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ABSTRACT 

 

FABRICATION OF TRANSPARENT POLYMER NANOCOMPOSITES 

CONTAINING PMMA-GRAFTED CeO2 PARTICLES 

 

             The composite materials prepared by transparent polymer and nanosized 

particles possess promising future in optical design and applications since their 

controllable optical properties. In this study, transparent/translucent composite films 

based on polystyrene (PS) and poly(methyl methacrylate) (PMMA)-grafted CeO2 

nanoparticles were prepared. CeO2 nanoparticles were precipitated from 

Ce(NO3)3·6H2O and urea in dimethyl formamide at 120C. The surface of the 

nanoparticles was modified with a polymerizable surfactant, 3-

methacyloxypropyltrimethoxy silane (MPS) in situ at 0C. The size of the particles was 

fixed to 18 nm in diameter. The particles were dispersed into a mixture of 

MMA:toluene solution. The free radical solution polymerization was carried out in situ 

at 60C using benzoyl peroxide (BPO) as initiator. A PMMA layer is formed around 

CeO2 nanoparticles. The thickness of the shell ranged from 9 to 84 nm was controlled 

by the amount of BPO using 6 and 0.5 wt %, respectively with respect to monomer. The 

layer thickness was found to be inversely proportional with the amount of initiator. The 

resulting PMMA-grafted CeO2 particles were blended with PS in tetrahydrofuran and 

the solution was spin-coat on a glass slide. CeO2 content in the composite films was 

fixed to 5.5 wt %. The transmission of the films was examined by UV-vis spectroscopy. 

The transmission of the PS composite prepared by neat CeO2 particles was 71 %. It was 

increased to 85 % when the composite prepared with PMMA-grafted CeO2 particles 

whose PMMA thickness is 9 nm. We believe that the achievement in transparency is 

most probably due to the reduction in refractive index mismatch between CeO2 particles 

and PS matrix using PMMA layer at interface.   
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ÖZET 

 

PMMA KAPLANMIŞ CeO2 TANECİKLERİ İÇEREN ŞEFFAF 

POLİMER NANOKOMPOZİTLERİN ELDESİ  

 

               Şeffaf polimerler ve nanoboyutta parçacıklardan oluşan kompozit malzemeler 

sahip oldukları kontrol edilebilir optik özelliklerinden dolayı optik tasarımlarda ve 

uygulamalarda umut vaadeden bir geleceğe sahiptir. Bu çalışmada, polistiren (PS) ve 

polimetil metakrilat (PMMA) kaplanmış CeO2 nanotanecikleriyle hazırlanmış 

şeffaf/yarı şeffaf kompozit filmler elde edilmiştir. CeO2 nanotanecikleri, dimetil 

formamid içerisinde hazırlanan Ce(NO3)3·6H2O ve ürenin 120 °C’ de çöktürülmesi ile 

elde edilmiştir. Nanoparçacık yüzeyleri polimerleşebilen bir yüzey aktifleştirici olan 3-

metakriloksipropiltrimethoksisilan (MPS) ile 0 °C‘de tepkime ortamında 

değiştirilmiştir. Tanecikler, boyutları  18 nm olacak şekilde hazırlanmıştır. Tanecikler 

MMA:toluen karışımı içerisinde dağıtılmıştır. 60 °C’ de benzoil peroksit (BPO) 

başlatıcısı varlığında serbest radikal polimerleşmesi gerçekleştirilmiştir. Parçacıkların 

etrafında PMMA tabakası oluşturulmuştur. Parçacık üzerindeki polimer kabuğun 

kalınlığı monomere göre kütlece % 6 ‘dan % 5’ e kadar değişen oranda BPO kullanarak 

9 nm’ den 84 nm’ ye kadar kontrol edilmiştir. Polimer tabakasının kalınlığının 

başlatıcının miktarı ile ters orantılı olduğu gösterilmiştir. Elde edilen PMMA kaplı 

CeO2 parçacıkları  tetrahidrofuran içerisindeki PS ile karıştırılmış ve cam üzerine döngü 

kaplama ile kaplanmıştır. Kompozit film içerisindeki CeO2 miktarı kütlece % 5.5 

oranında hazırlanmıştır. Filmlerin optik iletimi  UV-vis spektrometresi ile incelenmiştir. 

Yüzeyi değiştirilmemiş CeO2 parçacıkları ile hazırlanmış PS kompozitlerinin optik 

iletimi % 71 olarak bulunmuştur. Yüzeyi 9 nm kalınlığında PMMA tabakası ile 

kaplanmış CeO2 parçacıkları ile hazırlanan kompozitte ise optik geçirgenlik % 85’ e 

çıkarılmıştır. Şeffaflıkta elde edilen bu iyileşmenin sebebinin, CeO2 ile PS arasındaki 

kırılma indisi uyumsuzluğunu azaltan ara yüzeydeki PMMA tabakası olduğu 

düşünülmektedir. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Nanoparticle  Polymer Composites: A Smart Association 

 

                  The combination of nanoparticles with polymers to generate composite 

materials has been experienced for many years. The early examples date back to the 

middle of 19
th

 century. Charles Goodyear, who was also inventor of vulcanized rubber 

attempted to prepare nanoparticle-reinforced automobile tires by blending carbon black, 

zinc oxide and magnesium sulfate with a rubber. (Balazs, et al. 2006; Goodyear 1856) 

Although a little wiggling  was perceived in the early of 1900’s by the the invention of 

clay-reinforced resin known as Bakelite, (Baekeland 1909) a long period of time, 

scientific community fallen a deep sleep about this topic until the early 1990’s. In the 

1993, a group of scientist from Toyota company succeeded to produce five-fold 

strengthen nylon by blending with mica. (Balazs, et al. 2006; Kojma 1993) After that 

time, many researches have been successively performed and eventually this research 

area in material science has been refreshed. From that time on, thousands of 

combinations have been tried in both academic and industrial researches. According to 

the Web of Science Database (Data were collected by the time at 23.04.2011), when 

some related words are searched for in topic, following data were obtained. The 

numbers represent number of publications in related search topics. 

  

Polymer composites: 30.570 

Polymer nanocomposites: 13.156 

Nanoparticle polymer nanocomposites: 3.571 

Optical properties of nanoparticle polymer nanocomposites: 462 

 

                   From the beginning of 1970’s to early of 1990’s, average number of 

publications per year on polymer composites is only 21, however from 1990’s to 2011, 

that number increases 72-fold and reaches to 1507 publications per year. While  

polymer nanocomposites constitute  43 % of all polymer composite studies, 
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nanoparticle polymer nanocomposites constitute only 12 %. Moreover, optical 

properties of nanoparticle polymer nanocomposites constitute only 1.5 %. Based on 

these data, it is obviously seen that, studies on optical properties of nanoparticle 

polymer composites are very scarce and it can be said that ‘’There is still plenty of room 

at the bottom.’’ 

              To design polymer nanocomposites, a lots of material such as carbon 

nanotubes, inorganic nanoparticles, clay minerals, and biomaterials have been used for 

two decades to improve  mechanical, thermal, transport, and optical properties. 

(Bockstaller, et al. 2005; Bombalski, et al. 2007; Tu, et al. 2010) Recently, optical 

applications of polymer nanocomposites come into prominence in parallel with the 

development of optic, optoelectronic, information, and telecommunication technologies. 

The composites prepared by a transparent polymer and nanosized pigment particles 

have attracted great interest since they exhibited controllable optical properties. 

(Beecroft and Ober 1997; Caseri 2009; Lu and Yang 2009) Polymers, on the one hand, 

offer transparency, ease of processing, and structural flexibility; pigment particles, on 

the other hand, provide desired features including high refractive index, emission, 

absorption, nonlinear optical properties. By combination of these two dissimilar 

materials, material scientists have long appealed to develop novel optical polymer 

nanocomposites for various existing and potential applications such as  waveguides, 

(Chang and Chen 2002; Yamada, et al. 1999; Yoshida and Prasad 1996) liquid crystal 

display coating, (Qi and Hegmann 2008) and non-linear optical materials. (Asunskis, et 

al. 2008; Du, et al. 2002; Elim, et al. 2003; Feng, et al. 2009; Kulyk, et al. 2009; 

Yuwono, et al. 2006) To this aim, many pigment particles and transparent polymers 

have been associated. Some examples are ZnO/PMMA, ZnO/PHEMA, (Hung and 

Whang 2005) SiO2/PMMA, (Palkovits, et al. 2005) TiO2/PVAL, (Nussbaumer, et al. 

2003) CdS/PS, (Du, et al. 2002) CdS/PMMA, (Khanna and Singh 2007) ZrO2/PMMA, 

(Hu, et al. 2009) , CdTe/PS, (Zhang, et al. 2003) BaTiO3/PI. (Devaraju, et al. 2005) 

However, a sharp refractive index increase at the interface of pigment particles and 

polymer matrix results strong scattering, thereby optical clarity of the composite system 

rapidly diminishes.(Hulst) Rayleigh scattering that is applicable to small, dielectric 

(non-absorbing), and spherical particles has been mainly applied. Based on this theory, 

when the size of scatter is smaller than the wavelength of incident light, light scattering 

is suppressed and the medium remains transparent. Moreover, the intensity of scattering 

increases with the radius of the scatterer and with the mismatch in refractive index of 
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scatterer and surrounding medium. The loss of transmitted light intensity by scattering 

can be estimated by the following expressions: (Caseri 2006; Novak 1993) 
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 where T is the transmission, r is the radius of scatteres, λ is wavelength, ϕ is particle 

content, s or x is thickness of the material investigated, np and nm are the refractive 

indices of the particles and the polymer matrix, respectively. Among the four 

parameters, the size of the scatterers is obviously the dominant one. (Caseri 2009) A 

slight increase in the radius of scatters causes a dramatic decrease in the intensity of 

incident beam and makes the material rapidly opaque.  

 

 

 

Figure 1.1. Transmittance of composite of 100 µm thickness, volume fraction of 

particles of 0.1, refractive index of the matrix of 1.5 and of the particles 

2.7 at a wavelength of 500 nm calculated with Equation 2. (Source: Caseri, 

et al. 2009)  
 

                   Scatterers here refer to particle domains. A particle domain could be an 

individual  particle or an aggregate/agglomerate of many individual nanoparticles. 

Considering the strong tendency of nanosized particles forming large particle domains, 
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the achievement of transparency in polymer nanocomposites is quite demanding. This is 

because an intensive work in literature has been focused on to control the domain size 

of nanosized pigment particles in preparation of transparent nanocomposites. For the 

size of optically isotropic particles is significantly is less than wavelength of the light, 

the particle cross-section is formulated by the following expressions: (C.F. Bohren 

1983) 

 

                                                            2
psca

VC                                                           (1.3) 

 

                   Where Vp is the particle volume and Δα is the polarizability of the particle in 

polymer matrix.  

 

                                  0>>2/
mpmp

                                (1.4) 

 

                   Where Ɛp and Ɛm are dielectric constants of the particles and polymer matrix 

respectively and it is expressed as (Ɛi = (ni)
2
). For the most of inorganic-polymer 

materials combination, even if the particles are in range of 20-40 nm and non-

aggregated, the scattering cannot be prevented and transparency of nanocomposites still 

remains an inadequate.(Demir, et al. 2007b)  

              The physical origin of scattering is the refractive index (RI) mismatch between 

particles and surrounding polymer matrix.(Hulst) When RIs of the components match, 

light cannot differentiate particles as a scatteres, and eventually scattering can be 

prevented, at least to some extends.(Schulz, et al. 2007) RI is an intrinsic property; 

however, it can be readily modified by the addition of a second material component 

which can modify the RI of the materials such that the mismatch between particles and 

polymer matrix can be minimized. Based on this approach, scattering of inorganic 

particles can be suppressed by grafting of polymer/different inorganic phase of correct 

composition, molecular weight and/or shell thickness from the surface of particles. 

Grafting of particle surface allows one to match the effective dielectric constant of the 

desired core-shell particle to the dielectric constant of the embedding medium. For the 

core-shell particles at wavelengths larger than particle diameter, dielectric constant, in 

other words, refractive index of filler particles can be calculated by Maxwell-Garnett 

theory as 
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where x = 1/3( Ɛcore-Ɛshell)/(Ɛcore-Ɛshell)), Ɛcore and Ɛshell represent the dielectric constant of 

the particle core and shell respectively. ϕ= Vcore / (Vcore + Vshell) is the relative particle 

core volume.(Bombalski, et al. 2007) With this approach, when the effective dielectric 

constant of  the integral filler particle equals to the embedding medium, scattering can 

be suppressed. Equation 5 allows one to match refractive index of filler particles and 

embedding medium by the following condition (nparticle > nmedium > nshell ).    

              Recent progress in the fabrication of well-defined nanostructured(Advincula 

2006; Talapin, et al. 2010) and binary mixture of oxidic particles have allowed to 

engineer the refractive index of the filler particles.(Schulz, et al. 2005; Yang, et al. 

2008) Bockstaller and Matyjazewski showed the reduction of optical scattering of SiO2 

nanoparticles in toluene.(Bombalski, et al. 2007) A PS layer was obtained on the 

surface commercial SiO2 nanoparticles with 0.19 weight percentage of m(PS) relative to 

m(SiO2) using surface-initiated Atom Transfer Radical Polymerization. The scattering 

coefficient of the resulting core-shell particles is reduced more than 20 folds compared 

to that of neat SiO2 nanoparticles. According to the Authors’ word, a null scattering 

condition is achieved with this material combination.  
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Figure 1.2. Proposed design for core-shell particles (a), change in scattering intensity as 

a function of particle composition. (Source: Bombalski, et al. 2007)    

 

              Another example using index matching approach to achieve transparency was 

reported by Li et al. (Li, et al. 2008) The core–shell structured silica–titania 

nanoparticles were prepared and embedded into transparent epoxy matrix. The 

transmittance of particle loaded epoxy composites was investigated as a function of  

mass composition m(TiO2)/m(SiO2). A variety of weight percent of shell  was prepared 

on silica core ranging from 0 to 60 wt %. For loading of 1 wt % of core-shell particles, 

it was claimed that the optimal transmittance of the nanocomposite was attained at a the 

shell content where refractive index matching is satisfied between core-shell particles 

and polymer matrix.(Li, et al. 2008) 

              

 

 

Figure 1.3. Schematic illustration for the preparation of the transparent S-T/epoxy   

nanocomposites.(Source: Li, et al. 2008)
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Figure 1.4. Photo of nanocomposites as a function of the shell weight percentage. 

(Source: Li, et al. 2008) 

                    

              Mixed-oxide nanoparticles are also utilized for the preparation of transparent 

nanocomposites by index matching principle mainly used in dental applications. Silica 

fillers are widely used in composites structure because of their well-studied silanization 

mechanisms resulting in excellent polymer/filler particles. It is a good host for heavy 

metals centers. It has no absorption band at all in the visible spectrum and has refractive 

index at 1.46 at 633 nm. The addition of heavy metals into SiO2 structure such as Ta2O5 

(Schulz, et al. 2005) or ZnO (Yang, et al. 2008)  enables to control the refractive index 

of mixture and provides transparency of the polymer nanocomposites. The refractive 

index of these particles can be controlled via the heavy metal oxide component. For 

SiO2/Ta2O5 system, RI was changed from 1.46 (=SiO2) to more than 1.8. In the present 

work, we demonstrated that transparency of a composite system can be remarkably 

increased when refractive index difference is minimized between particles and 

surrounding polymer matrix. The association of PS and unmodified CeO2 particles 

result an opaque material due to the both aggregation of particles and the RI mismatch. 

A robust and facile procedure for the preparation of translucent system taking PS matrix 

and PMMA-grafted CeO2 is proposed as a model system. Ceria is a wide band-gap 

semiconductor and absorbs in UV-A region of optical spectrum and emits light in 

wavelength.(Zhang, et al. 2004) It has a refractive index 2.20 at 633 nm.(D.N.) PS and 

PMMA are two transparent and incompatible polymers.(Helfand and Tagami 1972) The 

indice of surrounding PS matrix is 1.59.(J. C. Seferis in : J. Brandrup) The mismatch in 

refractive indices between matrix and nanoparticles is offset by PMMA layer, whose 

index is 1.49 at the same wavelength.(J. C. Seferis in : J. Brandrup) This layer is found 

with a controlled thickness on the ceria employing free radical solution polymerization. 
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This combination of materials (nCeO2 > nPS > nPMMA) fulfills index matching principle 

when the correct composition of CeO2 and PMMA is provided. 
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CHAPTER 2 

 

PREPARATION TRANSPARENT PS  / PMMA-GRAFTED 

CeO2 NANOCOMPOSITES 

 

              Optical bulk nanocomposites based on polystyrene and PMMA-grafted CeO2  

collaidal nanocomposite particles were prepared. The schematic demonstration of the 

entire process is presented in Figure 2.1. In the following, synthesis and chracterization 

of each step of this process are discussed in detail. 

 

 

 

Figure 2.1.  Schematic illustration for the preparation of transparent PS / PMMA- 

grafted CeO2 nanocomposites. 
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2.1 Experimental 
 

2.1.1 Synthesis and Surface Modification of CeO2 Nanoparticles 

 

             Nanosized ceria (CeO2) particles were precipitated from solution of Cerium 

nitrate hexahydrate (Ce(NO3)3·6H2O) and urea (CO(NH2)2) in dimethyl formamide 

(DMF). In a typical run, 12.5 mL of 1.5 M urea solution was dripped at a rate of 2-3 

mL·min
-1

 from a syringe into an equal volume of 0.5 M Ce(NO3)3·6H2O solution at 120 

°C, then refluxed under mild stirring. Reflux was maintained for 1h. For surface 

modification of nanosized CeO2 particles, 0.5 mL of MPS in 5 mL DMF was injected 

dropwise to the above suspension under nitrogen atmosphere at 0-10 °C. The mixture 

was then further stirred for 12 h. The resulting suspensions were subjected to three 

cycles of centrifugation to isolate the CeO2 nanoparticles. The particles were washed 

with fresh ethanol to remove excess MPS and were dried in a vacuum at 50 °C for 8 h 

prior to in situ polymerization. 

 

 

 

Figure 2.2. Schematic illustration CeO2 nanoparticle synthesis. 
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2.1.2. Preparation of PMMA-grafted CeO2 Core-shell Particles 

 

              The surface-modified CeO2 particles (20.0 mg) were dispersed in a mixture of 

MMA-toluene (10:20 in mL). The polymerization was carried out in the presence of 

these particles at 60 °C using BPO as initiator with different contents (0.5, 1.0, 1.5, and 

2.0, 4.0, 6.0 wt % ). The particle content was fixed to 0.1 wt % with respect to the 

amount of MMA. The dispersions in MMA-toluene mixture were sonicated for 15 min 

and kept overnight in the dispersed state to provide complete wetting of particle surface. 

After a second sonication for 15 min, BPO was added into each dispersion with 

different amounts. Three cycles of a freeze-thaw process were applied to the dispersions 

prior to polymerization. The flask containing surface modified ceria particles and 

MMA/toluene mixture were placed into a preheated oil-bath at 60 °C. The 

polymerization proceeded under nitrogen atmosphere along 6 h, and it was ended up by 

quenching to room temperature. The resulting colloidal nanocomposite particles (CeO2 

core-PMMA shell) were isolated by three cycles of centrifugation and washing with 

THF were used to remove unreacted monomer and free polymers in the polymerization 

mixture. Then, the colloidal nanocomposite particles were dried in vacuum at 40 °C for 

12 h. 

 

2.1.3. Preparation of PS / PMMA-grafted CeO2 Nanocomposite Films 

 

              CeO2 core-PMMA shell particles were dispersed in PS-THF solution ( 20.0 wt 

% PS ), and kept overnight in the dispersed state by stirring. For each dispersion, CeO2 

content was kept constant (5.0 wt %). After sonication for 30  min, composite films 

were prepared by spin-coating (Laurell Technologies Corp.) on glass or quartz 

substrates. The film thickness was controlled by the variation of solid content of the 

THF solution and by the spinning speed. 
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2.2. Results and Discussion 

 

2.2.1. Controlled Precipitation of Ceria Nanoparticles 

 

           Nanosized CeO2 particles were prepared by the precipitation of Ce(NO3)3·6H2O 

and urea in DMF at 120 °C. Ce(NO3)3·6H2O was dissolved in preheated DMF and urea 

was gradually added into the solution under continous stirring. At the beginning of the 

reaction, the mixture was clear. After 15 min of reaction, it turned into translucent 

indicating that nucleation of CeO2 particles started. In 1h reaction time, the mixture 

turned into opaque dispersion. Average size of particles was followed by DLS during 

the reaction and it was found that size of particle increased gradually up to the 

submicron levels at the end of 6h. Figure 2.3. shows average particle size after 1 hour is 

18 nm. When the reaction was proceeded for further 5 hours, average diameter of 

particles reaches 600 nm.  Because of that, monitoring of particle size against time was 

crucial to designate the surface modification time.  

1 2 3 4 5 6
0

150

300

450

600

D
ia

m
et

er
 / 

nm

Time (hours)

 

 

 

Figure 2.3. Particle diameter versus time of the CeO2 particles in reaction medium.
 

           While the particles grow and simultaneously new particles nucleated, a 

polymerizable surfactant (3-methaxcryloxypropyl trimethoxysilane) (MPS) was added 

into the dispersion at 1h reaction time. The reactor was quenched to 0-10 °C to prevent 
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polymerization of the surfactant at high temperature. This in situ surface modification 

was proceeded for further 12 hours to achieve a uniform surface coverage. Particle size 

was followed by DLS and it was found that the MPS-modified CeO2 particles were kept 

18 nm in diameter. MPS as a surfactant has dual functions: (і) stabilization of particle 

dispersion and make particles redispersible in organic medium. (іі) provide suitable 

environment to generate polymer layer on particle surface due to the presence of vinyl 

groups. To validate particle stabilization after surface modification, MPS-modified and 

unmodified CeO2 particles were redispersed in DMF and size of particles was measured 

after 12 days aging. After a period of 12 days at room temperature, average diameters of 

MPS-modified particles were found  to be still 18 nm. However, size of unmodified 

particles increased to the 850 nm due to the agglomeration of particles. Figure 2.4. 

shows change in average diameters of both modified and unmodified particles after 12 

days. Inner image of Figure 2.4. also shows appearance of each dispersion. It was seen 

that, dispersion containing modified ceria were still clear.  

 

 

Figure 2.4. Particle diameter versus aging time of the CeO2 particles in DMF. 

 

              To characterize bonding fashion of MPS on CeO2 particles, 
1
H NMR spectra of 

the polymerizable surfactant (MPS), unmodified CeO2 particles and MPS-modified 

CeO2 particles in deutorated dimethyl sulphoxide (DMSO-d6) were measured. In the 
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spectrum of MPS, the resonance signals at 6.01 and 5.64 ppm may belong to the 

methylene protons (H1); and the signals at 4.03, 1.67 and 0.62 ppm are attributed to the 

α-CH2, β- CH2,  γ- CH2 protons (H3, H4 and H5) to methacrylate respectively. The signal 

at 1.87 ppm is caused by methyl protons near the methylene group (H2). The most 

intense signal at 3.46 ppm is due to the presence of nine methyl protons on the 

trimethoxysilanes in the same environment (H6). Unmodified CeO2 particles does not 

give any specific resonance signal. In the spectrum of unmodified CeO2, the resonance 

signal at  3.30 ppm  may belong to the surface hydroxyl (-OH) protons on the particle 

surface. However, in the spectrum of MPS-modified particle, all signals belongs to MPS 

is still observed. The sign of chemical grafting of MPS on to the particle surface can be 

observed by line broadening. In signal coming from methylene protons (-OCH3) at 

3.40-3.46 is broadened after MPS modification to the surface of particles. (Kohlmann, 

et al. 2001) 

 

 

 

Figure 2.5. 
1
H NMR spectra of the polimerizable surfactant, unmodified CeO2 

nanoparticles and MPS-modified nanoparticles. 
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2.2.2. Preparation of PMMA Layer on the Ceria Nanoparticles 

 

          The MPS-modified particles were dispersed into a mixture of MMA-toluene and 

polymerization was carried out in situ at 60 °C using BPO as an initiator. The vinyl 

groups on the particles surface are reactive and contribute to polymerization of MMA. 

Eventually, the particles are covered with a PMMA layer. The PMMA-grafted CeO2 

colloidal nanocomposites were isolated by dissolution of bulk polymer in the reaction 

using THF and by centrifugation to be further dispersed into bulk PS matrix. 

Interparticle distance must be longer than the size of the average chain. If an average 

polymer chain gets longer than interparticle distance during polymerization, the chain 

may transit more than one particle. As a result, a three dimensional network where 

particles are junction points is formed throughout reactor and the particles cannot be 

isolated from the system by dissolution since crosslinked structures are insoluble. This 

is because the particle content in the in situ polymerization is an important point that 

must be carefully adjusted. It was fixed to low content (0.1 wt %) to prevent formation 

of undesirable network structure.  

           Figure 2.6. presents the number size distribution of MPS-modified and 

PMMA-grafted CeO2 hybrid particles prepared at different BPO content. The results 

were obtained by DLS in toluene. While MPS-modified CeO2 particles exhibit uniform 

size distribution with a mean diameter of 18 nm, the size of PMMA-grafted CeO2 

hybrid particles extends to large diameters depending on the amount of BPO employed. 

The diameter of the hybrid particles was found to be inversely proportional with BPO 

content. For example, the mean diameter of the hybrid particles was 36 nm when the 

amount of BPO was 6 wt %. As BPO content was reduced to 0.5 wt %, the mean of the 

particle size distribution increased gradually to 186 nm. PMMA-grafted CeO2 particles 

hybrid particles are, in fact, have core-shell nanostructure. The diameter of CeO2 core 

was kept at 18 nm and PMMA shell varied depending on initiator content. Assuming 

that the core particles have spherical shape and a uniform grafting of PMMA chains 

exist, PMMA shell thickness (t) can be obtained by subtracting the diameter of CeO2 

core than the mean diameter of PMMA-grafted CeO2 particles. The left-y-axis of Figure 

2.7. shows the thickness of PMMA layer estimated by this subtraction as a function of 

initiator (BPO) at fixed amount of monomer. The thickness showed a first order decay 

with increasing of the initiator content. 
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Figure 2.6. DLS number size distribution of CeO2 core and PMMA-grafted CeO2 

particles at varying shell thickness in toluene. 
 

            It was previously shown that the particles in polymerization medium interfere 

with the polymerization process.(Demir, et al. 2007a; Demir, et al. 2006; Kashiwagi, et 

al. 2003) The in situ formed polymer chains are in general longer compared to the 

chains obtained in the absence of nanoparticles. To make a rough estimation about the 

molecular weight obtained on the surface of particles, polymerization was carried out in 

absence of particles using the same conditions (temperature, time, solvent, and initiator 

content) employed in the process of in situ polymerization. The results of the 

experiments are given on right y-axis of Figure 2.7. As expected, an inverse relationship 

takes place between the molecular weight and the initiator content. For a typical free 

radical polymerization, it is well-known that initiator amount is inversely proportional 

with the square root of kinetic chain length of polymer chain obtained.(Odian) At a 

fixed amount of monomer, increasing concentration of initiator leads to formation of 

smaller chains. Thus, a similar relationship between the amount of initiator and t was 

observed in our particular example. The higher the BPO content, the shorter the PMMA 

thickness is. The diameter of PMMA coil in toluene (a good solvent) can be estimated 

from the Flory’ s meanfield approach:(Flory 1953)  
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Rg = N
3/5

 l       (2.1) 

 

 where Rg is radius of gyration that is average distance from the center of the gravity to 

the chain segment. N is degree of polymerization, and l is the length of C-C bond in 

monomer (1.5 Ǻ). Based on this calculation, it is obvious that the thickness of PMMA is 

longer than the size of an average chain. For example, the diameter of a PMMA coil is 

10 nm when the BPO content was 1.5 wt %. At the same BPO content, the thickness of 

the shell is 29 nm. This result indicates the existence of multilayer grafting of PMMA 

chains on the surface of CeO2 core. In the first layer, PMMA chains are chemically 

linked to the surface of the particles through MPS from one may be more than one 

molecule. In the second layer, the chains are physically adsorbed to the first layer. This 

process occurs several times layer-by-layer radially outward from the surface of 

particles and eventually forms a homogeneous coating around each particle, called 

bound polymer. Note that the chains adsorbed onto the surface via mainly physical 

means; however, the detachment of the chains was not observed. The dispersion of 

hybrid particles was stable such that the same particle size distribution was obtained 

from the hybrid particles even after 1 week stay in the shelves.  
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Figure 2.7. The thickness of PMMA shell and molecular weight of PMMA prepared in 

the absence of particles as a function of initiator (BPO) content. 
 

            



 

 

 

19 

              Figure 2.8. depicts typical powder X-ray diffraction (XRD) patterns of 

unmodified, MPS-modified and PMMA-grafted CeO2 nanoparticles. The patterns show 

chracteristic diffractions of CeO2. All diffraction peaks of CeO2 nanoparticles 

correspond to a cubic flourite structure (JCPDS-34-0394) and they can be indexed as 

(111), (200), (220), (311), (400) and (331). After MPS-modification of particles, all 

diffractions of particles are avoided. However, XRD pattern of PMMA-grafted particles 

is smoother than other patterns. It is known that crystallinity of polymers is amorphous 

and grafted polymers suppress chracteristic peaks of CeO2.  

               Crystallite size of the particles was determined from the line broadening of the 

(111) reflection of the XRD pattern using Scherrer’s formula: 

 

b
BCos

L





     (2.2) 

 

where  L is the mean particle size, α is a geometric factor equal to 0.94, λ is the X-ray 

wavelength (1.542 Å), and β is the half-width of the diffraction peak. The size of the 

crystallite particles was found to be  15.7 nm for the unmodified CeO2 particles. 

             

20 40 60 80

 

2 

In
te

ns
it

y 
(a

. u
.)

PMMA-grafted CeO
2

MPS-modified CeO
2

Unmodified CeO
2

(1
11

)

(2
00

)

(2
20

)

(3
11

)

(4
00

)

(3
31

)

 

 

 

Figure 2.8. Powder X-ray diffraction spectra of unmodified, MPS-modified and 

PMMA-grafted CeO2 particles. 
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           A drop of PMMA-grafted CeO2 dispersion was cast on TEM grid from toluene. 

After evaporation of solvent, the surface is examined by TEM. Figure 2.9. shows TEM 

images of MPS modified and PMMA-grafted CeO2 particles. Panel a shows 

representative overview image of MPS-modified CeO2 particles in well-dispersed state. 

The particles are spherical and uniform size. The average particle diameter measured 

from 100 particles was about 18  8 nm, that is consistent with the size measured by 

DLS (d = 18 nm). While the MPS-modified CeO2 particles are well separated on carbon 

film of the TEM grid, the PMMA-grafted CeO2 particles appeared in clusters. The 

adhesive interaction between the PMMA segments of neighboring PMMA-grafted CeO2 

particles leads to formation of clusters. The core CeO2 particles are evident in the 

clusters. Although the entire population of core-shell particles is individually dispersed 

in toluene depending on DLS measurements, the colloidal nanocomposites adhere each 

other due to solvent evaporation. 

               

 

 

Figure 2.9. TEM images obtained from (a) as-synthesized CeO2, (b) PMMA-grafted                                                                                                                                                  

CeO2  particles with 16 nm PMMA thickness, and (c) PMMA-grafted 

CeO2 particle with 29 nm PMMA thickness. 
 

               The corresponding MPS-modified CeO2, and unmodified CeO2, and PMMA-

grafted CeO2 particles with varying thicknesses were characterized by TGA (Figure 

2.10.). Below 300 °C, mass loss of nearly 4 wt % takes place due to loss of absorbed 

water and dehydration of silane groups on particle surface. A sharp mass loss was 

observed from 300 to 400 °C owing to the thermal oxidation and decomposition of 
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polymer layer grafted onto the CeO2 particles. As a result of disappearance of polymeric 

residue, the mass stays almost unchanged above 400 °C. The remaining mass refers to 

inorganic residue mainly composed of CeO2 particles. Therefore, the percent mass loss 

above this temperature hint about the amount of PMMA layer on ceria particles. 

Considering that the size of CeO2 particles remains unchanged at 18 nm, the PMMA-

grafted nanocomposite particles that have longer shell thickness should undergo higher 

amount of mass loss, this is in fact what we have observed in this thermogram. The 

mass loss originated from PMMA on the particle surface  were found as 73, 75, and 93 

wt % for the core-shell particles having 9 nm, 11 nm, and 16 nm shell thicknesses, 

respectively. 
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Figure 2.10. TGA curves for unmodified, MPS-modified and PMMA-grafted CeO2  

particles. 
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Table 2.1 Theoretical and measured mass ratio of PMMA shell to the particle core.   

(Theoretical calculations were made by assuming each particle size as 18nm, measured 

data by obtained after TGA measurements ) 
 

              Sample  Theoretical  (mshell/mcore)  Measured (mshell/mcore)  

Unmodified CeO2  - - 

MPS-modified CeO2  - - 

 t : 9 nm  1.3 2.6 

 t : 11 nm 1.5 3 

 t : 16 nm 7 13 

 t : 29 nm 11 24 

 t : 54 nm 50 26 

 t : 84 nm 140 34.7 

 

              The grafting of both MPS and PMMA on the surface of core ceria 

nanoparticles was validated by vibrational spectroscopy. FTIR spectra of unmodified 

CeO2, MPS-modified CeO2, and PMMA-grafted CeO2 nanoparticles are shown in 

Figure 2.11. The strong absorption band at 1384 cm
1

 is present at all three spectra 

regardless of the chemical grafting on the particle surface. This band is attributed to the 

surface adsorbed nitrate groups coming from the unreacted 

Ce(NO3)3·6H2O.(Hashimoto, et al. 2000; Xu, et al. 2008) Upon surface treatment of the 

particles with MPS, three major signals at 1722 cm
-1

, 1638 cm
-1

 and 1193-1168 cm
-1

 

appear in the spectrum as a result of C=O stretching, C=C stretching, and ester vibration 

(C-O-C), respectively. We observed that the signals of adsorbed groups are remarkably 

broader compared to the one of fresh MPS. Moreover, the spectrum of MPS-modified 

CeO2 particles shows some of new bands in the range of 800-1000 cm
-1

 other than 

signals of fresh MPS. These bands are originated from Ce-O-Si bond indicating 

hydrolysis of hydroxyl groups on CeO2 surface with silanol groups of MPS and 

succesful chemical grafting of MPS onto particle surface. After polymerization of 

MMA and MPS on particle surface, the shape of the spectra is strongly altered. The 

spectral feature is almost disappeared. The signals are broadened and intensity of 

signals is remarkably reduced. The finger print signal of carbonyl group at 1722 cm
1

 

and 1600 cm
 1

 are evident in the spectra. The characteristic signals of PMMA chain 
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overcome the signals of MPS and CeO2, the surface of particles is fully covered with 

PMMA chains. 
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Figure 2.11. FT-IR spectra of unmodified, MPS-modified and PMMA-grafted CeO2 

particles. 
 

2.2.3. Preparation of PS / PMMA-grafted CeO2  

 

               A series of nanocomposites was prepared by blending of PS / THF solution 

(20.0 wt % PS) with neat CeO2 particles, MPS-modified CeO2 particles, and PMMA-

grafted CeO2 particles with different shell thicknesses. The composite films were 

carefully examined by AFM to figure out the dispersion of PMMA-grafted CeO2 

particles in PS matrix. Figure 2.12. shows AFM tapping mode phase images of PS 

matrix loaded with PMMA-grafted CeO2 particles with different PMMA shell 

thickness. In fact, PS and PMMA are two dissimilar polymers that undergo macrophase 

separation.(Helfand and Tagami 1972) Since PMMA chains are chemically grafted onto 

the surface of CeO2 particles in our system, macrophase separation is not observed. In 

AFM, a sharp tip slides across the surface to gain information. The interaction of the tip 

is limited with the outer topmost layer of a specimen. The bright regions in the images 
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refer to PMMA layer present on the CeO2 particles so that the CeO2 core cannot be 

resolved from the images. The average diameter of the PMMA-grafted CeO2 particles 

observed by AFM is compared with the mean diameter of particles measured by DLS. 

The results are given in Table 1. For example, in panel a, the diameter of particles was 

found as 134±100 nm measured from at least 20 particles. The mean diameter of 

particles was measured as 126 nm by DLS. In Panel b, the diameter of these particles 

was found as 57±19 nm whereas the mean diameter of these particles was found as 76 

nm in DLS measurement. The consistency of the results obtained by AFM and DLS 

indicates that the PMMA-grafted CeO2 particles are dispersed into PS matrix 

individually and free of remarkable aggregates. 

 

 

 

Figure 2.12. AFM images of the PMMA-grafted CeO2 particles having 54 nm (a), 29nm 

(b), 9 nm (c) shell thickness particles in PS. 
 

2.2.4. Transmission of the Composite Films.  

 

               The nanocomposites were spin-coat on quartz glass and transmission of these 

films was examined over UV-visible region. Figure 2.13. shows the UV-vis 

transmission spectra of both neat PS and PS based composite films prepared with 

unmodified, MPS-modified, or PMMA-grafted CeO2 particles. In all composite films, 

the CeO2 content was fixed to 5.5 wt %. The films are non-absorbing over visible 

region. Neat PS has the highest transmission value among all composite films. The 

intensity loss at this region is mainly due to the scattering of ceria particles. On the other 

hand, the films are absorbing at UV region of the spectrum. This behavior is not a 

surprise since both ceria and styrene groups in PS matrix are absorbing in this region. 
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Ceria is a semiconductor having 3.3 eV band-gap energy, which is comparable with the 

energy of UV region. So that it is absorbing material particularly at UV-A region (290-

200 nm). In addition, styrene involves a benzene group that is particularly encountered 

by the UV radiation. In these spectra, we mainly focus on the visible region where we 

can compare the intensity loss due to scattering at particular PS/ceria composite system. 

Since human eye has the highest sensitivity at 550 nm, the spectra of nanocomposites 

were compared with respect to their transmission at this wavelength.  
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Figure 2.13. UV-vis transmission spectra of the neat PS and the PMMA-grafted CeO2 

particles at varying shell thickness in PS matrix. 
 

                  Transmission of all PS/CeO2 nanoparticle composites prepared by PMMA-

grafted CeO2 particles as a function of PMMA shell thickness is given on Figure 2.14. 

Neat PS has ~90 % transmission at normal incidence. This result is consistent the 

information given in literature.(Tu, et al. 2010) The incorporation of unmodified 

particles into PS matrix causes more than 20 % loss in transmission. AFM 

measurements showed that (not shown) the particles are not dispersed well into PS 

matrix forming large particle domains that cause scattering and accordingly intensity 

loss. The modification of MPS improves the dispersion of particles and therefore 

transmission of the composite film. On the other hand, the transmission of PS 

nanocomposites prepared by PMMA-grafted CeO2 particles depends on the thickness of 

PMMA. At the same ceria content, the transmission increases up to a value of 85 % 
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when the polymer shell thickness is 9 nm. The increase of shell thickness from 9 nm to 

29 results a decrease in transmission. Further increase in thickness of the polymer shell 

results a dramatic loss of transparency of the composites.  

 

 

 

Figure 2.14. Transmission values of the PS / PMMA-grafted CeO2 nanocomposites at        

550 nm. The data points were obtained from the transmission spectra of 

the composite films in Figure 2.12. 
 

                  The highest transparency among all composite films is obtained from the 

nanocomposites prepared particles whose shell thickness is 9 nm. At this thickness, 

scattering is remarkably minimized most probably due to the index matching between 

RI of particles with that of surrounding PS matrix. The refractive index of overall 

composite system can be estimated by Maxwell-Garnett formula. It can also be applied 

to our colloidal nanocomposite system.   

              According to this theory, scattering which is originated from the presence of 

high refractive index particle will be diminished if the effective dielectric constant of 

the core-shell particle equals to the one of the embedding medium (εeffective = εmedium).                        

              Depending on the Maxwell-Garnett formula (eq. 5), for a given ceria 

nanoparticles with 18 nm in diameter,  shell thickness of CeO2 for index matching 

condition is 7 nm. The increase in PMMA content at a fixed amount of ceria core 
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lowers the refractive index of overall PMMA-grafted CeO2 particles. In other words, at 

longer PMMA thickness the refractive index of PMMA-grafted CeO2 particle as a 

separate system decreases even lower than that of PS matrix, which develops another 

source of RI mismatch and therefore optical scattering.  

 

 

 

Figure 2.15. Effective refractive index of CeO2@PMMA core-shell particles as a  

function of shell thickness calculated using Equation 5 and assuming 

nCeO2= 2.18,  nPMMA= 1.489 for the refractive index of CeO2 and PMMA, 

respectively. The dotted line represents the refractive index of PS (nPS= 

1.589). At the 7 nm thickness on surface, particles are predicted to be 

index-matched to the PS.     
 

                  The blend film of PS and PMMA without CeO2 particles were prepared for the 

reason of comparison. The amount of PMMA was used as the exact amount of PMMA 

employed in PMMA-grafted CeO2. The transmission of this blend film was found as 67 

% at this wavelength. A strong phase separation of PMMA in PS matrix is validated by 

tapping mode AFM. This result underlines the importance of material composition for 

index matching process. The usage of PMMA and PS without ceria nanoparticles does 

not make sense, rather, lowers the transmission even lower than the one of unmodified 

ceria nanoparticles.  
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Figure 2.16. Photo of the nanocomposites film prepared by casting. The thickness of the 

films is around 2.5 m. The amount of CeO2 was fixed to 5 wt %. a) 

PS/unmodified CeO2 particles b) PS/MPS modified CeO2 particles c) 

PS/PMMA-grafted CeO2 particles, t = 9 nm  d) PS/PMMA-grafted CeO2 

particles, t = 11 nm e) PS/PMMA-grafted CeO2 particles, t = 16 nm f) 

PS/PMMA-grafted CeO2 particles, t = 29 nm g) PS/PMMA-grafted CeO2 

particles, t = 54 nm h) PS/PMMA-grafted CeO2 particles, t= 84 nm. 
 

                  The achievement of transparency in PS nanocomposites can be readily seen by 

naked eyes on thicker films. Figure 2.16 shows the photographic images of the films   

cast from THF with 350 µm on average. The composite films prepared by unmodified 

and MPS-modified particles have strong opacity (a,b). However, an obvious recruitment 

in transmission is observed for the composite containing colloidal nanocomposite that 

has 9 nm PMMA shell thickness (c). This composite is the one where we believe that 
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index-matching condition is provided. The increase of polymer shell thickness on 

particle core results translucency. At the longest the longest thickness, the composite 

exhibit strong opacity. Thus, photographic images of all composite films are in 

accordance with UV-visible transmittance for these composites, and same trend in 

transparency loss can be attained.  

 

Table 2.2. Mean diameter and polydispersity index (PDI) of particle size distribution 

(PSD) of PMMA-grafted CeO2 particles and average diameter of the particle 

domains at different amount of BPO initiator. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

 

Mean of PSD of PMMA-

grafted CeO2 particles 

obtained by DLS / nm 

PDI of 

PSD 

obtained 

by DLS 

Average diameter of 

PMMA-grafted 

CeO2 particle 

domains obtained 

by AFM (nm) 

CeO2@PMMA 

(BPO 6.0 wt %) 

36 0.4 30 ± 12 

CeO2@PMMA 

(BPO 4.0 wt %) 

40 0.4 45 ± 15 

CeO2@PMMA 

(BPO 2.0 wt %) 

51 0.3 90 ± 14 

CeO2@PMMA 

(BPO 1.5 wt %) 

76 0.4 57 ± 19 

CeO2@PMMA 

(BPO 1.0 wt %) 

126 0.3 134 ± 100 

CeO2@PMMA 

(BPO 0.5 wt %) 

187 0.3 236 ± 60 
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CHAPTER 3 
 

 
 

CONCLUSION 
 

 

               We demonstrated that transparency of a composite system can be remarkably 

increased when refractive index difference is minimized between particles and 

surrounding polymer matrix. The association of PS and unmodified CeO2 particles 

results an opaque material due to the both aggregation of particles and RI mismatch. 

Well-defined PMMA-grafted CeO2 colloidal particles with different thickness of 

PMMA layer were successfully synthesized using combination of controlled 

precipitation of CeO2 nanoparticles and free radical in situ solution polymerization of 

MMA. The thickness of PMMA on the particle surface was readily controlled by the 

amount of BPO. The colloidal PMMA-grafted CeO2 nanoparticles were also blended 

with PS matrix and the thickness was found to be an important parameter for the 

transparency of the ternary composite. We demonstrated that when the refractive index 

of PMMA-grafted CeO2 particles matches the refractive index of embedded PS 

medium, a quasi-transparent nanocomposite film is formed due to the reduction of 

refractive index difference between the particles and surrounding medium. This 

approach can be successfully applied for transparency of all heterogeneous structures 

not only for visible light but also for different segments of optical spectrum. 
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