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ABSTRACT 
 

The aim of this study was to determine the major soil nutrients (nitrogen, phosphorus 

and potassium) which mainly affect the raw material quality of food, using near infrared 

reflectance spectroscopy (1000-2500 nm). Genetic inverse least squares and partial least 

squares were used to predict the concentrations of major soil nutrients. 

The soil samples, collected from Menemen Application and Research Farms, were 

prepared for the near infrared analysis by using two different methods. According to the 

first method, two experiments were performed. The soil samples of which were oven 

dried and screened through a 2 mm sieve, were mixed with NPK fertilizer in the 

concentration range of 1-15% (wt/wt) (first experiment), and with NH4NO3 and TSP 

fertilizers in the concentration range of 0.075-0.3% (wt/wt) (second experiment). Using 

genetic inverse least squares method, regression coefficients of 0.9820, 0.9779 and 

0.9906 were obtained for the prediction of nitrogen, phosphorus and potassium 

concentrations in samples containing NPK fertilizer, respectively. In the second 

experiment, prediction of nitrogen concentration in samples containing NH4NO3 

fertilizer was done reliable with a regression coefficient of 0.8409 using genetic inverse 

least squares method. On the other hand, regression coefficient of 0.6005 was obtained 

for the prediction of phosphorus concentration in samples containing TSP fertilizer with 

the same statistical method. 

The second method differed from the first one by eliminating the drying of soil 

samples and moisturizing step following the addition of fertilizers into soil samples. The 

aim was to prevent baseline shifts in the spectra arising from the moisture changes in 

the samples. Five types of fertilizer [KNO3, CaNO3, TSP, (NH4)2SO4, NPK] were used 

in the preparation of samples in the concentration range of 0.02-0.5% (wt/wt). Using 

genetic inverse least squares method, calibration models produced between the 

reflectance spectra and the nutrient concentrations had regression coefficients greater 

than 0.80, however the prediction ability of the models was poor (R2<0.50) except for 

the samples containing (NH4)2SO4 and NPK fertilizers. The regression coefficients for 

the prediction of nitrogen and sulfur concentrations in (NH4)2SO4 containing samples 

were found as 0.8620 and 0.8555, respectively. For the prediction of nitrogen, 

phosphorus and potassium concentrations in NPK containing samples, the regression 

coefficients were found as 0.6737, 0.7633 and 0.8724, respectively. The partial least 



 

 

squares method was also used for the prediction of nutrient concentrations in the 

samples prepared according to the second method. Except samples containing 

(NH4)2SO4 fertilizer, nitrogen, phosphorus and potassium amounts could not be 

predicted in the other samples using partial least squares method (R2<0.20). The 

regression coefficients obtained for the prediction of nitrogen and sulfur amounts in 

(NH4)2SO4 containing samples were 0.9301. 

An additional work was carried out with laboratory analyzed soil samples collected 

from several points of two agricultural fields in Menemen Application and Research 

Farms. Total nitrogen, extractable phosphorus and exchangeable potassium amounts 

were determined by Agricultural Engineering Department of Ege University according 

to the Kjeldahl method, Bingham method and ammonium acetate method, respectively. 

Predictions of these nutrient concentrations by genetic inverse least squares method 

were poor (R2< 0.20). Using partial least squares method, the nutrient concentrations 

could not be predicted (factor number = 0). 

The results of this study indicate that, near infrared reflectance technique provided 

rapid, non-destructive and simultaneous determination of nitrogen, phosphorus and 

potassium concentrations in soil- fertilizer mixtures depending on the sample 

preparation steps, fertilizer types and concentrations and multivariate calibration 

methods (genetic inverse least squares and partial least squares methods). 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ÖZ 
 

Bu çalõşmanõn amacõ gõdanõn hammadde kalitesini başlõca etkileyen ana toprak besin 

elementlerini (azot, fosfor ve potasyum) yakõn kõzõlötesi reflektans spektroskopisi 

kullanarak tayin etmektir. Ana toprak besin elementlerinin konsantrasyonlarõnõ tahmin 

etmek için genetik ters en küçük kareler ve kõsmi en küçük kareler metotlarõ 

kullanõlmõştõr. 

Menemen Uygulama ve Araştõrma Çiftliği�nden toplanan toprak örnekleri yakõn 

kõzõlötesi analizlerine iki farklõ metot kullanõlarak hazõrlanmõştõr. Birince metoda göre 

iki deney yapõlmõştõr. Etüvde kurutulmuş ve 2 mm�lik elekten elenmiş toprak örnekleri, 

kütlece %1-15 konsantrasyon aralõğõnda NPK gübresi ile (birinci deney) ve kütlece 

%0.075-0.3 konsantrasyon aralõğõnda NH4NO3 ve TSP gübreleri ile karõştõrõlmõştõr 

(ikinci deney). Genetik ters en küçük kareler metodu kullanõlarak, NPK gübresi içeren 

örneklerdeki azot, fosfor ve potasyum konsantrasyonlarõnõn tahmini için sõrasõ ile 

0.9820, 0.9779 ve 0.9906 regresyon katsayõlarõ elde edilmiştir. İkinci deneyde, NH4NO3 

gübresi içeren örneklerdeki azot konsantrasyonunun tahmini 0.8409 regresyon katsayõsõ 

ile genetik ters en küçük kareler metodu kullanõlarak güvenilir bir şekilde yapõlmõştõr. 

Diğer taraftan, TSP gübresi içeren örneklerdeki fosfor konsantrasyonunun tahmini için 

ise aynõ istatistiksel metot ile 0.6005 regresyon katsayõsõ elde edilmiştir. 

İkinci metot, birincisinden toprak örneklerinin kurutulmasõ ve toprak örneklerine 

gübre ilavesini takiben uygulanan nemlendirme basamağõnõn çõkarõlmasõ ile farklõlõk 

göstermektedir. Amaç, örneklerdeki nem farklõlõklarõndan kaynaklanan spektrumlardaki 

zemin çizgisinin kaymasõnõ engellemektir. Kütlece %0.02-0.5 konsantrasyon 

aralõğõndaki örneklerin hazõrlanmasõnda beş gübre çeşidi kullanõlmõştõr [KNO3, CaNO3, 

TSP, (NH4)2SO4, NPK]. Genetik ters en küçük kareler metodu kullanarak, reflektans 

spektralarõ ile besin elementi konsantrasyonlarõ arasõnda oluşturulan kalibrasyon 

modelleri 0.80�nin üzerinde regresyon katsayõsõna sahiptiler fakat (NH4)2SO4 ve NPK 

gübrelerini içeren örnekler dõşõnda, modellerin tahmin etme yetenekleri zayõftõ 

(R2<0.50). (NH4)2SO4 içeren örneklerdeki azot ve sülfür konsantrasyonlarõnõn tahmini 

için regresyon katsayõlarõ sõrasõ ile 0.8620 ve 0.8555 olarak bulunmuştur. NPK içeren 

örneklerdeki azot, fosfor ve potasyum konsantrasyonlarõnõn tahmini için regresyon 

katsayõlarõ sõrasõ ile 0.6737, 0.7633 ve 0.8724 olarak bulunmuştur. İkinci metoda göre 

hazõrlanmõş olan örneklerdeki besin elementi konsantrasyonlarõnõn tahmini için kõsmi en 



 

 

küçük kareler metodu da kullanõlmõştõr. (NH4)2SO4 gübresi içeren örnekler dõşõnda, 

diğer örneklerdeki azot, fosfor ve potasyum miktarlarõ kõsmi en küçük kareler metodu 

kullanõlarak tahmin edilememiştir (R2<0.20). (NH4)2SO4 içeren örneklerdeki azot ve 

sülfür miktarlarõnõn tahmini için bulunan regresyon katsayõsõ 0.9301�dir. 

Menemen Uygulama ve Araştõrma Çiftliği�nde bulunan iki zirai tarlanõn farklõ 

noktalarõndan toplanan, laboratuarda analizlenmiş toprak örnekleri ile ilave bir çalõşma 

gerçekleştirilmiştir. Toplam azot, yarayõşlõ fosfor ve yarayõşlõ potasyum miktarlarõ Ege 

Üniversitesi�nin Ziraat Mühendisliği Bölümü tarafõndan sõrasõ ile Kjeldahl metodu, 

Bingham metodu ve amonyum asetat metoduna göre belirlenmiştir. Bu besin 

elementlerinin genetik ters en küçük kareler metoduna göre tahmini zayõftõr (R2< 0.20). 

Kõsmi en küçük kareler metodunu kullanarak, besin elementi konsantrasyonlarõ tahmin 

edilememiştir (faktör sayõsõ = 0). 

Bu çalõşmanõn sonuçlarõ göstermektedir ki, yakõn kõzõlötesi reflektans tekniği toprak-

gübre karõşõmlarõndaki azot, fosfor ve potasyum konsantrasyonlarõnõ, örnek hazõrlama 

basamaklarõna, gübre çeşidine ve konsantrasyonlarõna ve çoklu değişkenli kalibrasyon 

metotlarõna (genetik ters en küçük kareler ve kõsmi en küçük kareler metotlarõ) bağlõ 

olarak hõzlõ, tahrip etmeksizin, ve eşzamanlõ belirlenmesini sağlamaktadõr.  
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Chapter 1 
 

INTRODUCTION 
 

Methods for determining the chemical composition of samples of matter are topics of 

analytical chemistry. These analytical methods are often classified as classical or 

instrumental methods. In the early years of chemistry, most analyses were carried out by 

classical methods whereas from the beginning of twentieth century, researchers have 

started to use the measurement of physical properties of analytes such as light 

absorption or emission, fluorescence, mass to charge ratio, conductivity etc. Among 

these newer methods called instrumental methods, spectroscopy deals with the 

interactions of electromagnetic radiation with matter (1).  

The spectroscopic techniques have been increasingly used in agricultural and food 

industries in the recent decades. The classical analysis methods, namely laboratory 

analyses for food, soil or plant samples are expensive, time-consuming and require 

much work first in the collection of samples from fields or foods, and second in the 

laboratory work itself. They also require highly skilled operators and are not easily 

adapted to on-line monitoring. Related to these disadvantages, sampling and laboratory 

analysis methods are not effective enough to meet the growing demand of industry. 

To comply with this problem, several instrumental techniques such as reflectance 

spectroscopy, fluorescence spectroscopy etc. are used for the determination of product 

composition. These analytical techniques are relatively advantageous, as they are low-

cost, rapid and non-destructive. Together with fiber optic sensors, they allow on-line 

monitoring of products in factory or in field as remote or in-situ sensors. 

For instance, in food industry soft cheeses with different textural properties were 

discriminated with fluorescence spectroscopy by detecting the fluorescence emission of 

constituents, protein tryptophan and vitamin A.  On the other hand, infrared reflectance 

spectroscopy was also used to measure cheese composition, based on the observation of 

absorption peaks of cheese-fat, protein and water in the near and mid infrared portions 

of the spectrum. In addition, it was also shown that the joint analysis of fluorescence 

and infrared data contributes to a better discrimination of cheeses (2).  

 

 



 

 

Another study of near infrared reflectance spectroscopy involves the simultaneous 

prediction of total polyphenols and alkaloids in green tea leaves. Using partial least 

square algorithm, good calibrations of these compounds such as gallic acid, (-) 

epicatechin and caffeine were obtained between the reference laboratory analysis and 

near infrared spectra (R2>0.85). The study demonstrates as well, that the near infrared 

spectroscopy can be useful in controlling process steps of tea such as decaffeniation and 

estimating the quality and taste of green tea (3). 

In addition to the analysis of food and plant samples, infrared and fluorescence 

spectroscopes are also considered as advantageous techniques for soil analysis in 

precision agriculture. Site Specific Crop Management (SSCM, also known as precision 

agriculture) is a management technique that seeks to address the variability within a 

field, and optimize the application of inputs. In this concept, soil fertility is considered 

as one of the important soil variable to be sensed and may show variance within a field 

due to the spatial differences in soil, soil type, previous management practices and 

agronomic changes (4). As soil is an important source of food and fertilizers are 

necessary for plant growth to maintain their fertility, proper type and amount of 

fertilizer application improves both the quality and yield of food raw material. On the 

other hand, in case of both deficiency and excessive utilization, such problems as low 

quality and yield, unhealthy crops, increased input costs or environmental pollution of 

groundwater are encountered. The most important and deficient nutrients are known as 

nitrogen, phosphorus and potassium. With the aid of laboratory analyses and soil 

sampling procedures, it is possible to acquire data about fertility status of soil and to 

apply the necessary amounts of fertilizers. Such laboratory analyses are Kjeldahl 

method or Dumas method for total nitrogen determination, Olsen, Bray or Mehlich 

methods for plant available phosphorus and ammonium acetate (NH4OAc) method for 

plant available potassium (5). 

However, there is a tremendous need for the effective collection of data for precision 

agriculture, since the soil sampling and laboratory techniques are costly prohibitive. At 

this point, development of sensors and utilization of spectroscopic techniques enhance 

the efficiency of precision agriculture techniques by giving the chance of making rapid 

soil analyses. Hence, with the use of instrumental techniques, site specific crop 

management becomes a promising strategy that may be able to increase food production 

as well as reducing the input costs and providing environmental sustainability. 

 



 

 

In this thesis study, the source of food, that is soil, was the sample used in the 

experiments and was collected from agricultural farms in Menemen, Turkey. The 

objective was to determine the major soil nutrients (nitrogen, phosphorus and 

potassium) which mainly affect the raw material quality of food using near infrared 

reflectance spectroscopy (NIRS). This instrumental technique is a rapid and non-

destructive analytical technique that eliminates the time consuming sample preparation 

steps in laboratory. Moreover, it is adaptable to on-line monitoring of samples with the 

aid of fiber optic sensors. With this characteristic, making soil fertility analysis on the 

field may be possible by developing a portable instrument based on the working 

principle of near infrared reflectance spectroscopy. Two multivariate calibration 

methods, genetic inverse least squares and partial least squares methods were used to 

determine the soil nutrient amounts by developing a calibration model that relates the 

soil reflectance data obtained from the NIRS measurements to the known nutrient 

concentrations in soil. The study also demonstrates the applications of laser induced 

fluorescence spectroscopy (LIFS) and near infrared spectroscopy as well as the 

combination of these two techniques in food and agriculture industries through a 

literature review. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Chapter 2 

 

SOIL 
 

Soil is a natural body covering earth�s surface with biological, chemical and physical 

properties that gives the ability to support plant growth. Moreover, they are the natural 

beds for houses, factories, roads; a natural and limited resource for plant production and 

a food source for animal and human being. They are the receivers of industrial, 

municipal or animal wastes. Each soil type, in its complex structure, has a profile, 

which consists of some layers in the regolith part, extending down to bedrock as shown 

in Figure 2.1.  

 

 
 
Figure 2.1. The portions of regolith, soil and bedrock (6). 

 

Bedrock is the underlying rock on which the regolith portion is deposited. Regolith is 

all the loose material, formed by weathering of bedrock or by transportation action of 

wind, water or ice and thus displays great variations in composition from place to place. 

The upper part of the regolith is distinguished from the lower layers by the presence of 

roots of plants, soil organisms, high organic matter content, and minerals and by the 

presence of characteristic horizontal layers, which promote the growth of higher plants 

(6). 

 

 



 

 

2.1. Soil Profile 

Soil profile is the vertical section of soil exposing the layers as shown in Figure 2.2. 

The upper layer is called the A-horizon or topsoil, which is higher in organic matter 

content and darker in color than the layers below. B-horizon or subsoil is the middle 

part having relatively a brighter color and containing more clay. The A and B horizons 

together, are referred to as the true soil. The C-horizon, in other words parent material, 

can be thick, thin or even absent (7). 

 

 
 

Figure 2.2. Soil profile (7). 

 

2.2. Soil Composition 

The solid portion of soil contains the mineral matter and organic matter. The mineral 

matter is formed from the parent rock, in other words the C-horizon. In addition, the 

organic matter is formed from the living organisms in soil. Besides the solid portion, 

water and air make up the pore space. 

 

2.2.1. Types of soil  

Soil, according to its composition, is divided into two categories: mineral soils, and 

organic soils. Soils, formed in bogs and such wet areas, and containing more than 12-18 

% organic carbon (approximately 20 to 30% organic matter) are called as organic soils. 

They consist of living microbes such as bacteria, fungi and living macroorganisms such 

as plant roots, earthworms, insects and remains of dead macroorganisms as well as the 

finally divided non-living organic materials. Organic soils are useful for high value crop 



 

 

production like fresh market vegetables when drained and cleared. They can also be 

prepared as organic supplements for home gardens and potted plants. Therefore, these 

soils submit an economical significance in localized regions. Mineral soils occupy the 

highest portion of total land area and hence are considered as more important soils than 

organic soils.  They are formed from rocks and sediments, in other words they are the 

upper and biologically weathered portion of the regolith. A typical mineral soil contains 

approximately 45% mineral matter, 5% organic matter and 25% soil air and 25% soil 

water as shown in Figure 2.3 (6). 

 

 
 

Figure 2.3. Composition of a mineral soil (6). 

 

2.2.2. Soil water 

Soil water forms the soil solution together with its dissolved salts, which is essential 

not only because plants need water for their physiological process but also because 

water is a supply of nutrients to growing plants. It is an effective soil temperature 

regulator and held within the soil pores. As plants consume some amount of water in 

soil, the soil solids hold some either (6).  

 

2.2.3. Soil air 

Soil air is essential to the life cycles of soil animal and plants and held between the 

solid and liquid particles in soil. The discriminating points of soil air from the 

atmosphere are listed as follows. First, soil air is located in the soil pores between the 

solid parts. Second, the moisture content of soil air exceeds that of atmosphere and 



 

 

third, the content of CO2 is higher and that of O2 is lower than the amounts in 

atmosphere. Finally, it is not continuous. The most commonly found gases in soil air are 

N2, O2, and CO2 (6). 

 

2.2.4. Mineral content of soil 

The mineral constituents in soil are formed from rock by physical and chemical 

weathering processes and are generally variable in size and composition. The sizes 

range from submicroscopic clay to stones. The particles greater than 76 mm in diameter 

are referred to as stones and those smaller than stone size but greater than 2 mm in 

diameter are called as gravel. Mineral particles that are smaller than 2 mm. in diameter 

can be sand, silt or clay. Sand particles are between 0.05 and 2 mm in size whereas silt 

is between 0.002 to 0.05 mm. The clay particles are smaller than 0.002 mm in diameter 

(7). The primary minerals are formed with little change in composition from the country 

rock and they are present in the coarser fractions of soil. Sand, stone, gravel are some 

examples. The weathering process of primary minerals in the presence of air, water and 

organic matter in time forms the secondary minerals and soluble salts (Na+, K+, Ca+, 

etc.). They are mostly in clay size. Some examples are silicate minerals, 

montmorillonite, kaolinite, illite, vermiculite or the insoluble oxides of aluminum, iron 

and silicium (6). 

 

2.2.5. Organic matter 

The accumulation of partially decayed and partially synthesized plant and animal 

residues represents the organic matter content of soil. Tops and roots of trees, shrubs, 

grasses and other native plants are examples of plant tissue considered as the original 

source of soil organic matter. The secondary source is the animals and microorganisms, 

which attack plant tissues, leave their waste products or either their bodies by death and 

play a role in the translocation of plant residues, especially the earthworms, ants, 

insects. The organic matter in soil is permanently being broken down by the work of 

decomposing microorganisms in soils but again is renewed by the formation of new 

plant tissues. Hence, the composition of plant residue is important as it is modified to 

organic matter in soil. The green plant tissue is composed of carbon, oxygen, hydrogen 

and nitrogen, which exist in the ash as shown in Figure 2.4.  

 



 

 

 
Figure 2.4. Composition of a green plant tissue (6). 

 

The organic compounds present in the plant tissue are: 

1-sugars, starches, and simple proteins                        rapidly decomposed 

2-crude proteins 

3-hemicelluloses 

4-cellulose 

5-lignins, fats, waxes.etc.                                           very slowly decomposed 

From the above list, it can be understood that the sugars and water-soluble proteins 

are the readily available material for decomposition and on the contrary, lignins are the 

most resistant compounds. As these compounds exist in soil, under favorable 

conditions, the decay bacteria, fungi and actinomycetes become active and commence 

decomposing the rapidly decomposed organic material and produce energy with CO2, 

water and various simple products. Because of breakdown of proteins, the nitrates 

(NH4
+, NO2

-, and NO3
2-) are formed and with other specific reactions sulfates (S, H2S, 

SO3
-, SO4

2-, and CS2) and phosphorus (H2PO4
-, HPO4

2-) are released. As soon as the 

rapidly decomposing food source is diminished, the microorganisms attack both the 

resistant organic compounds (e.g.: lignins) and the synthesized material with a decline 

in their number. In time, the decayed plant tissue and the synthesized compounds form 

the soil humus, which is resistant against microbial action. Furthermore, the 

decomposition of organic matter produces acids and other substances, which cause to 

decompose soil minerals and release plant nutrients. All this process is an enzymatic 

digestion of soil organic matter in soil. 



 

 

Although the organic matter content in a usual mineral soil is small about 3-5% by 

weight, its functions are important. Soil organic matter maintains a granular and a loose 

structure, which ensures breathing of organisms, and enough space for plants to grow as 

well as an easily managed soil condition. It affects the water capacity of soil by 

increasing the water amount detained in soil and the available portion to plant as well. 

The main source of energy for microorganisms in soil is organic matter. In addition to 

this, organic matter affects the soil fertility in which the nitrogen, phosphorus and sulfur 

are present in organic forms. Another effect is on soil color, converting it from brown to 

black. Moreover, organic matter has high cation adsorption capacity and includes the 

easily replaceable cations. The soil organic matter can be considered in two general 

groups: a) original tissue and, b) humus. The undecomposed roots tops of higher plants 

and their partially decomposed equivalents are the original tissue, which are available to 

the attack of soil organisms to utilize them as an energy source or tissue building 

material. Humus is the complex, rather resistant mixture of brown or dark brown, 

amorphous and colloidal substance produced from the original tissues or synthesized by 

the soil microorganisms. It has a high capacity to hold water and nutrient ions, 

exceeding that of clay, its inorganic counterpart. Thus, it has a promoting effect on plant 

production in soil (6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Chapter 3 

 

SOIL NUTRIENTS 
 

3.1. Factors Affecting Plant Growth 

Soil is an agent, which supplies most of the factors affecting plant growth. The 

factors affecting plant growth can be counted as a) sunlight, b) mechanical support, c) 

heat, d) air, e) water and f) nutrients. Thus, the essential elements are not the only factor 

affecting the plant growth. Moreover, the plant growth is described by a principle 

named as �the principle of limiting factors� which means that the plant growth can be 

no greater than that allowed by the most limiting factor affecting plant growth (Figure 

3.1). Namely, the plant growth is dependent on the combination of the factors explained 

above, and any of them, in lesser amounts than the others can limit the growth of plants.  

Consequently, when considering the supply of nutrient elements to soil, the relationship 

of all these factors should also be examined (6). 

 
Figure 3.1. Principle of limiting factors (6). 

 

3.2. Soil Nutrients  

 

Table 3.1. Essential Nutrient Elements in Soil (6). 

Essential Elements Used in Large Amounts Essential Elements Used in Small Amounts 
Mostly from Air and 

Water 
From Soil Solids From Soil Solids 

Carbon Nitrogen Iron Copper 
Hydrogen Phosphorus Manganese Zinc 
Oxygen Potassium Boron Chlorine 

 Calcium Molybdenum Cobalt 
 Magnesium   
 Sulfur   



 

 

 As seen in the Table 3.1, there are 17 essential elements in which three of them, 

carbon, hydrogen and oxygen are mostly supplied from air and water, whereas the rest 

are supplied from soil. Most of the carbon and oxygen requirements are met from air by 

photosynthesis, the process by which sugar is synthesized in plant leaves from water 

and CO2. And the hydrogen is derived from the water of the soil. As mentioned before, 

about 94-99.5% of fresh plant tissue is comprised of carbon, hydrogen and oxygen, and 

about 0.5-6% is of soil constituents, however, it is the nutrient elements gained from 

soil that the plants mostly face the deficiency. Of the 14 nutrients obtained from soil, six 

are utilized in large amounts and hence are called as macronutrients. From these, 

nitrogen, phosphorus and potassium are the primary elements, which are supplied to soil 

by the addition of commercial fertilizers or manure. They are the critical 

macronutrients, which are known as the most commonly deficient fertilizer elements 

retarding plant growth because of their low or slow availability, lack or because of their 

imbalance with the other nutrients. On account of this, they will be examined 

thoroughly in the further sections. In the same way, calcium, magnesium, and sulfur are 

the secondary elements. Calcium and magnesium are added to acid soils in limestone, 

hence are called as lime elements, not fertilizer elements. And sulfur is applied to soil as 

an ingredient of fertilizers (e.g.: superphosphate, ammonium sulfate, or farm manure). 

The other nutrient elements (iron, manganese, copper, zinc, boron, molybdenum, 

chlorine, cobalt) obtained from soil are utilized in very small amounts by higher plants, 

hence are called as micronutrients. They are mostly present in most soils with low 

availability; however, the deficiency problems concerning micronutrients are not 

widespread as that of macronutrients (6).  

 
3.2.1. Soil Nitrogen 

Soil nitrogen is a vital nutrient compound for plant growth. The primary source of 

soil nitrogen is gaseous N2 in atmosphere; however a few bacteria can use this directly. 

The other plants and organisms can use nitrogen unless it is chemically bound to 

oxygen, hydrogen or carbon. About 99% of combined nitrogen is present in the organic 

matter fraction of soil, and can be converted to plant available nitrogen due to various 

biochemical reactions, that naturally take place in soil. The amount of nitrogen utilized 

by crops is large; however, the available amount to crops is small. Consequently, the 

crop uptake of nitrogen exceeds the rate at which organic nitrogen becomes available. 



 

 

Thus, soil nitrogen gains much attention and importance due to its deficiencies in soil, 

costly supply to soil and difficult retention in soil (7, 8). 

 

3.2.1.1. Effect on Plant Growth and Food 

Of the macronutrients applied in fertilizers, nitrogen has the most rapid and the most 

pronounced effect on plant growth. Plants utilize nitrogen to form new cells and organic 

compounds in their structure. Amino acids, nucleic acids, many enzymes, energy 

transferring compounds ADP and ATP are some examples to the nitrogen containing 

compounds synthesized in the plant tissue. For instance, with cereals, the uptake of 

nitrogen increases the plumpness of the grain and their percentage of protein. 

Succulence, which is a desired quality in such crops as lettuce and radishes, is again 

observed by the application of nitrogen. In addition to this, nitrogen regulates to a 

considerable degree, the utilization of potassium, phosphorus and other constituents and 

gives deep green colour to leaves of vegetables. The deficiency symptoms of nitrogen in 

plants are stunted growth and restricted root systems as well as reduced ability of 

absorbing sunshine radiation. Consequently, the leaves loose their green colour and turn 

to yellowish green. For instance, the cabbage leaves loose their color and the turn to 

yellow or red color. The head part of the vegetable grows up smaller than usual. 

Another example is cauliflower, in which the nitrogen deficiency causes inadequate 

leave and small crown formation (9). The nitrogen insufficiency also possesses 

premature leaf death and the leaves tend to drop off. However, as soon as the deficiency 

is satisfied by the addition of nitrogen containing fertilizers, a remarkable change can be 

observed rapidly. In the case of oversupply of nitrogen, the crop maturation is delayed 

by encouraging excessive vegetative growth. Related to this, the stems and lodging of 

grains are weakened. The growth of crops is generally dark-green and succulent. For 

instance, the oversupply of nitrogen causes potatoes to be watery. The leaves of 

cauliflower become darker and curly, and leafy and loose crown is formed. Moreover, 

resistance to disease is diminished and the quality of grain is adversely affected as in the 

case of apples, peaches and barley. The excessive amount of nitrogen in soil is usually 

accumulated in the form of nitrate. Excess nitrate in soil, reduces bacterial populations, 

and because of solubility, leaching can carry them to groundwater, which causes 

environmental pollution in streams, lakes or rivers (6, 7). 

 

 



 

 

3.2.1.2. Forms of Nitrogen in Soil 

Soil nitrogen is present in three major forms in soils: a) organic nitrogen, b) mineral 

nitrogen in soil solution, and c) ammonium nitrogen fixed in clay minerals.  

Organic nitrogen 

Nitrogen in organic material is present in the form of amine groups (-NH2) as 

constituents of aminoacids and aminosugars. This nitrogen in the amine group is 

covalently bound to a carbon and two hydrogen atoms in ring and chain structures and 

thus becomes unionizable. The remaining two electrons of nitrogen atom can bond to 

the negatively charged clay surfaces. In this way, both the soil structure and the organic 

compounds are stabilized and the organic matter becomes resistant to decomposition. 

About 2-3% of organic nitrogen is being mineralized in a year and becomes available to 

plant (6, 7). 

Mineral nitrogen in soil solution: 

Types of mineral nitrogen in soil solution include the exchangeable ammonium 

(NH4
+), nitrate (NO3

2-), and under certain conditions very small amounts of nitrite          

(NO2
-). The total amount of mineral nitrogen in soil solution accounts to less than 0.1% 

of total combined nitrogen in soil (8). When the organic matter of soil is decomposed by 

microbial activity, the covalent bond between the carbon and nitrogen in the amine 

group is broken. In this way, the amine group absorbs a hydrogen ion and a molecule of 

ammonia (NH3) is released. The ammonia molecule soon absorbs another hydrogen ion 

and becomes an ammonium ion (NH4
+). This process, namely release of ammonium 

ions from decomposing organic matter due to microbial activity, is called as 

ammonification. 

 

(1) R-NH2 + HOH → R-OH + NH3 + energy 

(2) 2NH3 + H2CO3  →  (NH4)2CO3
-  �  2NH4

+ + CO3
2 - 

 

The ammonium ions present in the soil solution can be utilized by crops and 

microorganisms; however, a vast amount is attracted by the minerals having negative 

internal charges. In other words, the cation-exchange sites in soil adsorb these ions. 

These adsorbed ammonium ions can move freely into and out of these sites, hence are 

called as exchangeable ammonium. They remain in this form unless they are utilized by 

plants or microorganisms or are oxidized to nitrate. They can either be converted to the 

organic forms. The next step following ammonification is the two-stage oxidation of 



 

 

ammonium ion to nitrite and nitrate, respectively. This process, called as nitrification, is 

carried out by specific microorganisms (Nitrosomonas sp. and Nitrobacter sp.) unlike 

ammonification. 

 

(1) 2NH4
+ + 3O2 → 2NO2

-
 + 2H2O + 4H+ + energy 

(2) 2NO2
- + O2 → 2NO3

2- + energy  

 

The important factor affecting these two processes is the condition of soil. For any 

microorganism, a moist and warm soil containing adequate amounts of nutrients and 

organic matter is ideal to complete ammonification step rapidly. In the case of 

nitrification, the specific microorganisms require a well-aerated moist and warm soil. 

Because the ammonification step proceeds more slowly than nitrification, the amount of 

ammonium ions in soil is smaller than the nitrate amount. In addition to this, soils 

hardly contain significant amounts of nitrite because it is soon oxidized to nitrate to 

prevent the accumulation of this toxic compound. Consequently, the ammonium and 

nitrate forms exist as plant available mineral nitrogen in soil; however the principal 

form is nitrate (7, 8, 10). 

Fixed ammonium 

Fixation of ammonium occurs in two ways; however, both result in the same way 

that ammonium ions become unavailable to plants or microorganisms. This form of 

ammonium is called as the non-exchangeable ammonium and is released to soil solution 

very slowly.  

 Fixation by clay minerals: 

Several clay minerals such as vermiculite, illite, montmorillonite, and kaolinite 

attract the ammonium ions in soil solution. The ammonium ions, which are held on the 

surfaces, are the exchangeable ones; however, sometimes the interlayer areas of these 

minerals trap these ions. In other words, they are fixed to the mineral like a rigid part of 

it and can not move (Figure 3.2).  

                                           NH4
+   �   NH4

+  �   NH4
+   

                                    (soil solution)    (Exchangeable)       (Fixed) 

 



 

 

 
Figure 3.2. Fixed and exchangeable nitrogen (8). 

 

Fixation by organic matter: 

This kind of fixation occurs when the ammonium containing fertilizers are added to 

soil. The free ammonium ion reacts with the organic matter and becomes resistant to 

decomposition (6, 10). 

 

3.2.1.3. Nitrogen Cycle 

In all kinds of soil, there is an intake and loss of nitrogen through various complex 

transformations. Figure 3.3 explains all these transformations, in which nitrogen goes 

around and around. This is why; it is called as the nitrogen cycle. 

The major portions of the cycle are mineralization and immobilization processes. 

Mineralization is the release of inorganic nitrogen ions (NH4
+ and NO3

-) from 

decomposing organic matter. This process involves the ammonification and nitrification 

steps. Immobilization is the reverse process, namely the conversion of inorganic ions to 

organic forms. Microorganisms use the inorganic ions in soil, to build up protein for 

their bodies, as well as if there is insufficient nitrogen in the plant and animal residues 

they are decomposing. In the same way, plants utilize the inorganic ions to produce 

building blocks of their organic bodies� (7). 

 



 

 

 
Figure 3.3. Nitrogen cycle (7).  

 

3.2.1.4. Factors Affecting the Availability of Nitrogen 

The maintenance of nitrogen in soil at adequate levels and regulation of its 

continuous availability to satisfy crop requirements are the problems encountered in the 

control of soil nitrogen. These problems arise from several factors: fixation of ammonia, 

immobilization and loss of nitrogen due to leaching, volatilization, denitrification, 

erosion and crop uptake. On the other hand, supply of nitrogen occurs by 

mineralization, fertilizer addition or by atmospheric fixation (Figure 3.4). 
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Figure 3.4. The major gains and losses of available soil nitrogen. The width of arrows 

shows the magnitude of gains and losses (6). 

 

Losses of nitrogen 

1) Leaching  

The entire nitrate exists in the soil solution. Hence, it can readily be leached from 

soil. It is very soluble and mobile like ammonium. However, ammonium ions can be 

present as exchangeable ammonium in soil solution or as fixed ammonium. Therefore, 

some amount of ammonium ions can be prevented from leaching. The leached nitrates 

can be carried to groundwater levels, thereafter to lakes, rivers or streams. Since supply 

and regulation of this nutrient at adequate levels in soil is difficult and expensive, it will 

be a burden economically to loose significant amounts by leaching. Moreover, the 

accumulation of nitrate in the drinking water sources causes an environmental pollution 

problem. These hazards caused by leaching can be reduced by controlled application of 

nitrate fertilizers (7, 8).  

2) Volatilization 

Nitrogen can be lost to the atmosphere in the form of ammonia. At high pH and 

temperature, volatilization occurs whenever ammonium is at the surface of soil. 

However, the volatilization rate from ammonium fertilizers reduces when the soil 

cation-exchange capacity is high and when there is plant growth in soil (7, 8). 

3) Denitrification 

Denitrification is the most widespread volatilization type, which is the biochemical 

reduction of nitrate to gaseous form (N2O), by the activity of anaerobic bacteria when 



 

 

the soil is saturated with water. Under inadequate aerated soil conditions, the 

microorganisms, although they prefer elemental oxygen, utilize the oxygen of nitrate 

and transform it to gaseous nitrogen (6, 7).  

4) Erosion 

Nitrogen losses due to erosion can be estimated by multiplying the amount of soil, 

lost with the organic matter content percent. The erosion losses can be reduced by 

cultivation. The cultivated soils will have the nutrients homogeneously distributed 

throughout a certain depth of soil. However, in undisturbed lands, the nutrients are 

concentrated near the surface. Therefore, the erosion losses in these soils occur more 

seriously than that of in cultivated soil (10).   

5) Plant uptake 

The amount of nitrogen removed by crops for their growth, depends upon the land 

use, and varies widely from crop to crop. 

 

Sources of nitrogen 

1) Atmospheric fixation 

The primary source of nitrogen is atmosphere. The original soil nitrogen is fixed by 

lightening and carried to the soil through rainfalls. The fixation of atmospheric nitrogen 

also takes place as a result of microbial activity either in a symbiotic or non-symbiotic 

way.  

The best known microorganism is Rhizobia, which is capable of using molecular 

nitrogen (N2) from atmosphere through symbiotic (mutually beneficial) relations. The 

other free-living microorganisms such as Azotobacter, Clostridium, or blue-green algae 

are responsible from non-symbiotic fixation of atmospheric nitrogen.  

2) Nitrogen fertilizers  

Either organic or inorganic, fertilizers are applied to soil to satisfy the demand of 

crop to nitrogen. Their presence is an advantage to maintain nitrogen at adequate levels 

in soil. Commonly, their application rate ranges from 20 or 30 lb/ac or kg/ha to a high 

of few hundred pounds per acre (6).  

The examples to organic forms are manure, sewage sludge and effluent or compost 

piles. The inorganic, in other words mineral fertilizer are easier to use, more rapidly 

available to plants, more concentrated and are cheaper than the organic forms 

(Table3.2). Especially, the fertilizers containing nitrate. The nitrate ions will easily and 

soon be solubilized in the soil solution and become available to crop (7).  



 

 

Table 3.2. Nitrogen Fertilizers (6). 

Fertilizer Chemical form Percent Nitrogen 
Ammonium Sulfate (NH4)2SO4 20.5 
Ammonium Nitrate NH4NO3 33.5 
Sodium Nitrate NaNO3 16 
Calcium Nitrate Ca(NO3)2 15.5 
Potassium Nitrate KNO3 14 
Calcium Cyanamid Ca(CN)2 18-21 
Ammonium nitrate sulfate NH4NO3-(NH4)2SO4 26 
Urea CO(NH2)2 46 
Ammonium chloride NH4Cl 25 
 

 
3.2.2. Soil Phosphorus 

Soil phosphorus is a widely used fertilizer element and is of great importance as 

nitrogen in the growth of plants. It is a key element in plant metabolism. However, at 

times, the supply of phosphorus can even be more critical than that of nitrogen. If the 

proper legume bacteria exist in soil, considerable amount of nitrogen can be supplied to 

soil temporarily, through atmospheric fixation of these bacteria. However, in the case of 

phosphorus supply, there is no such event of microbial aid. Consequently, the source of 

phosphorus is more limited than that of nitrogen. On the other hand, the lack of this 

element seriously affects the availability of other nutrients. For instance, the growth of 

legume bacteria is strongly influenced by phosphorus, which means that soil nitrogen is 

indirectly dependent on the supply of phosphorus. With various other factors that will 

be explained further, soil phosphorus becomes a critical nutrient element. 

 

3.2.2.1. Effect on Plant Growth and Food 

Phosphorus is distributed to every living cell in plant as a part of nucleoproteins that 

carry the genetic code of living things. It becomes united with carbon, hydrogen, 

oxygen, nitrogen and other elements to form complex organic molecules in the cell and 

is an essential constituent of the genetic material of cell nucleus.  

Phosphorus has effects on cell division process, fat and albumin formation, therefore 

the deficiencies cause stunting and delayed maturity. Phosphorus in plants is 

concentrated mostly in the growing parts of plants and seeds. Thereof, shrivelled seeds 

are observed in the lack of this nutrient. It is also responsible for the storage, transfer 

and release of energy within plant through such compounds as adenosine diphosphate 

and adenosine triphosphate (ATP and ADP). For instance, some metabolic processes 



 

 

such as starch and cellulose can be synthesized from sugar by expanding energy. Lack 

of phosphorus prevents this synthesis and causes conversion of sugar to anthocyanins, 

which shows its physical effect on plant as purple spots or streaks in leaves and stems. 

Moreover, in phosphorus deficiency, chlorophyll amount increases together with the 

presence of abundant nitrogen. This results in dark green colour of leaves as in the case 

of cabbage (6, 7, 9). 

 

3.2.2.2. Forms of Soil Phosphorus 

Phosphorus in soil can be present in two forms as organic phosphorus and inorganic 

phosphorus. 

 

Inorganic phosphorus 

Practically all the inorganic phosphorus in soils is present in the form of 

orthophosphates in the amounts ranging between 0.01 to 0.30% (10). Plants acquire all 

or most of their phosphorus requirement from soil solution in the form of phosphorus 

ions (mostly H2PO4
- and HPO4

2-) although their amount at any one time is extremely 

small. This available form to plant is referred to as the dissolved phosphorus. The 

orthophosphate ions are formed by the ionization of one, two or all hydrogen of 

phosphoric acid (H3PO4) to form H2PO4
-, HPO4

2-and PO4
3- ions due to soil pH (Figure 

3.5). It is considered that, plants demand mostly for the dihydrogen phosphate ion 

(H2PO4
-) in the rest of all and relatively smaller amount of HPO4

- ions are utilized by 

plants when the soil has higher pH values. However, the PO4
3- and H3PO4 molecule do 

not possess much importance in plant nutrition as the other two ions. Their 

predominance between each other strongly depends on soil pH (7). 

 
Figure 3.5. Phosphate ions in soil solution at different pH levels (7). 

 



 

 

Most of the inorganic phosphorus in soil is combined with calcium, iron or 

aluminum (10). Some important calcium containing minerals are shown in the Table 

3.3. 

 
Table 3.3. Calcium Containing Inorganic Phosphorus Compounds (6). 
Compound Formula  
Fluor apatite 3Ca3(PO4)2.CaF2 
Carbonate apatite 3Ca3(PO4)2.CaCO3 
Hydroxy apatite 3Ca3(PO4)2.Ca(OH)2 
Oxy apatite 3Ca3(PO4)2.CaO 
Tricalcium phosphate Ca3(PO4)2 
Dicalcium phosphate CaHPO4 
Monocalcium phosphate Ca(H2PO4)2 
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From these minerals, fluor apatite is the most insoluble thereby the most unavailable 

mineral, which is an original mineral, inherited from rocks. It occurs as tiny crystals 

well dispersed in rocks. As the rocks or minerals decompose by weathering or leaching, 

the phosphate ions dissolve into the soil solution. The simpler compounds of calcium 

such as mono or di calcium phosphate are more available for plant than the phosphorus 

in apatite crystals. The calcium phosphate compounds are stable in alkaline soils. 

Examples to the iron containing minerals are vivianite [Fe(PO4)2.8H2O] and strengite 

[FePO4.2H2O] and the aluminum containing minerals are wavellite and variscite 

(AlPO4.2H2O). These two types of minerals are extremely insoluble and stable in acid 

soils. 

Sorption of phosphate: 

As is well known, the major problem of phosphorus is solubility. The dissolved 

phosphorus in soil can be rapidly converted to insoluble inorganic forms by 

precipitation and adsorption (fixation) processes (10). In acid soil conditions such as pH 

4, the concentration of iron and aluminum exceeds the H2PO4
- ion concentration. 

Consequently, the iron or aluminum ions rapidly react with H2PO4
- ions and precipitate 

as insoluble aluminum or iron phosphate compounds. This type of sorption is called as 

chemical precipitation by soluble aluminum or iron. 

 

Al3+ + H2PO4
- + 2H2O � 2H+ + Al(OH)2.H2PO4  

            soluble                                                   insoluble (variscite) 

 



 

 

Besides chemical precipitation, under same acid conditions, the soluble phosphate 

ions can also react with the hydrous oxides of aluminum and iron. This reaction is the 

fixation by hydrous oxides of aluminum and iron. Both reactions end with the formation 

of hydroxyphosphates. However, fixation occurs relatively at a wider pH compared to 

precipitation.  

 

      OH                                  OH 

Al�OH + H2PO4
- � Al—OH + OH-     

      OH                                 H2PO4 

                            soluble                insoluble (variscite) 

 

The adsorption of phosphate ions by the positively charged sites on silicate minerals 

such as kaolinite, montmorillonite and illite takes place also under acid conditions. The 

adsorption occurs by the exchange of hydroxyl ions (OH-) exposed on the surfaces of 

silicate minerals with the phosphate ion. In time, these adsorbed ions can migrate into 

the interior parts of the mineral, hence become less available than the adsorbed ones.  

On the other hand, under mildly alkaline conditions, there is an abundance of 

exchangeable calcium (Ca2+) and calcium carbonate (CaCO3). The dissolved phosphate 

ions readily react with calcium and revert to insoluble calcium phosphate compounds. 

 

Ca(H2PO4)2 + 2Ca2+ � Ca3(PO4)2 + 4H+  

      soluble                                            insoluble 

Ca(H2PO4)2 + 2CaCO3 � Ca3(PO4)2 + 2CO2 + 2H2O  

      soluble                                                    insoluble 

In the same way, these inorganic calcium phosphate compounds can be converted to 

more insoluble compounds if sufficient time and favourable conditions are allowed (6, 

7).  

 

 

 

 



 

 

Organic phosphorus 

Organic phosphorus is covalently bound to carbon and oxygen. Thus, it can not be 

ionised unless the organic matter is decomposed. Decomposition breaks the carbon 

oxygen bond and the organic phosphorus is mineralised to plant available form. The 

decomposition is a non-specific process that almost every microorganism can perform. 

However, the decomposition rate is slow. Examples to the organic phosphorus 

compounds in soil are inositol phosphates, which are sugar molecules containing 

phosphate groups replacing hydrogen; nucleic acids, phytin, phytin derivatives and 

phospholipids. The availability of organic phosphorus is more than the one in apatite 

crystals (6, 7). Below is a figure, classifying the phosphate compounds in soil. 

 

VERY SLOWLY AVAILABLE 
PHOSPHATES 

Apatites, aged Fe, Mn, and Al phosphates, stable 

organic phosphates 

 

 

SLOWLY AVAILABLE PHOSPHATES 
Ca3(PO4)2, freshly formed Fe, Al, and Mn 

phosphates (small crystals), and mineralized 
organic phosphates 

 

 

READILY AVAILABLE PHOSPHATES 
Water soluble (e.g. NH4

+ phosphates, Ca(H2PO4)2) 

Water insoluble (e.g. CaHPO4, Ca(PO3)2) 

Figure 3.6. Classification of phosphate compounds in three groups (6).  

 

3.2.2.3. Phosphorus Cycle 

The phosphorus cycle (Figure 3.7) is simpler than the nitrogen cycle because 

exchanges with the atmosphere do not occur for phosphorus. The dissolved inorganic 

phosphorus ions (H2PO4
- and HPO4

2-) can be adsorbed either by positively charged clay 



 

 

minerals or by organic matter. There is equilibrium between the dissolved phosphorus 

and the adsorbed and solid forms of phosphorus in soil (7). 

 

Figure 3.7. Phosphorus cycle (7).  

 

3.2.2.4. Factors Affecting the Availability of Phosphorus 

 

Inorganic phosphorus 

The major problem of phosphorus in soils arises because of its insolubility.  

Although the amount of phosphorus taken up by crops is low, the application of 

phosphorus fertilizers to soil exceeds that of other nutrients except nitrogen. This is due 

to the rapid fixation or precipitation of available forms into insoluble compounds and to 

the unavailability of native solid phosphorus compounds in soil. In Figure 3.8, the 

thickness of arrows show that the major source of phosphorus is application of 

fertilizers and the major depletion is by fixation. The total available phosphorus in soil 

solution is always in very low amount.           

 

 

 

 

 



 

 

   CROP RESIDUES                           COMMERCIAL                 PHOSPHORUS   BEARING 
          MANURES                                FERTILIZERS                              SOIL MINERALS 
 
 
 
 
    SOIL ORGANIC                         AVAILABLE SOIL 
       MATTER                                     PHOSPHORUS 
 
 
 
 
                          CROP                    LEACHING           EROSION             FIXATION 
                     REMOVAL                  LOSSES                 LOSSES 

 

Figure 3.8. Gains and losses of available phosphorus in soil solution (6). 

Consequently, rather than supplying sufficient amount of phosphorus to soil, 

increasing the availability of native soil phosphorus and prevention of fixation are of 

greater importance. The solubility of phosphorus strongly depends on soil pH, because 

pH affects both the types of phosphorus ions present in soil solution and the 

concentrations of precipitating ions, aluminum, iron and calcium. In addition to this, the 

clay mineral type, amount of organic matter and water present in soil solution and the 

decomposing microorganisms are some other factors effecting inorganic phosphorus 

availability. The presence of organic matter increases the availability of phosphorus by 

tying up the aluminum and iron ions to its structure. This results in the presence of 

lesser amounts of these ions in soil solution to precipitate into insoluble phosphorus 

compounds. The microorganisms decomposing organic matter can also temporarily tie 

up the dissolved phosphorus ions into their microbial tissue. The amount of water in soil 

is important since the dissolved phosphorus ions can be carried to the plant roots by the 

aid of water. Moreover, leaching and weathering are also significant in obtaining an 

amount of available phosphorus from native solid phosphorus compounds such as 

apetite in time.  

The practical control of phosphorus availability can be managed by several 

applications; however these precautions are not able to prevent the insolubility problem 

totally. In acid soils, liming is an alternative to the application of large amounts of 

fertilizers. Addition of lime increases the pH up to 6 or 7, which ensures the optimum 

conditions for highest solubility as well as precipitates the hydroxides of iron and 

aluminum and the other low solubility compounds (7). The low concentrations of iron 

and aluminum in soil solution mean that the precipitation rate of phosphorus with these 



 

 

ions will be lower. Consequently, more phosphorus that is available can be acquired. 

The application of fertilizers should be performed in a manner that the distance between 

the fertilizer and the plant root should be as minimum as possible. Generally, the 

phosphorus fertilizers are applied in localized bands around the plant root to minimize 

the contact with soil, thereby any possible fixation (6). Table 3.4 explains the 

phosphorus fertilizers applied to soil. 

 

Table 3.4. Phosphorus Fertilizers (6). 

Fertilizer Chemical Form Phosphorus% Approximate % of 
available P2O5 

Superphosphates Ca(H2PO4)2 and 
CaHPO4 

7-22 16-50 

Ammonium 
Phosphate 

NH4H2PO4 21 48 

Diammonium 
Phosphate 

(NH4)2HPO4 20-23 46-53 

Phosphoric acid H3PO4 24 54 
Calcium 
metaphosphate 

Ca3(PO3)2 27-28 62-63 

 

Organic phosphorus 

The availability of organic phosphorus depends on the soil pH, climate, and 

cultivation. In most soils in temperate regions, the mineralization of organic phosphorus 

is not considered as an important phosphorus source unlike the soils in tropical regions. 

This means that the mineralization of organic phosphorus increases with increasing 

temperature, particularly at 30oC. Moreover, increasing soil pH has also an increasing 

affect on the mineralization rate. Heating, drying, and liming are some other factors 

increasing mineralization rate (10). 

 

3.2.3. Soil Potassium 

Potassium is the third nutrient element to limit plant growth, which is commonly 

used in fertilizers. Plants require large amounts of potassium and sometimes they use 

even more than the soil can supply. It is absorbed by plants in the form of K+. Unlike 

nitrogen and phosphorus, potassium nutrient is not involved in the internal part of the 

structure of any organic compound because its single electron is not involved in any 



 

 

covalent bonding. Thus, potassium is always ionisable and is present in the solution of 

either soil or plant (7). 

 

3.2.3.1. Effect on Plant Growth and Food 

The major function of potassium in plant is to maintain swelling of cells by 

regulating osmotic concentration. It is essential in the formation and transportation of 

starch and protein as well as in the development of chlorophyll. Potassium ions tend to 

be located in the growing tissues. In case of deficiency, they are carried from the older 

tissues to the younger ones. Therefore, symptoms of deficiency can be observed first on 

the older parts of plant. For example, the color of leaves turn into yellow or brown color 

or small, brown, and dead spots can be observed on the leaves as in the case of cabbage. 

In addition, the leaves of cabbage become curly and they dry soon. The potassium 

deficiency effects on carrots are reduced sugar content thereby a change in the taste and 

reduced lasting during storage (9). Potassium also aids in the uptake of other nutrients 

and their movement within the plant. For instance, K+ and NO3
2- ions may move 

together. The damaging effects due to the utilization of excessive nitrogen in plant 

tissue can be cured by adequate supply of potassium to plant. Moreover, the toughness 

of tissue can be enhanced with this element thereby the resistance of crops to certain 

diseases can also be increased. Consequently, the deficiency of potassium affects fruit 

quality, plant health and growth (6, 12).  

 

3.2.3.2. Forms of Potassium in Soil 

The problem of potassium deficiency is due to its unavailability. In fact, the total 

amount of potassium in soil is high except the sandy soils, such that the amount exceeds 

that of any other major nutrient element. However, the available form to plant (K+) is 

generally in very low amounts as in the case of nitrogen and phosphorus. Also, much of 

it can be readily leached from soil (6). 

 

Structural potassium 

The original source of potassium in soil is formed from weathering of potassium 

bearing minerals. Feldspars and micas are the two most important minerals containing 

potassium in their structure. Structural potassium is the unavailable form to plants and 

its release to soil solution throughout a growing season is not of considerable 

significance due to the resistance of feldspars and micas to weathering processes. 



 

 

However, their contribution to the overall available potassium content of soils from year 

to year should not be neglected (6, 13).  

 

Fixed potassium 

As the structures of the primary minerals are physically and chemically altered 

(broken or opened) by weathering or by the action of solvents such as carbonated water, 

secondary layer silicate clays can be formed. These minerals such as vermiculite, illite 

bare potassium ions in the crystal structure or in interlayer positions such that the 

potassium ions perfectly fit into the holes of minerals and become fixed there as in the 

case of ammonium ions. These fixed potassium ions are also called as non-

exchangeable potassium in soil. Such minerals may enhance the amount of dissolved 

potassium slowly in time due to the degree of weathering and to the amount of 

potassium they contain (6, 7, 13). 

 

Exchangeable potassium 

The negatively charged sites of clay minerals and organic matter attract the 

potassium ions in soil solution and due to the relatively low energy of attraction, these 

potassium ions are called as exchangeable. They can readily become available unless a 

plant root reaches them and an exchange of cations occurs. Soil organic matter also has 

negative charged parts such as acidic functional groups (carboxyls, phenols, enols) or 

organic polymers. However, the affinity of these exchange sites for potassium ion is 

relatively low (7, 13). 

 

Dissolved potassium 

Potassium ion in the soil solution is the available form of this nutrient to plants. 

Exchangeable and dissolved potassium together matches for the 1 to 2% of total 

potassium content in an average mineral soil. And about 90% of this readily available 

form is dissolved phosphorus (6). These ions can be rapidly converted to the less 

available forms. The relationship between the forms of potassium is shown in Figure 

3.9. 

                    (Slow)                                         (Rapid) 

Nonexchangeable K+ ⇔ Exchangeable K+ ⇔ Dissolved K+ 

 



 

 

 
Figure 3.9. Forms of soil potassium (13). 

 

3.2.3.3. Factors Affecting Availability of Potassium 

The mineral type of soil strongly affects the rate of potassium fixation. For example, 

the 1:1 (Si:O) type clays such as kaolinite have the ability to fix little potassium. On the 

other hand, 2:1 type clays such as vermiculite and illite have a high fixing capacity of 

potassium. The same mechanism is valid for the fixation of ammonium. The potassium 

deficiency is more likely to occur in acid soils than in neutral soils due to the presence 

of many H+ ions and less of all other cations on exchange sites and in solution. The 

application of lime to soil enhances the rate of potassium fixation. This factor is 

sometimes used in a beneficial way such that in well-limed soils, the loss of potassium 

by leaching can be prevented. Leaching and erosion causes a loss of potassium 

exceeding that of nitrogen and phosphorus. The other factors are environmental factors, 

which are wetting and drying, warming and cooling, and freezing and thawing. These 

physical effects break down the structure of minerals in which potassium can be more 

easily released. The potassium deficiency can be improved by the application of 

potassium containing commercial fertilizers. These fertilizers are called as potash 

fertilizers (Table 3.5) and are water-soluble thereby readily available to plants (6, 7). 

 

 

 

 

 



 

 

Table 3.5. Potash Fertilizers (6). 

Fertilizers Chemical Form K2O% K% 

Potassium chloride KCl 48-60 40-50 

Potassium sulfate K2SO4 48-50 40-42 

Potassium nitrate KNO 44 37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 4 
 

SPECTROSCOPIC TECHNIQUES COUPLED WITH 

MULTIVARIATE CALIBRATION METHODS 
 

4.1. Near Infrared Spectroscopy  

 

4.1.1. Theory of near infrared spectroscopy 

Near infrared spectroscopy is a spectrophotometric method that deals with the 

interactions of near infrared radiation with the sample under investigation. It is based on 

the absorption of electromagnetic radiation at wavelengths in the range of 780-2500 nm.  

The absorption of infrared radiation depends on the net change in dipole moment of 

the molecule as a consequence of its vibrational motion. The atoms in a molecule are 

not positioned fixed but instead fluctuate continuously due to the different types of 

vibrational motions about the bonds in the molecule (1). These vibrations fall into two 

basic categories, stretching and bending vibrations as shown in Figure 4.1. 

 

 

Figure 4.1. Types of molecular vibrations (1). 

 

When the vibrations are accompanied by a change in dipole moment, and when the 

frequency of vibration matches the frequency of infrared radiation, a transfer of net 



 

 

energy from the radiation to the molecule will be observed. This results in a change in 

the amplitude of the molecular vibration. That is, the vibration absorbs the infrared 

radiation and the molecule is excited to a higher energy level. This energy transmission 

can be measured as the plot of energy (reflectance, absorption or transmittance) versus 

wavelength, which is called as a spectrum. 

All the molecules except the symmetric molecules (homonuclear diatomic 

molecules) such as H2, O2 or Cl2, can absorb the infrared radiation as mentioned, hence 

are called as infrared active. However, the vibrations of symmetric molecules are not 

accompanied by a change in dipole moment and are considered as infrared inactive (5). 

The vibrational motion of two atoms can be illustrated by the movement of two spheres 

connected by a spring (Figure 4.2). 

 

Figure 4.2. Potential diagram of harmonic oscillation (1). 

 

The stiffness of the spring represents the bond strength and the masses of spheres 

represent the masses of the atoms. If one of these masses is disturbed along the axis of 

the spring, the vibrations obey the law of simple harmonic oscillation, in other words 

Hooke�s Law. 

The frequency of vibration can be calculated as: 
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where ν is vibrational frequency (cm-1),  k is the classical force constant, µ is the 

reduced mass of the two atoms and m1 and m2 are the masses of atoms, 1 and 2 

respectively.  

And the potential energy of simple harmonic oscillation is: 

E= xk ××
2
1 2         4.4 

where x is the displacement of the internuclear distance. 

However, the harmonic oscillation equations do not adequately explain the behaviour 

of atoms. The energy is not transferred continuously, but in discrete packets, which are 

called quanta (14). The discrete energy levels are defined by whole numbers 0, 1, 2... 

and the potential energy can be written as: 

E = µπ
υ kh ××





 +

22
1

          4.5 

where h represents the Planck�s constant and υ is the vibrational quantum number. 

Thus, unlike harmonic oscillation equation in which the vibrations can have any 

potential energy, quantum mechanical equations can take only certain discrete energies. 

By substituting Equation 4.1 into 4.5, the energy equation will be: 

E = νυ ××




 + h

2
1          4.6 

 

From this equation, the net energy transition between two energy levels can be 

calculated: 

ν = 0         E = ν×× h
2
1         4.7 

ν =1          E = ν×× h
2
3         4.8 

∆E = ν×× h
2
3  -  ν×× h

2
1  =  h ν×        4.9 

At room temperature, all the molecules remain at zero energy level. The possible 

transition from 0 to 1 in any one of the vibrational state (υ1, υ2, υ3,...) is called a 

fundamental transition (∆υ= ±1) (1). This kind of transition is allowed in harmonic 

oscillation due to the selection rule of the quantum theory, which states that the only 



 

 

transition can take place in a unit change in the vibrational quantum number (∆υ= ±1). 

As the stretching vibration of a chemical bond is extended in a molecule, the chemical 

bond can break if the vibrational energy level reaches the dissociation energy that is the 

energy required to dissociate two atoms repelling each other. In this case, transitions 

from energy level 0 to 2, 0 to 3 etc. are observed and are considered as first, second, etc. 

overtones. The overtones have frequencies two, three etc. times that of the fundamental 

but have intensities much weaker than the fundamental bonds. The vibration of higher 

energy levels can be illustrated by the anharmonic oscillation (Figure 4.3). 

 

 

Figure 4.3. Potential energy of anharmonic oscillation (16). 

 

As it can be seen from Figure 4.3, due to the dissociation at higher energy levels, the 

molecules do not return to their equilibrium states. In addition to the overtone lines, 

combination bands can also be observed as a result of simultaneous excitation of two 

vibrational modes by a photon. This event occurs when the energy is absorbed by two 

bonds rather than one, and the frequency of combination band can be the sum or 

difference of two fundamental frequencies. As a consequence, according to the selection 

rules of an ideal harmonic oscillation, only fundamental vibrations are allowed and 

transitions between more than one vibrational state (overtones and combination bands) 

are not allowed, but do appear as weak bands as a result of anharmonic oscillation 



 

 

(1,15). Most of the absorption bands observed in the near infrared region are overtones 

and combinations of fundamental stretching vibrational bands in the mid infrared 

region. The bonds responsible for this kind of absorption bands, are strong bonds having 

the lightest atom (hydrogen) and a heavier atom such as carbon, oxygen or nitrogen (C-

H, N-H, O-H) (Figure 4.4). 

 

Figure 4.4. Near infrared absorption bands and their locations (14). 

 

The near infrared spectroscopy has some advantages over the other infrared 

spectroscopy types. In contrast to mid-infrared spectroscopy, near infrared spectroscopy 

can be used for the quantitative determination of species such as water, proteins, fats 

and low molecular weight hydrocarbons in agricultural, food, petroleum and chemical 

industries (1). Several modes of operation such as diffuse reflectance, transmittance or 

absorbance measurements are possible which reduce the sample preparation steps. 

Thus, this technique is simple and rapid which can make multiple measurements within 

a few seconds. Furthermore, the technique is non-invasive and non-destructive since the 

energies in the near infrared region are low. Near infrared spectroscopy has high 

sensitivity relative to other infrared techniques and the instrumentation is cheaper (16).  

The near infrared instrumentation is generally divided into two classes according to 

their properties. The first one is dispersive near infrared spectrophotometers and the 

other is Fourier transform infrared spectrophotometer. The instrumentation of dispersive 

near infrared spectroscopy resembles to that of UV-visible spectroscopy hence the UV-



 

 

visible instruments are generally designed to cover the near infrared region as well. 

Tungsten-halogen lamps are the most common sources with quartz windows, which are 

capable of working in the visible and near infrared region. Sample cells vary from 0.1 to 

10 cm and are made up of quartz or fused silica. The optical configurations of 

dispersive instruments depend on the employed monochromator type, which is used for 

the selection of desired wavelengths. Some of these employ interference filters to 

provide radiation in a narrow range. And, some use grating monochromators, which are 

suitable for transmittance or reflectance measurements. In addition, infrared-emitting 

diodes can also be employed as both the wavelength selection system and the light 

source (400-1700 nm). The detectors used are generally silicon detectors covering the 

range 400-1100 nm, Indium gallium arsenide (800-1700 nm), lead sulfide (PbS) (1100-

2500 nm), or lead selenide (PbSe) (1000-5000 nm). For online monitoring of samples, 

remote sensors or fiber-optic probes are used which are low cost, rapid and capable of 

making accurate and stable calibration (1,14). 

In this study, the experiments were performed with a near infrared reflectance 

spectrophotometer, operating in the diffuse reflectance mode (Figure 4.5). Diffuse 

reflectance is the scattering of incident radiation from the sample (Figure 4.6). 

 

 
Figure 4.5. Near infrared reflectance spectrometer (15). 

 
Figure 4.6. Diffuse reflectance analysis (14). 



 

 

As it can be seen from Figure 4.6, the near infrared radiation penetrates the surface 

layer of powdered sample and excites molecular vibration and then it is scattered from 

the sample. In this case, the diffusely reflected radiation (R) is the ratio of the intensity 

of the radiation reflected from the sample to that of the standard reflector, such as a 

ceramic disk and it is converted to absorbance by the expression log 1/R. It depends on 

the concentration (c) of the analyte in the sample based on the Beer�s law. 

- log R = log (1/ R) = k c×        4.10   

k is the factor of both absorptivity and path length (14). 

 

4.1.2. Applications of Near Infrared Spectroscopy     

The applications of near infrared spectroscopy (NIRS) involve the analysis of 

agricultural products, food products, polymers, wool, textiles as well as pharmaceutical, 

biomedical and process analysis. In food industry, the applications are cereals and 

cereal products, milk and dairy products, meat, fish, fruit and vegetables confectionery 

and beverages (14,15). 

In cereal industry, near infrared spectroscopy can be applied to the analysis of 

moisture, protein, fat, starch, sugars and fiber in products such as bread, biscuits, cake 

mixes, breakfast cereals, pasta and snack foods a shown in Table 4.1. 

 

Table 4.1. Near infrared applications of cereal products (14). 

 

For instance, extrusion cooking is applied to cereal-based raw materials to produce 

extruded snack foods, breakfast cereals or pet foods. During this process, the structure 

of starch in cereals mainly affects the quality parameters, texture and density of the final 

product. For this aim, the possibility of applying near infrared spectroscopy was 

examined to monitor the changes in starch structure during extrusion. First the extruded 

products, which were prepared by several processing conditions, were freeze-dried and 



 

 

ground before near infrared analysis. Since satisfactory calibrations were obtained 

related to starch structure, the second attempt was to monitor the changes during 

cooking by installing a fiber optic probe into the extruder. The spectral characteristics of 

starch in the extruder were close to that of powdered samples. Hence, with this research 

a way to monitoring online the extrusion process and controlling was opened (14).  

Another study with the cereal products is, detecting the changes of wheat bread 

during storage. As bread staling is an important problem during storage, bread firmness 

becomes an important parameter in assessing the staling rate. The results obtained by 

physical compression with a texture analyser were compared with the near infrared 

reflectance (550-1700 nm) results of the same bread. The near infrared measurements 

were based on the detection of moisture loss and starch crystallinity. Starch crystallinity 

is extensively hydrogen bonded to water and this results in a decrease in the absorbance 

over time. The near infrared spectra had high relationship with the texture analyser 

firmness results (R2=0.8029 with a partial least squares factor of 8) which indicates that 

near infrared spectroscopy has the ability to follow firmness during bread staling (17). 

In dairy industry, near infrared reflectance spectroscopy has a role in the analysis of 

protein, fat, lactose, moisture and process control. Milk, dried whole milk, skim milk 

and whey powders, cream and traditional and processed cheese are the wide range of 

dairy products (14). 

Sorensen et al. (1998) studied the prediction of consistency (springy, sticky, 

coherent, soluble, and hard) and flavour (cheesy, acid, sweet, unclear) properties of 

cheese during ripening by near infrared spectroscopy. Thirty-two samples of cheese 

were produced in a pilot plant with three control variables, pH, moisture and 

microbiological contamination. The transmittance (850-1050 nm) and reflectance 

(1110-2490 nm) measurements were taken during ripening at the same time as a panel 

of 10 performed the sensory analyses. Calibration equations for consistency and texture 

properties obtained by partial least squares regression and regression coefficients for 

consistency and flavour were 0.74-0.88 and 0.27-0.59, respectively. The results show 

that for certain sensory properties (consistency), near infrared spectroscopy may provide 

rapid and reproducible results (18). 

In meat industry, near infrared spectroscopy has been used for sorting of carcasses 

due to their fat contents together with fiber optic probes as well as for the determination 

of protein, fat and moisture contents of ground meat and meat products (14). The 

following quality attributes sensory tenderness, texture, flavour acceptability and 



 

 

Warner-Bratzler shear force of beef were predicted by near infrared reflectance 

spectroscopy (750-1098 nm) coupled with fiber optic probe. In this study, the 

measurement was neither transmission nor reflectance, but a combination of these two, 

which is called as interactance. The radiation is transmitted through the sample and then 

reflected from the surface of the sample. Furthermore, this illumination and detection 

are performed at laterally different points on the sample�s surface with the aid of fiber-

optic bundle. This kind of measurement is useful for the analysis of large samples as in 

the case of beef. The near-infrared reflectance measurements were taken after 1, 2, 7 

and 14 days post mortem from freshly cut beefs. And predictive models were produced 

by principal component regression and partial least square between the near infrared 

and sensory analysis results. The beef quality attributes were studied and near infrared 

data were in good correlations especially for the Warner-Bratzler shearforce and 

tenderness values. However, more number of animals could be used in the study to 

increase the variability range for a better predictive ability of near infrared reflectance 

spectroscopy (14,19). 

Either in fish samples, it is possible to analyze fat moisture and protein contents 

which was studied by Valdes et al (1997). 68 samples of 9 different fish species were 

analyzed for their moisture, fat and protein contents by freeze-drying, extraction with 

petroleum ether and macro-Kjeldahl method, respectively. Following chemical 

analyses, the freeze-dried samples were scanned with near-infrared spectrophotometer 

and calibrations were developed using partial least squares. The coefficients of 

regression, which were calculated by PLS method, were 0.93, 0.97 and 0.48 for protein, 

fat and moisture, respectively (20). 

Furthermore, fruits such as peaches, mandarins, melons, mangoes, etc. can be sorted 

due to their ripeness by fiber-optic interactance probes coupled to near infrared 

spectrophotometers. The measurement is based on the determination of sugar content of 

fruit. In addition to this, alcoholic beverages such as beer, wine can be analyzed for 

their alcohol, water and sugar contents. However, in this case, the measurement is done 

by transflectance, which is another type of combination of transmittance and 

reflectance. In transflectance, the transmitted radiation through the sample is reflected 

from the sample holder. Other applications of non-alcoholic beverages involve the 

analysis of moisture, caffeine, and sugar in tea, coffee and fruit juices (14,15) 

In agricultural industry, soil and plants have been also used in the analysis of several 

constituents with near infrared spectroscopy. For instance, the carbon, nitrogen and 



 

 

phosphorus contents of several plant materials of which are green needles, falling 

needles and litter were predicted with near infrared reflectance spectroscopy. The aim 

was to analyze weather good calibrations could be performed within each stage of 

transformation of needles. Principal component analysis were carried out to 

discriminate the three sets of sample and partial least-squares regression was used to 

develop a calibration between near infrared reflectance data (400-2500 nm) and the 

standard wet chemical analyses. The results showed that there was an increase in the 

absorbance in the UV region as the samples were scanned in the order of, green needles, 

falling needles and litter (brown in color). The reverse pattern was valid in the near 

infrared region. On the other hand, the accuracy of calibration equations of nitrogen 

(R2=0.94-0.99) and carbon (R2=0.97-0.99) was better than that of phosphorus (R2=0.94-

0.99). This was due to the fact that phosphorus does not directly absorb the radiation 

and the calibrations for this kind of constituent depend on the secondary correlations. 

That is, the correlations between the constituent to be predicted and another component 

of the sample that can be measured by the near infrared spectroscopy (21). 

The studies on determining the soil attributes with the near infrared 

spectrophotometer include sensing of soil organic matter, moisture, organic carbon, 

total nitrogen and cation exchange capacity. R. C. Dalal and R. J. Henry (1986) 

performed a study on the simultaneous determination of soil organic carbon, moisture 

and total nitrogen by near infrared spectrophotometer. Three soil types, sampled at five 

different points of field, were air dried and grinded for the organic carbon and total 

nitrogen analysis with the near infrared spectrophotometer. The equipment operated in a 

wavelength range of 1100 to 2500 nm and the calibration equations for moisture, 

organic carbon and total nitrogen were calculated according to the wavelengths which 

gave the lowest standard error of estimate in the multiple regression analysis. The soil 

samples were also analyzed for total nitrogen, organic carbon and moisture contents in 

the laboratory by Kjeldahl method, Walkley-Black method and gravimetric method 

respectively. The results showed that a reliable prediction of organic carbon and total 

nitrogen amount in soil was possible with near infrared spectrophotometer together with 

multivariate analysis. The regression coefficients were 0.96 for moisture and 0.93 for 

organic carbon and total nitrogen and the standard error of prediction for moisture was 

greater than organic carbon and total nitrogen. These values imply that the prediction of 

moisture could be more accurately performed than the organic carbon and total nitrogen 

predictions. It was also understood that the near infrared spectra were very sensitive to 



 

 

moisture changes and to the particle size of the sample. The smaller the particle sizes 

the higher the reliability of measurements especially for moisture. The only 

disadvantage is that the prediction of organic carbon and total nitrogen could be more 

accurately performed within a narrow range of soil color (22).  

Cropping system management is generally practiced with fertilizers, pesticides and 

seeds applied over the whole field to manage the variability of requirements of soil by 

obtaining a uniform structure. For the effective control of weed on farm, herbicide 

application is a very useful tool. However, the excessive application of this chemical 

causes an environmental problem in groundwater and in surface water. Thus, the control 

of herbicide application is necessary and important in the aspect of site-specific crop 

production (23). For this aim, Sudduth and Hummel (1993a) developed a portable near 

infrared spectrophotometer for the rapid analyses of soil organic matter as a control 

input for herbicide application. The instrument was composed of a broadband halogen 

lamp as the illumination source, and a circular variable filter monochromator for the 

selection of wavelength, which ensures a simpler operation and ruggedness. The fiber 

optic bundle before the sample was used for remote sensing, and a lead sulfide 

photodetector capturing the energy reflected from soil surface has the advantages of 

lower cost, higher responsivity and ability to operate without cooling. Finally, a 

software algorithm supplied a zero baseline in the AC-coupled instrument readings. As 

a result of performance tests in the laboratory, a sensing range of 1650 to 2650 nm, an 

optical bandwidth of 52 nm and a data acquisition rate of 5 Hz were found to be 

optimal. A good agreement between the reflectance curves of this instrument and the 

research grade spectrophotometer data was obtained as well (24). 

The further studies of Sudduth and Hummel (1993b) were development and 

evaluation of laboratory calibrations of soil organic carbon, soil moisture and cation 

exchange capacity determined with the portable near infrared spectrophotometer and 

field test the instrument together with the evaluation of accuracy of soil organic carbon 

predictions. Thirty Illinois soils were used for the laboratory analysis. They were 

removed from foreign particles and were crushed to pass through a 2 mm sieve. After 

oven drying, the soil samples were moisturised into two moisture tension levels, 0.033 

MPa (field capacity) and 1.5 Mpa (wilting point). Finally, they were stored in plastic 

bags at 10oC for 5 days to equilibrate the moisture with the soil. The best prediction of 

organic carbon by the laboratory tests was obtained for average of 100 scans of each 

soil sample over a wavelength range of 1640-2640 nm [R2: 0.89 with a standard error of 



 

 

prediction (SEP) 0.23% organic carbon]. The prediction of moisture and cation 

exchange capacity (CEC) for thirty Illinois soils were successfully performed with a 

SEP of 1.59% moisture (R2: 0.97), and 3.59 mEq/100g for CEC (R2: 0.86). In addition 

to the calibration tests, it has been also found that normalisation of wavelength data 

reduced the effect of sample to sensor height variability on the calibration organic 

carbon. Furthermore, moving soil sample during data acquisition decreased the 

predictive capability of organic carbon. Hence, for the prediction of organic carbon in 

the field, some modifications on the instrument were made. A suitable sample 

presentation mechanism was added and the sensor was packaged to enable it to operate 

on a moving vehicle and withstand harsh field conditions. Although the mechanism of 

the instrument worked quite well in the field, the prediction of soil organic carbon was 

not accurate (25). 

 

4.2. Laser Induced Fluorescence Spectroscopy 

As mentioned in the previous section, near infrared reflectance spectroscopy has 

wide application in food and agriculture industries and possesses the possibility of 

making on-line analysis with the aid of fiber optic sensors. Laser induced fluorescence 

spectroscopy (LIFS) is the second instrumental technique that is investigated which is 

applicable to soil and food samples and has the potential to be integrated to on-line 

analyses. 

Fluorescence is a spectrochemical method in which the analyte in the molecule 

absorbs radiation at a certain wavelength (usually UV and visible regions). The 

electrons of the analyte are excited to higher energy states from ground state, but soon 

relaxation occurs from higher vibrational states to the lower vibrational state of the 

excited electronic state. Following this relaxation, the electrons return back to their 

ground state by emitting a photon. This is called as fluorescence emission (Figure 4.7) 

(2,26). This process is relatively rapid and is non-resonance. Resonance means that the 

excitation and emission energies are equal. However, in fluorescence emission, due to 

energy losses between vibrational states, the energy of excitation energy is greater than 

the emission energy. This is referred to as Stokes shift (1). 

 

 

 



 

 

 

 

Figure 4.7. Transition between electronic energy levels (26). 

 

Fluorescence spectroscopy offers several advantages for the analytical analyses. Its 

main advantage compared to absorption measurements like near infrared spectroscopy, 

is the greater sensitivity achieved because the fluorescence signal has a very low 

background (zero background). Thus, it enables working at very low concentrations. 

Furthermore, LIF is useful to study the electronic structure of molecules and to make 

quantitative measurements of analyte due to the high sensitivity of fluorescent 

compounds to their environment (26). For example, the tryptophan molecules that are 

on the hydrophobic part of a protein have different fluorescent properties than the ones 

on a hydrophilic part (14). It provides selective excitation of the analyte to avoid 

interferences and provides rapid real time data with high spatial resolution. 

Fluorescence detection technique is relatively rapid and easy to implement. 

The most intense fluorescence is observed in the molecules containing aromatic 

functional groups, aliphatic carbonyl structures or highly conjugated double bonds. 

Some examples are tryptophan, tyrosine, phenylalanine in proteins, vitamin A and B2, 

NADH derivatives of pyridoxal and chlorophyll, benzene, toluene, phenol, benzoic 

acid, etc. These compounds are naturally present in the sample structure, hence are 

called as intrinsic fluorophores. On the other hand, extrinsic fluorophores are added to 



 

 

the sample to obtain a fluorescence emission or to change the emission of the sample 

(1,2). 

The intensity of fluorescence is called as quantum yield, which is simply the ratio of 

the number of molecules that emit photon to the total number of excited molecules. If 

this value is close to a unit, then the molecule is a highly fluorescent molecule. 

The components of a fluorescence instrument involves a laser source or lamps, 

sample cells, focusing and collecting optics, filters and monochromators, transducers 

and signal processor and readout devices as shown in Figure 4.8. 

 

 

Figure 4.8. A schematic view of a typical fluorimeter (26). 

 

As the generator of radiation with sufficient power, lamps or lasers can be used in 

instruments detecting fluorescence. For instance, a mercury vapour lamp can be used in 

fluorometers or a xenon arc lamp in spectrofluorometers where a source of continuum 

radiation is required. Although they are more expensive than lamps, lasers can also be 

used in spectrofluorometers because of their advantages as remote or in-situ sensors. 

Today, laser technology such as microchip lasers can produce laser beams with a 

quality that is required in spectroscopic applications. These laser beams can be adjusted 

to a level of intensity and wavelength that will make fluorescencent excitation possible. 

Some examples are Nd:YAG, Gas or Dye lasers. Beam splitters, mirrors, lenses, etc. are 

used to focus light onto the sample and fiber optics carry the radiation from the source 

to the sample or vice versa. To enhance the sensitivity of measurements, radiation 



 

 

should be consisted of a limited or narrow group of wavelength. For this aim, filters and 

monochromators are used to select the desired wavelength. For instance, most 

spectrofluorometers contain at least one grating monochromators. However, using lasers 

as the illumination source eliminates the use of excitation monochromators to select the 

wavelength range because they have their characteristic wavelength due to the material 

in their structure and using combination of crystals in laser enables working at different 

wavelengths. The sample cells are generally composed of quartz, fused silica or glass. 

Transducers, in other words detectors convert the radiant energy into electrical signals. 

For instance, the most common transducer used in sensitive fluorescence instruments is 

the photomultiplier tube. Diode-array and charge transfer detectors are also used in 

spectrofluorometry (1).  

Development in the field of integrated optic, laser and fiber optic technologies make 

it possible to design integrated spectroscopy devices with a reasonable size and cost. 

That is why laser induced fluorescence spectroscopy is thought to be a good method for 

food and soil analyses. 

 

4.2.1. Applications of Laser Induced Fluorescence Spectroscopy 

In food industry, laser induced fluorescence spectroscopy is commonly used for 

protein analysis and to understand the conformational changes within the molecule. For 

instance, β-lactoglobulin protein, which is a constituent of milk, contains two 

tryptophan residues. These two tryptophan residues are buried in the hydrophobic parts 

of the protein. As a denaturation of β-lactoglobulin by urea, organic solvents and 

temperature, there will be a change in the intensity and energy of emission (27). 

In addition to β-lactoglobulin, five other proteins of milk αs1-, αs2-, α-lactalbumin, 

β- and κ-CN also contain at least one tryptophan residue. This gives the possibility of 

studying protein structure or protein-hydrophobic molecule interactions. Spectral 

changes can be detected due to the tertiary structure change, binding of ligands, protein-

protein association or the exposure of tryptophan residues to the aqueous phase. It was 

recorded that the excitation and emission wavelengths of tryptophan were at 290 nm 

and 305-400 nm, respectively. On the other side, the use of extrinsic fluorophores such 

as fuchsin acid can also be used to label proteins when the intrinsic fluorophores are not 

present in the molecule or not enough for the experiment. However, it should be taken 

into consideration that the extrinsic fluorophore is only specific to the proteins in that 

molecule. Another intrinsic fluorophore is vitamin A, which is located in the core of the 



 

 

fat globules. It has an excitation wavelength between 250-350 nm and an emission 

wavelength at 410 nm. This fluorophore enables the study of solid fat content in edible 

oils, which is considered as a quality control parameter. Furthermore, it was also shown 

that the excitation spectra of vitamin A in milk, fat in water emulsion showed a change 

as the temperature varied between 4-45ºC. This means that the fluorescence of the 

molecule is dependent on the physical state of triglycerides in the fat molecules of an 

emulsion (2). 

Another study performed by Mazerolles et al. (2001) involves both the fluorescence 

and mid infrared spectroscopies in the analysis of fat, protein and moisture contents of 

cheeses during ripening. The data collected at 1, 21, 51 and 81 days of ripening were 

processed with canonical correlation analysis which makes it possible to identify and 

quantify the relation between two sets of variables collected from the same sample. The 

results for the first two sets of variable were 0.87 and 0.58 canonical regression 

coefficients and the spectral data of fluorescence and infrared were similar. According 

to these results, the researchers have concluded that the changes during ripening stage 

of cheese could be non-invasively and rapidly observed by the two spectroscopic 

techniques (2). 

Similarly, the reflectance and fluorescence techniques were used together to 

discriminate the crop residues in field after harvest by Daughtry et al. (1995). The crop 

residues are important in controlling soil erosion. As the amount of crops covering the 

surface increases, the rate of eroded soil with its nutrients and pesticides carried into 

rivers and streams decreases. The samples were 37 agricultural soils (wet and dry) and 

recently harvested residues of corn (Zea mays L.), soybean sorghum and wheat. The 

reflectance spectra, taken over the wavelength range of 400-1000 nm, were not capable 

of discriminating all the crop residues from soil. This was due to the overlapping of 

reflectance spectra of soils and residues. The residues may have brighter or darker 

colours than soils depending on their moisture level, residue age and microbial 

degradation. In addition to this, a wide range in reflectance of a whole corn was 

observed which was collected from a single field. This depends on the extent of 

microbial colonies on the surface or residues, which cause a difference in the colour of 

residues. It was concluded that the discrimination might be possible by using a 

combination of visible and near infrared reflectance data. On the other hand, the 

fluorescence measurements over the 250-280 nm range showed similar excitation and 

emission wavelengths for the whole and ground crop residues. And the fluorescence 



 

 

intensity of soils was one or two orders of magnitude less than that of crop residues 

(28). 

Another study involves the detection of changes in the fluorescence properties of 

leaves of corn (Zea mays L.) grown under different levels of nitrogen fertilization. The 

study aims to develop a non-destructive remote sensing technique to determine the 

optimum rate of nitrogen fertilization in corn crops. Corn was grown under eight 

different nitrogen treatments ranging from deficient to excessive amounts of nitrogen 

levels in laboratory (concentrations ranging from 0% to 150% of the recommended 

nitrogen rate, 162 kg N/ ha). And fluorescence images taken at 450 nm (blue), 525 nm 

(green), 680 nm (red) and 740 nm (far-red) were compared with the chlorophyll 

contents, N:C ratio, pigment concentrations and grain yields. At three different growth 

stages of leaves (vegetative, tasselling and grainfill) high correlations were acquired 

among the red/blue, red/green, far-red/green and far-red/blue bands to total chlorophyll 

(r=0.96), N:C ratio (r=0.94), pigment concentration (r=0.82) and grain yield (r=0.92) 

(r=correlation coefficient) (29). 

Laser induced fluorescence spectroscopy has been widely used for monitoring, 

screening and characterizing the contamination and pollution in soil, water and the 

atmosphere. For instance, the investigation of Löhmannsröben and Schober (1999) 

included the quantitative analysis of petroleum products in soil with an appropriate 

calibration of laser induced fluorescence spectroscopy with a UV-near infrared diffuse 

reflectance spectroscopy operating in a range of 250-950 nm. The quartz sand and soil 

collected from different areas were contaminated with diesel fuel at different 

concentrations in laboratory, and they were excited by a Nd:YAG laser source at 266 

nm. A linear correlation was attained between the laser induced fluorescence signal 

intensities and the diesel fuel contamination in soil. The accuracy of detection of laser 

induced fluorescence intensity for a definite contaminated soil was approximately 

±10%, which was accepted as a good experimental accuracy. The data acquired by 

diffuse reflectance spectroscopy approved the results of subsurface fluorescence 

measurements. However, further investigations were required for the calibration of 

different soils (32). 

In- situ detection of BTEX (benzene, toluene, ethylene and xylene) compounds in 

subsurface soil by a novel microlaser based probe combined to a cone penetrometer, 

was performed by Bloch et al (1998). The novel microlaser is a combination of several 

optical crystals (Nd:YAG, Cr:YAG, KTP and BBO) which produced laser light at 266 



 

 

nm. The excitation light was carried by fibre optics onto a sapphire window. And these 

components were mounted into a cone penetrometer, which was pushed into soil for 

subsurface characterization. The results of field experiments indicated that the highest 

contamination was present at 3.5 m depth under soil. The wavelength-time spectra 

analyses showed that the shorter wavelengths (<315 nm) belonged to BTEX compounds 

whereas the longer wavelengths (315-350 nm) indicated the presence of aromatic 

compounds such as naphthalene (33). 

 

4.3. Multivariate Calibration Methods 

Laser induced fluorescence spectroscopy, near infrared reflectance spectroscopy can 

give quantitative information about the sample of interest, and these analyses are 

usually based on the detection of differences in the concentration of the analyte in the 

sample. This is only possible by using calibration processes, which relates the measured 

analytical signal to the concentration of the analyte. In other words, the idea of a 

calibration method is to develop a mathematical model between the dependent 

(instrument response) and independent variables (analyte concentration) and then to use 

this model for the prediction of analyte concentrations in the coming instrumental 

analyses. Together with the development of advanced instrumental techniques, 

calibration of the analytical method has gained much interest. These calibration 

methods can be univariate or multivariate depending on the number of variables and 

presence of interferences (16). 

 

4.3.1. Univariate calibration methods 

In univariate calibration methods, to determine the analyte concentration, the 

measurement of the instrument is at a specific wavelength. That is, there is only one 

dependent variable and it is assumed that the instrument response is dependent on the 

analyte concentration without interferences. The interferences can be observed due to 

errors in matching the matrix of complex samples. In univariate calibration methods, 

calibration is a two step process, a calibration model is developed from the samples 

whose concentrations are known and then the model is used to predict the 

concentrations of samples from their instrument responses.  

 

 

 



 

 

In univariate calibration model, the response of the instrument (r), is related to the 

analyte concentration (c) by the calibration function defined as: 

recfr += )(          4.11 

where er is the error associated with the instrument response.  

In spectroscopy, f(c) is assumed to be linear according to the Beer�s law, which 

states that the absorbance of an analyte at the maximum absorbing wavelength is 

proportional to the analyte concentration: 

lcA ××= ε          4.12 

where A is absorbance, ε is the extinction coefficient, l is the thickness of the sample 

and c is the concentration of sample. 

The two most common univariate calibration models are the classical and inverse 

univariate calibration models. The classical univariate calibration model, which assumes 

to be linear according to Beer�s law, is: 

ai = b0 + b1×ci+ ei         4.13 

where ai is the absorbance or in other words instrument response, ci is the analyte 

concentration, ei is the measurement error for the ith sample of m calibration standards 

and b0 and b1 are the unknown parameters. In case of zero error, the b0 and b1 would be 

the intercept and slope of the linear curve, respectively. However, in real applications, 

there is always an amount of error related to the instrument measurements. Thus, the 

best straight line that fits the data is produced by estimating b0 and b1 values. This 

estimation is done by the method least squares, which is a procedure that the sums of 

squares of residuals take the least possible values. The sum of squares for m calibration 

standards is: 
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To minimize SS, partial derivatives of SS need to be taken with respect to the two 

parameters that are to be estimated (bo and b1) and the resulting equation is set to zero. 

Thus: 
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After dropping 2 and �1 from Equations 4.15 a and b, the solutions of bo and b1 can 

be obtained by solving normal equations: 
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When these equations are solved: 
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Finally the least square estimates of bo and b1 can be calculated as: 
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where a and c  are the mean values of instrument response and analyte concentrations 

for m calibration samples, respectively. 

The estimated calibration equation can be written as: 

cbba o ×+= 1
���          4.19 

The concentration of unknown sample can be found from the equation below: 
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where cu is the unknown analyte concentration and au is its instrument response. As the 

calibration equation is predicted, the calibration curve between the absorbance and 

concentration values is drawn together with its regression coefficient (R2). This is a 

numerical value which represents the strength of the linear model for a and c. The value 

of R2 can be neither smaller than 0 nor greater than 1. The ideal linear equation should 

have an R2 value that is close to 1 (1,16). 
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The classical univariate calibration methods can also be described with the matrix 

notations. This time the model can be written as: 

aeCa +×= ββββ          4.22 

where a is m×1 vector of instrument responses, C is the matrix of analyte 

concentrations, ββββ  is the 2×1 vector of regression parameters (bo and b1) and ea is the 

m×1 vector of errors associated with a or residuals that are not fit by the model. Note 

that the first column of the C matrix is a vector of ones, which is necessary to estimate 

bo when the multiplication is done. The matrix form of bo and b1 estimates can be 

written as: 

aCCC ×′=××′ ββββ)(         4.23 

Then the least square solution to Equation 4.23 during calibration is: 

aCCC ×′××′= −1)(�ββββ         4.24 

where ββββ�  is the 2×1 vector of least square estimate parameters bo and b1 with the sum of 

squared residuals not fit by the model being minimized. Once the unknown parameters 

are estimated, the concentration of an unknown sample can be calculated from Equation 

4.20. 

The inverse univariate calibration model assumes the inverse of Beer�s law and can 

be expressed as: 

iioi eappc +×+= 1         4.25 

where ei is the error associated with the analyte concentration, ci and ai is the instrument 

response. This time the analyte concentration is a function of instrument response 

(absorbance). The estimates of po and p1 can be calculated from the least squares 

method as explained in classical univariate calibration. 
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where a  and c  are the mean values of instrument response and concentrations for m 

calibration samples. 

The estimated calibration equation can be written as: 

appc o ×+= 1���          4.27 

And the unknown analyte concentration can be calculated by: 

uou appc ×+= 1��          4.28 

where cu is the unknown analyte concentration and au is the instrument response of 

unknown sample. 

The univariate calibration methods have some limitations due to their assumption of 

no interference and single measurement based analysis. However, modern instruments 

provide hundreds of spectra of the sample and the sample composition is generally very 

complex that interferences are very frequently observed. Because of these limitations, 

they are not very suitable for instrumental analysis (16). 

 

4.3.2. Multivariate Calibration Methods 

Multivariate calibration methods deal with the data collected at multiple 

wavelengths of measurement of the sample containing more than one component. Thus, 

they are useful in analysing instrumental data. The multivariate calibration techniques 

can eliminate some problems, which occur in univariate calibration methods. As they 

handle multiple pieces of data to predict the analyte concentrations, they can also 

predict the presence of interfering species in samples by giving outliers, which can not 

be detected in univariate calibration methods. The interfering species can be the 

components other than the analyte, which are present in the sample or they may occur 

as a result of some chemical reactions in the sample. In addition to the chemical 

structure of samples, the physical behaviour of the sample also affects the instrument 

response. Moreover, human mistakes and measurement errors are the other sources that 

can be recognized by the multivariate calibration methods (16). 

In this thesis study, genetic inverse least squares and partial least squares methods 

were used for the prediction of the three soil constituents. 

 

Genetic Inverse Least Squares (GILS) 

Inverse least squares (ILS) method is based on the inverse Beer�s law where the 

concentrations of the analyte are proportional to the absorbance measurements. In 



 

 

classical least squares method where absorbance at each wavelength is proportional to 

the analyte concentrations, all the interfering species and their concentrations must be 

known and used in the model. However, in inverse least squares, this requirement is 

eliminated and it is assumed that the errors arise from the reference values of calibration 

sample, not from their spectral measurements.  

The ILS model for m calibration samples containing l analytes with n wavelengths 

at each spectrum can be written as: 

cEPAC +×=          4.29 

C  is the m×l matrix of constituent concentrations, A is the m×n matrix of spectral 

absorbances, P is the n×l matrix of unknown calibration coefficients relating l 

component concentrations to the spectral intensities, and Ec is the  m×l matrix of 

random concentration error or residuals that are not fit by the model. 

The major advantage of ILS is that the model can be reduced for the prediction of 

concentration of a single component in a sample. 

cepAc +×=          4.30 

where c is the m×1 vector of concentrations of constituents, p is the n×1 vector of 

calibration coefficients, A is the m×n matrix of absorbance spectra of calibration set 

and ec is the m×1 vector of errors associated with analyte concentrations not fit by the 

model. The least squares estimate of p is: 

cAAAp ×′××′= −1)(�         4.31 

where p�  is the estimated calibration coefficients. 

Following the p�  calculation, the predicted analyte concentrations can be calculated:  

c� pa �×′=           4.32 

where a  is the absorbance spectra of the analyte and c�  is the estimated concentration of 

the analyte. In this way, ILS enables prediction of concentrations of several components 

in a sample at a time. Although the ILS technique has the advantages of requiring only 

the knowledge of constituents of interest and being a relatively rapid method, it has 

some disadvantages. The first thing is that the number of wavelengths selected for the 

model development can not exceed the number of calibration set though the number of 

wavelengths in a spectrum is generally more than the number of calibration samples. 

The second thing is that the selected wavelengths should not be collinear, namely 

dependent to each other. This is often a problem when too many wavelengths are used 

in the model, which is known as over fitting.  



 

 

Genetic inverse least squares method is a modified version of ILS in which a small 

set of  wavelength is choosen from the whole spectral data matrix and used in the 

genetic algorithm. �Genetic algorithms are global search and optimisation methods 

based upon the principles of natural evolution and selection� (16). Here, the term gene 

refers to the solution to a given problem. In other words, it is the collection of 

wavelength pairs combined with simple mathematical operators (+, -, × , /).  

The score of each gene relates the instrument response to the analyte concentration. 

The implementation of genetic algorithm is of five basic steps:  

1-Initialization of gene population 

2-Evaluation and ranking of the population 

3-Selection of parent genes for breeding and mating 

4-Crossover and mutation 

5-Replacing the parents with their offsprings 

The names of these steps come from the biological foundation of the algorithm. The 

term gene population is referred to the collection of individual genes in a generation. To 

understand the success of each gene in predicting the analyte concentration, a fitness 

function is used which is the inverse of standard error of calibration (SEC) and standard 

error of prediction (SEP). 

In GILS, the term gene is a vector of randomly selected wavelengths from the whole 

spectral data matrix A and must have a size smaller than that of the calibration set 

because the number of wavelengths is restricted in response matrix A. In the first step, 

which is the initialization of the gene population, an even number of genes are created 

from the whole spectral data matrix and each is used to develop an ILS model. The 

second step is the evaluation of genes using fitness function, which is the inverse of 

standard error of calibration (1/SEC) and then ranking the genes according to their 

fitness function from the highest to the lowest value. The SEC is a derivative of the 

standard error (SE), which is: 
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where ci and ic�  are the known and predicted analyte concentrations for m samples and 

df is the degrees of freedom, which is given by: 

kmdf −=                                                 4.34  



 

 

k is the number of parameters extracted from the sample set. 

For the calibration data set, linear model is assumed and there are two parameters to 

be extracted from the data set, which are the slope of line and the intercept. Thus, the 

degrees of freedom equals to m-2 in the Equation 4.34. The equation for standard error 

of calibration can be written as: 
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The third step, selection of parent gene population for breeding is done according to 

the roulette wheel method. In roulette wheel selection method, each slot in the roulette 

represents a gene. The gene having the highest fitness function has the biggest slot, 

which means that the genes having high fitness functions have a higher chance of being 

selected for the breeding. However, there will be some genes that are selected multiple 

times whereas some are not selected at all; thereby they are thrown out from the gene 

pool. Fourth step is the mating and single point crossover operations. After selection of 

parent genes, they mate with each other from top to down whereby the first gene mates 

with second and the third with the fourth one etc. The single point crossover operation 

is only done in the middle of each gene vector. Thus, the first part of the first gene 

combines with the second part of second gene and likewise, the second part of the first 

gene combines with the first part of the second gene to give two new offspring genes. In 

this way, new generations, which have smaller number of wavelengths than the number 

of calibration samples, will be created. Finally, the parent genes are replaced by their 

offsprings and these offsprings are ranked by their fitness values and evaluated. The 

selection for breeding step repeats again until the predefined number of iterations is 

reached. At the end, the gene with the lowest SEC is chosen for the model development. 

This model is used to predict the concentrations in the validation set (test set) (16). The 

success of the model used in the prediction of validation set is evaluated by using the 

standard error of prediction (SEP) which is calculated as: 

( )

m

cc
SEP

m

i
ii∑

=

−
= 1

2�
        4.36 

where m is the number of validation set. 

 



 

 

Partial Least Squares (PLS)  

PLS is considered as a soft modelling technique, in which the whole spectral data is 

divided into new variables that are uncorrelated linear combinations of the measured 

data. These new variables are called as factors or principal components. The formation 

of these new variables can be shown with a two dimensional system. Suppose, there are 

m samples with n components in each sample. The instrument responses at two 

wavelengths are plotted against each other. The axis passing through the points account 

for maximum variability of the data, which is called as the first principal component or 

first eigenvector. If all the points fall on the axis, then the variables can be described 

with one eigenvector. If not, a second eigenvector will be drawn representing the 

maximum amount of residuals, not fit by the first eigenvector. This continues until all 

the variables fall on the axis. If the wavelength number exceeds two, the graph will be 

multidimensional and several eigenvectors can be found. The calibration model for PLS 

with m samples, n components and h loading vectors is: 

AEBTA +×=                             4.37 

where A is the m×n matrix of absorbance spectra, B is the h×n matrix of loading 

spectra or basis vector, T is m×h matrix of intensities or scores in the coordinate system 

defined by h loading vectors and EA is the m×n matrix of spectral residuals not fit by 

the factor model. The number of basis vectors, h, to represent original calibration 

spectra is determined by an algorithm during the calibration step. B is the uncorrelated 

linear combinations of the original calibration spectra.  

The model can either be written with an ILS model relating the analyte 

concentrations to the spectral intensities. 

cevTc +×=          4.38 

where c is the m×1 vector of analyte concentration, v is the h×1 vector of coefficients 

which relate spectral intensities to the analyte concentration, ec is the m×1 vector of 

errors in the reference values and T is the m×h matrix of intensities or scores in the new 

coordinate system defined by h loading factors. 

The least square estimate of v is given as: 

( ) cTTTv ×′××′= −1� h         4.39 

In PLS, the decomposition of whole spectral matrix is dependent on the analyte 

concentrations. The model uses a modified version of NIPALS (nonlinear iterative 

partial least squares) in which the concentration information is used to extract the 



 

 

loading vectors. It is developed in two different methods, PLS 1 and PLS 2 methods. 

PLS 1 method performs the analysis of complex chemical mixtures by considering only 

concentration of one component at a time and the rest are not included in the model. 

This method is the most commonly used one and the more useful one than PLS 2.  

Prior to the analysis with these methods, the data should be pretreated with mean 

centering and scaling. Mean centering is subtracting the average spectrum and 

concentration of the analyte of interest from each of all spectra and concentrations. 

Then the PLS 1 algorithm calculates the estimates of regression coefficients ( hv� ) and 

the PLS loading vector ( hb� ). First h is set to 1, and the estimate of first weighted 

loading vector is calculated: 

( ) 1� −×′××′= cccAwh         4.40 

hw� is n×1 vector of first order approximation of the analyte spectra. 

Then, the score vector is calculated by regressing A to hw� : 

hwAth �� ×=          4.41 

The estimates of hv�  and hb�  are then calculated: 

( ) 1���� −
×′××′= hhhh ttctv         4.42 

( ) 1���� −
×′××′= hhhh ttAtb         4.43 

These estimates are used in the calculation of concentration residuals (ec) and the 

spectral residues (EA) 

hh tvcec
�� ×−=          4.44 

hh btAEA
�� ′×−=          4.45 

In this way, one iteration is completed in the calibration step. The following step 

after calibration is prediction. The final calibration coefficient (bf) is calculated which is 

used in the calculation of concentration of a new sample.  

( ) vWBWb ���� 1
×′××=

−

f         4.46 

where W�  and B�  contain the individual hw�  and hb�  vectors and v�  is formed from the 

individual regression coefficient ( hv� ). 

occ +×′= fba�          4.47 

where c�  is the predicted unknown sample concentration, a is the spectrum of that 

sample and co is the average concentration of calibration samples. 



 

 

Once the concentrations of unknown samples are predicted, the prediction error sum 

of the squares (PRESS) can be calculated for each added factor, which defines the 

performance of a model to fit the calibration data.  

( )
2

1

�∑
=

−=
m

i
iccPRESS         4.48 

ic�  is the reference concentration of ith sample and ci predicted concentration of ith 

sample for m calibration standard. 

The evaluation of PRESS values of two factors is done by the F test and it is not the 

smallest PRESS value, giving the optimum factor number which may cause overfitting. 

The models need to be compared for h and h+1 factors (16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 5 

 

MATERIALS AND METHODS 
 

5.1. Materials 

The soil samples used in this study were collected from Menemen Application and 

Research Farms. Two fields were used for the sample collection, which were 

approximately 50 da in size. The first one, called as the clover field, contained clean soil 

in which no cultivation, fertilizer or pesticide application was performed. In the second 

field, melon was grown where NPK fertilizer was applied in the beginning of year 2003. 

The commercial fertilizers used in this study are listed below. 

 

Table 5.1. Fertilizers and their properties. 

Fertilizer Chemical Form          Fertilizer % Producer 

Ammonium nitrate NH4NO3 26% N Ege Gübre Inc. 

Ammonium sulfate (NH4)2SO4 21% N Ege Gübre Inc. 

Calcium nitrate Ca(NO3)2 15.5% N - 26.5% CaO Ege Gübre Inc. 

Potassium nitrate KNO3 13% N  -  46% K2O Ege Gübre Inc. 

Triple super phosphate 

(TSP) 

Ca3(PO4)2 43% P2O5 Ege Gübre Inc. 

N-P-K  15% N�P2O5�K2O  Ege Gübre Inc. 

 

5.2. Methods 

In this thesis study, two methods have been developed which involved the use of 

various fertilizers to simulate soils having varying concentrations of nitrogen, 

phosphorus and potassium. An additional study was performed with laboratory analyzed 

soil samples collected from different agricultural fields. 

 

5.2.1. First Method 

 

Soil sample collection and preparation: 

The soil samples were collected from several points of the clover field down to a 

depth of 25 cm because the major nutrients are mostly accumulated on the surface of 



 

 

soil. Approximately 15 kg of total soil was collected. They were stored in plastic bags in 

the refrigerator to prevent moisture loss and composition changes as the biological 

activity slows at low temperature. Prior to near-infrared analyses, they were oven dried, 

hand cleaned to remove foreign particles and ground to pass through a 2 mm sieve (25). 

The sample preparation steps according to the first method are explained in Figure 5.1.  

 

Soil (14% moisture) 

 

Drying (105 oC / 24hr) 

 

Hand cleaning 

 

Grinding and screening (2 mm sieve) 

 

Fertilizer addition 

 

Moisturizing with the amount of water lost during drying 

 

Mixing 

 

Near infrared reflectance analyses 

Figure 5.1. Sample preparation steps for the near infrared reflectance analyses according 

to the first method. 

 

Using this method, two experiments were performed in which the fertilizer types and 

their concentrations were different. In the first experiment, following the common soil 

preparation steps, soils were mixed with NPK fertilizer at definite concentrations, which 

are listed in Table 5.2. The application of fertilizer is usually performed together with 

the addition of water into soil to dissolve the fertilizer in soil solution. Thereby, the next 

step after fertilizer addition was to add the amount of water lost during drying. Finally, 

the mixture is mixed thoroughly to obtain homogenous dispersion. Before the near 

infrared analyses, the mixture was stored for three days to led the added water 

equilibrate in the soil. The concentrations of nutrient elements in the samples were 

calculated from their percentage in that fertilizer and by using conversion factors. These 



 

 

calculations are shown in Appendix A. In this experiment, seven samples (100 g) were 

prepared for the near infrared reflectance analyses.  

 

Table 5.2. Nutrient and fertilizer concentrations (g/100 g) in the samples containing 

NPK fertilizer in the first experiment. 

 Fertilizer  Nitrogen (N) Phosphorus (P) Potassium (K) 

1 0.15 0.066 0.125 

2.5 0.375 0.164 0.311 

5 0.75 0.328 0.623 

7.5 1.125 0.492 0.934 

10 1.5 0.655 1.245 

12.5 1.875 0.819 1.557 

15 2.25 0.983 1.868 

 

Using the same method, which was shown in Figure 5.1, a second experiment was 

performed with different fertilizer types and at different concentrations. NH4NO3 and 

TSP fertilizers were used in the preparation of ten sample (100 g) at various 

concentrations which are listed in Table 5.3. 

 

Table 5.3. Nutrient and fertilizer concentrations (g/100 g) in the samples containing 

NH4NO3 and TSP fertilizers in the second experiment. 

Fertilizer  Nitrogen (N) Phosphorus (P)  

0.075 0.0195 0.0141 

0.1 0.026 0.0188 

0.125 0.0325 0.0235 

0.15 0.039 0.0282 

0.175 0.0455 0.0329 

0.2 0.052 0.0376 

0.225 0.0585 0.0423 

0.25 0.065 0.047 

0.275 0.0715 0.0517 

0.3 0.078 0.0564 

 

 

 



 

 

Near infrared reflectance analyses 

The diffuse reflectance spectra of the samples were recorded with a FTS-3000 near 

infrared spectrometer (Bio-Rad, Excalibur, Cambridge, MA), set in the near infrared 

region (1000-2500 nm). The resolution of the instrument was 32 cm-1 and 64 scans were 

recorded. The light source was a Tungsten-Halogen lamp with a Calcium Fluoride 

(CaF2) beam splitter and a lead selenide (PbSe) detector was used. The sample cup has a 

10 mm diameter and a 2.3 mm depth, as shown in Figure 5.2. The spectrum for each 

sample was produced from 391 data points and the spectral data were recorded as log 

1/R (R: Reflectance) with a background taken by the pure soil sample. Three replicate 

scans were recorded for each sample containing NPK fertilizer prepared in the first 

experiment in which the first two were collected without changing the position of 

sample cup and the third one collected by rotating the sample cup about 90o around 

itself. For the second experiment, two replicate scans were recorded for the samples 

containing NH4NO3 and TSP fertilizers. 

Figure 5.2. Sample cup of near infrared reflectance spectrometer. 

 

Data analyses 

The near infrared reflectance data was processed with genetic inverse least squares 

method to predict the nutrient amounts in the samples. Genetic inverse least squares 

method was written by Durmuş Özdemir in Matlab programming language using 

Matlab 5.3 (MathWorks Inc., Natick, MA). A calibration set that would be used in the 

development of calibration model and a validation set to verify the prediction ability of 

the developed model were prepared in the form of text files. The choice of samples for 

the calibration and validation sets was randomly performed. The important point to be 

considered at this step is that the calibration set should contain the samples having the 

minimum and maximum fertilizer concentration values. In Table 5.4 and Table 5.5, the 

calibration and validation sets of nutrient concentrations for the first and second 

experiment are listed, respectively and it can be seen that the calibration sets for each 

nutrient contain the minimum and maximum concentrations. 

 



 

 

Table 5.4. Calibration and validation sets of nutrients in the samples containing NPK 

fertilizer (g/100 g) in the first experiment. 

Calibration Nitrogen Phosphorus Potassium  Validation Nitrogen  Phosphorus  Potassium 
1 0.15 0.066 0.12447  1 0.375 0.164 0.311175 
2 0.15 0.066 0.12447  2 0.375 0.164 0.311175 
3 0.15 0.066 0.12447  3 0.375 0.164 0.311175 
4 0.75 0.328 0.62235  4 1.125 0.491 0.933525 
5 0.75 0.328 0.62235  5 1.125 0.491 0.933525 
6 0.75 0.328 0.62235  6 1.125 0.491 0.933525 
7 1.5 0.655 1.2447  7 1.5 0.655 1.2447 
8 1.5 0.655 1.2447  8 1.875 0.819 1.555875 
9 1.875 0.819 1.555875      
10 1.875 0.819 1.555875      
11 2.25 0.983 1.86705      
12 2.25 0.983 1.86705      
13 2.25 0.983 1.86705      

 

Table 5.5. Calibration and validation sets of nutrients in the samples containing 

NH4NO3 and TSP fertilizer (g/100g) in the second experiment. 

Calibration Nitrogen Phosphorus   Validation Nitrogen Phosphorus 
1 0.0195 0.0141   1 0.026 0.0188 
2 0.0195 0.0141   2 0.026 0.0188 
3 0.0325 0.0235   3 0.039 0.0282 
4 0.0325 0.0235   4 0.039 0.0282 
5 0.0455 0.0329   5 0.065 0.047 
6 0.0455 0.0329   6 0.065 0.047 
7 0.052 0.0376      
8 0.052 0.0376      
9 0.0584 0.0423      
10 0.0584 0.0423      
11 0.0715 0.0517      
12 0.0715 0.0517      
13 0.078 0.0564      
14 0.078 0.0564      

 

The calibration set of samples in the first experiment contained 13 data of 5 samples 

and the validation set contained 8 data of 4 samples. For the NH4NO3 and TSP 

containing samples in the second experiment, a calibration set of 14 data from 7 

samples and a validation set of  6 data from 3 samples have been prepared. 

 

 

 



 

 

5.2.2. Second Method 

 

Soil sample collection and preparation: 

The second method differed from the first method by the elimination of drying and 

moisturizing steps during sample preparation. The soil samples used in this method 

were from the 15 kg of total soil collected from the clover field as explained in soil 

sample collection and preparation part of Section 5.2.1. Five fertilizer types [KNO3, 

CaNO3, TSP, (NH4)2SO4, NPK] were used during sample preparation which is 

explained in Figure 5.3. 100 grams of mixtures were prepared at 25 different 

concentrations in the range of 0.02%-0.5% (wt/wt). The concentrations of nutrients in 

the samples according to the fertilizer type are listed in Table B.1 and Table B.2 in 

Appendix B. 

 

Soil 

 

Hand cleaning 

 

Grinding 

 

Screening (2mm sieve) 

 

Fertilizer addition 

 

Mixing 

 

Near infrared reflectance analyses 

Figure 5.3. Sample preparation steps for the near infrared reflectance analyses according 

to the second method. 

 

Near infrared reflectance analyses 

The diffuse reflectance spectra of the samples were recorded with the same 

instrument operating under same conditions as explained in near infrared reflectance 

analyses part of Section 5.2.1. Three replicate scans were recorded for each sample in 

which the first two were collected without changing the position of sample cup and the 



 

 

third one collected by rotating the sample cup about 90o around itself. The spectral data 

were recorded as log (1/R) (R: Reflectance) with a background taken by golden disk. 

 

Data analyses 

The near infrared reflectance data was processed with two multivariate calibration 

methods, genetic inverse least squares and partial least squares methods. As three 

replicate scans were recorded for 25 samples, the calibration set contained 51 data of 17 

samples which were randomly selected and the validation set contained 24 data of 8 

samples. The calibration and validation sets of nutrient concentrations are listed Tables 

C.1, C.2, C.3, C.4 and C.5 in Appendix C according to the fertilizer type used in the 

sample. The partial least squares method was commercially taken from Grams/32 

Galactic Inc. The same calibration and validation sets prepared for genetic inverse least 

squares were used in this method. 

 

5.2.3. Near infrared analyses of soil samples collected from clover and melon 

fields 

In this part of the study, the prediction of nutrient concentrations was performed by 

relating the measured instrumental data to the nitrogen, phosphorus and potassium 

concentrations determined in laboratory by conventional methods. Hence, the samples 

were not soil-fertilizer mixtures, but pure soil collected randomly from several points of 

two different fields. Ten samples were obtained from the clover field and fifteen 

samples from the melon field, which was located next to the clover field. The samples 

were divided into two portions and were prepared for the analyses as explained in 

Figure 5.4.  

Soil samples 

 

Drying at room temperature / 4 days 

 

Crushing and screening (<2 mm sieve)  

 

Hand cleaning 

Figure 5.4. Sample preparation steps for laboratory analyses and near infrared 

reflectance analyses. 

 



 

 

Following sample preparation, the first portion of samples was sent to the soil 

laboratory of Agricultural Engineering Department of Ege University. Total nitrogen, 

extractable phosphorus and exchangeable potassium analyses were performed with 

Kjeldahl, Bingham and ammonium acetate methods, respectively. These methods are 

explained in Figures D.1, D.2 and D.3 in Appendix D. The remaining portion was 

analyzed with near infrared spectrometer operating at the same working conditions as 

explained in near infrared reflectance analyses part of Section 5.2.1. Three replicate 

scans were recorded and genetic inverse least squares and partial least squares methods 

were used to relate the near infrared reflectance data to the laboratory results. The 

calibration set was composed of 51 data of 17 samples and the validation set contained 

24 data of eight samples, which were randomly selected (Tables 5.6, 5.7 and 5.8).  

 

Table 5.6. Calibration and validation sets of total nitrogen (N) (g/100 g). 

Calibration N  Calibration N  Validation N 
1 0.0308  27 0.1008  1 0.084 
2 0.0308  28 0.1064  2 0.084 
3 0.0308  29 0.1064  3 0.084 
4 0.0896  30 0.1064  4 0.0924 
5 0.0896  31 0.1064  5 0.0924 
6 0.0896  32 0.1064  6 0.0924 
7 0.0896  33 0.1064  7 0.1064 
8 0.0896  34 0.1148  8 0.1064 
9 0.0896  35 0.1148  9 0.1064 
10 0.0924  36 0.1148  10 0.1064 
11 0.0924  37 0.1288  11 0.1064 
12 0.0924  38 0.1288  12 0.1064 
13 0.0952  39 0.1288  13 0.112 
14 0.0952  40 0.1428  14 0.112 
15 0.0952  41 0.1428  15 0.112 
16 0.098  42 0.1428  16 0.1148 
17 0.098  43 0.1512  17 0.1148 
18 0.098  44 0.1512  18 0.1148 
19 0.1036  45 0.1512  19 0.1316 
20 0.1036  46 0.154  20 0.1316 
21 0.1036  47 0.154  21 0.1316 
22 0.1064  48 0.154  22 0.154 
23 0.1064  49 0.1764  23 0.154 
24 0.1064  50 0.1764  24 0.154 
25 0.1008  51 0.1764    
26 0.1008       
 

 



 

 

Table 5.7. Calibration and validation sets of extractable phosphorus (P) (ppm). 

Calibration P  Calibration P  Validation P 
1 0.72  27 3.67  1 1.51 
2 0.72  28 3.89  2 1.51 
3 0.72  29 3.89  3 1.51 
4 1.94  30 3.89  4 2.16 
5 1.94  31 4.03  5 2.16 
6 1.94  32 4.03  6 2.16 
7 2.16  33 4.03  7 3.38 
8 2.16  34 5.83  8 3.38 
9 2.16  35 5.83  9 3.38 
10 2.16  36 5.83  10 3.89 
11 2.16  37 7.2  11 3.89 
12 2.16  38 7.2  12 3.89 
13 3.17  39 7.2  13 4.32 
14 3.17  40 9.58  14 4.32 
15 3.17  41 9.58  15 4.32 
16 3.31  42 9.58  16 6.26 
17 3.31  43 12.02  17 6.26 
18 3.31  44 12.02  18 6.26 
19 3.38  45 12.02  19 7.63 
20 3.38  46 14.18  20 7.63 
21 3.38  47 14.18  21 7.63 
22 3.53  48 14.18  22 13.68 
23 3.53  49 14.33  23 13.68 
24 3.53  50 14.33  24 13.68 
25 3.67  51 14.33    
26 3.67       

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 5.8. Calibration and validation sets of exchangeable potassium (K) (ppm). 

Calibration K  Calibration K  Validation K 
1 14.5614  27 17.4908  1 14.5614 
2 14.5614  28 17.4908  2 14.5614 
3 14.5614  29 17.4908  3 14.5614 
4 14.5614  30 17.4908  4 14.5614 
5 14.5614  31 18.4672  5 14.5614 
6 14.5614  32 18.4672  6 14.5614 
7 15.5378  33 18.4672  7 15.5378 
8 15.5378  34 18.4672  8 15.5378 
9 15.5378  35 18.4672  9 15.5378 
10 15.5378  36 18.4672  10 16.5143 
11 15.5378  37 19.4437  11 16.5143 
12 15.5378  38 19.4437  12 16.5143 
13 15.5378  39 19.4437  13 16.5143 
14 15.5378  40 20.4202  14 16.5143 
15 15.5378  41 20.4202  15 16.5143 
16 15.5378  42 20.4202  16 17.4908 
17 15.5378  43 22.3731  17 17.4908 
18 15.5378  44 22.3731  18 17.4908 
19 16.5143  45 22.3731  19 19.4437 
20 16.5143  46 23.3496  20 19.4437 
21 16.5143  47 23.3496  21 19.4437 
22 16.5143  48 23.3496  22 22.3731 
23 16.5143  49 27.2554  23 22.3731 
24 16.5143  50 27.2554  24 22.3731 
25 17.4908  51 27.2554    
26 17.4908       

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 6 

 

RESULTS AND DISCUSSION 
 

6.1. Results of near infrared reflectance analyses of soil-fertilizer mixtures 

prepared according to the first method. 

According to the first method, two experiments were performed in which the 

fertilizer types and their concentrations were different. In Table 6.1, the differences in 

the two experiments are presented.  

 

Table 6.1. Concentration profiles of nutrients (g/100 g) for the first and second 

experiments. 
 Fertilizer  

Type 
Fertilizer 

Concentration 
Nitrogen Phosphorus Potassium 

First experiment NPK 1-15% 0.15-2.25 0.065-0.983 0.125-1.868 
Second experiment NH4NO3  

TSP 
0.075-0.3% 0.0195-0.078 0.0141-0.0564  

 

In the first experiment, NPK fertilizer was used in the preparation of seven samples. 

The concentrations of nutrients in the samples simulate soils containing normal to rich 

amounts of nitrogen, phosphorus and potassium. According to the literature, soils 

containing total nitrogen amounts (N%) between 0.1-0.15% are considered as soils 

containing normal amounts of nitrogen. The values greater than 0.15% indicate rich 

amounts of nitrogen in soils. Furthermore, for soils containing normal amounts of 

phosphorus (P2O5%), the values range from 0.1% to 0.15%. For potassium nutrient 

(K2O%), the concentrations greater than 0.3% indicate soils rich in potassium content 

(34). In the first experiment, the actual amounts of nitrogen, phosphorus and potassium 

can not be as high as the maximum concentrations in the samples. However, working at 

high concentrations would give an idea about the ability of near infrared reflectance 

spectroscopy in the determination of major nutrients of soil. The diffuse reflectance 

spectra of samples containing the minimum (1%) and maximum (15%) concentrations 

of NPK fertilizer and pure fertilizer are shown in Figure 6.1. As mentioned before, the 

term R denotes reflectance and it is converted to absorbance in terms of log (1/R). 

 

 



 

 

 

Figure 6.1. Diffuse reflectance spectra of NPK fertilizer and samples containing the 

minimum (1%) and maximum (15%) concentrations of NPK fertilizer. 

 

The difference in the spectral features of NPK fertilizer and samples is obvious 

however it is difficult to interpret accurately the fertilizer concentrations from the 

sample spectra as they have similar spectral characteristics though the samples contain 

diverse amounts of nutrients. A baseline shift can be observed between the two samples 

due to the presence of moisture (14% moisture) and the large absorption peak around 

1900 nm is an indication of moisture. The other observed small peak around 2190 nm 

indicates the combination vibrations of N-H bonds. As the absorbance bands in the near 

infrared region are very complex and broad, accurate and consistent quantification of 

components of interest can be possible through the use of multivariate statistics (37). 

Genetic inverse least squares method was used to predict the concentrations of nitrogen, 

phosphorus and potassium in the samples. The standard error of calibration (SEC) and 

standard error of prediction (SEP) values have been calculated for a calibration set of 13 

data and a validation set of 8 data (Table 6.2 and Figure 6.2). 

 

Table 6.2. SEC, SEP and R2 (calibration) values of the nutrients in the samples 

containing NPK fertilizer. 

Soil  
constituent 

SEC (g/100 g) SEP (g/100 g) R2 

Nitrogen 0.0206 0.0917 0.9994 
Phosphorus 0.029 0.035 0.9943 
Potassium 0.0325 0.0588 0.9980 
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For the validation set, regression coefficients of 0.9820, 0.9779 and 0.9906 were 

found for the prediction to nitrogen, phosphorus and potassium concentrations in the 

samples, respectively. 

 

 Figure 6.2. Calibration curves of nitrogen, phosphorus and potassium nutrients in the 

samples containing NPK fertilizer. 

 

The near infrared reflectance spectroscopy is very sensitive to moisture content of 

samples due to the high intensity and high extinction coefficient of moisture O-H bands 

in the near infrared region (15). Dalal and Henry (1986) have also indicated that the 

visual changes in the absorbance in near infrared spectra were mainly because of 

changes in moisture contents of samples studied (22). Although the strong influence of 

moisture on the near infrared spectra, near infrared spectrometer was able to predict the 

nitrogen, phosphorus and potassium levels at high concentrations of NPK fertilizer, 

accurately.  

In the second experiment, the same procedure was followed but for lower 

concentrations of nutrients, which simulate soils containing nutrients ranging from poor 

to approximately normal amounts. The concentrations of nutrients in the samples are in 
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the range of 0.075% to 0.3% (wt/wt). NH4NO3 (containing 26% nitrogen) and TSP [Ca3 

(PO4)2 containing 43% P2O5] fertilizer types were used in the preparation of ten 

samples. The diffuse reflectance spectra of samples containing the maximum (0.3%) 

and minimum (0.075%) concentrations of NH4NO3 and TSP fertilizers together with the 

pure fertilizers are shown in Figure 6.2 and Figure 6.3. 

 

Figure 6.3. Diffuse reflectance spectra of NH4NO3 fertilizer and samples containing the 

minimum (0.075%) and maximum (0.3%) concentrations of NH4NO3 fertilizer. 

 

As it can be seen from Figure 6.2, the pure fertilizer spectra gives a large absorption 

peak around 2130 nm due to the high content of nitrogen (26%). Additionally, in the 

soil-fertilizer mixtures, the water absorption peaks are observed at around 1900 and 

1400 nm. 

 

Figure 6.4. Diffuse reflectance spectra of TSP fertilizer and samples containing the 

minimum (0.075%) and maximum (0.3%) concentrations of TSP fertilizer. 
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Genetic inverse least squares method was used to predict the nutrient concentrations 

in the samples and the results of this method are shown in Table 6.3 and Figure 6.4. 

 

Table 6.3. SEC, SEP and R2 (calibration) values of the nutrients in the samples 

containing NH4NO3 and TSP fertilizers. 
Soil constituent SEC (g/100 g) SEP (g/100 g) R2 

Nitrogen 0.0034 0.0081 0.9728 
Phosphorus 0.0028 0.0076 0.9608 

 

 

Figure 6.5. Calibration curves of nitrogen and phosphorus nutrients in the samples 

containing NH4NO3 and TSP fertilizers. 

 

Relative to the previous results, lower coefficient of correlation values were obtained 

for the calibration model due to the lower nutrient concentrations. Although the nutrient 

levels were low, the calibration model worked well in the prediction of nitrogen and 

phosphorus concentrations that the regression coefficients of validation sets for nitrogen 

and phosphorus were 0.8409 and 0.60, respectively. In literature, generally predictions 

with regression coefficients greater than 0.50 were considered as reliable predictions 

and the ones with regression coefficients greater than 0.80 were considered as accurate 

predictions (39,40,41). 

Besides these two experiments, the diffuse reflectance spectra of pure fertilizers were 

also investigated. For this aim, the ground fertilizers (< 2 mm size) were analyzed with 

near infrared reflectance spectroscopy. The diffuse reflectance spectra of pure fertilizers 

are shown in Figure 6.6. 
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Figure 6.6. Diffuse reflectance spectra of pure fertilizers. 

 

The diffuse reflectance spectra of nitrogen containing fertilizers show broad peaks 

around 2000-2200 nm. According to the literature, these are the combination vibrations 

of N-H bonds, which are observed between 1800-2200 nm region.  In addition to this, 

the smaller peaks located between 1430-1560 nm indicate the first overtones of N-H 

bonds, which are observed between 1420-1600 nm (14). For phosphorus and potassium 

containing fertilizers, a specific absorption peak is not observed. It was mentioned that 

the possible absorption bands in the near infrared region arise from O-H, N-H and C-H 

bands. Thus, for mineral species there are no absorption bands in the near infrared 

region as it can be understood from the reflectance spectra of pure fertilizers containing 

phosphorus and potassium (15). However, according to the literature, the ability of near 

infrared reflectance spectrometer to determine phosphorus and potassium contents is 

based on the correlation between the primary and secondary properties of soil (21,39). 

The primary properties of soil respond to near infrared radiation by absorbing the 

energy. Some examples to those soil attributes which can be directly measured in the 

near infrared region are organic matter, moisture content or particle size distribution, 

total carbon or total nitrogen contents (39). On the other hand, the secondary properties 

can not be measured directly in the near infrared region due to the inability of the 

molecules to absorb the near infrared radiation. Some of these secondary properties of 

soil are cation exchange capacity, calcium, magnesium, phosphorus and potassium 

contents etc. Due to the correlation of secondary properties with one or more of the 

Fertilizers

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2502 2097 1805 1585 1412 1273 1159 1064

Wavelength (nm)

Lo
g 

(1
/R

)

Calcium nitrate

Potassium sulfate

Triplesuperphosphate

Ammonium nitrate

Ammonium sulfate

Potassium nitrate

NPK



 

 

primary ones, the prediction may be possible. For instance, Chang et al. (2001) 

indicated that cation exchange capacity could be predicted depending on the correlation 

with organic matter or clay content (38). They have also indicated that the size, shape 

and arrangement of particles in a sample affect the path of light transmission and 

reflectance spectra. Based on the primary response of soil texture and structure, sand 

and silt contents of soil could be predicted using near infrared technique with principal 

component regression method (R2 >0.82). They have also predicted the potassium 

amounts in the samples determined by ammonium acetate and Mechlich 3 methods. An 

information about the correlation of potassium with the primary properties was not 

given. The phosphorus amounts determined by Mechlich 3 method could not be 

predicted by near infrared reflectance and principal component regression method (38). 

On the other hand, it is also quite possible that the near infrared region can directly 

measure the organic phosphorus which is organically bound to organic matter (15). 

 

6.2. Results of near infrared reflectance analyses of soil-fertilizer mixtures 

prepared according to the second method. 

In the second method, different from the first one, the drying and moisturizing steps 

were eliminated. The aim was to prevent the formation of baseline shift due to moisture 

differences in the samples. All the samples had the same moisture content 

(approximately 14%). The number of samples was increased up to 25 in the 

concentration range of 0.02-0.5% (wt/wt) fertilizer. Five fertilizer types [(NH4)2SO4, 

TSP, NPK, KNO3, Ca(NO3)2] were used in the preparation of samples and two 

multivariate calibration techniques (genetic inverse least squares and partial least 

squares methods) were used to process the near infrared reflectance data. The results of 

genetic inverse least squares method are summarized in Table 6.4. 

 

 

 

 

 

 

 

 



 

 

Table 6.4. SEC, SEP and R2 (calibration) values of the nutrients in the samples prepared 

according to the second method. 

Constituent R2 SEC (g/100 g) SEP (g/100 g) 
NPK-N 0.9034 0.007 0.0116 
NPK-P 0.9265 0.0027 0.0051 
NPK-K 0.9204 0.0053 0.0083 

(NH4)2SO4-N 0.9769 0.00478 0.01083 
(NH4)2SO4-S 0.9813 0.0049 0.013 
Ca(NO3)2-N 0.9676 0.00418 0.0216 
Ca(NO3)2-Ca 0.8095 0.0096 0.0203 

KNO3-N 0.9217 0.00545 0.01826 
KNO3-K 0.8116 0.00845 0.0149 
TSP-P 0.81 0.01314 0.0203 

 

As it can be seen from Table 6.4, the regression coefficients for the calibration model 

were greater than 0.80 for each sample containing different fertilizer types. However, 

the model was not satisfactory in predicting the nutrient amounts except for the samples 

containing NPK and (NH4)2SO4 fertilizers. The regression coefficients for the prediction 

of nutrient concentrations in the samples containing TSP, KNO3, Ca(NO3)2 fertilizers 

were all smaller than 0.50. For nitrogen and sulfur in (NH4)2SO4 containing samples, 

the regression coefficients were 0.8620 and 0.8555, respectively. These values indicate 

accurate predictions of the nutrient amounts, which may be due to the absorption of near 

infrared radiation by the N-H and O-H bonds as well as the strong absorption of the 

overtones of SO4
2- groups (39). The regression coefficients for the prediction of 

nitrogen, phosphorus and potassium amounts in samples containing NPK fertilizer were 

0.6737, 0.7633 and 0.8724, respectively. The calibration curves for (NH4)2SO4 and 

NPK fertilizer nutrients in the mixtures are shown in Figure 6.7. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 6.7. Calibration curves of nitrogen and phosphorus, potassium and sulfur 

nutrients in the samples containing (NH4)2SO4  and NPK fertilizers. 

 

In the first experiment, which was explained in Section 6.1, accurate predictions of 

nitrogen, phosphorus and potassium levels in soil-NPK mixtures were obtained at high 

concentrations of fertilizer. With these results, it can be said that the prediction of major 

nutrients can either be accurately done at very low concentrations in the NPK 

containing samples. The reason that high prediction was obtained only for (NH4)2SO4 

and NPK fertilizer containing samples may be due to the measurement of N-H bonds in 

the structure of fertilizers. The NPK fertilizer has its nitrogen coming from (NH4)2SO4 

or NH4NO3. The concentrations of nutrients in this experiment were at the lowest 
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detection limits of near infrared instrument (0.001-1%), which is a reason of poor 

prediction of nitrogen, phosphorus and potassium coming from the other fertilizers. 

Additionally, elimination of moisturizing step could be another reason of poor 

prediction. Addition of water and mixing provided solubilization and homogenous 

dispersion of fertilizer in soil. To prevent the moisture changes in the samples, a drying 

operation to the samples could be applied as a final step.  

The reflectance data of the same samples in the second method were processed with 

partial least squares method as well. Successful predictions could be obtained only for 

the samples containing (NH4)2SO4 fertilizer. The regression coefficients of calibration 

set for nitrogen and sulfur in (NH4)2SO4 containing samples were 0.9049 with a SEC 

value of 0.0092 for nitrogen and with a SEC of 0.01 for sulfur (factor number=6). 

During the development of calibration model, nine data were excluded from the whole 

data as outliers, which were the first, seventh and twenty-first samples. The regression 

coefficients for the validation set of nitrogen and sulfur were 0.9301 with a SEP value 

of 0.0091 for nitrogen and 0.01 for sulfur. During the prediction of nitrogen and sulfur, 

the outliers come from the first, third, fourth, seventeenth, twenty-fourth and twenty 

fifth samples. The prediction of nitrogen, phosphorus and potassium amounts in the 

other samples containing NPK, KNO3 and Ca(NO3)2 fertilizers by partial least squares 

was poor (R2<0.20). The calibration and validation curves of nitrogen and sulfur are 

presented in Figure 6.8 and Figure 6.9. The results of partial least squares analyses for 

the samples containing the other fertilizers [NPK, KNO3, Ca(NO3)2] are summarized in 

Table 6.5. 

 

Figure 6.8. Calibration curves of nitrogen and sulfur nutrients in the samples containing 

(NH4)2SO4 fertilizers. 
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Figure 6.9. Validation curves of nitrogen and sulfur nutrients in the samples containing 

(NH4)2SO4 fertilizers. 

 

Table 6.5. Partial least squares analyses of samples containing fertilizers NPK, KNO3 

and Ca(NO3)2. 

Constituent SEC 
(g/100 g) 

SEP 
(g/100 g) 

R2 Factor Number Number of samples excluded 

NPK-N 0.0069 0.031 0.7841 6 9 
NPK-P 0.003 0.0136 0.7841 6 9 
NPK-K 0.0057 0.0258 0.7841 6 9 

Ca(NO3)2-N 0.006 0.026 0.9247 5 20 
Ca(NO3)2-Ca 0.0057 0.024 0.9447 5 20 

KNO3-N 0.0061 0.022 0.8889 5 22 
KNO3-K 0.018 0.064 0.8889 5 22 
 

6.3. Results of near infrared reflectance analyses of soil samples collected from 

different fields 

In this part of the study, 25 soil samples collected from two agricultural fields were 

analyzed with near infrared reflectance spectroscopy. Genetic inverse least squares and 

partial least squares were used to relate the near infrared reflectance data to the known 

concentrations of nutrients, which were determined by the laboratory analyses. The 

laboratory analyses were carried out by the soil laboratory of Agricultural Engineering 

Department of Ege University. Kjeldahl, Bingham and ammonium acetate methods 

were used for the determination of nitrogen, phosphorus and potassium concentrations. 

The genetic inverse least square results of the samples are listed in Table 6.6 and the 

results of laboratory tests are shown in Table 6.7. The first fifteen results are from the 

melon field and the last ten results belong to the clover filed. No replicates were done in 

the laboratory analyses. The calibration coefficients obtained by genetic inverse least 
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square method were greater than 0.80 for the three constituents, however their 

prediction were poor (R2<0.20). The partial least square method did not calculate any 

factor numbers for nitrogen, phosphorus and potassium. Better prediction of nutrients 

could be possible by increasing the soil sample numbers having a wider range of 

nutrient contents. Additionally, the conventional methods applied in the laboratory for 

the determination of nutrient amounts in soil also affect the prediction ability of near 

infrared technique. Ludwig et al. (2002) indicated that the near infrared reflectance 

technique was able to predict the phosphorus content in soil as the phosphorus amounts 

were determined using Olsen method. However, the phosphorus concentrations 

determined by Bray-2 method could not be predicted (41). Thus, the laboratory methods 

also affect the prediction ability of near infrared technique. Considering results of 

several laboratory methods with replicate analyses may improve the prediction ability of 

this technique. 

 

Table 6.6. SEC, SEP, R2 (calibration) values of nitrogen, phosphorus and potassium in 

soil samples. 

Constituent SEC (g/100 g) SEP (g/100 g) R2 
Nitrogen 0.013 0.027 0.8195 

Phosphorus 1.844 5.154 0.8147 
Potassium 1.501 6.6711 0.8102 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 6.7. Results of laboratory analyses done by the soil laboratory of Agricultural 

Engineering Department of Ege University. 

Number Total nitrogen  
(%) 

Extractable  
Phosphorus (ppm) 

Exchangeable  
Potassium (ppm) 

1 0.0308 2.16 14.56 
2 0.0896 2.16 16.51 
3 0.154 3.67 16.51 
4 0.1064 4.03 15.54 
5 0.1008 3.89 17.49 
6 0.112 3.31 15.54 
7 0.1064 7.20 19.44 
8 0.098 7.63 18.47 
9 0.0896 3.38 14.56 
10 0.0924 3.53 15.54 
11 0.1064 13.68 15.54 
12 0.0924 14.33 16.51 
13 0.1148 4.32 22.37 
14 0.1064 3.38 23.35 
15 0.0952 5.83 14.56 
16 0.084 0.72 16.51 
17 0.1148 2.16 14.56 
18 0.1064 1.94 15.54 
19 0.1036 1.51 17.49 
20 0.1428 6.26 18.47 
21 0.1316 9.58 17.49 
22 0.154 12.02 19.44 
23 0.1288 14.18 20.42 
24 0.1512 3.89 27.26 
25 0.1764 3.17 22.37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 7 

 

CONCLUSIONS AND RECOMMENDATIONS 
 

7.1. Conclusions 

Determination of major soil nutrient concentrations (nitrogen, phosphorus and 

potassium) using near infrared reflectance technique with two multivariate calibration 

methods of which are genetic inverse least squares and partial least squares was 

investigated. Within this dissertation, two new methods have been developed which 

involved the use of fertilizers in the preparation of samples containing nutrients at 

various concentrations. In addition to this, a new statistical method, genetic inverse least 

squares has been introduced to the calibration strategies which are used in the 

determination of soil nutrients using near infrared reflectance spectroscopy. The main 

advantage of this method was that only the nutrient concentrations were required for the 

development of calibration model. In this way, the necessity of knowing the 

concentrations of other interfering constituents in soil such as moisture or carbon 

content was eliminated. The results of the experiments indicate that the sample 

preparation steps influenced the prediction ability of near infrared reflectance technique. 

Moisturizing and mixing of soil samples following fertilizer addition provided 

solubilization and homogenous dispersion of fertilizer in soil which enhanced the 

prediction of nutrient concentrations in soil-fertilizer mixtures. Furthermore, fertilizer 

concentrations and fertilizer types were the other contributing factors that affected the 

prediction of nutrient concentrations in the samples. Nitrogen, phosphorus and 

potassium concentrations were at the lowest detection limits of near infrared reflectance 

spectroscopy (0.001-1%). Mostly for the ammonium containing fertilizers [NPK, 

(NH4)2SO4, NH4NO3], reliable predictions of nitrogen, phosphorus and potassium 

concentrations could be achieved due to the N-H bonds in the structure of fertilizers. 

The prediction of phosphorus and potassium was possible by the correlation of these 

nutrients with the primary properties of soil such as total carbon, total nitrogen, 

moisture, particle size and organic matter content. Consequently, nitrogen, phosphorus 

and potassium levels could be predicted reliable according to the first method (R2 values 

all greater than 0.60 using genetic inverse least squares method). On the other hand, 

with the second method, satisfactory predictions of these nutrient levels could be 



 

 

obtained only for the samples containing NPK and (NH4)2SO4 fertilizers (R2 values 

greater than 0.60 according to genetic inverse least squares method). Using near 

infrared technique with partial least squares for the second method, only prediction of 

nitrogen and sulfur in samples containing (NH4)2SO4 could be achieved with a 

regression coefficient value of 0.93. 

According to the literature, near infrared reflectance spectroscopy is considered as a 

rapid, non-destructive and simple analytical method that can be used for the 

determination of several soil properties such as organic carbon, total nitrogen, organic 

matter, moisture, clay content, cation exchange capacity, and several nutrients 

depending on the laboratory analyses (e.g.: calcium, magnesium, phosphorus, mangan, 

potassium, iron, etc.) (22,24,36,37,38,41). In food industry, this technique can be used 

for the determination of fat, moisture, protein, sugar etc. contents of various food 

products, and commercially available portable instruments based on the working 

principle of near infrared spectroscopy have been developed. It can be concluded that, 

adapting the near infrared technique to field use for on-line analysis of soil nutrients 

would be very useful for the farmers in terms of precision agriculture.  

 

7.2. Recommendations 

The future study of this work could concentrate on the evaluation of moisture effect 

on the prediction ability of near infrared reflectance spectroscopy with genetic inverse 

least squares and partial least squares methods. The samples containing 14% moisture 

could be dried as a final step during sample preparation for near infrared analyses. 

A complementary study to near infrared reflectance technique could also be done 

with a laser spectroscopy. The experimental set-up shown in Figure 7.1 is present in the 

optics laboratory of Electronic Engineering Faculty, İzmir Institute of Technology. It is 

worth to investigate the interactions between electromagnetic radiation at 1062 nm 

produced by the Nd:LSB laser source and the samples containing fertilizers as well as 

the pure fertilizers. According to a study by Cremers et al. (2001), the total soil carbon 

content was measured with laser induced breakdown spectroscopy (LIBS). The working 

principle of LIBS is based on the atomic emission spectroscopy. By focusing the out-

put of a Nd:YAG laser source at 1064 nm (50mJ pulses of 10 ns), a microplasma was 

formed on the sample due to the excitation of carbon atoms. The emitted light, which is 

characteristic to carbon atom (247.8 nm) is collected, spectrally resolved and detected 

using a photodiode array detector. The LIBS data is related to the total carbon 



 

 

concentrations determined by conventional laboratory analyses (dry combustion 

analyses) with a regression coefficient of 0.96 (42).  
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Figure 7.1 Experimental set up of laser spectroscopy established in the optics laboratory 

of Electronic Engineering Department, İzmir Institute of Technology. 

1-Laser source: Diode pump Nd:LSB microchip solid state laser  

Wavelength range : 1062 nm   Pulse energy  : >3mJ 
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APPENDIX A 

 

Calculation of nutrient concentrations 

 
As it can be seen in Table 5.1, the phosphorus and potassium contents of commercial 

fertilizers are stated in the form of P2O5 and K2O rather than the elemental forms. 

Hence, when calculating the elemental phosphorus and potassium amounts in samples, 

conversion factors are used. These factors convert the amounts given in terms of P2O5 

or K2O into elemental forms, P and K, respectively (35).  

P = P2O5 ×  0.4369 

K = K2O ×0.8302 

For instance, in 100 g of a mixture prepared with 1% (wt/wt) of NPK fertilizer 

(containing 15% N, P2O5 and K2O), the amount of nutrients in the sample can be 

calculated by: 

N% = 0.15 ×1 = 0.15 g/100 g sample 

P2O5% = 0.15 ×1 = 0.15 g/100 g sample 

K2O% = 0.15 ×1 =0.15 g/100 g sample 
 

The elemental form of potassium (K) and phosphorus (P) in the sample can be 

calculated by: 

P% = 0.15 ×  0.4369 = 0.065 g/100 g sample 

K% = 0.15 ×0.8302 = 0.124 g/100 g sample 

The same procedure is applied for the calculation of elemental phosphorus and 

potassium in the other samples containing different concentrations and types of 

fertilizer. 

 

 

 

 

 

 

 



 

 

APPENDIX B 

 

Nutrient Concentrations 

 
Table B.1. Nutrient and fertilizer concentrations (g/100 g) in the samples prepared with 

KNO3, Ca(NO3)2 and (NH4)2SO4 fertilizers according to the second method. 

 

Fertilizer types:  

KNO3        Ca(NO3)2      (NH4)2SO4 

 Fertilizer  Nitrogen Potassium   Nitrogen Calcium  Nitrogen Sulfur 
0.02 0.0026 0.00763416   0.0031 0.002944  0.0042 0.0048 
0.04 0.0052 0.01526832   0.0062 0.005888  0.0084 0.0096 
0.06 0.0078 0.02290248   0.0093 0.008832  0.0126 0.0144 
0.08 0.0104 0.03053664   0.0124 0.011776  0.0168 0.0192 
0.1 0.013 0.0381708   0.0155 0.01472  0.021 0.024 

0.12 0.0156 0.04580496   0.0186 0.017664  0.0252 0.0288 
0.14 0.0182 0.05343912   0.0217 0.020608  0.0294 0.0336 
0.16 0.0208 0.06107328   0.0248 0.023552  0.0336 0.0384 
0.18 0.0234 0.06870744   0.0279 0.026496  0.0378 0.0432 
0.2 0.026 0.0763416   0.031 0.02944  0.042 0.048 

0.22 0.0286 0.08397576   0.0341 0.032384  0.0462 0.0528 
0.24 0.0312 0.09160992   0.0372 0.035328  0.0504 0.0576 
0.26 0.0338 0.09924408   0.0403 0.038272  0.0546 0.0624 
0.28 0.0364 0.10687824   0.0434 0.041216  0.0588 0.0672 
0.3 0.039 0.1145124   0.0465 0.04416  0.063 0.072 

0.32 0.0416 0.12214656   0.0496 0.047104  0.0672 0.0768 
0.34 0.0442 0.12978072   0.0527 0.050048  0.0714 0.0816 
0.36 0.0468 0.13741488   0.0558 0.052992  0.0756 0.0864 
0.38 0.0494 0.14504904   0.0589 0.055936  0.0798 0.0912 
0.4 0.052 0.1526832   0.062 0.05888  0.084 0.096 

0.42 0.0546 0.16031736   0.0651 0.061824  0.0882 0.1008 
0.44 0.0572 0.16795152   0.0682 0.064768  0.0924 0.1056 
0.46 0.0598 0.17558568   0.0713 0.067712  0.0966 0.1104 
0.48 0.0624 0.18321984   0.0744 0.070656  0.1008 0.1152 
0.5 0.065 0.190854   0.0775 0.0736  0.105 0.12 

 
 
 
 
 
 
 
 
 
 



 

 

Table B.2. Nutrient and fertilizer concentrations (g/100 g) in the samples prepared with 

NPK and TSP fertilizers according to the second method. 

 

Fertilizer types:  

NPK       TSP 

Fertilizer  Nitrogen Phosphorus Potassium  Fertilizer Phosphorus 
0.02 0.003 0.0013104 0.0024894  0.02 0.00375648 
0.04 0.006 0.0026208 0.0049788  0.04 0.00751296 
0.06 0.009 0.0039312 0.0074682  0.06 0.01126944 
0.08 0.012 0.0052416 0.0099576  0.08 0.01502592 
0.1 0.015 0.006552 0.012447  0.1 0.0187824 

0.12 0.018 0.0078624 0.0149364  0.12 0.02253888 
0.14 0.021 0.0091728 0.0174258  0.14 0.02629536 
0.16 0.024 0.0104832 0.0199152  0.16 0.03005184 
0.18 0.027 0.0117936 0.0224046  0.18 0.03380832 
0.2 0.03 0.013104 0.024894  0.2 0.0375648 

0.22 0.033 0.0144144 0.0273834  0.22 0.04132128 
0.24 0.036 0.0157248 0.0298728  0.24 0.04507776 
0.26 0.039 0.0170352 0.0323622  0.26 0.04883424 
0.28 0.042 0.0183456 0.0348516  0.28 0.05259072 
0.3 0.045 0.019656 0.037341  0.3 0.0563472 

0.32 0.048 0.0209664 0.0398304  0.32 0.06010368 
0.34 0.051 0.0222768 0.0423198  0.34 0.06386016 
0.36 0.054 0.0235872 0.0448092  0.36 0.06761664 
0.38 0.057 0.0248976 0.0472986  0.38 0.07137312 
0.4 0.06 0.026208 0.049788  0.4 0.0751296 

0.42 0.063 0.0275184 0.0522774  0.42 0.07888608 
0.44 0.066 0.0288288 0.0547668  0.44 0.08264256 
0.46 0.069 0.0301392 0.0572562  0.46 0.08639904 
0.48 0.072 0.0314496 0.0597456  0.48 0.09015552 
0.5 0.075 0.03276 0.062235  0.5 0.093912 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

APPENDIX C 

 

Calibration and validation sets 
 

Table C.1. Calibration and validation sets of nutrients in the samples prepared with 

KNO3 fertilizer according to the second method (g/100 g). 

 

Fertilizer type: KNO3 

Calib  Nitrogen Potassium  Calib Nitrogen Potassium  Valid Nitrogen Potassium 
1 0.0026 0.00763416  27 0.0312 0.09160992  1 0.0052 0.01526832 
2 0.0026 0.00763416  28 0.0364 0.10687824  2 0.0052 0.01526832 
3 0.0026 0.00763416  29 0.0364 0.10687824  3 0.0052 0.01526832 
4 0.0078 0.02290248  30 0.0364 0.10687824  4 0.013 0.0381708 
5 0.0078 0.02290248  31 0.039 0.1145124  5 0.013 0.0381708 
6 0.0078 0.02290248  32 0.039 0.1145124  6 0.013 0.0381708 
7 0.0104 0.03053664  33 0.039 0.1145124  7 0.0234 0.06870744 
8 0.0104 0.03053664  34 0.0442 0.12978072  8 0.0234 0.06870744 
9 0.0104 0.03053664  35 0.0442 0.12978072  9 0.0234 0.06870744 
10 0.0156 0.04580496  36 0.0442 0.12978072  10 0.0338 0.09924408 
11 0.0156 0.04580496  37 0.0494 0.14504904  11 0.0338 0.09924408 
12 0.0156 0.04580496  38 0.0494 0.14504904  12 0.0338 0.09924408 
13 0.0182 0.05343912  39 0.0494 0.14504904  13 0.0416 0.12214656 
14 0.0182 0.05343912  40 0.0546 0.16031736  14 0.0416 0.12214656 
15 0.0182 0.05343912  41 0.0546 0.16031736  15 0.0416 0.12214656 
16 0.0208 0.06107328  42 0.0546 0.16031736  16 0.0468 0.13741488 
17 0.0208 0.06107328  43 0.0572 0.16795152  17 0.0468 0.13741488 
18 0.0208 0.06107328  44 0.0572 0.16795152  18 0.0468 0.13741488 
19 0.026 0.0763416  45 0.0572 0.16795152  19 0.052 0.1526832 
20 0.026 0.0763416  46 0.0624 0.18321984  20 0.052 0.1526832 
21 0.026 0.0763416  47 0.0624 0.18321984  21 0.052 0.1526832 
22 0.0286 0.08397576  48 0.0624 0.18321984  22 0.0598 0.17558568 
23 0.0286 0.08397576  49 0.065 0.190854  23 0.0598 0.17558568 
24 0.0286 0.08397576  50 0.065 0.190854  24 0.0598 0.17558568 
25 0.0312 0.09160992  51 0.065 0.190854     
26 0.0312 0.09160992         
  

 

 

 

 

 

 



 

 

Table C.2. Calibration and validation sets of nutrients in the samples prepared with 

Ca(NO3)2 fertilizer according to the second method (g/100 g). 

 

Fertilizer type: Ca(NO3)2 

Calib  Nitrogen Calcium  Calib Nitrogen Calcium  Valid Nitrogen Calcium 
1 0.0031 0.002944  27 0.0372 0.035328  1 0.0062 0.005888 
2 0.0031 0.002944  28 0.0434 0.041216  2 0.0062 0.005888 
3 0.0031 0.002944  29 0.0434 0.041216  3 0.0062 0.005888 
4 0.0093 0.008832  30 0.0434 0.041216  4 0.0155 0.01472 
5 0.0093 0.008832  31 0.0465 0.04416  5 0.0155 0.01472 
6 0.0093 0.008832  32 0.0465 0.04416  6 0.0155 0.01472 
7 0.0124 0.011776  33 0.0465 0.04416  7 0.0279 0.026496 
8 0.0124 0.011776  34 0.0527 0.050048  8 0.0279 0.026496 
9 0.0124 0.011776  35 0.0527 0.050048  9 0.0279 0.026496 
10 0.0186 0.017664  36 0.0527 0.050048  10 0.0403 0.038272 
11 0.0186 0.017664  37 0.0589 0.055936  11 0.0403 0.038272 
12 0.0186 0.017664  38 0.0589 0.055936  12 0.0403 0.038272 
13 0.0217 0.020608  39 0.0589 0.055936  13 0.0496 0.047104 
14 0.0217 0.020608  40 0.0651 0.061824  14 0.0496 0.047104 
15 0.0217 0.020608  41 0.0651 0.061824  15 0.0496 0.047104 
16 0.0248 0.023552  42 0.0651 0.061824  16 0.0558 0.052992 
17 0.0248 0.023552  43 0.0682 0.064768  17 0.0558 0.052992 
18 0.0248 0.023552  44 0.0682 0.064768  18 0.0558 0.052992 
19 0.031 0.02944  45 0.0682 0.064768  19 0.062 0.05888 
20 0.031 0.02944  46 0.0744 0.070656  20 0.062 0.05888 
21 0.031 0.02944  47 0.0744 0.070656  21 0.062 0.05888 
22 0.0341 0.032384  48 0.0744 0.070656  22 0.0713 0.067712 
23 0.0341 0.032384  49 0.0775 0.0736  23 0.0713 0.067712 
24 0.0341 0.032384  50 0.0775 0.0736  24 0.0713 0.067712 
25 0.0372 0.035328  51 0.0775 0.0736     
26 0.0372 0.035328         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table C.3. Calibration and validation sets of nutrients in the samples prepared with 

NPK fertilizer according to the second method (g/100 g). 

Fertilizer type: NPK 
Calib  N P K  Calib N P K  Valid N P K 
1 0.003 0.0013104 0.0024894  27 0.036 0.0157248 0.0298728  1 0.006 0.0026208 0.0049788 
2 0.003 0.0013104 0.0024894  28 0.042 0.0183456 0.0348516  2 0.006 0.0026208 0.0049788 
3 0.003 0.0013104 0.0024894  29 0.042 0.0183456 0.0348516  3 0.006 0.0026208 0.0049788 
4 0.009 0.0039312 0.0074682  30 0.042 0.0183456 0.0348516  4 0.015 0.006552 0.012447 
5 0.009 0.0039312 0.0074682  31 0.045 0.019656 0.037341  5 0.015 0.006552 0.012447 
6 0.009 0.0039312 0.0074682  32 0.045 0.019656 0.037341  6 0.015 0.006552 0.012447 
7 0.012 0.0052416 0.0099576  33 0.045 0.019656 0.037341  7 0.027 0.0117936 0.0224046 
8 0.012 0.0052416 0.0099576  34 0.051 0.0222768 0.0423198  8 0.027 0.0117936 0.0224046 
9 0.012 0.0052416 0.0099576  35 0.051 0.0222768 0.0423198  9 0.027 0.0117936 0.0224046 
10 0.018 0.0078624 0.0149364  36 0.051 0.0222768 0.0423198  10 0.039 0.0170352 0.0323622 
11 0.018 0.0078624 0.0149364  37 0.057 0.0248976 0.0472986  11 0.039 0.0170352 0.0323622 
12 0.018 0.0078624 0.0149364  38 0.057 0.0248976 0.0472986  12 0.039 0.0170352 0.0323622 
13 0.021 0.0091728 0.0174258  39 0.057 0.0248976 0.0472986  13 0.048 0.0209664 0.0398304 
14 0.021 0.0091728 0.0174258  40 0.063 0.0275184 0.0522774  14 0.048 0.0209664 0.0398304 
15 0.021 0.0091728 0.0174258  41 0.063 0.0275184 0.0522774  15 0.048 0.0209664 0.0398304 
16 0.024 0.0104832 0.0199152  42 0.063 0.0275184 0.0522774  16 0.054 0.0235872 0.0448092 
17 0.024 0.0104832 0.0199152  43 0.066 0.0288288 0.0547668  17 0.054 0.0235872 0.0448092 
18 0.024 0.0104832 0.0199152  44 0.066 0.0288288 0.0547668  18 0.054 0.0235872 0.0448092 
19 0.03 0.013104 0.024894  45 0.066 0.0288288 0.0547668  19 0.06 0.026208 0.049788 
20 0.03 0.013104 0.024894  46 0.072 0.0314496 0.0597456  20 0.06 0.026208 0.049788 
21 0.03 0.013104 0.024894  47 0.072 0.0314496 0.0597456  21 0.06 0.026208 0.049788 
22 0.033 0.0144144 0.0273834  48 0.072 0.0314496 0.0597456  22 0.069 0.0301392 0.0572562 
23 0.033 0.0144144 0.0273834  49 0.075 0.03276 0.062235  23 0.069 0.0301392 0.0572562 
24 0.033 0.0144144 0.0273834  50 0.075 0.03276 0.062235  24 0.069 0.0301392 0.0572562 
25 0.036 0.0157248 0.0298728  51 0.075 0.03276 0.062235          
26 0.036 0.0157248 0.0298728                   

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table C.4. Calibration and validation sets of nutrients in the samples prepared with 

(NH4)2SO4 fertilizer according to the second method (g/100 g). 

 

Fertilizer type: (NH4)2SO4  

Calib  Nitrogen Sulfur  Calib Nitrogen Sulfur  Valid Nitrogen Sulfur 
1 0.0042 0.0048  27 0.0504 0.0576  1 0.0084 0.0096 
2 0.0042 0.0048  28 0.0588 0.0672  2 0.0084 0.0096 
3 0.0042 0.0048  29 0.0588 0.0672  3 0.0084 0.0096 
4 0.0126 0.0144  30 0.0588 0.0672  4 0.021 0.024 
5 0.0126 0.0144  31 0.063 0.072  5 0.021 0.024 
6 0.0126 0.0144  32 0.063 0.072  6 0.021 0.024 
7 0.0168 0.0192  33 0.063 0.072  7 0.0378 0.0432 
8 0.0168 0.0192  34 0.0714 0.0816  8 0.0378 0.0432 
9 0.0168 0.0192  35 0.0714 0.0816  9 0.0378 0.0432 
10 0.0252 0.0288  36 0.0714 0.0816  10 0.0546 0.0624 
11 0.0252 0.0288  37 0.0798 0.0912  11 0.0546 0.0624 
12 0.0252 0.0288  38 0.0798 0.0912  12 0.0546 0.0624 
13 0.0294 0.0336  39 0.0798 0.0912  13 0.0672 0.0768 
14 0.0294 0.0336  40 0.0882 0.1008  14 0.0672 0.0768 
15 0.0294 0.0336  41 0.0882 0.1008  15 0.0672 0.0768 
16 0.0336 0.0384  42 0.0882 0.1008  16 0.0756 0.0864 
17 0.0336 0.0384  43 0.0924 0.1056  17 0.0756 0.0864 
18 0.0336 0.0384  44 0.0924 0.1056  18 0.0756 0.0864 
19 0.042 0.048  45 0.0924 0.1056  19 0.084 0.096 
20 0.042 0.048  46 0.1008 0.1152  20 0.084 0.096 
21 0.042 0.048  47 0.1008 0.1152  21 0.084 0.096 
22 0.0462 0.0528  48 0.1008 0.1152  22 0.0966 0.1104 
23 0.0462 0.0528  49 0.105 0.12  23 0.0966 0.1104 
24 0.0462 0.0528  50 0.105 0.12  24 0.0966 0.1104 
25 0.0504 0.0576  51 0.105 0.12     
26 0.0504 0.0576         
 

 

 

 

 

 

 

 

 

 



 

 

Table C.5. Calibration and validation sets of nutrients in the samples prepared with TSP 

fertilizer according to the second method (g/100 g). 

 

Fertilizer type: TSP 

Calib Phosphorus  Calib Phosphorus  Valid Phosphorus 
1 0.00375648  27 0.04507776  1 0.00751296 
2 0.00375648  28 0.05259072  2 0.00751296 
3 0.00375648  29 0.05259072  3 0.00751296 
4 0.01126944  30 0.05259072  4 0.0187824 
5 0.01126944  31 0.0563472  5 0.0187824 
6 0.01126944  32 0.0563472  6 0.0187824 
7 0.01502592  33 0.0563472  7 0.03380832 
8 0.01502592  34 0.06386016  8 0.03380832 
9 0.01502592  35 0.06386016  9 0.03380832 
10 0.02253888  36 0.06386016  10 0.04883424 
11 0.02253888  37 0.07137312  11 0.04883424 
12 0.02253888  38 0.07137312  12 0.04883424 
13 0.02629536  39 0.07137312  13 0.06010368 
14 0.02629536  40 0.07888608  14 0.06010368 
15 0.02629536  41 0.07888608  15 0.06010368 
16 0.03005184  42 0.07888608  16 0.06761664 
17 0.03005184  43 0.08264256  17 0.06761664 
18 0.03005184  44 0.08264256  18 0.06761664 
19 0.0375648  45 0.08264256  19 0.0751296 
20 0.0375648  46 0.09015552  20 0.0751296 
21 0.0375648  47 0.09015552  21 0.0751296 
22 0.04132128  48 0.09015552  22 0.08639904 
23 0.04132128  49 0.093912  23 0.08639904 
24 0.04132128  50 0.093912  24 0.08639904 
25 0.04507776  51 0.093912    
26 0.04507776       

 

 

 

 

 

 

 

 

 

 

 



 

 

APPENDIX D 
 

Appendix D.1. Kjeldahl Method 

 

5 g soil 

 

 Addition of 15-20 ml 

HCl and potassium sulphate 

 

Acid digestion 

(Gerhardt Digestion Unit) 

 

Cooling 

 

Addition of 60 ml 

pure water 

 

Distillation (with 40% NaOH) 

 

Titration (0.1 N Sulphuric acid) 

Figure D.1. Kjeldahl method, which is applied by soil laboratory of Agricultural 

Engineering Department of Ege University. 

 

The results are reported as total nitrogen percentage in the soil and calculated 

according to the formula; 

N%=
S

nVT 4.1)( ××−  

T: Expense of sulphuric acid during titration (ml) 

V: (Blank) 0.3 ml 

n: Normality of acid 

S: (Sample amount) 5 g 

 

 

 



 

 

Appendix D.2. Bingham Method 

 
10 g soil 

 

Shaking for 5 min 

with 100 ml pure water 

 

Filtration 

 

Centrifuge 

 

Addition of pure water (15-20ml) 

and treating with acid mixture (16ml) 

 

Waiting for 15 minutes 

 

Measurement taken with an absorption 

spectrophotometer at 690nm 

(722 Gratting Spectrophotometer) 

Figure D.2. Bingham method, which is applied by soil laboratory of Agricultural 

Engineering Department of Ege University. 

 

The measurements are read from the calibration curve and recorded as parts per 

million of phosphorus in the soil. 

Acid mixture is prepared from the following solvents 

•  5 N 125 ml sulphuric acid 

•  37.5 ml ammonium-molybdate 

•  75 ml ascorbic acid 

•  12.5 ml potassium antimontarterate 

The calibration curve is prepared by using the standard solution (KH2PO4) and 

prepared according to the procedure described after centrifuging at 0, 0.1, 0.2, 0.4, 0.6, 

0.8 and 1 ppm concentrations and measurement with the spectrophotometer at 690 nm. 

 

 



 

 

Appendix D.3. Ammonium Acetate Method 

 

5 g soil 

 

Shaking with 50 ml of 1N 

ammonium acetate (ph:7) for ½ hr 

 

Filtration 

 

Measurement taken with flame photometer 

(Eppendorf Flame Photometer) 

Figure D.3. Ammonium acetate method, which is applied by soil laboratory of 

Agricultural Engineering Department of Ege University. 

 

The results are reported as parts per million (ppm) of potassium in the soil. 

 

 

 

 

 
 

 


