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ABSTRACT 
 

 

PRODUCTION, PURIFICATION AND CHARACTERIZATION OF 

THERMOSTABLE PROTEASE FROM ALKALIPHILIC AND 

THERMOPHILIC Geobacillus sp. 
 

 

    Proteases are the hydrolase enzymes that catalyze the hydrolysis of the peptide 

bonds in the primary structure of proteins and peptids. They are used to cleave the 

proteins specifically to produce useful peptides in the processes. Proteases are present in 

a wide variety of living organisms and they also show different physicological, 

physicochemical, biological, chemical functions on the earth. They are the most important 

enzymes in the industry, accounting for 60% of the total enzyme scales in the world. 

The microorganisms that were previously isolated and characterized as a 

Bacillus sp. from Balçova Geotermal region in Ġzmir were used in the experiments. The 

aim of this study was to produce the protease enzyme from alkaliphilic and thermophilic 

Bacillus sp., purify and determine the properties of the enzyme with the characterization 

steps. When the screening studies and growth conditions were investigated, it was 

understood that the alkaliphilic and thermophilic Bacillus sp. produced extracellular 

protease enzyme. This extracellular protease enzyme was purified by ammonium 

sulphate precipitation and ion exchange chromatography chromatograpy. The yield and 

purification fold after purification of the enzyme were 33% and 1.41, respectively. 

 In the characterization studies, the results indicated that the protease enzyme had 

highest activity at pH 8.0 and 55 ºC. The protease enzyme lost 20% of its activity at pH 

4.0 and it lost 10% of its activity at pH 10.0. The protease enzyme at temperatures 

below 55 ºC lost 15% of its activity and also the protease enzyme at temperatures above 

55 ºC lost 25% of its activity. The protease enzyme was stable at different pH values 

during 3 hours and at different temperature values during 6 hours. When compared the 

substrates, casein showed higher activity. The effect of organic solvents and surfactants 

on protease activity was investigated and the results indicated that the protease enzyme 

was stable in the presence of 10% of the organic solvents and 1% of the surfactants. 

PMSF and the protease inhibitor coctail decrease the activity of the protease.  
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ÖZET 
 

 

ALKALĠFĠLĠK VE TERMOFĠLĠK Geobacillus sp.’den TERMAL 

KARARLI PROTEAZ ENZĠMĠNĠN ÜRETĠLMESĠ, SAFLAġTIRILMASI 

VE KARAKTERĠZASYONU 
 

 

Proteazlar proteinler ve peptitlerdeki peptit bağlarının hidrolizini katalizleyen 

hidrolaz enzimlerdir. Proseslerde yararlı peptitleri üretmek için proteinleri spesifik bir 

Ģekilde kesmede kullanılırlar. Proteazlar büyük çeĢitlilik gösteren canlı organizmalarda 

bulunurlar ve aynı zamanda yeryüzünde farklı fiziksel, fizikokimyasal, biyolojik, kimyasal 

fonksiyonlara sahiptirler. Dünya enzim skalasının %60’ını oluĢturan, endüstrideki en 

önemli enzimlerdir.  

Ġzmir Balçova Jeotermal bölgesinden daha önce izole edilen ve Basillus sp. 

olarak karakterize edilen mikroorganizmalar deneylerimizde kullanıldı. Bu çalıĢmanın 

amacı, alkalifilik ve termofilik Basillus sp.’den protease enzimini üretmek, saflaĢtırmak 

ve karakterizasyon basakları ile enzimin özelliklerini belirlemektir. Görüntüleme 

çalıĢmaları ve büyüme koĢulları incelendiğinde, alkalifilik ve termofilik Basillus sp.’nin 

ekstraselüler proteaz enzimi ürettiği anlaĢılmıĢtır. Bu ekstraselüler proteaz enzimi 

amonyum sülfat çökürmesi ve iyon değiĢtirici kromatografi ile saflaĢtırılmıĢtır. 

SaflaĢtırma sonrası verim ve saflık katsayısı sırasıyla %33 ve 1.41’dir. 

Karakterizasyon çalıĢmalarında, sonuçlar enzimin pH 8.0 ve 55 ºC’de en yüksek 

aktiviteye sahip olduğunu göstermiĢtir. Enzim pH 4.0’te aktivitesinin %20’sini ve pH 

10.0’da aktivitesinin %20’sini kaybetmiĢtir. 55 ºC’nin altında proteaz enzimi 

aktivitesinin %15’ini kaybetmiĢtir ve aynı zamanda 55 ºC’nin üzerinde proteaz enzimi 

aktivitesinin %25’ini kaybetmiĢtir. Proteaz enzimi farklı pH değerlerinde 3 saat ve 

farklı sıcaklık değerlerinde 6 saat boyunca stabildir. Substratlar kıyaslandığında, kazein 

daha yüksek aktivite göstermiĢtir. Organik çözücülerin ve yüzey aktif maddelerin 

proteaz aktivitesi üzerine etkisi incelenmiĢtir ve sonuçlar proteaz enziminin %10’luk 

organik çözücü ve %1’lik yüzey aktif madde varlığında stabil olduğunu göstermiĢtir. 

PMSF ve proteaz inhibitör kokteyli protease activitesini düĢürmüĢtür.  

 

 

 

 



vi 

 

TABLE OF CONTENTS 

 

LIST OF FIGURES ......................................................................................................... ix 

 

LIST OF TABLES ............................................................................................................ x 

 

LIST OF ABBREVIATIONS .......................................................................................... xi 

 

CHAPTER 1. INTRODUCTION.................................................................................... 1 

                1.1. Proteases (EC 3.4) ....................................................................................... 1 

                1.2. Classification of Proteases ......................................................................... 1 

                1.2.1. Endopeptidases (Proteinases) (E.C. 3.4.21-99) .................................... 4 

                          1.2.1.1. Serine Proteases (E.C. 3.4.21)……………………………….5 

                             1.2.1.2. Cysteine/Thiol Proteases (E.C. 3.4.22)………...……………8 

                              1.2.1.3. Aspartic Proteases (E.C. 3.4.23)………………………..….. 8 

                     1.2.1.4. Metalloprotease (E.C. 3.4.24)….……………….……………... 8 

                1.2.2. Exopeptidases (Peptidases) (E.C. 3.4.11-19) ....................................... 9 

                           1.2.2.1. Aminopeptidases…………….…………………………….. 10 

                             1.2.2.2. Carboxypeptidases………………………………………… 10 

                1.3. Industrial Applications of Proteases .......................................................... 10 

                1.4. Thermophiles ............................................................................................. 17 

                1.4.1. Thermophilic and Alkaliphilic Microorganisms ................................ 17 

                             1.4.1.1. Thermophilic Bacillus…………………………………….. 18 

                            1.4.1.2. Alkaliphilic Bacillus………………………….…………… 20 

                1.4.2. Thermophilic Enzymes ....................................................................... 22 

                              1.4.2.1. Thermophilic and Thermostable Proteases……………….. 23  

1.4.3. The Applications of Thermophiles in Biotechnology and                   

Industry ............................................................................................ 24 

 

CHAPTER 2. MATERIALS AND METHODS .......................................................... 26 

                2.1. Materials .................................................................................................... 26 

                2.2. Bacterial Strain and Growth Conditions ................................................... 26 

                2.3. Screening of Protease Activity in Thermophilic Bacillus sp. ................... 27 



vii 

 

                2.4. Determination of Enzyme Activity ........................................................... 27 

                2.5. Determination of Protein Concentration ................................................... 29 

                2.6. Preparation of Crude Enzyme Extract ...................................................... 29 

                2.7. Enzyme Purification Procedure ................................................................. 30 

                2.8. Electrophoretic Studies (SDS- PAGE) ..................................................... 30 

                2.9. Characterization Studies ............................................................................ 31 

                2.9.1. Effect of pH on Enzyme Activity and Stability ................................. 31 

                2.9.2. Effect of Temperature on Enzyme Activity and Stability.................. 32 

                2.9.3. Substrate Specificity of Enzyme ........................................................ 32 

                2.9.4. Effect of Metal Ions on Enzyme Activity .......................................... 32 

                2.9.5. Effect of Various Agents on Enzyme Activity .................................. 33 

                             2.9.5.1. Effect of Organic Solvents on Enzyme Activity………….. 33 

                             2.9.5.2. Effect of Surfactants on Enzyme Activity………………… 33 

                2.9.6. Effect of Inhibitors on Enzyme Activity ............................................ 33 

 

CHAPTER 3. RESULTS AND DISCUSSION ........................................................... 35 

                3.1. Screening of Protease Activity in Thermophilic Bacillus sp. ................... 35 

                3.2. Purification of Protease ............................................................................. 36 

                3.3. Electrophoretic Studies (SDS-PAGE) ...................................................... 39 

                3.4. Characterization Studies ............................................................................ 42 

                3.4.1. Effect of pH on Enzyme Activity and Stability ................................. 42 

                3.4.2. Effect of Temperature on Enzyme Activity and Stability.................. 45 

                3.4.3. Substrate Specificity of Enzyme ........................................................ 48 

                3.4.4. Effect of Metal Ions on Enzyme Activity .......................................... 49 

                3.4.5. Effect of Various Agents on Enzyme Activity .................................. 51 

                             3.4.5.1. Effect of Organic Solvents on Enzyme Activity………….. 51 

                             3.4.5.2. Effect of Surfactants on Enzyme Activity………………… 52 

                3.4.6. Effect of Inhibitors on Enzyme Activity ............................................ 53 

 

CHAPTER 4. CONCLUSION ...................................................................................... 56 

 

REFERENCES ............................................................................................................... 58 

 

 



viii 

 

APPENDICES 

APPENDIX A. PREPARATION OF BRADFORD REAGENT, PROTEIN   

STANDARTS AND STANDART CURVE FOR BRADFORD 

ASSAY ................................................................................................. 68 

APPENDIX B. PROTEOLYTIC ACTIVITY DETERMINATION STANDARTS     

AND STANDART CALIBRATION CURVE FOR L-TYROSINE  

ASSAY ................................................................................................. 71 

APPENDIX C. MEDIA, BUFFERS, REAGENTS AND SOLUTIONS ....................... 73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

LIST OF FIGURES 

 

Figure                                                                                            Page 

Figure 1.1. The mechanism of protease hydrolysis ............................................................. 1 

Figure 1.2. The classification of proteases .......................................................................... 4 

Figure 1.3. The schematic representation of the serine protease amino acid residues  

involved in the proteolytic scission. ................................................................ 7 

Figure 1.4. The distribution of enzyme sales .................................................................... 10 

Figure 1.5. Phylogenetic tree based on 16S rRNA gene alignments ................................. 19 

Figure 3.1. Screening of the protease activity ................................................................ 35 

Figure 3.2. The concentration of the protease enzyme fractions after ion exchange  

chromatography ........................................................................................... 37 

Figure 3.3. SDS-PAGE image with silver staining under UV light. .............................. 40 

Figure 3.4. SDS-PAGE image with silver staining........................................................ 40                                                                         

Figure 3.5. SDS-PAGE image with colloidal coomassie staining................................. 40 

Figure 3.6. Effect of pH on protease activity .................................................................. 43 

Figure 3.7. pH stability of protease (at pH 4-7-10) ........................................................ 45 

Figure 3.8. Effect of temperature on protease activity ................................................... 46 

Figure 3.9. Thermal stability of protease ........................................................................ 48 

Figure 3.10. Effect of metal ions on protease activity .................................................... 50 

Figure 3.11. Effect of inhibitors on protease activity ..................................................... 54 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 



x 

 

LIST OF TABLES 

 

Table                                                                                              Page 

Table 1.1. The characteristic features of endopeptidases .................................................... 5 

Table 1.2. Optimized production conditions for alkaline proteases ................................. 7 

Table 1.3. Different applications of some industrally important proteases .................... 11 

Table 1.4. Application of proteases in industry .............................................................. 12 

Table 1.5. Serin proteases (Subtilisin) used in detergents ................................................. 13 

Table 1.6. Commercial bacterial alkaline proteases, sources, applications and their 

industrial suppliers ......................................................................................... 13 

Table 1.7. Description of the Geobacillus genus ............................................................ 20 

Table 1.8. Properties of some alkaline proteases from different microbial sources ....... 21 

Table 1.9. Bioconversion reactions and applications of thermostable enzymes ............ 22 

Table 1.10. Source microorganisms,properties of thermostable proteolytic enzymes ... 22 

Table 1.11. Main advantages of high temperature and thermostable enzymes .............. 22 

Table 2.1. Inhibitors of the endopeptidases ...................................................................... 34 

Table 3.1. Purification of protease from alkaliphilic and thermophilic Bacillus sp. ...... 38 

Table 3.2. Substrate specificity of protease .................................................................... 48 

Table 3.3. Effect of organic solvents on protease activity .............................................. 52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

LIST OF ABBREVIATIONS 

 

APS  Ammonium persulfate 

BSA   Bovine serum albumin 

CBB   Commasie brilliant blue 

DMSO  Dimethyl sulfoxide 

DIFP  Diisopropylmethylfluoro phosphate 

DTT   Dithiothreitol 

EDTA   Ethylenediamine tetra acetic acid 

LB  Luria-Bertani broth 

PAGE   Polyacrylamide gel electrophoresis 

PMSF  Phenylmethylsulphonyl fluoride  

Rpm   Revolutions per minute 

SDS   Sodium dodecyl sulfate 

sp.   Species 

TCA  Trichloroacetic acid 

TEMED  Tetramethylethylenediamine 

TLCK  Tosyl-L-lysine chloromethyl ketone 

UV   Ultraviolet 

μl    Microliter 

ml   Milliliter 

mM   Millimolar 

 

 

 

 

 



1 

 

N
H

H
N

N
H

O

RO

H
N

N

O R

RO

R

H

O protease

H2O
H3N

CO2 N
H

H
N

H3N

O

RO

H
N

N

O R

RO

R

H

O

H3N
CO2O +

 CHAPTER 1  

 

INTRODUCTION 

 

1.1. Proteases (EC 3.4) 

 

 

Figure 1.1. The mechanism of protease hydrolysis 

 

Proteases are the hydrolase enzymes which have small size, compact molecules, 

spherical structures and they catalyze the hydrolysis of the peptide bonds in the primary 

structure of proteins and peptids (Dixon and Webb 1979; Polgar 1989).  They are used to 

cleave the proteins specifically to produce useful peptides in the processes (Amara et al. 

2009). Proteases are present in a wide variety of living organisms and they also show 

different physicological, physicochemical, biological, chemical functions on the earth 

(Hase and Finkelstein 1993). They are the most important enzymes in the industry, 

accounting for 60% of the total enzyme scales in the world (Outtrup et al. 1990; 

Banerjee et al. 1999). Because they are used in the regulation and transportation of 

metabolism, gene expression, enzyme modification, pathogenicity and the processes of 

the industry (Rao et al. 1998). 

 

1.2. Classification of Proteases 

 

The characterization of the proteases is very difficult due to the biochemical 

diversity in their structures. Firstly, they were categorized depending on the molecular 

size, charge or substrate specificity and then, they were started to be categorized based 

on the catalytic-active sites, mechanism of action, and the three-dimensional structure 

(Beynon et al. 1989; Barett 1994; Rao et al. 1998). 

Proteases belong to the hydrolase enzymes in the Nomenclature Committee of 
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the International Union of Biochemistry and Molecular Biology (International Union of 

Biochemistry 1992). According to the committee, proteases have four classes with the 

six families. They are serine I, serine II, cysteine (plants),  cysteine (animals), aspartic 

and metalloproteases (Kumar and Savitri 2008). 

In the literature, you can review the studies about spesific capabilities in the 

hydrolytic mechanism, specificity for a particular site,  maximum activity under particular 

conditions (temperature, salt concentration, endo/exopeptidase ratio, activity in organic 

solvents) (García-Carreńo 1992).  

 Proteases are divided into three groups depends on their origin. They are animal-origin 

proteases, plant-origin proteases and microbial-origin proteases. Recently, the 

reserchers are interested in the microbial-origin proteases in the genus Bacillus because 

of the fact that they are of vital importance in the industry (Priest 1977). 

o Plant proteases: The places for cultivation and the climatic circumstances 

affect the growing of the plant and production of the enzyme. The 

disadvantage of the production of the enzyme is losing time. For example; 

papaya, pineapple, papain, bromelain, keratinases, ficin (Rao et al. 1998). 

o Animal Proteases: The political and agricultural strategies affect the obtaining 

the animals and production of the enzyme from them. For example; 

pancreatic trypsin, chymotrypsin, pepsin, and rennins (Rao et al. 1998). 

o Microbial Proteases: The use of microbial proteases are generally common 

(nearly 40% of the total enzyme sales)  in comparison to plant, animal and 

fungal proteases, due to having improved biological, biochemical and 

molecular diversity in the nature (Godfrey and West 1996; Rao et al. 1998). 

For examples; Bacteria, fungi, viruses. Microbial proteases are of the vital 

importance because of the biochemical diversity, the rapid growth of the 

microorganisms and the limited space required for cell cultivation. Bacterial 

neutral proteases (pH 5-8, low thermotolerance, includes metallopreotease and 

serine protease) and bacterial alkaline proteases (pH 10, high thermotolerance, 

used in detergent technology) are the best known examples of the microbial 

proteases (Rao et al. 1998). The microbial preteases play a crucial role in not 

only cellular metabolic processes, but also industrial processes (Mahendran et 

al. 2010). In the literature, you can examine the microbial proteases 

(especially serine and metalloprotease) isolated by Bacillus subtilis, B. 

amyloliquefaciens, Pseudomonas sp., Lysobacter enzymogenes and 
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Escherichia coli (Fujishige et al. 1992). It is important to identify and 

characterize the microbial proteases with the sensitive experimental designs 

in order to understand their role and improve their applications in the 

industry (Lantz and Ciborowski 1994).  

 Proteases are divided into three groups depends on the secretion of the enzyme from 

the microorganism. They are intracellular-protease (in the cell), periplasmic (with 

the cell wall) and extracellular-protease (in the media) (Kohlmann et al. 1991; El-

Safey et al. 2004; do Nascimento and Martins 2004). Intracellular proteases are of 

vital importance in the cellular, metabolic and regulatory processes. Extracellular 

proteases are of vital importance in the hydrolysis of proteins in cell-free 

environments, obtaining hydrolytic products in the commercial processes (Kalisz 

1988; Kumar and Takagi 1999; Gupta and Beg 2002). Recently, not only the 

extracellular protease enzyme but also the intracellular protease enzyme are 

investigated due to the important roles in metabolic and regulatory processes in 

the industries (Zeigler 2001). 

 Proteases are divided into four groups depends on the optimum pH. They are acidic  

protease, neutral protease, alkaline protease and high-alkaline protease (Guangrong et 

al. 2006). Acidic proteases are found in animal cells, moulds, yeasts and rarely 

bacteria. A few of them include aspartic acid residue. The aromatic and bulky side 

chains at the cleaving bonds reveal the specificity of the acidic proteases. Neutral 

proteases contain the cystein proteases (Papain, bromelain, ficin) isolated from 

botanical origin and the metalloproteases (Sumantha et al. 2006). The production of 

bacterial neutral proteases is commonly occured at neutral (pH 5-8) conditions. They 

have low thermo tolerance, so they control their activity and stability in the food 

hydrolysis (Rao et al. 1998; Siddalingeshwara et al. 2010). Alkaline proteases are 

produced at alkaline conditions and also they have wide application spectra because 

of having their catalytic nature (Asokan et al. 2010). 

 Proteases are divided into different groups depends on the substrate specificity. They 

are collagenases, keratinases, elastases, etc (Sumantha et al. 2006). 

 According to Enzyme Commission (EC) classification, proteases are divided into 

two groups depends on the site of action and the cleavage sites within the target 

molecule in the catalytic mechanism. They are exopeptidases or endopeptidases 

(García-Carreńo 1991; García-Carreńo 1993; Liao and McCallus 1998). 



4 

 

 

Figure 1.2. The classification of proteases 

(Source: Kumar and Savitri 2008) 

 

1.2.1. Endopeptidases (Proteinases) (E.C. 3.4.21-99) 

 

Endopeptidases are the enzymes which cleave and hydrolyze the internal peptide 

bonds. They are divided into three groups based on the catalytic mechanism and the 

functional groups at the active site of the proteases (Hase and Finkelstein 1993; Rao et 

al. 1998). 

If the enzyme cleaves the peptide bond proximal to the amino or carboxy 

terminus of the substrate, they are classified as exopeptidases. If the enzyme cleave 

peptide bonds distant from the termini of a substrate, they are classified as 

endopeptidases. Based on the functional group present at the active site and their 

catalytic mechanism, proteases are then categorized into four prosthetic groups; serine 

proteases, aspartic proteases, cysteine/thiol proteases, or metalloproteases. Four classes 

of endopeptidases have been identified in living organisms and three of the four classes 

of endopeptidases have been isolated and purified in bacteria; serine, cysteine, and 

metalloproteases (Liao and McCallus 1998).  
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Table 1.1. The characteristic features of endopeptidases 

(Source: Sumantha et al. 2006) 

 

1.2.1.1. Serine Proteases (E.C. 3.4.21) 

 

Serine proteases are commercially important, the most studied and best understood 

class in the protease groups. They have a essential serine residue in their active center 

(García-Carreńo 1993). The serine residue binds with substrates, activators or inhibitors in 

their catalytic mechanisms. Exopeptidases, endopeptidases, oligopeptidases, and omega 

peptidases includes serine proteases.  

The serine proteases are divided into twenty families and six clans according to 

the similarities and differences in their three-dimensional structures, amino acid 

sequences and active site configurations (Barett 1994; Zeigler 2001). Subtilisin family 

(serin alkaline proteases and extracellular alkaline proteases from Bacillus species) and 

trypsin family (cymotrypsin, tripsin, mammalian elastases, several bacterial proteases) are 

the best known subgroups in the serin proteases. Subtilisin family includes –SH group, 

thermitase and proteinase K in their mechanism (Zeigler 2001).  

In the literature, the microorganisms producing thermostable alkaline proteases are 

Bacillus species (Bacillus licheniformis, Bacillus thermoruber, Bacillus 

stearothermophilus, Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus circulans, 
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Bacillus firmus, Bacillus intermedius, Bacillus lentus, Bacillus proteolyticus, Bacillus 

pumilus, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis) (Kumar and Takagi 

1999). 

The stability of the alkaline proteases is provided via the immobilization 

methods in a good way.  The methods are based on the ground of the binding between 

enzymes and carriers by carrier binding (physical adsorpsion, ionic bonding, covalent 

bonding), cross-linking with bifunctional reagents, entrapping into gels / beads / fibres 

(lattice-matrix type, microencapsule type). Thanks to the immobilization methods, the 

enzymes are re-used and stabilized easily for a long time in the applications in the 

industry (Anwar and Saleemuddin 1998). 

The production of serine proteases is commonly occured at neutral (pH 7) and 

alkaline (pH 11) conditions. They have broad substrate specificities. The molecular mass 

of serin proteases generally changes from 18 kDa to 35 kDa and the isoelectric point of 

them changes from pH 4 to pH 6. Bacillus species are the best known producer of serine 

protease in comparison with the other microorganisms (Rao et al.1998). Also, they are 

inhibited by PMSF (phenylmethylsulfonyl fluoride), DIFP (diisopropylfluoro phosphate), 

3,4-dichloroisocoumarin (3,4-DCI), L-3-carboxytrans 2,3-epoxypropyl-leucylamido (4-

guanidine) butane (E.64), tosyl-L-lysine chloromethyl ketone (TLCK) and they are 

active at alkaline pH (9 – 11) (Priest 1989; Kamal 1993; Rao et al. 1998). 

In some of the serin proteases, the peptide bonds are attacked by the hydroxyl 

group of a serine residue which carries a proton donor/general based on the serin 

protease enzyme. On the other hand, it is called nucleophilic attact in the catalytic 

mechanism. The proton donor should be a histidine residue which includes imidazolium 

ring. But, an aspartate or an histidine residue is required because of the catalytic triad.  

In some of the serin proteases, the peptide bonds are attacked by the catalytic 

dyad of a serine residue which carries a proton donor/general base on the serin protease 

enzyme. The proton donor should be a lysine residue and there is no need another 

catalytic residue in the catalytic mechanism (Supuran et al. 2002). 
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Figure 1.3. The schematic representation of the serine protease amino acid residues 

involved in the proteolytic scission. (Source: Supuran et al. 2002) 
A: Catalytic triad (chymotrypsin numbering)  

B: Catalytic dyad (a lysine residue activates the hydroxyl group of serine residue essential for 

catalysis) 

 

Table 1.2. Optimized production conditions for alkaline proteases 

(Source: Gupta and Beg 2002) 
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1.2.1.2. Cysteine/Thiol Proteases (E.C. 3.4.22) 

 

Cysteine proteases are produced by prokaryotes and eukaryotes. The cystein 

proteases have cysteine (SH-) and histidin groups in their active sites (Garcia-Carreno 

1993). They are divided into twenty families depends on the order differences between 

cysteine and histidin residues (Barett 1994). On the other hand, they are categorized into 

four groups. They are papain-like, trypsin-like, glutamic acid-like and others. The 

production of cystein proteases is commonly occured at neutral conditions. The molecular 

mass of serin proteases generally changes from 32 kDa to 50 kDa and the isoelectric point 

of them changes from pH 4.9 to pH 8.4 (Rao et al. 1998). Also, they are inhibited by thiol 

reagents (heavy metals, alkylating-oxidizing agents), sulphydryl reagents, (p-

chloromercuribenzoate and iodoacetamide)  (Kamal 1993; Zeigler 2001).  

The peptide bonds are attacked by the –SH group of a cysteine residue which 

carries a nucleophile and a proton donor/general base on the serin protease enzyme. On 

the other hand,  it is called nucleophilic attact in the catalytic mechanism.  The proton 

donor should be a His residue which includes imidazolium ring (Supuran et al. 2002). 

 

1.2.1.3. Aspartic Proteases (Acidic Proteases) (E.C. 3.4.23) 

 

            Aspartic proteases have an aspartic acid residue in the active sites (Garcia-Carreno 

1993). The aspartic proteases are divided into three families. They are pepsin, retropepsin 

and enzymes from pararetroviruses. The production of aspartic proteases is commonly 

occured at acidic conditions owing to the fact that the aspartic proteases show maximum 

activity at acidic pH. The molecular mass of serin proteases generally changes from 30 

kDa to 45 kDa and the isoelectric point of them changes from pH 3 to pH 4.5. Also, they 

are inhibited by pepstatin, diazoacetyl norleucine methyl ester (DAN), and 1,2-epoxyp-

nitrophenoxy propane (EPNP) (Rao et al. 1998; Zeigler 2001).  

 

1.2.1.4. Metalloproteases (E.C. 3.4.24) 

 

Metalloproteases are the enzymes which cleave the peptide bonds thanks to the 

nucleophilic attact of a water molecule which is coordinated to a divalent metal ion 
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(catalytic zinc, manganese, cobalt, nickel or copper) or bridged to a dimetallic center. 

The metal ion is complexed by three conserved amino acid residues that can be glutamic 

acid (Glu), aspartic acid (Asp), histidin (His) or lysin (Lys) in their active sites (Hase and 

Finkelstein 1993; Supuran et al. 2002; Mansfeld 2007). 

The properties of catalytic and structural metal-binding sites are defined by the 

x-ray crystallographic analyses of the metalloproteases. The most studied                                   

metalloprotease, zinc-containing metalloproteases have a catalytic zinc atom 

(coordinated to three amino acid residues) and an active water molecule in their cristal 

structures. Also, the residues (His, Glu, Asp, Cys) coordinates the catalytic zinc atom, 

the tridentate active zinc site occures and the coordination sphere is completed by the 

activated water (Vallee and Auld 1990). 

The metalloproteases are divided into thirty families and the families are 

categorized into fourteen different clans according to the amino acid sequences and the 

relation between the aminoacids and the metal binding sites. Clan MA, MB, MD, ME, 

MJ, MK, MM, MO and MP include only one divalent cation and clan MF, MG, MH, 

MN and MQ include two divalent cations acted co-catalytically on the substrate 

(Mansfeld 2007). The clan MA has the HEXXH-E sequence (for exp: thermolysin) and 

the clan MB has the HEXXH-H sequence. 

On the other hand, the metalloproteases are divided into four groups according 

to the catalitic action definitely. They are neutral, alkaline, Myxobacter I and 

Myxobacter II.  The production of metalloproteases is commonly occured at neutral 

conditions (Rao et al. 1998). The pH optima of metalloproteases is commonly in the range 

of 5-9 (Zeigler 2001). Also, the metalloproteases are inhibited by chelating agents (for 

example: EDTA, 1,10-phenantroline) (Matsubara and Feder 1971; Kamal 1993). 

 

1.2.2. Exopeptidases (Peptidases)  (E.C. 3.4.11-19) 

 

Exopeptidases are the enzymes which cleave and hydrolize the external peptide 

bonds in the terminal amino end or carboxylic end of the substrate (Garcia-Carreno 1993). 

They are divided into two subgroups based on the cleavage sites. 
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1.2.2.1. Aminopeptidases 

 

           Aminopeptidases are the enzymes that hydrolize and split off the N-terminal 

residues (Kamal 1993). They are generally intracellular enzymes. 

 

1.2.2.2. Carboxypeptidases  

 

Carboxypeptidases are the enzymes that hydrolize and split off the C-terminal 

residues (Kamal 1993). Carboxypeptidases are divided into three groups due to having 

different amino acid residues at the active site of the proteases. They are serine 

carboxypeptidases, metallocarboxypeptidases, and cysteine carboxypeptidases.  

 

1.3. Industrial Applications of Proteases 

 

75% of the commercial enzymes are hydrolase enzymes. The protease enzymes 

from the hydrolatic enzymes are the most important groups in the industrial enzymes, 

accounting for nearly 60% of the total enzymes in the world (Figure 1.5) (Rao et al. 

1998) 

 

Figure 1.4. The distribution of enzyme sales 

(Source: Rao et al. 1998) 
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Proteases are the commercial enzymes, because of this reason, they are of vital 

importance in the biochemical and biotechnological applications in the industry and also 

they are commonly isolated from the genus Bacillus (including Bacillus spp., Bacillus 

subtilis, Bacillus firmus, Bacillus stearothermophilus, Bacillus kaustophilus, Bacillus 

cereus, Bacillus brevis).  

Proteases are used in the modification of proteins, digestive supplements, protein 

processing, peptide synthesis, determining the structure of proteins and polypeptides 

(Kalisz 1988; Bhosale, Rao et al. 1995; Anwar and Saleemuddin 1998; Rao et al. 1998; 

USP Enzyme Workshop 2009). 

 

Table 1.3. Different applications of some industrally important proteases 

(Source: Anwar and Saleemuddin 1998) 
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Table 1.4. Application of proteases in industry 

(Source: Kumar and Savitri 2008) 

 

 

 Detergent Industry 

The serine proteases (subtilisins) from Bacillus subtilis and Bacillus lichneformis 

are generally used in the laundry detergent technology and also they are used nearly 25% 

of the total worldwide sales of enzymes in the detergent industry (Fogarty et al. 1974). In 

the detergent industry, the alkaline proteases should be active and stable at alkaline pH and 

high temperatures in the presence of chelating and oxidizing agents. The cleaning 

mechanism is based on forming complex structure with detergents and the hydrolysis of 

the proteins on the proteinaceous stains due to the food (milk, egg, meat, fish), keratin, 

blood, body secretions in the laundry detergents (Anwar and Saleemuddin 1998; Beg 

and Gupta 2003). For this purpose, the protease enzymes are the most suitable enzymes 

not only in the household laundering and industrial-institutional cleaning (cleaning 

ultrafiltration membranes, laundry detergent, dishwashing detergents, cleaning hard 

surface), but also in the reagents (cleaning contact lens, presoak formulations) because 

of exhibiting high performance when the pI of the enzyme is nearly similar the pH of 

the detergent (Rao et al. 1998). 

 

 

 

 

 

 

 

 

 

 



13 

 

Table 1.5. Serin proteases (Subtilisin) used in detergents 

(Source: Maurer 2004) 

 

 

 

Table 1.6. Commercial bacterial alkaline proteases, sources, applications and their 

industrial suppliers. (Source: Gupta and Beg 2002) 

 

 

 

The enzyme should be stable and active in the presence of detergent ingredients 

(surfactants, builders, bleaching agents, bleach activators, fillers, fabric softeners, 
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detergent composition, formulation aids) and the different conditions (pH of detergent, 

ionic strength, wash temperature, mechanical handling) (Anwar and Saleemuddin 2000; 

Beg and Gupta 2003). 

The thermostable proteases show high activity and stability in the high 

temperatures, so using them in the detergents is of vital importance because of having 

high yield and low cost. They also used in the dishwashing and the laundry detergents 

in the hospitals, due to the fact that the sterilization at high temperatures is too 

important to overcome the microbial contaminations (Zeigler 2001).  

 

 Food Industry 

           Proteases are very significant in the food technology because of the fact that they 

are used as a catalyst and they try to convert the untreated materials to the developed 

food materials.  The importance of substrate specificity, kinetic parameters, catalitic 

activity should be taken into the consideration while doing the experiments under the 

different conditions (García-Carreńo 1991). 

           The researchers’ aim is to save time, enegy, money and to reach high yield, high 

catalytic activiy, high substrate specificty, large amount of product. Because of this 

reason, they tried to find new approaches (fermantation processes, protein engineering, 

synthetic enzymes, three dimensional structures) in food technology (Wasserman 1990). 

For example; dairy industry, baking, cheese production, gluten development, whipping, 

preparation of soya hydrolysates, aspartame synthesis, meat tenderization, chill-haze 

prevention, brewing, dietetic, health products (Rao et al. 1998). 

           Further, proteases play a prominent role in meat tenderization, especially of beef. 

Thermophilic alkaline proteases are used in the meat tenderization by hydrolyzing the 

tissue proteins. Firstly, the enzyme was given into the meat by injecting. Nowadays, the 

enzyme is given into the circulatory system of the animal (Kumar and Takagi 1999). 

Hydrolysis of the proteins is required in the nutritions and also it is used in 

different situations such as food formulations, therapeutic dietary foods and the addition 

to the fruit juices and soft drinks (Neklyudov et al. 2000; Gupta and Beg 2002). 

Proteases are useful addition matters in the food industry because of having 

improved digestibility, solubility, flavor & palatability, processing (viscosity reduction, 

improved drying), modified functional properties (emulsification, fat-binding, water-

binding, foaming properties, gel strength, whipping properties) (USP Enzyme Workshop 

2009). 
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o Dairy Industry: The improvements are freezing storage of raw-pasteurized 

milk for a long time, staying at higher temperatures in the pasteurization and 

obtaining high quality of milk in the dairy industry (Meer et al. 1991; Meer, 

Wodburn et al. 1993; Stadhouders 1992; Baker and Griffiths, 1993). The 

proteases are used as milk-clotting agents for cheese production in the dairy 

industry (Sumantha et al. 2006).  

o Baking industry: The neutral proteases from Bacillus spesies are generally 

used in baking industry. The soft dough in the biscuit and crackers are taken 

into consideration not to be confronted with a problem about bending and 

wrinkling in the oven (Bryce 1966). Thanks to using the protease enzyme, the 

mixing time is reduced and the loaf volumes are increased (Rao et al. 1998). 

o Brewing industry: Proteases from the Bacillus species are generally used in 

brewing industry in order to cleave the peptide bonds in the proteins. If you 

don’t want to be confronted with a problem about turbidity in the beverages, 

you should add the protease into the cold English and German beer.  (Fogarty 

et al. 1974) 

o Animal protein processing includes animal feed additives, improving 

digestibility, reducing allergenicity, improving flavor and meat tenderization 

in the food industry. In the meat tenderization, if the protease enzyme should 

be active and have thermal stability during the cooking and storage 

processes, good tenderization and developed taste of the meat will be 

obtained in these applications (Wilson et al. 1992; Zeigler 2001). In the fish 

industry, proteases from the Bacillus species are generally used in the fish 

industry. The aim is to obtain fishmeal and enhanced oil recovery from the 

uneatable fish (Lovern 1955). 

 

 Leather Industry 

Initial soaking (neutral proteases), de-hairing of animal hair, hides and skin 

(alkaline proteases), bating (acidic proteases), tanning and removing the waste materials 

(animal glue) are the stages of leather preparation. The animal hair, hides and skin include 

the materials with protein. The proteases are used instead of hazardous chemicals (sodium 

sulfide) to prevent the pollution problems, obtain high quality, easy control, speed up 

dehairing and reduce the waste materials in the leather industry. The most improtant 

advantage is being eco-friendly (Grimm 1958; Rao et al. 1998; Gupta and Beg 2002) The 
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unwanted proteinaceous pigments are removed by using protease enzyme and the clean 

skin-hide are obtained. The alkaline conditions should be choosen because it is easy to 

remove the hair for the alkali protease enzyme (Varela et al. 1997; Gupta and Beg 2002). 

 

 Silver Recovery 

The photographic films and the X-ray films which are used before include silver 

(1.5-2.0%) in their gelatin layers. Because of this reason, alkaline proteases are used in 

order to hydrolise the gelatin layers on the films and release of the silver materials in the 

industrial applications (Kumar and Takagi 1999). There are lots of advantages in 

recovering silver from photographic films by digestion of gelatin emulsion coating. The 

pollution of silver is prevented and the silver is used in another purposes after 

recovering in the environment. Thus, recovering silver is very important in the silver 

industry (Gupta and Beg 2002).  

 

 Medical and Pharmaceutical Industry 

Proteases are used in the medical and pharmaceutical industry because of having 

broad diversity and specificity. The usage of this enzyme is common in developing 

therapeutic agents, preparation of medicines, medical diagnosis, biopharmaceutical 

products (contact-lens enzyme cleaners, enzymatic debriders) and cosmetics (skin care 

ointments) (Anwar and Saleemuddin 2000). In the treatment of burns, wounds, 

carbuncles, furuncles and abscesses, the subtilisin (or clostridial collagenase) is chosen 

to be used with the advanced antibiotics (Rao et al. 1998; Gupta and Beg 2002). 

 

 Waste Treatment (Industrial and household) 

Alkaline proteases are used to solubilize and hydrolyze the proteins in the 

wastes. The wastes include proteinaceous materials which come from not only the 

industries but also the house (Kumar and Takagi 1999). The aim is to obtain 

bioconversion of the proteinaceous waste into the useful biomass and to decrease the 

biological oxygen demand of aquatic systems in the biotechnological hydrolising and 

bioremediation prosesses (deproteinization of shrimp and crabshell waste) (Yang et al.  

2000; Gupta et al. 2002). Conversion the waste materials which include fibrous proteins 

(horn, feather, wool, nail, hair)  into the useful biomass is of vital importance in the waste 

treatment industry (Venugopal et al. 1989).  
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1.4. Thermophiles 

 

Microorganisms are categorized into three groups depends on the optimal 

growth temperatures. They are psychrophiles (below 20°C), mesophiles (moderate 

temperatures) and thermophiles (high temperatures, above 55°C) (Brock 1986; Turner 

et al. 2007).  

           Thermophiles are adapted to live at high temperatures. The enzymes isolated from 

thermophiles are used in most of the commercial applications due to their thermostability 

and thermoactivity. Thus, the isolation, identification and characterization of the 

thermophiles from natural sources are of vital significance in terms of discovering new 

commercial enzymes (Yavuz et al. 2004). 

           All of the microorganisms have adaptation mechanism to the environment which 

they live. Thus, thermophiles are used to live at high temperatures and need this 

condition to survive. They are isolated from terrestrial, subterranean and submarines. 

Thermophiles include lots of proteins and produce lots of enzymes, so they have 

resistance to denaturation and proteolysis (Kumar and Nussinov 2001).  

           Thermophiles are divided into three groups depends on their minimal and maximal 

growth temperatures. They are moderate thermophiles  (35 - 70 ºC), extreme 

thermophiles (55 - 85 ºC) and hyperthermophiles (75 - 113 ºC) (Baker et al. 2001). 

           Thermophiles are also classified into three different groups based on the growth and 

not growth temperatures. They are obligate thermophiles (optimum growth temperatures 

between 65-75 ºC, do not grow below 40 ºC), facultative thermophiles (optimum growth 

temperatures between 50-60 ºC and around 37 ºC), thermotolerant thermophiles 

(optimum growth temperatures between 45-50 ºC and 30 ºC) (Hughes and Williams 1977). 

 

1.4.1. Thermophilic and Alkaliphilic Microorganisms 

 

Thermophilic and alkaliphilic bacillus produce thermophilic protease enzyme 

which has resistance to high temperature, pH, organic solvents, detergents, oxidizing 

and denaturing agents (Johnvesly and Naik 2001; Hawumba 2002). 
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1.4.1.1. Thermophilic Bacillus 

 

Bacteria of the genus Bacillus is aerobic, facultatively anaerobic, endospore-

forming, Gram-positive and rod-shaped. The representatives of this genus are widely 

distributed in soil and water (deep layers in the ocean, arctic regions, etc.). The ability 

of certain strains to tolerate high or low temperatures and extreme pHs and to secrete 

high levels of proteins has made bacilli important as sources of commercial enzymes 

(Norris et al. 1981). Strains of Bacillus are used for the production of enzymes, 

antibiotics, fine biochemicals and insecticides (Harwood 1989). Bacillus species 

produce several extracellular proteases. For example; Bacillus cereus, Bacillus 

sterothermophilus, Bacillus pumilus, Bacillus licheniformis, Bacillus mojavensis, 

Bacillus megaterium and Bacillus subtilis (Mahmoud et al.; Ammar et al. 1991; 

Sookkheo et al. 2000; Beg and Gupta 2003; Banik and Prakash 2004; Gerze et al. 2005; 

Soares et al. 2005). 

The genus Bacillus is divided into different groups based on the different 

conditions in the environments. They are temperature (thermophilic and psychrophilic 

bacteria), pH (acidophilic and alkalophilic bacteria) and carbon sources (freshwater and 

halophilic bacteria) (Nazina et al. 2001). 

The genus Bacillus species are categorized into seven phylogenetic groups that 

are Alicyclobacillus, Paenibacillus, Brevibacillus, Aneurinibacillus, Virgibacillus 

Salibacillus and Gracilibacillus (Wisotzkey et al. 1992; Ash et al. 1993; Heyndrickx et 

al. 1997; Wainø et al. 1999; Sung et al. 2002). 

The thermophilic Bacillus species are divided into different groups depends on 

the temperature range (45-70°C) in their growing conditions. They are genera Bacillus, 

Alicyclobacillus, Brevibacillus, Aneurinibacillus, Sulfobacillus, Thermoactinomyces and 

Thermobacillus (Sneath 1986; Wisotzkey et al. 1992; Dufresne et al. 1996; Heyndrickx 

et al. 1997; Touzel et al. 2000, Nazina et al. 2001). 

The groups in the termophilic Bacillus species are transferred to the new genus 

Geobacillus. The Geobacillus are isolated from the geothermal areas, oilfield, shallow 

marine vents-hot springs, deepsea hydrothermal vents, artificial hot environments (hot 

water pipelines, heat exchangers, waste treatment plants, burning coal refuse piles and 

bioremediation biopiles (McMullan et al. 2004). 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15917609&query_hl=2
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Figure 1.5. Phylogenetic tree based on 16S rRNA gene alignments 

(Source: Zeigler et al. 2001) 

 

The genus Geobacillus is categorized into five groups. They are Geobacillus 

subterraneus, Geobacillus uzenensis, Geobacillus caldoxylosilyticus, Geobacillus 

toebii. The Geobacillus species are phenotypically and phylogenetically grups of 

thermophilic bacillus due to the similarities of 16S rRNA sequence (98.5-99.2%) 

Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, 

Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans 

are transferred to Geobacillus stearothermophilus comb. nov., Geobacillus 

thermoleovorans comb. nov., Geobacillus thermocatenulatus comb. nov., Geobacillus 

kaustophilus comb. nov., Geobacillus thermoglucosidasius comb. nov. and Geobacillus 

thermodenitrificans comb. nov. in the new genus Geobacillus. Most of the thermophilic 

species grow at temperatures above 55 °C. On the other hand, Geobacillus species are 

the important source of thermophilic enzymes in the biotechnological processes  

(Nazina et al. 2001; Sung 2002; McMullan et al. 2004). 
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Table 1.7. Description of the Geobacillus genus 

(Source: Zeigler 2001; Nazina et al. 2001). 

 

 

 

1.4.1.2. Alkaliphilic Bacillus 

 

Alkaliphilic microorganisms show higher activity in the alkaline environments 

(for examples: soda soils, desert soils, forest soils, soda lakes, deserts).  

The alkaliphilic microorganisms are divided into two groups depends on the 

range of the optimum pH. They are alkalophiles and alkalotolerants. The 

alkalotolerants show activity above pH 10, maximum activity nearly pH 7 (Krulwich 

1986). The alkalophiles show activity above pH 10, maximum activity pH 9 and 

minimum activity belove pH 7. The extreme alkalophiles are subdivided into two 

groups. They are facultative alkalophiles and obligate alkalophiles. The facultative 

alkalophiles grow in not only alkali conditions (pH 10 or above), but also neutral 

conditions (nearly pH 7). The obligate alkalophiles grow in the neutral conditions 

(Krulwich 1989). 

Alkaline proteases are divided into three goups. They are bacterial-origin fungal-

origin and insect-origin. The alkaline protease by bacterial-origin organism is isolated 

from alkalophiles, which grow at high pH (Anwar and Saleemuddin 1997). 
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When the enzimatic and physicochemical properties are compared in genus 

Bacillus strains, it is understood that they are distinct from eachother. The genus 

Bacillus and the alkaliphilic Bacillus spp. are prolific producers of extracellular 

proteolytic enzymes and they are the best known source of alkaline proteases and the 

secretion of these enzymes are used in vaarious industrial applications (Horlkoshi 1971; 

Kobayashi et al. 1996; Kumar and Takagi 1999). 

Alkaline proteases are of vital significance due to being active and stable at 

higher pH and temperature values (Ward 1993). They also withstand to harsh 

conditions. That’s why, they are chosen to be used in the industrial applications.  

With a view to develop an economically feasible technology, research efforts are 

mainly focused on the improvement in the yields of alkaline proteases and the 

optimization of the fermentation medium and production conditions (Kumar and Takagi 

1999). 

 

Table 1.8. Properties of some alkaline proteases from different microbial sources 

(Source: Gupta and Beg 2002) 
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1.4.2. Thermophilic Enzymes 

 

Thermophiles produce the thermophilic enzyme based on the fermentation of the 

microorganisms or the cloning of the genes by using the recombinant DNA technology. 

Thermophilic and thermostable enzymes are used in the industry because of thermo-

activiy and thermo-stability at higher temperatures, chemical and pH stability, reducing 

the risk of microbial contamination, viscosity. These enzymes are required in the 

different industrial applications such as detergents, food, paper industry and wastes etc 

(Haki and Rakshit 2003).  

All of the thermophiles grow above 55 ºC and also they are divided into three 

subgroups depends on the optimal growth temperatures. They are moderate 

thermophiles (above 65 ºC), extreme thermophiles (above 75 ºC) and 

hyperthermophiles (above 90 ºC) (Bouzas et al. 2006). 

Lipases, proteases, esterases, xylanases and amylases are the most studied 

thermophilic enzymes. 

 

Table 1.9. Bioconversion reactions and applications of thermostable enzymes 

(Source: Haki and Rakshit 2003) 

 

 

 

The thermostability of the enzyme was affected by the structures of the protein, 

but not affected by the purification and crystallization assays. There were two 

assumptions of the structures in thermostability of the enzyme. 

 The enzyme has coiled molecules, so it doesn’t lose activity by heating. 
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 The enzyme has a rigid structure, so it doesn’t lose activity by temperature, organic 

solvents or etc. (Cambell 1955).  

The studies of the thermophilic enzymes in the literature, the concentration 

methods (alcohol-acetone-ammonium sulphate precipitations, ultrafiltration, 

lyophilization), the purification methods (ion-exchange, gel-filtration, size-exclusion, 

affinity, hydrophobic interaction, dye ligand chromatography) and the characterization 

(temperature, pH, molecular, weight, isoelectric point, effects of inhibitors, various 

agents, metal ions, kinetic parameters, Km-Vmax) are investigated. 

 

1.4.2.1. Thermophilic and Thermostable Proteases 

 

Thermophilic and thermostable proteases are used in most applications due to the 

fact that they show high activity and stability at high temperatures (Zeigler 2001). 

Reaching higher temperatures, faster reaction rates, increasing products in the solubility, 

and reducing risks of microbial contamination are the advantages of the thermostable 

proteases (do Nascimento 2004). That’s why, the thermophilic proteases have 

increasingly usages in a wide range of commercial applications of the industry 

(Wasserman 1984; Cowan et al. 1985; Gusek et al. 1988; Sookkheo et al. 2000).  

In the biological diversity of the Bacillus species. There is no exact evidence that 

the thermophilic and thermostable proteases are produced not only the the thermophilic 

microorganisms but also the other species (Rahman 1994; Kaur et al. 2001). The best 

known sources of thermostable proteases are the thermophilic bacteria as Bacillus 

thermoproteolyticus, Thermus aquaticus spp., Bacillus stearothermophilus in thermal 

environments.  
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Table 1.10. Source microorganisms and properties of thermostable proteolytic enzymes 

(Source: Haki and Rakshit 2003) 

 

 

 

1.4.3. The Applications of Thermophiles in Biotechnology and Industry 

 

           The aim of the termophiles is to catalyze the chemical, biological and 

biochemical reactions at higher temperatures. Thanks to the thermophiles, high 

thermostability, thermoactivity and high resistance are obtained against to the chemical 

denaturants (organic solvents, surfactants, oxidizing agents). Higher reaction rates and 

reducing the risk of contamination are the advantages in the prosesses of the industry 

(Kristjansson 1989). 
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Table 1.11. Main advantages of high temperature and thermostable enzymes  

(Source: Kristjansson 1989; Niehaus et al.1999; Yavuz et al. 2004) 
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

2.1. Materials  

 

Casein, Folin & Ciocalteu’s Phenol reagent, L-tyrosine and Coomassie Brilliant 

Blue G-250 were purchased from Merck. TCA was purchased from Sigma Aldrich.  

Cellulose Ion Exchanger, DEAE-Cellulose resin was purchased from Servacel and the 

other chemicals for electrophoresis and characterization studies were purchased from 

Sigma Chem. Co. 

All of the analyses were carried out triplicate and mean values were reported. 

The preparation of the buffers, reagents, solutions, the procedure of the assays and the 

standart curves are given in Appendix A, Appendix B and Appendix C. 

 

2.2. Bacterial Strain and Growth Conditions  

 

            In this study, the bacterial strain (alkaliphilic and thermophilic Geobacillus sp.) 

was isolated from an uncontrolled thermal leak of Balçova Geothermal Region in Ġzmir 

(Yavuz et al. 2004). In biochemistry research laboratory, the optimum growth 

conditions of these thermophilic bacterial strains and their bacterial growth curves were 

determined. The bacterial strain number-53 which has been stored at -86 °C for nearly 6 

years was used in this study. 

 Two different media was used in order to compare the secretion of the proteins 

in the bacterial strain. 

 Alkaliphilic and thermophilic Geobacillus was cultivated overnight in 250 ml 

Erlenmayer flask containing 200 ml LB media, at 55 ºC and 200 rpm. Luria-Bertani 

broth medium contains 10.0 g/L tryptone, 5.0 g/L yeast extract and 5.0 g/L NaCl per 

liter with a final pH of 7.0. The medium was sterilised by autoclaving at 121°C for 

15 minutes under high pressure. 
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 Alkaliphilic and thermophilic Geobacillus was cultivated overnight in 250 ml 

Erlenmayer flask containing 200 ml complex media, at 55 ºC and 200 rpm. 

Complex medium contains 10.0 g/L glucose, 5.0 g/L yeast, 2.5 g/L peptone, 2.5 g/L 

casein, 0.3 g/L MgSO4, 0.02 g/L FeSO4, 0.2 g/L ZnSO4, 1.0 g/L CaSO4, 1.0 g/L 

KH2PO4, 1.0 g/L K2HPO4 per liter with a final pH of 7.0. The medium was 

autoclaved for sterilization for 15 minutes at 121 °C under high pressure. 

 

2.3. Screening of Protease Activity in Thermophilic Bacillus sp.  

 

There are two methods to exhibite the protease activity in the bacterial strains. 

 Firstly, the media which consists of 8 g/L nutrient broth, 10 g/L skim milk and 15 

g/L agar agar, was prepared. The skim milk was dissolved in deionized water by 

putting a magnet into the bottle to prevent the precipitation and autoclaved at 110 °C 

for 5 minutes (two times) and added to the medium. Nutrient broth and agar agar 

were dissolved in deionized water by putting a magnet into the bottle to prevent the 

precipitation and they sterilised by autoclaving at 121 °C for 15 minutes. When the 

bottles’ temperatures became nearly 50-55 °C, the skim milk was poured into the 

nutrient-agar agar. The mixture mixed without heating. The prapared medium was 

poured into the plates quickly and the plates were put into the refrigerator at +4 °C 

(Priest et al. 1989).  

The bacterial culture number-53 stored at -86 °C was inoculated onto the plate 

and incubated for 24 hours - 3 days at 55 ºC. The clear zones around colonies 

indicated the protease activity. 

 Secondly,  the bacterial culture was cultivated overnight in LB media or complex 

media, at 55 ºC and 200 rpm. Bacterial culture was centrifuged at 5000 rpm, 4 ºC for 

20 minutes. The activity of the obtain culture supernatant was determined by 

recording the change in absorbance at 660 nm with the assay mixture at 55 ºC.  

 

2.4. Determination of Enzyme Activity   

 

Protease activity of the samples were determined by the protease activity method 

using L-Tyrosine (0-1000 mg/L) as the standart. L-Tyrosine standarts were prepared in 

different concentrations and the standard calibration curve was drawn with response to 
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their absorbance values. Total protein activity was calculated from standard calibration 

curve equation. The spectrophotometric assays were performed using Shimadzu UV-

VIS spectrophotometer (UV-2450) with a constant temperature water circulator. While 

determining the protease activity of the samples, the steps should be taken into 

consideration. 100 µl 0.5% (w/v) casein in 50 mM Tris-HCl pH 7.2 is added to 100 µl 

enzyme solution and the assay mixture was incubated for 10 minutes at 55 ºC in the water 

bath. 100 µl 15% TCA in deionized water is added to enzyme-substrate solution to 

terminate the reaction. The mixture was put in ice bath for 10 minutes and centrifuged 

at 13500 rpm, room temperature for 10 minutes. The pellet was removed. 1 ml NaOH, 

200 µl supernatant and 200 µl Folin & Ciocalteu’s Phenol reagent were put into the 

cuvette, respectively. The reference cuvettes had the same composition except for the 

enzyme. The changing of the activity was recorded spectrophotometrically in 

absorbance at 660 nm after an hour.  The enzyme activities were given as unit (U) and 

one unit will hydrolyze casein to produce color equivalent to 1.0 µmole (181.0 µg) of 

tyrosine per minute under the defined assay conditions. 

 

Calculations: (Folin et al. 1929; Anson 1938) 

 

                               (µmole Tyrosine equivalents released) (a) 

                  Units/ml enzyme =                                                                                     (2.1) 

                          (b) (c) (d) 

 

a = Total volume (in milliliters) of assay 

b= Time of assay (in minutes) as per the Unit Definition 

c = Volume of enzyme (in milliliter) of enzyme used 

d = Volume (in milliliters) used in Colorimetric Determination 

 

                        units/ml enzyme 

                                Units/mg solid  =                                                                          (2.2) 

                         mg solid/ml enzyme 

 

                           units/ml enzyme 

                             Units/mg protein  =                                                                         (2.3) 

                            mg protein/ml enzyme 
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2.5. Determination of Protein Concentration  

 

Total protein concentration of a sample was determined by Bradford method by 

using bovine serum albumin (BSA, 0.2 mg/ml) as the standart (Bradford 1976). BSA 

standards were prepared in different concentrations and the standard calibration curve 

was drawn with response to their absorbance values. Total protein content was 

calculated from standard calibration curve equation. 

In the Bradford method, the Coomassie Brilliant Blue G-250 dye binds to the 

proteins which have arginine, lysine and histidine residues and changes the colour. The 

changing of the absorbance was recorded spectrophotometrically at 595 nm in UV-

visible spectrophotometer. 

The blank includes 800 µl water and 200 µl bradford reagent. The sample 

included 2 µl protease enzyme, 798 µl water and 200 µl bradford reagent. The solutions 

were kept at room temperature for 5 minutes followed by the addition of bradford 

reagent. The changing of the protein concentration of the sample was recorded 

spectrophotometrically in absorbance at 595 nm.  

According to the results of the absorbance, the total protein concentration was 

calculated from the standart curve and formula. The spectrophotometric assays were 

performed using UV-VIS spectrophotometer with a constant temperature water 

circulator. 

 

2.6. Preparation of Crude Enzyme Extract  

 

Bacterial growth was carried out in erlenmeyer flask in two ways. One of the 

erlenmeyer flask contained 200 ml of LB media and the other one contained complex 

media. Bacterial culture was centrifuged at 5000 rpm, 4 ºC for 20 minutes to obtain 

culture supernatant. The culture supernatant is the crude extracellular enzyme extract. 

The pellet including cell debris was removed.   
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2.7. Enzyme Purification Procedure  

 

The crude extracellular enzyme extract was subjected to total protein 

precipitation with 80% saturation (w/v) ammonium sulphate. The ammonium sulphate 

(104.6 g) should be slowly added into the enzyme extract by stirring at 4 ºC. After 

addition, the resulting precipitate was collected by centrifugation at 9500 rpm, 4 ºC for 

15 minutes and the pellet was resuspended in 10 ml 50 mM Tris-HCl buffer, pH 7.2. 

The enzyme solution was loaded on to the weak anion exchange (DEAE-

Cellulose) column (2.5 cm x 10 cm) which was equilibrated with 50 mM Tris HCl 

buffer (pH 7.2) in loading step. The column was washed with 50 mM Tris HCl buffer 

(pH 7.2) in washing step. Then, the fractions of 38 ml were collected by gradient eluting 

with 50 mM Tris HCl buffer (pH 7.2) and 2 M NaCl+50 mM Tris HCl buffer (pH 7.2) 

in the elution step. The chromatographic assays were performed using FOXY 2000 low 

pressure liquid chromatography system. The collected fractions were assayed for their 

protein concentrations at 280 nm with Thermo Scientific nanodrop, 595 nm with 

Bradford method and protease activity at 660 nm with UV-VIS spectrophotometer. The 

active fractions were pooled and stored at -20 ºC until using for the electrophoretic and 

characterization experiments. 

 

2.8. Electrophoretic Studies  (SDS- PAGE)  

 

In the electrophoretic study, sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) was used in order to find out the approximate molecular 

weight of protease enzyme following the Laemmli method (Laemmli, 1970). The 

electrophoretic assays were performed using Biorad Mini-Protean Tetra System and 

Biorad Protean II Xicell gel electrophoresis device. 

SDS-PAGE is used to seperate the proteins according to their molecular sizes in 

an electrical and estimate the molecular weight of a protein. Firstly, the seperating gel 

(acrylamide concentrations of 12%) and stacking gel (acrylamide concentrations of 4%) 

were prepared. The samples which were in all of the purification steps were diluted by a 

volume ratio of 1:1 with sample buffer,  kept in boiling water at 100 ºC for 10 minutes 

to denature proteins. 4 μl of molecular weight marker and 20 μl of sample-sample buffer 

mixture were loaded onto gel. The electrophoretic run was applied at 100 V for 2 hours.  
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After electrophoretic run, SDS-polyacrylamide gel was stained in two ways. 

 Coomassie Staining: SDS-polyacrylamide gel was fixed with 20% TCA and 

incubated for 30 minutes. It was washed with ultrapure water for 3 times to remove 

the TCA. Then, it was stained by using coomassie staining solution and incubated 

for 30 minutes. Lastly, the gel was destained with the destaining solution and 

incubated for 15 minutes for 3 times. 

 Silver Staining: SDS-polyacrylamide gel was fixed with fixation solution and 

incubated for 1 hour. It was washed with 50% ethanol for 3 times and incubated for 

20 minutes. Then, it was pre-treated with pre-treatment solution and incubated for 1 

minute. In order to remove the materials from the gel, it was rinsed with ultrapure 

water for 3 times and incubated for 20 seconds. In the impregnate step, the gel was 

impregnated with silver nitrate solution and incubated for 20 minutes. In order to 

remove the materials from the gel, it was rinsed with ultrapure water for 3 times and 

incubated for 20 seconds. Later, it was developed with developing solution. When 

the color development was observed, ultrapure water was added to stop the reaction. 

Lastly, the gel was kept in the stop solution and incubated for 10 minutes  

At the end of these steps, the image of the gels were taken with a special camera 

under white light by using Biorad Versadoc Gel Visualizing System. The procedure for 

preparation of gels and reagents that were used in SDS-PAGE are given in Appendix C. 

 

2.9. Characterization Studies 

 

2.9.1. Effect of pH on Enzyme Activity and Stability  

 

The effect of pH on protease activity was investigated by using 50 mM Tris-HCl 

buffer at different pH values at 55 ºC. The optimum pH of the protease enzyme was 

determined under the standart assay conditions by measuring activity in the presence of 

buffers at different pH values (pH 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0). 

While determining the pH stability of the enzyme, 100 μl enzyme solution was 

mixed with 100 µl 0.5% (w/v) casein in 50 mM Tris-HCl pH 4-7-10. After incubation 

time (1
st
, 2

nd
, 3

rd
, 4

th
, 5

th
 and 6

th
 hour), the activity assay was applied. The changing of the 

absorbance was recorded spectrophotometrically at 660 nm and the residual activity was 

obtained.  
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2.9.2. Effect of Temperature on Enzyme Activity and Stability  

 

The effect of temperature on protease activity was investigated by using 50 mM 

Tris-HCl buffer (pH 7.2) at different temperatures. The optimum temperature of the 

protease enzyme was determined under the standart assay conditions by measuring the 

activity at different temperatures (25, 35, 45, 55, 65, 75 ºC). The protease enzyme and 

the specific substrate casein were heated to relevant temperature before the assay and 

during the assay. 

While determining the temperature stability of the enzyme,  100 μl enzyme 

solution was mixed with 100 µl 0.5% (w/v) casein in 50 mM Tris-HCl (pH 7.2) at 55-85 

ºC. After incubation time (1
st
, 2

nd
, 3

rd
, 4

th
, 5

th
 and 6

th
 hour), the activity assay was applied. 

The changing of the absorbance was recorded spectrophotometrically at 660 nm and the 

residual activity was obtained. 

 

2.9.3. Substrate Specificity of Enzyme  

 

The substrate specificity of the enzyme was determined by measuring activity 

towards different substrates (casein, azocasein, hammers casein, skimmilk, BSA). The 

activity of the enzyme was measured by using these different substrates prepared in 50 

mM Tris-HCl buffer (pH 7.2) at concentrations of 0.5% (w/v) under the standart assay 

conditions. The changing of the absorbance was recorded spectrophotometrically at 660 

nm and the residual activity was obtained. 

 

2.9.4. Effect of Metal Ions on Enzyme Activity  

 

The effect of the metal ions on protease activity was measured in the presence of 

different metal ions (CaCl2, CuSO4, MgSO4, NaCl and ZnCl2). 100 µl protease enzyme 

solution and 100 µl 10 mM metal ion were incubated 55 ºC for 10 minutes. After the 

incubation period, the substrate was added and the reaction was initiated. Then, the 

activity of the enzyme was measured under the standart assay conditions. The changing 

of the absorbance was recorded spectrophotometrically at 660 nm and the residual 

activity was obtained.  
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2.9.5. Effect of Various Agents on Enzyme Activity   

 

2.9.5.1. Effect of Organic Solvents on Enzyme Activity 

 

The effect of some organic solvents (ethanol, methanol, hexane, benzene, 

dimethyl sulfoxide (DMSO)) on enzyme activity were investigated.  

100 µl protease enzyme solution and 100 µl 10% (v/v) of the agents were 

incubated 55 ºC for 10 minutes. After the incubation period, the substrate was added 

and the reaction was initiated. Then, the activity of the enzyme was measured under the 

standart assay conditions. The changing of the absorbance was recorded 

spectrophotometrically at 660 nm and the residual activity was obtained.  

 

2.9.5.2. Effect of Surfactants on Enzyme Activity   

 

             The effect of some surfactants (sodium dodecyl sulfate (SDS), Triton X-100, 

Tween-20, Tween-80, H2O2)   on enzyme activity were investigated. SDS is an anionic 

agent and H2O2 is an oxidizing agent. Triton X-100, Tween-20 and Tween-80 are 

nonionic agents.  

  100 µl protease enzyme solution and 100 µl 1% (v/v) of the agents were 

incubated 55 ºC for 10 minutes. After the incubation period, the substrate was added 

and the reaction was initiated. Then, the activity of the enzyme was measured under the 

standart assay conditions. The changing of the absorbance was recorded 

spectrophotometrically at 660 nm and the residual activity was obtained.  

 

2.9.6. Effect of Inhibitors on Enzyme Activity 

 

            The effect of some inhibitors (phenylmethylsulphonyl fluoride (PMSF), 

dithiothreitol (DTT), ethylenediaminetetraacetic acid (EDTA), iodoacetamide, protease 

inhibitor cocktail)  on enzyme activity were investigated. PMSF is a serine protease 

inhibitor and EDTA is a metalloprotease inhibitor. DTT and iodoacetamide are the 

cysteine protease inhibitors. Protease inhibitor cocktail contains AEBSF (inhibition of 

serine proteases), EDTA (inhibition of metalloproteases), bestatin (inhibition of 
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aminopeptidases), pepstatin A (inhibition of acid proteases), E-64 (inhibition of cystein 

proteases).  

100 µl protease enzyme solution and 100 µl agents were incubated 55 ºC for 10 

minutes. The concentrations of the agents: 1% (v/v) β-mercaptoethanol and 1 mM of 

other agents in the assay mixture. After the incubation period, the substrate was added 

and the reaction was initiated. Then, the activity of the enzyme was measured under the 

standart assay conditions. The changing of the absorbance was recorded 

spectrophotometrically at 660 nm and the residual activity was obtained.  

 

Table 2.1. Inhibitors of the endopeptidases 

(Source: Garcia-Carreno 1993) 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

 

3.1. Screening of Protease Activity in Thermophilic Bacillus sp. 

 

There are two methods to exhibite the protease activity in the bacterial strain, 

alkaliphilic and thermophilic Bacillus sp.  

 Firstly, the bacterial culture number 33, 41, 53 which were positive controls and 

the bacterial culture number 17, 50, 77, 85 which were negative controls were 

inoculated on to the plates. After incubation time (24 hours - 3 days), the clear zones 

around colonies indicated the protease activity in the positive control-plates but there 

was no clear zones around the colonies in the negative control-plates. Bacterial culture 

number-53 exhibited highly hydrolysis of the substrate and specific clear zones around 

the colonies (Figure 3.1).  

 

 

 

Figure 3.1. Screening of the protease activity 
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 Secondly, the bacterial culture number 33, 41, 53 were cultivated overnight in 

LB media. Following the bacterial growth, the activities of the crude enzymes were 

determined by recording the change in absorbance at 660 nm with the assay mixture at 

55 ºC.  When compared the results, there was an increase in absorbance in the activity 

test of bacterial culture number-53.  

According to these results, the bacterial culture number-53 produced protease 

enzyme more than the other bacterial cultures and it was used in the experiments. The 

bacterial culter number was chosen and also the specific growth media should be chosen 

to obtain high activity and high yield during the experiments. That’s why, a complex 

medium including different ions and Luria-Bertani broth medium were prepared. 

Following the bacterial growth, the activities of the crude enzymes were determined by 

recording the change in absorbance at 660 nm with the assay mixture at 55 ºC. In 

comparison to the LB media, there was an increase in absorbance by using the complex 

medium. According to these results, the complex media was chosen as a specific growth 

media. 

 

3.2. Purification of Protease  

 

In this study, the protease enzyme from alkaliphilic and thermophilic Bacillus 

sp. was purified by using the ammonium sulphate precipitation (80%) and ion exchange 

chromatography.  

Firstly, it should be decided that the protease enzyme was an extracellular or 

intracellular enzyme. Thus, the crude extracellular enzyme extract and the crude 

intacellular enzyme extract were produced. Following the bacterial growth, the 

activities of them were determined by recording the change in absorbance at 660 nm 

with the assay mixture at 55 ºC. When compared with the results, the extracellular 

enzyme showed high activity. These results suggested that the protease enzyme from 

alkaliphilic and thermophilic Bacillus sp. was an extracellular enzyme. That’s why, the 

crude extracellular enzyme was used as a starting material in the experiments. 

Later, the crude extracellular enzyme was subjected to one of the precipitation 

methods to precipitate, purify and concentrate total protein. Ammonium sulphate 

precipitation with different saturations from 20% to 90%, ethanol precipitation and 

aseton precipitation were used.  Following precipitations, the activities of the partial 
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purified enzymes were determined by recording the change in absorbance at 660 nm 

with the assay mixture at 55 ºC. In comparison to other techniques and different 

saturations, there was an increase in absorbance by using the ammonium sulphate 

precipitation with 80% saturation. The partial purified enzyme with ammonium sulphate 

precipitation (80% saturation) was assayed for the protein concentrations at 280 nm 

with Thermo Scientific nanodrop, 595 nm with Bradford method and protease activity 

at 660 nm with UV-VIS spectrophotometer. The yield and purification fold after this 

step was 80% and 1.17, respectively (Table 3.1).  

Finally, the precipitate was dissolved in 50 mM Tris HCl buffer (pH 7.2)  and 

loaded on to the weak anion exchange (DEAE-Cellulose) column which separates the 

proteins according to their ionic strength. After the washing step, the fractions were 

collected by gradient eluting from the column. The protein concentrations at 280 nm 

with Thermo Scientific nanodrop and the protease activity at 660 nm with UV-VIS 

spectrophotometer were determined. The active fractions were collected and pooled to 

be used in the experiments of characterization (Figure 3.2). The resulting enzyme 

solution which had a specific activity of 135.66 U/mg, was purified 1.41 fold and 

contained 33% of the activity (Table 3.1). 

 

Figure 3.2. The concentration of the protease enzyme fractions after ion exchange 

chromatography 
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Table 3.1. Purification of protease from alkaliphilic and thermophilic Bacillus sp. 

 

Purification 

Step 

Total 

Activity 

(U/ml) 

Total 

Protein 

(mg/ml) 

Specific 

Activity 

(U/mg) 

Yield  

(%) 

Purification 

(Fold) 

Crude Extract 894.75 9.33 95.85 100 1 

Ammonium 

Sulphate 

Precipitation 

723 6.43 112.27 80 1.17 

Ion Exchange 

Chromatography 
296 2.182 135.66 33 1.41 

 

When the purification fold and yield values of proteases were compared in the 

literature, similar and different results were observed. Bacillus stearotherrnophilus RM-

67 protease which had 39.5 fold purification and an overall recovery of 8.21% was 

purified by ammonium sulfate fractionation (40 to 70% saturation), gel filtration 

through Sephadex G-100, and diethylaminoethyl-Sephadex A-50 ion-exchange 

chromatography (Chopra and Mathur 1983). Bacillus polymyxa B-17 protease which 

had 40.38 fold purification and an overall recovery of 78.35% was purified by 

precipitation with ammonium sulfate and gel filtration through Sephadex G-100 (Matta 

and Punj 1998). Bacillus cereus protease which had 14.5 fold purification and an overall 

recovery of 7.2% was purified by ammonium sulfate fractionation, acetone 

precipitation, Bio-Gel filtration and column chromatography on DEAE-cellulose (DE-

52 cellulose) (Sierecka 1998). Bacillus cereus protease which had 77 fold purification 

and an overall recovery of 38% was purified by ion exchange chromatography (DEAE-

cellulase and CM-Toyopearl 650) and gel filtration through Sephadex G-100 (Takii et 

al. 1998). Alkalophilic Bacillus spp. protease which had 27.7 fold purification and an 

overall recovery of 6% was purified by acetone precipitation, DEAE- and CM-

Sepharose CL-6B ion exchange and Sephacryl S-200 gel filtration chromatographic 

techniques (Kumar 1998). Alkaliphilic and thermophilic Bacillus sp. PS7 19 protease 

which had 18.5 fold purification and an overall recovery of 39% was purified by 

ammonium sulfate precipitation, DEAE-cellulose and a-casein agarose column 
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chromatographies (Hutadilok-Towatana et al. 1999). Thermostable proteases from 

Bacillus stearothermophilus TLS33 which had 2.6 fold purification and an overall 

recovery of 7% was purified by lysine affinity chromatography, strong anion exchange 

Q HyperD chromatography, and Ultrogel AcA44 gel filtration (Sookkheo et al. 2000). 

Heat-stable alkaline protease from Bacillus stearothermophilus F1 which had 4.0 fold 

purification and an overall recovery of 99% was purified by heat treatment (Fu et al. 

2003). Heat-stable alkaline protease from Bacillus subtilis which had 7.87 fold 

purification was purified by ammonium sulfate precipitation and Sephadex G200 

filtration (El-Safey et al. 2004). An alkaline protease from haloalkaliphilic Bacillus sp. 

which had 10.0 fold purification and an overall recovery of 82% after purification was 

purified by a single step method on Phenyl Sepharose 6 Fast Flow column (Gupta and 

Roy et al. 2005). Thermophilic neutral protease from Thermophilic bacillus strain HS08 

which had 4.25 fold purification and an overall recovery of 5.1% was purified by 

ammonium sulfate precipitation, with columns of DEAE-Sepharose anion exchange 

chromatography and Sephacryl S-100HR on AKTA purifier 100 protein liquid 

chromatography (Guangrong 2006). An extracellular alkaline protease from a novel 

haloalkaliphilic bacterium (Ve1) which had 112.0 fold purification and an overall 

recovery of 6% was purified by ammonium sulphate precipitation, DEAE cellulose and 

Sephadex-200 (Patel et al. 2006). Thermophilic extracellular proteases from 

Lactobacillus helveticus which had 10.31 fold purification and an overall recovery of 

15.2% was purified by aceton precipitation, Sephadex G-25 and QAE Sephadex A-50 

column (Valasaki et al. 2008). 

The purification fold and overall recovery of protease enzyme from alkaliphilic 

and thermophilic Bacillus was lower than the values from the literature because the 

protease enzyme in here was partially purified. On the other hand, the impurities in the 

partially purified enzyme content may mask the protease activity.  

 

3.3. Electrophoretic Studies (SDS-PAGE)  

 

The samples which were from all of the purification steps were applied to SDS-

PAGE. After electrophoretic run, SDS-polyacrylamide gel was stained by coomassie 

and silver in two ways. The image of the gels were taken with a special camera under 

white light after silver staining is given in Figure 3.3. The image of the gels were taken 
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with scanner after silver staining is given in Figure 3.4 and after colloidal coomassie 

staining is given in Figure 3.5. 

The sample from extracellular crude extract prepared by using LB media was 

very complex so lots of protein bands were observed on the gel. The sample from 

extracellular crude extract prepared by using complex media was nearly specific. Only 

two bands were observed on the gel because complex media contains specific substrate 

in growth conditions. The molecular weight of the enzymes could be determined by 

these two bands on the gel and they were 25.37 kDa and 29.09 kDa. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. SDS-PAGE image with silver staining under UV light. 
 

 

   

    

                            

                       Figure 3.4. SDS-PAGE image         Figure 3.5. SDS-PAGE image with   

      with silver staining.                          coomassie staining. 
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When the molecular weights of proteases were compared in the literature, 

similar and different results were observed.  

The molecular weight of protease from thermophilic Bacillus strain HS08 is 30.9 

kDa (Guangrong et al. 2006), molecular weight of thermostable protease from 

Geobacillus sp. YMTC 1049 is 59.2 kDa (Zhua et al. 2007), molecular weight of 

thermostable protease from Hyperthermophilic Bacillus strain HUTBS71 is 49 kDa 

(Akel et al. 2009), molecular weight of an alkaline protease from haloalkaliphilic 

Bacillus sp. is 29 kDa (Gupta, Roy et al. 2005), molecular weight of an alkaline 

protease from haloalkaliphilic Bacillus sp. is 30 kDa (Patel et al. 2005), molecular 

weight of extracellular protease isolated from alkaliphilic and thermophilic Bacillus sp. 

PS719 is 42 kDa (Hutadilok-Towatana et al. 1999),  

The molecular weights of proteases from Bacillus stearothermophilus RM-67 

are 67.610 and 19.950 kDa (Chopra and Mathur 1985), molecular weights of 

thermostable proteases from Bacillus stearothermophilus TLS33 are 36 kDa, 53 kDa 

and 71 kDa (Sookkheo et al. 2000).  

The molecular weight of thermophilic alkaline proteases resistant to SDS and 

EDTA from Bacillus sp. GUS1 is 30-47 kDa (Seifzadeh et al. 2008), molecular weight 

of protease from Bacillus strain SAL1 is 27 kDa (Almas et al. 2009), molecular weight 

of a surfactant-stable high-alkaline protease from Bacillus sp. B001 is 28 kDa (Deng et 

al. 2010).  

The molecular weight of an extracellular protease from Bacillus subtilis EAG-2 

strain is 27 kDa (Ghafoor and Hasnain 2010), molecular weight of an extracellular 

alkaline protease produced by Bacillus subtilis (MTTC N0-10110) is 20.5 kDa 

(Ramakrishna et al. 2010). 

The molecular weight of neutral protease from Bacillus cereus is 29 kDa 

(Sierecka 1998), molecular weights of alkaline proteases produced by an alkalophilic 

Bacillus are 28 kDa and 29 kDa (Kumar et al. 1999), molecular weights of proteases 

from Bacillus cereus MCM B-326 are 36 kDa and 45 kDa (Nilegaonkar et al. 2006), 

molecular weight of a solvent and detergent-stable protease from Bacillus cereus is 28 

kDa (Doddapaneni et al. 2009), molecular weight of a calciumdependent protease by 

Bacillus cereus BG1 is 34 kDa (Ghorbel-Frikha et al. 2005), molecular weight of a 

solvent, detergent and oxidizing agent tolerant protease from Bacillus cereus is 38 kDa 

(Shah et al. 2010). 
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The molecular weight of an alkaline protease from Bacillus circulans BM15 is 

30 kDa (Venugopal and Saramma 2007), molecular weight of thermo- and detergent 

stable serine protease from isolated Bacillus circulans is 39.5 kDa (Rao et al. 2009).  

The molecular weight of a surfactant-stable alkaline serine-protease from 

Bacillus mojavensis A21 is 20 kDa (Haddar et al.2009), molecular weight of an 

extracellular, thiol-dependent and oxidation-stable alkaline serine protease from 

Bacillus mojavensis is 30 kDa (Beg and Gupta 2003).  

The molecular weight of thermostable extracellular protease from Bacillus 

polymyxa B-17 is 30 kDa (Matta and Punj 1998), molecular weight of an extracellular 

serine alkaline protease of Bacillus clausii GMBAE 42 is 26.5 kDa (Kazan et al. 2005),  

molecular weight of protease from Bacillus Firmus Tap5 is 34 kDa (Joshi 2010), 

molecular weight of an alkaline-protease from Bacillus licheniformis MP1 is 30 kDa 

(Jellouli et al. 2011), molecular weights of proteases from Pseudomonas fluorescens are 

between 47 kDa and 51 kDa (Margesin and Schinner 1992). 

 

3.4. Characterization Studies 

 

3.4.1. Effect of pH on Enzyme Activity and Stability  

 

The effect of pH on protease activity was examined by measuring enzyme 

activity in the presence of buffers at different pH values (pH 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 

10.0). In the Figure 3.6, the effect of pH showed a bell shaped curve with the highest 

activity at pH 8.0. On the other hand, the optimum pH of the protease enzyme isolated 

from alkaliphilic and thermophilic Bacillus sp. was pH 8.0. The protease enzyme at 

acidic pH values exhibited a little lower activity than the protease enzyme at alkaline 

pH values. The enzyme lost 20% of its activity at pH 4.0 and it lost 10% of its activity 

at pH 10.0. When the activities at different pH values were compared, it was understood 

that this enzyme was nearly stable in these conditions because of having above the 80% 

of its activity at all of the pH values. 

When the pH values were compared in the literature, similar and different results 

were observed in acidic, neutral or alkaline conditions.  

The proteases which were secreted in the acidic conditions were isolated from 

Geobacillus at pH 6.5 (Hawumba et al. 2002). 
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The proteases which were produced in the neutral conditions were isolated from 

Bacillus thermoproteolyticus (Ohta 1966), Bacillus circulans (Venugopal and Saramma 

2007) and Lactobacillus helveticus (Valasaki 2008) at pH 7.0. Bacillus polymyxa (Matta 

and Punj 1998), Bacillus strain HS08 (Guangrong et al. 2006), Geobacillus sp. YMTC 

1049 (Zhu et al. 2007) produced protease enzyme at pH 7.5. They were also isolated from 

Bacillus stearothermophilus TLS33 at pH 7.0-7.5 (Sookkheo et al. 2000), Bacillus brevis 

MIB001 at pH 7.6 (Takii et al. 1998), hyperthermophilic Bacillus strain HUTBS71 at pH 

7.8 (Akel et al. 2009). 

The proteases which were secreted in the alkaline conditions were isolated from 

Bacillus stearotherrnophilus RM-67(Chopra and Mathur 1983),  thermophilic Bacillus 

(do Nascimento and Martins 2004) and Bacillus cereus BG1 (Ghorbel-Frikha et al. 

2005) at pH 8.0. They were also isolated from thermophilic Bacillus sp. at pH 8.5 (Silva 

et al. 2007), alkaliphilic and thermophilic Bacillus sp. PS719 at pH 9.0 (Hutadilok-

Towatana et al. 1999), Bacillus species at pH 9.0 (Naidu and Devi 2005), Bacillus sp. P-

2 at pH 9.6 (Kaur et al. 2001), Bacillus mojavensis at pH 10.5 (Beg and Gupta 2003), 

thermophilic and alkaliphilic Bacillus sp. JB-99 at pH 11 (Johnvesly and Naik 2001), 

haloalkalophilic Bacillus clausii at pH 11.5 (Kumar et al. 2004), alkalophilic Bacillus 

spp. at pH 11-12 50-55 ºC (Kumar et al. 1999). 

 

 
 

Figure 3.6. Effect of pH on protease activity (at 55 ºC, for 10 min.) 

 

The pH stability of the protease enzyme was investigated by incubating the 

enzyme in the buffers at different pH (pH 4-7-10) during 6 hours. After the incubation 
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time (1
st
, 2

nd
, 3

rd
, 4

th
, 5

th
 and 6

th
 hour), the residual activities were measured 

spectrophotometrically under standart assay conditions. They were calculated and 

plotted against pH values as in Figure 3.7. While preparing the control, the pH treatment 

was not applied to the enzyme and the activity of the protease enzyme was regarded as 

hundred percent. 

Three pH values  (pH 4-7-10)  were examined to compare the differences of the 

stabilities.   It was understood from the figure that,   

 The enzyme at pH 4 retained 85% of its activity after an hour and lost 50% of its 

activity after six hours incubation time.  

 The enzyme at pH 7 retained more than 90% of its activity after an hour and lost 

40% of its activity after six hours incubation time.  

 The enzyme at pH 10 retained more than 95% of its activity after an hour and lost 

45% of its activity after six hours incubation time.  

The results showed that the protease enzyme isolated from alkaliphilic and 

thermophilic Bacillus sp. was stable at different pH values (pH 4-7-10) during 3 hours 

but after 3 hours, there was a significant loss in the stability.  

When the pH stabilities were compared in the literature, similar and different 

results were observed.  For examples; the purified protease I was stable in the pH range 

of 8.8-10.5 and protease II was stable at pH 11.5 when incubated at 37 °C for 30, 60, 

and 90 min (Chopra and Mathur 1983). In the acidic conditions, the activity of the 

protease enzyme was stable in the range of 4.0-6.0. The protease showed high stability 

at pH 9.0. When the pH values were lower or higher than 9.0, the enzyme activity 

decreased nearly 70% at pH 7.0 and 50% at pH 11.0 (Hutadilok-Towatana et al. 1999). 

The thermostable protease S showed nearly 60% of proteolytic activity in the pH range 

of 6-10. Proteases N and B retained little activity above pH 9.0 (Sookkheo 2000). The 

protease was stable at pH 9.6 and retained more than 80% of its activity in the pH range 

of 7-10 (Kaur et al. 2001). The purified protease enzyme was stable at 70 °C for 24 

hours in the pH range from 8.0 to 10.0 (Fu et al. 2003). There was a decrease of nearly 

51% of the activity at pH 5.5, 18% of the activity at pH 8.0 and 66% of the activity at 

pH 9.0 for 24 hours (do Nascimento and Martins 2004). A decrease of about 15% of the 

activity at pH 8.5 and of the activity at pH 10.0 were observed (Silva et al. 2007). 
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Figure 3.7. pH stability of protease (at 55 ºC, for 6 hours) 

 

3.4.2. Effect of Temperature on Enzyme Activity and Stability  

 

The effect of temperature on protease activity was examined by measuring 

enzyme activity at different temperatures ranging from 25 ºC to 75 ºC. In the Figure 3.8, 

the effect of temperature showed a bell shaped curve with the highest activity at 55 ºC. 

On the other hand, the optimum temperature of the protease enzyme isolated from 

alkaliphilic and thermophilic Bacillus sp. was 55 ºC. The protease enzyme at 

temperatures below 55 ºC lost 15% of its activity and also the protease enzyme at 

temperatures above 55 ºC lost 25% of its activity. When the activities at different 

temperatures were compared, it was understood that this enzyme was nearly stable in 

these conditions because of having above the 75% of its activity at all of the 

temperatures. 

When the optimum temperature values were compared in the literature, similar 

and different results were observed.  The protease was highly produced by Bacillus 

circulans at 40 ºC (Venugopal and Saramma 2007), Bacillus polymyxa at 50 ºC (Matta 

and Punj 1998), alkalophilic Bacillus spp. at 50-55 ºC (Kumar et al. 1999), Bacillus 

species 55 ºC (Naidu and Devi 2005), Bacillus mojavensis at 60 ºC (Beg and Gupta 

2003), thermophilic Bacillus at 60 ºC (do Nascimento and Martins 2004), Bacillus 
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cereus BG1 at 60 ºC (Ghorbel-Frikha et al. 2005), Lactobacillus helveticus at 60 ºC 

(Valasaki 2008), Bacillus strain HS08 at 65 ºC (Guangrong et al. 2006), 

hyperthermophilic Bacillus strain HUTBS71 at 65 ºC (Akel et al. 2009), Bacillus 

stearotherrnophilus RM-67 at 70 ºC (Chopra and Mathur 1983), thermophilic and 

alkaliphilic Bacillus sp. JB-99 at 70 ºC (Johnvesly and Naik 2001), Geobacillus at 70 ºC 

(Hawumba et al. 2002), thermophilic Bacillus sp. at 70 ºC  (Silva et al. 2007), Bacillus 

stearothermophilus TLS33 at 72-78 ºC (Sookkheo et al. 2000), Bacillus brevis MIB001 

75 ºC (Takii et al. 1998), alkaliphilic and thermophilic Bacillus sp. PS719 at 75 ºC 

(Hutadilok-Towatana et al. 1999), Bacillus thermoproteolyticus at 80 ºC (Ohta 1966), 

Geobacillus sp. YMTC 1049 at 85 ºC (Zhu et al. 2007), Bacillus sp. P-2 at 90 ºC (Kaur 

et al. 2001), haloalkalophilic Bacillus clausii at 80 ºC (Kumar et al. 2004). 

 

 
Figure 3.8. Effect of temperature on protease activity (at pH 7.2, for 10 min.) 

 

The temperature stability of the protease enzyme was investigated by incubating 

the enzyme at different temperatures (55-85 ºC) during 6 hours. After the incubation 

time (1
st
, 2

nd
, 3

rd
, 4

th
, 5

th
 and 6

th
 hour), the residual activities were measured 

spectrophotometrically under standart assay conditions. They were calculated and 

plotted against temperature values as in Figure 3.9. While preparing the control, the 

temperature treatment was not applied to the enzyme and the activity of the protease 

enzyme was regarded as hundred percent.  

Two temperature values (55-85 ºC) were examined to compare the differences of 

the stabilities. It was understood from the figure that,   
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 The enzyme at 55 ºC retained more than 95% of its activity after an hour and lost 

about 3% of its activity after six hours incubation time.  

 The enzyme at 85 ºC retained more than 95% of its activity after an hour and lost 

about 15% of its activity after six hours incubation time.  

The results showed that the protease enzyme isolated from alkaliphilic and 

thermophilic Bacillus sp. was stable at different temperature values (55-85 ºC) during 6 

hours because there was not a significant loss in the stability.  

When the temperature stabilities were compared in the literature, similar and 

different results were observed.  For examples; protease I and II from Bacillus 

stearotherrnophilus RM-67 retained 100% activity at 60 °C for 30 min. The purified 

protease enzymes were stable at 55 °C for 30 min. Protease I retained 63% of its activity 

and protease II retained 20% of its activity after 30 min at 65 °C (Chopra and Mathur 

1983). Thermostable neutral protease was stable up to 75 °C and it lost 60% of its 

activity at 85 °C (Takii et al. 1998). The protease enzyme retained 35% activity at 70 °C 

for 10 min. There was no activity at 85 °C after 10 min (Matta and Punj 1998). The 

purified enzyme was stable at temperatures below 40 °C for 15 min. This protease 

enzyme was retained 60% of its activity at higher temperatures and lost the activity at 

90°C 15 min later (Hutadilok-Towatana et al. 1999). Highly thermostable proteases S 

(at 60 °C), N (at 65 °C), and B (at 70 °C) retained more than 90% of the activity. They 

lost 50% of the activity at 72, 78, and 90 °C, respectively. After the incubation at 100 

°C for 30 min, the protease B, S and N had 31%, 5%, 10% of their initial activities, 

respectively (Sookkheo 2000). The enzyme was stable at 90 °C for more than 1 hour. It 

also retained 95% of its activity at 99 °C and 37% of its activity at 121 °C after 1 hour. 

The half life of protease at 121 °C was 47 minutes (Kaur et al. 2001). The enzyme was 

stable for 2 hours at 30 ºC. 14% of the activity was lost at 40 ºC and 84% of the activity 

was lost at 80 ºC (do Nascimento and Martins 2004). The protease enzyme retained 

80% of the activity at 60 ºC 2 hours later. 70% of the activity was retained at 70 ºC, 15 

min later (Silva et al. 2007). The present enzyme was stable at 50 ºC and 60 ºC for 2 

hours and it retained 84% of its activity (Akel et al. 2009). 
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Figure 3.9. Thermal stability of protease (at pH 7.2, for 6 hours) 

 

3.4.3. Substrate Specificity of Enzyme  

 

The substrate specificity of the protease enzyme isolated from alkaliphilic and 

thermophilic Bacillus sp. was determined by measuring activity towards casein (5%), 

azocasein (5%), hammersten casein (5%), skimmilk (5%), BSA (5%) under the assay 

conditions. In the Table 3.2, the results showed that the casein was the best substrate 

among them and the azocasein decrease the activity of the protease. 

 

Table 3.2. Substrate specificity of protease (at 55 ºC, pH 7.2, for 10 min.) 

 

 

83

88

93

98

103

1 2 3 4 5 6 7

R
es

id
u

a
l 

a
ct

iv
it

y
 (

%
)

Time (hour)

55 ºC

85 ºC

Substrate Wavelength (nm) Relative Activity (%) 

Casein 660 nm 100 
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When the substrate specificities were compared in the literature, similar and 

different results were observed. The substrates which were used in the experiments were 

haemoglobin, albumin and casein (Sierecka 1998), gelatin (El-Safey and Abdul-Raouf 

2004), starch (do Nascimento and Martins 2004), hammarsten casein (Kazan et al. 

2005). In the previous studies, alkaline proteases exhibited highest activity towards 

casein or modified proteins including haemoglobin, ovalbumin, BSA, fibrin, collagen, 

elastin, keratin, azocasein and azocoll. The purified proteases hydrolyzed the protein 

substrates such as casein, elastin, keratin, albumin and the synthetic chromogenic 

peptide substrates Glu-Gly-Ala-Phe-pNA and Glu-Ala-Ala-Ala-pNA and the results 

exhibited thar casein was the best substrate among them (Kumar et al. 1999). The 

protease hydrolyzed the substrates, such as gelatin, elastin, albumin, haemoglobin, and 

skim milk (Beg and Gupta 2003). Substrates specificity results showed that azocasein 

was the best substrate among the azocasein, casein and BSA (Guangrong et al. 2006). 

 

3.4.4. Effect of Metal Ions on Enzyme Activity 

 

The effect of the metal ions on protease activity was measured in the presence of 

different metal ions (Ca
+2

, Cu
+2

, Mg
+2

, Na
+1

 and Zn
+2

). The protease enzyme solution 

and 10 mM metal ion were incubated for 10 minutes at 55 ºC. After the incubation 

period, the substrate was added and the reaction was initiated. Then, the activity of the 

enzyme was measured under the standart assay conditions. While preparing the control, 

the metal ion was not added into the enzyme solution and its activity was regarded as 

hundred percent. In the Figure 3.10, the results showed that Ca
+2 and Cu

+2
 increase the 

activity of the protease, but Mg
+2

, Na
+1

 and Zn
+2

 did not affect the activity of the 

protease so much. According to these results, these metal ions protected the enzyme 

against thermal denaturation. It was also known that Ca
+2

 is the most effective ion on 

the activity of the proteases. 
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Figure 3.10. Effect of metal ions on protease activity (at 55 ºC, pH 7.2, for 10 min.) 

 

When the effects of metal ions on protease activity were compared in the 

literature, similar and different results were observed. In the presence of manganese, the 

protease I enzyme from Bacillus stearotherrnophilus RM-67 exhibited 100% stability at 

65°C for 30 min (Chopra and Mathur 1983). There was an inhibition on the enzyme 

activity in the presence of Na, K, Mg and Co. However, Ca and Mn increased the 

activity (Matta and Punj 1998). Ca
2+

, Mg
2+

 and Mn
2+

 increased the enzyme activity of 

the enzymes. Hg
+2

 ions (1 mM) exhibited highly inhibition of the enzymes, by 74% 

(Kumar et al. 1999). Ca
2+

 was activated the enzyme causing 85% stimulation. However, 

Mn
2+

 and Mg
2+

 showed fewer positive effects. Zn
2+

, Fe
2+

, Co
2+

  and Cu
2+

 inhibited the 

enzyme activity, bringing about 15%, 33%, 57% and 65% decreases, respectively. 2 

mM Ca
2+

 concentration on the enzyme activity was determined (Hutadilok-Towatana et 

al. 1999). Addition of Ca
2+

 (10 mM) and glycine (1 M) increased the half life of 

protease. The enzyme retained more than 50% activity after 4 days at 60°C in the 

presence of them (Banerjee et al. 1999). The proteolytic activity was increased in the 

presence of ZnCl2. The addition of Na
+
, K

+
, Li

+
, Ca

2+
, and Mn

2+
 did not affect the 

activities of the apoenzymes. The addition of Zn
2+

 increased the activities of proteases 

changing from 54% to 72% of the enzyme activity (Sookkheo et al. 2000). The addition 

of 10 mM Ca
2+

 retained 78% activity after 1 hour at 80 °C. The enzyme activity was 

increased in the presence of 10 mM metal ions namely Mn
2+

, Mg
2+

, Cu
2+

  and Co
2+

. The 

activity also was inhibited in the presence of 10 mM Fe
3+

, Hg
2+

 and Zn
2+

 (Johnvesly and 

Naik 2001). 

0

50

100

150

200

250

Control Ca Na Mg Cu Zn

R
el

a
ti

v
e 

A
ct

iv
it

y
 (

%
)



51 

 

1mM K
+
, 1mM Hg

2+
 and 1mM Cu

2+ 
were strongly inhibited the enzyme activity. Mn

2+ 

and Ca
2+

 were stimulated the activity and they also had a functional role in the 

molecular structure of the enzyme (do Nascimento and Martins 2004). There was no 

effect in the presence of Mn
2+

, Zn
2+ 

and Mg
2+

. The enzyme was activated with Ca
2+

 (1 

mM) and Cu
2+

 (5 mM) (Gupta et al. 2005). The enzyme activity was increased by 

Ca
2+

and Mg
2+ 

but inhibited by Ba
2+

, Zn
2+

, Pb
2+

, Co
2+

, Mn
2+

 and Cu
2+

 (Zhu et al. 2007). 

The activity of the enzyme was increased in the presence of 5 mM Mn
2+

, Ca
2+

and Na
2+

; 

not affected or slightly inhibited by Fe
2+

, Co
2+

, and Zn
2+

, but inhibited remarkably by 

EDTA, Cu
2+

and Cd
2+

 (Akel et al. 2009). 

 

3.4.5. Effect of Various Agents on Enzyme Activity 

 

The effect of the organic solvents, surfactans and detergents on the enzyme 

activity were investigated to determine whether they acted as inhibitor or activator. The 

protease enzyme solution and 10% of the organic solvent or 1% surfactant were 

incubated for 10 minutes at 55 ºC. After the incubation period, the substrate was added 

and the reaction was initiated. Then, the activity of the enzyme was measured under the 

standart assay conditions. While preparing the control, the organic solvents or the 

surfactants were not added into the enzyme solution and its activity was regarded as 

hundred percent. 

 

3.4.5.1. Effect of Organic Solvents on Enzyme Activity   

 

Benzene did not cause much effect on the activity and the protease enzyme 

showed nearly 96% of its activity in the presence of benzene. On the other hand, ethanol 

caused much effect on the activity among the other organic solvents and the protease 

enzyme showed nearly 84% of its activity in the presence of ethanol. In the Table 3.3, 

the results indicated that alkaliphilic and thermophilic protease enzyme was stable in the 

presence of 10% of these organic solvents because there was a little loss on the protease 

activiy in the experiments. 
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Table 3.3. Effect of organic solvents on protease activity (at 55 ºC, pH 7.2, for 10 min.) 

 

 

When the effects of the organic solvents on protease activity were compared in 

the literature, similar and different results were observed. All the organic solvents such 

as methanol, ethanol and isopropanol induced the enzyme activity of both the proteases 

(Kumar et al. 1999). The protease activity was increased by the water immiscible 

solvents except butanol as compared to water miscible solvents. The protease activity 

was higher in the presence of decane, hexadecane, hexane, cyclooctane and toluene, 

benzene. On the other hand, the protease activity was decreased in the presence of water 

miscible solvents like ethanol (70% activity)  and DMSO (80% activity) (Shah 2010). 

 

3.4.5.2. Effect of Surfactants on Enzyme Activity   

 

Triton X-100 did not cause much effect on the activity and the protease enzyme 

showed nearly 97% of its activity in the presence of Triton X-100. On the other hand, 

H2O2 caused much effect on the activity among the other surfactants and the protease 

enzyme showed nearly 81% of its activity in the presence of H2O2. In the Table 3.4, the 

results indicated that alkaliphilic and thermophilic protease enzyme was stable in the 

presence of 1% of these surfactants because there was a little loss on the protease 

activiy in the experiments. Later, higher concentrations  (5%-10% mM) of these 

surfactants were used in the experiments, but the enzyme activity could not be 

determined because of the precipitation and turbidity in the activity tests. 

 

 

 

Organic Solvents Concentrations Relative Activity (%) 

Control - 100 

Ethanol 

Methanol 

10% 

10% 

84.77 

87.24 

Hexane 10% 92.6 

DMSO 10% 92.18 

Benzene 10% 96.7 
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Table 3.4. Effect of surfactants on protease activity (at 55 ºC, pH 7.2, for 10 min.) 

 

 

When the effects of the surfactants on protease activity were compared in the 

literature, similar and different results were observed. There was no increasing or 

decrasing of the enzyme activity when the non-ionic surfactants such as Brij-58, Triton 

X-100 and Tergitol were added. The anionic surfactant, 0.1% sodium dodecyl sulphate 

(SDS) caused an inhibition of 23% and 0.5% sodium dodecyl sulphate increased the 

activity (Kumar et al. 1999). The enzyme was stable in the presence of 5% H2O2 

(Johnvesly and Naik 2001). The alkaline protease was stable towards SDS and H2O2. 

5% SDS retained its activity above 96% and 5% H2O2 retained its activity 75% for 72 

hours (Kumar et al. 2004). The activity was enhanced with 0.1% SDS and 0.1% Triton 

X-100 but it was not affected by 0.1%  Tween 80 (Gupta et al. 2005). The enzyme was 

stable with SDS and Triton X-100 (Patel 2006). The protease enzyme was resistant to 

denaturation by SDS, dithiothreitol, urea and guanidine hydrochloride (Zhu 2007). The 

alkaline protease showed highly stability towards non-ionic surfactants (5% Tween-20 

and 5% Triton X-100) and anionic surfactants (0.5% SDS) for 60 min at 40 °C 

(Sellami-Kamoun et al. 2008) 

 

3.4.6. Effect of Inhibitors on Enzyme Activity   

 

Firstly, 1 mM of the inhibitors were used. According to the results, PMSF and 

the protease inhibitor coctail decreased the activity of the protease. In the presence of 1 

mM PMSF, the protease enzyme showed nearly 83% of its activity.  The protease 

inhibitor coctail, which is regarded as a typical inhibitor for all kinds of proteases, did 

not exhibit a strong inhibitory action on the protease enzyme. In the Figure 3.11, the 

Surfactants Concentrations Relative Activity (%) 

Control - 100 

SDS 

Triton X-100 

1% 

1% 

83.2 

97.99 

Tween-20 1% 94.6 

Tween-80 1% 90.6 

H2O2 1% 81 
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results indicated that alkaliphilic and thermophilic protease enzyme was stable in the 

presence of 1 mM of these inhibitors because there was a little loss on the protease 

activiy in the experiments. Thus, higher concentrations of this agent may be required for 

the inhibiton of the enzyme. Later, higher concentraitons  (5-10 mM) of these agents 

were used in the experiments, but the strongest inhibitor could not be observed because 

of the precipitation and turbidity in the activity tests. Thus, the group of enzyme could 

not be classified. 

 

Figure 3.11. Effect of inhibitors on protease activity (at 55 ºC, pH 7.2, for 10 min.) 

 

When the effects of the inhibitors on protease activity were compared in the 

literature, different results were observed. The B. stearotbermopbilus RM-67 protease I 

was inhibited by metal chelating agents 8-hydroxyquinoline-5-sulfonic acid (100%), 

ethylenediaminetetraacetate (EDTA) (45%), and 1,10- phenanthroline (29%) but not by 

dinitrofluorophosphate (DFP) the inhibitor of alkaline proteases. Thus, it may be 

classified as a neutral protease. The B. stearotbermopbilus RM-67 protease II was 

inhibited by DFP Thus, the protease should be classified as a serine protease (Chopra 

and Mathur 1983). The protease enzyme was inhibited strongly by metal chelating agent 

EDTA (Matta and Punj 1998). 1 mM PMSF inhibited the proteases completely (Kumar 

et al. 1999). The metal chelators EDTA and 1,10-phenanthroline exhibited strong 

inhibition towards the enzyme activity. The protease enzymes were 90% inhibited in the 

presence of 10 mM EDTA and 10 mM 1,10-phenanthroline. Thus, they can thus be 

classified as metalloproteases (Sookkheo 2000). The proteolytic activity was inhibited 
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by 1 mM PMSF and TPCK. There was no inhibition in the presence of EDTA and 1,10-

phenanthroline (Johnvesly and Naik 2001). The proteolytic activity was inhibited by 

PMSF and it was suggested that the enzyme was serine type protease (Gupta et al. 

2005). The protease enzymes were inhibited by phenylmethylsulfonyl fluoride (PMSF). 

In the presence of 2-mercaptoethanol and iodoacetate, 80-90% enzyme activities were 

retained (Seifzadeh et al. 2008). 
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CHAPTER 4 

 

CONCLUSION 

 

The microorganisms that were previously isolated and characterized as a 

Bacillus sp. from Balçova Geotermal region in Ġzmir by Elif Yavuz were used in the 

experiments. The aim of this study was to produce the protease enzyme from 

alkaliphilic and thermophilic Bacillus sp. by purifing and determine the properties of the 

enzyme with the characterization. 

Firstly, the bacterial culture number-53 was decided to be used in the 

experiments. When the stock cultures were inoculated to the plate including media used 

for protease screening,  the clear zones around the colonies were observed. This result 

indicated the proteolytic activity. After screening the protease activity, complex 

medium to grow the bacteria in a specific way was decided to be used. In order to 

maintain the purification steps, the enzyme was examined whether it was extracellular 

or intracellular enzyme. When compared with the results, it was observed that the 

extracellular enzyme showed higher activity than the intracellular enzyme. This 

extracellular protease enzyme was purified by ammonium sulphate precipitation (80% 

saturation) and ion exchange chromatograpy by using a weak anion exchange (DEAE-

Cellulose) column. The yield and purification fold after purification of the enzyme were 

33% and 1.41, respectively. 

Later, the characterization studies were examined. The results indicated that the 

protease enzyme isolated from alkaliphilic and thermophilic Bacillus sp. had highest 

activity at pH 8.0 and 55 ºC. The protease enzyme at acidic pH values exhibited a little 

lower activity than the protease enzyme at alkaline pH values. The enzyme lost 20% of 

its activity at pH 4.0 and it lost 10% of its activity at pH 10.0. It was understood that 

this enzyme is nearly stable in these conditions because of having above the 80% of its 

activity at all of the pH values. The results showed that the protease enzyme isolated 

from alkaliphilic and thermophilic Bacillus sp. was stable at different pH values (pH 4-

7-10) during 3 hours but after 3 hours, there was a significant loss in the stability. The 

protease enzyme at temperatures below 55 ºC lost 15% of its activity and also the 

protease enzyme at temperatures above 55 ºC lost 25% of its activity. It was understood 



57 

 

that the protease enzyme is also nearly stable at different temperatures because of 

having above the 75% of its activity at all of the temperatures. The results showed that 

the protease enzyme isolated from alkaliphilic and thermophilic Bacillus sp. was stable 

at different pH values (55-85 ºC) during 6 hours because there was not a significant loss 

in the stability. When compared the substrates, casein showed higher activity and 

azocasein showed lower activity in the experiments. In the effect of metal ions, the 

results shows that Ca
+2 and Cu

+2
 increase the activity of the protease. When the effect of 

organic solvents and surfactants on protease activity was investigated, the results 

indicated that alkaliphilic and thermophilic protease enzyme was stable in the presence 

of 10% of these organic solvents and 1% of these surfactants because there was a little 

loss on the protease activiy in the experiments. In order to determine the type of the 

protease, the effects of inhibitors on enzyme activity were examined. PMSF and the 

protease inhibitor coctail decrease the activity of the protease. In the presence of 1 mM 

PMSF, the protease enzyme showed nearly 83% of its activity.  The protease inhibitor 

coctail, which is regarded as a typical inhibitor for all kinds of proteases, did not exhibit 

a strong inhibitory action on protease. The results indicated that alkaliphilic and 

thermophilic protease enzyme was stable in the presence of 1 mM of these inhibitors 

because there was a little loss on the protease activiy in the experiments. Thus, higher 

concentrations of this agent may be required for the inhibiton of the enzyme.  

In conclusion, the protease enzyme isolated from alkaliphilic and thermophilic 

Bacillus sp. was purified and characterized during the experiments. In the further 

studies, it can be immobilized on to organic or inorganic supports to be used in 

industrial processes and it is also produced by using recombinant DNA technology to 

improve its application in biotechnology. On the other hand, X-ray crystallographic 

analyses of the proteases can be defined the features of the catalytic and structural 

metal-binding sites. 
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APPENDIX A 

 

PREPARATION OF BRADFORD REAGENT, PROTEIN 

STANDARTS AND STANDART CURVE FOR BRADFORD 

ASSAY 

 

A.1. Preparation of Bradford Reagent: 

 

10.0 mg Coomassie Brilliant Blue G-250 (CBB G-250), 5 ml 95% ethanol and 

10 ml 85% phosphoric acid were used. Firstly, 10.0 mg CBB G-250 is dissolved in 5 ml 

95% ethanol and 10 ml phosphoric acid is add. Later, the mixture is diluted to 100 ml 

with ultra pure water. The solution is filtered through Whatman No. 1 paper and store at 

4 ºC. 

 

A.2. Preparation of Protein Standarts: 

 

Bovine serum albumin (BSA) was used as protein standart. For the stock 

solution with a concentration of 0.2 mg/ml; 0.02 g BSA was dissolved in 1 ml dH2O. 10 

μl stock solution and 990 μl dH2O were mixed and the final concentration became 0.2 

mg/ml. While preparing the standarts, necessary amounts of water, BSA and bradford 

reagent were put into cuvettes respectively (Table A.1) and incubated at room 

temperature for 5 minutes. The absorbance was measured at 595 nm using a 

spectrophotometer. 
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Table A.1. Preparation of BSA standarts 

 

 
BSA (µl) dH2O (µl) 

Bradford Reagent 

(µl) 

Blank 0 800 200 

Standart 1: (1 µg/ml) 5 795 200 

Standart 2: (2 µg/ml) 10 790 200 

Standart 3: (4 µg/ml) 20 780 200 

Standart 4: (6 µg/ml) 30 770 200 

Standart 5: (8 µg/ml) 40 760 200 

 

Table A.2. Absorbance values of BSA standarts 

 

Concentration  

(µg/ml) 

Absorbance 

(595 nm) 

1 0.0495 

2 0.1007 

4 0.2052 

6 0.2825 

8 0.3462 
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Figure A.1. BSA standart curve for Bradford assay 
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APPENDIX B 

 

PROTEOLYTIC ACTIVITY DETERMINATION 

STANDARTS AND STANDART CALIBRATION CURVE 

FOR L-TYROSINE ASSAY 

 

Table B.1. Preparation of L-Tyrosine standarts 

 

 

L-Tyrosine 

(µl) 

dH2O 

(µl) 

Blank 0 1000 

Standart 1: (0.2 mg/ml) 200 800 

Standart 2: (0.4 mg/ml) 400 600 

Standart 3: (0.6 mg/ml) 600 400 

Standart 4: (0.8 mg/ml) 800 200 

Standart 5: (1.0 mg/ml) 1000 0 

 

Table B.2. Absorbance values of L-Tyrosine standarts 

 

Concentration (mg/ml) Concentration (µmole) Absorbance (595 nm) 

0.2 0.00625 0.054 

0.4 0.0125 0.128 

0.6 0.01875 0.184 

0.8 0.025 0.238 

1 0.03125 0.313 



72 

 

 
 

 

Figure B.1. Standart calibration curve for L-Tyrosine assay 
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APPENDIX C 

 

MEDIA, BUFFERS, REAGENTS AND SOLUTIONS 

 

C.1. Media and Buffers 

 

 Luria Bertani (LB) broth, per liter 

10.0 g tryptone, 5.0 g yeast extract, 5.0 g NaCl and dH2O up to 1 liter. The mixture was 

autoclaved for sterilization for 15 minutes at 121 °C under high pressure. 

 Complex medium, per liter 

10.0 g glucose, 5.0 g yeast, 2.5 g peptone, 2.5 g casein, 0.3 g MgSO4, 0.02 g FeSO4, 0.2 

g ZnSO4, 1.0 g CaSO4, 1.0 g KH2PO4, 1.0 g K2HPO4 and dH2O up to 1 liter. The 

mixture was autoclaved for sterilization for 15 minutes at 121 °C under high pressure. 

 Media Used For Protease Screening, per liter 

8 g nutrient broth, 10 g skim milk, 15 g agar agar and dH2O up to 1 liter. 

Ingredients except skim milk were dissolved in deionized water. Medium was sterilised 

by autoclaving at 121 °C for 15 minutes. Skim-milk is autoclaved separately at 110 °C 

for 5 minutes (two times) and added to the medium. 

 50 mM Tris-HCl pH 7.2 

6.055 g tris base was dissolved in 800 ml of deionized water. pH was adjusted to 7.2 

with concentrated HCl. Volume is brought to 1 liter with deionized water. 

 

C.2. Reagents Preparation for SDS-PAGE 

 

C.2.1. Stock Solutions in Coomassie Staining 

 

 30% Acrylamide Mixture  

(29.2 g acrylamide, 0.8 g N’N’-bis-methylene-acrylamide) 

Make up to 100 ml with ultrapure water. Filter and store at 4 ºC in the dark for at least 

one month. 
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 1.5M Tris-HCl, pH 8.8 

(18.15 g Tris Base, ~80 ml deionized water) 

Dissolve Tris base in deionized water, adjust to pH 8.8 with HCl. Make up to 100 ml 

with deionized water and store at 4 ºC. 

 0.5M Tris-HCl, pH 6.8 

(6 g Tris Base, ~80 ml deionized water) 

Dissolve Tris base in deionized water, adjust to pH 6.8 with HCl. Make up to 100 ml 

with deionized water and store at 4 ºC. 

 10% SDS 

(10 g SDS, ~90 ml deionized water) 

Dissolve SDS in deionized water with gentle stirring and bring to 100 ml with ultrapure 

water. 

 Sample Buffer 

(3.0 ml ultrapure water, 1.0 ml 0.5M Tris-HCl (pH 6.8), 1.6 ml Glycerol, 1.6 ml 10% 

(w/v) SDS, 0.4 ml 2-mercaptoethanol, 0.4 ml 0.5% (w/v) bromophenol blue)  

Dilute the sample at least 1:4 with sample buffer. Heat 100 C for 10 minutes. 

 5X Running (Electrode) Buffer 

(15 g Tris Base, 72 g Glycine, 5 g SDS) 

Dissolve Tris base, glycine and SDS in ~800 ml deionized water and make up to 1L 

with water. Store at 4 ºC. For electrophoretic run, dilute 5X stock solution to 1X with 

deionized water. 

 10% Ammonium persulfate (APS) 

(0.1 g APS, 1 ml deionized water) 

Dissolve APS in 1 ml deionized water. This solution should be prepared fresh daily. 

 Fixation Solution  

(20% (w/v) TCA solution) 

 Colloidal Coomassie Staining Solution 

Dissolve 40 g ammonium sulfate in ~300 ml water, add 8ml 85% o-phosphoric acid and 

add 0.5 g Coomassie Brilliant Blue G-250. Make up to 400 ml with water, add 100 ml 

methanol to 500 ml total volume. Store at 4 ºC. 

 Destaining Solution 

(25% (v/v) methanol solution, 12.5% acetic acid, 82.5% dH2O) 
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C.2.2. Stock Solutions in Silver Staining 

 

 Fixer Solution  

(150.0 ml ultrapure water, 36.0 ml acetic acid, 150.0 µl 37% formaldehyde) 

Complete to 300 ml with dH20. 

 50% EtOH 

(600.0 ml ultrapure water, 600.0 ml pure EtOH) 

 Pretreatment Solution 

(0.08 g Na2S2O3.5H2O, 400.0 ml ultrapure water) 

 Silver Nitrate Solution 

(0.08 g silver nitrate, 400.0 ml ultrapure water, 300.0 µl 37% formaldehyde) 

 Developing Solution 

(400.0 ml ultrapure water, 9.0 g potassium carbonate, 8.0 ml pretreatment solution, 

300.0 µl 37% formaldehyde) 

 Stop Solution 

(200.0 ml MeOH, 48.0 ml acetic acid) 

 

C.2.3. Gel Preparation 
 

 Separating Gel 

Table C.1. Preparation of 12% SDS-PAGE separating gel (for 10 ml) 

 

 Volume 

Deionized water 2.35 ml 

1.5 M Tris-HCl, pH 8.8 2.5ml 

10% SDS 100.0 μl 

Acrylamide/Bis (30% Stock) 5.0 ml 

10% APS 50.0 μl 

TEMED 5.0 μl 
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 Stacking Gel 

Table C.2. Preparation of 4% SDS-PAGE stacking gel (for 5ml) 

 

 Volume 

Deionized water 3.05 ml 

0.5 M Tris-HCl, pH 6.8 1.25ml 

10% SDS 50.0 μl 

Acrylamide/Bis (30% Stock) 650.0 μl 

10% APS 25.0 μl 

TEMED 5.0 μl 

 


