |asf |

nodes

£e, (4.15)

Ro = Ar AU, - u)+ ALV, - V) +A (W, - w)|£e,  (4.16)

The epsilon value is chosen generally as 10°® in this study. The choice of the
epsilon is very crucia during the calculations. It should be noted that if the under-
relaxation factors are too small, the epsilon values should be small too to compensate
this effect. It would be wise to check during the runs whether the solution has
converged or not, because there may be some situations that these epsilon values may
not be sufficient for the correctly converged solution. Since the problems of this study
are in a channel and the flow is allowed to develop fully, one of the checks for the

convergence may be to look whether the flow develops fully at the channel exit or not.
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CHAPTER 5

BOUNDARY CONDITIONSAND THEIR
IMPLEMENTATION

The boundary conditions used in this study are mostly no-dip boundary
condition, inlet boundary condition, outflow boundary condition and symmetry
boundary condition. Their use and implementation are crucia in the numerical
application because the problem is solved with these boundary conditions. A simple
methodology is developed to implement these boundary conditions for the boundary
nodes. Even if the boundary conditions are the same, their implementation is different
for different locations. For instance, for one of the velocity components, there exist 8
corner, 12 edge and 6 face nodes using the boundary values whose locations are
different (Figure 5.1). Since 3 velocity components and 1 pressure correction eguation

are solved, this means 104 different implementations at the boundary nodes.

& corners

B 12 edges
B 6 faces

Figure 5.1. Boundary nodes for the u-velocity component.
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5.1. No Slip Boundary Condition

No dlip boundary condition is the condition applied at the stationary solid walls.
If the problem is confined, as the walls of the channel in this study, the velocity

components on the wall are set to zero asgivenin Eq. (5.1).

=0 (5.2)

|WaJI

The configuration of the location of the wall and the velocity components are

shown in Figure 5.2 for w and v velocity components.

$ i $
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I ! I | I I e L L L
! ‘I‘ 4 $

< o e - | K
w-velocity v-velocity

Figure 5.2. Configuration of w and v-velocity components adjacent to the wall. Dashed
lines show the edges of the velocity control volumes.

The values of the velocities are set to zero for this boundary condition. Since the
velocities are known at these locations, there is no need to solve pressure correction
equation there. While solving the equations adjacent to the boundary conditions, the
related coefficients are adjusted to implement the related boundary condition. The

procedureis as follow:

I If one of the neighboring value is known, set the momentum coefficient
a of that neighbor to zero.

ii. Add D=F coefficients to the a momentum coefficient at P.

Iii. Add u*(DxF) to source term b for the known neighbor value. Here,
since the velocity is zero, this will add nothing to source term b.
However, if the wall is moving or there is a suction and/or injection on

thewall, it isimplemented directly with this procedure.
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V. For the pressure correction equation, set the coefficient for pressure ap
at related boundary to zero and use velocity directly, not the guessed

one in the calculations. No extraimplementation is required.

5.2. Inlet Boundary Condition

At the inlet boundary, flow variables are specified. At the inlet either the
pressure or inlet velocities are specified. If the exact details of the flow distribution are
unknown, but the boundary values of pressure are known, the solution may be obtained
from this pressure inlet boundary condition. If the velocity components are known on
the inlet section instead of pressure, then inlet velocity boundary condition is used asin
this study. That is the inlet velocity profile is prescribed at the inlet boundary (Eq.
(5.2)). Since the velocity components are given, the pressure corrections at these points
are zero meaning that no calculation of any momentum equation at these points is
needed. The schematic diagram of the inlet boundary is given in Figure 5.3 for w and v

velocity components.

=f (5.2)

|in|et 0
The procedure is same as with the procedure for no-slip boundary condition. The
only difference is that at least one of the velocity components must be different from

zero. Figure 5.4 shows where the related velocity components are calculated with their

symbols.

.// 4

|_ | | |
| | | —_———_———————
| | | I_
NERE (S I B
| | |
| | |
| | | I'___________
| | |

Iy I I

w-velocity v-velocity

Figure 5.3. Schematic diagram of the inlet boundary. Dashed lines show the edges of
the velocity control volumes.
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Figure 5.4. Schematic diagram of the velocity nodes adjacent to the inlet boundary,
symbols show where the related vel ocities are computed. Dashed lines
show the edges of the velocity control volumes.

5.3. Outflow Boundary Condition

When the location of the outlet section is far enough from any disturbance, the
flow reaches its fully developed condition and at that location the outflow boundary
condition can be used. With the outflow boundary condition, it can be stated that there
is no change in the flow direction for the dependent variables. Practically, the gradients
of all the variables in the flow direction are set to zero at that location as given in Eq.
(5.3).

It =0 (5.3)
2 louet

With this boundary condition, there is no calculation for the velocity

components and pressure correction at the outlet. No change in the gradient is

implemented as making the velocity components equal to the previous nodes in the flow

direction as can be seen in Figure 5.5. The procedureis asfollow:

I Make the gradients of dependent variables in flow direction equal to

. ﬂf . fout - f revious
zero, i.e, — =0. This means that =—"*>*==0p f , =f
fiz Dz

In

previous *

other words, the values of the dependent variables at the outlet are made

equal to the values of the previous nodes.



I. For the boundary nodes in which the velocities are calculated adjacent to
the outlet boundary, the momentum coefficient a at the front neighbor is
set to zero.

iii. There is nothing to add to the momentum coefficient a for the outflow
side and nothing to add for the source term b.

V. Since the outflow condition used, the velocity components are taken
from the previous nodes, therefore there is no pressure correction

equation to be solved at these locations; the pressure correction is zero

there.
Dl Pt
el ] KoY
I o e -
w-velocity ' v-velocity ’

Figure 5.5. Outflow velocity components for w and v-velocity, symbols show where
the related velocities are computed. Dashed lines show the edges of the
velocity control volumes.

5.4. Symmetry Boundary Condition

The symmetry boundary condition is used when there is a flow in which the
flow pattern is symmetric in one or more directions. In this study, the advantage of
symmetry boundary condition is used since it decreases the computational node number
at least by half. Physically, a symmetry boundary condition is a location where there is
no flow across the boundary and no scalar flux across the boundary. The schematic
view of this boundary is shown in Figure 5.6.

The ghost cells seen in Figure 5.6 are used in the calculation, however they are
not calculated separately, their value is taken from its symmetric peer (The blue velocity
arrows shown in Figure 5.6. are symmetric peers for w-velocity). The values on the
ghost cells are taken from the neighbors adjacent to the symmetry plane. The normal

velocity is zero on the symmetry plane; that is u-velocity on the symmetry planeis zero.
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The related velocity component here is the orange one. The symmetric pairs can bee

seen in Figure 5.6.

s & .
SEIEIERCICIC
ST
symmetry plane
LT roTererere
I By

Figure 5.6. Velocity components adjacent to symmetry plane, circles represent w
velocity, rectangles represent u-velocity components. Representative
velocity vectors show the symmetry about the symmetry plane.

Ghost cells

Since the velocity value on the symmetry plane is zero, there is no velocity
vector on it. The mathematical definition is givenin Eq. (5.4). It states that there is zero

normal velocity and zero normal gradients of all variables at a symmetry plane.

n|symmetry plane -

f
(5.9
1,

ﬂn symmetry plane

=0

The procedure for the implementation is as follow:

I For the calculation of the momentum equation adjacent to the
symmetry plane, set the related a momentum coefficient to zero
since the values on the ghost cells are known from the previous
iteration.

ii. Add D=F coefficients to the momentum coefficient a at P.

Iii. Add u* (DxF) to source term b for the known neighbor value.

V. In the pressure correction equation, set the related ap coefficient

for pressure to zero; no further modification is required.
46



CHAPTER 6

CODE VALIDATION

Due to the inherent assumptions, linearizations and discretizations, every CFD
code is prone to inaccuracies whether small or large. After developing the code,
numerical validation must be done in order to justify its correctness. The ultimate way
of testing a CFD code is a comparison between its output and experimental data and/or
the analytical solution if exists. One of the methods reporting the validation study is to
choose a target quantity and to compare the results. If the difference between computed
and experimental results and/or analytical solution looks sufficiently small, the CFD
code is considered to be validated. In this chapter, only the problem descriptions and
results are given, the details of the developed code, the properties of the computer used

throughout this study and the average iteration time can be found in Appendix A.

6.1. Developing Channel Flow

The problems of this study are for separated channel flows. Therefore, validating
the code for a three dimensional developing channel flow is the first task to show how
the code deals with this relatively ssmpler flow. The most valuable work done on the
three dimensional laminar flows in ducts are the work of Shah & London (1978) and the
work of Ravi Shankar et al. (1993). Numerical results for a developing channel flow
are also given in the study of Saldana (2005).

6.1.1. Problem Description

The problem is a pure forced convective developing flow in a square channel
with a uniform inlet velocity. The geometry of the computational domain is shown in
Fig. 6.1. The Reynolds number based on the hydraulic diameter is chosen as 100 with
the purpose of comparing the computational results with literature. To make the flow
reach to its fully developed condition, the channel length, Lqc, is set to 40 times to its
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hydraulic diameter and the results of the computation show that this length is sufficient

to assume afully developed flow at outlet of the channel.

J

I

X

L4

C

Figure 6.1. Developing channel flow geometry, SP. symmetry plane, O: outlet plane.

6.1.2. Boundary Conditions

A uniform inlet velocity boundary condition is given at the inlet. The axiad
velocity component at all the inlet nodes is set to uniform velocity and the other two
components of the velocity are set to zero. The problem is geometrically symmetric,
therefore only the half of the domain is solved and symmetry boundary condition is
applied at the symmetry plane shown in Figure 6.1. At the walls, no slip boundary
condition is applied and at the outlet, outflow boundary condition is applied. The

mathematical definitions of the boundary conditions are given in Table 6.1.

Table 6.1. Boundary conditions of developing channel flow.

Boundary condition | Mathematical definition

Inlet Inlet velocity u=v=0, w=wg
Walls No dlip u=v=w=0
v _ w

mmetry plane mmetr u=0, —=—=
Sy yp Sy y T

Outlet Outflow Tu_Iv_w_
1z 9z 9z
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6.1.3. Results and Discussion

The computational grid is first chosen to be uniform and the control volume
numbersin X, y and z directions are chosen to be 20, 40 and 200 respectively, making a
total of 1.6x10° control volumes. If the symmetry boundary condition was not
implemented then 3.2x10° would be required. The convergence criterion is set to be 10°®
for all three velocity components and pressure.

Theoretical studies of Shah and London (1978) give the values of Fanning
Friction Factor and maximum velocity at the outlet. These type of integral quantities
and specific values of velocity are classical choices for CFD code validation. Fanning
friction factor, named after J. T. Fanning, is a dimensionless parameter used in fluid

flow calculations and it is defined as in Eq. (6.1) where t ,r ,w, are wall shear stress,

density and average velocity respectively.

Fanning 2

rw,

The Fanning Friction Factor should not be confused with Darcy Friction Factor
which are very similar quantities. Darcy Friction Factor is four times the Fanning
Friction Factor.

i zp D,
z
6.2
AT rw2 /2 (62
where Dy, isthe hydraulic diameter which is defined in Eq. (6.3).

" P

Table 6.2 gives the comparison between current numerical computations and
theses theoretical results. The percent error is found to be less than 0.4 and this shows

that the code is trustable for the forced convection in a channel.
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Table 6.2. Comparison of Wmax /W for the developing square channel flow.

fRe (Fanning) fRe(Darcy) Wmax/Wo
Shah and London(1978)  14.2270 - 2.0962
Incroperaet al. (2007) - 57 -
Present study 14.1970 56.789 2.0908
Error (%) 0.2113 0.3716 0.2583

In addition to the comparison made in Table 6.2, we compare the axial velocity
at the outlet with the analytical velocity distribution given in the book of Frank M.
White (2006). The constant velocity contours are given in Figure 6.2 at the outlet x-y
plane. The present numerical computations match very well with the analytical velocity
distribution for the fully developed non-circular duct flow and this one way validates
the developed code.
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Present Study

Shah & London

Figure 6.2. Axial velocity contour comparison of present study and the analytical
velocity distribution given by Shah & London (1978) in the book of
White (2006), velocity labels are in m/s.

Figure 6.3 shows the axial velocity profiles on the symmetry plane at different z

locations (flow direction). The velocity profile is not parabolic in the developing region,

but at the channel exit where it develops fully, the profile is parabolic.
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Figure 6.3. Stream-wise velocity profiles on the symmetry plane for different
locations.

6.2. Artificial Viscosity Method

A code developed for a constant area channel flow can easily be adapted to any
geometry with rectangular features by artificial viscosity method in which walls are
modeled as a fluid with very high viscosity. For example, to simulate a solid region in
the domain, it is known that the velocity components in this domain are zero. One of
the two methods to achieve this is use of large source terms and the other method is
artificial viscosity method which is the use of very high dynamic viscosity in that

control volumes such that the control volumes behave asif they are solid in that region.
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Figure 6.4. Location of control volumesin artificia viscosity method.

An example for this type of arrangement is shown in Figure 6.4. The control
volumes shown in the figure are for the scalar quantities, such as pressure density and
viscosity. Using very high viscosity value inside the inactive or artificially solid region,
the desired solid effect can be created. A few representative control volumes for the
high viscosity values are shown in Figure 6.4 with dots inside the control volumes. The
locations of the velocity components and scalars (point P) are shown in the magnified
portion of the corner of the forward facing step. The high viscosity values are kept
inside the domain at location P while the velocity components are kept on the walls of
the step. If the viscosity values at these points evaluated properly, the velocities on the
step should be zero because of the no-dlip condition.

6.2.1. Evaluation of Viscosity at I nterface

The problem of artificial viscosity method is the large discontinuities between
the zones of normal viscosity and artificial viscosity. The interface viscosity should be

evaluated in such away that the flow should not be affected from this discontinuity.
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The interface viscosity can be calculated by assuming a linear variation between
related control volumes. The interface viscosity of control volumes P and E (Figure 6.5)
can be calculated asin Eq. (6.4).

Figure 6.5. Interface for the P and E control volumes.

ne = ferrP + (1_ fe)nE (64)
where f, istheinterpolation factor defined as follows:

_ Oz,
0Zpe

(6.5)

e

where dz in Eqg. (6.5) isthe horizontal distance between the points defined in sub-index.

If the grid is uniform, f_ becomes 0.5 meaning that interface viscosity is calculated

taking the arithmetic mean of the two control volumes' viscosity values or a linear
variation for non-uniform grid arrangement adjacent to the artificial boundary. This
type of calculation would result with a very high viscosity at the interface which is not
desired since intended wall location would move up between the interface and the first
boundary node in this case. Fortunately, taking the harmonic mean of related control
volumes can handle the viscosity at the interface correctly and handles the abrupt
change without requiring an excessively fine grid in the vicinity of the change. The

harmonic mean is calculated as given in Eq. (6.6).

0 (66)
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Since very high viscosity value is used with this method and let this bern , then
the first term in Eqg. (6.6) becomes very small and the high viscosity does not affect the
calculations as in the case of linear variation method. Here the interface viscosity is not

al dependent on the viscosity value at P. Besides this, m, is not equal directly ton,
but 1/ f_times of it.

For the three dimensional calculations, the locations of the six neighboring
control volume locations are very different for different interfaces and different velocity
components. While calculating the interface vel ocities, the neighboring control volumes
enter into the calculation. For example, Figure 6.6 shows the control volumes where
viscosity is kept and the location of u-velocity on the x-y plane. While evaluating the
momentum equation for the u-control volume (shaded control volume in Fig. 6.6), one
of the required interface viscosity is, for instance, the north face of the u-control
volume.

RErZy (A (2
(a) (b) (c)

Figure 6.6. Location of viscosity values and u-velocity component, (a) viscosities at
their local points, (b) and (c) at interfaces.

To calculate the interface viscosity at the north face of u-control volume, first

the interface viscosity between nodes for m, and m, should be calculated using Eq.
(6.6), and then the interface viscosity between nodes for i, and v, is computed which
result in m, and r,, respectively (Figure 6.6 (b)). The interface viscosity at the north
face, i, (Figure 6.6 (c)), of the u-control volume is obtained using again Eq. (6.6) with

interface viscosities r,, and mm,,. All the velocity components and faces require this

type of interface viscosity evaluation.
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6.2.2. Validation of the Artificial Viscosity Method

To validate the artificia viscosity method, developing channel flow is used. The
same problem is prepared once with a true no-dlip boundary condition and then again
with an artificialy solidified wall with a very high viscosity. The geometries of the two
test cases are shown in Figure 6.7. The height of the channel for the normal test caseis
set to h and the one with artificia viscosity is set to 2h in which the bottom portion is

filled with high viscosity of 1050 kg/ms. With this arrangement, it is expected that the

region filled with high viscosity behaves as if solid and two solutions give the same
exact answer.

The number of control volumes used in normal test case is 1 x 10* and the
number of control volumes used in the test case with artificial viscosity is 2 x 10%. With
this control volume arrangement, it is ensured that al the control volume sizes are equal
in both of the test cases; therefore the number of control volumesin the second test case
IS twice the number of control volumes of the normal test case.

The boundary conditions for the normal test are same as with the developing
channel flow except the Reynolds number is set to 400 in this case. As for the test case
with artificial viscosity method, the inlet velocity profile is uniform for the range of y=h
to y=2h and zero for the range of y=0 to y=h. If shaded region would not be filled with
very high viscosity fluid, it would be expected that the flow behaved as if there would
be a sudden expansion.

The validation of the application of the method is made comparing the axia
velocities on the symmetry plane at different z locations. The second test case does not
behave as if there is a sudden expansion, but it gives the same result with the normal
test case. The streamwise velocity profiles on the symmetry plane at different z
locations are shown in Figure 6.8. The results from the both cases match perfectly well
and this validates the application of the method for any irregular shape inside the
computational domain converting the regular channel geometry artificially into
geometrically different channels.
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Figure 6.7. The geometry of the test problems for artificia viscosity method,
top: normal test, bottom: test with artificial viscosity.
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Figure 6.8. Streamwise velocity profiles on the symmetry plane for different
z-locations.

6.3. Backward Facing Step Flow

Flow separation and the subsequent reattachment is one of the fundamental
research topics in fluid dynamics. To investigate the details of separation and
reattachment phenomenon, some set of geometric test cases has been developed for the
researchers. These are flow in a pipe with sudden expansion, flow in a pipe including an
obstacle such as an orifice, flow over an obstacle such as step or fence in a channel and
flow in a channel with a sudden expansion which is also called as backward facing step
flow in a channel. Among these geometric configurations, the backward facing step is
very popular benchmarking problem and validation test problem for the numerical
studies. Although the geometry is simple, the flow contains most of the complexities
that are encountered in other separated flow geometries. Most of the studies for
backward facing step flow isin 2-D, however al the actual systems containing the step
geometry is 3-D, therefore there is a need to understand the 3-D vortical flow structure
behind the step.
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The main am of investigation of this type of flow problem is due to its
simplicity in its geometry, complexity in its flow structure and availability of reliable
experimental data. The objective of the current test case is investigate steady laminar
flow over 3-D backward facing step and make comparison with the experiments as a

validation of the developed solver.

6.3.1. Problem Description

The problem is a forced convection over a 3-D backward facing step in a
channel. The schematic view of the computational domain is shown in Figure 6.9. The
step geometry and flow conditions are chosen according to the study of Armaly et al.
(2003) due to the ease of comparison of the results and the validation of the code
developed. The upstream height of the duct, h, is 0.01 m, the step height, s, is 0.01 m
and the width of the channel, W, is 0.08 m. The aspect ratio and expansion rétio are
givenin Eq. (6.1) and Eq. (6.2).

The length of the step, Ls, is 0.02 m and the length of the downstream of the
step, Lg, is set to 0.5 m which is 50 times of the step height to ensure a fully developed
conditions at the outlet plane. The choice of the upstream length of the step is for
preventing the inflow from the effects of sudden expansion.

The problem is geometrically symmetric in span-wise direction (x-direction),
therefore the half of the computational domain is solved using L=W/2 portion of the
channel. The coordinate system is put at the bottom corner of the step and the y-z plane
at x=W/2 is the symmetry plane.

ArR=" _g 6.1)
S
ER:h;S:Z (6.2)
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Figure 6.9. Geometry of the backward facing step channel, SP: symmetry plane,
O: outlet plane.

The flow of air is simulated in this problem and its physical properties are

evaluated as constants throughout the simulation as density,r , is 1.205 kg/m® and
dynamic viscosity, r is 1.81 x 10° kg/ms. The validation tests are made for Reynolds
number (defined in EQ. 6.3) of 343.

_2rw,h
m

Re (6.3

6.3.2. Boundary Conditions

At the inlet section of the channel, fully developed velocity profile is used. The
velocity distribution is given analytically in the book of White (2006) and Eqg. (6.4)
gives the fully developed velocity distribution used for the inlet boundary condition.
The u and v velocity components are set to zero at inlet. For a rectangular cross section
showninFigure6.10, - a£ x£a,- bEY£ED:

_16a’ & dpg & (- 1)(.i.1)/zgl_ COSh(?py/(2a))3ycos(ip>;/(2a)) (6.43)
e dZgoss. e COSh('IOb/(Za))u
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In Eg. (6.4b), Q is the volumetric flow rate and it is known from the inlet
boundary condition. The pressure gradient term in Eq. (6.49) is calculated from Eq.
(6.4b) and then the velocity distribution is computed with Eq. (6.44).

Figure 6.10. Rectangular cross section for fully developed channel flow.

Because of the symmetry of the problem in the span-wise direction, symmetry
boundary condition is applied at x=W/2 y-z plane. At the walls of the channel no-dlip
boundary condition is applied and at the outlet plane, outflow boundary condition is
used. The locations of the boundaries and the mathematical definitions of the boundary
conditions are given in Table 6.3.

Table 6.3. Boundary conditions of backward facing step flow.

Boundary condition | Mathematical definition
Inlet Inlet velocity u=v=0, w=w(x,y) (Eq. 6.2)
Walls No dlip u=v=w=0
wv_ w
mmetry plane mmetr u=0, —=—-=
Sy yp Sy y ™ X
Outlet Ouitflow E:ﬂ:ﬂ—w:o
1z Yz 9z
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6.3.3. Grid Setup

Non-uniform staggered grid arrangement is used for the backward facing step
flow. The grid is highly concentrated close to the step and adjacent to the walls in order
to assure the accuracy of the numerical simulation. What is desired for non-uniform grid
generation is constructing afine grid in the regions of strong gradients such as walls and
step corner and a coarse grid for the regions where the variations of the dependent
variables are small, for example far from the step. There are severa non-uniform grid
generation schemes such as successive ratio, exponential and logarithmic schemes and
they are used in commercial softwares too. The successive ratio schemes may produce
very big sized coarser grids compared to exponential and logarithmic ones if the
computational domain is too long. The choice of the grid generation scheme, however,
should depend on the details of the problem. In this study, we utilized a successive ratio
logic because the size of the coarser grids produced near the outlet plane do not affect
the solution of the problems of this study. But it should be noted that, if any problem is
suspected from the size of the coarser grids, the exponential or logarithmic schemes
may be tried.

To generate non-uniform grid, a basic mathematical approach is applied. At this
point, where the control volume faces are located should be defined. The two practices
are seen in the literature: practice A and practice B (Patankar, 1980). In practice A, the
grid points are located first, and then the faces are located midway between the grid
points. In Practice B, the faces are |ocated first and then the grid points are placed at the
centers of the control volumes as shown in Figure 6.11 (dots are the grid points and the
vertical lines are the faces.). For uniform grid, both of the practices are identical. For
non-uniform grid arrangement, both of them have pros and cons. For example in
Practice A, the evaluation of the gradients at the faces are very accurate, since the faces
are midway between grid points, however the nodes are may not be at the center of the
control volume therefore the value of the variable kept at this location may not be a
good representative of the control volume. In Practice B, there is not a problem like this
since the nodes are at the geometric center of the control volumes. However, the control
volume faces are not midway between the nodes and the evaluation of the gradients
requires specia attention. Although there is a disadvantage like this, it is more

convenient to use Practice B as the control volumes are the basic e ements of the finite
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volume method. Besides this, Practice A requires half control volumes around the
boundary grid points while the computational domain is filled with regular control
volumes with Practice B, since the locations of the faces are determined first. It iseasier
to fill the domain, more importantly; the boundary control volume faces coincide with
the boundary or any discontinuity in the material as in the case of artificial viscosity
method. Considering all these pros and cons, Practice B is selected to be used in this
study.

To generate the non-uniform grid with Practice B, i.e., to locate the control
volume faces first; we should find a relation for the distance of the faces to the
boundary. If the first control volume is the starting control volume with length of Dx
for this arrangement, then the length of the next control volumes are multiplied with an
expansion factor “r” which is kept between 1 and 1.5. Therefore the size of the next
control volume is always greater than the previous one. The schematic view is shown in
Figure 6.11.

- »la .l
r(rix) lr(}‘ (r.-i'n.x}}l

Figure 6.11. The schematic view of the non-uniform grid arrangement.

If adistance of L isdivided into N control volumes with Dx being the length of
the first control volume, then the sum of the lengths of the sub-control volumes should
give thetotal length L (Eqg. (6.5)).

Dx+rDx+r(rBx)+r(r(rDx)) +....= L (6.5

Eqg. (6.5) can be written asin Eq. (6.6).

r'Dx+r'Dx+r’Dx+r°Dx+...+r"V*t = (6.6)
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Writing Eq. (6.6) in summation form, Eq. (6.7) is obtained. The summation is
the finite geometric series and it can directly be written in terms of r and N as in the
right hand side of Eq. (6.7).

L%t , _1-r"
—=qr"= 6.7
DX na:-0 1' r ( )
From Eq. (6.7), an equation for Dx iswritten asfollows.
1-r
Dx=L 6.8
1-rN 68

Since Eqg. (6.8) gives the distance between the starting boundary and the end of
the control volume (right end of control volume in Figure 6.11), Eq. (6.8) can be
generalized to give the distance of the end of the i control volume to the starting

boundary, L. The non-uniform grid setup is made with Eq. (6.9).

(6.9)

The 3-D grid arrangement using Eqg. (6.9) is shown in Figure 6.12. The location
z=0 misthe end of the step and y=0.01 m is the corner of the step. As can be seen from
the magnified portion of the grid in Figure 6.12, the size of control volumes are bigger
in z-direction from inlet to the edge of the step since before the edge of the step, the
flow is coming as fully developed and there is nothing specia to investigate before the
edge of the step.
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Figure 6.12. Grid arrangement of backward facing step flow geometry.

6.3.4. Results and Discussion

The simulations performed here are for Re=343 and most of the researchers have

used the experimental data of Armaly et al. for computational validation studies. The

-D flow. For 2-D

simulation there is only one vaue for the reattachment point but for 3-D case, the

target quantity for the validation is the reattachment length for 3

This is the location where

Zy-lin€’ on the wall.

reattachment points form aline called

,) isequal to zero and at

y=

the stream-wise component of the wall shear stress (mfiw/ ‘Hy|

-wise velocity component changes sign from positive to

this location the stream

negative. For the grid independence study, the z,-line is chosen as target quantity.

-line for both uniform and

Figure 6.13 shows the comparison for the so-called z,

uniform grid arrangements. Although the control volume number for both of the

non

there is a

the uniform grid cannot catch the flow details. Fortunately,

cases is equal

perfect agreement for non-uniform grid arrangement with experimental data of Armaly

et al. (2003) and this validates the present numerical study.
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The plot in Figure 6.13 is obtained after investigating 17 different grid

arrangements of which constitutes the grid independence study.
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Figure 6.13. Comparison of uniform and non-uniform grid on the z,-line.

Firstly, the effect of number of control volumes Ny, Ny and N in X, y and z-

directions are investigated. Table 6.4 gives the details of different grid densities for the

comparison of effect of N.

Table 6.4. Grid details of the different grid sets for the effect of Ny.

Grid Ny, Ny, N, AXin AXimax
GridC1 20, 40, 150 8.7409e-04 0.0038
Grid Al 30, 40, 150 3.5310e-04 0.0033
Grid C2 40, 40, 150 1.5441e-05 0.0031
Grid C3 50, 40, 150 6.9714e-05 0.0030
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The effect of Ny on target quantity z,-line is compared in Figure 6.14. As shown
in the magnified plot, the grid with 20 control volumes in x-direction cannot catch the
correct location of zero wall shear stress at a location around z/s takes its minimum
value. For Grid Al, C2 and C3, computed locations are very close to the experiment
and since Grid Al can catch the detail with less number of control volumes in x-
direction than Grid C2 and C3, Ny is chosen to be 30 in x-direction.

After determining the number of control volumes in x-direction, the next
comparison is made on the effect of number of control volume in y-direction, Ny. The

details of the grids comparing the effect of Ny can be found in Table 6.5.

®  Armaly et al, exp.
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Figure 6.14. Effect of N on the z,-line distribution.

Figure 6.15 shows the effect of Ny on the z,-line for different grid densitiesin y-
direction. There is a shift to the left of the z,-line for the results of grids B1 and B2.
However, The results for grids A1 and B3 matches very well with the experimental data
and there is not so much difference between the results of Grid A1 and B3, therefore the
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number of control volumes in y-direction is chosen as 40 so as to decrease

computational memory compared for a number of control volumes of 60 for grid B3.

Table 6.5. Grid details of the different grid sets for the effect of Ny.

Grld Nx, Ny, Nz Aymm Aymax
Grid B1 30, 20, 150 5.0229e-04 0.0017
Grid B2 30, 28, 150 2.4400e-04 0.0015
Grid Al 30, 40, 150 9.1592e-05 0.0014
Grid B3 30, 60, 150 1.9628e-05 0.0013
1 T T I‘ T T
®  Armaly et al_, exp.
05l —— Ny=20. B1
e Ny=28. B2
0.8 — Ny=4U. Al
— Ny=EU. B3
0.7
0.6
= 05F
0.4r
0.3r
0.2+
01F
0
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Figure 6.15. Effect of Ny on the z,-line distribution.
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The effect of number of control volume in z-direction is compared with three
different grid densities in z-direction and details of them are given in Table 6.6. For this
comparison, the number of control volumesin x and y directions are fixed to 30 and 40,
but the effect of Ny is investigated. The results are shown in Figure 6.16. While grid
D1 cannot catch the z,-line, the grids A1 and D2 matches very well. Since the results
for grids A1l and D2 are very close to each other, the less number of control volume

which is 150 in z-direction is chosen.

Table 6.6. Grid details of the different grid sets for the effect of N,.

Grid Ny, Ny, N AZpin AZmax
Grid D1 30, 40, 100 1.5000e-03 0.0130
Grid Al 30, 40, 150 4.0689e-04 0.0126
Grid D2 30, 40, 180 1.9074e-04 0.0124

After determining the number of control volumes in x, y and z-directions, the
expansion factors for non-uniform grid arrangement should be determined. To choose
the factors, the effects of different expansion factors for the three directions are
compared investigating the effect of the expansion factors on the target quantity.

Table 6.7 and 6.8 give the details of the different grid densities arising from the
different expansion factor combinations. While an expansion factor very close to 1
means a grid like a uniform grid, an expansion factor close 1.5 creates a grid
arrangement very concentrated near the boundary, in other word as the expansion factor
increases, a dense grid is obtained near boundaries but a coarse grid is created far from
the boundary. Therefore, a suitable combination of expansion factors should be chosen
such that it is dense enough near boundaries and not too much coarse far from the
boundary, but this is not the only factor affecting the choice; the target quantity should

be match with the experiment as well.
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Figure 6.16. Effect of N, on the z,-line distribution.

Grid 'x ry rz
Grid A1 1.08 1.35 1.025
Grid A2 1.08 1.35 1.035
Grid A3 1.08 1.45 1.025
Grid A4 115 1.35 1.025
Grid A5 1.20 1.35 1.025
Grid A6 1.00 1.00 1.000
Grid A7 1.08 1.05 1.025
Grid A8 1.08 1.25 1.025
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Table 6.8. Minimum and maximum dimensions of control volumes for Grid A.

Grid AXmin AXmax AYmin AYmax AZpmin AZmax
GridAl 3.5310e-04 0.0033 9.1592e-05 0.0014 4.0689e-04 0.0126
Grid A2 3.5310e-04 0.0033 9.1592e-05 0.0014 1.4286e-04 0.0170
Grid A3 3.5310e-04 0.0033 5.6131e-05 0.0016 4.0689e-04 0.0126
Grid A4 9.2008e-05 0.0053 9.1592e-05 0.0014 4.0689e-04 0.0126
Grid A5 3.3844e-05 0.0067 9.1592e-05 0.0014 4.0689e-04 0.0126
Grid A6 0.00133 0.00133  0.0005 0.0005 0.00346 0.00346
Grid A7 3.5310e-04 0.0033 3.9752e-04 6.1669e-04 4.0689e-04 0.0126
Grid A8 3.5310e-04 0.0033 1.5036e-04 0.0011 4.0689e-04 0.0126
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Figure 6.17. Effect of r« on the z,,-line distribution.
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The effect of different expansion factors in x-direction is showed investigating
gridsAl, A4 and A5in Figure 6.17. As can be deduced out from this plot, thereis no so
much difference for these grid densities, therefore one of the three can be chosen, but
the smallest one is chosen because it creates grid closer to a uniform grid preventing any
effect of aspect ratio differencesin x-direction for all of the control volumes.

The comparison for the effect of expansion factor in y-direction is made using
the grids A1, A3, A7 and A8. The expansion factor for grid A7 is 1.05 and very close to
1, therefore it cannot use the advantage of non-uniform grid as much as others. The
difference between grid A7 and experimental data can be seen in Figure 6.18. The
expansion factor for grid A3 is 1.45, which is found as big for this run as shown in
figure. However, the results of grids A1 and A8 are very close to each other. The
choice of expansion factor between the two is made based on the magnified view of the
plot near symmetry plane. Since the results for grid A1 matches at the center better than

grid A8, the expansion factor is determined as 1.35 in y-direction.
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Figure 6.18. Effect of r, on the z,-line distribution.

72



1 T T . T T
y ®  Armaly et al., exp.
0.9 ——r=1.025. A1 g

—— rz=1_[]35_ A2
08r - -

061

0.5+

xiL

0.4+

0.3+

01F

z's

Figure 6.19. Effect of r, on the z,-line distribution.

The final comparison is made to determine the expansion factor in z-direction
which is the flow direction and the longest dimension. For this comparison, grids Al
and A2 are compared and the results are shown in Figure 6.19. Since there is no so
much difference between the two grid arrangements, the smaller expansion factor which
is 1.025 chosen for z-direction for the same reason stated for x-direction expansion
factor.

Completing the decision for the expansion factor in z-direction, the grid
independence study is over and the other flow structures in the backward facing step
flow are investigated with Grid A1. At this point it should be stated that Grid A1 uses
1.8 x 10° grid points. If the results of this grid arrangement is tried to reach with
uniform grid arrangement, 3.15 x 10" grid points should be used to catch the same
details of the smallest control volumes size of the non-uniform grid at each direction.

Figure 6.20 shows the streamwise velocity (w) profiles at different z-locations
on symmetry plane. The present study agrees very well with the study of Saldana &
Anand (2004). The location z/s=-2 isthe inlet and the velocity profileis fully developed
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there. The recirculation zone can be identified clearly at location z/s=5. The location
z/s=0 is the edge of the step and up to y/s=1 isthe wall of the step on which the velocity
component should be zero. The present study agrees very well with this boundary
condition such that the velocity is zero on the vertical wall of the step. This also proves
the correctness of the artificial viscosity method applied for this solution. The location
7/s=25 is the mid section of the channel. Since the flow has passed the recirculation
zone, it starts to redevel op throughout the outlet of the channel.

Streamwise distributions of w-velocity component on different y-planes are
given in Figure 6.21 and the numerical computations agree with the experimental data
of Armaly et al. (2003). From the velocity distributions on figure 6.21, it can be
deduced that there is velocity peak at around x/L=0.25 at y-planes below the step. This
peak is seen for the y-planes equal to y=s and below of it. There is no such a peak for
the locations above the corner of the step. These peaks show that there is a jet-like flow
adjacent to the side wall and this type of flow is the reason of the minimum that appears
on the z,-linein Figure 6.14. At location y/s=1.6, thereis areverse flow for x/L<0.1.
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Figure 6. 20. Stream-wise velocity component at different z planes on the symmetry
plane, (top): Saldana & Anand (2004), (bottom): present study.
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Figure 6.21. Span-wise distribution of w-velocity components on different y-planes,
Lines: present study, Symbols: Armaly et al. (2003).

Streamlines are the lines that are instantaneously tangent everywhere to the
velocity vector of the flow. These lines show the direction afluid element will travel at
any point in any time for steady flows. Figure 6.22 shows a few representative 3D
streamlines representing the flow path of particles with no mass. The streamlines start
from the inlet plane and they take different forms downstream of the step. Streamlines
A and B impinges on the bottom wall and this “jet-like” flow structure is a significant
feature of 3-D backward facing step flow. After the impingement, streamline B
continues its flow redeveloping downstream of the flow while the streamline A moves
upwards, goes back and return to the flow direction back forming a swirling flow region
near the side wall. This “jet-like” flow is the reason of the maximum and minimum on
the z,-line. The particles on streamline D move into the primary recirculation zone
directly and they make a swirling motion increasing in size to the center of the channel
(symmetry plane) and then join to the flow downstream of the channel. There are 2
more streamlines adjacent to streamline C. While streamline C joins to the recirculation

after impingement, the two streamlines adjacent to streamline C join to the redevel oping
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flow. Figure 6.23 shows three different rake of streamlines. Though the starting
positions of the streamlines are close to one another, the flow patterns are very different.
Especidly, streamlines closer to the side wall move rapidly inside the primary

recirculation zone.

Figure 6.22. Streamlines showing the flow structure behind the step.

The primary recirculation bubble can be seen in the stream-wise velocity
contours given in Figure 6.24. The recirculation seen in streamline A in figure 6.22 can
be seen in the w-velocity contour at x=0.0025 m and the shape of z,-line is very clear.
The location of reattachment point starting from center decreases to its minimum at
location x=0.01 m corresponding to x/L=0.25 in Figure 6.13 and then increases near the
side wall taking its maximum. The profile of the recirculation bubble in span-wise
direction can be seen in Figure 6.25. The blue colored contours show the reverse flow.
The recirculation region ends before z=0.1 m as seen in both Figures 6.24 and 6.25.

After that location, flow redevel ops throughout the outlet plane.
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Figure 6.23. Rake of streamlines starting from x=0.001 m, x=0.002 m and x=0.003 m
from top to bottom.
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Figure 6.24. Streamwise velocity contours on different y-z planes.
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Figure 6.25. Axial velocity contours at different x-y planes.

The separating flow at the corner of the step reattaches at the bottom wall
forming the primary recirculation zone. The swirling flow in the span-wise direction
and the other recirculation zones in the channel are the cause of adverse pressure
gradient developing in the flow due to the sudden expansion at the step. Figure 6.26 and
6.27 show pressure distribution on several planes. The high pressure seen at location
around z=0.1 m is due to the impinging flow at that region. The flow direction is
affected from a few parameters. These are pressure gradient, inertial forces and viscous
forces. If the pressure is enough to overcome the effects of other forces, some of the
flow goes back and some continue to its way in the redeveloping region of the
downstream of the channel as seen in the very high pressure regions near the bottom
wall. However, athough the pressure values are high at location around z=0.1 m from
bottom to top wall, there are some regions where the flow does not change its direction

because at these locations inertial and viscous forces dominate over high pressure there.

The vorticity lines which are the lines tangent to the vorticity vectors ( Ij\"lxﬂ ) for

three different rakes are shown in figure 6.28. Using right-hand rule, the direction of the
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flow can be deduced looking at the vorticity lines. The lines just outside the
recirculation bubble show the direction of the flow to out, i.e., the flow is in the axial
direction; however the vorticity lines inside the bubble show that the flow direction near

bottom wall isto inside, i.e., the flow direction isreverse.
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Figure 6.26. Pressure distributions on x-z planes.
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Figure 6.28. Vorticity linesinside and just outside the recirculation bubble.
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The final investigation is made on the effects of expansion ratio (ER) on the

flow structure. The simulations are made using four different ER with a constant

Reynolds number of 343 which is achieved by setting the same average inlet velocity
and total channel height for all of the cases. Table 6.9 gives the details of the step height

(S), upstream channel length (h), ER and AR values for different geometries. The effect

of ER on the primary reattachment length is shown in Figure 6.29 in which the current

computational results are compared with the numerical results of Nie et al. (2002) for

ER 2.5, 2.0, 1.67 and the results match very well. The axial velocity contours for

different ER values are shown in Figure 6.30 where the difference in the reattachment

length can be seen easily. From both of the figures, it is easily deduced that as ER

increases, the primary reattachment length increases as well.

Table 6.9. Details of the geometries for different expansion ratios.

Geometry s(m) h (m) ER AR
1 0.004 0.016 1.25 20
2 0.008 0.012 1.67 10
3 0.010 0.010 2.00 8.00
4 0.012 0.008 2.50 6.67
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Figure 6.30. Axial velocity contours at x=0.02 m for different ERs.

To show the flow structure behind the step, some streamlines starting from inlet
are presented in Figure 6.31. When ER=1.25, there is no reverse flow adjacent to the
side wall, however there exist for the others. As ER increases, the size of the
recirculation bubble increases, the location of the impingement of “jet-like” flow on the
bottom wall moves further downstream of the step. For ER bigger than 1.25, the
impinging flow rebounds and moves upward and the location of the impingement on the
top wall is aso moves further downstream as ER increases.



Figure 6.31. Streamlines showing the flow structure for different ERs.
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Due to sudden expansion, there is a pressure recovery in channel with the
decrease in mean velocity and it is represented by a pressure recovery coefficient, Cp,

which istheratio of static pressure rise to inlet dynamic pressure (Eq. (6.10)).

C,o° % (6.10)
2"

The sudden change in geometry increases the loss of recovery and the expansion
loss coefficient, K, is defined as given in Eq. (6.11).

K.=8 L0 ¢ (6.11)

The term in parenthesis in Eq. (6.11) represents the ideal (frictionless) pressure
recovery coefficient; therefore the loss is the difference between ideal and actual values.
The data of the change of the expansion loss coefficient with respect to ER for a 2-D
sudden expansion flow is given by Fox et al. (2003). Although the problems are not the
same, they are very similar to each other. The calculations for present study are made at
the symmetry plane and the results are compared in Figure 6.32. The present results are
consistent with the data given by Fox, therefore it can be stated that, as expansion ratio

increases, the expansion loss coefficient increases as well.
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CHAPTER 7

CONCLUSION

The development of a 3-D laminar Navier Stokes solver and the validation of it
were presented in this study. The solver has been designed in such away that it can deal
with separated channel flows by means of artificial viscosity method. The development
of this solver involves starting from a scratch and dealing with al the subroutines of the
solver and gives the chance of understanding al the details of the flow solver. Since the
commercia versions of this type of programs are "black boxes", this study has revealed
the important facts inside that black box. That the developed solver being three-
dimensional makes the development a bit complex but it gives the chance of examining
actual flowsin 3-D.

The textbooks and courses on the CFD area tend to be theoretical and the
simplest examples such as 1-D and 2-D conduction and convection problems are given.
The details of 3-D cases are aways overlooked. In articles, on the other hand, the
authors assume that the reader has the basic knowledge and they do not give the details
of the numerical application. They discuss mostly on the computational results obtained
by their code. With this study, we have tried to close these gaps.

The solver code is developed with C++ language and it utilizes one main routine
and twenty one subroutines. All the routines are responsible from the calculation of a
part of the solution algorithm. The resulting linear algebraic equations are solved via
iterative methods and it is terminated when the convergence criteria is achieved. Finite
volume method is applied throughout this study and the details of discretization
methods, boundary conditions implementation and the solution algorithm were given in
detail. We proposed a more generalized form of the coefficients of discretized
momentum and pressure correction equations including the effects of boundaries.

The first validation of the code was made testing it for a developing channel
flow to show that the code is capable of dealing with forced convection in a channel.
Although the flow is simple, it is a valuable test case to just show that the code can
handle three dimensional problems. The results agree very well with the analytical
results given by Shah and London (1978) and Incorperaet al. (2007).
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To augment the use of code, we applied the artificial viscosity method with
which the code for conventional channel geometry is easily converted into
geometrically different channel geometries. Since this method uses very high viscosity
in the regions where an artificial solid region is created, the evaluation of the interface
viscosity in 3-D caseisgiven in detail which ismissing in literature. To validate the use
of artificial viscosity method, the results of a developing channel flow with filled bed of
high viscosity region were compared against the normal case and the agreement was
perfect validating the use of the method.

Another test problem was chosen to be more complex to show how the code
handles complex flow structuresin 3-D. This problem is a backward facing step flow.
The reason behind the choice of this problem was the simplicity of the geometry,
inherent complex flow structures of the separated flow from the edge of the step, to
verify experimental data to validate the current code and to show the application of the
artificial viscosity method in this relatively more complex flow. After grid
independence study for 17 different grid density, the target quantity, z.-line, was
compared against the experimental data given by Armaly et al. (1983), Li (2001) and
Armaly et al. (2003) to justify the use of our developed computer code. Results showed
that there was generally excellent agreement between the present results and the
experimental data. The investigation of the flow structure was made with 3-D
streamlines, velocity and pressure contours, velocity profiles and vorticity lines. It was
showed that complex three-dimensional flow develops behind the step with reverse and
swirling flow regions. The "jet-like" flow and the impingement to the bottom wall were
found to be responsible from the minimum on the z,-line. The investigation of effects
of expansion ratio (ER) on the flow structure revealed that, as the ER increases, the size
of primary recirculation bubble increases, reattachment length moves downstream of the
channel and because of the sudden expansion, the expansion loss coefficient increases
aswell.

All in al, this study has provided us with revealing the details of a 3-D flow
solver and with the investigation of complex flow structures behind a backward facing
step separated from the edge in 3-D. With the aid of artificial viscosity method, the
conventional code written for a simple channel flow can handle very different
geometries in a channel. Since al the subroutines of the code are known, it is easy to

implement new variations on it.
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For future studies with this solver;

- The grid generator subroutine should be improved to dea with unstructured
grids.

- The adaptive grid refinement technique may be implemented in to the grid
generator subroutine in order to save computational time and user does not
have to have apriori knowledge of the flow during the grid generation.

- The iterative linear equation solver choices should be increased to decrease the
run-times especially the pressure correction solver since it is the most time
consuming part of the simulations.

- Parallel programming may be implemented to speed up the solvers. Although
the Massage Passing Interface (MPl) and OpenMP were applied for
paralelizing the code in this study, it requires deeper research for 3-D
applications.

- Heat and chemical transport can be added.

- The code should be improved to solve unsteady problems.

- The code may be expanded to solve compressible, two phase and turbulent

flows.

90



BIBLIOGRAPHY

Acharya, S. et al., 2007, Pressure Based Finite Volume Methods in Computational
Fluid Dynamics, 129, Transactions of ASME.

Adams, E. W., Eaton, J. K., 1988. “An LDA Sudy of the Backward-Facing Step Flow
Including the Effects of Velocity Bias’, Journal of Fluids Engineering, 1988.

Armaly, B. F.,, Durst, F., Pereira, J. C. F., and Schonung, B., 1983, Experimental and
Theoretical Investigation of Backward-Facing Sep Flow, J. Fluid Mech.,
127, pp. 473-496.

Armaly, B. F., Li, A., Nie, J. H., 2003, Measurements in Three-Dimensional Laminar
Separated Flow, International Journal of Heat and Mass Transfer, 46, pp.
3573-3582.

Biswas, G., Breuer, M., Durst, F., 2004, Backward-Facing Step Flows for Various
Expansion Ratios at Low and Moderate Reynolds Numbers, 126,
Transactions of ASME.

Chiang, T.P., Sheu, TW.H., and Tsai, S.F., 1997, Topological Flow Structuresin
Backward-Facing Step Channels, Computers and Fluids, 26(4), pp. 321-337.

Chiang, T. P., Sheu, T.W.H, 1997, Vortical Flow Over a 3-D Backward-Facing Sep,
Numerical Heat Transfer, 31:2, pp. 167-192.

Chiang, T. P, Sheu, T. W. H., 1999, A Numerical Revisit of Backward-Facing Sep Flow
Problem, Physics of fluids, 11(4), pp. 862-874.

Courant, R., Friedrichs, K. O., Lewy, H., 1928 Uber die Partiellen
Differenzengleichungen der Mathematischen Physik, Math. Ann., vol. 100,
pp. 32-74.

Ferziger, J. H., Peric, M., 2001, Computational Methods for Fluid Dynamics, 3rd
Edition, Springer.

91



Fessler, J. R., Eaton, J. K., 1997, Particle Response in a Planar Sudden Expansion
Flow, Experimental Thermal and Fluid Science.

Fox, R. W., McDonald, A. T., Pritchard, P. J., 2003, Introduction to fluid mechanics, 6"
Edition, Wiley.

Frank M. White, 2006,Viscous Fluid Flow, 3 Editi on, McGraw-Hill.

Gartling, D. K., 1990, A Test Problem for Outflow Boundary Conditions - Flow Over a
Backward-Facing Sep, International Journal for Numerica Methods in
Fluids, 11, pp. 953-967.

Incropera, DeWitt, Bergman, Lavine, 2007, Fundamentals of Heat and Mass Transfer,
6™ Edition, Wiley.

Iwai, H., Nakabe, K., and Suzuki, K., 2000, Flow and Heat Transfer characteristics of
Backward-Facing Step Laminar Flow in a Rectangular Duct, Int. J. Heat and
Mass Transfer, 43, pp. 457-471.

Kaufmann, W., and Smarr, L., 1993, Supercomputing and the Transformation of
Science, Scientific American Library, New York.

Kim, J., Moin, P., 1985, Application of a Fractional-Step Method to Incompressible
Navier-Sokes Equations, Journal of Computational Physics, 59, pp. 308-323.

Le, H., Moin, P, 1997, Direct Numerical Smulation of Turbulent Flow Over a
Backwarding-Facing Sep, Journal of fluid mechanics, 330, pp. 349-474.

Lee, T., Mateescu, D., 1998, Experimental and Numerical Investigation of 2-D
Backward-Facing Step Flow, 12, Journal of Fluids and Structures, pp. 703-
716.

Li, A., 2001, Experimental and Numerical Sudy of Three Dimensional Laminar
Separated Flow Adjacent to Backward Facing Step, Ph.D. thesis, University
of Missouri-Rolla.

Nie, J. H.,, Armaly, B. F., 2002, Three-Dimensional Convective Flow Adjacent to
Bacward-Facing Sep-Effects of Sep Height, International Journal of Heat
and Mass Transfer, 45, pp. 2431-2438.

92



Nie, J. H., Armaly, B. F., 2003, Reattachment of Three-Dimensional Flow Adjacent to
Backward-Facing step, 125, Transactions of ASME.

Patankar, S. V., Spalding, D. B. (1972), A Calculation Procedure for Heat, Mass and
Momentum Transfer in Three Dimensional Parabolic Flows, International
Journal of Heat Mass Transfer, 15, pp. 1787.

Patankar, S. V. ,1980, Numerical Heat Transfer and Fluid Flow, Taylor& Francis.

Ronald L. Panron, 1984, Incompressible Flow, John Wiley & Sons, Inc.

Saldana, J. G. B., Anand, N. K., 2004, Forced Convection Over a Three-Dimensional
Horizontal Backward Facing Step, International Journal for Computational
Methods in Engineering Science and Mechanics, 6 (4), pp. 225-234.

Saldana, J. G. B., 2005, Numerical Smulation of Mixed Convection over a Three-
Dimensional Horizontal Backward-Facing Step, Texas A&M University
Doctoral Dissertation, College Station.

Sankari, S. R., Mees, P. A. J, Nandakumarz, K., 1993, Development of Three-
Dimensional Streamwise-Periodic Flows in Mixed-Convection Heat Transfer,
Journal of Fluid Mechanics, 255, pp. 683-705.

Shah, RK., and London, A.L., 1978, Laminar Flow Forced Convection in Ducts,
Academic Press Inc., New Y ork.

Tannehill, J. C., Anderson, D. A., Pletcher, R. H., 1997, Computational Fluid
Mechanics and Heat Transfer, 2nd Edition, Taylor & Francis.

Williams, P. T., Baker, J, Numerical Smulations of Laminar Flow Over a 3-D
Backward facing step, International Journal for Numerical Methods in Fluids,
24, pp. 1159-1183.

Versteeg, H. K., Malalasekera, W., 2007, An Introduction to Computational Fluid
Dynamics, The Finite Volume Method, 2nd Edition, Pearson, Prentice Hall.

Vogd, J. G., Eaton, J. K., 1985, Combined Heat Transfer and Fluid Dynamic
Measurements Downstream of a Backward-Facing Sep, Transactions of the
ASME.

93



APPENDIX A

NAVIER STOKES SOLVER 3D (NSS3D)

NSS3D is a solver code has written in C++ language with one main routine and
twenty one subroutines to solve 3-D laminar Navier-Stokes equations. The solution
algorithm of NSS3D is build upon the SIMPLE algorithm of Patankar (1980). Table A.1
gives the properties of the computer on which the programs are worked and the average

run time of one iteration for the grid A-1 of backward facing step flow.

Table A.1. Properties of the computer used and average time per iteration.

Properties

Processor Intel(R) Xeon(R) CPU
E5450 @ 2.50 GHz

Installed memory (RAM) 8.00 GB

System type 64-bit operating system

Average time per iteration 3.2 sec

Figure A-1 shows the flowchart of the program in which the names and locations

of the subroutines can be found. The explanations of all the routines are given below.
main.cpp: Main routine is the master of the subroutines. The variables and arrays are

defined in it. It calls the required subroutines according to the flowchart in Figure A-1.

Besides, the auto-relaxation is made on this routine.
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Figure A.1. Flow chart of NSS3D.

Yy main cpp

gengrid.cpp: The grid set up is made within this subroutine. It is capable of setting both

uniform and nonuniform grids with choices of symmetric, diverging and converging

mzero.cpp: It equates all the elements of the three-dimensional arrays to zero.

non-uniform grids. With this routine, any desired non-uniform grid can be created.

invelu.cpp & invelv.cpp & invelw.cpp: These subroutines set the velocity values at the
inlet boundary. They can either set to a constant value or read the velocity profile from a

file.
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init.cpp: It initializes the velocity components at al nodes to either the inlet velocity
profile or to a constant value.

readdata.cpp: This subroutine reads velocity and pressure data from a file and it
enables to read computed data in case of any interruption to continue to run from point

of interruption.

mflowi.cpp: It calculates mass flow rate at inlet to use it for mass flow rate correction at
outlet.

corrmfr.cpp: It computes the outlet mass flow rate at intermediate stages and corrects
it with respect to inlet mass flow rate.

fdcoefm.cpp: It computes the F and D coefficients of momentum equations.

acoefm.cpp: It computes the a coefficients of momentum equations and the source term
b.

solveru.cpp & solverv.cpp & solverw.cpp: These are the iterative solvers for u, v and
w velocity components.

acoefp.cpp: It computes the ap coefficients of pressure correction equation and the

source term bp.

solverp.cpp: It solves the pressure correction equation iteratively.

corrpuvw.cpp: This subroutine corrects the pressure, and velocity components
computed in the solvers.

checkconv.cpp: It checks whether the computed pressure and velocity components

reached to the convergence criteriaor not.
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autorelaxation: It is a code arranging the relaxation factors checking the convergence

history. It uses two subroutines which are autorecover.cpp and autosave.cpp.

autosave.cpp: It saves the results automatically in user defined intervals to use them in

case of any divergence.
autor ecover.cpp: In case of divergence, it recovers all the pressure and velocity values
to the last auto saved ones and the program reduces the relaxation factors and continues

with these data.

writeresults.cpp: It writes the converged resultsto file.
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