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ABSTRACT

ELECTRONIC, SPINTRONIC AND TRANSPORT PROPERTIES OF
CARBON BASED NANOWIRES

In this thesis, properties of carbon based nanowires are studied by ab-initio cal-

culations. The aim is to gain a thorough understanding of the electronic, spintronic, trans-

port properties in nanowires and how they are affected by different geometric formations,

defects and adatom adsorptions. To this end the non-equilibrium Green’s function formal-

ism with first principles pseudopotential density functional theory calculations have been

used to describe spin-polarized systems. Firstly, different geometric formations of Cobalt-

Benzene nanowires are investigated. Systems with ferromagnetic ordering are calculated

as half-metallic while systems with antiferromagnetic ordering behave as metallic. Also

the results of the spin polarized current calculations indicate that one of the spin compo-

nents of current is dominant for the antiferromagnetic systems while both spin compo-

nents of current are dominant in different bias windows of a specific total applied bias.

As second case, alkali atom termination of the zigzag graphene nanoribbons (ZGNR) are

studied. In particular, using sodium atoms for the saturation of ZGNR edges at half the

concentration of edge-carbon atoms make it a one dimensional, perfect semimetal, where

the valance and conduction bands meet at only a single, Dirac-like point. Unlike pristine

graphene, the Dirac-“cones” of Na-ZGNR is not symmetric with respect to wave vector,

but rather it is tilted. Finally, adsorption up to the graphenic sheets with periodic 5-8

defects is studied. Especially, electronic structure of the V adsorption into 5-8 defects

induced graphenic sheets are calculated as half-metallic while formation of linear bands

crossing at the Fermi level which form a tilted Dirac cone.
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ÖZET

KARBON BAZLI NANOTELLERİN ELEKTRONİK, SPİNTRONİK VE
TRANSPORT ÖZELLİKLERİ

Bu tezde, karbon bazlı nano tellerin özellikleri temelden (ab-initio) hesapla-

malarla çalışılmıştır. Amaç, nanotellerin elektronik, spintronik ve taşınım özelliklerini

ve bu özelliklerin farklı geometrik oluşumlar ve kusurlardan nasıl etkilendiğini anla-

maktır. Bu bağlamda spin polarizasyonlu sistemler, dengede dışı Green fonksiyonu for-

malizmiyle temelden psödopotansiyel yoğunluk fonksiyonel teorisi hesaplamaları kul-

lanılarak belirtilmiştir. İlk olarak, Kobalt-Benzen nano tellerinin farklı geometrik oluşum-

ları incelenmiştir. Anti-ferromanyetik sistemler metal olarak davranırken, ferromanyetik

dizilime sahip sistemler yarı-metal olarak hesaplanmıştır. Ayrıca spin polarizasyonlu

akım hesaplarının sonuçları, uygulanan bir voltaj aralığında, anti-ferromanyetik sistem-

lerde sadece bir spin bileşenin baskın olduğunu gösterirken ferromanyetik sistemlerde

farklı voltaj aralıklarında farklı spin bileşenlerinin baskın olduğunu göstermektedir. İkinci

durum olarak, zigzag grafin nano şeritlerinin (ZGNŞ) alkali atomlarla sonlandırılması

çalışılmıştır. Özellikle, ZGNŞ’nin, kenar karbon atomlarının yarı konsantrasyonunda

sodyum ile sonlandırılması (Na-ZGNŞ) değerlik ve iletim bantlarının tek bir Dirac-benzeri

noktada kesişmesine ve sistemin tek boyutlu, mükemmel bir semi-metal olmasını sağlamış-

tır. Saf grafinin aksine, Na-ZGNŞ’nin Dirac-”konileri” dalga vektörüne göre simetrik

değildir ve eğilmiştir. Son olarak da, 5-8 kusurları oluşturulmuş grafenik katmanların

üzerine atom emilimi çalışılmıştır. Bilhassa, vanadyum atomunun 5-8 kusurlarına sahip

grafenik katmanlar üzerine emiliminde elektronik yapı, lineer bantların Fermi seviyesinde

eğimli bir Dirac konisi oluşturacak şekilde ve yarı metal olarak hesaplanmıştır.
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CHAPTER 1

INTRODUCTION

Semiconductor materials changed the modern electronics completely during the

second half of the last century. Scientific and technologic improvements in electronics

have created new possibilities in the communication and information processing areas

which lead to invention of computers and communication devices such as mobile phones.

Small devices like silicon chips, which contain lots of components, became producible

with the invention of solid state transistor and the integrated circuit(IC). An IC is an elec-

tronic circuit where all electronic components (transistors, capacitors, interconnects) are

integrated on a single silicon chip. The increase in the efficiency of integrated circuits

allowed having more components in the silicon chips. In 1965 Gordon E. Moore pre-

dicted that the number of the transistors on a chip would double every year [1]. However

Moore’s prediction was for only ten years. The doubling of the number of transistors is

approximately every 18 months. The performance of electronic devices always increased

with the tuning down the systems. Today a high-end computer processor contains a few

billion transistors. Although this exponential growth must end at the point which quantum

mechanical effects such as Heisenberg uncertainty principle [2, 3] or other effects such

as electro-migration process [4] and subthreshold leakage currents between electrodes of

transistor [5] become disturbing factor in electronic device design. Approximately two

more decades [6, 7] will be the limit of scaling in conventional semiconductor material.

Radically different approaches for future electronic devices are needed. Spintronics and

molecular electronics are the two most promising approaches for the problem.

Placing an electron in a magnetic field results in a coupling of its magnetic moment

to the magnetic field. Now if the spin of an electron is measured along a certain axis,

one may obtain only two possible results which are spin-up or spin-down states. This

property of electron can be used to perform Boolean logic operations. Until this century

the spin of the electron was ignored in charge-based electronics. Charge of the electron

is the information carrier in conventional electronics. However with emergence of the

spintronics (spin electronics or spin-based electronics), electron’s spin is also used as

information carrier. Spintronics is a very wide research field with different aspects [8, 9].

As an example of spintronics, magnetoresistance effects’ history dates back to

19th century. W. Thomson found the first experimental findings on the spin affected elec-
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tron transport in 1857 which is the resistivity of bulk ferromagnetic metals increases when

the current is in the same direction as the magnetic force and decreases when the current

is at 90◦ to the magnetic force [10]. This phenomenon is called anisotropic magnetoresis-

tance (AMR). In 1970 Tedrow and Meservey were the first ones to study spin polarized

tunneling [11]. Five years later Julliere found that switching magnetic layers from the

parallel to the antiparallel magnetization increased the resistance in some layered mate-

rials [12]. This is much stronger than AMR effect and is called tunneling magnetore-

sistance (TMR). Another well known magnetoresistance effect is the giant magnetore-

sistance (GMR) which was discovered in 1988 [13–15]. Similar to TMR setup, GMR

devices consist two or more ferromagnets separated by a non-magnetic metal. While

the underlying physics in TMR effect is governed by quantum mechanical tunneling, at

GMR effect it is governed by diffusive transport. In both TMR and GMR, the resistance

of ferromagnetic layers depends on the relative angle between the magnetizations in the

ferromagnets. After the discovery of the GMR effect it was used to improve the sensi-

tivity of read heads in hard drives which allowed decreasing the size of the magnetic bits

and increased the data storage density of the hard disks dramatically. As a result, the

discovery of the GMR effect has been awarded with the Nobel Prize in 2007. In the early

experiments TMR was much smaller than GMR values. But with the support of recent

years’ theoretical studies [16, 17], TMR values exceeded the GMR values [18, 19].The

most promising device of the TMR is magnetic random access memory (MRAM) and has

recently become commercialized [19].

Another example for spintronics is spin Hall effect. The spin Hall effect is oc-

curred as a result of spin-orbit interaction, and refers to the generation of a pure spin

current at the lateral surfaces of an sample transverse to an applied electric field even in

the absence of applied magnetic fields [20]. Early theoretical studies predicted an extrin-

sic spin Hall effect which is originating from asymmetries in scattering for up and down

spins [21–24]. And more recently an intrinsic version of spin Hall effect is observed

in semiconductors which is due to spin-orbit coupling even in the absence of impurities

[25, 26]. In near future a spin current without any charge current may be obtained with

spin Hall effect.

Using molecules as electronic devices is a promising new direction in the science

and technology of mesoscopic systems [27, 28]. Experiments to today have studied a mul-

titude of molecular devices in which molecules form basic components such as switches

[29–31], diodes [32] and electronic mixers [33]. The latter includes molecules probed in a

two-contact geometry using mechanically controlled break junctions [31, 34] or scanning
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probes [35, 36] in addition to three-contact single molecule transistors made from carbon

nanotubes [37] (CNT), C60 molecules [38] (Fullerenes), and conjugated molecules di-

luted in a less-conducting molecular layer [39]. And a very recent discovery [40] brought

us one step closer to single atom transistor which is a device between two contacts where

electrons hop on to and off from.

Integrating the molecular electronics with spintronics is very promising research

area due to weak spin-orbit and hyperfine interactions in organic molecules, which leads

to the possibility of preserving spin-coherence over times and distances much longer than

in conventional metals or semiconductors [41]. A few recent experiments indicating e.g.

a long spin-flip scattering length for CNTs [42], spin injection from strongly spin polar-

ized materials into CNTs [43], and spin transport through organic molecules [44]. Also

several theoretical studies have calculated spin-polarized transport in molecules [45, 46],

including recent studies [41, 47] that combine density functional theory [48] and non-

equilibrium Green function methods.

After the discovery of the carbon fullerenes [49], allotropes of carbon have be-

come of great interest for research in material science. These days, a wide range of

structures such as buckyballs, CNTs, or a combination thereof (carbon nanobuds) are

well known. In principle, these structures consist of a single or several layers of graphite

wrapped up in different configurations. Until it’s experimentally observation [50] in 2004

the existence of a single layer of graphite, not wrapped up, was long thought to be thermo-

dynamically unstable [51–54]. Single-layered graphite, graphene, has been the focus for

intense research during the past few years. Graphene’s low-energy physics is governed by

the Dirac equation, and hence graphene exhibits many unique electronic properties, such

as the odd-integer quantum Hall effect [55] that can be observed even at room temperature

[56] and Klein tunneling [57]. More importantly graphene shows an exceptionally high

mobility [58, 59] even at room-temperature [50, 55]. Thus, with graphene it might be

possible to produce a room-temperature ballistic field-effect transistor, operating at much

higher frequencies than conventional transistors. Also graphene is a promising candidate

for spintronics with these unique electronic properties and very long spin relaxation time

[60–62].

Recent years’ advances in experimental techniques brought great challenges and

new opportunities to the theory. The detailed configuration and conformation of molecules

under the influence electrodes or the effects of electrode-molecule interactions will strongly

affect the transport properties of the junctions. These elements could not be completely

characterized so far. Theoretical numerical simulation is the most effective approach to
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perform ideal experiments and design molecular devices with specific electronic proper-

ties.

Quantum theory has been the most appropriate theory to describe atomic-scale

objects [63] and primary tool in the theoretical investigation of atoms, molecules and

condensed matter. Atoms consist of nuclei and electrons. Both the dynamics of nuclei

and electrons can be described by quantum theory. Moreover the physical properties

of molecules, solids or more complicated systems can be investigated or predicted with

quantum theory. Like Dirac proposed [64] eighty years ago, we have almost all rules

to describe the world, but equations are too complex to solve analytically. Much effort

has been devoted into the development of mathematical skills and numerical methods,

such as the self-consistent field [65] (SCF) method, density functional theory (DFT) [48],

quantum Monte Carlo methods [66], and so on. The equations are so complex due to

the so many degrees of freedom so there is no exact analytic solution for almost all the

systems encountered in practice except most simple systems such as Hydrogen atom. In

this context the only practical approach is to calculate the properties approximately by

employing various approximations to models.

In this thesis electronic, spintronics and transport properties of molecules and

quasi one-dimensional systems are investigated by using state-of-the-art simulation meth-

ods based on electronic structure theory. One of the most promising tools of ab initio

electronic structure method based on localized atomic orbitals is SIESTA [67, 68] In this

thesis SIESTA simulation package was employed to compute electronic and magnetic

properties of these systems.

At present, the most widely used simulation method in molecular electronics is

non-equilibrium Green’s function (NEGF) technique combined with DFT. Several simu-

lation schemes have been implemented [69–73] and contributed a lot to the advance of

this area. Also in this thesis, TRANSIESTA [67, 68, 74] and SMEAGOL [41]tool was

employed to calculate transport properties of these systems.
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CHAPTER 2

MATERIAL

2.1. Nanowires and Molecular Structures

Miniaturization of integrated circuits is steadily approaching a new state: atomic

size devices connected by atomic wires. To build these state of the art devices, manu-

facturers are focusing their research on the self-assembly of surface nanostructures and

nanowires.

Nanowires have many novel properties which can be only seen in one dimensional

systems. This behavior is due to electrons in one dimensional systems are confined lat-

erally and thus occupy energy bands that are different from the energy bands found in

bulk systems. Nanowires’ intrinsic one dimensional nature makes them ideal for study-

ing dimensionality effects on e.g. magnetic and electronic properties [75–81]. Molecular

nanowires are composed of repeating organic, inorganic or ,as in one of our cases, organo-

metallic molecule’s unit cells. Examples of nanowires and their possible applications can

be seen in Figure 2.1.

Figure 2.1. Left to right; images of nanowire device with gate electrodes (Source:
[82]), a piezoelectric nanogenerator based on PZT nanofiber (Source:
[83]), a nanowire field-effect transistor (Source: [84]), and a stretched gold
nanowire (Source: [85]), respectively.

The electrical and mechanical properties of a piece of any metal are not different

for its any macroscopic size. However, as soon as its size decreases to the nano scale, all

common knowledge becomes unreliable. One example to the that is Ohm’s Law, which is

that the resistance of a conductor scales proportional to its length, does not hold any more

due to the atomic sizes become much larger than the electron’s mean free path (distance of
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an electron travels between two scattering events). The resistance becomes independent

of its length due to the electrons traverse an nano-conductor ballistically.

The electrical conductance through an one atom thick nanowire is quantized as

G = 2 e2/h, where e is the charge on an electron and h is Planck’s constant. So the

conductance of nanowires is only expected to be multiple of the this constant.

Figure 2.2. Density of States Diagrams for 0, 1, 2, 3 Dimensions.
(Source: [86])

The energy dispersion relations and density of states plots of the free electron gas

from 0 to 3 dimensions are represented In Figure 2.2. The more specific form of density

of states in one dimension is:

D1(ε) =
2

π

1

|dεk/dk|
(2.1)

In one dimension energy diverges at the beginning or end of a range of allowed energies.

These divergences are called van Hove singularities. This behavior of energy divergences

of at a minimum or maximum is characteristic for one dimensional structures which they

will be encountered at the structures studied in this thesis.

As a part of the a nanowire, zero dimensional molecules are very important for

molecular electronics where explained in detail at chapter 1. Similarly in zero dimension
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energy dispersion relation is

D0(ε) = 2ni
∑
k

δ(ε− εk) (2.2)

Since the energy levels of system, that are quantized in all there dimensions discrete, the

DOS is a couple of delta functions with peaks at discrete energies. This DOS plot is char-

acteristic for zero dimensional systems. In this thesis particularly nanowires’ molecular

part’s transport properties will be investigated through by connecting them with different

leads and applying voltage.

2.2. Graphene

It has been more than sixty years since the first theoretical study of graphene was

performed [87]. However, graphene could not draw enough attention till 2004 which

explained in detail at chapter 1. After its isolation as single layer in 2004 [50], graphene

has become a material of great interest for research in material science due to its peculiar

electronic properties.

2.2.1. Structural and Electronic Properties

Graphene is a single layer of graphite with a honeycomb two-dimensional lattice

(see Figure 2.3). The two lattice vectors can be expressed as

a1 = a(
3

2
,

√
3

2
), a2 = a(

3

2
,−
√

3

2
) (2.3)

where a= 1.42 Å is the carbon-carbon bond length. The reciprocal lattice vectors can be

calculated as following

b1 =
2π

a
(
1

3
,

√
3

3
), b2 =

2π

a
(
1

3
,−
√

3

3
) (2.4)
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Figure 2.3. Honeycomb lattice and its Brillouin zone. a1 and a2 are the lattice unit
vectors and δi, i = 1, 2, 3 are the nearest-neighbor vectors. (Source: [88])

which the first Brillouin zone (BZ) can be constructed by using a Wigner-Seitz cell

method [89]. In Figure 2.4 the energy band diagram along high-symmetry directions

in the first BZ is presented. It can be seen that the honeycomb lattice symmetry lead to

a peculiar band structure, where the conduction and valance band meet each other at six

points and coincide with the corners of BZ (K and K’). Therefore graphene is a semimetal

(zero band gap semiconductor). These points are named as Dirac points due to energy dis-

persion relationship near this points. Their positions in momentum space are given by

K =
2π

a
(
1

3
,

1

3
√

3
), K′ =

2π

a
(
1

3
,− 1

3
√

3
). (2.5)

And nearest-neighbor vectors are

δ1 =
a

2
(1,
√

3), δ2 =
a

2
(1,−

√
3), δ3 = −a(1, 0). (2.6)

Linear energy dispersion relation near Fermi level is calculated by Wallace at 1947 [87]

E±(q) ≈ ±vF |q|+O[(q/K)2]. (2.7)

This dispersion leads to Fermi velocities of charge carriers vF reaching the value 1/300

of the speed of light c. In this thesis graphene defects and ad-atom absorption on these

defect sites will be studied.
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Figure 2.4. Energy dispersion in the honeycomb lattice. Energy is in units of t where
t = 2.7 eV. (Source: [88])

2.2.2. Graphene Nano Ribbons

Recent experimental studies allow the preparation of graphene nanoribbon (GNR),

which is a graphene layer terminated in one direction with a specific width[90, 91]. And

recently, sub 10 nm GNRs with smooth edges were obtained and demonstrated to be

semiconductor. In Figure 2.5 we see a honeycomb lattice having zigzag edges along x

direction and armchair edges along the y direction. Geometrical termination of graphene

Figure 2.5. A piece of a honeycomb lattice displaying both zigzag and armchair edges.
(Source: [88])

lead to two edge geometries, namely, zigzag and armchair with largely varying electronic

properties. Studies have shown that zigzag edge GNRs (ZGNRs) are semiconductors

with two localized electronic edge states[92–96]. These two states are ferromagnetically

ordered and they antiferromagnetically coupled to each other [97]. In this thesis ZGNRs’
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will be studied rather than armchair GNRs (AGNRs) due to ZGNRs novel magnetic and

electronic properties.
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CHAPTER 3

CALCULATION METHODS AND APPROXIMATIONS

3.1. Quantum Theory and Electronic Structure

Theory of electrons in matter has been one of the great challenges of theoretical

physics after the discovery of the electron in 1896-1897. The understanding of materials

and phenomena rests upon understanding electronic structure. Theory of electrons in

matter rely on: developing theoretical approaches and computational methods that can

accurately treat the interacting system of many electrons and nuclei which in molecules

and condensed matter.

Most of the many-body systems e.g. condensed matter systems where the total

number of electrons is nearly Avogadro constant (NA ∼ 6.02 x 1023). This massive de-

grees of freedom requires a statistical physics point of view to overcome electronic struc-

ture problems. In 1925, Pauli proposed periodic table of elements in terms of electrons

obeying the exclusion principle that no two electrons can be in the same quantum state

[98]. Nearly one year later Fermi [99] generalized the exclusion principle to the general

formula for the statistics of non-interacting particles and linked the correspondence to the

analogous formula for Bose-Einstein statistics [100, 101] (see Equation 3.1).

fi =
1

eβ(εi−µ ± 1
, (3.1)

where, fi is the occupation number of electrons on the i-th energy level, β = 1/kBT ,

relates to Boltzmann constant kB and temperature T , εi is the i-th eigenenergy, µ is the

chemical potential of system, plus sign is for Fermi-Dirac and the minus sign is for Bose-

Einstein statistics. Also in 1926 by Heisenberg [102] as first and by Dirac [103] in 1926

independently discussed the general principle that when two particles are exchanged the

wavefunction for identical particles must be either symmetric or antisymmetric.

Simulating physical properties of systems is just solving many-body Schrödinger

equation of the systems by quantum mechanics. The Hamiltonian of a typical many-body
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system can be written as

H = T + Tn + Vint + Vnn + Vext. (3.2)

The terms in Hamiltonian are:

T = − ~2

2me

∑
i

∇2
i (3.3)

where T is the electron kinetic energy;

Tn = −
∑
I

~2

2MI

∇2
I (3.4)

where Tn is the nuclei kinetic energy;

Vint =
1

2

∑
i 6=j

e2

|ri − rj|
(3.5)

where Vint is the electron-electron repulsion term;

Vnn =
1

2

∑
I 6=J

ZIZJe
2

|RI −RJ|
(3.6)

where Vnn is the nuclei-nuclei repulsion term;

Vext = −
∑
i,I

ZIe
2

|ri −RI|
(3.7)

and where Vext is the attractive interaction term between the electrons and the nuclei de-

scribed as an external potential for the electrons. And in generalme and ri are the electron

mass and positions, MI are the masses of the nuclei, RI the corresponding positions, and

ZI is the nuclear charge.
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Complexity of the problem creates too many degrees of freedom in problem and

makes an “ab-initio” manner is impossible. Thus various approximations is necessary to

reduce the calculation into a acceptable level.

3.2. Approximations

3.2.1. Born-Oppenheimer

Born-Oppenheimer (adiabatic) approximation is basicly setting the mass of nuclei

to infinity. Since mass of nuclei is immensely larger than mass of electron. Thus when

dealing with electron-nuclei many body systems, the kinetic energy of the can be ignored.

Adiabatic approximation reduces the number of degrees of freedom of the system so all

the contribution from nuclei interactions (Vnn) is now nothing but a constant.

3.2.2. Pseudopotential

The electrons fill the lowest energy states up to a Fermi energy and leaving empty

states above this energy for zero temperature and magnetic field. For non-zero but low

magnetic field and temperature, only the electronic states near Fermi energy are able

to effect physical properties of solids. In this context pseudopotential approximation is

introduced.The basic idea behind the pseudopotential is replacing the strong Coulomb

potential of the nucleus and the effects of the core electrons by an effective ionic potential

acting on the valance electrons. Figure 3.1 illustrates the all-electronic wavefunctions and

generated pseudo wavefunction and corresponding potentials. Pseudopotentials generated

by atomic calculations are defined “ab initio” since they are not fitted to experiment. Thus

their accuracy and transferability requires the concept of several conditions;

1. The pseudo wavefunctions and atomic wavefunctions must produce same core charge.

2. The pseudo-electron eigenvalues and the valance eigenvalues must be same.

3. The pseudo wavefunctions, and their first and second derivatives must be continu-

ous at the core radius and non-oscillatory inside the core radius.

4. The pseudo wavefunctions and atomic wavefunctions must agree beyond the core

radius.
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Figure 3.1. Pseudopotentials are generated in such a way that the pseudo wavefunction
contains no nodes inside the core region r < rc and becomes the exact all-
electron wavefunction for r > rc. (Source: [104])

3.2.3. Non-relativistic

Objects with massive body or with speed comparable with that of light could only

be described exactly in the relativistic framework. In “ab-initio” calculations, small mass

of electrons and in most of the atoms a non-relativistic approach should be enough to

investigate problem. But, when working with heavy atoms the relativistic effects may not

be ignored anymore due to the high speed of core electrons in heavy atoms.

There are several approaches to integrate relativistic effects into “ab-initio” cal-

culations. One of the most important method is using relativistic pseudopotentials. In

this method relativistic Dirac equation is used for atomic calculations during the building

of pseudopotentials. Thus these relativistic pseudopotentials may be used to construct

Hamiltonian. In this thesis the relativistic pseudoptential approach will be used to carry

out calculations in the relativistic framework.

3.3. Density Functional Theory

The many-body Schrödinger equation can in principle be solved by expanding the

wavefunction in a basis of Slater determinants. For N-electron system, the single Slater
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determinant can be written as:

Ψ =
1

N !1/2

∣∣∣∣∣∣∣∣∣∣∣

φ1(r1, σ1) φ1(r2, σ2) φ1(r3, σ3) · · ·
φ2(r1, σ1) φ2(r2, σ2) φ2(r3, σ3) · · ·
φ3(r1, σ1) φ3(r2, σ2) φ3(r3, σ3) · · ·

...
...

... . . .

∣∣∣∣∣∣∣∣∣∣∣
(3.8)

where φi(rj, σj) is the single-electron spin orbital, and it is the product of position ψi(ri)

and spin αi(σi) component. Thus this converts calculation to the diagonalizing a ma-

trix. But this can only be done for very small systems since the dimension of the Slater

basis grows with the number N of electrons as N !. Before the advent of DFT, the stan-

dard approach has been to approximate the many-body wave function by a single Slater

determinant that minimizes the total energy. This is the Hartree-Fock approximation.

However, Hartree-Fock approximation gives a very crude description of the electronic

structure since correlations between electrons are neglected but instead electrons are de-

scribed as independent of each other and interacting via an effective mean field.

As an alternative approach density functional theory states in general that any

property of a many interacting system can described in terms of the ground state density

n0(r) where n0(r) is a scalar function of position. Thus in principle, a functional of the

ground state density determines all the information for the ground state and excited states.

3.3.1. Thomas-Fermi-Dirac Approximation

Density functional theory proposed first time in 1927 by Thomas [105] and Fermi

[106], where they expressed the kinetic energy in terms of electron density. Both Thomas

and Fermi neglected exchange and correlation among the electrons. This was extended by

Dirac [107] three years later who formulated the local approximation for exchange. This

formulation for exchange is still in use today. In Thomas-Fermi-Dirac approximation, the

15



energy functional is expressed as

ETF [n] = C1

∫
d3r n(r)5/3 +

∫
d3r Vext(r)n(r)

(3.9)

+C2

∫
d3r n(r)4/3 +

1

2

∫
d3r d3r′

n(r)n(r′)

|r− r′|

where the first term is the local approximation to the kinetic energy, third term is the

local approximation of exchange energy, and last term is the classical electrostatic Hartree

energy. Despite this approximation lead to one equation for the density which it is simpler

than the full many-body Schrödinger equation that involves 3N degrees of freedom for

N electrons, it lack in detailed physical and chemical information. Thus this restricts its

application in actual calculations.

3.3.2. Hohenberg-Kohn Theorems

In 1964 Hohenbern and Kohn proposed two theorems to formulate density func-

tional theory as an exact theory of many-body systems [48]. These theorems are com-

monly accepted as the onset of modern DFT. The two theorems are

Theorem I : For any system of N-interacting electrons, any of its physical prop-

erties are completely determined by the ground state electron density n(r).

Theorem II : The global minimum of energy functional is the ground state energy,

and the corresponding electron density is the ground state density.

The Hamiltonian of many-body system can be written with the approximations

which they are explained above

H = − ~2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i 6=j

e2

|ri − rj|
(3.10)
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And the energy functional can be expressed as

EHK [n] = T [n] + Eint[n] +

∫
drVext(r)n(r) + EII

(3.11)

= FHK [n] +

∫
drVext(r)n(r) + EII

where EII is nucleus-nucleus interaction, FHK [n] is system internal energy, including

electron kinetic, potential and interaction energy. So if we know FHK [n] then we can

determine the electron density of the ground state by simply minimizing the energy func-

tional.

3.3.3. The Kohn-Sham Equations

Since there has been made no approximations so far, DFT is in principle an ex-

act theory. However, the drawback is that the exact energy functional is not known so

one needs to adopt schemes for obtaining an expression for it that can later be used in

the computations. In 1965, Kohn and Sham [108] proposed that to replace the original

many-body problem by an auxiliary independent-particle problem with all the interac-

tions between electrons are classified into a exchange-correlation term. The auxiliary

hamiltonian of the auxiliary independent-particle system is (using Hartree atomic units

~ = me = e = 4π/ε0 = 1 )

Hσ
aux = −1

2
∇2 + Vσ(r) (3.12)

where Vσ(r) is a potential acting on an electron of spin σ at point r. And the electron

density

n(r) =
∑
σ

n(r, σ) =
∑
σ

Nσ∑
i=1

|ψσi (r)| (3.13)
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where ψσi is the i-th single particle orbital with spin component σ. Thus the independent-

particle kinetic energy Ts is given by

Ts = −1

2

∑
σ

Nσ∑
i=1

〈ψσi |∇2|ψσi 〉 =
1

2

∑
σ

Nσ∑
i=1

|∇ψσi |2, (3.14)

and the classical Coulomb interaction term can be defined as the interaction between

electron density with itself

EHartree[n] =
1

2

∫
dr dr′

n(r)n(r)

|r− r′|
(3.15)

Hohenberg-Kohn expression for the ground state energy functional is rewritten in the

Kohn-Sham approach as

EKS = Ts[n] +

∫
drVext(r)n(r) + EHartree[n] + EII + Exc[n] (3.16)

All many-body effects of exchange and correlation are included into the exchange corre-

lation energy Exc[n]. Khon-Sham independent-particle problem can be solved by mini-

mization with respect to density n(r, σ). All terms except the independent-particle kinetic

energy Ts are considered to be functionals of the density. Thus with using the fact that

Ts is explicitly expressed as a functional of the orbitals, one can derive the variational

equation

δEKS
δψσ∗i (r)

=
δTs

δψσ∗i (r)
+

[
δEext
δn(r, σ)

+
δEHartree
δn(r, σ)

+
δExc

δn(r, σ)

]
δn(r, σ)

δψσ∗i (r)
= 0, (3.17)

also the orthonormalization condition requires

〈δψσi |δψσ
′

j 〉 = δi,jδσ,σ′ . (3.18)
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Using equations 3.13 and 3.14 in 3.17 gives

δTs
δψσ∗i (r)

= −1

2
∇2ψσi (r)

(3.19)

δnσ(r)

δψσ∗i (r)
= ψσi (r)

and using the Lagrange multiplier method to handle constraints leads to the Khon-Sham

Schödinger-like equations:

(Hσ
KS − εσi )ψσi (r) = 0 (3.20)

where εσi are Khon-Sham eigenenergies. AndHσ
KS is the effective hamiltonian

Hσ
KS(r) = −1

2
∇2 + V σ

KS(r) (3.21)

where V σ
KS is Kohn-Sham potential and it is defined as

V σ
KS(r) = Vext(r) +

δEHartree
δn((r), σ)

+
δExc

δn((r), σ)

V σ
KS(r) = Vext(r) + VHartree(r) + V σ

xc(r). (3.22)

Equations (3.20)-(3.22) are the Khon-Sham equations. These equations must be solved

with in a self-consistently way. Also the Kohn-Sham equations are independent of the

any approximation to the exchange-correlation energy functional Exc[n].

If we summarize the Kohn-Sham procedure:

I. Initial guess for density n↑(r), n↓(r)

II. Calculate Kohn-Sham potential V σ
KS(r)

III. Solve Khon-Sham equations, eq. (3.20) and (3.21)

IV. Calculate electron density n↑(r), n↓(r) from eq. (3.13)
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V. Repeat from step II until n↑(r), n↓(r) is converged

VI. If self-consistency is archived, then output quantities e.g. energy, Hellmann-Feynman

forces [109, 110], stresses [111, 112], eigenvalues can be calculated.

Once Hellmann-Feynmann forces and stresses are calculated the system can be

relaxed geometrically [113] and find local minimum around given initial coordinates.

The Khon-Sham orbitals are usually described as linear combinations of a set of

functions, e.g. basis set. In principle basis set must be infinite to solve problem. But

in practice it is impossible to implement these large basis sets. Thus a cutoff value is

used to truncate the number of dimensions. Some examples of basis sets to be used in

Khom-Sham equations :

1. Slater type orbitals[114]

2. Gaussian type orbitals[115]

3. Plane waves[116]

4. Wannier functions[117]

5. Wavelets[118]

6. Linear combinations of atomic orbitals (LCAO) [119]

In this thesis LCAO basis set is used for the Khon-Sham orbitals.

3.3.4. Exchange-Correlation Functionals

All the unknown variables of the problem are now collected in the exchange-

correlation term, which must be approximated. The explicit separation of kinetic and

Hartree energy term implies that exchange-correlation functional would be localized [116].

The exact expression of the exchange-correlation potentials should be very complex.

However there are some clues from its various boundary conditions.

3.3.4.1. Local (Spin) Density Approximation, L(S)DA

LDA is a simple approximation assuming that the electron density is only slightly

modulated by the potential of the ion cores. Thus the exchange-correlation functional is
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given by [108, 120]

ELDA
xc [n↑, n↓] =

∫
d3r n(r) εxc(n

↑(r), n↓(r)), (3.23)

where εxc(n↑(r), n↓(r)) is the exchange-correlation energy per particle for a homoge-

neous electron gas with density (n(r)) and can be split into two as

εxc(n
↑(r), n↓(r)) = εx(n

↑(r), n↓(r)) + εc(n
↑(r), n↓(r)) (3.24)

The exchange part for the homogeneous electron gas can be calculated with Hartree-Fock

method as

εx(n
↑(r), n↓(r)) = − 1

22/3

3

8
e2
(

3

π

)1/3

(n↑(r))1/3 − 1

22/3

3

8
e2
(

3

π

)1/3

(n↓(r))1/3 (3.25)

The calculation of the correlation term εc(n
↑(r), n↓(r)) is more difficult to calculate. Us-

ing Monte Carlo method [121] it may be computed accurately. The LDA has been quite

successful in describing ground state properties of materials with small variations in the

electronic density e.g. metallic systems. When there are strong gradients the LDA is

not an effective approximation. Also, the band gaps in semiconductors and insulators are

usually underestimated by % 40.

3.3.4.2. Generalized Gradient Approximation, GGA

A logical step to improve LDA is using a XC functional which contains electron

density with its gradient as [122]:

EGGA
xc [n↑, n↓] =

∫
d3r n(r) εxc(n

↑(r), n↓(r),∇n↑(r),∇n↓(r)). (3.26)

GGA improves the description of transition metals considerably. GGA greatly increased

the application areas of DFT. There are many GGA functionals e.g. Becke88 [123], PW91

[124], PBE [125]. In this thesis all of the calculations are carried out with GGA and tested
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also with LDA.

3.3.4.3. Hybrid Functionals

The LDA and GGA method has been failing to describe electronic states of the d-

and f-states of transition metals, and the orbitals of molecules due to artificial error for

localized electron states. Thus an approach to fix the error from artificial self-interaction

is the mixing Hartre-Fock exchange with GGA or LDA functional. A hybrid functional is

made of two parts. The first part is exact exchange functional from Hartree-Fock theory

and the second part is exchange-correlation from some other theory such as LSDA, GGA.

The exact amount of Hartree-Fock exchange needs to be reintroduced in order to give

a sufficient correction of the self-interaction error in the LSDA or GGA functional and

it is unfortunately unknown. Thus it needs to be fitted to experiments [126]. DFT using

hybrid functionals does not really represent an “ab-initio” method. However, hybrid func-

tionals has been shown to improve the predictive power of DFT for a number of molecular

properties such as atomisation energies, bond lengths and vibration frequencies [127].

3.3.4.4. LDA+U

Another approach to fix error from artificial self-interaction is introducing a Hub-

bard U parameter representing the screened electron-electron interaction in the d-orbitals

of the transition metals and the f-orbitals of the rare earth metals. This U parameter is

added to the LDA and treated in the Hartree-Fock approximation. However finding a

suitable U parameter is done by extracting from a previous calculation or fitting to experi-

ments. LDA+U method gives better results for strongly correlated materials than than the

LDA method.

3.3.4.5. Exact Exchange Functionals

Deriving a local Kohn-Sham potential from the non-local exact exchange energy

of the Hartree-Fock approximation is yet another way to treat the self-interaction error.

The Exact Exchange potential is local in contrast to the Hybrid functional approach where

the Hartree-Fock Exchange potential is inherently non-local. Cancellation of the exact ex-
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change energy of the Hartree-Fock approximation with the self-interaction of the Hartree-

term makes the The Exact Exchange method as self-interaction free. Thus a good approx-

imation of the correlation energy (GGA or LDA) is combined with the Exact Exchange

method gives an excellent description of the electron density. Also, unlike the Hybrid

functional or LDA+U method, the Exact Exchange method does not need any empirical

parameters. But as a drawback, the computational cost for the calculation of the Exact

Exchange functional is very high compared to other methods [128–130].

3.4. Ballistic Quantum Conductance

Electron transport phenomena in low-dimensional system can be divided into two

general parts. First one is diffusive transport which occurs when when the nanowire’s

length is much greater than the charge carrier mean free path, carriers scatter due to nu-

merous events when they travel along the wire. On the other hand when the electrons

travels across the nanowire without any scattering, the ballistic transport occurs. There-

fore the contacts between the nanowire and the external circuit mainly effects the conduc-

tion. Ballistic transport is generally obtained with very short nanowires where the electron

mean free path is much longer than the wire length. These short nanowires or molecules

are non-equilibrium, non-periodic, and infinite with open boundary conditions.

The traditional quantum physics approaches can not deal with these systems prop-

erly since they take into account electron correlations in stationary systems. The non-

equilibrium Green’s function (NEGF) method can deal with these systems properly due

to its general nature. NEGF’s general useful properties are:

1. NEGF is function of two space-time coordinates. The time-dependent expectation

values of currents, densities, electron addition and removal energies, and the total

energy of the system can be calculated with NEGF method.

2. NEGF method reduces to the EGF in the absence of external fields.

3. NEGF can be applied to extended and finite systems.

4. NEGF can handle strong external fields without perturbatively. The electron-electron

interactions are taken into account.
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3.4.1. System and Model

A typical model for the a molecule or short nanowire is confined by two leads can

be seen in Figure 3.2. Both electrodes are semi-infinite and continues periodically to both

Figure 3.2. Model for the electron transport for the molecules or short nanowires.
(Source: [131])

sides. It is commonly the scattering region is constructed with molecule or short nanowire

and sufficient layers of the electrodes so interactions between electrodes are avoided. In

this context, all the system has three parts, the scattering region is a finite system, and

the leads are semi-infinite and periodic structures. The total Hamiltonian of the system

include contributions from both scattering zone and leads;

H =


HLL HLC 0

H†LC HCC HCR

0 H†CR HRR

 (3.27)

And constructing the Green’s function equation with theH yields;


ESLL −HLL ESLC −HLC 0

(ESLC −HLC)† ESCC −HCC ESCR −HCR

0 (ESCR −HCR)† ESRR −HRR




GLL GLC GLR

GCL GCC GCR

GRL GRC GRR



=


ILL 0 0

0 ICC 0

0 0 IRR


(3.28)
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where S and I overlap and unitary matrices, respectively. One needs to solve the above

equation to obtain Green’s function of the system. Matrix multiplication yields;

(ESLL −HLL)GLL + (ESLC −HLC)GCL = ILL (3.29)

(ESLL −HLL)GLC + (ESLC −HLC)GCC = 0 (3.30)

(ESLL −HLL)GLR + (ESLC −HLC)GCR = 0 (3.31)

(ESLC −HLC)†GLL + (ESCC −HCC)GCL + (ESCR −HCR)GRL = 0 (3.32)

(ESLC −HLC)†GLC + (ESCC −HCC)GCC + (ESCR −HCR)GRC = ICC (3.33)

(ESLC −HLC)†GLR + (ESCC −HCC)GCR + (ESCR −HCR)GRR = 0 (3.34)

(ESCR −HCR)†GCL + (ESRR −HRR)GRL = 0 (3.35)

(ESCR −HCR)†GCC + (ESRR −HRR)GRC = 0 (3.36)

(ESCR −HCR)†GCR + (ESRR −HRR)GRR = IRR (3.37)

Equation (3.30) results in:

(ESLL −HLL)GLC = −(ESLC −HLC)GCC (3.38)

GLC = −(ESLL −HLL)−1(ESLC −HLC)GCC (3.39)
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Also similarly Equation (3.36) gives:

(ESCR −HCR)†GCC = −(ESRR −HRR)GRC (3.40)

GRC = −(ESRR −HRR)−1(ESCR −HCR)†GCC (3.41)

Using Equation (3.39) and (3.41) in Equation (3.33) yields:

− (ESLC −HLC)† (ESLL −HLL)−1(ESLC −HLC)GCC + (ESCC −HCC)GCC

− (ESCR −HCR)(ESRR −HRR)−1(ESCR −HCR)†GCC = ICC (3.42)

[
(ESCC −HCC)− (ESLC −HLC)† (ESLL −HLL)−1 (ESLC −HLC)

− (ESCR −HCR)(ESRR −HRR)−1 (ESCR −HCR)†
]
GCC = ICC (3.43)

Since SCR and HCR matrices are hermitian, one can write

(ESCR −HCR) = (ESCR −HCR)† (3.44)

Using Equation (3.44) in Equation (3.43) gives:

[
(ESCC −HCC)− (ESLC −HLC)† (ESLL −HLL)−1 (ESLC −HLC)

− (ESCR −HCR)†(ESRR −HRR)−1 (ESCR −HCR)] GCC = ICC (3.45)
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Also the Green’s function equation for the left and right leads, respectively are given by;

ESLL −HLL = ILL

(ESLL −HLL)−1 = GLL (3.46)

ESRR −HRR = IRR

(ESRR −HRR)−1 = GRR (3.47)

Using Equation (3.46) and (3.47) in Equation (3.45) yields:

[
(ESCC −HCC)− (ESLC −HLC)†GLL (ESLC −HLC)

− (ESCR −HCR)†GRR (ESCR −HCR)] GCC = ICC (3.48)

Self energies of the left and right leads are defined by, respectively:

ΣL = (ESLC −HLC)†GLL(ESLC −HLC) (3.49)

ΣR = (ESCR −HCR)†GRR(ESCR −HCR) (3.50)

The self-energies contain the information on which states are available in the leads at

a given energy. Electrons can propagate from the scattering region into these available

states. (See Figure 3.3 ) Using Equation (3.49) and (3.50) in Equation (3.48) results:

[((ESCC −HCC)−ΣL −ΣR]GCC = ICC (3.51)

Green’s function of the scattering region is found as:

GCC = {ESCC − [HCC + ΣL + ΣR]}−1 (3.52)
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Figure 3.3. Representation of self energies instead of periodic semi-infinite electrodes.
(Source: [131])

There are two solution for this equation. First one is advanced and second one is retarded.

Replacing E with E + iη ensures the only solution is retarded Green’s function. Green’s

function can easily be obtained since we know all the quantities on the opposite side of

the equation.

3.4.2. Current Calculation

Landauer type electron transport states that there are two kind of scattering states

in the scattering region which they come from left and right leads. The left (right) elec-

trode’s scattering states with energy below µL (µR) are occupied. The chemical potentials

of both leads are same while there is no bias. Thus the contributions from the both leads’

states counteracts each other, leading to zero net current. However when a bias applied to

the system across to the junction, equilibrium state no longer exists and leading to non-

zero current. In this context, self-consistent method is necessary to evaluation of current

since the occupations of each scattering states would be affected by the non-equilibrium

boundary condition (see Figure 3.4). Under zero bias density matrix is obtained as

ρ =
1

2πi

∫
dE i

[
GCCΓLG†CCf(E − µL) + GCCΓRG†CCf(E − µR)

]
(3.53)
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Figure 3.4. A schematic representation of self-consistent method for NEGF+DFT.
(Source: [131])

where ΓL(R) represents the coupling between the electrodes and scattering region and they

introduce broadening of the molecular levels,

ΓL(R) = i (ΣL(R) −ΣL(R)
†) (3.54)

and f is Fermi-Dirac distribution function. Moreover lesser Green’s function is defined

as

G< = iGCC [f(E − µL)ΣL + f(E − µR)ΣR]G†CC (3.55)

Using the Equation (3.55) in (3.53) results

ρ =
1

2πi

∫
dE iG< (3.56)

The density matrix can be feed back to DFT modules to generate new ground state den-

sity which leads to calculation of Hamiltonian HCC thus a new iteration starts from the

calculation of new Green’s function, and iterates until convergence is achieved. Then the
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current can be calculated by:

I =
e

h

∫
dE T (E) [f(E − µL)− f(E − µR)]

I ≈ e

h

∫ µL

µR

dE T (E) (3.57)

where T (E) is the transmission probability of injecting electrons with energy E. Trans-

mission function can be calculated directly from the Green’s function of the scattering

region

T (E) = Tr[ΣLGCCΣRG†CC ] (3.58)

Under non-zero bias the density and current equations becomes

ρσ =
1

2π

∫
dE [GCCΣLf(E, µL)G†CC + GCCΣRf(E, µR)G†CC ]σij (3.59)

Iσ =
e

h

∫
dE [Tr(ΣLGCCΣRG†CC)(f(E, µL)− f(E, µR))]σ (3.60)

where µL = Ef + eV
2

and µR = Ef − eV
2

. Here Ef is Fermi energy of the leads and V is

applied bias.
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CHAPTER 4

COBALT-BENZENE NANOWIRE

Molecular magnets has become of interest for research in high-density informa-

tion storage, quantum computing and spintronics [132]. In this context, among such novel

systems Cobalt-Benzene organo-metallic molecule and it’s nanowire are studied for pos-

sible novel properties.

4.1. Method

First principles density functional theory calculations are carried out using norm-

conserving pseudopotentials in their fully nonlocal form and the PBE GGA functional

within the SIESTA software package. A double-ζ polarized basis set composed of numer-

ical atomic orbitals of finite range. Convergence tests are performed for k-point sampling

scheme and mesh cutoff energy. The electrostatic potentials were determined on a real-

space grid with a mesh cutoff energy of 500 Ry. The Brillouin zone has been sampled with

(1,1,9) points within the Monkhorst-Pack k-point sampling scheme. For geometry opti-

mizations, a local relaxation has been performed using the conjugate gradient algorithm

and the convergence criteria of 0.04 eV×Å−1 and 10−4 eV for the forces and total ener-

gies, respectively, in the self-consistency cycles. Nanowire’s periodicity is established in

z-direction and vacuum regions of ∼ 10 Å is used in both x- and y-directions.

4.2. Results

4.2.1. Geometric Structure

Unit cell of Cobalt-Benzene nanowire can be seen in Figure 4.1. Two different

geometric alignment for benzene rings are shown in Figure 4.2; these are, cobalt atoms

with staggered benzene rings where the staggering angle is 300 and cobalt atoms with not

staggered benzene rings. After the geometry optimizations, benzene rings conserved the

plane geometry in staggered and not staggered cases. Also Cobalt atoms are perfectly
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Figure 4.1. Unit Cell and geometric structure of a Cobalt-Benzene nanowire.

placed between the benzene rings. Two different magnetic moment distribution on Cobalt

Figure 4.2. Optimized structures for Cobalt-Benzene nanowire: (a) Second Benzene
ring is rotated 30 degrees respect to first Benzene ring in x-y plane (stag-
gered) , (b) None of the Benzene are rings rotated (not staggered).

atoms are considered which are, the cobalt atoms’ magnetic moments’ direction is oppo-

site with respect to the neighbor cobalt atoms (antiferromagnetic) and the all cobalt atoms’

magnetic moments’ are aligned to the same direction (ferromagnetic) for both staggered

and not staggered geometries of benzene rings. Unit cell relaxation along the z-direction

is performed for ferromagnetic/antiferromagnetic and staggered/not staggered case (see

Figure 4.3).

Bond lengths and total energies of optimized geometries are given in table 4.1 for

all ferromagnetic/antiferromagnetic and staggered/not staggered cases. Cobalt-Benzene

nanowire with not staggered geometry and ferromagnetic order has lowest total energy.

Also C-C and C-H lengths are same for ferromagnetic and staggered; antiferromagnetic
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Figure 4.3. Unit cell relaxation results for each case.

Table 4.1. Bond lengths and total energies of Cobalt-Benzene nanowires.

System C-C C-H C-Co Total Energy
Name Bond Length (Å) Bond Length (Å) Bond Length (Å) (eV)

Not staggered
Ferromagnetic 1.43 1.1 2.28 -4061.978
Not staggered

Anti-ferromagnetic 1.43 1.1 2.27 -4061.972
Staggered

Ferromagnetic 1.43 1.1 2.28 -4061.977
Staggered

Anti-ferromagnetic 1.43 1.1 2.29 -4061.882

and staggered; ferromagnetic and not staggered; antiferromagnetic and not staggered

cases meanwhile C-Co bond length is slightly changing.

4.2.2. Electronic Properties

Figure 4.4-4.7 represent the energy band and DOS diagram for ferromagnetic/

antiferromagnetic and staggered/not staggered case. Each case modifies the electronic

properties of Cobalt-Benzene nanowire differently. As seen in Figure 4.5 and 4.7, the

systems with ferromagnetic ordering have only one flat band of minority spin component

crossing Fermi level while there is no band of the majority spin component crossing Fermi

level, thus resulting band gaps 0.67 eV and 0.62 eV for not staggered and staggered cases,

respectively. In the antiferromagnetic cases (see Figure 4.4 and 4.6), there are bands

which passing Fermi level with spin degeneracy. Thus the antiferromagnetic systems are
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metallic.

Figure 4.4. Band structure and DOS diagram for the not staggered and antiferromag-
netic system. Spin degenerate case. Fermi level shifted to 0.

Figure 4.5. Band structure and DOS diagram for the not staggered and ferromagnetic
system. Black lines represent the majority spin while red lines represent
minority spin. Fermi level shifted to 0.

The van-Hove singularities are present in the DOS plots of staggered/not staggered

and ferromagnetic/antiferromagnetic systems which characteristic to one-dimensional sys-

tems (see Figure 4.4-4.7). The DOS plots of the ferromagnetic staggered (Figure 4.7) and

ferromagnetic not staggered (Figure 4.5) systems display spin non-degenerate curves. The

energy band gap for the majority spin channel is present as expected while minority spin

component of density is not vanishing at Fermi level at the ferromagnetic staggered and

ferromagnetic not staggered cases. In contrary to the ferromagnetic systems, antiferro-

magnetic staggered and antiferromagnetic not staggered systems have spin degenerate

DOS plots but with not vanishing DOS at Fermi level (see Figure 4.4 and Fig 4.6).
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Figure 4.6. Band structure and DOS diagram for the staggered and antiferromagnetic
system. Spin degenerate case. Fermi level shifted to 0.

Figure 4.7. Band structure and DOS diagram for the staggered and ferromagnetic sys-
tem. Black lines represent the majority spin while red lines represent mi-
nority spin. Fermi level shifted to 0.

4.2.3. Magnetic Properties

The spin-dependent charge densities of the optimized structures and their differ-

ence (∆ρ = ρ↑ − ρ↓) are calculated. The spin states are localized on Co atoms (see

Fig 4.8-4.9). Using Mulliken population analysis spin dependent atomic charges, total

valance charge and the spin magnetic moments of the atoms are determined. Total mag-

netic moments, total charge of the atoms, and induced magnetic moments of the atoms for

staggered/not staggered and antiferromagnetic/ferromagnetic cases are given in table 4.2.

As seen in the figures 4.8-4.9, there are no net induced magnetic moments on the C and H

atoms either. When a Co atom binds to Benzene ring, the valance charges of the C and H

35



atoms are partially transferred to the Co atom due to higher electron affinity of Co than the

benzene molecule [133]. As it is seen in table 4.2, transferred total charges per atom to Co

atoms are 0.209, 0.182, 0.175, 0.168 for not staggered and antiferromagnetic, staggered

and antiferromagnetic, staggered and ferromagnetic, not staggered and ferromagnetic, re-

spectively. This charge transfer results indicates that the systems with antiferromagnetic

ordering tend to accept more charge from benzene rings compared to the systems with fer-

romagnetic ordering resulting smaller magnitude of the magnetic moments on Co atoms.

Figure 4.8. Relaxed geometric structure and isosurfaces of charge density difference of
spin-up (↑) and spin-down (↓) states for not staggered and antiferromag-
netic (left), not staggered and ferromagnetic (right). For all geometries,
positive and negative values of the charge density difference is shown by
red and blue regions, respectively, for the same isosurface value of±0.002
electrons/Å3.

Figure 4.9. Relaxed geometric structure and isosurfaces of charge density difference of
spin-up (↑) and spin-down (↓) states for staggered and antiferromagnetic
(left), staggered and ferromagnetic (right). For all geometries, positive and
negative values of the charge density difference is shown by red and blue
regions, respectively, for the same isosurface value of±0.002 electrons/Å3.
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Table 4.2. Total valance charge and the spin magnetic moments of the atoms for
Cobalt-Benzene nanowires.

Total Charges Magnetic Moments (µB)
System Name C H Co Co1 Co2 Total
Not staggered
Ferromagnetic 3.739 1.233 9.168 1.032 1.032 2
Not staggered

Anti-ferromagnetic 3.732 1.232 9.209 0.729 -0.729 0
Staggered

Ferromagnetic 3.736 1.234 9.175 1.023 1.023 2
Staggered

Anti-ferromagnetic 3.736 1.234 9.182 0.772 -0.772 0

4.2.4. Transport Properties

As a small part of the cobalt-benzene nanowire, Co3(Bz)2 molecule is used to

calculate of transmission and current (see Figure 4.10). 3-dimensional gold crystals are

used as electrodes. Electrode surface is chosen as (1,1,1) direction of gold crystal. Self

energies of gold electrodes are calculated separately and included into the current calcu-

lation. Some portion of the gold electrodes are included into molecule from both sides

due to avoid direct interactions between the electrodes they form scattering regions (see

Figure 4.11). After the geometric relaxations for the scattering regions three systems

are obtained: (1) Not-staggered antiferromagnetic , (2) Not-staggered ferromagnetic , (3)

Staggered antiferromagnetic.

Figure 4.10. Co3(Bz)2 molecule. Left: Not staggered case. Right: Staggered case.

During the calculation of the current and transmission, in order to match the de-

vice potential and the surface potential of the semi-infinite gold electrodes, additionally

some more portion of the gold electrodes are included into the device region (see Figure

4.12). These additionally included parts of the gold electrodes are kept fixed during the

geometric optimizations of the large supercells of scattering regions.

Results of ab-initio electron transport calculations of not staggered geometry with

37



Figure 4.11. Co3(Bz)2 molecule is with some small part of the electrodes which they
form scattering region.

Figure 4.12. Co3(Bz)2 molecule is with small and an extra part of the electrodes for
current calculation.

antiferromagnetic and ferromagnetic ordering and staggered geometry with anti- ferro-

magnetic ordering of Co3(Bz)2 molecule are given in Figure 4.13 and 4.14. Spin polarized

currents are obtained in all cases.

Figure 4.13. Current calculation results respect to applied bias for not staggered cases.
Left: not staggered and antiferromagnetic. Right: not staggered and ferro-
magnetic.

The spin polarization of the current is defined as [(I↑ − I↓) / (I↑ + I↓)] and given

in right side of the Figure 4.14 for not staggered geometry with antiferromagnetic and

ferromagnetic ordering and staggered geometry with antiferromagnetic ordering . In this

figure, the spin polarization ratio of the current has always a positive value for the not

staggered and ferromagnetic case. Thus one component of the spin in the current is al-
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Figure 4.14. Left: Current calculation results respect to applied bias for staggered case
with antiferromagnetic ordering. Right: Spin polarized current ratio versus
applied bias voltage for each three cases.

ways dominant in the full range of the applied bias. On the other hand the systems with

antiferromagnetic ordering have a changing value between the negative and positive val-

ues of spin polarization ratio of the current. Therefore the one component of the spin in

the current is dominant up to the applied bias voltage of 0.5 V while other component of

the spin is dominant from 0.5 V to 1.5 V.
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CHAPTER 5

ALKALI ATOM-TERMINATED ZIGZAG GRAPHENE

NANORIBBONS

In order to manipulate the electronic properties of ZGNRs, modification [134,

135] and functionalization [136] of edges and producing defects, doping [137–140] and

absorbtion [141–143] of atoms or molecules on ZGNRs have been extensively studied.

For instance, recent studies [144, 145] have shown ways to obtain half-metallic ZGNRs.

In this context, edge functionalization of ZGNR with alkali atoms are studied for possible

novel properties.

5.1. Method

First principles density functional theory calculations are carried out using norm-

conserving pseudopotentials in their fully nonlocal form and the PBE GGA functional

within the SIESTA software package. A double-ζ polarized basis set composed of numer-

ical atomic orbitals of finite range. Convergence tests are performed for k-point sampling

scheme and mesh cutoff energy. The electrostatic potentials were determined on a real-

space grid with a mesh cutoff energy of 300 Ry. The Brillouin zone has been sampled with

(1,1,70) points within the Monkhorst-Pack k-point sampling scheme. For geometry opti-

mizations, a local relaxation has been performed using the conjugate gradient algorithm

and the convergence criteria of 0.04 eV×Å−1 and 10−4 eV for the forces and total ener-

gies, respectively, in the self-consistency cycles. Nanowire’s periodicity is established in

z-direction and vacuum regions of ∼ 10 Å is used in both x- and y-directions.

5.2. Results

5.2.1. Geometric Structure

Zigzag graphene nanoribbons (ZGNR) with different widths are geometrically

optimized using geometry and unit cell that is shown in Figure 5.1. Ribbon width change
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Figure 5.1. Left: Unit Cell and geometric structure of zigzag graphene nanoribbon.
Right: Schematic representation of various binding geometries of alkali
atoms to a ZGNR edge. From left to right: top in-plane (TI), bridge off-
plane (BO), bridge in-plane (BI).

is parameterized in left side of the Figure 5.1. The geometric relaxation calculations is

done for different ribbon width N-ZGNR (N=5,6,7,8,9). In this study edge termination of

n-ZGNRs (n denoting the number of zigzag rows in the ribbon) with monovalent atoms,

i.e. H, Li, Na and K are considered. In the right side of the Figure5.1, different binding

geometries of monovalent atoms to ZGNR determined after geometry optimizations are

shown; these are, on top of an edge C atom, in-plane with the ribbon (TI); bridge site of

two edge C atoms, either off-plane (BO), or in plane (BI). Unlike H-termination, Li, Na,

K atoms prefer to bind at the bridge sites rather than the TI site. Binding energy is defined

as,

EB = |Etot − Epri − (n · Eatom)|/n (5.1)

where Etot is total energy of the alkali atom adsorbed into NZGNR, Epri is total energy

of the pristine NZGNR, Eatom is the total energy energy of the alkali atom only and n

is the total number of alkali atoms in the unit cell. Binding energies of single Li, Na,

K atoms at a BI sites and TI sites of the 9ZGNR are given in table 5.1. Two different

concentrations of Li, Na, K atoms for saturation of the edges are considered which they

are, full coverage (FC) where there are as many Li, Na, K atoms as the edge C atoms, and
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Table 5.1. Bond lengths, vertical distances, and binding energies of Li, Na, and K
terminated 9ZGNR.

9ZGNR Alkali atom-Carbon Vertical Binding
Bond Length (Å) Distance (Å) Energy (eV)

Li (HC) 2.00 0 3.711
Li (FC) 2.00 0.88 3.550
Na (HC) 2.33 0 3.115
Na (FC) 2.34 1.22 2.786
K (HC) 2.66 0.22 3.218
K (FC) 2.73 1.72 2.600

Table 5.2. Bond lengths, vertical distances, and binding energies of Li, Na, and K
terminated at HC with 5ZGNR, 6ZGNR, 7ZGNR, 8ZGNR.

Alkali atom-Carbon Vertical Binding
Bond Length (Å) Distance (Å) Energy (eV)

Li (5ZGNR) 1.99 0 3.637
Li (6ZGNR) 2.00 0 3.686
Li (7ZGNR) 2.00 0 3.698
Li (8ZGNR) 2.00 0 3.706
Na (5ZGNR) 2.33 0 2.932
Na (6ZGNR) 2.33 0 2.984
Na (7ZGNR) 2.33 0 3.031
Na (8ZGNR) 2.33 0 3.074
K (5ZGNR) 2.66 0.42 2.808
K (6ZGNR) 2.66 0.28 2.910
K (7ZGNR) 2.66 0.20 3.016
K (8ZGNR) 2.66 0.19 3.118

half coverage (HC) where the Li, Na, K atoms are bound to every other bridge site only

(see Figure5.10 (b) for the unit cell of the ribbon and Na binding sites). The bond lengths

of the monovalent atom-carbon for the HC cases with Li, Na, K are given in table 5.1.

Also edge termination of ZGNR with Li, Na, and K atoms at HC is studied for 5ZGNR,

6ZGNR, 7ZGNR, and 8ZGNR and the bond lengths with vertical distances are given in

table 5.2. As it seen in table 5.2, alkali atom-edge carbon atom bond length does not vary

with width of the ZGNR while vertical distance of the K atom inversely proportional to

the width of the ZGNR. Also the binding energies of the adatoms slightly increases with

width of the ZGNNR for all Li, Na, and K cases. In the FC with 9ZGNR case, however,

due to their larger atomic size than H, neighboring Li, Na, K atoms relax towards opposite

directions at the BO sites. In this case, monovalent atom-carbon bond lengths and vertical

distances of Li, Na, K to the plane of ribbon are given in table 5.1.
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5.2.2. Electronic Properties

The energy band diagram and density of states of pristine 9ZGNR, Li terminated

9ZGNR at HC and FC, Na terminated 9ZGNR at HC and FC, K terminated 9ZGNR at HC

and FC concentrations are displayed in Figure 5.2-5.9, respectively. Each case modifies

the electronic properties of the ribbon differently. Pristine 9ZGNR is a semiconductor

with a direct band gap of Eg = 0.70 eV (see Figure 5.2). Fully hydrogenated 9ZGNR

Figure 5.2. Band structure and DOS diagram for the pristine 9ZGNR. Spin degenerate
case. Fermi level shifted to 0.

has a lower band gap of Eg = 0.50 eV, consistent with a previous report [146]. Similarly,

9ZGNR terminated with Li and Na at FC concentration has a reduced and slightly indirect

band gap of Eg = 0.44 eV (see Figure 5.3 and 5.4).

At HC concentration of Na termination the 9ZGNR becomes a zero-gap semimetal

with an interesting band structure. The valance and conduction bands intersect at a single

point. In Figure 5.5, the Dirac-like point is located at k0 = 0.469 Å−1 in the first Brillouin

zone (kZ = 0.625 Å−1). The tilted Dirac cone is formed by a steep linear band crossing

a relatively flat band at the Fermi level. Linear band is derived from carbon px and flat

band is mainly derived from combination of carbon py, s, and pz orbitals, respectively

(see Figure 5.6). Also the states around the Fermi level are localized near the edges

of ZGNR (see Figure 5.6) . Since the present ribbon structure is one dimensional, the

density of states (DOS) at the Fermi level does not vanish unlike 2D-graphene, and also,

singularities characteristic to one-dimensional systems is evident in the DOS plot.

Energy band structures showing Dirac cones are quite rare. 2D-graphene is known

for having symmetric and isotropic Dirac cones at corners of the first Brillouin zone. In
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Figure 5.3. Band structure and DOS diagram for the edge termination of 9ZGNR with
Li at FC. Spin degenerate case. Fermi level shifted to 0.

Figure 5.4. Band structure and DOS diagram for the edge termination of 9ZGNR with
Na at FC. Spin degenerate case. Fermi level shifted to 0.

this context, recently another two dimensional structure, which is an organic compound,

has been reported as a unique material having a gapless band diagram and asymmetrical

linear energy dispersion [147]. Na terminated ZGNR at HC concentration that it is pre-

sented in this study is a one dimensional member of this class of materials having tilted

Dirac “cones”. Around the Fermi level, E vs k relation can be approximated in the form,

Eλ(k) = w0 (k − k0) + λw |k − k0| (5.2)

where λ plays the role of band index (+1 for conduction, and −1 for valance band),

w = 2.517 eV×Å andw0 = −2.277 eV×Å are effective velocities. In this representation
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Figure 5.5. Band structure and DOS diagram for the edge termination of 9ZGNR with
Na at HC. Spin degenerate case. Fermi level shifted to 0.

Figure 5.6. Edge termination of 9ZGNR with Na at HC case. Left: Local density of
states plot for energy between -1.5 eV and 1.5 eV, isosurface value is 0.05
Å−1. Right: Projected density of states plot. Spin degenerate case. Fermi
level shifted to 0.

the w0 parameter determines the degree of tilting of the Dirac cone. The slopes of the

bands at the Fermi level are w0 +w = 0.240 eV×Å and w0 −w = 4.794 eV×Å , so that

an asymmetry of about a factor of 20 in the slopes of the fermion and antifermion bands

is present.

The “tilted Dirac-cone” shaped band structure is quite robust with respect to the

ribbon width and the approximations involved, such as exchange correlation functional

being LDA or GGA. Also at HC concentration of Li (Figure 5.7), K (Figure 5.8) and

FC (Figure 5.9) concentration of K termination produces similar electronic structures,

however, the valance and conduction bands intersect at slightly below or above the Fermi

energies.
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Figure 5.7. Band structure and DOS diagram for the edge termination of 9ZGNR with
Li at HC. Spin degenerate case. Fermi level shifted to 0.

Figure 5.8. Band structure and DOS diagram for the edge termination of 9ZGNR with
K at HC. Spin degenerate case. Fermi level shifted to 0.

5.2.3. Magnetic Properties

The spin-dependent charge densities of the optimized structures and their differ-

ence (∆ρ = ρ↑ − ρ↓) are calculated.. The characteristic edge-localized spin states of

ZGNRs are preserved for both HC and FC concentrations of Li, Na, and K terminated

9-ZGNRS (see Figure5.10-5.11).

Spin dependent atomic charges, total valance charge and the spin magnetic mo-

ments of the atoms are determined by using Mulliken population analysis (see table 5.3-

5.4). As it seen at table 5.4, total charges and magnetic moments of the edge carbon atoms

and Li, Na and K atoms at HC does not vary with the width of the ZGNR. Total magnetic

moments of the ribbons are found zero for all cases. As seen in the figures 5.10-5.11, there
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Figure 5.9. Band structure and DOS diagram for the edge termination of 9ZGNR with
K at FC. Spin degenerate case. Fermi level shifted to 0.

Figure 5.10. Relaxed geometric structure and isosurfaces of charge density difference
of spin-up (↑) and spin-down (↓) states for 9-ZGNR; bare (a), and Li ter-
minated at HC (b) and FC (c) concentrations. For all geometries, posi-
tive and negative values of the charge density difference is shown by red
and blue regions, respectively, for the same isosurface value of ±0.0025
electrons/Å3.

are no net induced magnetic moments on the Li, Na, and K atoms either. The penetration

of the spin imbalance on the C atoms, ∆ρ, toward the center of ribbons is considerably

shorter for the HC cases. Binding of Li, Na, and K atoms reduces the magnetic moments

of the edge carbon atoms (see tables 5.3-5.4).

This magnetic moment reduction is comparable to the full hydrogenation of ZGNRs

where edge carbon magnetic moments were reported as µ = 0.26µB [148]. When a Li,

Na, and K atom binds to ZGNR edge, its valance charge is partially transferred to the

ZGNR except at FC of K case where K gains valance charge from ZGNR at FC of K.

This charge transfer towards to the ZGNRs happens due to lower electronegativity

of Li, Na, K than C. At HC (FC) concentration, Li and Na atoms transfer 10% (15%) of
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Figure 5.11. Relaxed geometric structure and isosurfaces of charge density difference
of spin-up (↑) and spin-down (↓) states for 9-ZGNR; Na terminated at HC
(a), FC (b) and K terminated at HC (c) and FC (d) concentrations. For all
geometries, positive and negative values of the charge density difference is
shown by red and blue regions, respectively, for the same isosurface value
of ±0.0025 electrons/Å3.

Table 5.3. Total valance charge and the spin magnetic moments of the Li, Na, K at
HC and FC with 9ZGNR.

Total Charges Magnetic Moments (µB)
Edge C Adatom Edge C Adatom

Pristine 4.06 - 1.21 -
Li(HC) 4.12 0.91 0.10 0.03
Li(FC) 4.23 0.84 0.26 0
Na(HC) 4.13 0.89 0.13 0
Na(FC) 4.21 0.84 0.27 0.01
K(HC) 4.17 0.80 0.15 0.03
K(FC) 3.80 1.25 0.29 0

their total valance charge, respectively while at HC concentration, K transfer 20% of its

total valance charge for all N-ZGNR cases. Correspondingly, increase in total valance

charge of each edge carbon atom for all N-ZGNR cases are given in tables 5.3-5.4. How-

ever at FC concentration K atom gains extra 25% of its valance charge from ZGNR.

5.2.4. Transport Properties

Transmission calculations are performed for the perfect HC concentration of Na

termination the 9ZGNR (see Fig 5.12 (b)) and single Na vacancy with HC concentra-

tion of Na termination the 9ZGNR (see Figure 5.12 (c)). Also HC concentration of Na

termination the 9ZGNR is used as electrodes for both sides (see Figure 5.12 (c)).

Self energies of electrodes are calculated separately and included into the current
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Table 5.4. Total valance charge and the spin magnetic moments of the Li, Na, K at
HC with 5ZGNR, 6ZGNR, 7ZGNR, 8ZGNR.

Total Charges Magnetic Moments (µB)
Edge C Adatom Edge C Adatom

Pristine(5ZGNR) 4.06 - 1.21 -
Li(5ZGNR) 4.12 0.90 0.12 0.03
Na(5ZGNR) 4.14 0.89 0.13 0
K(5ZGNR) 4.17 0.79 0.19 0.03

Pristine(6ZGNR) 4.06 - 1.21 -
Li(6ZGNR) 4.12 0.90 0.11 0.03
Na(6ZGNR) 4.14 0.89 0.13 0
K(6ZGNR) 4.17 0.80 0.14 0.02

Pristine(7ZGNR) 4.06 - 1.21 -
Li(7ZGNR) 4.12 0.90 0.11 0.03
Na(7ZGNR) 4.14 0.89 0.13 0
K(7ZGNR) 4.17 0.80 0.17 0.03

Pristine(8ZGNR) 4.06 - 1.21 -
Li(8ZGNR) 4.12 0.90 0.11 0.03
Na(8ZGNR) 4.14 0.89 0.13 0
K(8ZGNR) 4.17 0.80 0.17 0.03

calculation. Some portion of the electrodes are included into the systems from both sides

due to avoid direct interactions between the electrodes they form scattering regions. Geo-

metric optimization of the scattering regions for the both perfect HC concentration of Na

termination the 9ZGNR and single Na vacancy with HC concentration of Na termination

the 9ZGNR are performed.

During the calculation of the transmission, in order to match the device potential

and the surface potential of the semi-infinite electrodes, additionally some more portion

of the electrodes are included into the device region. These additionally included parts of

the electrodes are kept fixed during the geometric optimizations of the large supercells of

scattering regions.

Transmission results under zero bias for perfect and single sodium vacancy cases

are given in Figure 5.13. At the left side of the figure spin degenerate transmission plot

is displayed for perfect case. Spin polarized current is not expected for an applied small

bias at low temperatures for perfect case which it can be calculated from Equation 3.57.

Also at the right of the figure the transmission plot is given for single atom vacancy case.

In contrary to the perfect case, strong spin polarized current is expected for an applied

small bias at low temperatures.
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Figure 5.12. (a) Unit cell of the electrodes. (b) Scattering region for perfect HC con-
centration of Na termination the 9ZGNR. (c) Scattering region for single
Na vacancy with HC concentration of Na termination the 9ZGNR.

Figure 5.13. (a)Transmission calculation results for perfect HC concentration of Na ter-
mination the 9ZGNR. (b) single Na vacancy with HC concentration of Na
termination the 9ZGNR. Fermi level is shifted to 0 for both cases.
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CHAPTER 6

ADATOM ADSORPTION ON A ONE-DIMENSIONAL

TOPOLOGICAL DEFECT IN GRAPHENE

Producing extended defects into the graphene sheet is an alternative approach for

the manipulation of electronic properties graphene sheet. Until the recently the only ex-

perimentally realized extended defects so far have been the edges of graphene nanorib-

bons. A recent study on producing one-dimensional topological defect in graphene,

containing octagonal and pentagonal sp2-hybridized carbon rings embedded in a per-

fect graphene sheet is realized experimentally [149]. The defect which it is produced in

graphene acts as a quasi-one-dimensional metallic wire. In this context, adatom adsorp-

tion on this one-dimensional topological defect in graphene with large family of adatoms

are studied for possible novel electronic, magnetic and spintronic properties.

6.1. Method

First principles density functional theory calculations are carried out using norm-

conserving pseudopotentials in their fully nonlocal form and the PBE GGA functional

within the SIESTA software package. A double-ζ polarized (a double-ζ for V case) basis

set composed of numerical atomic orbitals of finite range. Convergence tests are per-

formed for k-point sampling scheme and mesh cutoff energy. The electrostatic potentials

were determined on a real-space grid with a mesh cutoff energy of 350 Ry. The Brillouin

zone has been sampled with (1,3,13) points within the Monkhorst-Pack k-point sampling

scheme. For geometry optimizations, a local relaxation has been performed using the

conjugate gradient algorithm and the convergence criteria of 0.04 eV×Å−1 and 10−4 eV

for the forces and total energies, respectively, in the self-consistency cycles. 5-8 defects

are chosen at graphene sheets in z-direction. However even nanowire’s unit cell’s peri-

odicity is established in z-direction, unit cell is chosen to be periodic at y-direction with

enough distance to avoid interactions between 5-8 defect sites in y-direction due to de-

crease calculation times. Also vacuum region of ∼ 10 Å is used in x-direction.
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6.2. Results

6.2.1. Geometric Structure

5-8 defects induced geometry of graphenic lattice’s unit cell can be seen in Figure6.1.

Three possible lowest energetic binding zones are shown in Figure6.1; these are, M1: in

Figure 6.1. Left: Unit cell and geometric structure of 5-8 defect induced graphenic
sheet. Right: Possible Binding sites for 5-8 defect induced graphenic sheet.

plane center of the octagon, M2: off plane center of the octagon, M3: off plane center

of the pentagon. Firstly, M1 and M2 sites are used as binding zones for Li, Na, Co, Mn,

Cr, Ni, Fe, and V atoms. The Li, Na, Co, Mn, Cr, and V atoms are bonded into M1 and

M2 zones without deforming the plane geometry of the graphenic sheet, while Ni and Fe

atoms are bonded into M1 and M2 zone with deforming the graphenic sheet. Therefore

only Li, Na, Co, Mn, Cr, and V atoms are considered for calculations of the electronic

and magnetic properties. After the geometry optimizations, Li, Na, Co, Mn, Cr, and V

are placed into these M1, M2 binding sites. The lowest energetic geometry was M2 for

Li, Na, Co, Mn, Cr, and V atoms in between the M1 and M2 sites.

Unit cell relaxation is performed for Li, Na, Co, Mn, Cr, and V atom adsorption

into 5-8 defects induced graphenic sheets. Bond lengths of the three nearest carbon atoms

with adatoms and the binding energy for Li, Na, Co, Mn, Cr, and V atoms adsorption into
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Table 6.1. Bond lengths and total energies versus different adatoms absorbed into M2
sites of the 5-8 defect induced graphenic sheets.

System C1-Adatom C2-Adatom C3-Adatom Binding Energy
Name Bond Length (Å) Bond Length (Å) Bond Length (Å) (eV)

Li 2.18 2.27 2.41 11.076855
Na 2.47 2.55 2.67 10.255631
V 2.25 2.34 2.45 12.057048
Cr 2.42 2.52 2.67 10.524221
Mn 2.51 2.64 2.77 10.576678
Co 2.15 2.27 2.41 11.870403

M2 sites of the 5-8 defect induced graphenic sheets are given in table 6.1. Binding energy

is defined as,

EB = |Etot − Epri − (n · Eatom)|/n (6.1)

whereEtot is total energy of the adatom atom adsorbed into 5-8 defects induced graphenic

sheet, Epri is total energy of the pristine 5-8 defects induced graphenic sheet, Eatom is

the total energy energy of the adatom atom only and n is the total number of adatoms

atoms in the unit cell. Also for V atom all possible binding sites are considered. Three

lowest binding energies are obtained lowest to the highest M1, M3, M2, respectively for

V adsorption into defects induced graphenic sheet. Binding energy of the M2 site is 1.382

eV greater then the binding energy of the M1 site for V adsorption into defects induced

graphenic sheet.

6.2.2. Electronic Properties

Figure 6.2 represents the energy band and DOS diagrams of the pristine 5-8 de-

fects induced graphenic sheet. 5-8 defects induced graphenic sheet’s energy band di-

agram displays a metallic band structure with spin degeneracy. Figures 6.3-6.5 repre-

sent the energy band and DOS diagrams for adatoms adsorption into the 5-8 defects in-

duced graphenic sheets. Alkali atoms, Li and Na, adsorption into the 5-8 defects induced

graphenic sheets, slightly changes the energy band diagram of the pristine 5-8 defects

induced graphenic sheets. As it can be seen in Figure 6.3 and 6.4, pristine 5-8 defects

induced graphenic sheet’s bands around Fermi level are slightly shifting into lower en-

ergies in both Li and Na adsorption cases due to the electron transfer from Li and Na
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Figure 6.2. Energy band diagram and DOS plot of pristine 5-8 defect induced
graphenic sheet. Fermi level is shifted to 0.

into the graphenic sheets. Transition metal atoms, V, Cr, Mn, Co adsorption into the

Figure 6.3. Energy band diagram and DOS plot of Li adsorption into the 5-8 defect
induced graphenic sheet. Fermi level is shifted to 0.

5-8 defects induced grahpenic sheets, causes spin non-degenerate and different band dia-

grams (see Figure 6.6-6.5, respectively) . Especially in Figure 6.5, V adsorption into the

5-8 defects induced graphenic sheets change the energy band diagram as half-metallic.

For majority spin component the valance and conduction bands intersect at a single point

which it is located at k0 = 0.416 in first Brillouin zone (kz = 0.634) while there is no

band of the other spin component crossing Fermi level which resulting a energy band gap

of 0.7494 eV. The van-Hove singularities are present in the DOS plots of pristine and

adatom adsorption into the 5-8 defects induced graphenic sheets which characteristic to

one-dimensional systems (see Figure 6.2-6.8). The DOS plots of the transition metals ad-

sorption into the 5-8 defects induced graphenic sheet displays spin-non degenerate DOS
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Figure 6.4. Energy band diagram and DOS plot of Na adsorption into the 5-8 defect
induced graphenic sheet. Fermi level is shifted to 0.

Figure 6.5. Energy band diagram and DOS plot of V adsorption into the 5-8 defect
induced graphenic sheet. Fermi level is shifted to 0.

curves (see Figure 6.5 and Fig 6.8). Especially in the V adsorption into the 5-8 defects

induced graphenic sheet case, the energy band gap for the majority spin channel is present

as expected while minority spin component of density is not vanishing at Fermi level. In

contrary to transition metal adsorption into the 5-8 defects induced graphenic sheets, the

pristine and Li, Na adsorption into the the 5-8 defects induced graphenic sheets display

spin degenerate DOS curves with not vanishing DOS at Fermi level (see Figure 6.2 and

Fig 6.4).
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Figure 6.6. Energy band diagram and DOS plot of Cr adsorption into the 5-8 defect
induced graphenic sheet. Fermi level is shifted to 0.

Figure 6.7. Energy band diagram and DOS plot of Mn adsorption into the 5-8 defect
induced graphenic sheet. Fermi level is shifted to 0.

6.2.3. Magnetic Properties

The spin-dependent charge densities of the optimized structures and their differ-

ence (∆ρ = ρ↑ − ρ↓) are calculated. Using Mulliken population analysis spin dependent

atomic charges, total valance charge and the spin magnetic moments of the atoms are

determined. Total magnetic moments, total charge of the atoms, and induced magnetic

moments of the atoms for adatom adsorption into the 5-8 defects induced graphenic sheets

are given in table 6.2. As seen in the table 6.2, there are no net induced magnetic mo-

ments on the Li and Na atoms in the Li and Na atoms adsorption into the 5-8 defects

induced graphenic sheets. However when one of the Co, Cr, Mn, and V atoms is ab-

sorbed into the 5-8 defects induced graphenic sheet, spin magnetic moments are induced
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Figure 6.8. Energy band diagram and DOS plot of Co adsorption into the 5-8 defect
induced graphenic sheet. Fermi level is shifted to 0.

Table 6.2. Total valance charge and the spin magnetic moments of the octagon C
atoms and adatoms for adatom adsorption into the 5-8 defects induced
graphenic sheets.

Li Na V Cr Mn Co
Magnetic 0 0 3.650 5.103 5.954 1.954

Moment (µB)
Total 0.556 0.59 4.758 5.801 6.556 8.836

Charge

on the C atoms of the octagons and adatoms (see Figure 6.9). Especially at the V ad-

sorption into the 5-8 defects induced graphenic sheet case, V atoms induce net magnetic

moments on the all of C atoms of the octagons (see Figure 6.9). Also the directions of

the spin magnetic moments of the C atoms of octagons are opposite to the direction of the

spin magnetic moment of the transition metal atom in Co adsorption into the 5-8 defects

induced graphenic sheet case (see Figure 6.9). In Mn adsorption into the 5-8 defects in-

duced graphenic sheet case, Mn atom induces very small spin magnetic moments on the

C atoms of the octagons (see Figure 6.9). When an adatom binds to 5-8 defects induced

graphenic sheet, the valance charges of the adatoms are partially transferred to the 5-8

defects induced graphenic sheets. Transferred total charges per adatom to the 5-8 defects

induced graphenic sheets are 0.136, 0.199, 0.41, 0.444, 0.444, 0.242 for Co, Cr, Na, Li,

Mn, V respectively.
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Figure 6.9. Relaxed geometric structure and isosurfaces of charge density difference
of spin-up (↑) and spin-down (↓) states for (left to right) Mn, Cr, V, and Co
atoms adsorption into the 5-8 defects induced graphenic sheets. For Mn,
Cr, Co cases, positive and negative values of the charge density difference
is shown by red (dark) and blue (light) regions, respectively, for the same
isosurface value of ±0.004 electrons/Å3, while for V case, it is ±0.005
electrons/Å3.

6.2.4. Transport Properties

Transmission calculations are performed for the following cases: (1) A small

part of the pristine 5-8 defects induced graphenic sheet (see Figure 6.10 (b)); (2) one

V atom absorbed into the a small part of the 5-8 defects induced graphenic sheet(see Fig-

ure 6.10 (c)); (3) and two V atom absorbed into the a small part of the 5-8 defects induced

graphenic sheet (see Figure 6.10 (d) ). One dimensional pristine 5-8 defects induced

graphenic sheets are used as electrodes (see Figure 6.10 (a)) . Self energies of electrodes

are calculated separately and included into the current calculation. Some portion of the

electrodes are included into the systems from both sides due to avoid direct interactions

between the electrodes they form scattering regions .

Geometric optimization of the scattering regions for the two V atom absorbed

into the a small part of the 5-8 defects induced graphenic sheet is performed with two

different initial spin magnetic moment ordering which they are antiferromagnetic and

ferromagnetic. Ferromagnetic ordering for the two V atom absorbed into the a small

part of the 5-8 defects induced graphenic sheet has a 0.06 eV lower total energy then

antiferromagnetic ordering for the two V atom absorbed into the a small part of the 5-8

defects induced graphenic sheet. In this context two V atom absorbed into the a small

part of the 5-8 defects induced graphenic sheet with ferromagnetic ordering is used for

transmission calculations.
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Figure 6.10. (a) Unit cell of the electrodes. (b) Scattering region for a small part of the
pristine 5-8 defects induced graphenic sheet. (c) Scattering region for one
V atom absorbed into the a small part of the 5-8 defects induced graphenic
sheet. (d) Scattering region for two V atom absorbed into the a small part
of the 5-8 defects induced graphenic sheet.

During the calculation of the transmission, in order to match the device potential

and the surface potential of the semi-infinite electrodes, additionally some more portion

of the electrodes are included into the device region. These additionally included parts of

the electrodes are kept fixed during the geometric optimizations of the large supercells of

scattering regions.

Transmission result under zero bias for pristine 5-8 defects induced graphenic

sheet is given in Figure 6.11. In the figure a spin-degenerate transmission plot is displayed.

Thus spin polarized current is not expected under low bias and at low temperatures. In

the Figure 6.12, transmission results under zero bias for single vanadium and double

vanadium adsorption cases are given. At the left side of the figure, transmission plot

is given for single vanadium adsorption case. As it can be seen from the figure, under

applied small bias and at low temperatures, weak spin polarized current is expected from

the Equation 3.57. At the right side of the figure, transmission plot is displayed for double

vanadium adsorption case. Using the Equation 3.57 at low temperatures and under small

applied bias, very strong spin polarized current is expected in double vanadium adsorption

case in contrary to the single vanadium adsorption case.
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Figure 6.11. Transmission calculation results for a small part of the pristine 5-8 defects
induced graphenic sheet. Spin degenerate case. Fermi level shifted to the
0.

Figure 6.12. Transmission calculation results for V absorbed into the a small part of
the 5-8 defects induced graphenic sheet. Left: Absorption of one V atom.
Right: Absorption of two V atoms.
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CHAPTER 7

CONCLUSIONS

Electronic, spintronic, and transport properties of different examples of nanowires

are investigated in this thesis. As first system as nanowire, Cobalt-Benzene nanowire is

studied. Different geometric structures of the Cobalt-Benzene nanowires are studied in

this thesis which are : (1) Not staggered and antiferromagnetic; (2) Not staggered and

ferromagnetic; (3) Staggered and antiferromagnetic; (4) Staggered and ferromagnetic.

These systems’ geometries are perfectly optimized.

The not staggered and ferromagnetic system has the lowest energy which it be-

comes the ground state with a very little energy difference with respect to others. Mag-

nitude of the magnetic moments on the Co atoms are 1/3 of the bare Co atom for the

not staggered and ferromagnetic case. Also the not staggered and ferromagnetic system’s

electron band structure diagram and dos plot shows the half-metallic behavior which gives

the signal for the possible spintronic properties. In this context, spin polarized current cal-

culation results indicates the only one spin component of the current is dominant for all

the range of applied bias window. This makes the not staggered and ferromagnetic system

a promising spintronic material especially for the spin polarized current carrying wires.

The antiferromagnetic systems with not staggered and staggered geometries ex-

hibit similar electronic, magnetic and transport properties. Magnitude of the magnetic

moments on the Co atoms are 1/4 of the bare Co atom for both not staggered and stag-

gered case with antiferromagnetic ordering. The antiferromagnetic systems display spin

degenerate electronic band diagrams and dos plots. However their spin polarized current

calculations give the non-degenerate currents in applied bias window. The results of the

spin polarized current calculations of the antiferromagnetic systems indicate that the one

of the spin component of current is dominant in a specific applied bias window while

the other one of the spin component of current is dominant remaining applied bias win-

dow. Therefore the antiferromagnetic systems are possible candidates for the spintronic

applications especially for the voltage controlled spin filter.

The staggered and ferromagnetic system’s energy has the second lowest total en-

ergy. The staggered and ferromagnetic system exhibit a half-metal behavior which it can

be seen from the band diagram and dos plot of this system. However after the geomet-

ric optimization for the scattering region of the staggered and ferromagnetic system, spin
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magnetic moments directions and magnitudes are changed. Thus staggered and ferromag-

netic system is became staggered and antiferromagnetic.

In summary, the four systems can be divided into the two groups for the spintronic

applications. (1) Spin polarized current carrying wires; not staggered antiferromagnetic

system, staggered antiferromagnetic system (2) Voltage controlled spin filter; not stag-

gered and ferromagnetic system.

Secondly alkali-atom terminated zigzag graphene nanoribbon system is studied as

nanowire. In all cases edge carbon-alkali atom bond length is not affected by the ribbon

width. And in all HC concentration cases binding energy of alkali atom increases with

the ribbon width. The magnitude of the magnetic moments of the edge carbon atoms are

reduced in all cases. FC concentration of Li and Na reduces the band gap of the bare

ZGNR. However half coverage concentrations of Li and K with full coverage concentra-

tion of K change the ribbon as metal. As a special case, HC concentration of Na, leads to

formation of linear bands crossing at the Fermi level. Such tilted Dirac “cones” in a one

dimensional material has not been reported before [150]. Also this Dirac cone like band

structure is quite robust with respect to the ribbon width and approximations involved.

In single sodium vacancy case, different transmission plots are obtained for majority and

minority spin channels. Thus at low temperatures and under low bias, spin polarized cur-

rent is expected in single sodium vacancy case.

Finally, graphenic sheet with periodic 5-8 defect in one direction is studied. Bind-

ing of different adatoms (Li, Na, Cr, Co, Mn, and V) to the 5-8 defects induced graphenic

sheets are studied in this thesis. 5-8 defects induced graphenic sheets’ plane geometries

are kept during the adsorption of the adatoms of Li, Na, Cr, Co, Mn and V. Binding en-

ergy of the adatom adsorption into the 5-8 defects induced graphenic sheet is greatest in

V case. Charge transfer from adatom to the graphenic sheet is occured in all cases. Also

transition metal (Cr, Co, Mn, V) adsorption into the 5-8 defects induced graphenic sheets

induces spin magnetic moments on the C atoms of octagons.

In all (Li, Na, Cr, Co, Mn, V) cases electronic structures are modified differently.

Also in all cases, systems behave as metal except the vanadium adsorption case. Transi-

tion metals modifies spin degenerate electronic structure of 5-8 defects induced graphenic

sheets to the spin non-degenerate electronic structure. Especially electronic structure of

the V adsorption into M2 sites of 5-8 defects induced graphenic sheets is quite interesting

due to half-metallic behavior and formation of linear bands crossing at the Fermi level
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which they form a tilted Dirac cone. This band structure is similar to the edge termination

of 9ZGNR with Na at HC. This half-metallic and tilted Dirac cone behavior may result to

the interesting spintronics applications.

Spin polarized current is not expected at pristine 5-8 defects induced graphenic

sheet and single vanadium adsorption case , while strong spin polarized current is ex-

pected at double vanadium adsorption case at low temperatures and under small bias.

In all three cases, novel electronic, magnetic, and spintronic properties are ob-

tained. These properties are strongly affected by different geometries, defects and adatom

adsorptions.
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