# PALLADIUM CATALYZED ALKOXYCARBONYLATION REACTIONS OF 2-EN-4-YNE CARBONATES

A Thesis Submitted to the Graduate School of Engineering and Sciences of İzmir Institute of Technology in Partial Fulfillment of the Requirements for the Degree of

# **MASTER OF SCIENCE**

in Chemistry

by Gürkan Eray AKPINAR

> March 2011 İZMİR

We approve the thesis of Gürkan Eray AKPINAR

**Prof. Dr. Levent ARTOK** Supervisor

**Prof. Dr. Demet ASTLEY** Committee Member

Asst. Prof. Dr. Mustafa EMRULLAHOĞLU Committee Member

22 March 2011

**Prof. Dr. Serdar ÖZÇELİK** Head of the Department of Chemistry

**Prof. Dr. Durmuş Ali Demir** Dean of the Graduate School of Engineering and Sciences

## ACKNOWLEDGEMENTS

There are many people to thank. I am heartily thankful to my supervisor Prof. Dr. Levent Artok for his patient guidance, encouragement and excellent advice throughout this study. This thesis could not have been written without his astute guidance.

During this work I have collaborated with my colleagues Erman Karakuş, Muhammed Üçüncü, Melih Kuş, Ezgi Şule Karagöz and Fırat Ziyanak for whom I have great regard, and I wish to extend my warmest thanks to all those who have helped me with my work at Chemistry Department.

Special thanks to Prof. Dr. Demet Astley and Asst. Prof. Mustafa Emrullahoğlu for participating as committee member and for reviewing my work.

I would like to thank to the Dr. Hüseyin Özgener for FT-IR analyses, Dr. Özge Aksın-Artok for HRMS analyses, Işın Özçelik and Salih Günnaz for NMR analyses.

I am deeply and forever indebted to my parents for their love, support and encouragement throughout my entire life.

## ABSTRACT

#### PALLADIUM CATALYZED ALKOXYCARBONYLATION REACTIONS OF 2-EN-4-YNE CARBONATES

Homogeneous catalysis relaying on transition metal complexes has led to innovation in organic chemistry. Palladium complexes are the most versatile and used extensively in organic synthesis.

One type of these reactions is the carbonylation reactions with palladium complexes in the presence of alcohol and carbon monoxide. Extensive studies have been carried out on palladium-catalyzed carbonylation reactions of allylic and propargylic compounds. Alkynes containing a leaving group in propargylic position undergo alkoxycarbonylation reactions through the involvement of an  $\sigma$ -allenylpalladium as an intermediate to produce allenic esters. On the other hand, allylic compounds usually leads to  $\beta$ , $\gamma$ -unsaturated esters through the involvement of a  $\pi$ -allylpalladium complex, when subjected to alkoxycarbonylation processes.

With the high reactivity of allyl carbonates and propargyl carbonates in mind toward P(0)-catalyzed reactions, we attemped the palladium catalyzed alkoxycarbonylation reaction of Z- or E-configured 2,4-enyne carbonates leading to vinylallene ester structures. The reactions involved 1,5-type substitution and proceeded through formation of  $\sigma$ -vinylallenylpalladium species.

# ÖZET

## 2-EN-4-İN KARBONATLARIN PALADYUM-KATALİZLİ ALKOKSİKARBONİLASYON TEPKİMELERİ

Son yıllarda, geçiş metal kompleksleri organik sentezlerde yoğun olarak kullanılmaya başlanmıştır. Paladyum kompleksleri geniş bir kullanım alanına sahiptir.

Bu reaksiyonlardan bir tanesi alkol ve karbonmonoksit içeren ortamda paladyum kompleksleri ile yapılan alkoksikarbonilasyon tepkimeleridir. Paladyum katalizörlü allilik ve propargilik bileşiklerin karbonilasyon tepkimeleri ile ilgili yoğun çalışmalar literaturde mevcuttur.

Ayrılan grup içeren alkinlerden allen ester oluşumu  $\sigma$ -allenilpaladyum oluşumu yolu ile devam etmektedir. Allilik bileşiklerde ise genellikle  $\pi$ -allenilpaladyum komplekslerinin oluşumu  $\beta$ , $\gamma$ -doymamış esterlerin sentezinde anahtar basamaktır.

Bu çalışmada, allilik ve propargilik karbonatların yüksek reativiteleri göz önünde bulundurularak, çeşitli Z- ve E-enin karbonat yapıları ile paladyum katalizörlü alkoksikarbonilasyon tepkimeleri gerçekleştirilerek vinilallen ester yapılarının oluşumu amaçlanmıştır. Tepkimeler 1,5-sübstitüsyon tepkimesi olup,  $\sigma$ -vinylallenylpalladium yapıları üzerinden yürümektedir.

# **TABLE OF CONTENTS**

| LIST OF FIGURES ix                                                    |
|-----------------------------------------------------------------------|
| LIST OF TABLES xii                                                    |
| CHAPTER 1. INTRODUCTION1                                              |
| CHAPTER 2. LITERATURE WORK2                                           |
| 2.1. Palladium-Catalyzed Alkoxycarbonylation of Alkynes 2             |
| 2.1.1. Palladium(0)-Catalyzed Reactions of Propargyl Compounds        |
| 2.1.2. Carbonylation Reactions of Propargylic Compounds Containing    |
| Leaving Group 4                                                       |
| 2.2. Transition Metal-Catalyzed Carbonylation of Alkenes              |
| 2.2.1. Carbonylation Reactions of Allyl Compounds                     |
| 2.3. Synthesis of Vinylallenes10                                      |
| 2.3.1. Synthesis of Vinylallenes with Grignard Reagents 10            |
| 2.3.2. Synthesis of Vinylallenes with Organocopper Reagents 11        |
| 2.3.3. Synthesis of Vinylallenes by The Wittig-Horner Reactions 11    |
| 2.3.4. Palladium-Catalyzed synthesis of $Methyl(R,E)$ -(-)-Tetradeca- |
| 2,4,5-trienoate                                                       |
| CHAPTER 3. EXPERIMENTAL STUDY13                                       |
| 3.1. General Procedures for Drying the Solvents                       |
| 3.2. Synthesis of Substrates                                          |
| 3.2.1. Synthesis of Z- and E-Enyne Carbonates Z-1a, Z-1b, Z-1i, Z-1j, |
| Z-1k, and E-1b, E-1a, E-1j E-1i                                       |
| 3.2.2. Synthesis of Z-Enyne Carbonates Z-1c-Z-1h                      |
| 3.2.3. Synthesis of Methyl $(R,Z)$ -4-methylhept-3-en-5-yn-2-yl       |
| carbonate $[(R,Z)-1b]$                                                |
| 3.3. Characterization of Reactants                                    |
| 3.4. General Procedure for Carbonylation Reactions                    |
| 3.5. Characterization of Products                                     |

| CHAPTER 4. RESULTS AND DISCUSSION                                            |     |
|------------------------------------------------------------------------------|-----|
| CHAPTER 5. CONCLUSION                                                        | 43  |
| REFERENCES                                                                   | 44  |
| APPENDICES.                                                                  | 49  |
| APPENDIX A. <sup>1</sup> H NMR and <sup>13</sup> CNMR SPECTRUMS OF REACTANTS |     |
| APPENDIX B. MASS SPECTRUMS OF REACTANTS                                      |     |
| APPENDIX C. FT-IR SPECTRUMS OF REACTANTS                                     |     |
| APPENDIX D. <sup>1</sup> H NMR and <sup>13</sup> CNMR SPECTRUMS OF PRODUCTS  | 114 |
| APPENDIX E. MASS SPECTRUMS OF PRODUCTS                                       | 144 |
| APPENDIX F. FT-IR SPECTRUMS OF PRODUCTS                                      |     |
| APPENDIX G. HPLC CHROMATOGRAMS OF REACTANT AND                               |     |
| PRODUCTS                                                                     | 175 |

# LIST OF FIGURES

| <u>Figure</u>                                                                           | <b>Page</b> |
|-----------------------------------------------------------------------------------------|-------------|
| Figure 2.1. Alkoxycarbonylation of alkynes with Pd catalyst                             | 2           |
| Figure 2.2. The mechanism of alkoxycarbonylation of alkynes which involves              |             |
| (alkoxycarbonyl) palladium intermediates                                                | 2           |
| Figure 2.3. The mechanism of alkoxycarbonylation of alkynes which                       |             |
| involves a hydride formation                                                            | 3           |
| Figure 2.4. Pd(0)-catalyzed reaction of propargyl compounds                             | 3           |
| Figure 2.5. Reactions of $\sigma$ -allenylpalladium intermediates                       | 4           |
| Figure 2.6. Pd(0)-catalyzed alkoxycarbonylation of propargyl compounds                  | 5           |
| Figure 2.7. Alkoxycarbonylation of propargyl carbonates with $Pd(OAc)_2$ /              |             |
| phosphine ligand systems                                                                | 5           |
| Figure 2.8. Pd-catalyzed carbonylation mechanism of propargylic carbonates              | 6           |
| Figure 2.9. Alkoxycarbonylation reactions of alkenes                                    | 6           |
| Figure 2.10. The mechanism of palladium-catalyzed alkoxycarbonylation                   |             |
| of alkenes which involves acyl-palladium intermediates                                  | 7           |
| Figure 2.11. The mechanism of palladium-catalyzed alkoxycarbonylation                   |             |
| of alkenes which involves Pd-alkoxycarbonyl intermediates                               | 7           |
| Figure 2.12. Alkoxycarbonylation of allyl alkyl carbonates with $Pd(OAc)_2$ /           |             |
| phosphine ligand systems                                                                | 8           |
| Figure 2.13. Alkoxycarbonylation mechanism of allyl alkyl carbonates                    | 9           |
| Figure 2.14. Palladium-catalyzed alkoxycarbonylation of allyl phosphates                | 9           |
| Figure 2.15. Palladium-catalyzed carbonylation of allyl acetates                        | 9           |
| Figure 2.16. Pd-catalyzed carbonylation mechanism of allyl acetates                     | 10          |
| Figure 2.17. The reaction of chloro-enynes with grignard reagents                       | 10          |
| Figure 2.18. 1,5- $(S_N 2^{''})$ -substitution reactions of enyne acetates with lithium |             |
| dialkyl-cuprates                                                                        | 11          |
| Figure 2.19. 1,5-substitution reactions of enyne oxiranes                               | 11          |
| Figure 2.20. Wittig-Horner reaction of 1-lithio-1,3-dienyl phosphine oxide              | 12          |
| Figure 2.21. Total synthesis of methyl $(R, E)$ -(-)-tetradeca-2,4,5-trienoate          | 12          |

| Figure 3.1. Synthesis of Z- and E-Enyne Carbonates Z-1a, Z-1b, Z-1i, Z-1j, Z-1 | c, and |
|--------------------------------------------------------------------------------|--------|
| <i>E</i> -1b, <i>E</i> -1a, <i>E</i> -1 <i>j</i> , E-1 <i>i</i>                | 13     |
| Figure 3.2. Synthesis of Z-Enyne Carbonates Z-1c- Z-1h                         | 15     |
| Figure 3.3. Methyl (Z)-4-methyldec-3-en-5-yn-2-yl carbonate                    |        |
| Figure 3.4. Methyl ( <i>Z</i> )-4-methylhept-3-en-5-yn-2-yl carbonate          | 18     |
| Figure 3.5. (Z)-6-cyclohexyl-4-methylhex-3-en-5-yn-2-yl methyl carbonate       | 19     |
| Figure 3.6. Methyl ( <i>Z</i> )-4-methyl-6-phenylhex-3-en-5-yn-2-yl carbonate  | 19     |
| Figure 3.7. Methyl (Z)-4,7,7-trimethyloct-3-en-5-yn-2-yl carbonate             | 20     |
| Figure 3.8. ( <i>Z</i> )-dec-3-en-5-yn-2-yl methyl carbonate                   | 20     |
| Figure 3.9. ( <i>Z</i> )-4-butyldec-3-en-5-yn-2-yl methyl carbonate            | 20     |
| Figure 3.10. Methyl ( <i>Z</i> )-4-phenyldec-3-en-5-yn-2-yl carbonate          | 21     |
| Figure 3.11. Methyl ( <i>Z</i> )-7-methyldec-6-en-8-yn-5-yl carbonate          | 21     |
| Figure 3.12. Methyl (Z)-2,5-dimethyloct-4-en-6-yn-3-yl carbonate               | 22     |
| Figure 3.13. Methyl (Z)-3-methylnon-2-en-4-ynyl carbonate                      | 22     |
| Figure 3.14. ( <i>E</i> )-hept-3-en-5-yn-2-yl methyl carbonate                 | 23     |
| Figure 3.15. Methyl (E)-2,5-dimethyloct-4-en-6-yn-3-yl carbonate               | 23     |
| Figure 3.16. Methyl (E)-4-methyldec-3-en-5-yn-2-yl carbonate                   | 23     |
| Figure 3.17. Methyl (E)-4-methylhept-3-en-5-yn-2-yl carbonate                  | 24     |
| Figure 3.18. Methyl (E)-4-methyl-6-phenylhex-3-en-5-yn-2-yl carbonate          | 24     |
| Figure 3.19. Methyl (E)-7-methyldec-6-en-8-yn-5-yl carbonate                   | 24     |
| Figure 3.20. (E)-methyl 2-butyl-4-methylhepta-2,3,5-trienoate                  | 25     |
| Figure 3.21. (E)-ethyl 2-butyl-4-methylhepta-2,3,5-trienoate                   | 26     |
| Figure 3.22. (E)-propyl 2-butyl-4-methylhepta-2,3,5-trienoate                  | 26     |
| Figure 3.23. (E)-butyl 2-butyl-4-methylhepta-2,3,5-trienoate                   | 26     |
| Figure 3.24. (E)-propyl 2-butyl-4-methylhepta-2,3,5-trienoate                  | 27     |
| Figure 3.25. (E)-methyl 2,4-dimethylhepta-2,3,5-trienoate                      | 27     |
| Figure 3.26. ( <i>E</i> )-methyl 2-cyclohexyl-4-methylhepta-2,3,5-trienoate    |        |
| Figure 3.27. ( <i>E</i> )-methyl 4-methyl-2-phenylhepta-2,3,5-trienoate        |        |
| Figure 2.28. (E)-methyl 2-tert-butyl-4-methylhepta-2,3,5-trienoate             | 29     |
| Figure 3.29. (E)-methyl 2-butylhepta-2,3,5-trienoate                           | 29     |
| Figure 3.30. Methyl 2-butyl-4-(( <i>E</i> )-prop-1-enyl)octa-2,3-dienoate      | 29     |
| Figure 3.31. (E)-methyl 2-butyl-4-phenylhepta-2,3,5-trienoate                  | 30     |
| Figure 3.32. ( <i>E</i> )-methyl 2,4-dimethyldeca-2,3,5-trienoate              |        |
| Figure 3.33. ( <i>E</i> )-methyl 2,4,7-trimethylocta-2,3,5-trienoate           |        |

| Figure 4.1. Pd(0)-catalyzed alkoxycarbonylation of Z-enyne carbonates            | .32 |
|----------------------------------------------------------------------------------|-----|
| Figure 4.2. Reaction mechanism of alkoxycarbonylation of Z- or E-enyne carbonate | 37  |
| Figure 4.3. Pd(0)-catalyzed alkoxycarbonylation reaction of (R,Z)-1b             | 38  |

# LIST OF TABLES

| <u>Table</u>                                                                        | Page |
|-------------------------------------------------------------------------------------|------|
| Table 4.1. Effect of CO pressure on Pd(0)-catalyzed alkoxycarbonylation             |      |
| reaction of Z-1b                                                                    | 33   |
| Table 4.2. Effect of ligands on Pd(0)-catalyzed alkoxycarbonylation reaction        |      |
| of Z-1b                                                                             | 33   |
| Table 4.3. Effect of the nature of the catalyst and catalyst/ligand ratio on Pd(0)- |      |
| catalyzed alkoxycarbonylation reaction of Z-1a                                      | 34   |
| Table 4.4. Effect of Temperature on Pd(0)-catalyzed alkoxycarbonylation             |      |
| reaction of Z-1a                                                                    | 35   |
| Table 4.5. Effect of the amount of the catalyst on Pd(0)-catalyzed                  |      |
| alkoxycarbonylation reaction of Z-1a                                                | 35   |
| Table 4.6. Pd(0)-catalyzed alkoxycarbonylative reaction of Z-1a with various        |      |
| alcohols                                                                            |      |
| Table 4.7. Pd(0)-catalyzed alkoxycarbonylation reactions of various Z-enyne         |      |
| Carbonates                                                                          | 37   |
| Table 4.8. $Pd(0)$ -catalyzed alkoxycarbonylative reaction of $E$ -1a with various  |      |
| Alcohols                                                                            | 39   |
| Table 4.9. Pd(0)-catalyzed alkoxycarbonylation reactions of various <i>E</i> -enyne |      |
| Carbonates                                                                          | 40   |

## **CHAPTER 1**

## **INTRODUCTION**

Catalytic carbonylation reaction of unsaturated compounds have been known since 1953 by the pioneering work of Reppe. Since then, the transiton metal catalyzed carbonylation reaction has become important tool for the synthesis of biologycally active  $\alpha,\beta$ -unsaturated carbonyl compounds.

The synthesis of allenes is of current interest due to their high and unique reactivities demonstrated in organic synthesis and the transition metal-catalyzed methods for the synthesis of allenes are know well established. Allenes are present in many natural products and biologically active compounds. They are also important intermediates in organic synthesis.

Over the years, the use of organometallics, such as organozinc, organocopper, organolithium, organoindium reagents for the synthesis of allenes is highly developed.

Reactions of propargyl halides, carbonates, acetates, mesylates, and phosphates with hard and soft carbon nucleophiles can give allenyl derivatives.

Palladium-catalyzed carbonylation reaction of unsaturated compounds has become more useful method for the synthesis of carbonyl compounds. Palladiumcatalyzed carbonylation reaction of propargylic compounds are very useful tools for the synthesis of allene structures. Alkynes containing a leaving group in the propargylic position are frequently used as substrates for the reactions catalyzed by Pd(0) complexes.

Several useful methods, mainly based on the reactions of organometallic reagents with suitably functionalized propargyl derivatives have been reported for the development of vinylallenes synthesis, which bear a conjugated vinyl functionalty. Vinyl allenes are useful and unique precursor in organic synthesis.

#### **CHAPTER 2**

#### LITERATURE WORK

#### 2.1. Palladium-Catalyzed Alkoxycarbonylation of Alkynes

Palladium-catalyzed alkoxycarbonylation reactions of alkynes leads to formation of linear and branched  $\alpha$ , $\beta$ -unsaturated carboxylic acids derivatives in the presence of an alcohol. The linear and branched product ratio depends on the catalytic system (Figure 2.1).

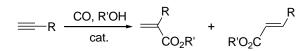



Figure 2.1. Alkoxycarbonylation of alkynes with Pd catalyst

In 1998, Scrivanti *et al.* reported two possible mechanisms for the alkoxycarbonylation reactions of terminal alkynes. First mechanism involves addition of insitu formed Pd-CO<sub>2</sub>R species onto triple bond, leading to an (alkoxycarbonyl)palladium complex, after which carboalkoxy moity migrates from the carbon atom of 1-alkyne and finally protonation of vinyl intermediate results in the formation of the desired product (Figure 2.2).

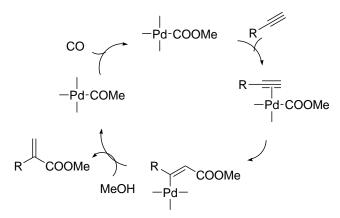



Figure 2.2. The mechanism of alkoxycarbonylation of alkynes which ivolves (alkoxycarbonyl) palladium intermediates (Source: Scrivanti *et al.* 1998)

The second mechanism essentially involves the formation of a ( $\sigma$ -vinyl)palladium complex by the insertion of the alkyne into a Pd-H bond, CO inserts into the Pd-C bond and the following alcoholysis yields the expected ester. Hydride regenerates at the end of this pathway (Figure 2.3).

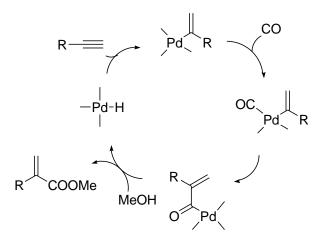



Figure 2.3. The mechanism of alkoxycarbonylation of alkynes which involves a hydride formation (Source: Scrivanti *et al.* 1998)

#### 2.1.1. Palladium(0)-Catalyzed Reactions of Propargyl Compounds

Propargylic compounds can undergo several types of transformations with palladium catalysts that yield allene, alkene, alkyne, and enyne derivatives.

Reactions of propargyl coumponds promoted by Pd(0)-catalysts proceed by the formation of either a  $\sigma$ -allenylpalladium or a propargylpalladium as intermediates (Figure 2.4) (Elsevier *et al.* 1983, 1986).

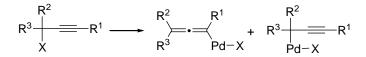



Figure 2.4. Pd(0)-catalyzed reaction of propargyl compounds

Mainly, σ-allenylpalladium intermediates undergo three type of reactions (Tsuji *et al.* 1995):

1-Insertion of unsaturated bonds to  $\sigma$ -bonds.

2-Transmetallation of the  $\sigma$ -allenylpalladium complex with main group metals or metal hydrides.

3-Nucleophilic attack to the central sp carbon of the alkenyl system in  $\sigma$ -allenylpalladium (Figure 2.5).

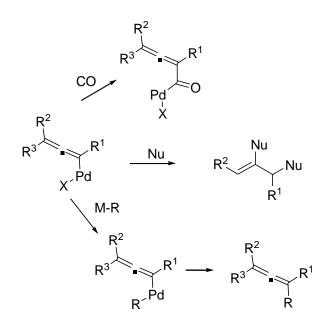
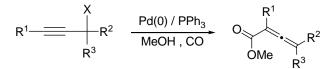




Figure 2.5. Reactions of  $\sigma$ -allenylpalladium intermediates

# 2.1.2. Carbonylation Reactions of Propargylic Compounds Containing a Leaving Group

Propargyl compounds undergo mono- and dicarbonylations depending on the reaction conditions. (Figure 2.6) (Tsuji *et al.* 1993). Alkynes containing a leaving group in the propargylic position are frequently used as substrates for the reactions catalyzed by Pd(0) complexes. The key step of these reactions is the formation of  $\sigma$ -allenylpalladium(II) intermediates (Tsuji *et al.* 1987). Such intermediates can react with a nuchleophile at the central carbon atom of the allene moiety. Furthermore, olefins or CO can insert into the Pd-C bond of  $\sigma$ -allenylpalladium(II) intermediates. Depending on this properties of the  $\sigma$ -allenylpalladium(II) intermediates, various type of reactions of propargylic compounds have been reported.



X: OCOOR, OCOR, PO(OR)2,, Br, Ms

Figure 2.6. Pd(0)-catalyzed alkoxycarbonylation of propargyl compounds

In 1986, Tsuji and co-workers reported first palladium-catalyzed carbonylation reaction of propargyl carbonates to yield 2,3-dienyl carboxylates. The desired products were obtained in good yields when the reactions were performed in the presence of methanol (Figure 2.7).

They reported that the corresponding allenic ester forms in low yield when the reactant was a terminal methyl propargyl carbonate. The yield of the method increases when using a  $C_7H_{15}$  substituted propargyl carbonate as a reactant. Furthermore, a tertiary propargylic carbonate with a terminal triple bond gave the corresponding allenyl ester with excellent yield.

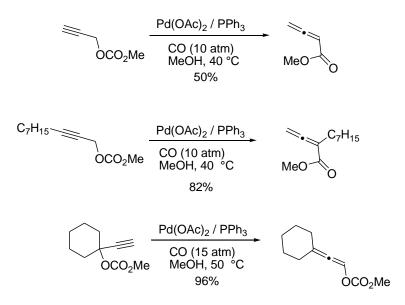



Figure 2.7. Alkoxycarbonylation of propargyl carbonates with Pd(OAc)<sub>2</sub> / phosphine , ligand system (Source: Tsuji *et al.* 1986)

According to the their proposed mechanism, initially the propargylic carbonate undergoes oxidative addition with Pd(0) species, which follows by decarboxylation to lead to an (allenyl)-palladium alkoxide complex. Then, CO coordinates to the complex and inserts into the palladium-carbon bond. 2,3-Dienyl carboxylate is produced after reductive elimination of this intermediate (Figure 2.8).

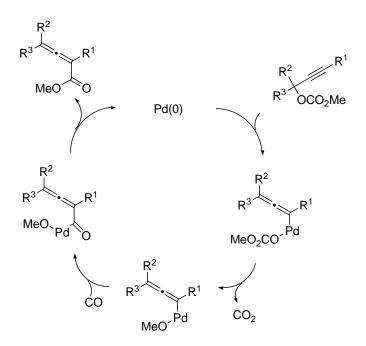



Figure 2.8. Pd-catalyzed carbonylation mechanism of propargylic carbonates

#### 2.2. Transition Metal-Catalyzed Carbonylation of Alkenes

Transition metal-catalyzed reactions of alkenes are a significant process for organic synthesis. Carbonylation reactions of alkenes leads to the formation of saturated carbonyl compounds such as carboxylic acids, anhydrides, esters, amides, and *etc* (Chaudhari *et al.* 2005). Palladium-catalyzed reactions of various allylic compounds via the formation of a  $\pi$ -allylpalladium complex offer many synthetically useful methods. In this process, the desired product can be formed in the presence carbon monoxide and a nucleophile such as alcohol, water, or hydrogen. The type of reaction that will take place will be depended on the nucleophile type used. If the nucleophile is alcohol, the process is referred to as an alkoxycarbonylation (Figure 2.9) (Beller *et al.* 2009).



Figure 2.9. Alkoxycarbonylation reactions of alkenes

Two types of mechanisms for the palladium-catalyzed alkoxycarbonylation reactions of alkenes are suggested. (Claver *et al.* 2001)

A Pd-alkyl intermediate forms via the insertion of the alkene into the Pdhydride bond, then CO inserts into the metal-alkyl bond and gives the acyl-palladium intermediates. Alcohol acts as a nucleophile and gives the desired product (Figure 2.10)

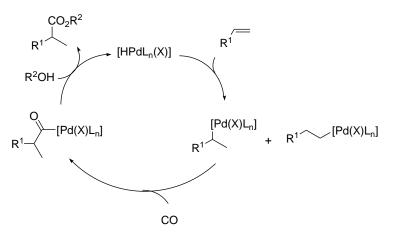



Figure 2.10. The mechanism of palladium-catalyzed alkoxycarbonylation of alkenes which involves acyl-palladium intermediates

According to the other proposed mechanism, a Pd-alkoxycarbonyl intermediate form via the insertion of the alkene into the Pd-C bond, then alcoholysis of the intermediate gives the desired ester and alkoxymetal complex. CO inserts into the Pd-OR bond and palladium-alkoxycarbonyl complex is recycled (Figure 2.11)

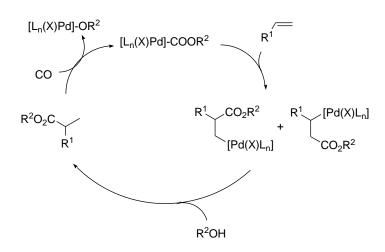



Figure 2.11. The mechanism of palladium-catalyzed alkoxycarbonylation of alkenes which involves Pd-alkoxycarbonyl intermediates

Reaction of alkenes with CO and alcohols lead to the formation of carboxylic acid esters. Allylic esters such as carbonates, acetates and phosphates are widely used for this process.

#### 2.2.1. Carbonylation Reactions of Allyl Compounds

In 1984, Tsuji and his co-workers reported first palladium-catalyzed carbonylation reactions of allyl-alkyl carbonates, undergoing a smooth decarboxylation-carbonylation reactions to afford  $\beta$ , $\gamma$  -unsaturated esters at 50 °C under atmospheric or low pressure of carbon monoxide and neutral conditions in the presence of palladium-phosphine complexes as catalysts (Figure 2.12).



Figure 2.12. Alkoxycarbonylation of allyl alkyl carbonates with Pd(OAc)<sub>2</sub> / phosphine ligand system

According to their proposed mechanism, initially a  $\pi$ -allylpalladium alkoxide intermediate forms by the oxidative addition of palladium with the allyl carbonate. There are two possible reaction pathways for the insertion of CO: (1) the insertion of carbon monoxide into the  $\pi$ -allylpalladium bond followed by the formation of 3butenoylpalladium complex, or (2) the insertion into the palladium alkoxide bond to give a (carboxy)( $\pi$ -allyl)palladium complex. Finally,  $\beta$ , $\gamma$ -unsaturated esters were formed by reductive elimination (Figure 2.13). At the same time Pd(0) species is regenerated.

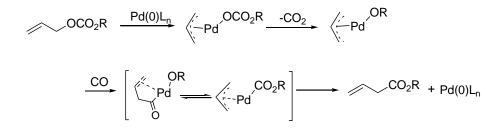



Figure 2.13. Alkoxycarbonylation mechanism of allyl-alkyl carbonates

In 1993, the palladium-catalyzed alkoxycarbonylation of allyl phosphates and allyl acetates were reported by Murahashi and his co-workers The method was highly efficient to give  $\beta$ , $\gamma$ -unsaturated esters when the carbonylation was carried out with the allyl phosphates in the presence of 0.5 mol 2% of Pd<sub>2</sub>(dba)<sub>3</sub>CHCl<sub>3</sub>, 2 mol 2% of PPh<sub>3</sub>, and 1 equiv. of *i*-Pr<sub>2</sub>NEt in ethanol (Figure 2.14). The carbonylation took place on the least substituted allylic position and proceeded with the inversion of the configuration.

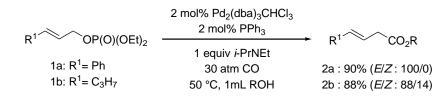



Figure 2.14. Palladium-catalyzed alkoxycarbonylation of allyl phosphates

The palladium-catayzed carbonylation reaction of allyl acetates proceed by the oxidative addition of allyl acetate to palladium(0) complexes to give a  $\pi$ -allylpalladium acetate complex followed by the insertion of CO into the  $\pi$ -allylpalladium bromide complex (Murahashi *et al.* 1993), (Figure 2.15). Sodium bromide was used as a cocatayst due to the ligand exchanging properties with acetate and it accelarates the carbonylation reaction (Figure 2.16).

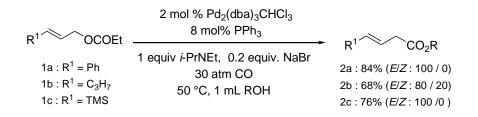



Figure 2.15. Palladium-catalyzed carbonylation of allyl acetates

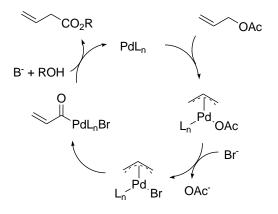



Figure 2.16. Pd-catalyzed carbonylation mechanism of allyl acetates

#### 2.3. Synthesis of Vinylallenes

#### 2.3.1. Synthesis of Vinylallenes with Grignard Reagents

In 1972, Gore and coworkers reported the reaction of 5-chloropent-3-en-1-ynes with MeMgI in the presence of ether at reflux temperature (Figure 2.17)

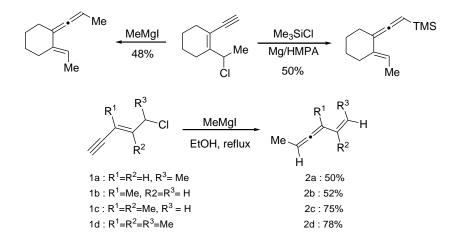



Figure 2.17. The reaction of chloro-enynes with grignard reagents.

Treatment of electrophiles with the Grignard reagents for the formation of vinylallene is a very limited process. The method is not suitable for other Grignard reagent so the only exception is the generation of silylallene from chloroenyne and trimethyl silylmagnesium chloride.

#### 2.3.2. Synthesis of Vinylallenes with Organocopper Reagents

In 1999, Krause and coworkers reported a new methodology for the formation of vinylallene by  $1,5-(S_N)$ -substitution of enyne acetates with lithium dialkylcuprates. The resulting vinylallenes were usually obtained as mixtures of the *E* and *Z* isomers (Figure 2.18).

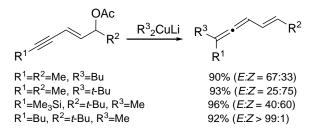



Figure 2.18. 1,5- $(S_N 2^{"})$ -Substitution reactions of enyne acetates with lithium dialkylcuprates

Analogous 1,5-substitutions can also be carried out with enyne oxiranes, which are transformed into the synthetically useful hydroxy-substituted vinylallenes. These transformations can be performed under copper catalysis conditions, by simultaneous addition of the organolithium compound and the substrate with catalytic amounts of the cuprate (Figure 2.19).

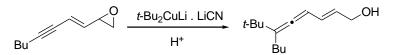



Figure 2.19. The 1,5-substitution reaction of enyne oxiranes

#### 2.3.3. Synthesis of Vinylallenes by Wittig-Horner Reactions

In 2005, Takahashi and his coworkers reported that the Wittig-Horner reaction of 1-lithio-1,3-dienyl phosphine oxide with aldehyde afforded stereodefined vinyl allenes in high yield (Figure 2.20).

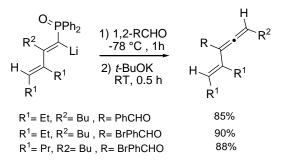



Figure 2.20. Wittig-Horner reaction of 1-lithio-1,3-dienyl phosphine oxide

# 2.3.4. Palladium-Catalyzed Synthesis of Methyl (*R*,*E*)-(-)-Tetradeca-2,4,5-trienoate

In 2005, Hayashi and his coworkers developed an efficient method for the preparation of the sex attractant of the male dried beetle, which is a naturally occurring allene, methyl (R,E)-tetradeca-2,4,5-trienoate by the palladium-catalyzed reaction of 1-hydro-carbonyl-2-bromo-1,3-buradienes (Figure 2.21.).

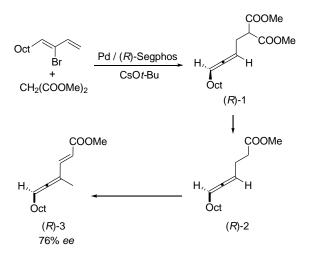



Figure 2.21. Total synthesis of methyl (*R*,*E*)-(-)-tetradeca-2,4,5-trienoate

The optically active allene (*R*)-1 formed by the Pd-catalyzed asymmetric reaction using dimethylmalonate as a pronucleophile followed by the removing of one of the methoxycarbonyl group afforded the (*R*)-2. Finally the reaction of (*R*)-2 with LDA, PhSeBr then NaIO<sub>4</sub> in THF results in the formation of (*R*)-3 in 76% enantiomeric excess.

## **CHAPTER 3**

## **EXPERIMENTAL STUDY**

#### **3.1. General Procedures for Drying the Solvents**

Tetrahydrofuran (THF) and dichloromethane (DCM) solvents were all purified by a solvent purification system (MBRAUN SPS-800). Et<sub>2</sub>O was distilled from benzophenone-ketyl under argon prior to use. Methanol and ethanol were dried over Mg turnings in the presence of iodine and stored on 3Å molecular sieves under Argon. 1-Propanol and 2-propanol were dried first by stirring over anhydrous CaO and then refluxing over Mg turnings in the presence of iodine. 1-Butanol was dried first by stirring over anhydrous MgSO<sub>4</sub> and then refluxed over Mg turnings in the presence of iodine.

#### **3.2.** Synthesis of Substrates

3.2.1. Synthesis of Z- and E-Enyne Carbonates Z-1a, Z-1b, Z-1i, Z-1j, Z-1k, and E- 1b, E-1a, E-1j, E-1i

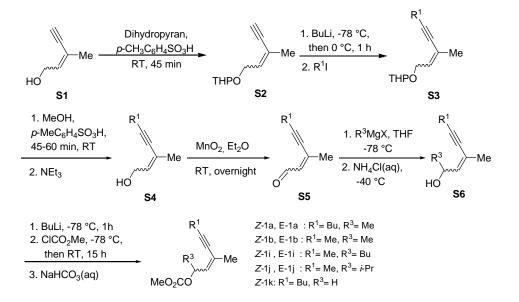



Figure 3.1. Synthesis of *Z*- and E-Enyne Carbonates **Z-1a**, **Z-1b**, **Z-1i**, **Z-1j**, **Z-1k**, and *E*-1b, *E*-1a, *E*-1*j*, **E**-1*i* 

To the mixture of commercially available, (*Z*)- or (*E*)-pent-2-en-4-yn-1-ol (**S1**) (1.6 g, 20 mmol) and 3,4-dihydropyran (2.2 mL) was added *p*-toluenesulfonic acid (44 mg, 0.02 mmol) and then stirred for 45 min at room temperature. Then, the mixture was diluted with 40 mL of dry THF under argon and cooled to -78 °C. At that temperature, a 24 mmol hexane solution of BuLi (1.6 M, 15 mL) was added dropwise via a syringe. After stirring the reaction mixture for 1 h at 0 °C, 2.5 mL of alkyl iodide ( $\approx$ 40 mmol) was added dropwise. The mixture was stirred overnight at room temperature when the alkyl halide used was MeI, or 2 days at 50 °C when BuI was used. The reaction was extracted with Et<sub>2</sub>O. The organic phase was washed with water, dried over MgSO4, filtered, and concentrated under reduced pressure. The residue was used in the following step without any other purification. (Ange *et al.* 1997)

To a solution of the preceding crude compound (S3) in methanol (60 mL) *p*toluenesulfonic acid (1.2 g, 6 mmol) was added and the resulting solution stirred at RT for 45-60 min. Then, triethylamine was added (1.8 mL), and the solution was concentrated under reduced pressure. The mixture was taken into dichloromethane and washed with water. The combined extracts were washed with brine, dried over MgSO4, filtered, and concentrated under reduced pressure. Purification by column chromatography on silica gel (hexane/ethyl acetate as the eluent) gave the enynol *Z*-S4 (yields:  $R^1$ = Me, 86%; Bu, 80%). (Krause *et al.* 1999)

To the solution of (S4) ( $\approx$ 17 mmol) in 66 mL of dry diethyl ether, 30 g of activated MnO<sub>2</sub> was added, and the mixture was stirred overnight at room temperature. After filtration through Celite, the solution was concentrated under reduced pressure. The crude aldehyde (S5) was used in the next step. (Ange *et al.* 1997)

The crude aldehyde (**S5**) was dissolved in 36 mL of anhydrous THF and treated at -78 °C with 1.2 equivalent ethereal solution of R<sup>3</sup>MgX (1.6-2.0 M, X stands for iodine in the case of methylation, and bromine for the others) under Ar. At the end of the addition of the Grignard reagent, the mixture was warmed with stirring to -40 °C at nearly 2 h and then, hydrolyzed by the addition of 30 mL of a saturated NH<sub>4</sub>Cl solution. After extraction with diethyl ether, the combined organic layers were washed with water, dried over MgSO<sub>4</sub>, and filtered. The solvent was removed in vacuo, and the crude residue was purified by column chromatography on silica gel (hexane/ethyl acetate, yields: **Z-S5**; R<sup>1</sup>= Bu, R<sup>3</sup>= Me, 65%; R<sup>1</sup>= Me, R<sup>3</sup>=Bu, 80%; R<sup>1</sup>= Me, R<sup>3</sup>= *i*-Pr, 40%, **E-S5**; R<sup>1</sup>=Bu, R<sup>3</sup>=*i*-Pr, 60%; R<sup>3</sup>= Bu, 70%, R<sup>1</sup>= Me, 65%. (*E*)-hept-3-en-5-yn-2-ol which was used in preparation of (*E*)-hept-3-en-5-yn-2-yl methyl carbonate (*E*-11) was synthesized according to a reported method. (Krause *et al.* 1999)

The preparation of carbonates from the synthesized enynols (**S6**) was performed via a prescribed method. (Tsuji *et al.* 1994). The products were purified by column chromatography on silica gel (hexane/ethyl acetate/NEt<sub>3</sub> (0.5 vol. %)). Enyne carbonate **Z-1k** was further subjected to Kugelrohr distillation, (yields: **Z-1a**, *E***-1a**, 55%; **Z-1b**, 45%.; **Z-1i**, 50%; **Z-1j**, 50%; **Z-1k**, 58%; *E***-1l**, 60%, *E***-1a**,50%, *E***-1b**, 55%, *E***-1j**, %60, *E***-1i**, %50.)

#### 3.2.2. Synthesis of Z-Enyne Carbonates Z-1c-Z-1h

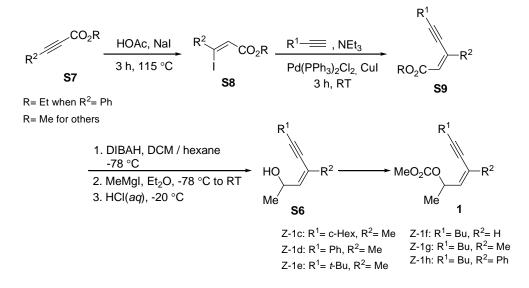



Figure 3.2. Synthesis of Z-Enyne Carbonates Z-1c-Z-1h

To a solution of alkynoic ester (**S7**) ( $\approx$ 40 mmol) and acetic acid (240 mmol, 13.8 mL) (512 mmol, 20.8 mL when (**S7**) is ethyl 3-phenylpropiolate was added sodium iodide (9.6 g, 64 mmol) (19.2 g, 128 mmol when (**S7**) is ethyl 3-phenylpropiolate) and stirred for 3 h at 115 °C. After completion of the reaction, the brown mixture was transferred while hot to a separatory funnel containing water ( $\approx$ 10 mL/mmol of the ester substrate). The reaction flask was washed with a mixture of water ( $\approx$ 5 mL) and diethyl ether ( $\approx$ 30 mL/mmol of the ester substrate). The washings were combined in a separatory funnel. The phases were separated and the aqueous phase was extracted with

diethyl ether. The combined organic phases were treated sequentially with saturated aqueous sodium bicarbonate, aqueous sodium thiosulfate (1 M), and brine and then were dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. The product was purified by column chromatography on silica gel (hexane/ethyl acetate, yields, (**S8**):  $R^2$ = H, 84%, Me, 87%; Bu, 84%; Ph, 93%) (Piers *et al.* 1988)

A mixture of (**S8**) ( $\approx$ 35 mmol), PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (210.6 mg, 0.3 mmol), and CuI (33 mg, 0.17 mmol), in 140 mL of Et<sub>3</sub>N was stirred for 10 min at room temperature under Ar, and then, to this mixture was added a terminal alkyne (38 mmol). The mixture was stirred at room temperature for 3h. At the end of the reaction, water was added to the resulting mixture and then extracted with Et<sub>2</sub>O The combined organic layers were dried over MgSO<sub>4</sub>. The solvent was evaporated in vacuo and the product (**S9**) was purified by column chromatography on silica gel (hexane/ethyl acetate, yields: R<sup>1</sup>= Bu, R<sup>2</sup>= H, 92%; R<sup>1</sup>= Ph, R<sup>2</sup>= Me, 93%; R<sup>1</sup>= *c*-Hex, R<sup>2</sup>= Me, 90%; R<sup>1</sup>= *t*-Bu, R<sup>2</sup>= Me, 85%; R<sup>1</sup>= Bu, R<sup>2</sup>= Bu, 92; R<sup>1</sup>= Bu, R<sup>2</sup>= Ph, 82) (Takevohi *et al.* 2000)

A dry, three-necked, round-bottomed 250-mL flask equipped with an internal thermometer, a rubber septum, and an Ar gas inlet, was charged with  $\approx$ 31 mmol of (**S9**) and 63 mL of anhydrous dichloromethane. The stirred solution was cooled to -78 °C and 31 mL of a 1 M solution of diisobutylaluminum hydride in hexane was added dropwise with a syringe at such a rate that the temperature would not exceed -75 °C. After stirring for 30 min at -78 °C, 17 mL Et<sub>2</sub>O solution of a MeMgI (34 mmol, 2.0 M) was added dropwise at -78 °C with a syringe. The cooling bath was removed and the reaction mixture was allowed to warm to room temperature. The mixture was hydrolyzed at -20 °C by dropwise addition of 63 mL of a 1 M aqueous solution of hydrochloric acid, followed by addition of 81 mL of ether. The organic layer was separated, the aqueous layer was extracted with ether, and the combined extracts were dried over MgSO<sub>4</sub>. The solvent was evaporated in vacuo. The product was purified by column chromatography on silica gel (hexane/ethyl acetate; yields: R<sup>1</sup>= Bu, R<sup>2</sup>= H, 65%; R<sup>1</sup>= Ph, R<sup>2</sup>= Me, 55%; R<sup>1</sup>= c-Hex, R<sup>2</sup>= Me, 48%; R<sup>1</sup>= t-Bu, R<sup>2</sup>= Me, 60%; R<sup>1</sup>= Bu, R<sup>2</sup>= Ph, 40%) (Normant *et al.* 1998)

The preparation of carbonates from the synthesized enynols was performed via a prescribed method (Tsuji *et al.* 1994) The products were purified on silica gel (hexane/ethyl acetate/NEt<sub>3</sub> (0.5 vol.%)). Enyne carbonate **Z-1h** was further subjected to Kugelrohr distillation (yields: **Z-1c**, 55%; **Z-1b**, 45%.; **Z-1c**, 48%; **Z-1d**, 55%; **Z-1e**, 50%; **Z-1f**, 65%; **Z-1g**, 44%, **Z-1h**, 40%).

# 3.2.3. Synthesis of Methyl (R,Z)-4-methylhept-3-en-5-yn-2-yl carbonate [(*R*,*Z*)-1b]

Sharpless's kinetic resolution method was employed for the preparation of (R,Z)-4-methylhept-3-en-5-yn-2-ol. Accordingly, 22.9 mmol of Ti(OiPr)<sub>4</sub>, and 27.5 mmol of L-(+)-diisopropyl tartrate, were dissolved in 200 mL of dry DCM and cooled to -20 °C. To this mixture, dry DCM solution of 22.9 mmol of racemic mixture of (Z)-4methylhept-3-en-5-yn-2-ol was added and then stirred for 30 min at -20 °C. Then, 45.8 mmol of *t*-butyl hydroperoxide (4 M in toluene) was added and left in a freezer (-20 °C) for 13.5 h. After completion, a pre-cooled (0 °C) 37 mL aqueous solution of 42.4 mmol FeSO<sub>4</sub> and 68.7 mmol tartaric acid mixture was added to the reaction mixture with small portions while stirring at -20 °C. The mixture was slowly warmed to room temperature over 1 h, and then extracted with DCM. The DCM solution was concentrated by evaporation and 103 mL of Et<sub>2</sub>O was added. The ethereal solution was cooled to 0 °C, and 109 mL of aqueous NaOH was added and stirred at this temperature for 1.5 h. Extraction with ether, drying with MgSO4, and following column chromatography on silica gel using hexane/ethyl acetate eluent yielded the isolated product at 45%. Enantiomeric purity was determined as 94.5% ee by GC method using a Hydodex-beta-3P column (25 m, 0.25 mm ID).  $[\alpha]_{D}^{22} = -1.9^{\circ}$  (c = 1.0, CHCl<sub>3</sub>). Its hydroxyl group was modified to carbonate as described above.  $\left[\alpha\right]_{D}^{22} = -1.2^{\circ}$  (c = 0.2, in CHCl<sub>3</sub>). Specific Rotation was determined according to Equation 3.1.

Path length, l (dm) \* Concentration of Sample, c (g/ml)

#### **3.3.** Characterization of Reactants

The synthesized reactants were analyzed by GC and GC-MS (HP 6890/5973N) and isolated by column chromatography using a hexane-ethyl acetate eluent. High-resolution mass spectral analyses were performed at the Dortmund University of Technology Mass Spectrometry Laboratory on a Thermo Electron system. NMR spectra were recorded on a Varian VnmrJ 400 spectrometer, a Varian Mercury AS 400, or a Bruker DRX 400 spectrometer. Infrared spectra were obtained using a Perkin–Elmer Spectrum 100 by ATR method with neat samples. Optical rotations were measured on a Rudolph Autopol I polarimeter.

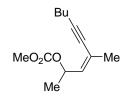



Figure 3.3. Methyl (Z)-4-methyldec-3-en-5-yn-2-yl carbonate

**Z-1a**: <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 6.05 (dq, *J*= 8.4, 2.4 Hz 1H), 5.55 (dq, *J*= 8.4, 1.2 Hz, 1H), 3.34 (s, 3H), 2.12 (t, *J*= 6.8 Hz, 2H), 1.71 (d, *J*= 1.2 Hz, 3H), 1.41-1.26 (m, 4H), 1.34 (d, *J*= 6.0 Hz, 3H), 0.80 (t, *J*= 7.2 Hz, 3H); <sup>13</sup>C NMR: (101 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$ : 155.7, 135.0, 122.3, 96.7, 79.1, 74.1, 54.0, 31.0, 23.5, 22.2, 20.5, 19.4, 13.7; FT-IR (v<sub>max</sub>/cm<sup>-1</sup>): 2980, 2932, 1744, 1441, 1257, 1152, 1100, 1040, 941, 865, 791; MS (EI, *m*/*z*): 224 (7, M<sup>+</sup>), 209 (2), 182 (7), 165 (100),149 (55), 133 (21), 123 (25), 115 (5), 105 (58), 91 (88), 77 (42); HRMS: (EI, *m*/*z*, M<sup>+</sup>): 224.1407 (calculated), 224.1403 (found).

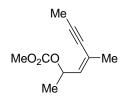



Figure 3.4. Methyl (Z)-4-methylhept-3-en-5-yn-2-yl carbonate

**Z-1b**: <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 5.99 (dq, *J*= 8.4, 6.8 Hz, 1H), 5.54 (d, *J*= 8.8 Hz, 1H), 3.35 (s, 3H), 1.68 (d, *J*= 1.2 Hz, 3H), 1.57 (s, 3H), 1.32 (d, *J*= 6.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, C6D6)  $\delta$ : 155.7, 135.0, 122.2, 92.1, 78.2, 74.1, 54.0, 23.4, 20.5, 4.0; FT-IR ( $v_{max}$ /cm<sup>-1</sup>): 2981, 1744, 1441, 1256, 1028, 941, 791; MS (EI, *m*/*z*): 182 (4, M<sup>+</sup>), 167 (8), 123 (100), 107 (45), 91 (97), 77 (34), 65 (24); HRMS (EI, *m*/*z*, M<sup>+</sup>): 182.0937 (calculated), 182.0934 (found).

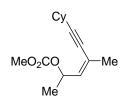



Figure 3.5. (Z)-6-cyclohexyl-4-methylhex-3-en-5-yn-2-yl methyl carbonate

**Z-1c**: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 5.56-5.67 (m, 2H), 3.75 (s, 3H), 2.48-2.58 (m, 1H), 1.86-1.79 (m, 2H), 1.83 (s, 3H), 1.66-1.74 (m, 2H), 1.43-1.53 (m, 3H), 1.30-1.37 (m, 3H), 1.35 (d, *J*= 5.6 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ : 155.3, 134.3, 122.3, 100.7, 78.5, 74.5, 54.7, 32.9, 30.9, 29.9, 26.1, 25.0, 23.7, 20.3; FT-IR ( $v_{max}$ /cm<sup>-1</sup>): 2931, 2855, 2218, 1746, 1442, 1258, 1153, 1034, 942, 792; MS (EI, m/z): 250 (1, M<sup>+</sup>), 191 (24), 174 (55), 159 (29), 145 (24), 131 (71), 117 (68), 105 (51), 91 (100), 77 (36); HRMS (EI, *m/z*, M<sup>+</sup>): 250.1564 (calculated), 250.1557 (found).

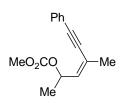



Figure 3.6. Methyl (Z)-4-methyl-6-phenylhex-3-en-5-yn-2-yl carbonate

**Z-1d**: <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 7.48-7.54 (m, 2H), 6.93-6.99 (m, 3H), 6.13 (dq, *J*= 8.4, 6.4 Hz, 1H), 5.59 (dq, *J*= 8.4, 1.6 Hz, 1H), 3.34 (s, 3H), 1.73 (d, *J*= 1.2 Hz, 3H), 1.32 (d, *J*= 6.0 Hz, 3H); <sup>13</sup>C NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 155.7, 136.5, 132.0, 128.64, 128.60, 123.6, 121.9, 95.7, 87.8, 73.8, 54.1, 23.0, 20.4; FT-IR (v<sub>max</sub>/cm<sup>-1</sup>): 2979, 2956, 1744, 1441, 1259, 1035, 941, 755, 690; MS (EI, *m*/*z*): 244 (3, M<sup>+</sup>), 185 (62), 167 (100), 152 (90), 141 (24), 128 (26), 115 (28), 102 (11), 91 (13), 77 (14); HRMS (EI, *m*/*z*, M<sup>+</sup>): 244.1094 (calculated), 244.1091 (found).

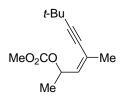



Figure 3.7. Methyl (Z)-4,7,7-trimethyloct-3-en-5-yn-2-yl carbonate

**Z-1e**: <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 6.08-6.01 (dq, *J*= 8.4, 6.4 Hz, 1H), 5.53 (dq, *J*= 8.4, 1.6 Hz, 1H), 3.35 (s, 3H), 1.68 (d, *J*= 1.2 Hz, 3H), 1.33 (d, *J*= 6.4 Hz, 3H), 1.22 (s, 9H); <sup>13</sup>C NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 155.8, 135.1, 122.4, 104.6, 77.8, 73.9, 54.0, 31.0, 28.3, 23.3, 20.3; FT-IR (v<sub>max</sub>/cm<sup>-1</sup>): 2971, 2931, 2869, 1748, 1442, 1263, 1038; MS (EI, *m*/*z*): 224 (2, M<sup>+</sup>), 165 (47), 148 (40), 133 (100), 123 (11), 117 (25), 105 (88), 91 (78),77 (33); HRMS (EI, *m*/*z*, M<sup>+</sup>): 224.1407 (calculated), 224.1397 (found).

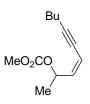



Figure 3.8. (Z)-dec-3-en-5-yn-2-yl methyl carbonate

**Z-1f**: <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 6.0-6.10 (m, 1H), 5.67(dd, *J*<sub>AB</sub>= 10.8, 8.0 Hz, 1H), 5.44 (ddq, *J*=10.2, 6.4, 1.2 Hz, 1H), 3.32 (s, 3H), 2.09 (td, *J*= 6.8, 2.4 Hz, 2H), 1.27-1.35 (m, 4H), 1.31 (d, *J*= 6.0 Hz, 3H), 0.78 (t, *J*= 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 155.6, 140.2, 112.1, 97.7, 76.6, 73.2, 54.1, 30.9, 22.2, 20.2, 19.4, 13.7; FT-IR ( $v_{max}$ /cm<sup>-1</sup>): 2959, 2935, 2874, 1747, 1442, 1258, 1034, 942, 792; MS (EI, *m*/*z*): 210 (2, M<sup>+</sup>), 195 (1), 168 (7), 151 (80), 135 (31), 119 (15), 109 (33), 91 (100), 77 (46); HRMS: (EI, *m*/*z*, M<sup>+</sup>): 210.1250 (calculated), 210.1250 (found).

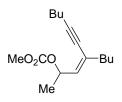



Figure 3.9. (Z)-4-butyldec-3-en-5-yn-2-yl methyl carbonate

**Z-1g**: <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 6.12 (dq, *J*= 8.4, 6.4 Hz, 1H), 5.65 (d, *J*= 8.4 Hz, 1H), 3.34 (s, 3H), 2.14 (t, *J*= 6.8 Hz, 2H), 2.07 (t, *J*= 7.6 Hz, 2H), 1.52 (quint, *J*= 7.6 Hz, 2H), 1.40 (d, *J*= 6.4 Hz, 3H), 1.29-1.38 (m, 4H), 1.23 (sext, *J*= 7.6 Hz, 2H), 0.83 (t, *J*= 7.4 Hz, 3H), 0.80 (t, *J*= 7.0 Hz, 3H); <sup>13</sup>C NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 155.7, 134.5, 127.1, 97.2, 78.4, 74.2, 54.0, 37.4, 31.1, 30.7, 22.4, 22.2, 20.6, 19.4, 14.1, 13.7; FT-IR ( $v_{max}$ /cm<sup>-1</sup>): 2957, 2932, 2861, 1746, 1441, 1258, 1035, 942, 791; MS (EI, *m*/*z*): 266(<1, M<sup>+</sup>), 207 (21), 190 (28), 161 (30), 148 (17), 133 (47), 119 (48), 105 (100), 91 (95), 77 (30); HRMS (EI, *m*/*z*, M<sup>+</sup>): 266.1877 (calculated), 266.1868 (found).

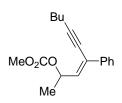



Figure 3.10. Methyl (Z)-4-phenyldec-3-en-5-yn-2-yl carbonate

**Z-1h**: <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 7.61 (d, *J*= 6.4 Hz, 1H), 7.04-7.17 (m, 3H), 6.31 (d, *J*<sub>AB</sub>= 8.4 Hz, 1H), 6.24 (dq, *J*<sub>AB</sub>= 8.0, 6.4 Hz, 1H), 3.37 (s. 3H), 2.18 (t, *J*= 7.2 Hz, 2H), 1.43 (d, *J*= 6.4 Hz, 3H), 1.28-1.40 (m, 4H), 0.80 (t, *J*= 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 155.7, 138.0, 134.6, 128.6, 128.4, 126.8, 126.4, 99.3, 77.3, 74.5, 54.1, 31.0, 22.3, 20.4, 19.5, 13.7; FT-IR (v<sub>max</sub>/cm<sup>-1</sup>): 3027, 2956, 2931, 2872, 1744, 1441, 1258, 1034, 942, 791, 762, 693; MS (EI, *m*/*z*): 286 (7, M<sup>+</sup>), 227 (70), 211 (56), 195 (22), 185 (31), 167 (100), 153 (82), 141 (44), 128 (37), 115 (42), 105 (10), 91 (27), 77 (21), HRMS (EI, *m*/*z*, M<sup>+</sup>): 286.1564 (calculated), 286.1561 (found).

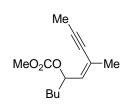



Figure 3.11. Methyl (Z)-7-methyldec-6-en-8-yn-5-yl carbonate

**Z-1i**: <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 5.99 (dt, *J*= 8.8, 6.8 Hz, 1H), 5.56 (dq, *J*= 8.4, 1.2 Hz, 1H), 3.36 (s, 3H), 1.77-1.89 (m, 1H), 1.73 (d, *J*= 1.6 Hz, 3H), 1.61-1.68 (m, 1H), 1.59 (s, 3H), 1.33-1.47 (m, 2H), 1.25 (sext, *J*= 7.2 Hz, 2H), 0.82 (t, *J*= 7.6 Hz, 3H); <sup>13</sup>C NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 155.9, 134.1, 123.0, 91.8, 78.5, 77.6, 54.0, 34.8, 27.4, 23.6, 22.9, 14.1, 4.1; FT-IR ( $v_{max}$ /cm<sup>-1</sup>): 2956, 2920, 2861, 1745, 1441, 1257, 935, 791;

MS (EI, *m/z*): 224 (3, M<sup>+</sup>), 209 (2), 165 (100), 149 (18), 133 (11), 123 (28), 108 (30), 91 (71), 85 (7), 77 (42); HRMS (EI, *m/z*, M<sup>+</sup>): 224.1407 (calculated), 224.1398 (found).

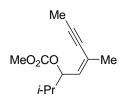



Figure 3.12. Methyl (Z)-2,5-dimethyloct-4-en-6-yn-3-yl carbonate

**Z-1j**: <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 5.83 (dd, *J*<sub>AB</sub>= 8.8, 6.4 Hz, 1H), 5.56 (dd, *J*<sub>AB</sub>= 9.2, 0.8 Hz, 1H), 3.35 (s, 3H), 2.01 (octet, *J*= 6.8 Hz, 1H), 1.73 (d, *J*= 1.2 Hz, 3H), 1.59 (s, 3H), 1.00 (d, *J*= 6.4 Hz, 3H), 0.96 (d, *J*= 6.8 Hz, 3H); <sup>13</sup>C NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 156.0, 132.1, 124.1, 91.7, 81.8, 78.7, 54.1, 33.1, 23.8, 18.2, 18.0, 4.1; FT-IR ( $v_{max}/cm^{-1}$ ): 2963, 2921, 2241, 1748, 1638, 1441, 1369, 1324, 1256, 1206, 1139, 1101, 1055, 1030, 1000, 965, 952,935, 917, 855, 791; MS (EI, *m*/*z*): 210 (< 1, M<sup>+</sup>), 195 (<1), 167 (38), 151 (38), 134 (28), 119 (100), 108 (22), 91 (66), 77 (13); HRMS (EI, *m*/*z*, M<sup>+</sup>): 210.1251 (calculated), 210.1261 (found).

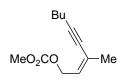



Figure 3.13. Methyl (Z)-3-methylnon-2-en-4-ynyl carbonate

**Z-1k**: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 5.72 (dt, *J*= 6.8, 1.2 Hz, 1H), 4.81 (d, *J*= 7.2 Hz, 1H), 3.78 (s, 3H), 2.34 (t, *J*= 7.2 Hz, 2H), 1.87 (d, *J*= 0.8 Hz, 3H), 1.53 (quint, *J*= 7.2 Hz, 2H), 1.42 (sext, *J*= 7.2 Hz, 2H), 0.92 (t, *J*= 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ : 155.9, 128.0, 124.9, 96.9, 78.3, 66.7, 54.9, 30.9, 23.8, 22.1, 19.3, 13.7; FT-IR ( $v_{max}$ /cm<sup>-1</sup>): 2958, 2934, 2906, 1748, 1442, 944, 792; MS (EI, *m*/*z*): 210 (5, M<sup>+</sup>), 168 (16), 151 (46), 135 (39), 119 (13), 105 (29), 91 (100), 77 (55); HRMS (EI, *m*/*z*, M<sup>+</sup>): 210.1250 (calculated), 210.1251 (found).

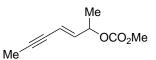



Figure 3.14. (E)-hept-3-en-5-yn-2-yl methyl carbonate

*E*-11: <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 5.99 (dd, *J*= 16.0, 6.4 Hz, 1H), 5.71 (d, *J*= 16.0, 1.2 Hz, 1H), 5.18 (quint, *J*= 6.6 Hz, 1 H), 3.765 (s, 3H), 1.98 (d, *J*= 2.0 Hz, 3H), 1.37 (d, *J*= 6.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 155.1, 139.7, 122.9, 74.5, 54.8, 20.2, 4.4; FT-IR ( $v_{max}$ /cm<sup>-1</sup>): 2984, 2957, 2918, 2854, 1743, 1441, 1255, 1036, 941, 871, 790; MS (EI, *m*/*z*): 168 (3, M<sup>+</sup>), 153 (3), 136 (2), 109 (100), 91 (79), 77 (37).

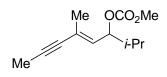



Figure 3.15. Methyl (E)-2,5-dimethyloct-4-en-6-yn-3-yl carbonate

*E*-1j: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 5.63 (d,  $J_{AB}$ = 9.6 Hz, 1H), 5.07 (dd,  $J_{AB}$ = 9.8, 7.0 Hz, 1H), 3.75 (s, 3H), 1.93 (s, 3H), 1.89 (d, J= 1.2 Hz, 3H), 0.95 (d, J= 6.8 Hz, 3H), 0.90 (d, J= 6.8 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ : 155.6, 131.5, 124.0, 85.0, 81.9, 79.6, 54.8, 32.5, 18.5, 18.3, 17.9, 4.3 ; FT-IR ( $v_{max}$ /cm<sup>-1</sup>): 2960, 2920, 2868, 2222, 1743, 1639, 1441, 1369, 1322, 1254, 1144, 1094, 1044, 965, 934, 874, 791

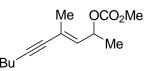



Figure 3.16. Methyl (E)-4-methyldec-3-en-5-yn-2-yl carbonate

*E*-1a: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 5.67 (d, *J*= 8.8 Hz 1H), 5.48 (dq, *J*= 8.9, 6.5 Hz, 1H), 3.75 (s, 3H), 2.29 (t, *J*= 7.0 Hz, 2H), 1.88 (s, 3H), 1.49 (q, *J*= 7.1 Hz, 2H), 1.41 (q, J= 7.4 Hz, 2H), 1.34 (d, *J*= 6.4 Hz, 3H), 0.91 (t, *J*= 7.2 Hz, 3H); <sup>13</sup>C NMR: (101 MHz, CDCl<sub>3</sub>):  $\delta$ : 155.3, 134.0, 122.5, 90.0, 83.0, 77.2, 71.7, 55.0, 31.0, 22.1, 20.0, 19.1, 18.3, 14.0; FT-IR ( $v_{max}$ /cm<sup>-1</sup>): 2958, 2933, 2873, 2217, 1743, 1638, 1441, 1378, 1326, 1257, 1154, 1106, 1036, 939, 904, 865, 791.

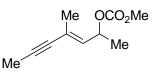



Figure 3.17. Methyl (E)-4-methylhept-3-en-5-yn-2-yl carbonate

*E*-1b: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 5.99 (d, *J*= 9.2 Hz, 1H), 5.43 (dq, *J*= 9.2, 6.4 Hz, 1H), 3.75 (s, 3H), 1.92 (s, 3H), 1.87 (d, J= 1.2 Hz, 3H), 1.33 (d, *J*= 6.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ : 155.3, 134.0, 122.4, 85.0, 82.0, 72.0, 55.0, 20.5, 18.2, 4.3 ; FT-IR ( $v_{max}/cm^{-1}$ ): 2977, 2957, 2915, 2853, 2227, 1742, 1639, 1584, 1441, 1378, 1327, 1255, 1154, 1101, 1034, 966, 898, 864, 791

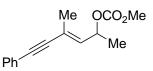



Figure 3.18. Methyl (E)-4-methyl-6-phenylhex-3-en-5-yn-2-yl carbonate

*E*-1d: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.41-7.44 (m, 2H), 7.29, 7.31(m, 3H), 5.87 (dd, *J*= 8.8, 1.2 Hz, 1H), 5.50 (dq, *J*= 8.8, 6.5 Hz, 1H), 3.77 (s, 3H), 2.00 (d, *J*= 1.2 Hz, 3H), 1.39 (d, *J*= 6.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ :155.3, 135.5, 132.0, 128.4, 123.3, 121.2, 91.3, 88.5, 72.0, 55.0, 20.4, 18.0; FT-IR (v<sub>max</sub>/cm<sup>-1</sup>): 2956, 2982, 2925, 2853, 1741, 1635, 1597, 1489, 1441, 1378, 1328, 1255, 1181, 1141, 1036, 942, 866, 791.

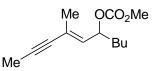



Figure 3.19. Methyl (E)-7-methyldec-6-en-8-yn-5-yl carbonate

*E*-1i: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 5.62 (d, *J*= 9.2, 1H), 5.26-5.32 (m, 1H), 3.75 (s, 3H), 1.93 (s, 1H), 1.88 (d, *J*= 1.2 Hz, 3H), 1.68-1.77 (m, 1H), 1.49-1.58 (s, 1H), 1.37-1.24 (m, 4H), 0.88 (t, *J*= 6.6 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ : 155.4, 133.1, 123.2, 85.0, 82.0, 75.2, 55.0, 34.2, 27.1, 23.0, 18.4, 14.1, 4.3 ; FT-IR (v<sub>max</sub>/cm<sup>-1</sup>): 2957, 2930, 2862, 2222, 1743, 1638, 1441, 1380, 1321, 1259, 1152, 1091, 1036, 933, 879, 866, 791.

#### **3.4. General Procedure for Carbonylation Reactions**

The substrate, a palladium compound, triphenylphosphine, and an alcohol were added, successively to a Schlenck apparatus with a condenser that is attached to an Ar line. A CO balloon was fixed to the reaction vessel and then, the mixture was stirred magnetically in a preheated oil bath. The course of the reaction was followed by TLC and GC analyzes. At the end of the reaction, the solvent was evaporated and the residue was purified by column chromatography on silica gel (hexane:EtOAc), affording the product. The product, **3ha** was further subjected to Kugelrohr distillation. The all vinylallene products appeared as colorless oil and coupling constants of olefinic protons and NOE studies confirm *E*-configured structures.

A mixture of enyne, catalyst and solvent was added into glass insert which was then placed into a stainless-steel reactor. Reactor was evacuated and purged with sufficient CO twice. Then reactor was pressurized with sufficient CO and the mixture was stirred magnetically in a pre-heated oil bath for 16 h. After cooling reactor, the reaction mixture was recovered with diethylether

#### **3.5.** Characterization of Products




Figure 3.20. (E)-methyl 2-butyl-4-methylhepta-2,3,5-trienoate

**3aa**: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): 5.98 (dq, J= 15.6, 1.6 Hz, 1H), 5.67 (dq, J= 15.2, 6.8 Hz, 1H), 3.70 (s, 3H), 2.24 (t, J= 7.2 Hz, 2H), 1.86 (s, 3H), 1.79 (dd, J= 6.8, 1.6 Hz, 3H), 1.27-1.43 (m, 4H), 0.89 (t, J= 7.2 Hz, 3H); <sup>13</sup>C NMR: (100 MHz, CDCl<sub>3</sub>) δ: 212.8, 168.0, 127.0, 126.3, 103.9, 100.7, 52.1, 30.3, 28.8, 22.3, 18.5, 15.0, 14.0; FT-IR(v<sub>max</sub>/cm<sup>-1</sup>): 2955, 2929, 2873, 2860, 1941, 1713, 1262, 1014, 960, MS (EI, m/z): 208 (8, M<sup>+</sup>), 193 (2), 179 (8), 165 (17), 151 (46), 135 (18), 119 (22), 107 (100), 91 (66), 77 (26); HRMS: (ESI, m/z, (M+H)<sup>+</sup>): 209.1536 (calculated), 209.1536 (found).

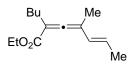



Figure 3.21. (E)-ethyl 2-butyl-4-methylhepta-2,3,5-trienoate

**3ab**: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 5.98 (dq, *J*= 15.6, 1.6 Hz, 1H), 5.66 (dq, *J*= 15.6, 6.8 Hz, 1H), 4.16 (dt, *J*= 6.8, 1.2 Hz, 2H), 2.23 (t, *J*= 7.4 Hz, 2H), 1.86 (s, 3H), 1.79 (dd, *J*= 6.8, 1.6 Hz, 3H), 1.28-1.43 (m, 4H), 1.24 (t, *J*=7.2 Hz, 3H), 0.88 (t, *J*= 7.0, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ : 212.8,167.5, 127.2, 126.0, 103.8, 100.0, 60.8, 30.4, 28.8, 22.3, 18.5, 15.0, 14.43, 14.03; FT-IR (v<sub>max</sub>/cm<sup>-1</sup>): 2957, 2929, 2872, 2860, 1940, 1762, 1708, 1445, 1367, 1259, 1239, 1130, 960; MS (EI, *m*/*z*): 222 (7, M<sup>+</sup>), 193 (9), 180 (9), 165 (18), 149 (46), 137 (18), 119 (15), 107 (100), 91 (71), 77 (36); HRMS: (ESI, *m*/*z*, (M+H)<sup>+</sup>): 223.1693 (calculated), 223.1692 (found).

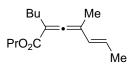



Figure 3.22. (E)-propyl 2-butyl-4-methylhepta-2,3,5-trienoate

**3ac**: <sup>1</sup>H NMR: (400 MHz, CDCl<sub>3</sub>): 5.91 (dq, J= 15.6, 1.6 Hz, 1H), 5.59 (dq, J= 6.7, 15.8 Hz, 1H), 3.99 (td, J= 6.8, 2.4 Hz, 2H), 2.17 (t, J= 7.2 Hz, 2H), 1.79 (s, 3H), 1.73 (dd, J= 6.6, 1.4 Hz, 3H), 1.57 (sext, J= 7.0 Hz, 2H), 1.22-1.37 (m, 4H), 0.85 (t, J= 7.2 Hz, 3H), 0.82 (t, J= 7.2 Hz, 3H); <sup>13</sup>C NMR: (100 MHz, CDCl<sub>3</sub>)  $\delta$ :212.8, 167.6, 127.2, 126.0, 103.8, 100.0, 66.3, 30.4, 28.7, 22.3, 22.2, 18.5, 14.9, 14.0, 10.5; FT-IR ( $v_{max}$ /cm<sup>-1</sup>): 2959, 2929, 2875, 2859, 1941, 1709, 1458, 1260, 960; MS (EI, m/z): 236 (8, M<sup>+</sup>), 207 (5), 194 (7), 177 (7), 165 (10), 149 (45), 137 (29), 121 (15), 107 (100), 91 (65), 77 (34); HRMS: (EI, m/z, M<sup>+</sup>): 236.1771 (calculated), 236.1764 (found).

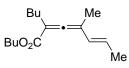



Figure 3.23. (E)-butyl 2-butyl-4-methylhepta-2,3,5-trienoate

**3ad**: <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>) δ: 6.05 (dq, *J*= 15.6, 1.6 Hz, 1H), 5.44 (dq, *J*= 15.6, 6.8 Hz, 1H), 4.08 (t, *J*= 6.8 Hz, 2H), 2.47 (t, *J*= 7.4 Hz, 2H), 1.77 (s, 3H), 1.56

(dd, J= 6.4, 0.8 Hz, 3H), 1.52 (quint, J= 7.2 Hz, 2H), 1.42 (quint, J= 7.2 Hz, 2H), 1.32 (sext, J= 7.4 Hz, 2H), 1.18 (sext, J= 7.4 Hz, 2H), 0.85 (t, J=7.4 Hz, 3H), 0.73 (t, J= 7.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 213.0, 167.1, 125.9, 103.9, 100.6, 64.7, 31.1, 30.9, 29.4, 22.6, 19.5, 18.3, 15.0, 14.1, 13.8; FT-IR ( $v_{max}/cm^{-1}$ ): 2958, 2932, 2873,1941, 1710, 1458, 1378, 1239, 1119, 960; MS (EI, m/z): 250 (3, M<sup>+</sup>), 165 (13), 149 (50), 137 (35), 121 (12), 107 (100), 91 (44), 77 (20); HRMS (EI, m/z, M<sup>+</sup>): 250.1927 (calculated), 250.1934 (found).

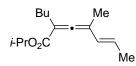



Figure 3.24. (E)-propyl 2-butyl-4-methylhepta-2,3,5-trienoate

**3ae**: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): 5.98 (dq, J= 16.0, 1.6 Hz, 1H), 5.65 (dq, J= 15.8, 6.6 Hz, 1H), 5.00 (hept, J= 6.2 Hz, 1H), 2.22 (t, J= 7.4 Hz, 2H), 1.85 (s,3H), 1.79 (dd, J= 6.8, 1.6, Hz, 3H), 1.28-1.42 (m, 4H), 1.22 (d, J= 6.4 Hz, 6H), 0.86 (t, J= 7.2 Hz, 3H); <sup>13</sup>C NMR: (100 MHz, CDCl<sub>3</sub>)  $\delta$ : 212.8, 167.1, 127.3, 125.8, 103.8, 100.5, 68.1, 30.4, 28.8, 22.3, 22.0, 18.5, 14.9, 14.1; FT-IR (v<sub>max</sub>/cm<sup>-1</sup>): 2979, 2958, 2930, 2860, 1941, 1706, 1466, 1373, 1261, 1241, 1107, 1067, 960; MS (EI, m/z): 236 (9, M<sup>+</sup>), 194 (24), 177 (10), 165 (22), 149 (79), 137 (44), 121 (19), 107 (100), 91 (66), 77 (30); HRMS (EI, m/z, M<sup>+</sup>): 236.1771 (calculated), 236.1762 (found).

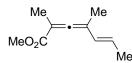



Figure 3.25. (E)-methyl 2,4-dimethylhepta-2,3,5-trienoate

**3ba**: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 5.98 (dq, *J*= 16.0, 1.6 Hz, 1H), 5.67 (dq, *J*= 15.6, 6.8 Hz, 1H), 3.70 (s, 3H), 1.87 (s, 3H), 1.85 (s, 3H), 1.79 (dd, *J*= 6.8, 1.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ : 212.9, 168.3, 127.0, 126.5, 102.8, 94.6, 52.2, 18.5, 15.7, 15.0; FT-IR (v<sub>max</sub>/cm<sup>-1</sup>): 2989, 2952, 2929, 2857, 1943, 1713, 1436, 1268, 1119, 1037, 960, 920, 759; MS (EI, *m*/*z*): 166 (53, M<sup>+</sup>), 151 (50), 138 (14), 123 (40), 107 (34), 107 (34), 95 (22), 91 (100), 79 (32), 77 (28); HRMS (ESI, *m*/*z*, (M+H)<sup>+</sup>): 167.1067 (calculated), 167.1065 (found). The enantiomers of this product was separated on an IC column with hexane:2-propanol= 99:1, flow= 1 mL/min. Retention times 6.9, 7.3 minutes.

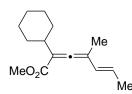



Figure 3.26. (E)-methyl 2-cyclohexyl-4-methylhepta-2,3,5-trienoate

**3ca**: <sup>1</sup>H-NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 6.06 (dq, *J*= 15.5, 1.5 Hz, 1H) 5.44 (dq, *J*= 15.5, 7.0 Hz, 1H), 3.42 (s, 3H), 2.73 (tt, *J*= 11.5, 3.5 Hz, 1H), 1.98-2.08 (m, 2H), 1.76 (s, 3H), 1.63-1.69 (m, 2H), 1.56 (dd, *J*= 7.0, 1.5 Hz, 3H), 1.03-1.35 (m, 6H); <sup>13</sup>C NMR: (126 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 212.7, 167.2, 125.9, 106.2, 105.1, 51.5, 38.1, 33.4, 33.3, 26.79, 26.77, 26.5, 18.3, 15.19; FT-IR (v<sub>max</sub>/cm<sup>-1</sup>): 2925, 2852, 1935, 1714, 1448, 1253, 1228, 960; MS (EI, *m*/*z*): 234 (50, M<sup>+</sup>), 205 (61), 175 (60), 165 (33), 159 (30), 152 (36), 133 (65), 119 (87), 105 (76), 91 (100), 77 (47); HRMS (EI, *m*/*z*, M<sup>+</sup>): 234.1614 (calculated), 234.1616 (found).

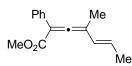
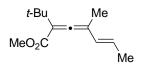




Figure 3.27. (E)-methyl 4-methyl-2-phenylhepta-2,3,5-trienoate

**3da**: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.45-7.51 (m, 2H), 7.31-7.38 (m, 2H), 7.23-7.29 (m, 1H), 6.10 (dq,  $J_{AB}$ = 15.6 (AB), 1.6 Hz, 1H), 5.80 (dq,  $J_{AB}$ = 15.6, 6.8 Hz, 1H), 3.81 (s, 3H), 2.00 (s, 3H), 1.84 (dd, J= 6.8, 1.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ : 215.2, 166.7, 133.5, 128.6, 128.3, 127.7, 127.6, 126.1, 105.2, 102.3, 52.4, 18.6, 14.9; FT-IR ( $\nu_{max}$ /cm<sup>-1</sup>): 3057, 3027, 2950, 1928, 1717, 1434, 1380, 1282, 1258, 1196, 1173, 1023, 960, 780, 746, 694, 661; MS (EI, m/z): 228 (100, M<sup>+</sup>), 213 (44), 200 (51), 185 (67), 169 (61), 154 (90), 141 (48), 128 (49), 115 (39), 102 (12), 91 (27), 77 (22), HRMS (EI, m/z, M<sup>+</sup>): 228.1145 (calculated), 228.1142 (found).



#### Figure 2.28. (E)-methyl 2-tert-butyl-4-methylhepta-2,3,5-trienoate

**3ea**: <sup>1</sup>H-NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 6.04 (dq, *J*= 15.6, 1.6 Hz, 1H), 5.41 (dq, *J*= 15.6, 6.6 Hz, 1H), 3.37 (s, 3H), 1.73 (s, 3H), 1.55 (dd, *J*= 6.6, 1.6 Hz, 3H), 1.38 (s, 9H); <sup>13</sup>C NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 212.0, 166.5, 127.8, 109.0,104.0, 51.3, 34.6, 29.8, 18.3, 15.1; FT-IR ( $v_{max}$ /cm<sup>-1</sup>): 2992, 2957, 2867, 1935, 1716, 1434, 1362, 1257, 1224, 1060, 1030, 1007, 960, 925, 778; MS (EI, *m*/*z*): 208 (41, M<sup>+</sup>), 193 (11), 165 (10), 152 (100), 137 (11), 124 (15), 119 (28), 105 (23), 91 (43), 77 (17); HRMS (EI, *m*/*z*, M<sup>+</sup>): 208.1458 (calculated), 208.1453 (found).

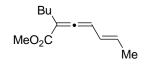



Figure 3.29. (E)-methyl 2-butylhepta-2,3,5-trienoate

**3fa**: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 6.15 (dt,  $J_{AB}$ = 9.6, 2.8 Hz, 1H), 5.86 (ddq,  $J_{AB}$ = 15.2, 10.4, 1.6 Hz, 1H), 5.75 (dq,  $J_{AB}$ = 15.6, 6.8 Hz, 1H), 3.71 (s, 3H), 2.20-2.29 (m, 2H), 1.77 (dd, J= 6.8, 1.2 Hz, 3H); <sup>13</sup>C-NMR (100MHz, CDCl<sub>3</sub>)  $\delta$ : 212.8, 167.6, 130.3, 124.0, 101.7, 97.7, 52.3, 30.2, 28.6, 22.3, 18.4, 14.0; FT-IR ( $v_{max}/cm^{-1}$ ): 2956, 2931, 2861, 1940, 1715, 1435, 1262, 1241, 1119, 962; MS (EI, m/z): 194 (10, M<sup>+</sup>), 165 (22), 152 (65), 137 (48), 123 (19), 105 (30), 93 (100), 77 (52); HRMS (EI, m/z, M<sup>+</sup>): 194.1301 (calculated), 194.1309 (found).

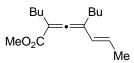



Figure 3.30. Methyl 2-butyl-4-((E)-prop-1-enyl)octa-2,3-dienoate

**3ga**: <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 5.98 (dq, *J*<sub>AB</sub>= 15.6, 1.6 Hz, 1H), 5.57 (dq, *J*= 15.6, 6.8 Hz, 1H), 3.43 (s, 3H), 2.50 (td, *J*= 7.2, 5.2 Hz, 2H), 2.15 (td, *J*= 7.2, 4.0 Hz, 2H), 1.57 (dd, *J*= 6.8, 1.6 Hz, 3H), 1.49-1.60 (m, 4H), 1.27-1.40 (m, 4H), 0.864 (t, *J*= 7.2 Hz, 3H), 0.858 (t, *J*= 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 212.8, 167.6, 127.2, 125.8, 109.0, 101.7, 51.6, 31.0, 30.2, 29.5, 29.0, 22.8, 22.7, 18.5, 14.1; FT-IR ( $\nu_{max}$ /cm<sup>-1</sup>): 2956, 2930, 2873, 2860, 1938, 1715, 1456, 1435, 1263, 1132, 961; MS (EI, *m*/*z*): 250 (7), 221 (25), 207 (34), 191 (69), 179 (28), 165 (43), 151 (87), 133 (41), 119

(55), 107 (85), 91 (100), 77 (48); HRMS (EI, *m*/*z*, M<sup>+</sup>): 250.1927 (calculated), 250.1923 (found).

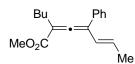



Figure 3.31. (E)-methyl 2-butyl-4-phenylhepta-2,3,5-trienoate

**3ha**: <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  : 7.46-7.50 (m, 2H), 7.13-7.19 (m, 2H), 7.03-7.09 (m, 1H), 6.10 (dq,  $J_{AB}$ = 15.6, 1.6 Hz, 1H), 5.90 (dq,  $J_{AB}$ = 15.2, 6.4 Hz, 1H), 3.40 (s, 3H), 2.43-2.58 (m, 2H), 1.57 (dd, J= 7.4, 1.6 Hz, 3H), 1.21-1.32 (m, 4 H), 0.79 (t, J= 7.6 Hz, 3H); <sup>13</sup>C NMR: (101 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 211.3, 165.2, 133.6, 126.9, 126.2, 125.9, 124.7,123.6, 109.7, 101.0, 49.8, 28.8, 27.6, 20.7, 16.4, 12.0; FT-IR(v<sub>max</sub>/cm<sup>-1</sup>): 3025, 2955, 2928, 2872, 1932, 1714, 1434, 1259, 761, 694; MS (EI, m/z): 270 (38), 227 (20), 148 (100), 165 (47), 155 (57), 141 (34), 129 (26), 115 (20), 105 (9), 91 (25), 77 (11); HRMS (EI, m/z, M<sup>+</sup>): 270.1614 (calculated), 270.1614 (found).

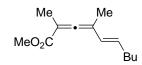



Figure 3.32. (E)-methyl 2,4-dimethyldeca-2,3,5-trienoate

**3ia**: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 5.96 (dt, *J*= 15.6, 1.4 Hz, 1H), 5.66 (dt, *J*= 15.6, 6.8 Hz, 1H), 3.71 (s, 3H), 2.12 (dq, *J*= 6.8, 1.6 Hz, 2H), 1.87 (s, 3H), 1.86 (s, 3H), 1.28-1.43 (m, 4H), 0.90 (t, *J*= 7.4 Hz, 3H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ : 213.1, 168.3, 132.0, 125.6, 102.9, 94.6, 52.2, 32.8, 31.6, 22.4, 15.7, 15.0, 14.1; FT-IR(v<sub>max</sub>/cm<sup>-1</sup>): 2989, 2955, 2927, 2872, 1943, 1715, 1435, 1269, 1119, 962, 760; MS (EI, *m/z*): 208 (<1, M<sup>+</sup>), 166 (12), 151 (100), 123 (58), 109 (36), 91 (17), 81 (32); HRMS: (ESI, *m/z*, (M+H)<sup>+</sup>): 209.1536 (calculated), 209.1533 (found).

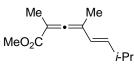



Figure 3.33. (E)-methyl 2,4,7-trimethylocta-2,3,5-trienoate

**3ja**: <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$ : 6.06 (dd, *J*= 15.6, 1.2 Hz, 1H), 5.50 (dd, *J*= 15.6, 7.0, Hz, 1H), 3.38 (s, 3H), 2.13-2.24 (m, 1H), 1.98 (s, 3H), 1.75 (s, 3H), 0.89 (d, *J*= 6.8 Hz, 6H); <sup>13</sup>C NMR: (101 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$ : 213.4, 167.7, 138.3, 123.8, 103.0, 95.1, 51.7, 31.8, 22.5, 15.8, 15.0; FT-IR ( $\nu_{max}$ /cm<sup>-1</sup>): 2958, 2928, 2869, 1944, 1716, 1436, 1269, 1237, 1119, 1043, 965, 760; MS (EI, *m*/*z*): 194 (35, M<sup>+</sup>), 179 (36), 163 (9), 152 (56), 147 (26), 135 (85), 119 (100), 105 (69), 91 (83), 77 (47); HRMS (EI, *m*/*z*, M<sup>+</sup>): 194.1301 (calculated), 194.1296 (found).

#### **CHAPTER 4**

#### **RESULTS AND DISCUSSION**

In this study, we attempted the Pd(0)-catalyzed carbonylation reactions of Zand E-enyne carbonates aiming at the formation of vinylallenyl ester structures in the presence of alcohol and carbon monoxide.(Artok *et al.* 2011) According to NMR analyses, *E*-configured vinylallenyl esters were achieved in high yields (Figure 4.1).

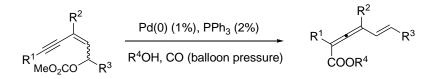



Figure 4.1. Pd(0)-catalyzed alkoxycarbonylation of Z- or E-enyne carbonates

During the optimization studies, the reaction temperature, the CO pressure, the catalyst type, ligand type and ligand-catalyst ratio were investigated.

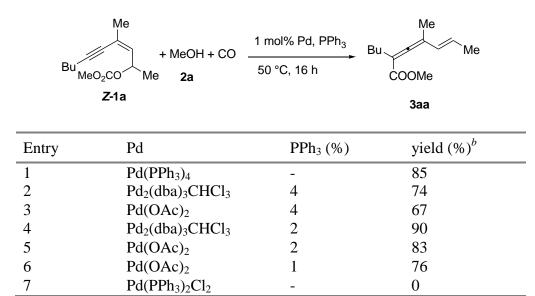
As a preliminary investigation, *Z*-configured enyne carbonate **Z-1b** was used and methanol was used as alcohol for the investigation of the effect CO pressure.  $Pd(PPh_3)_4$  (2 mol%) used as a catalyst and temperature of the reaction was fixed at 50 °C during the 16 h of the reaction time (Table 4.1, Entry 1). The results revealed that the the attachment of rubber balloon filled with CO provided sufficient pressure for the method. The application of higher CO pressures did not show any significant effects on the reaction yields (Table 4.1, Entries 2-3).

| Me<br>MeO <sub>2</sub>   | Me<br>2 mol% Pd(PPh <sub>3</sub> ) <sub>4</sub><br>2 mol% Pd(PPh <sub>3</sub> ) <sub>4</sub><br>MeOH (5 mL), CO<br>50 °C, 16 h<br><b>Z-1b</b> | Me<br>Me<br>COOMe<br><b>3ba</b> |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Entry                    | $P_{CO}$ [atm]                                                                                                                                | Yield [%] <sup>a</sup>          |
| 1                        | 10                                                                                                                                            | 87                              |
| 2                        | 5                                                                                                                                             | 82                              |
| 3                        | Balloon                                                                                                                                       | 85                              |
| <sup>a</sup> Isolated yi | elds                                                                                                                                          |                                 |

Table 4.1. Effect of CO pressure on Pd(0)-catalyzed alkoxycarbonylation reaction of **Z-1b** 

The effect of various types of phosphine ligands was also investigated in the presence of 2 mol%  $Pd(OAc)_2$  at 50 °C in methanol (Table 4.2).

Table 4.2. Effect of ligands on Pd(0)-catalyzed alkoxycarbonylation reaction of Z-1b


|       | $Me$ $Me$ $MeO_{2}CO$ $Me$ $MeOH (5)$ $CO (balloon)$ $Z-1b$ $50 °C, 10$ | 5 mL)<br>pressure) | Me<br>Me<br>COOMe<br><b>3ba</b> |
|-------|-------------------------------------------------------------------------|--------------------|---------------------------------|
| Entry | Ligand                                                                  | Ligand             | 1% NMR Yield (%) <sup>a</sup>   |
| 1     | PPh <sub>3</sub>                                                        | 8                  | 67                              |
| 2     | PPh <sub>3</sub>                                                        | 4                  | 76                              |
| 3     | Xantphos                                                                | 4                  | 75                              |
| 4     | $CH_3(Ph)_2P$                                                           | 12                 | 39                              |
| 5     | $(4-CF_{3}C_{6}H_{4})_{3}P$                                             | 4                  | 58                              |
| 6     | Dppe                                                                    | 4                  | 0                               |
| 7     | Dppp                                                                    | 4                  | trace                           |
| 8     | Dppb                                                                    | 4                  | trace                           |
| 9     | Dppf                                                                    | 4                  | 22                              |
| 10    | BIHEP                                                                   | 4                  | trace                           |
| 11    | _                                                                       |                    | 0                               |

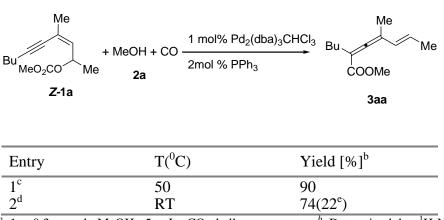
<sup>a</sup> Determined by 1H-NMR using dimethyl sulfoxide as an internal standard

The results indicated that triphenylphosphine and xantphos appears be to the most effective ligands for the alkoxycarbonylation reaction of **Z-1b** (Table 4.2, Entries 1-2 and 3). The  $CH_3(Ph)_2P$  and  $(4-CF_3C_6H_4)_3P$  showed lower reactivity than  $PPh_3$  (Table 4.2, Entries 4-5). The other phosphine derivatives such as Dppe, Dppb, Dbbf and

Bihep proved ineffective **3aa**. (Table 4.2, Entries 6-7-8-9-10-11). As a continuation of optimization process, the effect of various Palladium complex derivatives and the ligand-Pd ratio were investigated. PPh<sub>3</sub> was choice of the ligand for the further studies because of its lower cost.

#### Table 4.3. Effect of the nature of the catalyst and catalyst/ligand ratio on Pd(0)catalyzed alkoxycarbonylation reaction of **Z-1a**<sup>a</sup>

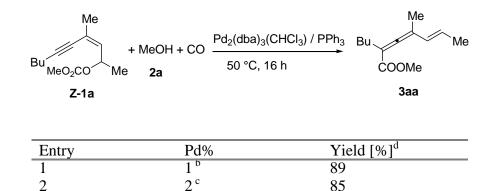



<sup>*a*</sup> 1a: 0.3 mmol, MeOH: 5 mL, CO: balloon pressure.

<sup>b</sup> Determined by <sup>1</sup>H-NMR using dimethyl sulfoxide as an internal standard.

The reaction of the (*Z*)-2-en-4-yne **Z-1a** with MeOH at 50 °C under just a balloon pressure of CO in the presence of 1 mol%  $Pd(PPh_3)_4$  yielded exclusively the related *E*-configured vinylallenylester molecule **3aa** with high yield (Table 4.3, Entry 1). Separate addition of a PPh<sub>3</sub> ligand and palladium in the form of  $Pd_2(dba)_3CHCl_3$  or  $Pd(OAc)_2$  with a respective ligand to palladium ratio of 4/1 afforded lower yields (Tablo 4.3, Entries 2-3). Nevertheless, lowering the ligand to Pd ratio to 2/1 provided the optimal catalyst activity (Tablo 4.3, Entries 4-6).

The effects of temperature were also investigated. The conversion of **Z-1a** achieved to complete conversion just within 4-5 h at 50 °C temperature (Table 4.4, Entry 1). However, the conversion of **Z-1a** could not proceed to completion when performing the reaction at room temperature even at a prolonged reaction times (Table 4.4, Entry 2).


Table 4.4. Effect of Temperature on Pd(0)-catalyzed alkoxycarbonylation reaction of **Z-1a<sup>a</sup>** 



<sup>*a*</sup> 1a: 0.3 mmol, MeOH: 5 mL, CO: balloon pressure. <sup>*b*</sup> Determined by <sup>1</sup>H-NMR using dimethyl sulfoxide as an internal standard. <sup>*c*</sup> (4-5) h. <sup>*d*</sup> 48 h <sup>*e*</sup> Unreacted reactant.

Further investigations indicated that increasing the amount of catalysts decreased the formation of vinylallenylester **3aa**. When the amount of catalyst increased from 1 mol% to 2 mol%, with respect to the reactant, the yield of **3aa** decreased slightly from 89% to 85% (Table 4.5, Entries 1-2).

# Table 4.5. Effect of the amount of the catalyst on Pd(0)-catalyzed alkoxycarbonylation reaction of **Z-1a**



<sup>a</sup> 1a: 0.3 mmol, MeOH: 5 mL, CO: balloon pressure, <sup>b</sup> % 2 mol PPh<sub>3</sub>, <sup>c</sup> % 4 mol PPh<sub>3</sub>, <sup>d</sup> NMR Yield.

The carbonylative reaction of **Z-1a** with MeOH, EtOH, or primary saturated  $C_3$  and  $C_4$  alcohols, under the optimal reaction conditions, that is at 50 °C, a balloon pressure of CO, in 5 mL of alcohol, used in combination with  $Pd_2(dba)_3CHCl_3$  (1 mol%)/PPh<sub>3</sub> (2 mol%) gave rise to the corresponding 2,3,5-trienoate products (**3aa-3ad**)

just within 4-5 h in the range of 85-91% isolated yields (Table 4.6, Entries 1-4). A high yield of 2,3,5-trienoate product **3ae** could also be obtained with a bulky alcohol, *i*-propyl alcohol, albeit at a prolonged reaction time (16 h) (Tablo 4.6, Entry 5). In contrast *t*-butyl alcohol appears to be unsuitable because the enyne **Z-1a** was recovered as unreacted when it was carbonylated in *t*-butyl alcohol (Tablo 4.6, Entry 6).

| Bu <sub>MeO2</sub> CO M<br><b>Z-1a</b> | + ROH + CO –<br>/le | Pd <sub>2</sub> (dba) <sub>3</sub> -CHCl <sub>3</sub><br>PPh <sub>3</sub><br>50 °C, 4-5 h | $\rightarrow \begin{array}{c} Me \\ Bu \\ CO_2R \\ 3 \end{array}$ | e   |
|----------------------------------------|---------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----|
| Entry                                  | RC                  | )H                                                                                        | Isolated yield (                                                  | (%) |
| 1                                      | Me                  | OH                                                                                        | 90 ( <b>3aa</b> )                                                 |     |
| 2                                      | EtC                 | OH                                                                                        | 85 ( <b>3ab</b> )                                                 |     |
| 3                                      | PrO                 | OH                                                                                        | 91 ( <b>3ac</b> )                                                 |     |
| 4                                      | Bu                  | ОН                                                                                        | 85 ( <b>3ad</b> )                                                 |     |
| 5                                      | <i>i</i> -P         | rOH                                                                                       | 91 ( <b>3ae</b> ) <sup>b</sup>                                    |     |
| 6                                      |                     | uOH                                                                                       | 0 ( <b>3af</b> )                                                  |     |

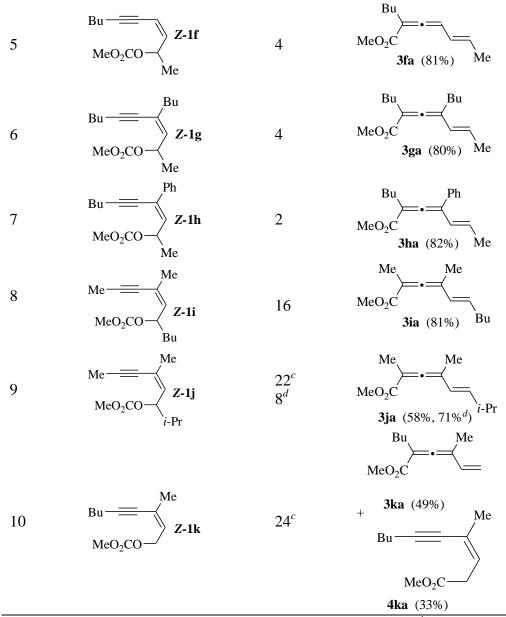
Table 4.6. Pd(0)-catalyzed alkoxycarbonylative reaction of **Z-1a** with various alcohols<sup>a</sup>

<sup>*a*</sup> 1a: 0.3 mmol, ROH: 5 mL, CO: balloon pressure, 1 mol% Pd, 2 mol% PPh<sub>3</sub>. <sup>*b*</sup> 16 h.

The scope of the carbonylation method was surveyed for a range of Z-2-en-4yne carbonates. The method is fully suitable for enynes bearing a methyl, secondary alkyl group, cyclohexyl, or phenyl group on the alkynyl moiety ( $\mathbb{R}^1$ ) thereby providing the corresponding 2,3,5-trienoate products **3ba-3da** in high yields when carbonylated in methanol for 4 h under the established conditions (Table 4.7, Entries 1-3).

The presence of a highly bulky *t*-butyl group on the alkynyl terminus, however, required a relatively longer reaction period (20 h) for complete conversion and gave rise to the product **3ea** in a moderate yield (64%) (Table 4.7, Entry 4). The methodology also tolerated well the enyne carbonates of which the  $R^2$  position is occupied by a H, butyl, or phenyl group, affording the desired products **3fa-3ha** in around 80-82% yields (Table 4.7, Entries 5-7).

It appears that the enyne reactivity is more severely influenced by the size of the  $R^3$  group. Varying the  $R^3$  group from methyl to butyl reduced the reactivity of the


enyne carbonate remarkably; it took nearly 16 h for complete conversion of **Z-1i** and to produce the corresponding vinylallenyl ester **3ia** at the yield 81% (Table 4.7, Entry 8). An even more drastic effect could be observed with the substrate in which  $\mathbb{R}^3$  was the isopropyl group; the reaction of **Z-1j** was highly sluggish and its conversion was incomplete when the reaction temperature employed was 50 °C (Table 4.7, Entry 9). Nevertheless, elevation of the reaction temperature to 65 °C shortened the reaction period for the complete conversion of **Z-1j** to give the product **3ja** in the yield of 71%.

The methoxycarbonylation of an enyne carbonate of a primary alcohol **Z-1k** interestingly resulted in the formation of non-separable mixture of ester funtionalized 2-en-4-yne **4ka** by-product and the desired vinylallene product **3ka** (Table 4.7, Entry 10).

|       | $R^{1}_{MeO_{2}CO} R^{3} + MeOH + CO$ <b>Z-1</b> 2a                                                                                                                    | Pd <sub>2</sub> (dba) <sub>3</sub> -CHCl <sub>3</sub><br>PPh <sub>3</sub><br>50 °C, 4-5 h | $\xrightarrow{R^2} R^3$ COOMe 3                                                                           |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Entry | Enyne carbonate                                                                                                                                                        | Time (h)                                                                                  | Product (yield) <sup>b</sup>                                                                              |
| 1     | $Me \xrightarrow{Me} Z-1b$ $MeO_2CO \xrightarrow{Me} Me$                                                                                                               | 4                                                                                         | $Me \longrightarrow Me \longrightarrow Me \longrightarrow Me$ $MeO_2C \longrightarrow Me$ $3ba (87\%) Me$ |
| 2     | c-Hex<br>MeO <sub>2</sub> CO<br>Me                                                                                                                                     | 4                                                                                         | $\begin{array}{c} c-\text{Hex} & \text{Me} \\ MeO_2C & & \\ 3ca (84\%) & \text{Me} \end{array}$           |
| 3     | $\begin{array}{c} \text{Ph} \longrightarrow & \text{Me} \\ \text{Ph} \longrightarrow & \textbf{Z-1d} \\ \text{MeO}_2\text{CO} \longrightarrow & \text{Me} \end{array}$ | 4                                                                                         | $\begin{array}{c} Ph \\ MeO_2C \\ 3da \ (85\%) \end{array} Me$                                            |
| 4     | $t-Bu \xrightarrow{Me} Z-1e$ $MeO_2CO \xrightarrow{Me} Me$                                                                                                             | 20                                                                                        | $\begin{array}{c} t-Bu \\ MeO_2C \\ 3ea (64\%) \end{array} \begin{array}{c} Me \\ Me \\ Me \end{array}$   |

Table 4.7. Pd(0)-catalyzed alkoxycarbonylation reactions of various Z-enyne carbonates

(Cont. on next page)



<sup>*a*</sup> 1a: 0.3 mmol, MeOH: 5 mL, CO: balloon pressure, 1 mol% Pd, 2 mol% PPh<sub>3</sub>. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Incomplete conversion. <sup>*d*</sup> 65 °C.

As a continuation process, the methodology surveyed for the *E*-2-en-4-yne carbonates. The method is suitable for the *E*-configured enyne carbonate in the presence of MeOH, EtOH, primary saturated  $C_3$  and  $C_4$  alcohols, under the optimal reaction conditions, to produce the corresponding vinylallenyl ester **3aa-3ad** just within 3-4 h in the range of 80-91% isolated yields (Table 4.8, Entries 1-4). A low yield of 2,3,5-trienoate product **3ae** could also be obtained with i-propyl alcohol at the yield (67%) (Table 4.8, Entry 5).

| Me OCO <sub>2</sub> Me<br>Me<br>Bu<br><i>E-1a</i> | + ROH + CO     | (dba)₃-CHCl₃<br>PPh₃<br>50 °C, 3-4 h | Bu Me<br>CO <sub>2</sub> R<br>3 |
|---------------------------------------------------|----------------|--------------------------------------|---------------------------------|
| Entry                                             | ROH            |                                      | Isolated yield (%)              |
| 1                                                 | MeOH           |                                      | 88 ( <b>3aa</b> )               |
| 2                                                 | EtOH           |                                      | 81 ( <b>3ab</b> )               |
| 3                                                 | PrOH           |                                      | 91 ( <b>3ac</b> )               |
| 4                                                 | BuOH           |                                      | 80 ( <b>3ad</b> )               |
| 5                                                 | <i>i</i> -PrOH |                                      | 67 ( <b>3ae</b> ) <sup>b</sup>  |

Table 4.8. Pd(0)-catalyzed alkoxycarbonylative reaction of *E*-1a with various alcohols<sup>a</sup>

<sup>*a*</sup> 1a: 0.3 mmol, ROH: 5 mL, CO: balloon pressure, 1 mol% Pd, 2 mol% PPh<sub>3</sub>. <sup>*b*</sup> 6 h.

*E*-configured enyne carbonate *E*-11 led to a complex mixture (containing only small amounts of the desired vinylallenes) when subjected to the Pd(0)-catalyzed methoxycarbonylation reaction as determined by <sup>1</sup>H-NMR analysis (Table 4.9, Entry 1).

Varying the  $R^2$  group from H to methyl increased the reactivity of the enyne carbonate; it took nearly 5h for the complete conversion of *E*-1b and to produce the corresponding vinylallenyl ester **3ba** in moderate yield (66%) (Table 4.9, Entry 2).

The method is fully suitable for enynes bearing a butyl and phenyl group on the alkynyl moiety ( $\mathbb{R}^1$ ) thereby providing the corresponding 2,3,5-trienoate products **3da** - **3aa** in high yields when carbonylated in methanol for 4 h under the established conditions (Table 4.9, Entries 3-4).

The method is also tolerated the enyne carbonates of which the  $R^3$  position is occupied by a butyl or isopropyl group, affording the desired products **3ja-3ia** in high yield (Table 4.9, Entries 5-6).

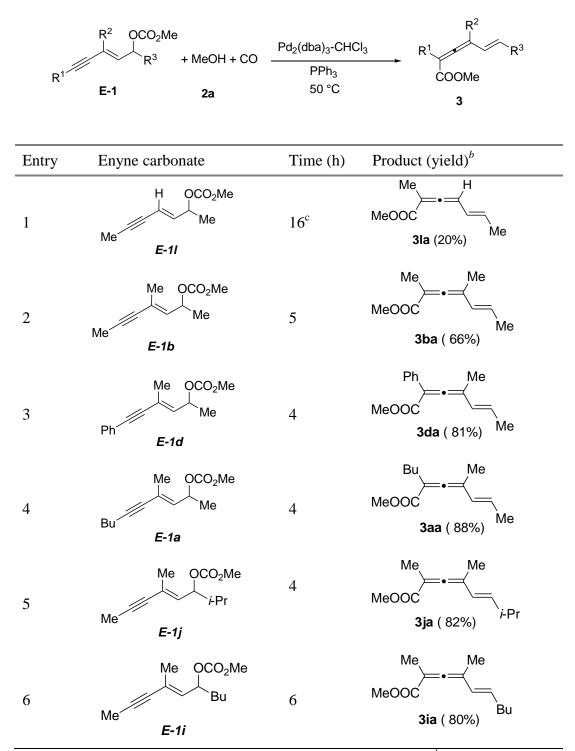



Table 4.9. Pd(0)-catalyzed alkoxycarbonylation reactions of various *E*-enyne carbonates

<sup>*a*</sup> 1 0.3 mmol, MeOH: 5 mL, CO: balloon pressure, 1 mol% Pd, 2 mol% PPh<sub>3</sub>. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Nmr Yield. <sup>*d*</sup> 65 °C.

As analogy to the Pd(0)-catalyzed reactions of propargylic reagents, the Pd(0)catalyzed alkoxycarbonylation of Z- or E-enyne carbonates should involve the formation of a  $\sigma$ -allenylpalladium(II) complex (C) by elimination of the leaving group and double bond migration (Figure 4.3).

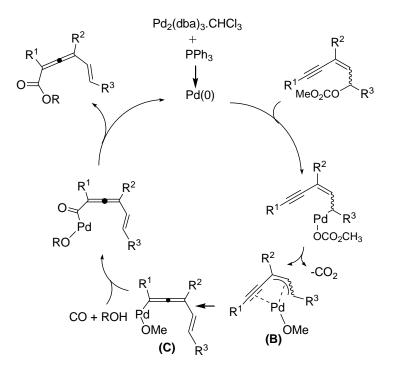



Figure 4.3. Reaction mechanism of alkoxycarbonylation of Z- or E-Enyne carbonate

The formation of the  $\sigma$ -allenylpalladium intermediate from propargylic reagents has been based on two unverified paths: (1) the oxidative addition of Pd(0) species and the subsequent shift of Pd to the far alkynyl carbon, or (2) via S<sub>N</sub>2' substitution by the attack of the Pd(0) species to the alkynyl carbon. Also for our case, it is uncertain whether the oxidative pathway or 1,5-S<sub>N</sub>2'' type Pd(0)-substitution is responsible for the formation of the vinylallenypalladium (C) intermediate. Nonetheless, the marked effect on reactivity observed here for the Z-enyne carbonates with respect to the size of their allylic co-substituent (R<sup>3</sup>) may imply the former. It should also be noted that the formation of (Z)-methyl 4-methyldec-3-en-5-ynoate **4ka** from the methoxy carbonylation of **Z-1k** can be ascribed to an allyl palladium(II) intermediate.

The reaction cycle should finalize by the reaction of the intermediate C with CO and alcohol to generate the product **3** and a catalytically active Pd(0) species.

Center-to-axis chirality transfer selectivity was demonstrated with the our established method; the respective methoxycarbonylation of a enantiomerically enriched enyne car-bonate (R,Z)-1b (94.5% *ee*) led to the product with 7% *ee*. The application of

higher CO pressure or balloon pressure at room temperature did not show significant effect on chirality transfer. (Figure 4.4).

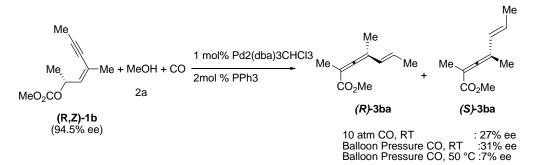



Figure 4.4. Pd(0)-catalyzed alkoxycarbonylation reaction of (*R*,*Z*)-1b.

#### **CHAPTER 5**

#### CONCLUSION

As a consequence, in this study we developed a new synthetic method for the formation of vinylalleneyl ester structures.

With the high reactivity of allyl carbonates and propargyl carbonates in mind, we attempted the Pd(0)-catalyzed carbonylation of Z-or E-2-en-4-yne carbonates in an alcohol medium lead to high yields of vinylallenyl esters. Z-or E-conjugated enyne reagents with a leaving group in the allylic position seem to reveal similar characteristic reactivities toward transition metal catalyzed reactions with respect to the propargylic reagents. Dual coordination of palladium with both alkynyl moiety and carbonate leaving group is a driving force for the process.

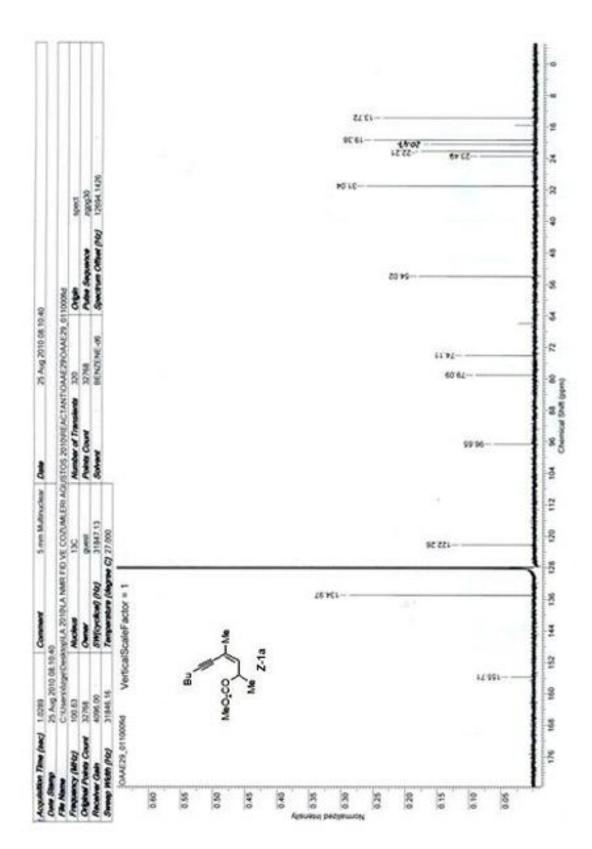
Vinylallenes are useful and unique precursors or intermediates in organic synthesis. Vinylallenes show high reactivity and stereoselectivity due to their axial chirality. They transfer chirality to a new stereocenter in many reactions. According to these crucial importances of vinylallene structures, this study could be extended to synthesize enantioenriched vinylallene derivatives to produce natural products and biologycally active compounds.

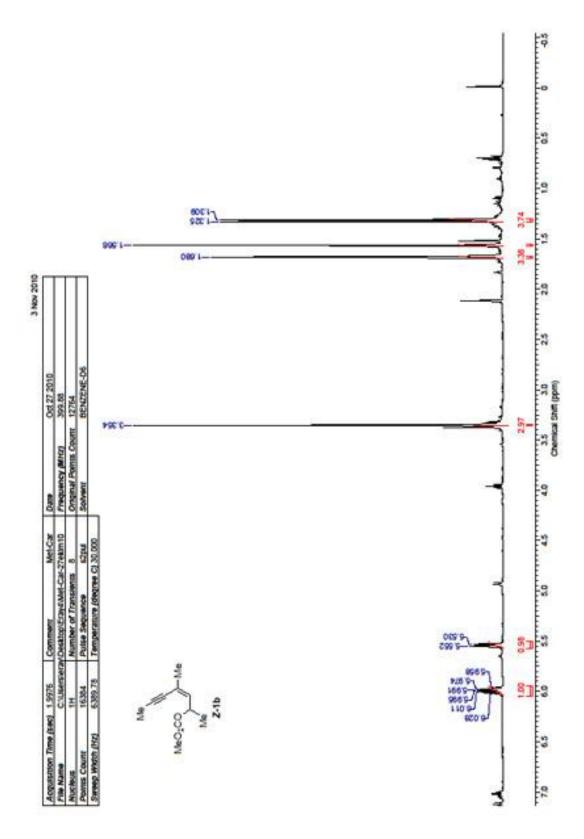
#### REFERENCES

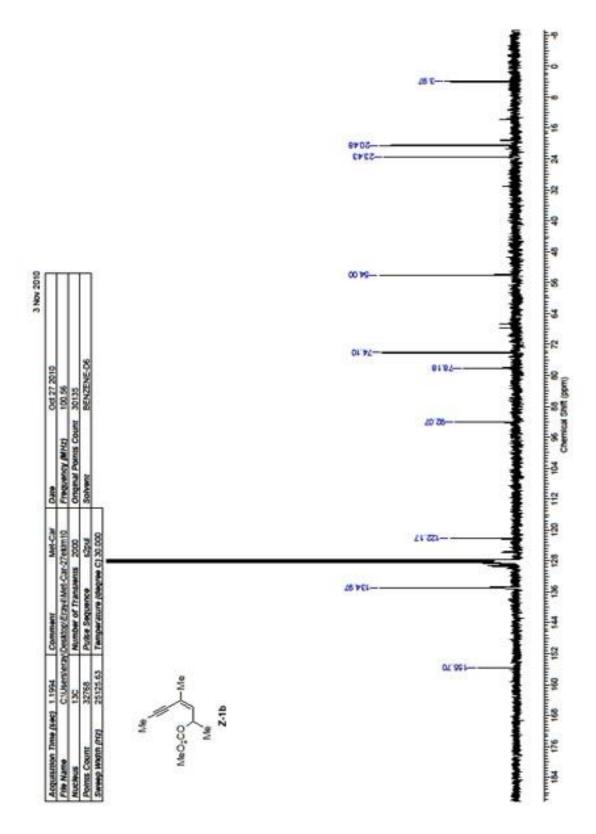
- Akpinar, G.E., Üçüncü, M., Karakuş, E., Kus, M., Artok, L. 2011. Palladium-Catalyzed Alkoxycarbonylation of (Z)-2-En-4-yn Carbonates Leading to 2,3,5-Trienoates. *Journal of Organic Chemistry*, 13:4:748-751
- Alper, H., Piotti, M.E. 1997. Carbonylation of Alkynyl Epoxide: Synthesis of 5-Hydroxy-2,3-dionate Ester and 2,3-Dihydrofuran-3-ol. *Journal of Organic Chemistry*, 62:8484-8489.
- Arzoumanian, H., Choukrad, M., Nuel, D. 1993. Palladium and Phase Transfer Catalyzed Carbonylation of Propargyl Derivatives. *Journal of Molecular Catalysis*, 85: 287-293.
- Beller, M., Neumann, H., Brenführer, A. 2009. Palladium-Catalyzed Carbonylation Reactions of Alkenes and Alkynes, *ChemCatChem*, 1:1:28-41.
- Betzer, J. F., Delaloge, F., Muller, B., Pancrazi, A., Prunet J. 1997. Radical Hydrostannylation, Pd(0)-Catalyzed Hydrostannylation,Stannylcupration of Propargyl Alcohols and Enynols: Regio- and Stereoselectivities. *Journal of* Organic Chemistry, 62:7768.
- Elsevier, C. J., Kleijn, H., Ruitenberg, K., Vermeer, P. 1983 Allenylpalladium-(II) Species: Possible Intermediates in the Tetrakis(triphenylphosphine)palladium(0)-catalysed Formation of Allenes from Prop-2-ynylic Substrates. *Journal of Chemical Society, Chemical Communications*, 1529.
- Elsevier, C.J., Kleijin, H., Boersma, J., Vermeer, P. 1986. Synthesis, Structure, and Reactivity of Some (σ-Alleny1)- and (σ-Prop-2-ynyl)-palladium(II) Complexes. *Organometallic*, 5:716-720.
- Elsevier, J., Reitenberg, K., Klejin, H., Meijer, J. 1981. Palladium(0)-promoted Synthesis of Functionally Substituted Allenes by Means of Organozinc Compounds. *Tetrahedron Letters*, 22:15:1451-1452.
- Elsevier, J.C., Stehouwer, P.M., Wostmijze, H., Wermeer, P. 1983. Anti Stereoselectivity in the Palladium(0)-Catalyzed Conversion of Propargylic Esters into Allenes by Phenylzinc Chloride. *Journal of Organic Chemistry*, 48:1103-1105.

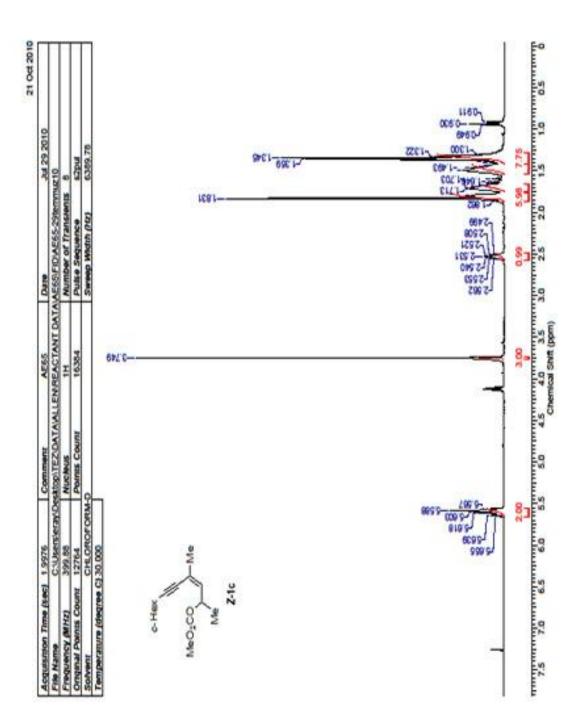
- Gore, J., Dulcere, J.P. 1972. New Synthesis of Vinylallene. *Journal of Chemical Society, Chemical Communications* 867.
- Grigg, R., Rasul, R., Redpath, J., Wilson, D. 1996. Palladium Catalysed Cascade biscyclisation-anion Capture Processes Proceeding via Allenyl-Palladium(II) Starter Species. 1-Vinyl-3-azobicylclo[3.1.0]-hexane. *Tetrahedron Letters*, 37:26:4609-4612.
- Grigg, R., Rasul, R., Savic, V. 1997. Palladium Catalysed Triscyclisation-Anion Capture Quening Cascades. *Tetrahedron Letters*, 38:10:1825-1828.
- Hayashi, H., Ogasawa, M., Nagano, T. 2005. New Route to Methyl (*R*,*E*)-(-)-Tetradeca-2,4,5-trienoate (Pheromone of Acanthoscelides obtectus) Utilizing a Palladium-Catalyzed Asymmetric Allene Formation Reaction. *Journal of Organic Chemistry*, 70:5764-5767.
- Hayashi, M., Saigo, K. 1997. Palladium-Catalyzed Regioselective Bis-Alkynylation of Propargylic Carbonates: Synthesis of Enediyne Compounds. *Tetrahedron Letters*, 38:35:6241-6244.
- Keinan, E., Bosch, E. 1986. Palladium Catalyzed Propargylic vs. Allylic Alkylation. Journal of Organic Chemistry, 51:4006-4016.
- Krause, N., Hoffman-Röder, A. 2004. Synthesis of Allene with Organometallic Reagents. Tetrahedron, 60:11671-11694.
- Krause, N., Purpura, M., 1999. Regio- and Stereoselective Synthesis of Vinylallenes by 1,5-(S<sub>N</sub>)-Substitution of Enyne Acetates and Oxiranes with Organocuprates. *European Journal of Organic Chemistry*, 265-275.
- Luong, T.T., Linstrumelle, G. 1980. Palladium-Catalyzed Synthesis of Allenes. Tetrahedron Letters, 21:52:5019-5020.
- Mandai, T., Matsumoto, T., Tsujiguchi, Y., Matsuoka, S., Tsuji, J. 1994 Palladiumcatalyzed hydrogenolysis of 2-alkynyl formates and elimination of 2-alkynyl carbonates *Organometallic Chem*istry, *473*:343.
- Mandai, T., Tsuji, J., Kunitomi, H., Higashi, K. 1991. Synthesis of Allenyl Ketones by the Palladium-Catayzed Carbonylation of 2-Alkynyl Carbonates in the Presence of Soft Carbon Nucleophiles. *Synlett*, 697:698.

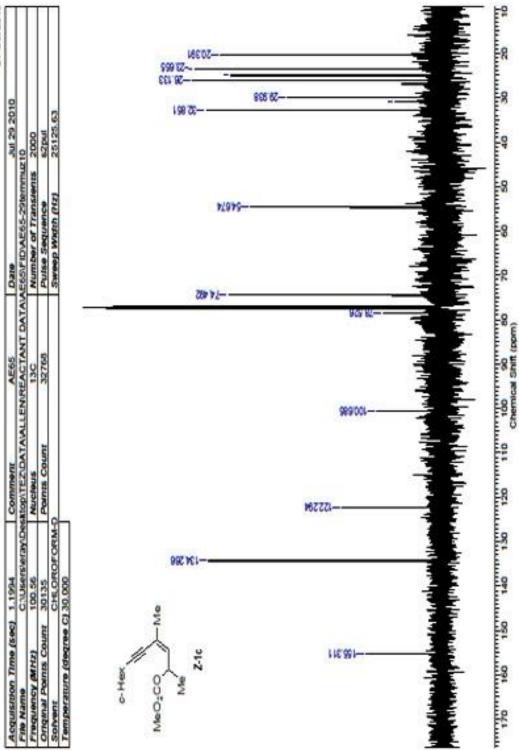
- Marek, I.; Meyer, C.; Normant, J. F. 1998. Simple and Convenient Method For The Preparation of (Z)- $\beta$ -iodoacrolein and of (Z)-or-(Z)- $\gamma$ -iodo Allylic Alcohols: (Z)-and-(E)-1-en-3-ol. *Organic Syntheses*, Collection Volume 9:510.
- Marshall, J.A., Wallace, E.M. 1995. Total synthesis of the Pseudopterane Kalloide B. Journal of Organic Chemistry, 60:796-797.
- Marvov, M.V., Kucherov, V.F. The Chemistry of Allene Derivatives. 1967. Russian Chemical Reviews, 34:4:233-249.
- Murahashi, S, I., Imoda, Y., Taniguchi, Y., Higashiura, S. 1993 Palladium(0) Catalyzed Alkoxycarbonylation of Allyl Phosphates and Acetates. *Journal of Organic Chemistry*, 58:6:1538-1545.
- Murahashi, S.I., Imada, Y., Nishimura, K. 1994. Palladium-Catalyzed Carbonylation of Allylamines. Synthesis of  $\beta$ - $\gamma$ -unsaturated Amides by One-Carbon Homologation of Allylamines. Tetrahedron, 50:2:453-464.
- Piers, E., Wong, T., Coish, P., Rogers, C. 1994. A convenient procedure for the efficient preparation of alkyl-(2)-3-iodo-2-alkenoates *Canadian Journal of Organic Chemistry*, 72:1816.
- Rio, I., Claver, C., Leeuwen, P.W.N.M. 2001. On the Mechanism of the Hydroxycarbonylation of Styrene with Palldium System. *European Journal of* Organic Chemistry, 2719-2738.
- Sarkar, B.R., Chaudhari, R.V., 2005. Carbonylation of Alkynes, Alkenes and Alcohols Using Metal Complex Catalyst. *Cataysis Survey from Asia*, 9:3:193-205.
- Scrivanti, A., Beghetto, V., Campagna, E., Zanato, M., Matteoli, U. 1998. Mechanism of the Alkoxycarbonylation of Alkynes in the Presence of the Pd(OAc)<sub>2</sub>/ PPh<sub>2</sub>Py/CH<sub>3</sub>SO<sub>3</sub>H Catalytic System. *Organometallics*, 17:630-635.
- Takahashi, T., Xi, Z., Zhang, W.X., Song, Z., Zheng, W., Kong, F. 2005 Preparation of Vinyl Allenes from 1-Lithio-1,3-dienyl Phosphine Oxides and Aldehydes by the Wittig-Horner Reaction. *Journal of Organic Chemistry*, 70:8785-8789.


- Takeuchi, R., Tanabe, K., Tanaka, S. 2000. Stereodivergent Synthesis of (*E*)- and (*Z*)-2-Alken-4-yn-1-ols from 2-Propynoic Acid: A Practical Route via 2-Alken-4ynoates *Journal of Organic Chemistry*, 65:1558.
- Trieu, N. D., Elsevier, C. J., Vrieze, K. Convenient Synthesis of Allenyl Ester and Amide by Palladium Cataylzed Alkoxy- and Amido-Carbonylation of Allenyl and Propynyl Halide. *Journal of Organometallic Chemistry*. 325:C23.
- Tsuji, J. 2000. Transition Metal Reagents and Catalysis: Innovation in Organic Synthesis.
- Tsuji, J. Palladium Reagents in Organic Synthesis; John Wiley and Sons: New York, 1995: 453-471.
- Tsuji, J., Mandai, T. 1993. Palladium-Catalyzed Carbonylation of 2-Alkynyl Carbonates and 2,3-Alkadienyl Carbonates. *Journal of Organometallic Chemistry*, 451: 1-15.
- Tsuji, J., Mandai, T., Nakata, T., Murayama, H., Yamaoki, H., Ogawa, M., Kavada, M. 1990. Palladium-Catalyzed Reactions of 2-alkynyl Carbonates with Terminal Acetylenes: A New Synthetic Method for 1,2-dien-4-ynes. *Tetrahedron Letters*, 31:49:7179-7180.
- Tsuji, J., Miama, Yihara, M., Wabanabe, H., Minami, I. 1987. A New Furan Annelation Reaction by the Palladium-Catalyzed Reaction of 2-alkynyl Carbonates or 2-(1-alkynyl)oxiranes with β-keto Ester. Journal of Organometallic Chemistry, 334:1:225-242.
- Tsuji, J., Noji, T. 1966. Organic Synthesis by Means of Nobel Metal Compound XXIV.Palladium Catalyzed Carbonylation of Propargyl Alcohols and Propargyl Chloride. *Tetrahedron Letters*, 7:16:1801-1804.
- Tsuji, J., Sato, K., Okumoto, H. 1984. Palladium-Catalyzed Decarboxylation-Carbonylation of Allylic Carbonates To Form  $\beta$ , $\gamma$ -Unsaturated Ester. *Journal* of Organic Chemistry, 49:8:1341.
- Tsuji, J., Sugiura, T., Minami, I. 1986. Palladium-Catalyzed Carbonylation of Propargylic Carbonates : Preparation of 2,3 and 2,4-Dienyl Carboxylate. *Tetrahedron Letters*, 27, 731.


- Tsuji, J., Suqiura, T., Yuhara, M., Minami, I. 1986. Palladium-catalysed Preparation of 1,2-Dienes by Selective Hydrogenolysis of Alk-2-ynyl Carbonates with Ammonium Formate. *Journal of Chemical Society, Chemical Communications*, 922.
- Tsuji, J., Watanabe, H., Minami, I., Schmizu, I. 1985. Novel Palladium-Catalyzed Reactions of Propargyl Carbonates with Carbonuchleophiles Under Neutral Condition. *Journal of American Chemical Society*, 107:2196-2198.
- Ukai, T., Kawazura, H., Ishii, Y., Bonnet, J. J., Ibers. 1974. Chemistry of Dibenzylideneacetone-Palladium(0) Complexes: I. Novel tris(dibenzylideneacetone)-dipalladium(solvent) Complexes and their Reactions with Quinones. *Journal of Organometallic Chemistry*, 65:253.
- Yamamoto, K., Dugichi, R., Tsuji, J. 1985. Stereoselective Synthesis of (E)-Alkylidenesuccinates by Palladium-Catalyzed Carbonylaton. Bulletin of the Chemical Society of Japan, 58:3397-3398.
- Yamamoto, K., Wang, S.Z., Yamada, H., Takahashi, T. 1992. Stereochemical Study on the Palladium(0)-Catalyzed Carbonylation of 3-(Methoxycarbonyloxy)-2-Methylenealkanoates and Analogues. *Tetrahedron*, 48:12:2333-2348.


### **APPENDIX A**

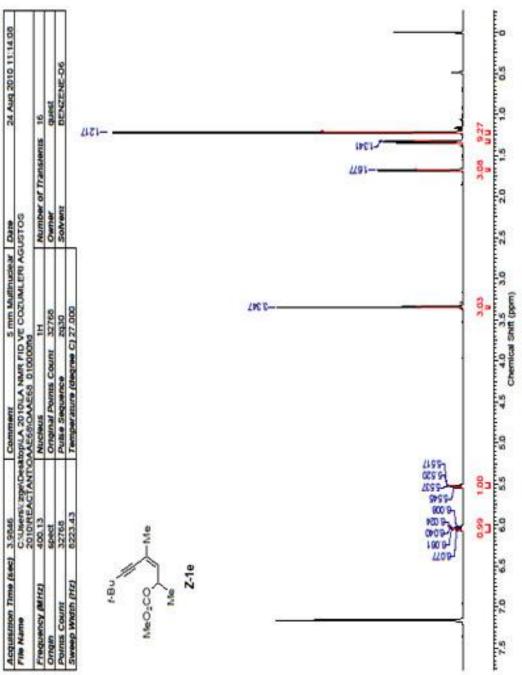

## <sup>1</sup>H NMR and <sup>13</sup> CNMR SPECTRUMS OF REACTANTS









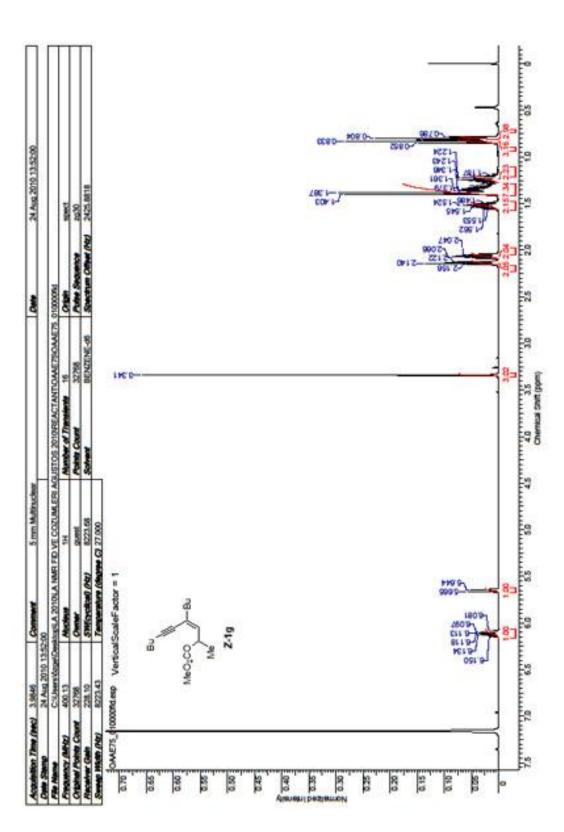



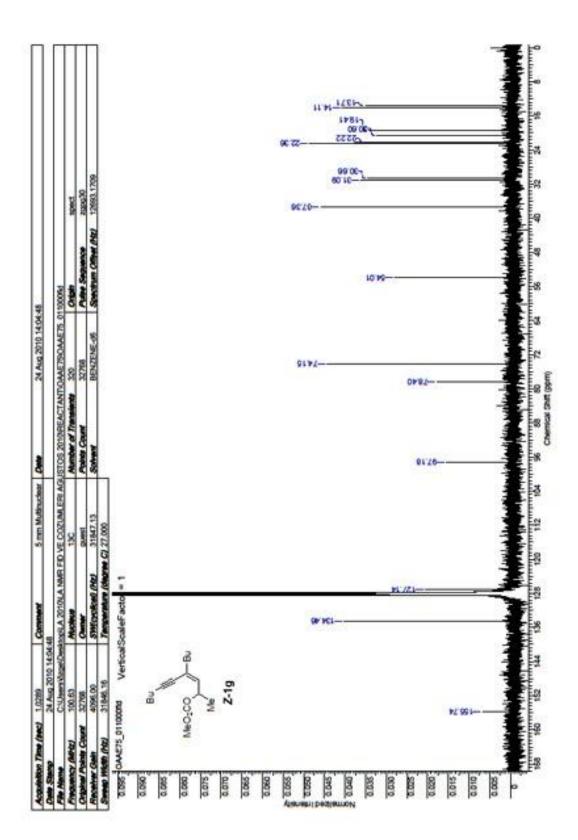


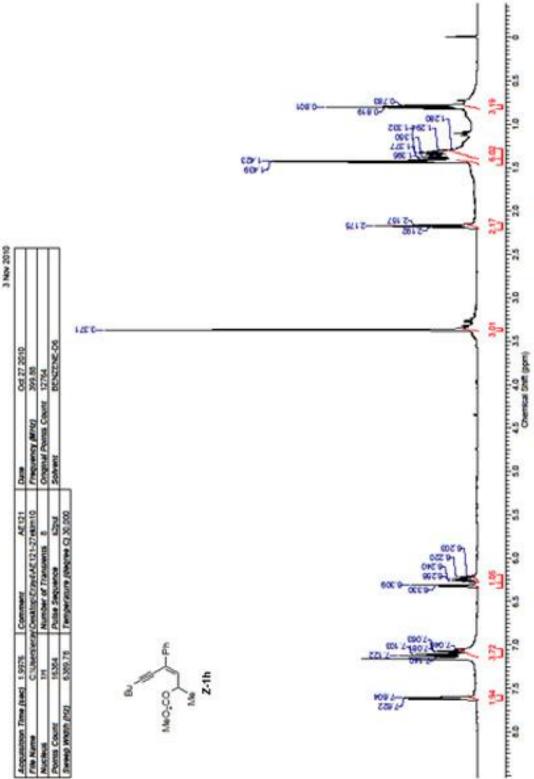

21 Oct 2010

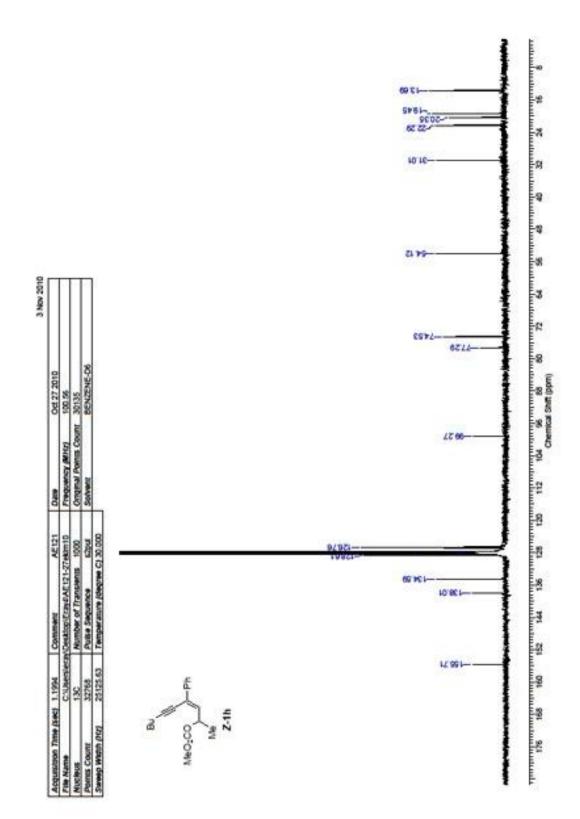
|                                                      | and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STAT | 5 mm Mutthucear | Date                 | 24 Aug 2010 14:11:12 |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|----------------------|
| LING MULLION                                         | COUSERS/ ZOP/Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CIUSers/296/DestipputA 2010/LA NMIR FID VE COZUMUERI AGUSTOS<br>2010/REACTANTIOAAE76/OAAE76 01000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VE COZUMLERA AG | ustos                |                      |
| Frequency (MHz)                                      | 400.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NUCONCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1H              | Number of Transients | 16                   |
|                                                      | spect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Original Points Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32768           | Owner                | quest                |
| Count                                                | 32768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pulse Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2030            | Solvent              | BENZENE-06           |
| Sweep Width (Htt)                                    | 0223,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temperature (degree C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000 27,000      |                      |                      |
| HeO.CO<br>MeO.CO<br>MeO.CO<br>MeO.CO<br>Viewe<br>Std | 40.09<br>40.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19.19<br>19 | -9 00<br>-9 001<br>-9 002<br>-9 002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01C C           | CZL17                | 600 h                |
| 1.00 L                                               | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.04            | 10.6                 | 3/10                 |
| 8.5 8.0 7.5                                          | 7.5 7.0 6.5 6.0 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 3.0 2.5 2.0 1.5      | 1.5 1.0 0.5 0        |

| Acquisition Time (sec) |                                       | Comment                                                                            | 5 mm Muthudear                             | Date                 | 24 Aug 2010 14:24:00 |
|------------------------|---------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------|----------------------|----------------------|
| Frio Namo              | C:Users// zge/Desk<br>2010/REACTANTNO | CSUBerriczge/DesktopiLA 2010/LA NMR FID VI<br>2010/REACTANT/OAAE76/0AAE76 011000fd | NMR FID VE COZUMLERI AGUSTOS<br>5 011000Md | ISTOS                |                      |
| Frequency (MHz)        | 100.63                                | Mucheus                                                                            | 130                                        | Number of Transients | 320                  |
| Ongin                  | spect                                 | Original Points Count                                                              | 32768                                      | Owner                | quest                |
| Points Count           | 32768                                 | Pulse Sequence                                                                     | o(bdbz                                     | Sofvent              | BENZENE-D6           |
| Sweep Width (Hz)       | 31846.16                              | Temperature (degree C) 27.000                                                      | 2) 27.000                                  |                      |                      |
| Meo.co                 | 1900<br>81920<br>Wat-                 | MI 171                                                                             |                                            |                      |                      |
| C2 991-                | 0'KI-                                 |                                                                                    | 1                                          | 6019-                | D'02-                |
| 160 160                | 140                                   | 120 100<br>Chemical                                                                | Chemical Shift (ppm) 60                    | 40                   | 30                   |



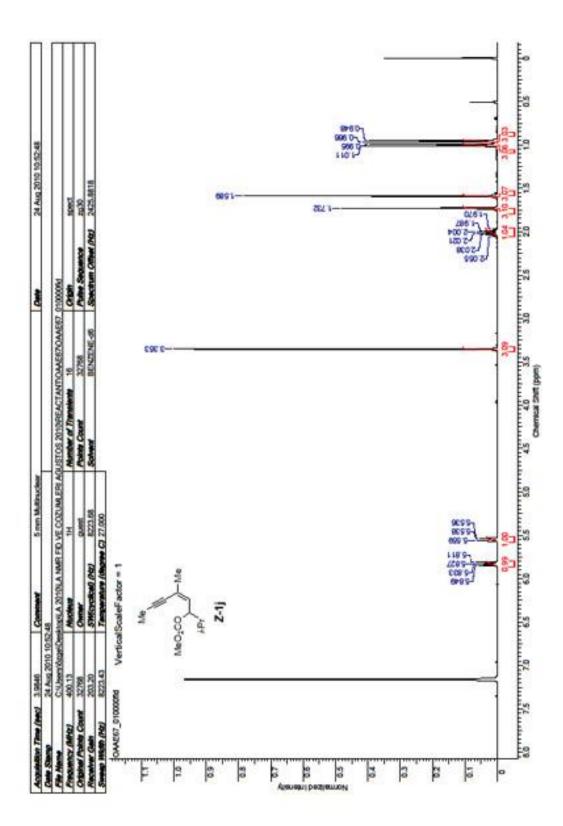


1 Nov 2010


| File Matte       | According to the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the p | Comment                                                                                               | 5 mm Muthudear        | Date                 | 24 Aug 2010 11:24:48 |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------|----------------------|----------------------|
|                  | 2010/REACTAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C:Udentic zge/Desktop/LA 2010/LA NMR FID VE COZUMLERI AGUSTOS<br>2010/REACTANT/DAAE68/DAAE68 011000fd | DOMU VE COZUMLERI AGI | ISTOS                |                      |
| Frequency (MHz)  | 100.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nucleus                                                                                               | 13C                   | NUMBER OF Transmitte | 320                  |
| Ongin            | speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Original Points Count                                                                                 | nr 32768              | Owner                | quest                |
| Points Count     | 32768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Puise Sequence                                                                                        | zqpq30                | Sofverit             | BENZENE-06           |
| Sweep Width (Hz) | 31846.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Temperature (degree C) 27.000                                                                         | e C) 27.000           | _                    |                      |
| 1-Bu             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                       |                      |                      |
| 4                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                       |                      |                      |
| MeOsCO           | Mie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                       |                       |                      | 1010                 |
| Ve               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                       |                      |                      |
| Z-1e             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                       |                      |                      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                       |                      |                      |
|                  | 2051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                       |                       |                      | PC                   |
|                  | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       | 05 24                 | 1019                 |                      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                                                                    |                       | -                    |                      |
|                  | 92994-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 04 80<br>                                                                                             | 9Ľ11-                 | _                    | <u>a se</u>          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                     |                       |                      |                      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                       |                      |                      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                       |                      |                      |
| 180 170 160 150  | 150 140 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 140 130 120 110 100 90 80 70 60                                                                       | 02 08 06              | 60 50 40             | 50 40 30 20 10 0     |

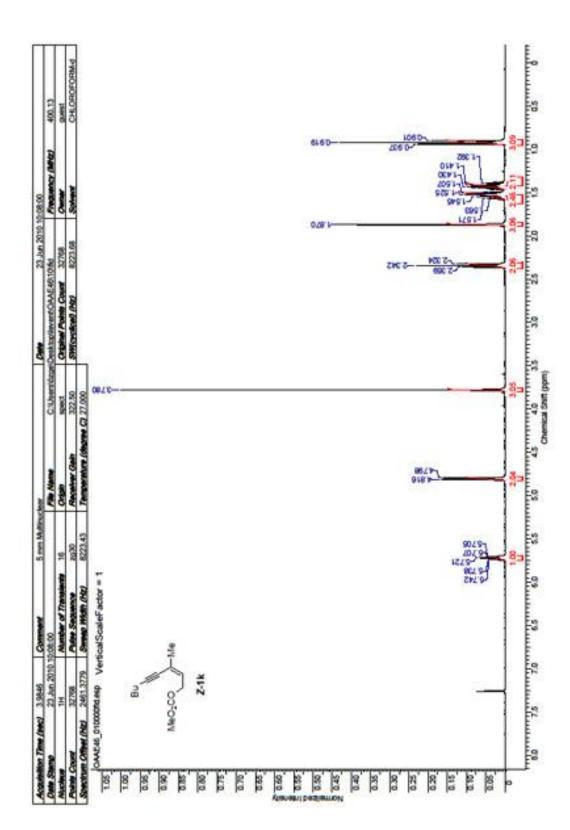

| Colomeration Contraction Contraction April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 10, 100 April 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Construct A 2010/2 A Make                                                               |                      |                      |                |                               |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------|----------------------|----------------|-------------------------------|-----------|
| 0.01         Memory II         III         Memory III         III         Open in the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the initial of the i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL |                                                                                         | R FD VE COZIJM ERI J | AGUISTOS 2010/REACTA | WTO MEATO MEAT | 01000066                      |           |
| No         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Constraint per sons         Const                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 400.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Michiel                                                                                 | H                    | Munder of Trensient  | 96             | Criste                        | 10001     |
| 100         Contraction (control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control of control o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 | SALA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ž                                                                                       | Querte .             |                      | 22766          | Putre Secondor                | 10 Mar    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 101.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | With the                                                                                | 101228               | Scheel               | DENGINE-46     | Spectrum Other (PD)           | 2425.0818 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tealScaleFactor = 1                                                                     | 100 IT 10            | 1                    |                |                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                      |                      | ,              |                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                       |                      |                      | HC D-          |                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~                                                                                       |                      |                      | _              |                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L <sub>al</sub>                                                                         |                      |                      |                |                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Z-1f                                                                                    |                      |                      |                |                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                      |                      |                |                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                      |                      |                |                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                      |                      |                |                               | æ         |
| SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SCP 5<br>SC                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                      |                      |                |                               | a J       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                      |                      |                |                               |           |
| 8012<br>80271<br>9027<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007<br>9007 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                      |                      |                |                               | 942.0-    |
| 8275<br>807<br>807<br>807<br>807<br>807<br>807<br>807<br>807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                      |                      |                |                               |           |
| ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI<br>ALCI  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                      |                      |                | 6                             | -         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 999<br>92<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98 |                      |                      |                | 12 081<br>12 081<br>100<br>08 | 1288      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                      | 1                    |                | and and                       | er l      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                      |                      | M              |                               | Nun Vin   |

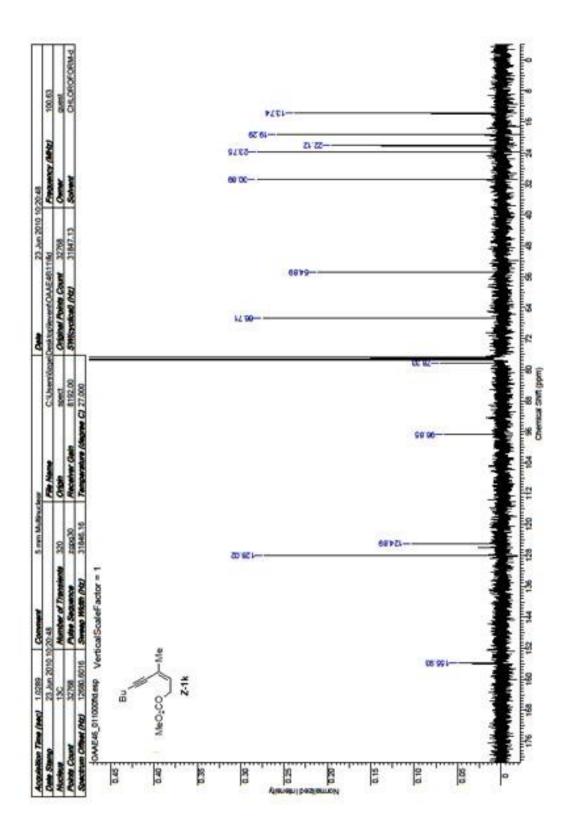
|                             | WW NAMES OF TAXABLE PARTY                                                                                                                       | n 4004.00 SHERE                            |                                       | es 994 |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------|--------|
| S THE WARNARD B             | A 2010GA MARTER VE CAUDAN ERA AGAINED ZOTAREAU INTERNAL INTERNAL CARDINER CANADA 1 (1) 2000<br>Martine 1300 Adama 200 Adama 200 Adama 200 Adama | MP (PAC) 31547,13<br>MP (MACHINE C) 27,000 | 9071                                  |        |
| 100                         | Number of Transients                                                                                                                            | Solvery                                    |                                       | 19-16- |
| ALL LOSS ON DURING THE LOSS | 20                                                                                                                                              | PENZENE-00                                 | 0762                                  | 6592   |
| 0                           | Orbie                                                                                                                                           | Strethan Office (15)                       | 2079                                  |        |
|                             | Sect                                                                                                                                            | 12050.1709                                 | 19 61-7<br>19 61-7<br>61 72-<br>96 00 |        |
|                             |                                                                                                                                                 |                                            | 19 61                                 |        |

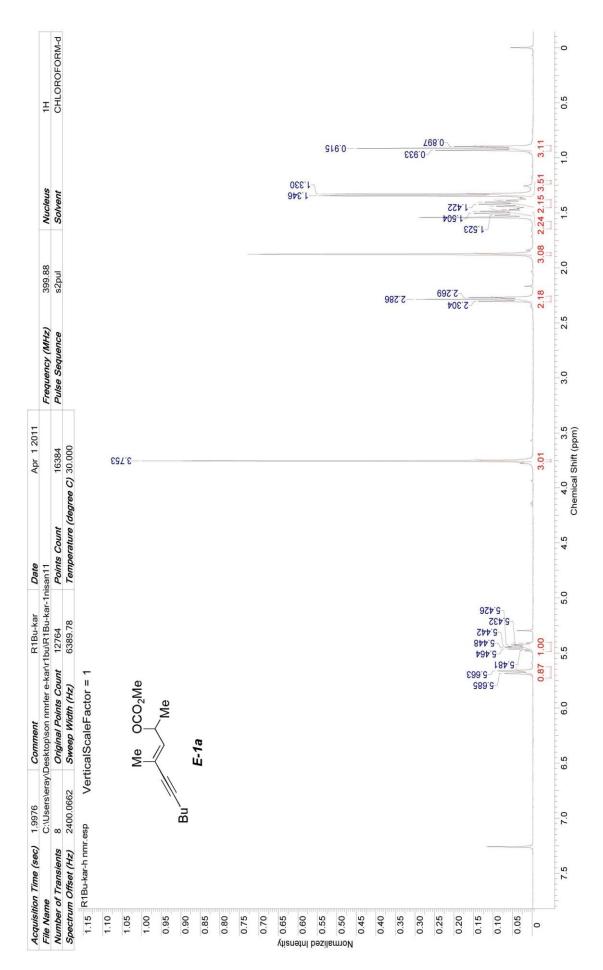


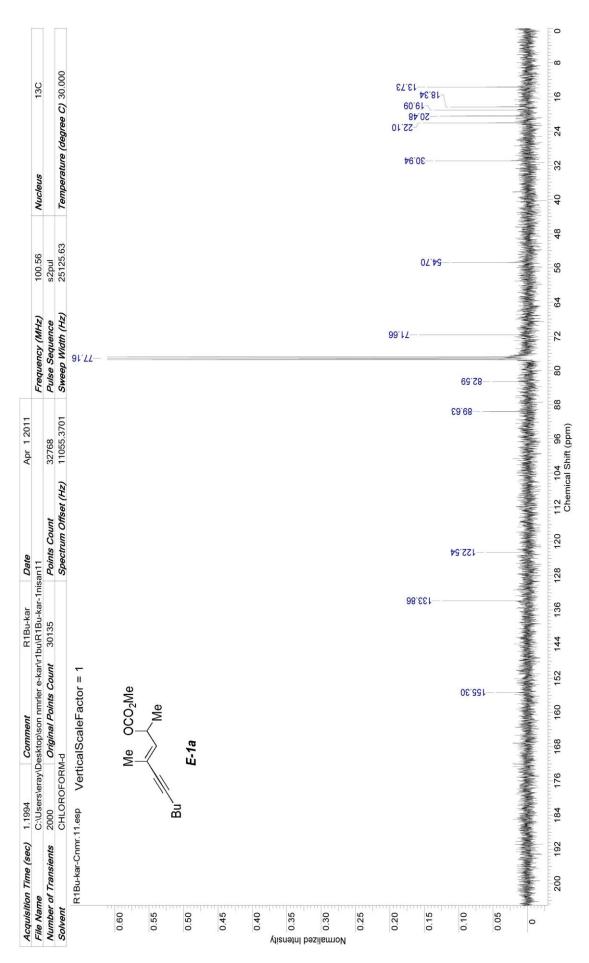


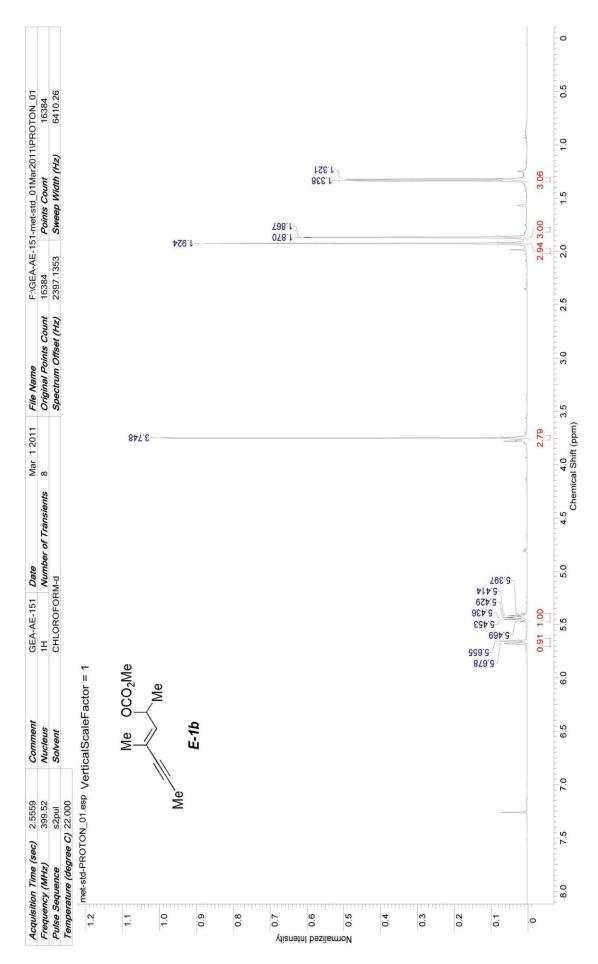


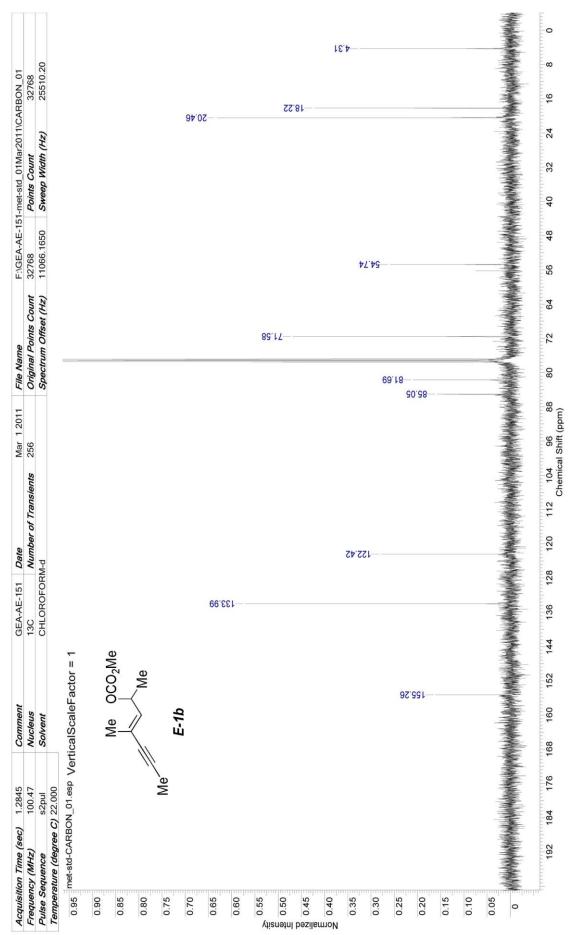



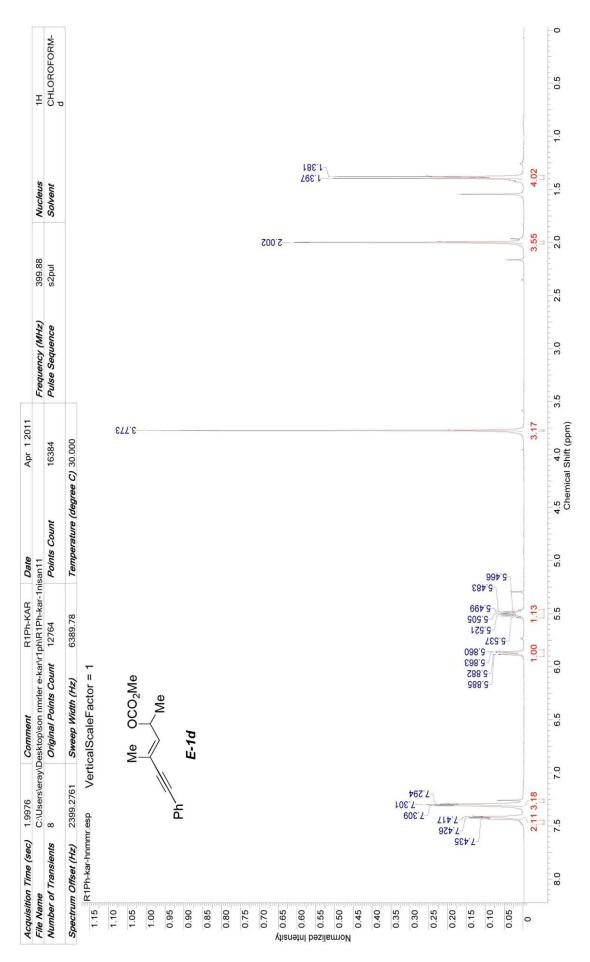


|               |                | a los los los los los los los los los los |                            | A NUMBER OF TAXABLE PARTY OF TAXABLE PARTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                      |                            |
|---------------|----------------|-------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------|
| Phr.)         | C/USers/02040e | ANDIA                                     | 2010LA NMR FD VE COCUMLERS | Addition and the Addition of the Addition of the Addition of the Addition of The Addition of The Addition of the Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of The Addition of T | 16 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Criste                               | (Seed                      |
| 2             | 228.10         | Owner<br>SPHCarolineal Deal               | Queril<br>6223,69          | Point Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BENCENE-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pathe Sequence<br>Section Other (NO) | m20<br>2425.8618           |
| 0 MAR /042 82 | Perfection     | Tencerature (decre<br>calScaleFactor = 1  | 0 27 000                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |
|               |                |                                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                            |
|               |                | 2                                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                            |
|               | -161           | MeO,CO                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |
|               |                | l_z                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |
|               |                | 11-2                                      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 87 I                       |
|               |                |                                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                            |
|               |                |                                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |
|               |                |                                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |
|               |                |                                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 811<br>821-                |
|               |                |                                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | PO                         |
|               |                |                                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |
|               |                |                                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 88<br>999<br>0             |
|               |                |                                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | SPR                        |
|               |                | 0.055<br>000<br>11<br>510<br>2            | 995<br>635<br>805          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>81                              | 54<br>54<br>54<br>54<br>54 |
|               |                | 1200                                      | 3_                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 11<br>57                   |
| 1             | ļ              | 100                                       | 8                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ch1                                  | alle Legistrice di la      |

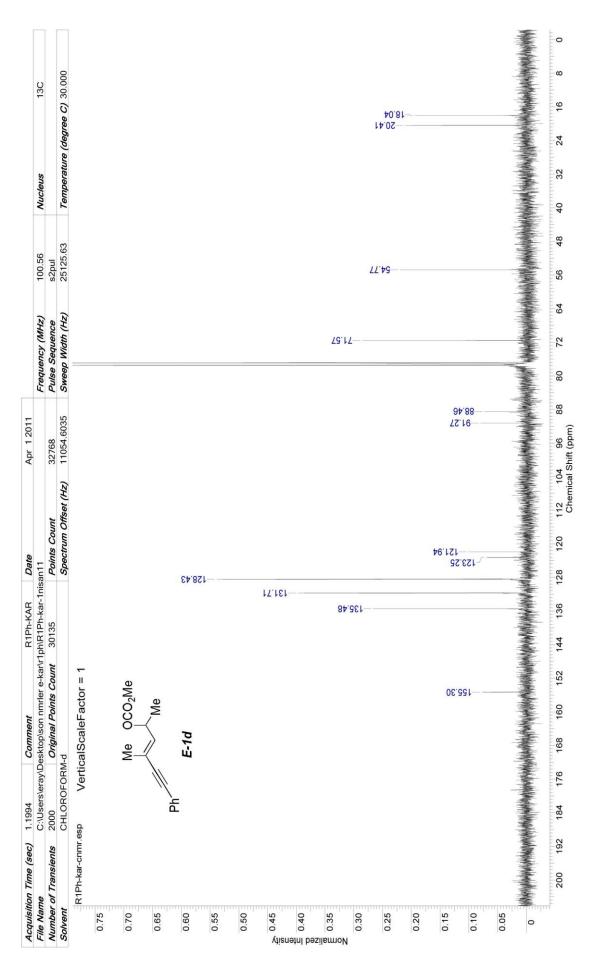

| A MULTITOS ZOTOREACTANTOM D<br>AMININE OF TRANSPORT AND<br>AMININE OF TRAN | All and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger and a stronger an | 26 Auro 2010 0751-28 | TODATO MARKED             | A                         | 32768 Center Quest<br>4066.00 Steleveline0.0441 31547.13 | Tanganters (degree C) | VerticalScaleFactor = | <br>o - Me | 017 | ¢i |   | -15304 | C6951- | <br>The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|---------------------------|----------------------------------------------------------|-----------------------|-----------------------|------------|-----|----|---|--------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | TH AUSTOS 2010REACTANTION | Atomber of Transients 305 | No Churk                                                 |                       |                       |            |     | 8  | ц | 8      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

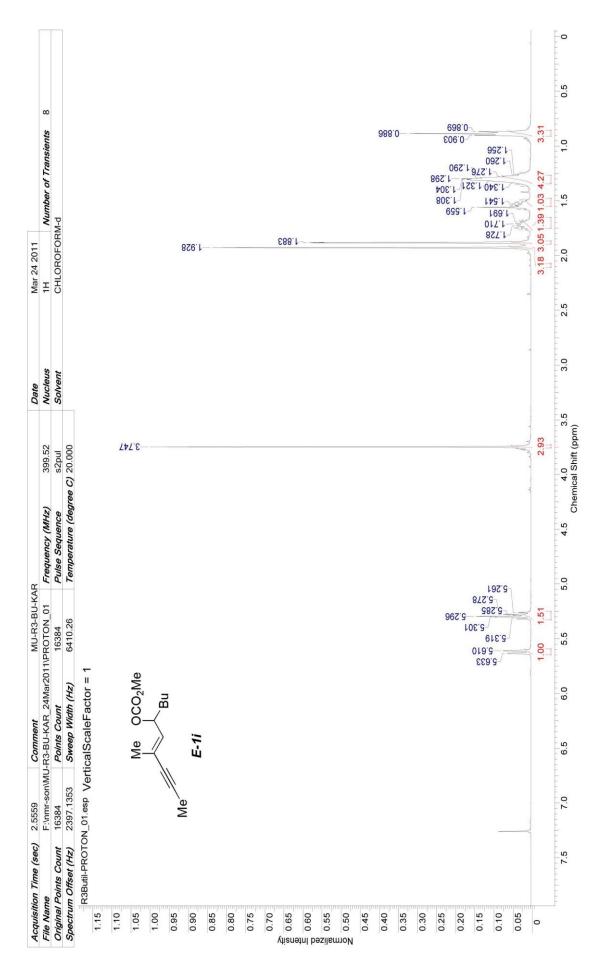


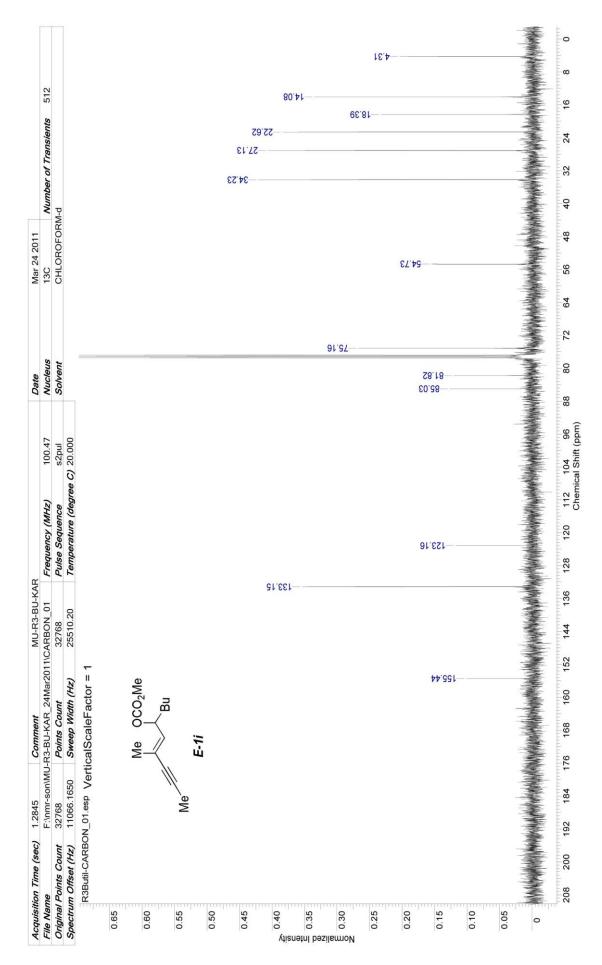


| ICUM ERI AQUISTOS             | 1)C Number of Trensients<br>Quest Protectourt | 31847.13 844 | *1¥2                              |
|-------------------------------|-----------------------------------------------|--------------|-----------------------------------|
| 20109EACTANTIOMESTOMEST 01100 | 22768                                         | 00N22NE-00   | 02 82                             |
|                               | Children Month                                | m (the Pt)   | 52 99-<br>92 52<br>2070-<br>2070- |



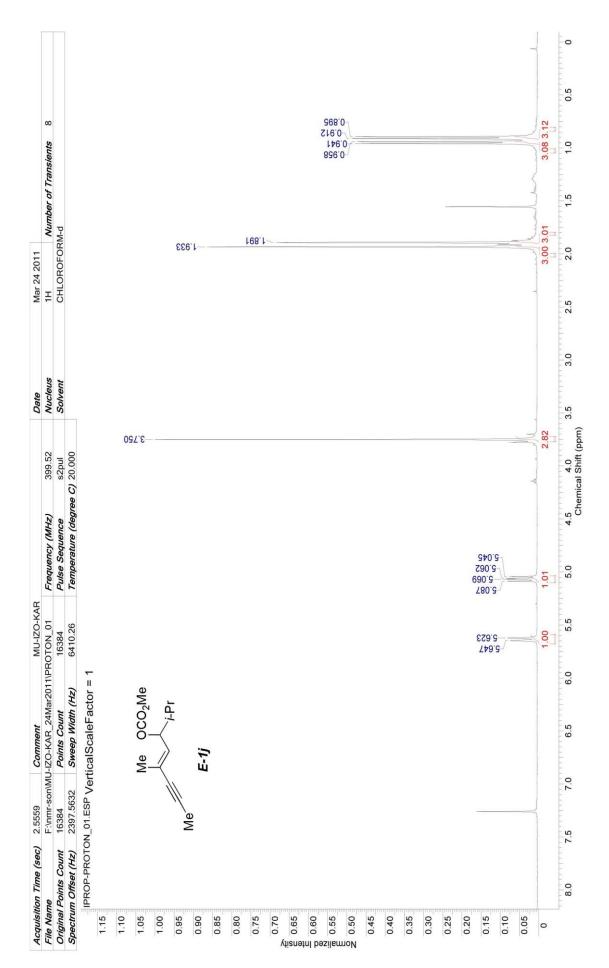



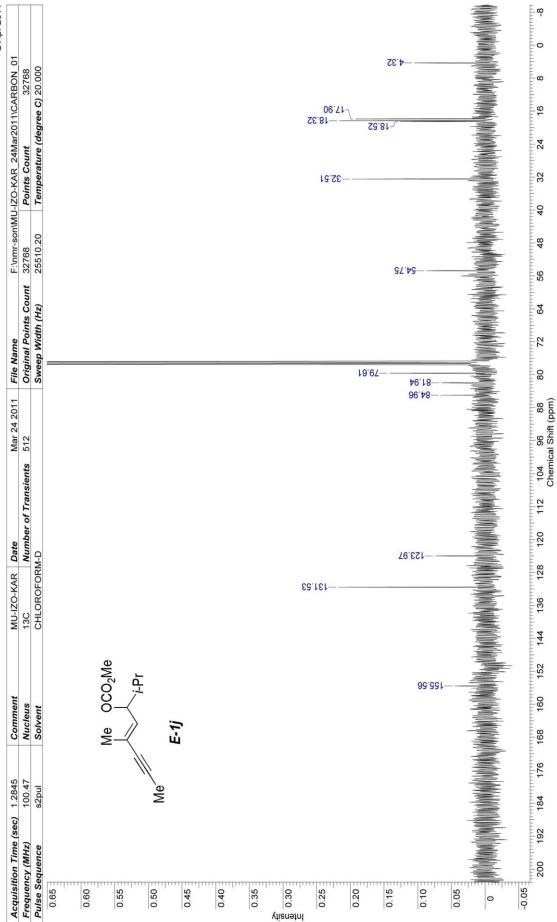



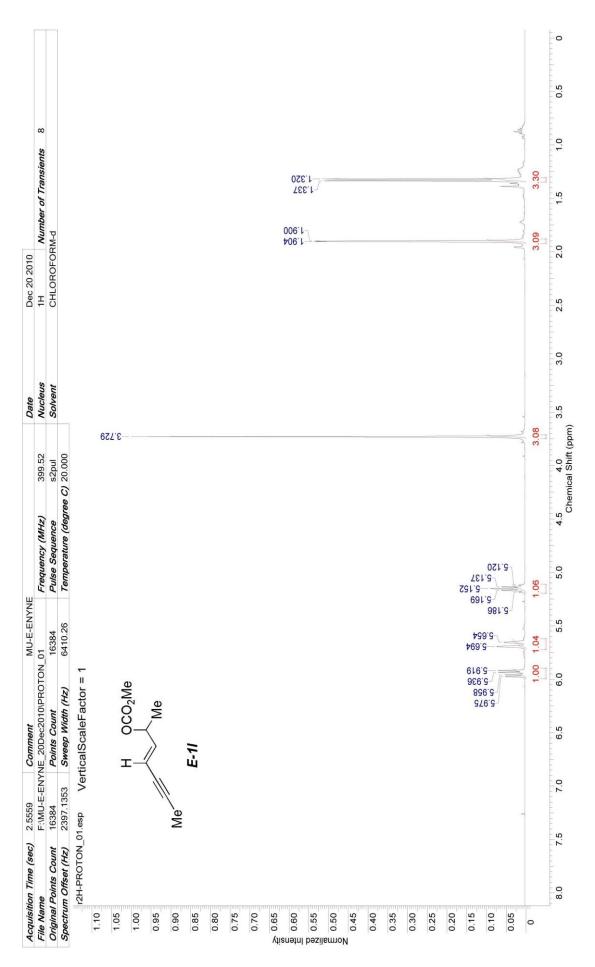



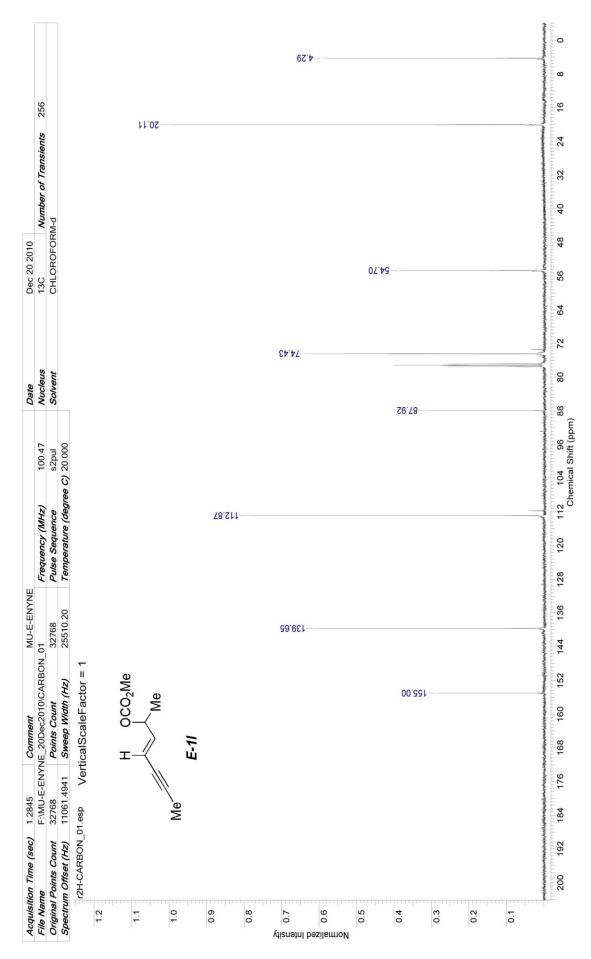


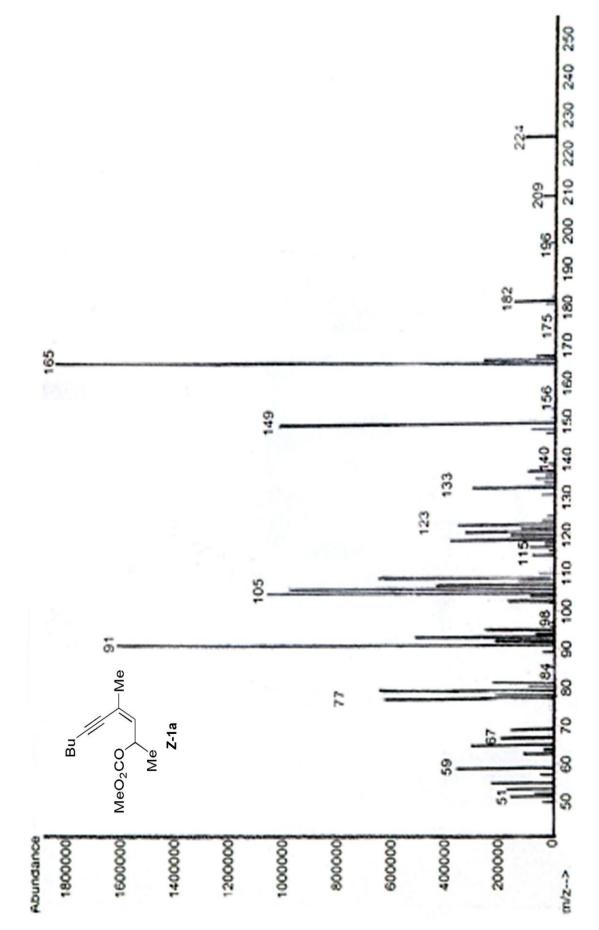


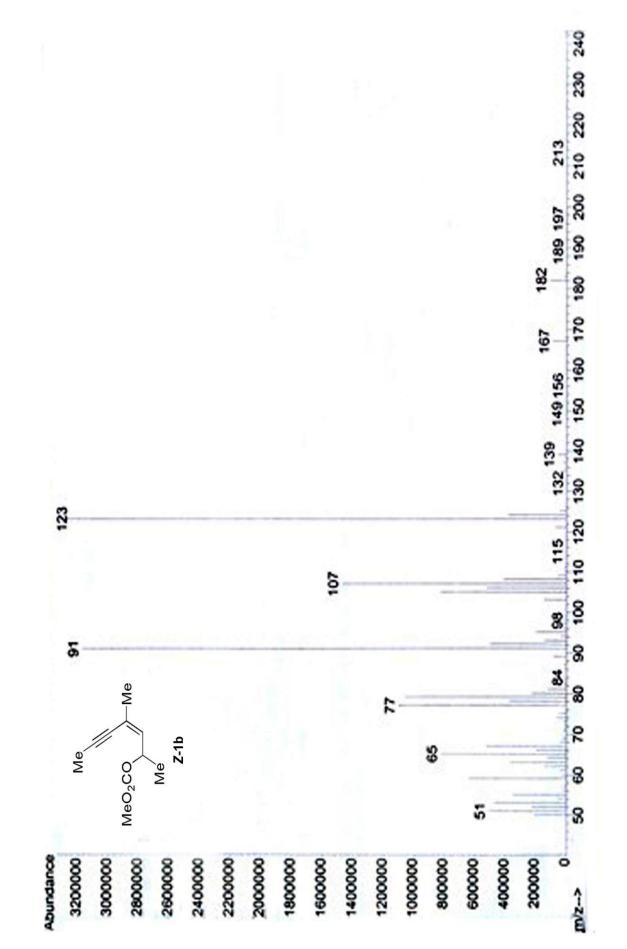



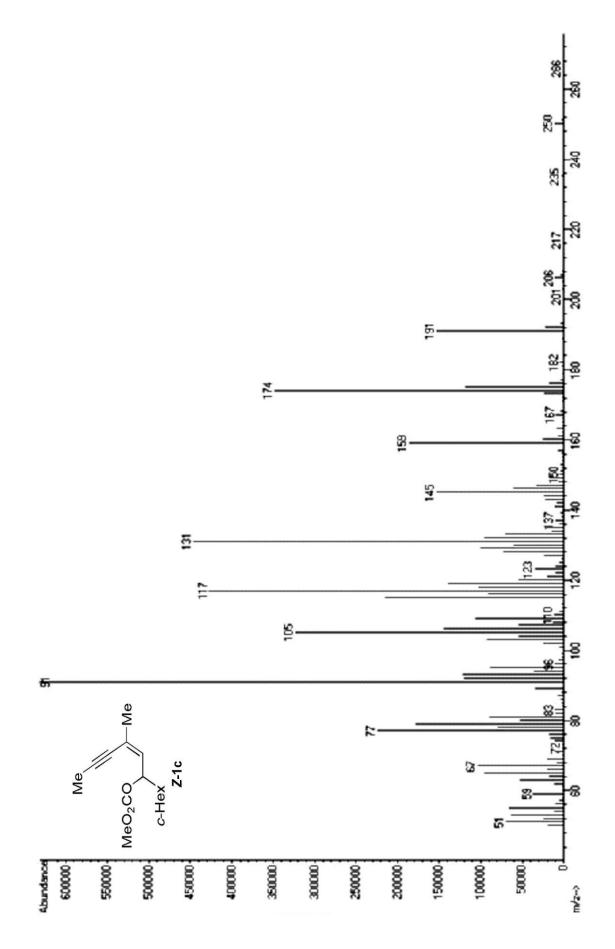


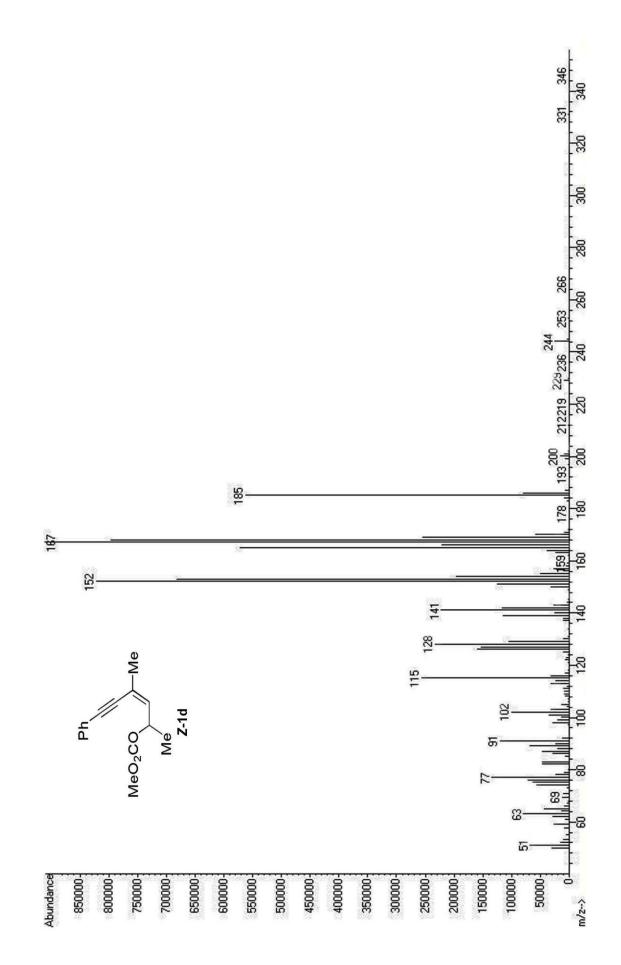


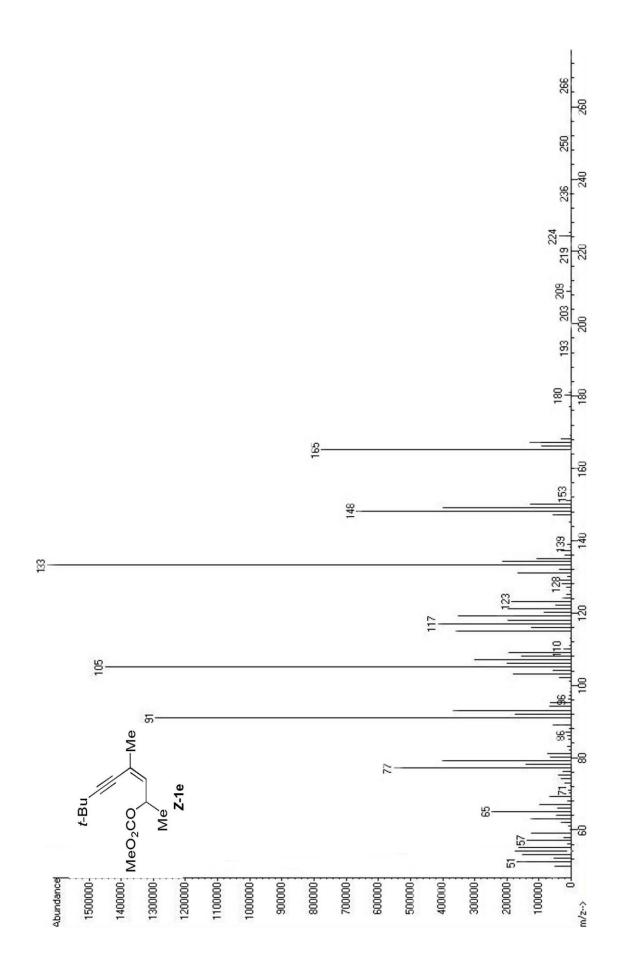


2 Apr 2011

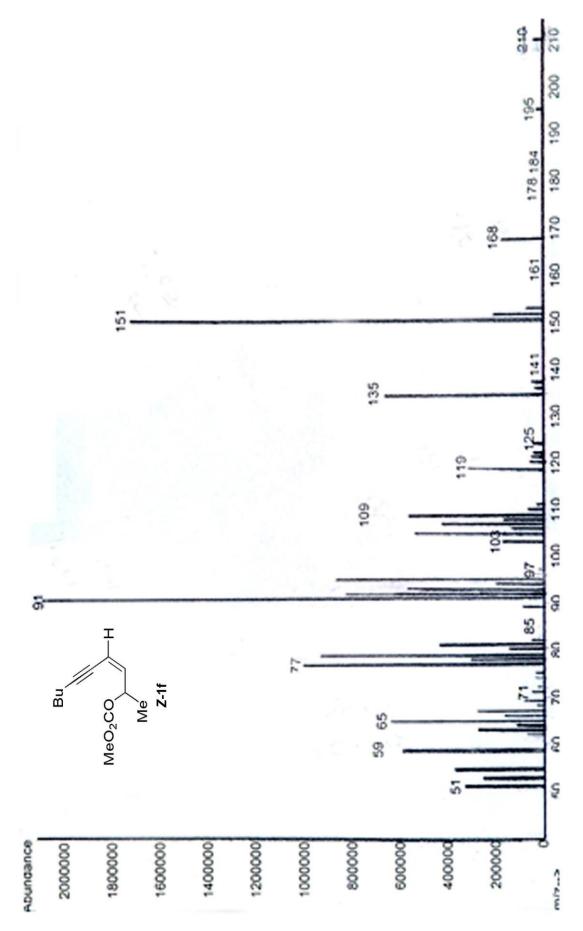


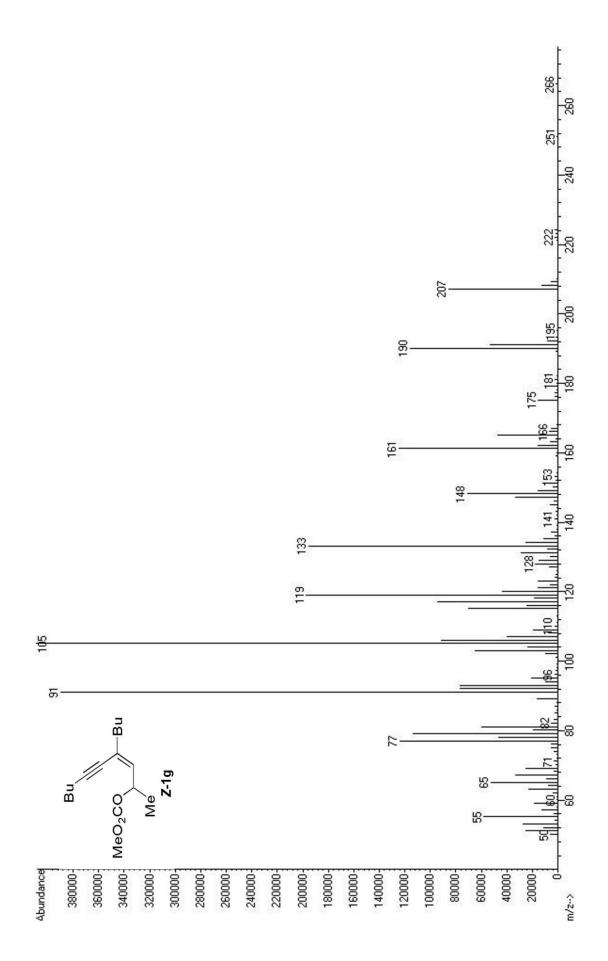


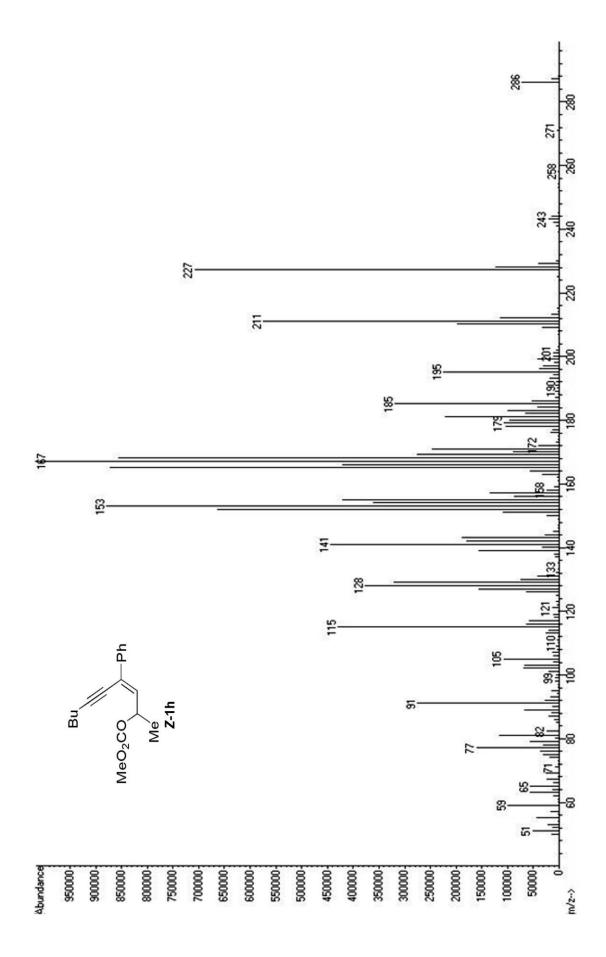


## **APPENDIX B**

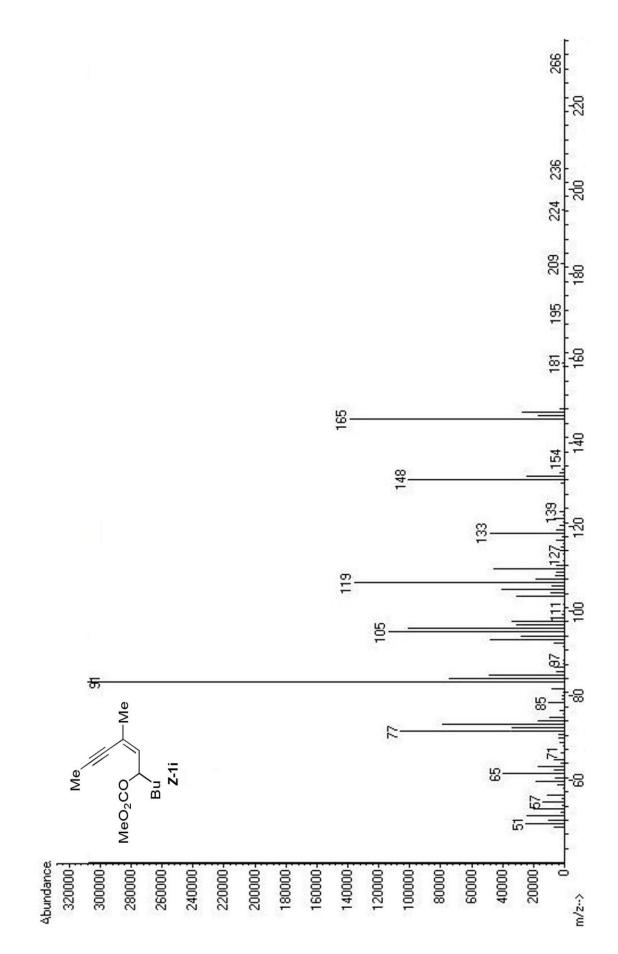

## MASS SPECTRUMS OF REACTANTS

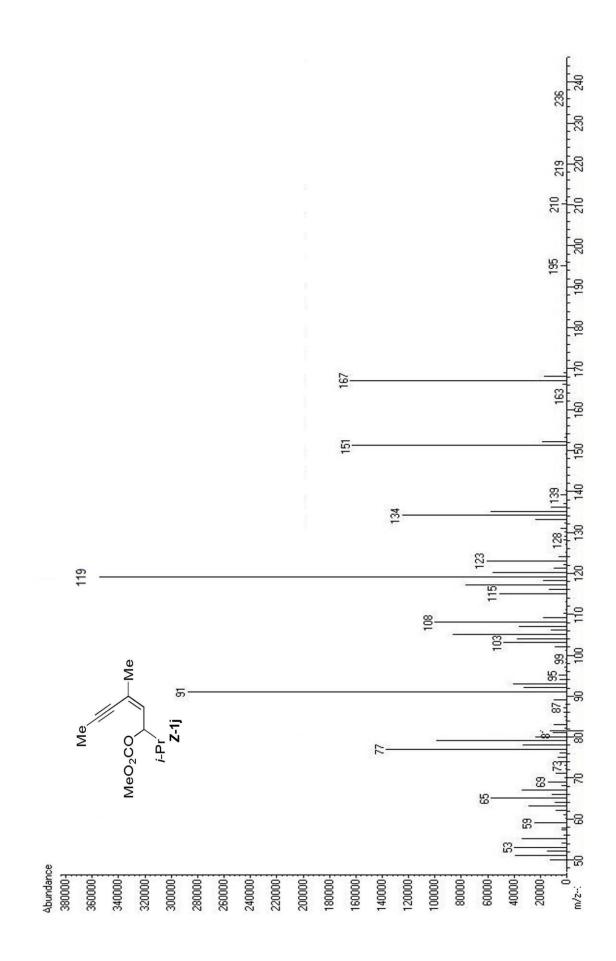


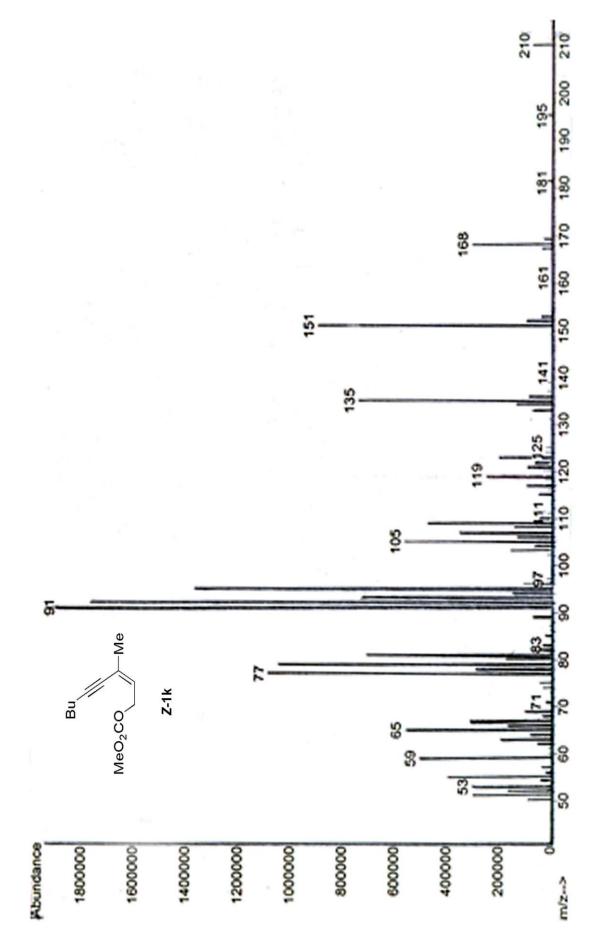



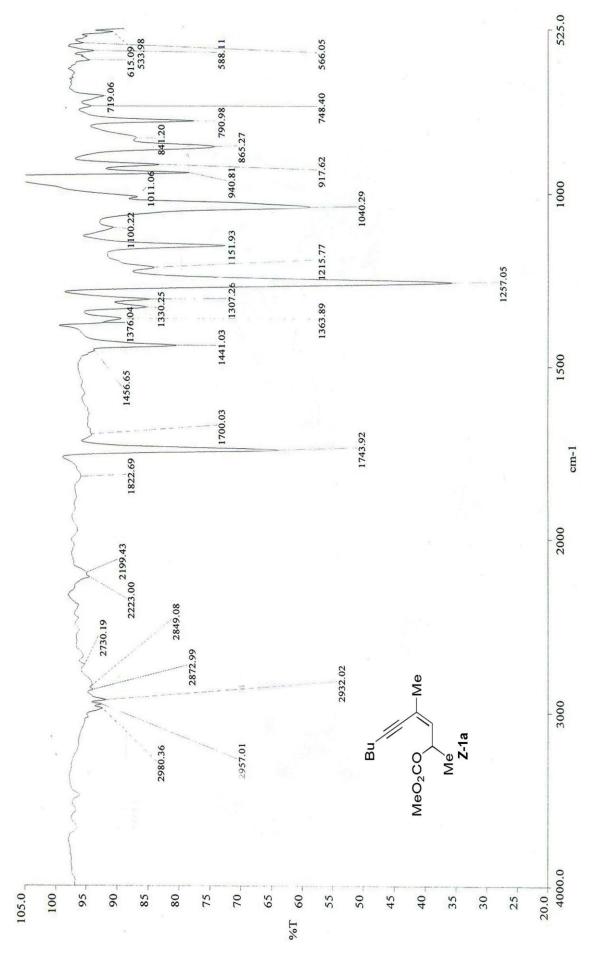



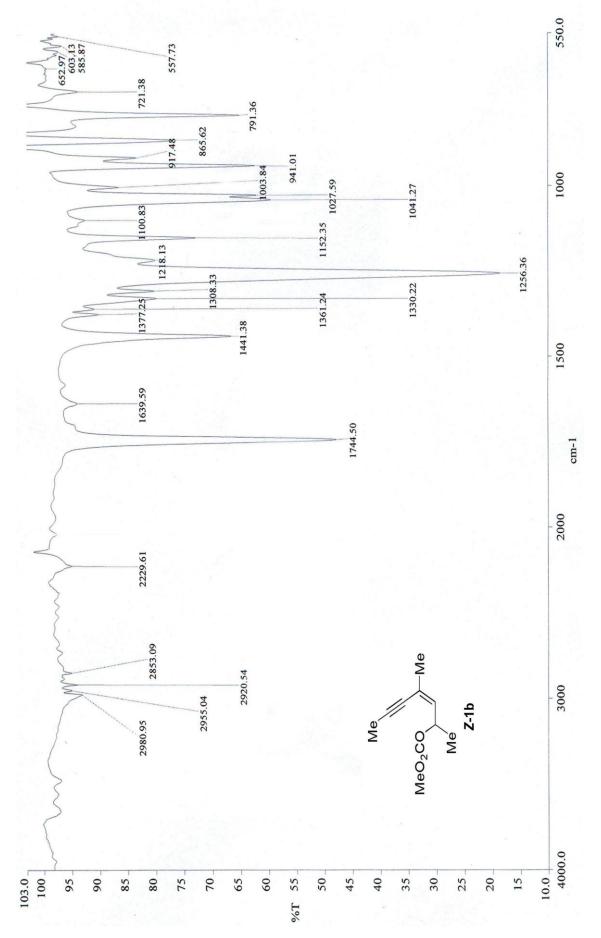



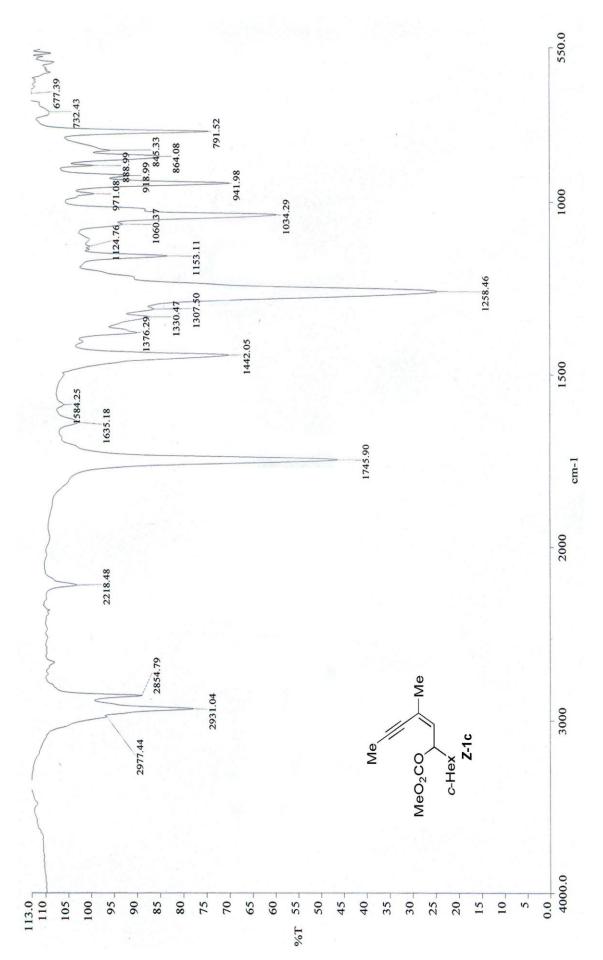



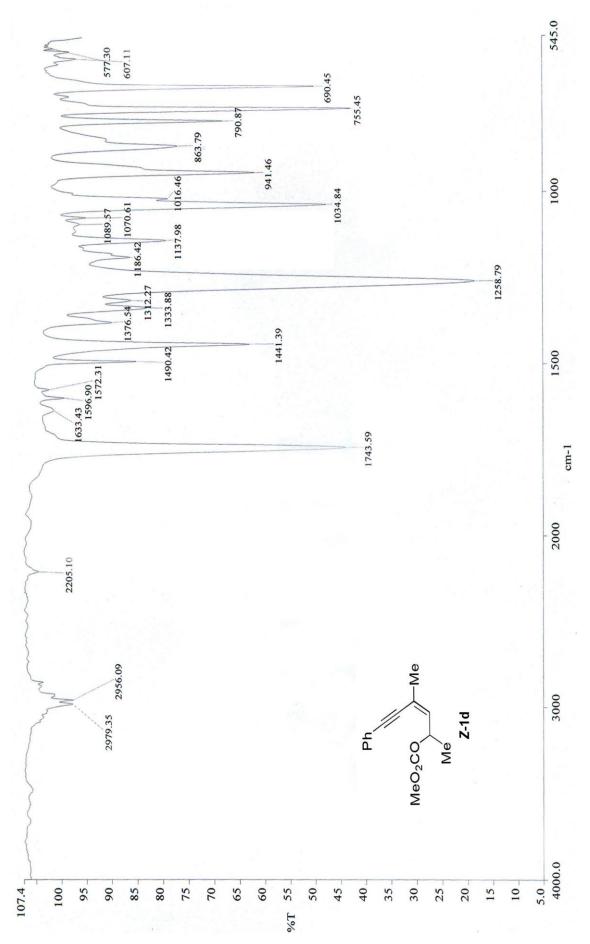


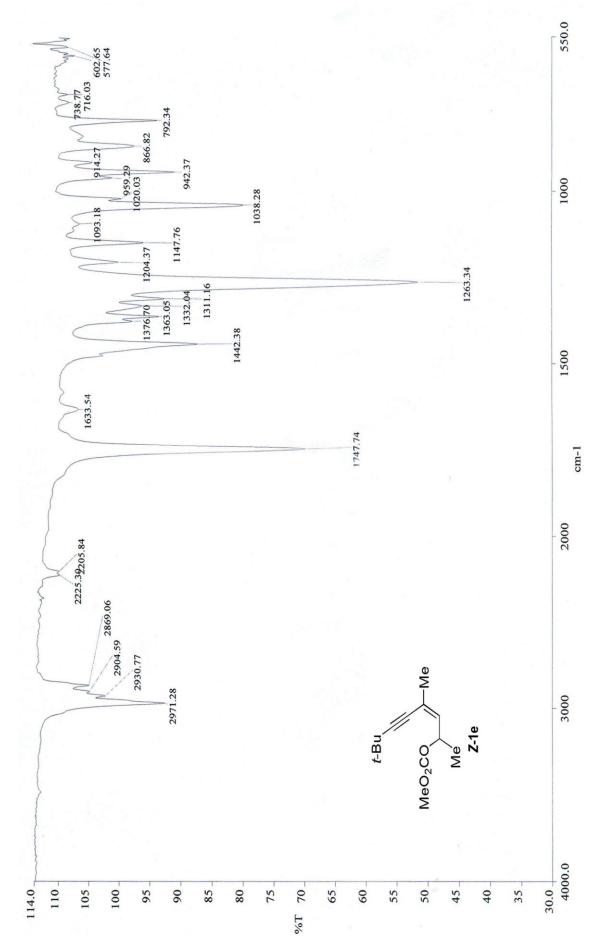


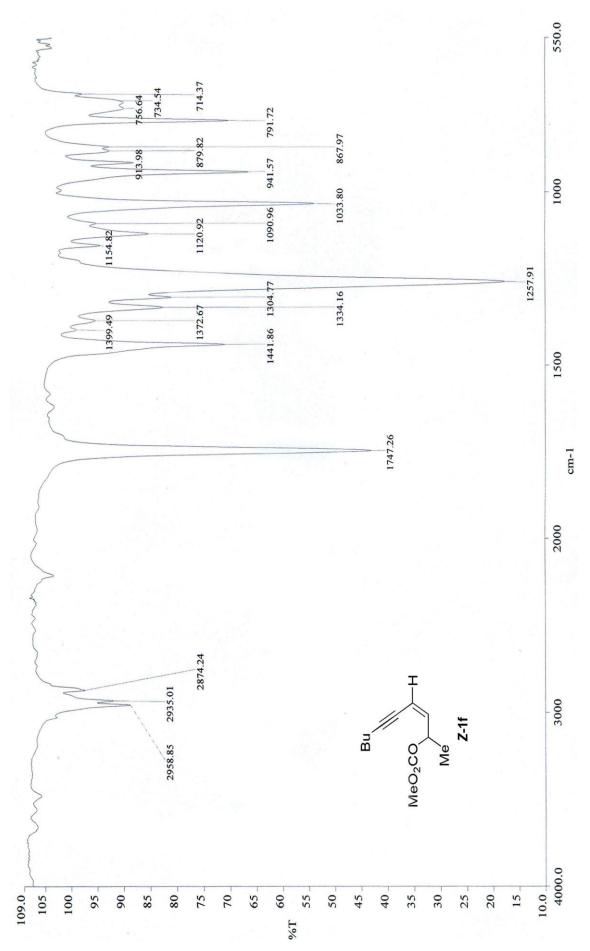



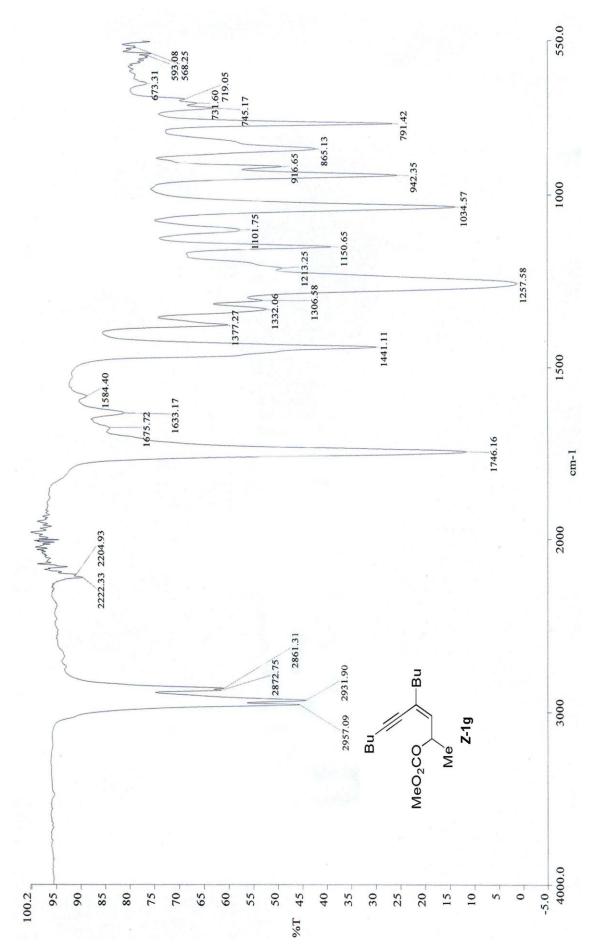



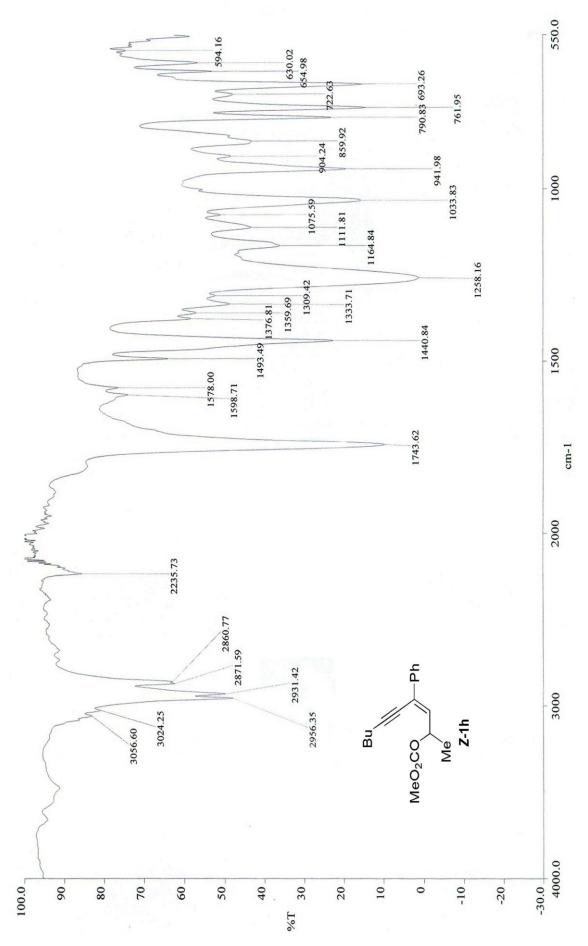



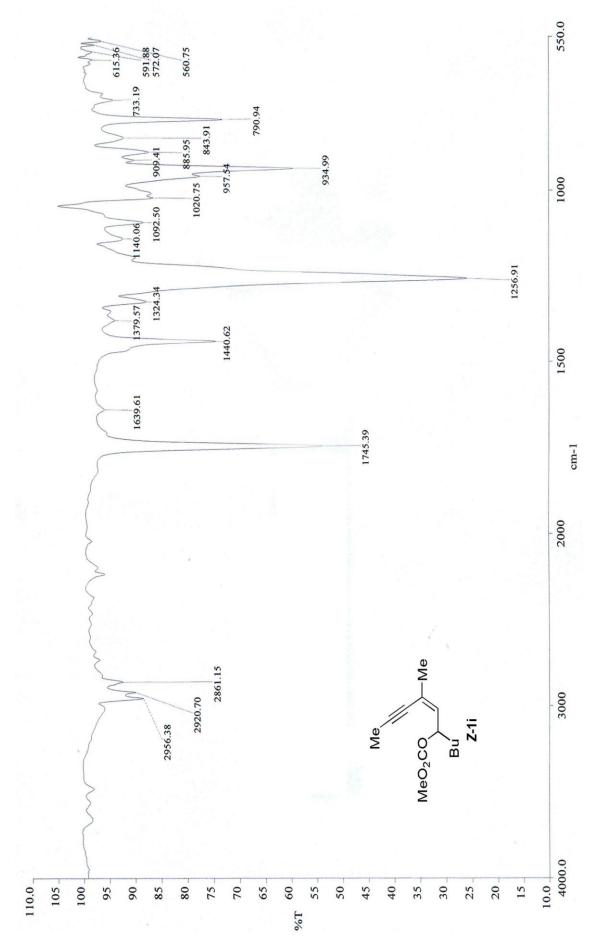


## **APPENDIX C**

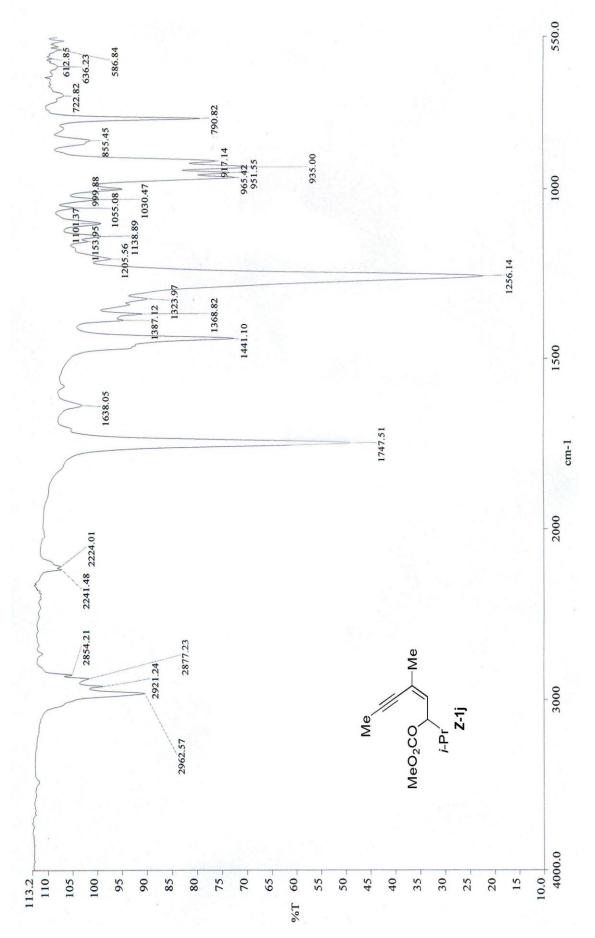

## FTIR SPECTRUMS OF REACTANTS

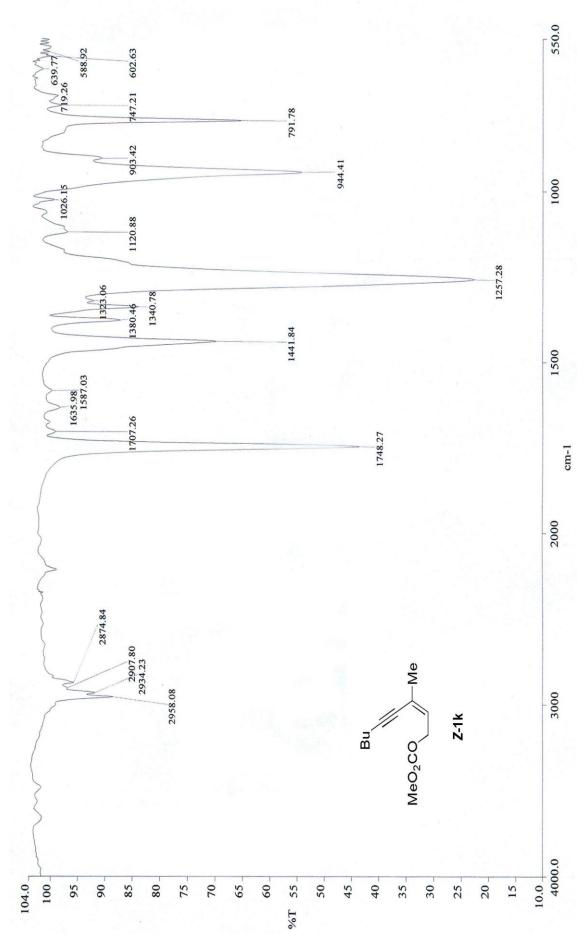


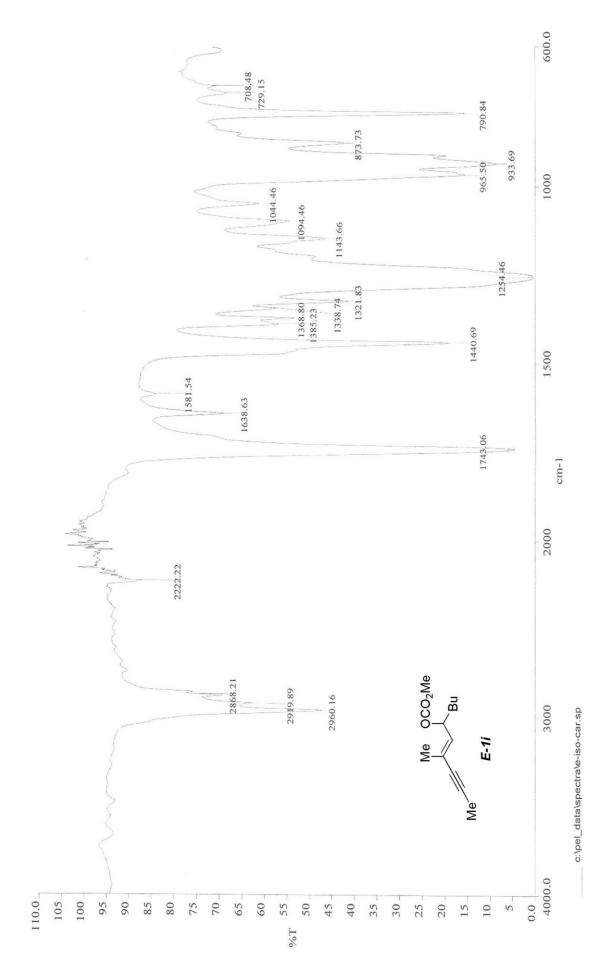



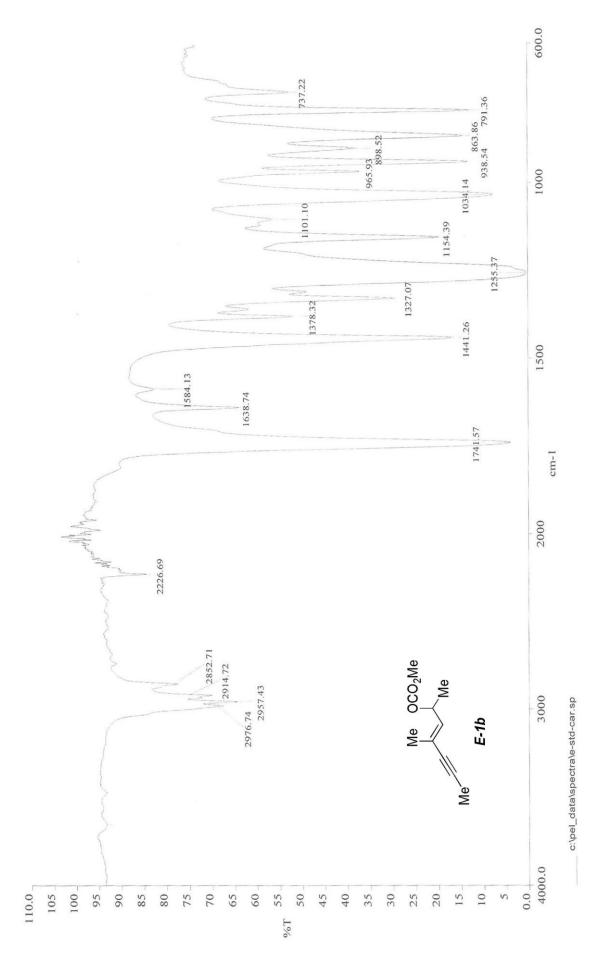



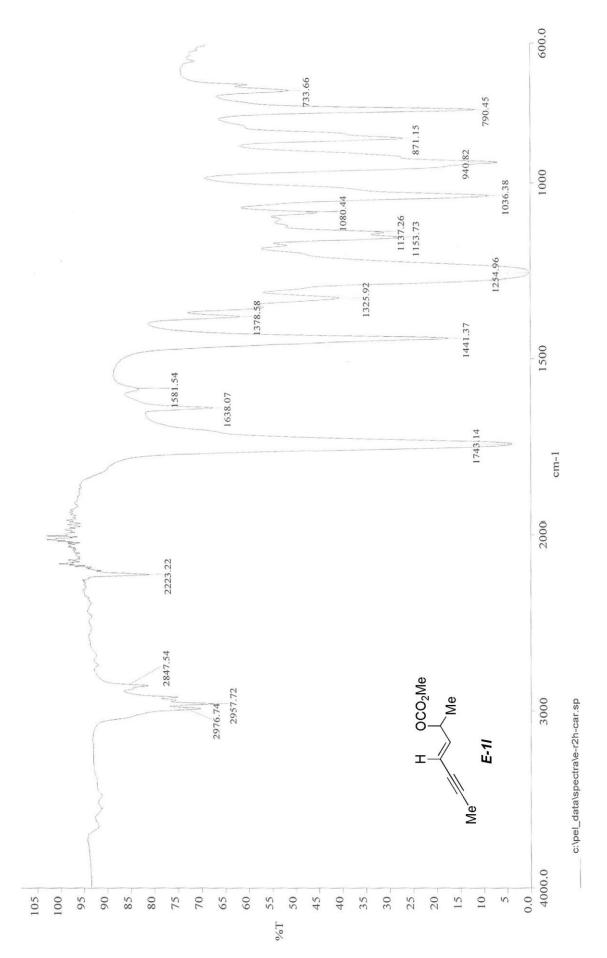



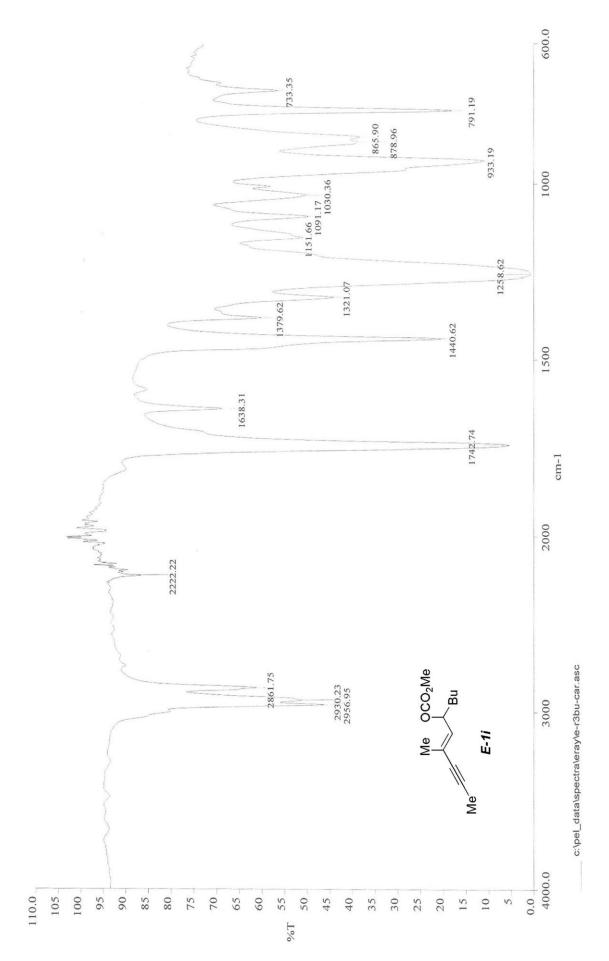





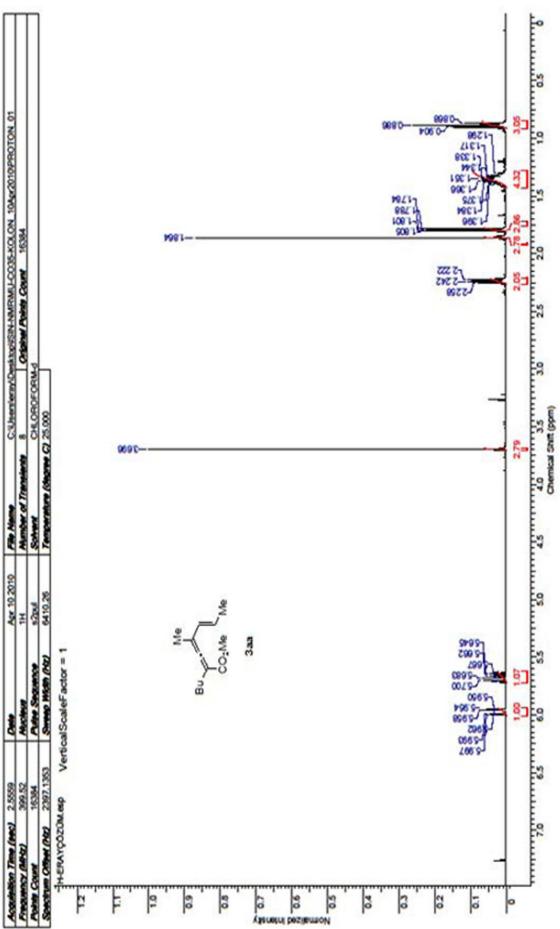


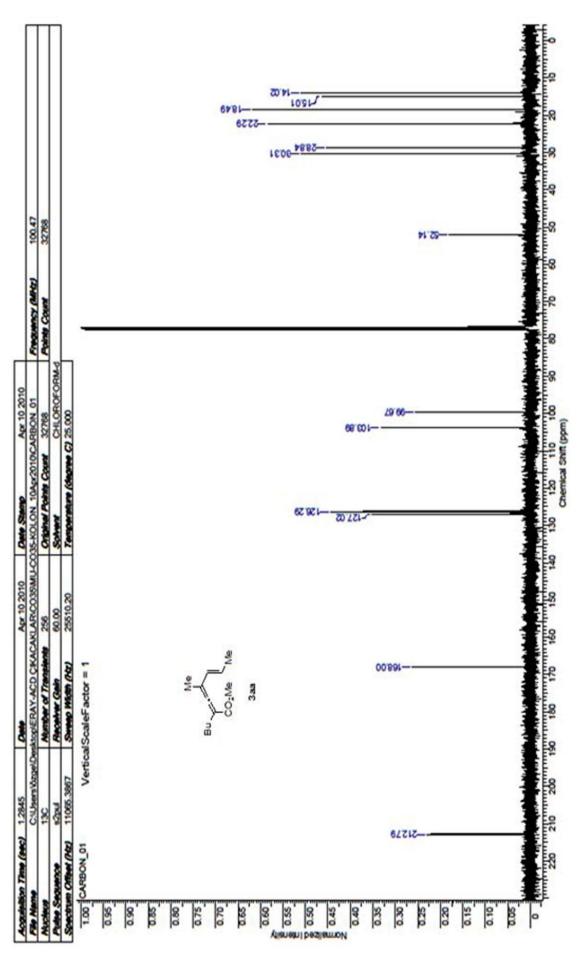



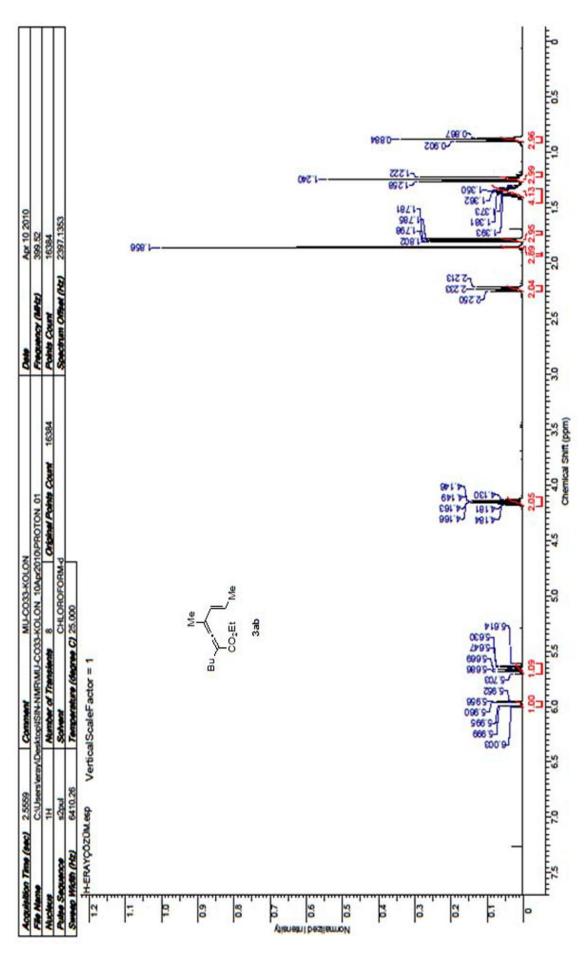



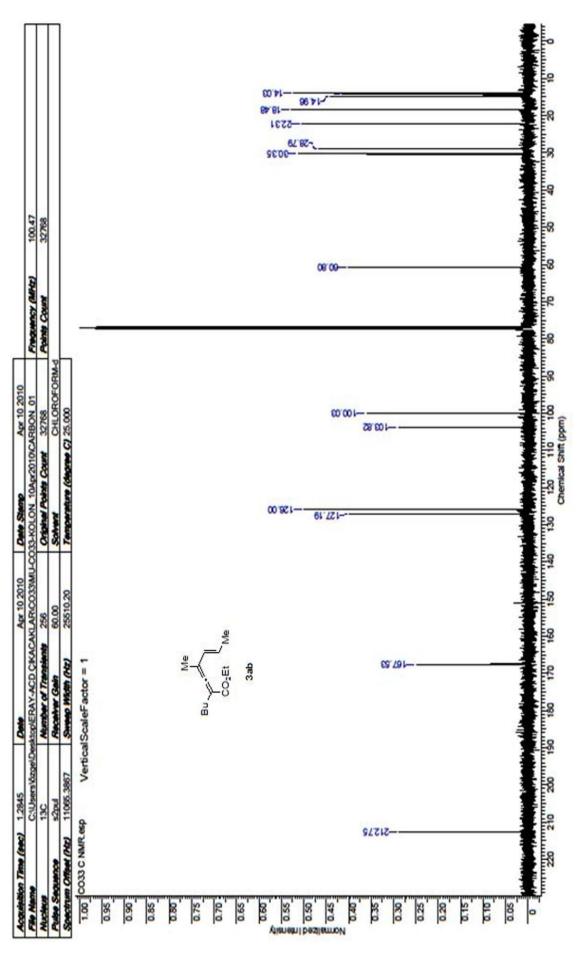


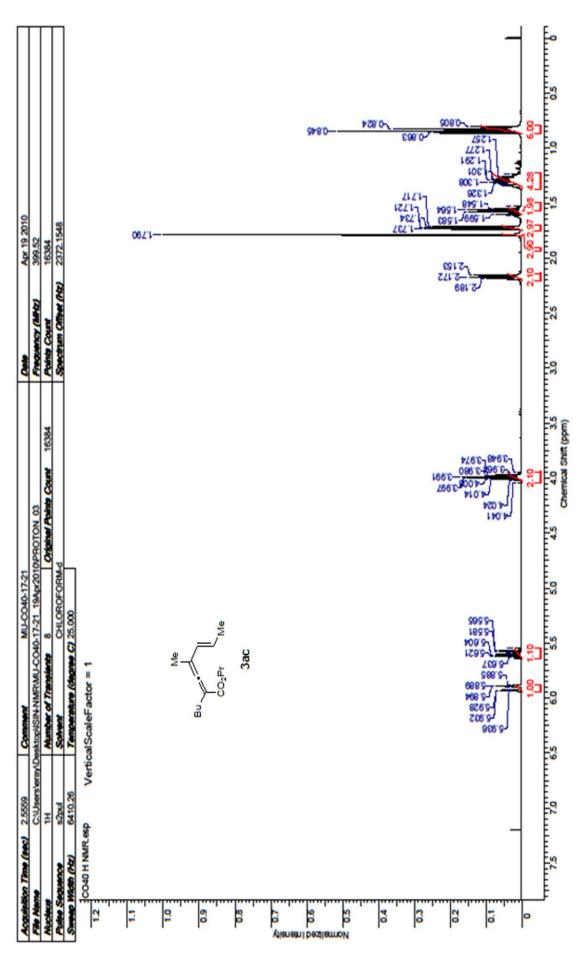


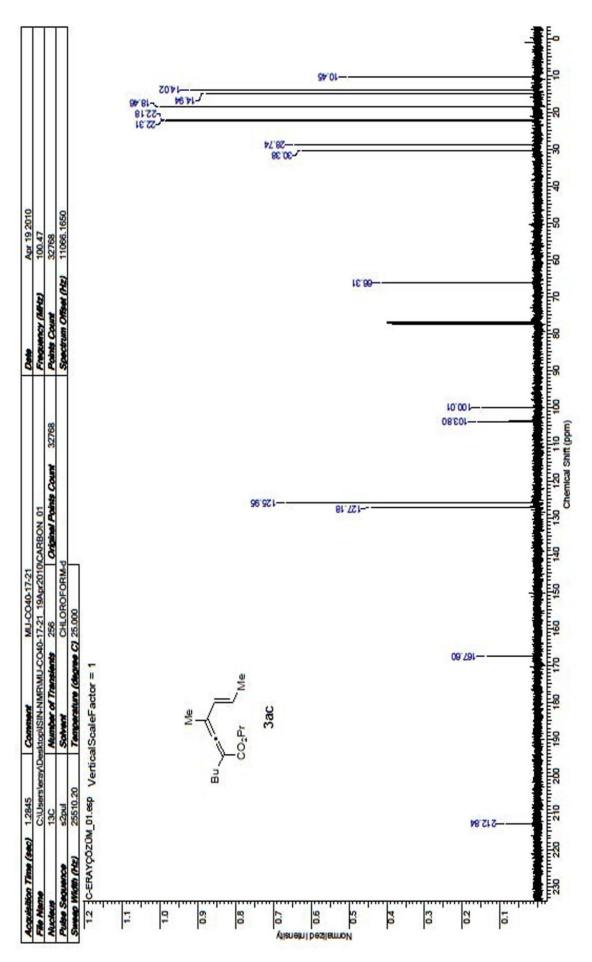



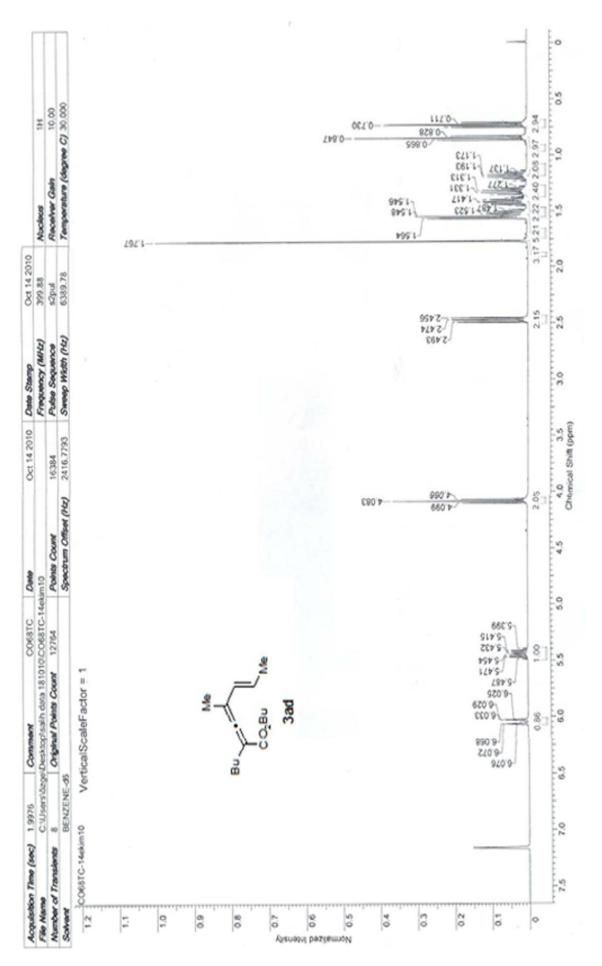



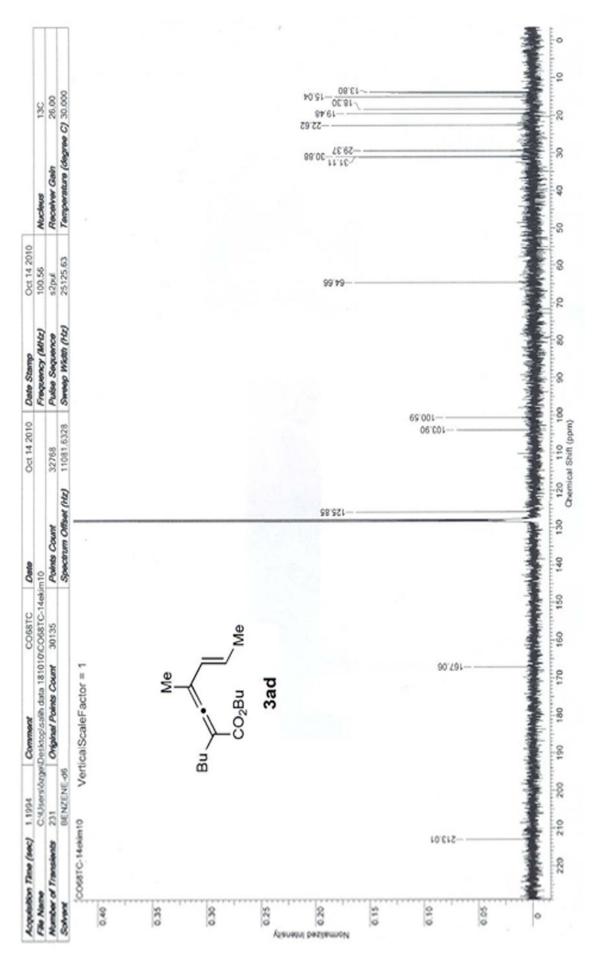



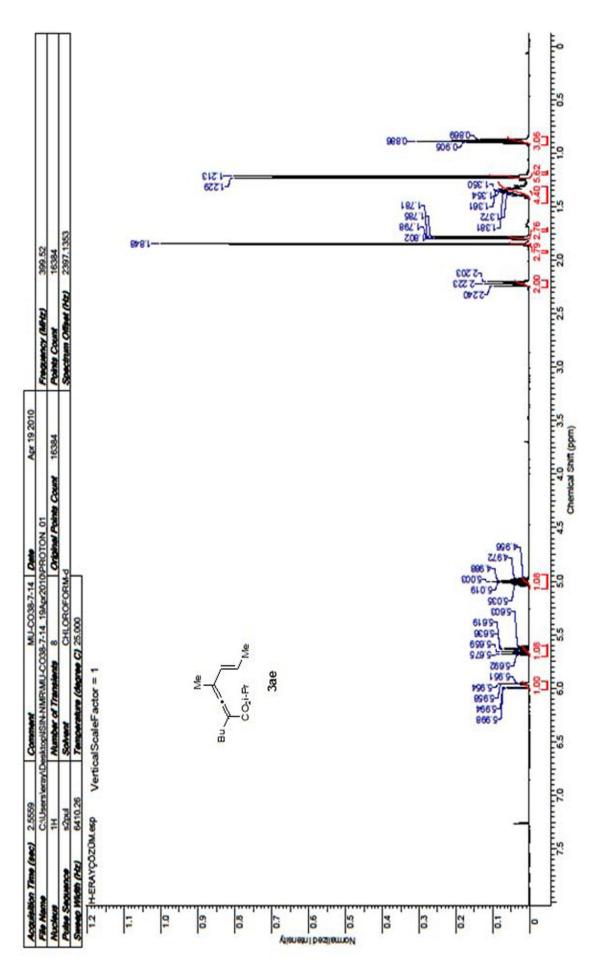


## **APPENDIX D**


## <sup>1</sup>H NMR and <sup>13</sup>CNMR SPECTRUMS OF PRODUCTS

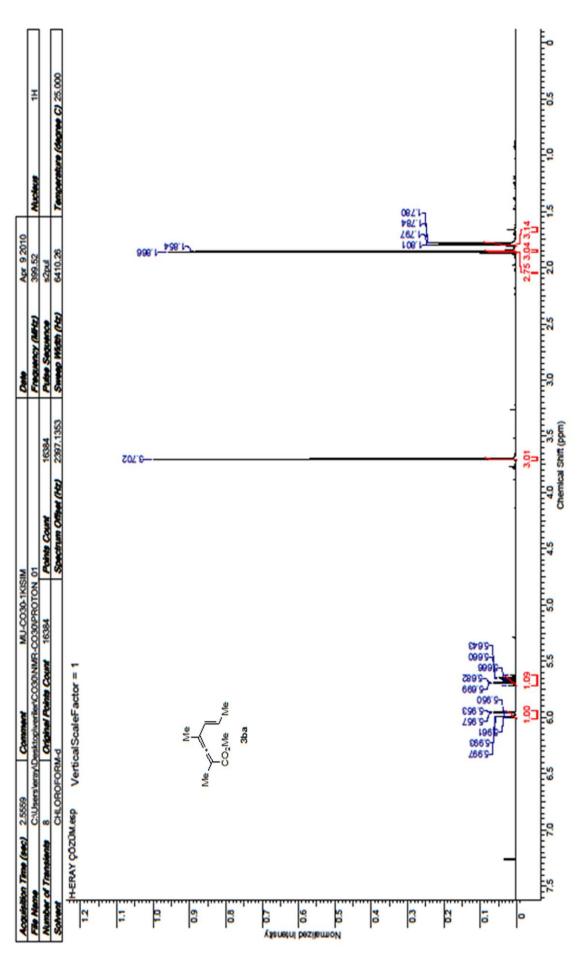


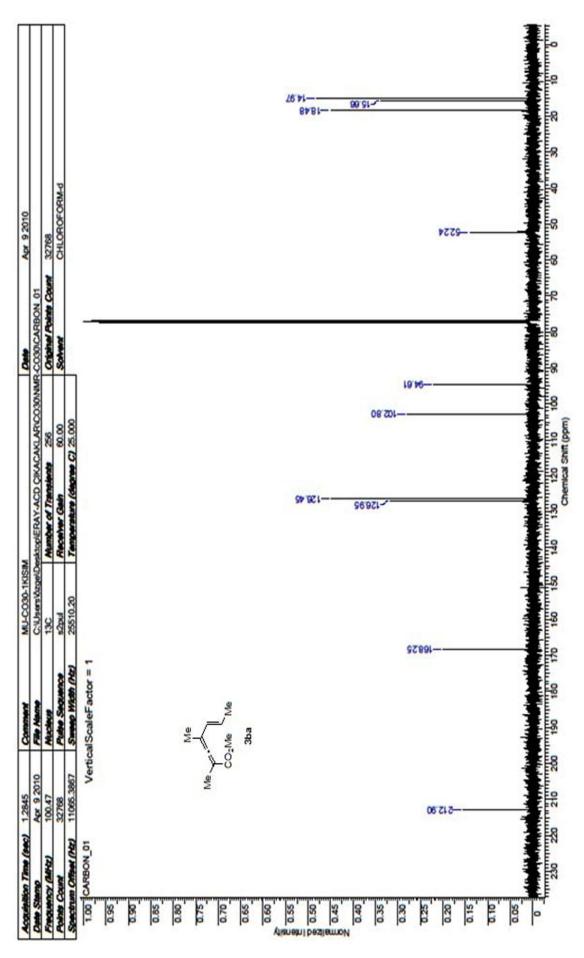



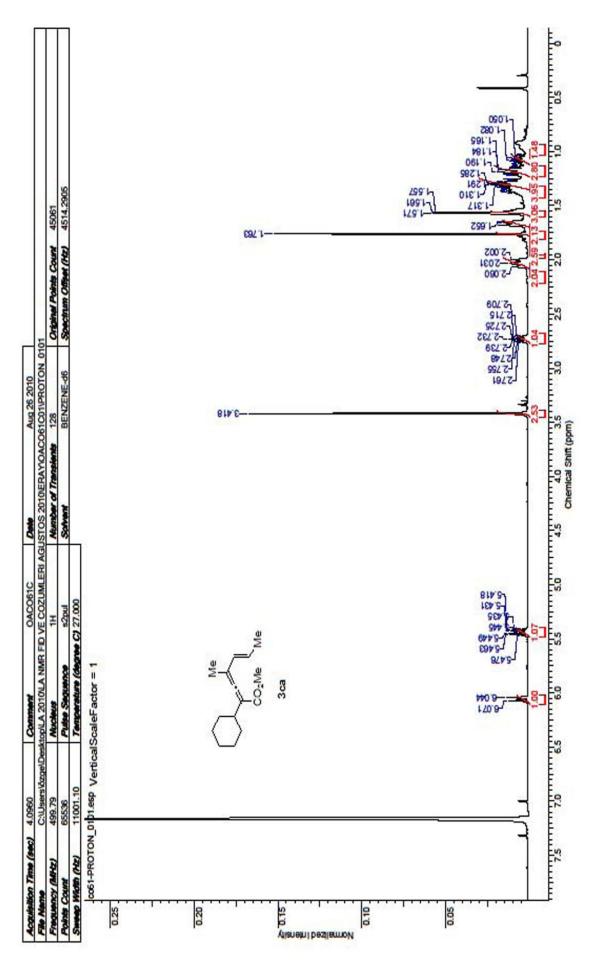



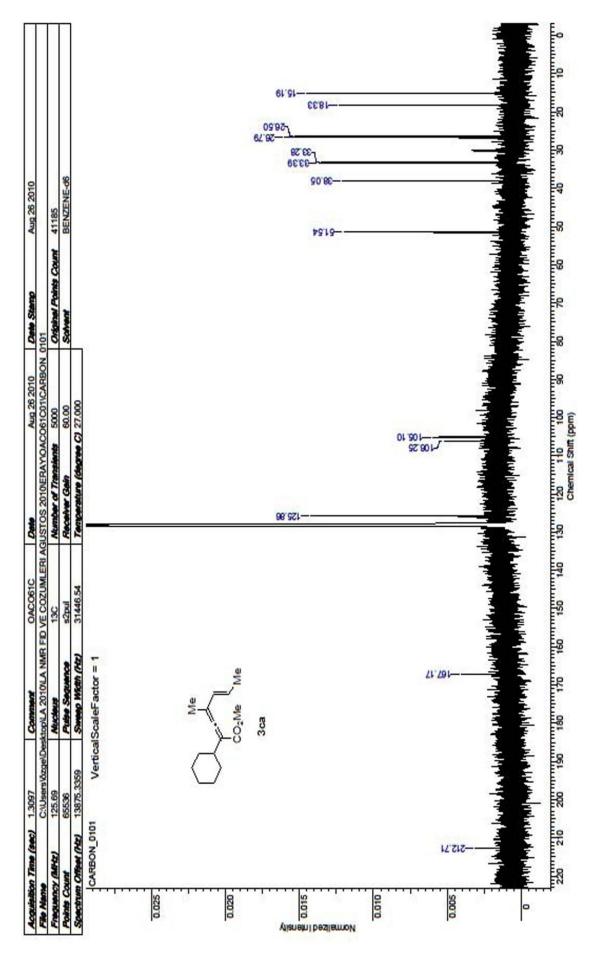



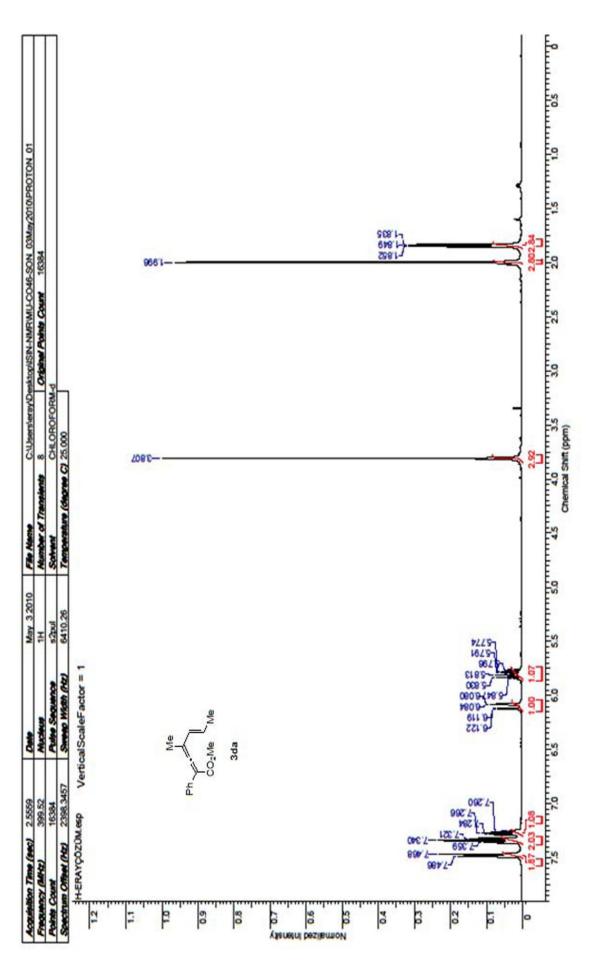


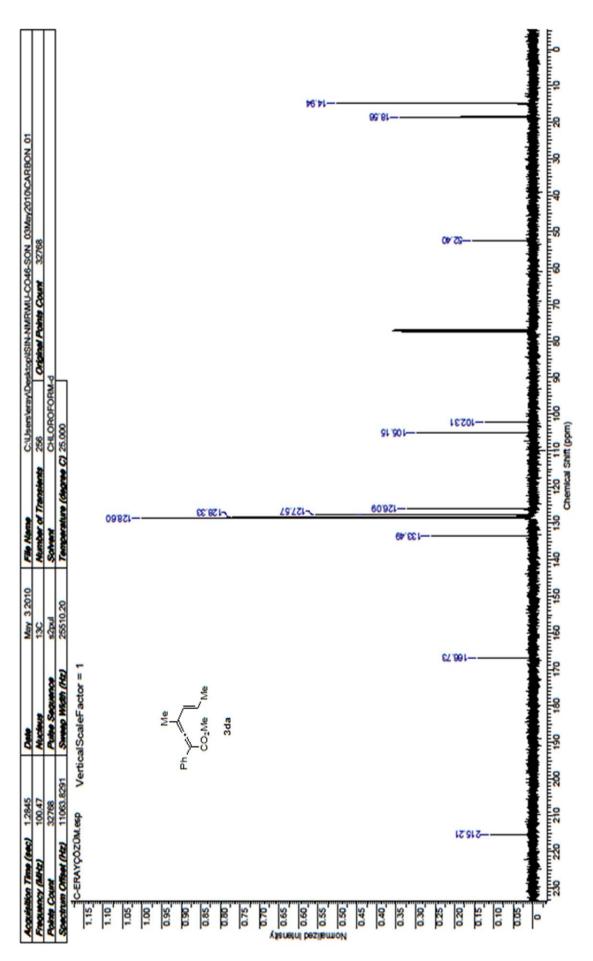



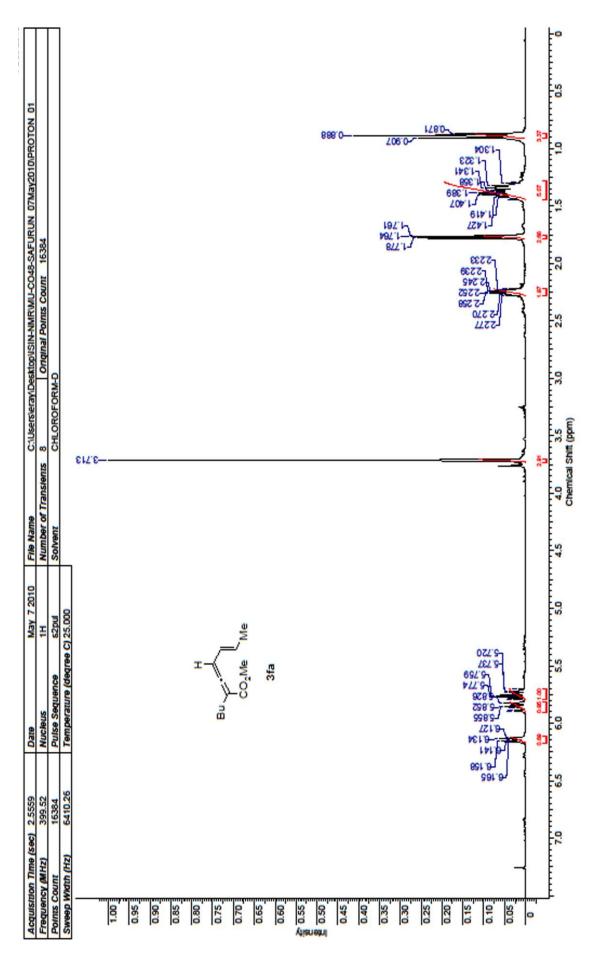


|                       | Τ                                           | Γ            | ]                     |                       |      |      |      |      |      |      |      |      |       |        |               |              |      |       |      |        |       |      |                                                                                                                |                                                                                                                                       |
|-----------------------|---------------------------------------------|--------------|-----------------------|-----------------------|------|------|------|------|------|------|------|------|-------|--------|---------------|--------------|------|-------|------|--------|-------|------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                       |                                             |              |                       |                       |      |      |      |      |      |      |      |      |       | ¥6¥1-  | 20            | Th.          |      |       |      |        |       |      | 1                                                                                                              | وخلاف فسالا ليرف أمرمتن والمنتجعا لوازة مناسخ مخانستان ومحاومتانين والأرتساخ ومافح إسابا متعمصيا محسرات كمندي وأحتني ومطرع فمنت أخرتك |
|                       |                                             |              |                       |                       |      |      |      |      |      |      |      | e    | -51'8 | n      | 6978<br>72-   |              |      |       |      |        |       |      |                                                                                                                |                                                                                                                                       |
|                       |                                             |              |                       |                       |      |      |      |      |      |      |      |      |       | 61     | 61.8          | er_          |      |       |      |        |       |      | , there                                                                                                        | ليقيرون                                                                                                                               |
| 2010                  |                                             |              |                       |                       |      |      |      |      |      |      |      |      |       |        |               |              |      |       |      |        |       |      | 1111 434                                                                                                       |                                                                                                                                       |
| Apr 19 2010           | 14mm                                        | 00/70        |                       |                       |      |      |      |      |      |      |      |      |       |        |               |              |      |       |      |        |       |      | والرجوان                                                                                                       | و و و و و و و و و و و و و و و و و و و                                                                                                 |
|                       |                                             |              |                       |                       |      |      |      |      |      |      |      |      |       |        |               |              |      |       |      |        |       |      |                                                                                                                | و و الله                                                                                                                              |
| Date Stamp            | Politic Cruck                               |              |                       |                       |      |      |      |      |      |      |      |      |       |        |               |              |      |       | 20   |        |       |      |                                                                                                                | منخ وطاويسي ومتلح واسلو ويصوروا بير                                                                                                   |
| Dete                  |                                             |              | L                     |                       |      |      |      |      |      |      |      |      |       |        |               |              |      |       |      |        |       |      | يد الع ال                                                                                                      | June 1                                                                                                                                |
| 2010                  |                                             | CHLOROFORM-d |                       |                       |      |      |      |      |      |      |      |      |       |        |               |              |      |       |      |        |       |      |                                                                                                                | ALC: NO                                                                                                                               |
| Apr 19 2010           | 20769                                       | CHLO         | 7 25.000              |                       |      |      |      |      |      |      |      |      |       |        |               |              |      | 87.50 | 01   |        |       |      |                                                                                                                | -                                                                                                                                     |
| 1000000               | ADALUTORUM                                  |              | ure (degree C) 25.000 |                       |      |      |      |      |      |      |      |      |       |        |               |              |      |       |      |        |       |      |                                                                                                                |                                                                                                                                       |
|                       | CONST CO                                    |              | erature               |                       |      |      |      |      |      |      |      |      |       |        | 17.921        | 34           | 151- |       |      |        |       |      | , and the second second second second second second second second second second second second second second se |                                                                                                                                       |
| Dete                  | Anter Contractor                            | Solv         | Tent                  |                       |      |      |      |      |      |      |      |      |       |        |               |              |      |       |      |        |       |      |                                                                                                                | والتراسية والمريد                                                                                                                     |
| MU-C038-15-23 Dete    | Autor of Translate 512 Device Decision 2018 |              | 8                     |                       |      |      |      |      |      |      |      |      |       |        |               |              |      |       |      |        |       |      |                                                                                                                | حفي وخصولي                                                                                                                            |
| MU-CC                 | 512                                         | 60.00        | 25510.20              |                       |      |      |      |      |      | Me   |      |      |       |        |               |              |      |       |      |        |       |      | كالحليالة                                                                                                      | والحرف فللم                                                                                                                           |
|                       |                                             |              | (24)                  | ī                     |      |      |      | Me   | ~    | =/   |      | 3ae  |       |        |               |              |      |       |      | 01/2   | 91    |      |                                                                                                                | باستلده                                                                                                                               |
| Then a                | EPAT-MUU                                    | war Gain     | Note (Hz)             | Factor                |      |      |      |      | "    | CO.P |      |      |       |        |               |              |      |       |      |        |       |      |                                                                                                                |                                                                                                                                       |
|                       |                                             | Rece         |                       | VerticalScaleFactor = |      |      |      |      | Bu,  |      |      |      |       |        |               |              |      |       |      |        |       |      |                                                                                                                | وتعميها ومرتفا وفرغم محمد البرايين معمانين وليرخ وترحي أستري وتحققه أورسم فكالهر والمرتقي                                             |
|                       | 0.10561510206106                            |              | M34                   | Vertic                |      |      |      |      |      |      |      |      |       |        |               |              |      |       |      |        |       |      | . fant,                                                                                                        |                                                                                                                                       |
|                       | 120                                         | s2pul        | 11066.9434            |                       |      |      |      |      |      |      |      |      |       |        |               |              |      |       |      |        |       |      |                                                                                                                |                                                                                                                                       |
| Coulettion Time (sec) |                                             | ,            | of (Hz)               | ID NO                 |      |      |      |      |      |      |      |      |       |        |               |              |      |       |      | 512.75 | _     |      |                                                                                                                | ومطرورة أحدد فالمرد                                                                                                                   |
| ation Tin             |                                             | e Secuence   | 0                     | 1.00 CARBON 01        |      |      |      |      |      |      |      |      | _     |        |               |              | -    |       |      |        | ياسله |      | -                                                                                                              | luul.                                                                                                                                 |
| Accel                 |                                             | Putto        | Spect                 | 1.00                  | 0.95 | 06.0 | 0.85 | 0.80 | 0.75 | 0.70 | 0.65 | 0.60 | Viene | NI Dez | 16000<br>84.0 | 0790<br>0790 | 0.35 | 0.30  | 0.25 | 0.20   | 0.15  | 0.10 | 0.05                                                                                                           | 0                                                                                                                                     |

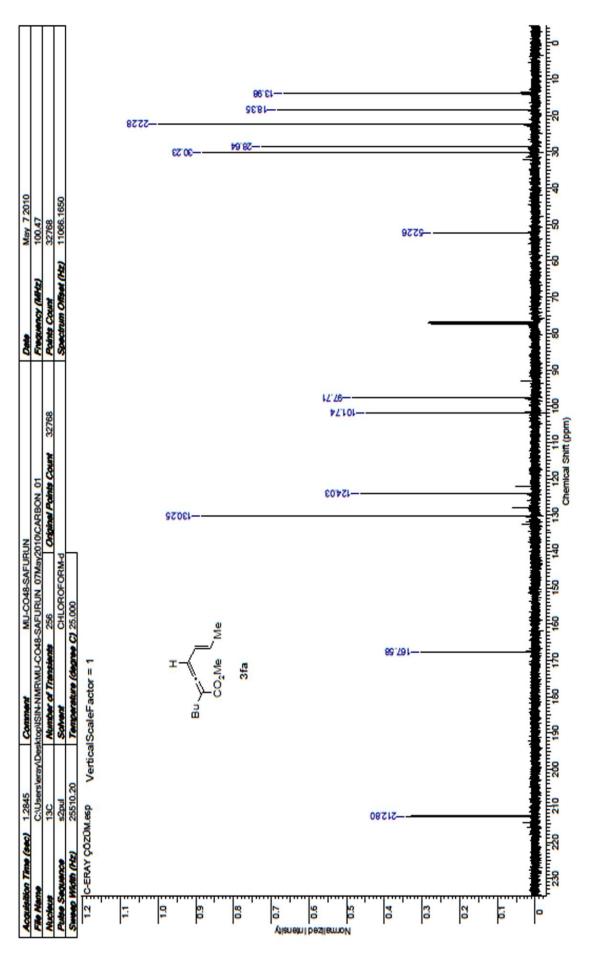






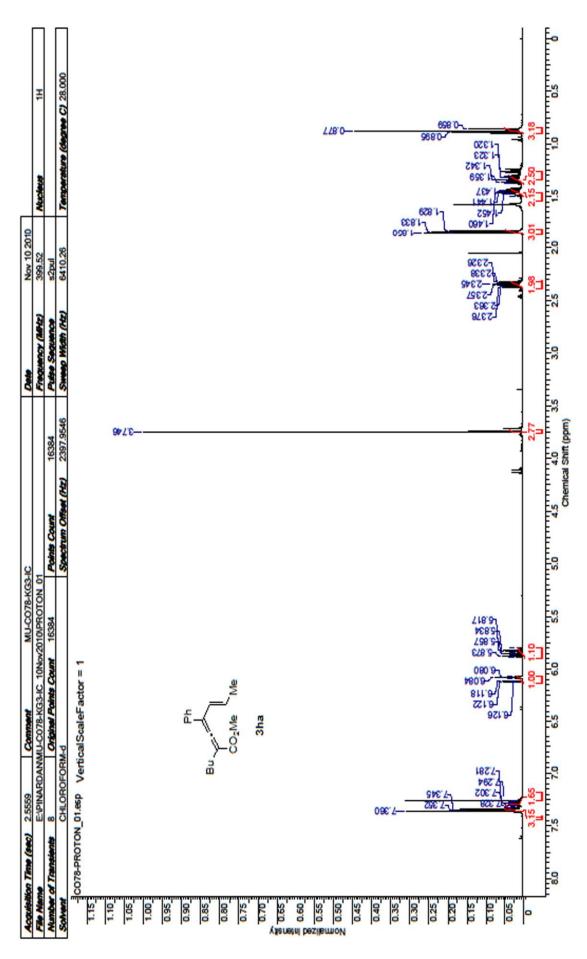


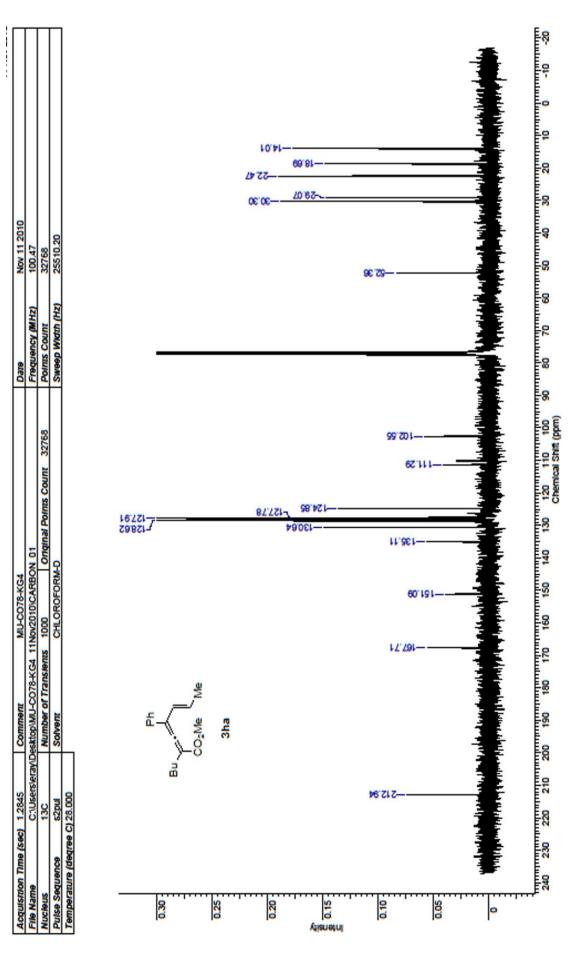



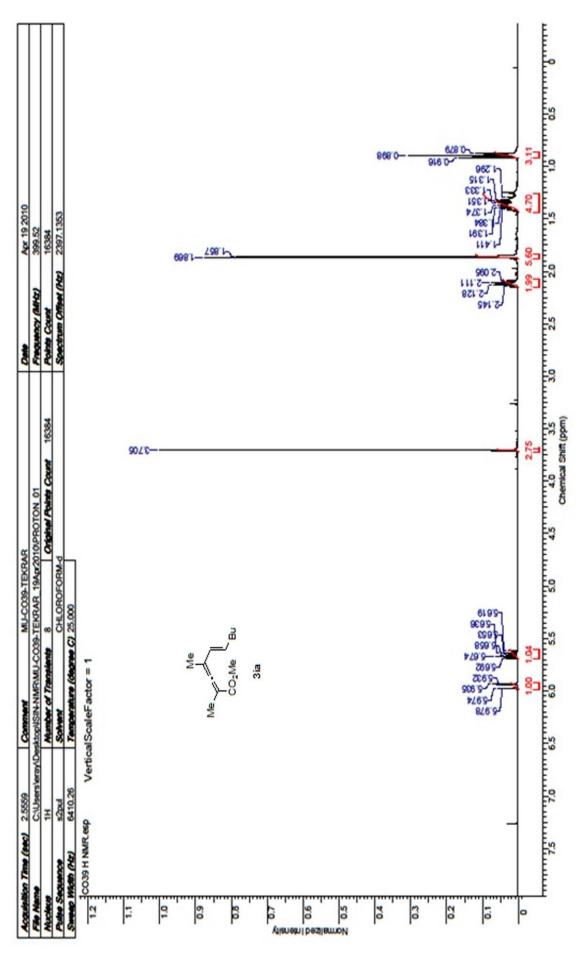



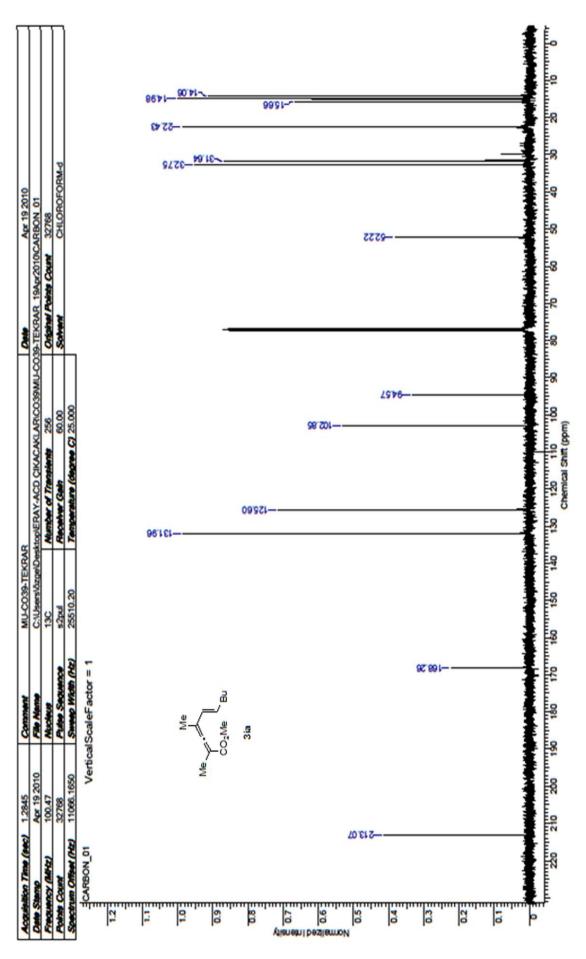

|                                      |                                                      |                      |                       |                      |                         |     |     |      |       |     |     |               |               |     |   | - |                   |                                                                                                                                                                                                |      |
|--------------------------------------|------------------------------------------------------|----------------------|-----------------------|----------------------|-------------------------|-----|-----|------|-------|-----|-----|---------------|---------------|-----|---|---|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 24 Aug 2010 03:52:32                 |                                                      | spect                | 2030                  | 0100007747           |                         | 976 | ı—— |      |       |     |     | <br>          |               | 671 | 1 |   | 915<br>895<br>895 | ф <del>.</del>                                                                                                                                                                                 |      |
| Dete                                 | P90000                                               | Onjoin               | Pulse Sequence        | TTUI MOUNT INTERNATO |                         |     |     |      |       |     |     |               |               |     |   |   |                   |                                                                                                                                                                                                | 282  |
|                                      | ACO63hOACO63t 01                                     | 16                   | 32768<br>PENTENE 46   | DENZENCOO            |                         |     |     |      |       |     |     |               | 25            | 33  |   |   |                   | •                                                                                                                                                                                              | 587  |
|                                      | AGUSTOS 2010/ERAY/OACO63//OACO63/_010000/d           | Number of Transients | Points Count          | NINA NO              |                         |     |     |      |       |     |     |               |               |     |   |   |                   |                                                                                                                                                                                                |      |
| 5 mm Multinuclear                    | RED VE COZUMLERI A                                   | Ħ                    | guest                 | • CJ 27.000          |                         |     |     |      |       |     |     |               |               |     |   |   |                   | 824,8<br>144,8<br>254,8<br>254,8<br>806,8<br>806,8<br>806,8<br>806,8<br>806,8<br>806,8<br>806,8<br>806,8<br>806,8<br>806,8<br>806,8<br>806,8<br>806,8<br>806,8<br>806,8<br>806,8<br>80,8<br>80 | 11 E |
| Comment 52:32                        | C:Users/özge/Desktap/LA 2010/LA NMR FID VE COZUMLERI | Nucleus              | Current And           | Tamparature (depre   | VerticalScaleFactor = 1 |     |     | _    | Me    |     |     |               |               |     |   |   |                   | 6061<br>6057<br>6057<br>6058                                                                                                                                                                   | I F  |
| 3.9846 Q<br>24 Aug 2010 03:52:32     | C:\Users\özge\L                                      | 400.13               | 32768                 | 8223.43              |                         |     | Me  | t-Bu | CO2Me | 3ea |     | <br>          |               |     |   |   |                   |                                                                                                                                                                                                |      |
| Acquisition Time (sec)<br>Date Stamp | File Name                                            | Frequency (MHz)      | Original Points Count | Sweep Width (Hz)     | OACO631_0100001d        |     | 1.0 |      | 6.0   | 0.8 | 0.7 | nemi be<br>Ro | zilemov<br>20 | 04  |   | 3 | 02                |                                                                                                                                                                                                |      |

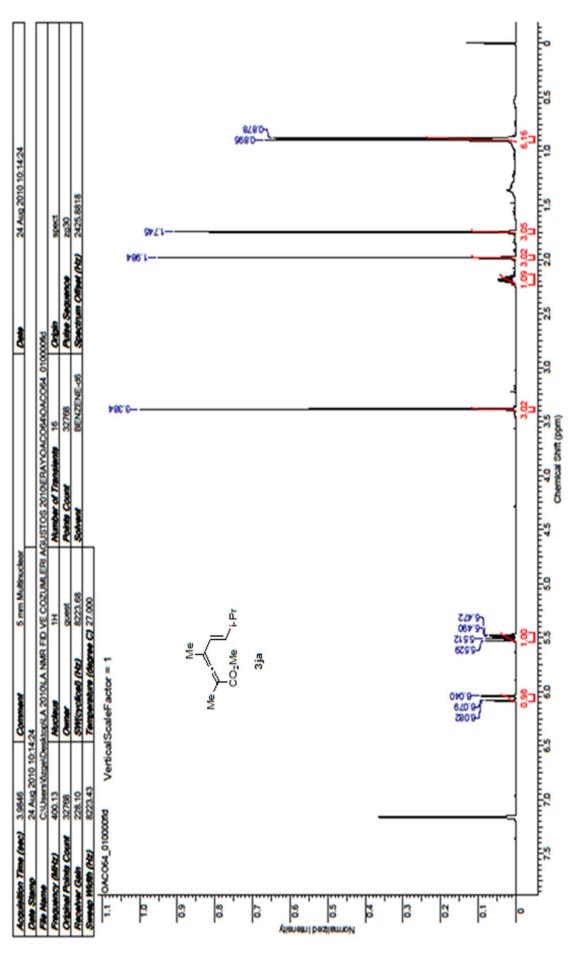
| 24 Aug 2010 03:52:32   |                                                       | spect                | 2930                         | 2425.8818            |              |                         | 926. | ı—– |       |                    |     | <br> |                |                | 3     | 877.1- | n<br>K     |    | 1,563<br>1,568<br>1,546 | } <del></del>                                                       | 301 3.19 907       |
|------------------------|-------------------------------------------------------|----------------------|------------------------------|----------------------|--------------|-------------------------|------|-----|-------|--------------------|-----|------|----------------|----------------|-------|--------|------------|----|-------------------------|---------------------------------------------------------------------|--------------------|
| Date                   | P90000                                                | Onioin               | 8                            | Spectrum Offset (Hz) |              |                         |      |     |       |                    |     |      |                |                |       |        |            |    |                         |                                                                     | 20<br>10<br>10     |
|                        | ACO63fiOACO83t 01                                     | 16                   | 32768                        | BENZENE-46           |              |                         |      |     |       |                    |     |      |                |                | 296°E |        |            |    |                         |                                                                     | 2 <mark>8</mark> 1 |
|                        | AGUSTOS 2010/ERAY/OACO63//OACO63/ 010000/64           | Number of Transients | Points Count                 | Solvent              | _            |                         |      |     |       |                    |     |      |                |                |       |        |            |    |                         | _                                                                   |                    |
| 5 mm Multinuclear      | RED VE COZUMLERI A                                    | Ħ                    | guest                        | -                    |              |                         |      |     |       |                    |     |      |                |                |       |        |            |    |                         | 824.2<br>144.8<br>254.8<br>624.8<br>614.8<br>606.8<br>606.8<br>6369 | 1 1                |
| Comment                | C:/Users/özge/Desktop/LA 2010/LA NMR FID VE COZUMLERI | Nucleus              | Currer                       | SWICYCHICAN (HZ)     |              | VerticalScaleFactor = 1 |      |     | -     | Me                 |     |      |                |                |       |        |            |    |                         | -2999<br>                                                           | 1 1                |
| 3.9846 0.0353-23       | C:\Users\özge\l                                       | 400.13               | 32768                        | 456.10               | 240          |                         |      | Me  | t-Bu, | CO <sub>2</sub> Me | 3ea | _    |                |                |       |        |            |    |                         |                                                                     |                    |
| Acquisition Time (sec) | File Manne                                            | Frequency (MHz)      | <b>Original Points Count</b> | Receiver Gain        | Toroct month |                         |      |     |       | 60                 | 80  | <br> | isneini b<br>6 | 20<br>20<br>20 | 0N    | 0.4    | <b>6</b> 3 | 20 |                         | 0.1                                                                 | 0                  |


| :26.40                | 11000fd                                                      | Origin spect          | Puise Sequence zapa30        | chrum Offset (Hz) |                               |                         |      |      |                    |     |      | 6263             | <u>-</u>       |      | ,    |        | · · · · · · · · · · · · · · · · · · · | 150 140 130 120 110 10 100 100 100 50 80 70 60 50 40 30 20 10 10 10 10 10 10 10 10 10 10 10 10 10 |
|-----------------------|--------------------------------------------------------------|-----------------------|------------------------------|-------------------|-------------------------------|-------------------------|------|------|--------------------|-----|------|------------------|----------------|------|------|--------|---------------------------------------|---------------------------------------------------------------------------------------------------|
| 24 Aug 2010 04:26:40  | AGUSTOS 2010/ERAY/OACO636/0ACO634 01100064                   | er of Transients 1024 | Count                        | BENZENE-46        |                               |                         |      |      |                    |     |      |                  |                |      |      | 92.921 | 10'901                                | Chemical Shift (ppm)                                                                              |
| Cete                  | GUSTOS                                                       | Numbe                 | Points                       | Solver            |                               |                         |      |      |                    |     |      |                  |                |      |      |        |                                       |                                                                                                   |
| 5 mm Multinuclear     | FID VE COZUMLERI                                             | 13C                   | guest                        | 31847.13          | THE C) 27.000                 |                         |      |      |                    |     |      |                  |                |      |      |        | 20001                                 | 160 150 140                                                                                       |
| Comment               | 24 Aug 2010 04:20:40<br>C:Ulsers\özge\Desktop\LA 2010\LA NMR | Nucleus               | Owner                        | SWICYCROBID (Hz)  | Temperature (degree C) 27.000 | VerticalScaleFactor = 1 |      |      | Me                 |     |      |                  |                |      |      |        | 23.86f——                              | 220 210 200 150 150 160                                                                           |
| 1.0289 01.0289        | C:Users/özge/Dest                                            | 100.63                | 32768                        | 4096.00           | 31846.16                      |                         |      | an A | CO <sub>2</sub> Me | 3ea |      |                  |                |      |      |        |                                       | 210 200 190                                                                                       |
| Acculation Time (sec) |                                                              | Frequency (MHz)       | <b>Oripinal Points Count</b> | Receiver Gain     | Sweep Width (Hz)              | 0AC0631_0110001d        | 0.10 |      |                    |     | 10:0 | planetm i b<br>R | estiemoli<br>S | 0.04 | E0.0 | 0.02   | 6<br>6<br>90 ttc                      | 0                                                                                                 |



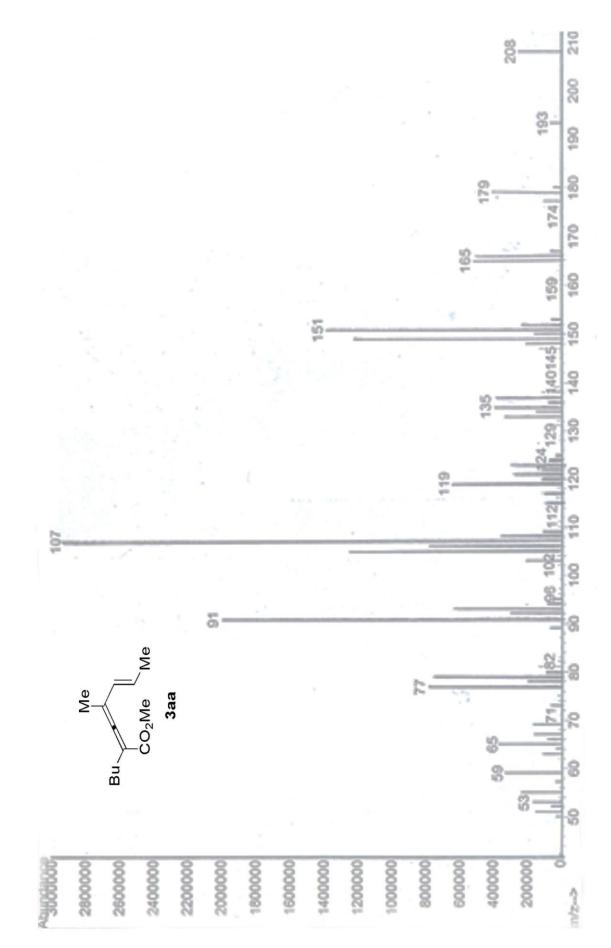


| 23 Aug 2010 13:22:08           |                                   | spect               | 2020           | 2425.8818            |                               |                         |      |      |     |      |      |          |      |           | 999                 | 0    | 695 <sup>1</sup><br>085 | 11,68.<br>07.8.0<br>87.8.0 |      | 11319<br>11354<br>11343<br>23 | 20                                                                                          |      | 6.89 4.47 6.02<br>1.5 1.1.0 0.5 1.0                                            |                      |
|--------------------------------|-----------------------------------|---------------------|----------------|----------------------|-------------------------------|-------------------------|------|------|-----|------|------|----------|------|-----------|---------------------|------|-------------------------|----------------------------|------|-------------------------------|---------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------|----------------------|
| Dete                           | 01000064                          | Origin              | Pulse Securice | Spectrum Offset (Hz) |                               |                         |      |      |     |      |      |          |      |           |                     |      |                         |                            |      | 68*1<br>66<br>06<br>005       | 5131<br>5136<br>5136<br>5136<br>5168<br>5168<br>5168<br>5168<br>5168<br>5168<br>5168<br>516 |      | 188 212<br>0000 255 2000                                                       |                      |
|                                | AGUSTOS 2010/EPAY/OACO67/0ACO67 ( | er of Transients 16 |                |                      |                               |                         |      | 007  | e—— |      |      |          |      |           |                     |      |                         |                            |      |                               |                                                                                             |      | 281 18<br>281 18<br>281 25                                                     | Chemical Shift (ppm) |
| 5 mm Multinuclear              | FID VE COZUMLERI AGUSTOS 201      |                     | Points         | Solver               | 2) 27.000                     |                         |      |      |     | Bu   | Ľ,   | CO2Me Me | 3ga  |           |                     |      |                         |                            |      |                               | 5<br>275<br>695                                                                             | 2927 | 0<br>8.5<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0 | 8                    |
| Comment                        | OLA 2010LA NMR                    | Auctoria            | Owner          | SW(cyclical) (Hz)    | Temperature (degree C) 27.000 | VerticalScaleFactor = 1 |      |      |     |      | Bu   |          |      |           |                     |      |                         |                            |      |                               | 189'9                                                                                       | 195  | 001 100<br>01 100<br>031 100<br>031 100<br>031 100<br>031 100                  |                      |
| Contention Time (sec) 3.9846 C |                                   | (MAHAZ)             | Inte Count     |                      | OT (12) 8223.43               | OACO67_0100000d esp V   |      |      |     |      |      |          |      |           |                     |      |                         |                            |      |                               |                                                                                             |      | 0 <sup>7</sup>                                                                 |                      |
| Acquisition                    | File Mame                         | Frequency           | Orioinel Po    | Receiver Gal         | Sweep Width (Hz)              | No.                     | 0.75 | 0.70 | 4   | 0.65 | 09.0 | 0.55     | 0.50 | Park 0.45 | en i be<br>0.<br>6. | SE.O | ×<br>0:30               | 0.25                       | 0.20 | 0.15                          | 0.10                                                                                        | 0.05 | •                                                                              |                      |

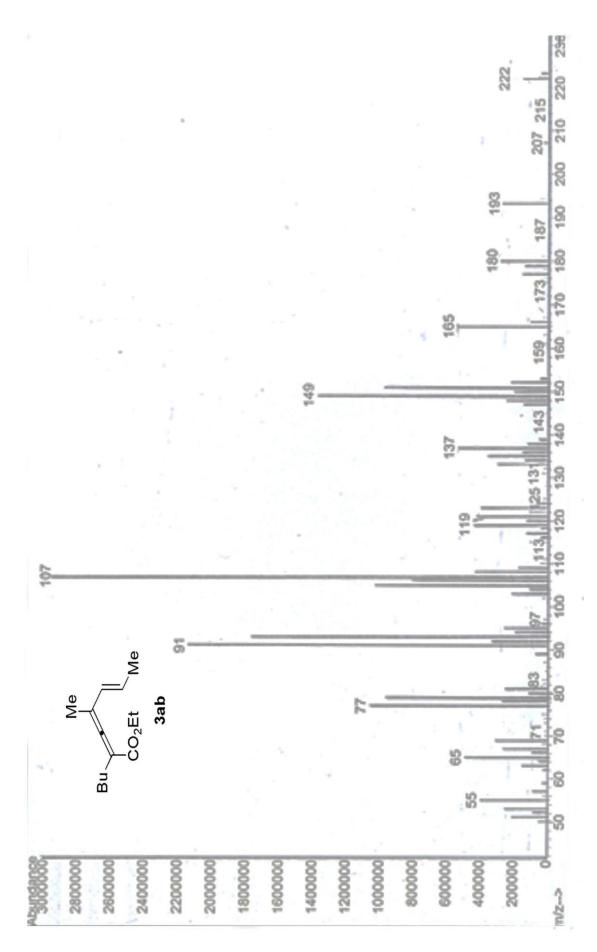

| 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.653 A 100.65 | AL MINING AND AND AND AND AND AND AND AND AND AND |          |                                                                                   |            |                      |            |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------|-----------------------------------------------------------------------------------|------------|----------------------|------------|---------------------|
| 16<br>VerticalS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nucleus                                           | 130      | 100.63 Automatic Structures 13C Automatic 200 00 00 00 00 00 00 00 00 00 00 00 00 | 320        | Origin               | spect      |                     |
| VerticalS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Owner                                             | guest    | Points Count                                                                      | 32768      | Pulse Sequence       | 200030     |                     |
| VerticalS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SW(cyclical) (Hz)                                 | 31847.13 | Solvent                                                                           | BENZENE-46 | Spectrum Offset (Hz) | 12693.1709 |                     |
| VerticalSc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Temperature (degree C)                            | 27.000   |                                                                                   |            |                      |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VerticalScaleFactor = 1                           |          |                                                                                   |            |                      |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |          |                                                                                   |            |                      |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |          |                                                                                   |            |                      |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |          |                                                                                   |            |                      |            |                     |
| Ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ª-{                                               |          |                                                                                   |            |                      |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |          |                                                                                   |            |                      |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3ga                                               |          |                                                                                   |            |                      |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |          |                                                                                   |            |                      |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |          |                                                                                   |            |                      |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |          |                                                                                   |            |                      |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |          |                                                                                   |            |                      |            | 62'72<br>887<br>961 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |          | 92'971-                                                                           |            |                      | 1911       | 99'81-<br>          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |          | <u>`</u>                                                                          |            |                      | 9          | 16~                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |          | 96,801                                                                            |            |                      |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99" 29 1-                                         |          |                                                                                   | 101-       |                      |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |          |                                                                                   |            |                      |            |                     |

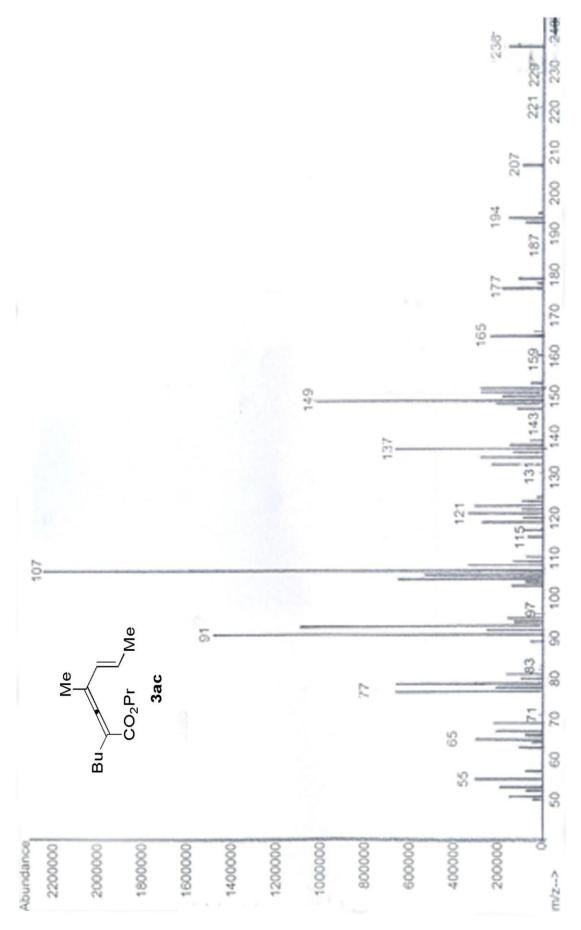


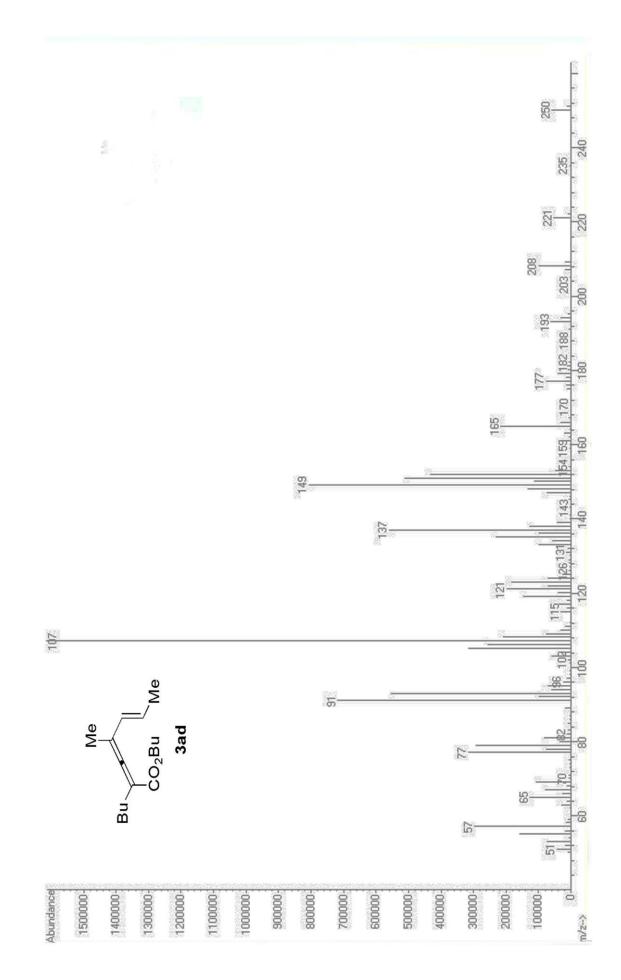


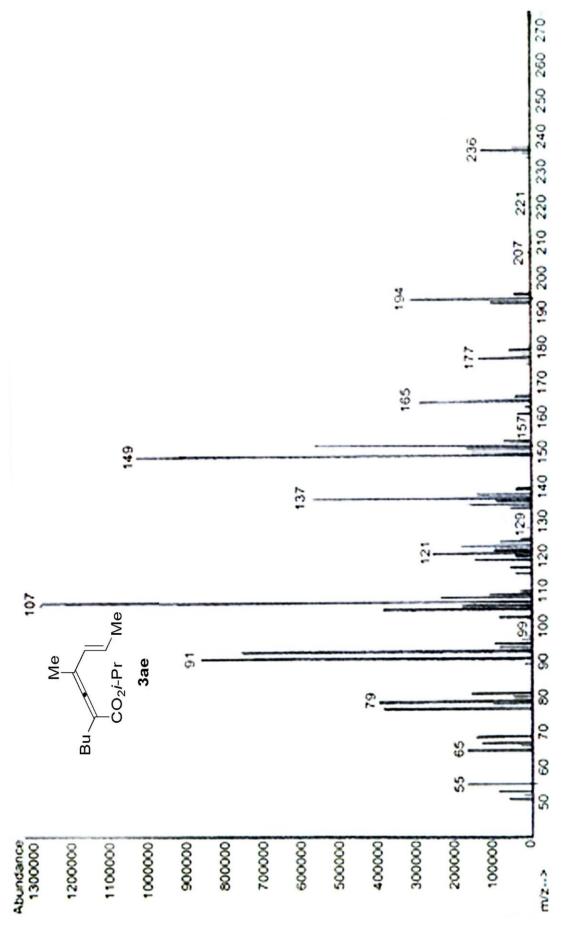


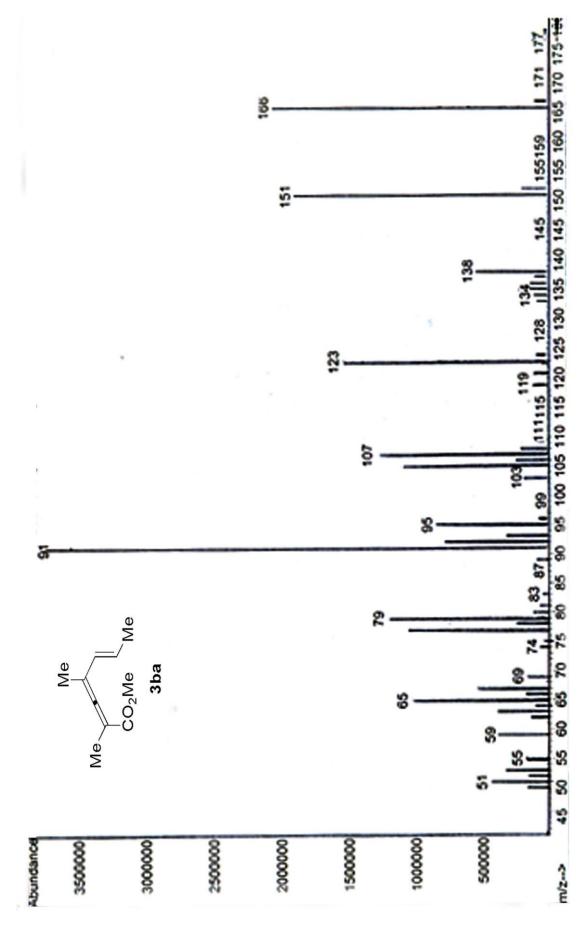


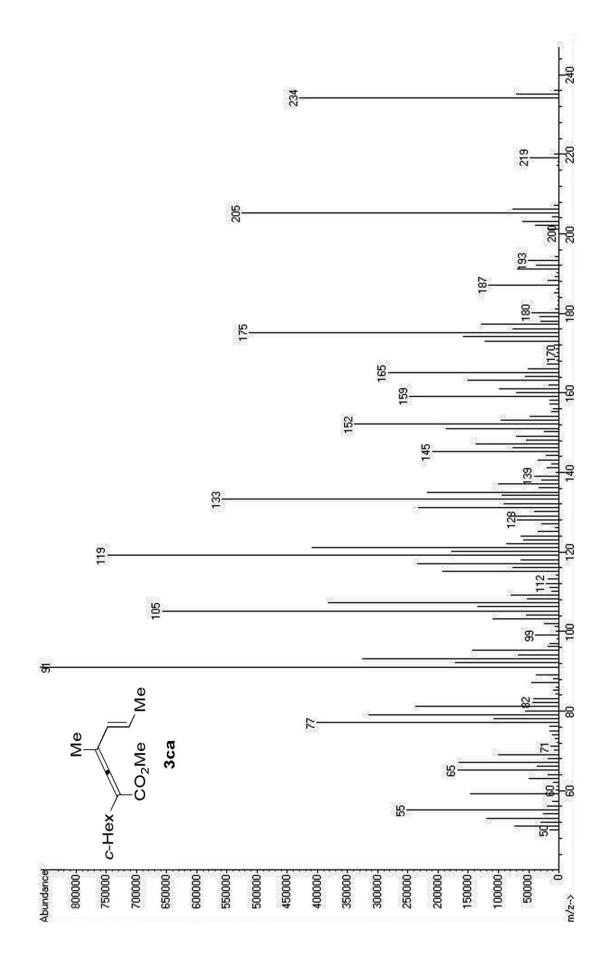



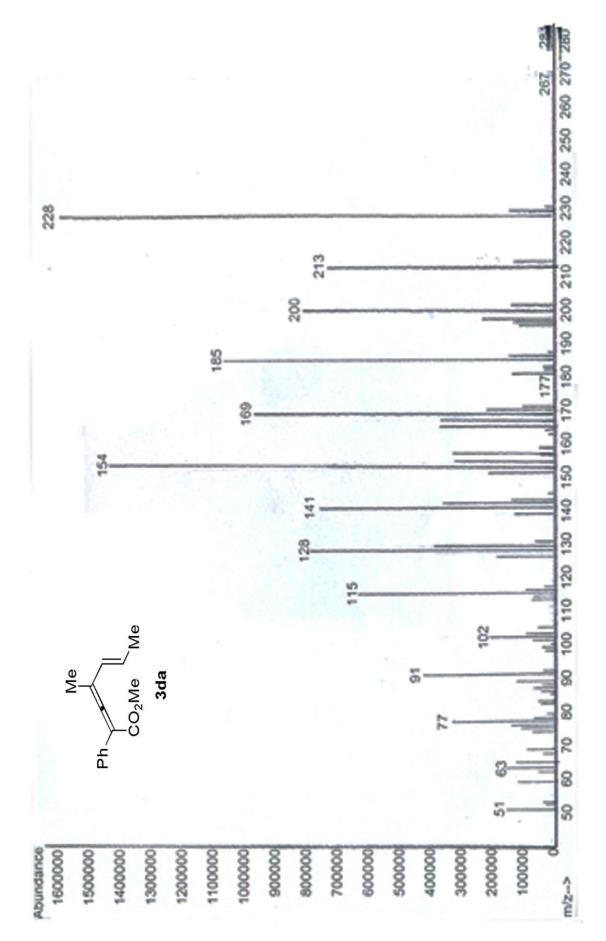


| $\left[\right]$      |                      |                                                      |                 |                |                |                               |                       |      |           |                                                                                  |                      |
|----------------------|----------------------|------------------------------------------------------|-----------------|----------------|----------------|-------------------------------|-----------------------|------|-----------|----------------------------------------------------------------------------------|----------------------|
|                      |                      |                                                      |                 |                |                |                               |                       |      |           |                                                                                  |                      |
|                      |                      |                                                      |                 |                |                |                               |                       |      |           | -1280<br>                                                                        |                      |
|                      |                      |                                                      |                 |                |                |                               |                       |      |           | 1810-                                                                            |                      |
|                      |                      |                                                      |                 |                | 209            |                               |                       |      |           | 9                                                                                |                      |
|                      |                      |                                                      | spect           | z00030         | 12693.1709     |                               |                       |      |           |                                                                                  |                      |
|                      |                      |                                                      |                 |                | et (Hz)        |                               |                       |      |           |                                                                                  |                      |
|                      |                      |                                                      |                 | <b>DUMPICO</b> |                |                               |                       |      |           |                                                                                  |                      |
|                      |                      |                                                      | Onioin          | Puble Se       | Spectrum Off   |                               |                       |      |           |                                                                                  |                      |
| 24 Aug 2010 10:25:04 |                      | 1100014                                              | 0               | •              | S              |                               |                       |      |           | 96,201                                                                           |                      |
| 2010 1               |                      | 0064 0                                               |                 |                | BENZENE-d6     |                               |                       |      |           | 0120                                                                             |                      |
| 24 Aux               |                      | OGROA                                                | 320             | 32768          | BENZ           |                               |                       |      |           | 96'201                                                                           | (mdo                 |
|                      |                      | WOND                                                 | sinchs          |                |                |                               |                       |      |           |                                                                                  | Chemical Shift (ppm) |
|                      |                      | 010ER                                                | of Tran         | Count          |                |                               |                       |      |           | 92'0Z1                                                                           | Chemica              |
| 38                   |                      | AGUSTOS 2010/ERAY/OACO64/0ACO64_011000/6             | Number of Trent | Points Count   | Solvent        |                               |                       |      |           | 92'02 L-                                                                         |                      |
|                      |                      | RI AGU                                               |                 |                |                |                               |                       |      |           | -13832                                                                           |                      |
| 5 mm Multinuciear    |                      | OZUMLE                                               |                 | H              | 31847.13       | 8                             |                       |      |           |                                                                                  |                      |
| Sm                   |                      | DVEC                                                 | 13C             | guest          | 318            | Temperature (degree C) 27.000 |                       |      |           |                                                                                  |                      |
|                      |                      | NMR F                                                |                 |                | 24             | degree                        | 7                     |      | Å         | 89 19 I                                                                          |                      |
| 1                    |                      | 20101                                                | -               |                | rollicel) (Hz) | antitre .                     | actor                 |      | /         |                                                                                  |                      |
| Contre               | 5                    | <b>ktopl</b>                                         | Mach            | Owne           | SWCrot         | Tento                         | Scale                 |      | <u>≻8</u> |                                                                                  |                      |
|                      | 24 Aug 2010 10:25:04 | C:Users/özge/Desktop/LA 2010/LA NMR FID VE COZUMLERI |                 |                |                |                               | VerticalScaleFactor = |      | Me        |                                                                                  |                      |
| 1.0289               | Aug 201              | Users\0                                              | 100.63          | 32768          | 4096.00        | 31846.16                      |                       |      |           | 200                                                                              |                      |
|                      |                      | ΰ                                                    | 10              | * 32           | 40             | 31                            | PW00011               |      |           |                                                                                  |                      |
| tion Time (sec)      |                      |                                                      | OCY (MHLZ)      | oth Court      | 4              | (20)                          | OACO64_011000hd       |      |           | 86 Tal                                                                           |                      |
| Accutation           | Date Stamp           | File Name                                            | Frequency (     | Original Pol   | Receiver Gu    | Sweep Width (Hz)              | *···                  | 0.25 | 0.20      | Vienemi beziermovi<br>S. B. S. o<br>S. S. C. C. C. C. C. C. C. C. C. C. C. C. C. |                      |

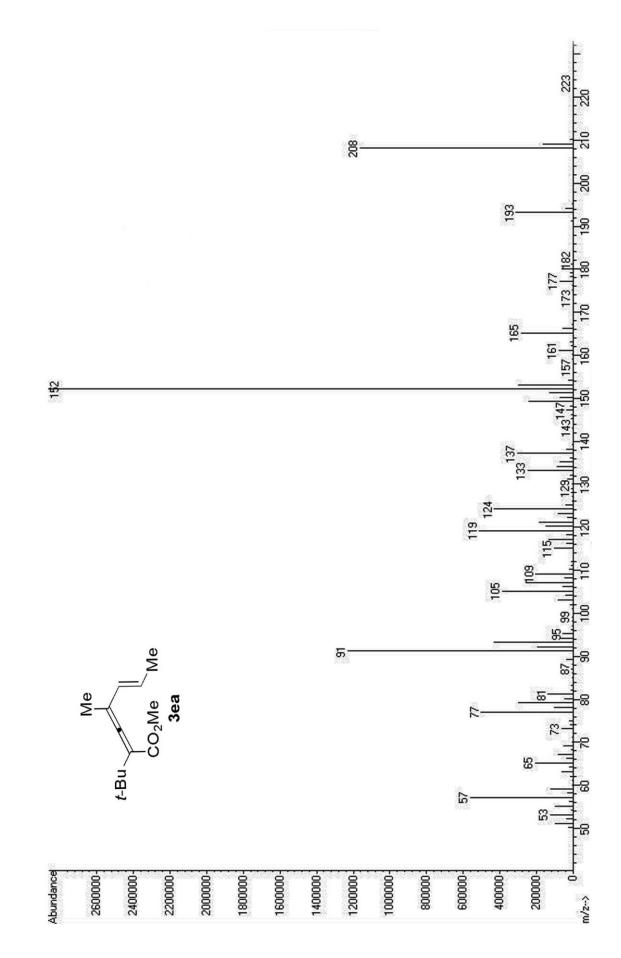

### **APPENDIX E**

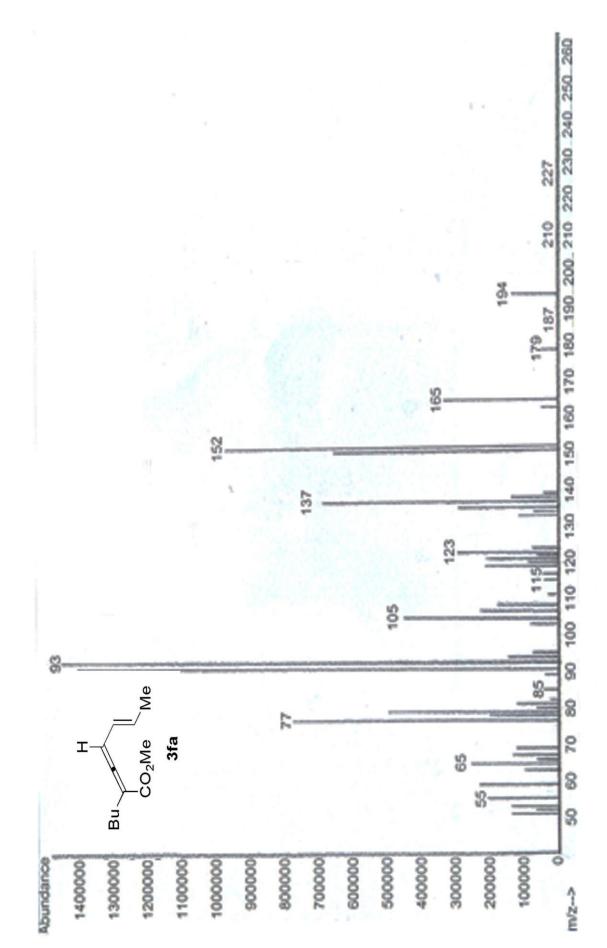

## MASS SPECTRUMS OF PRODUCTS

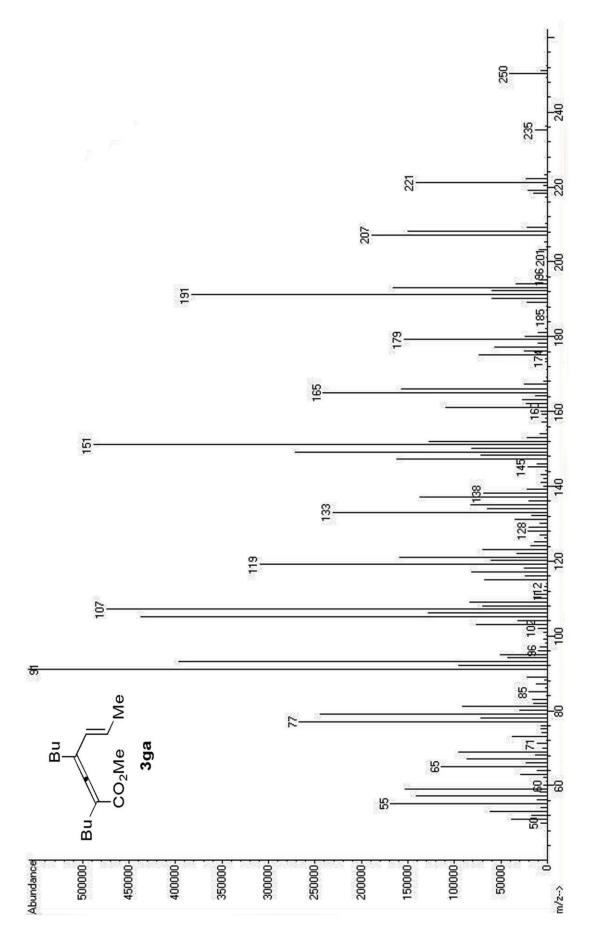


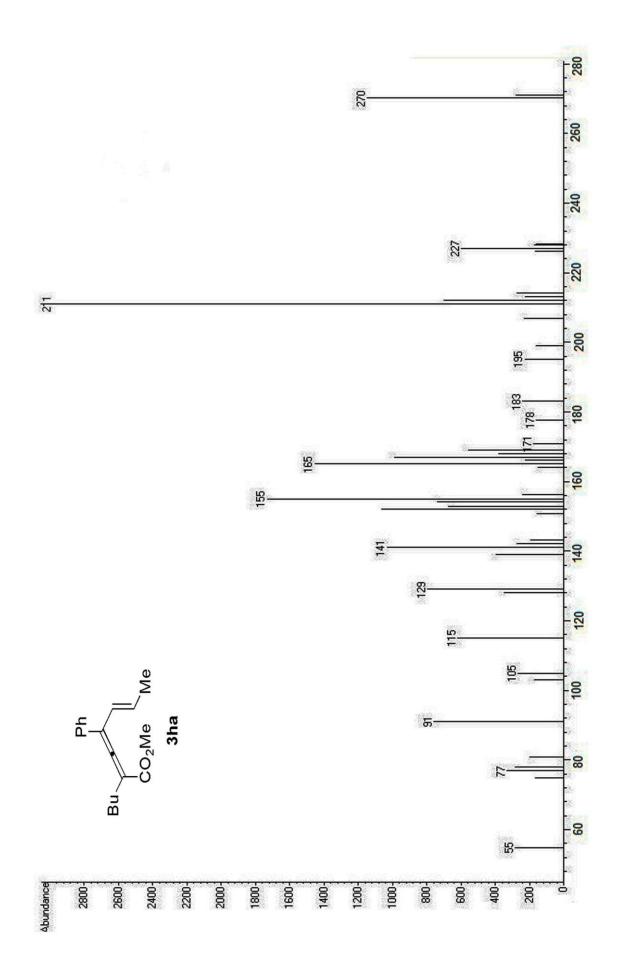



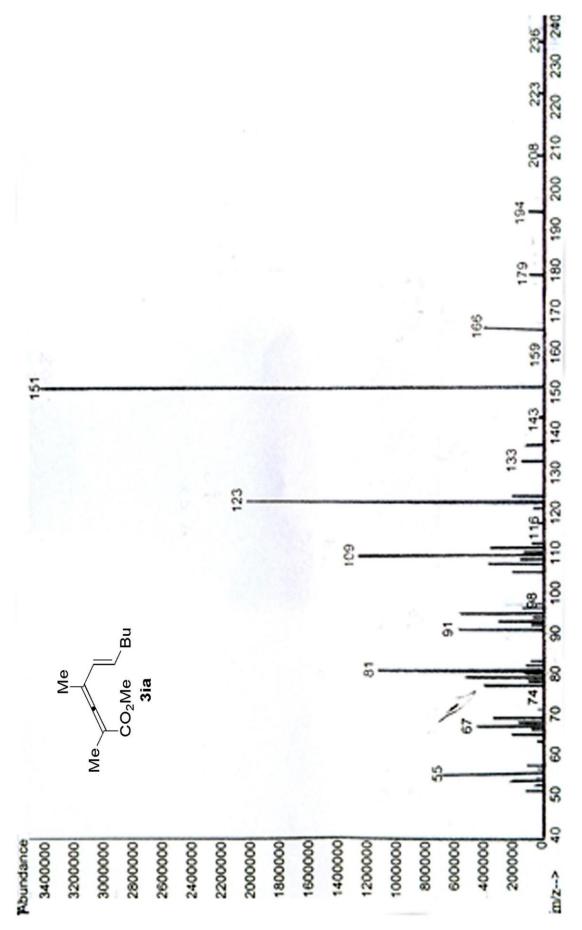



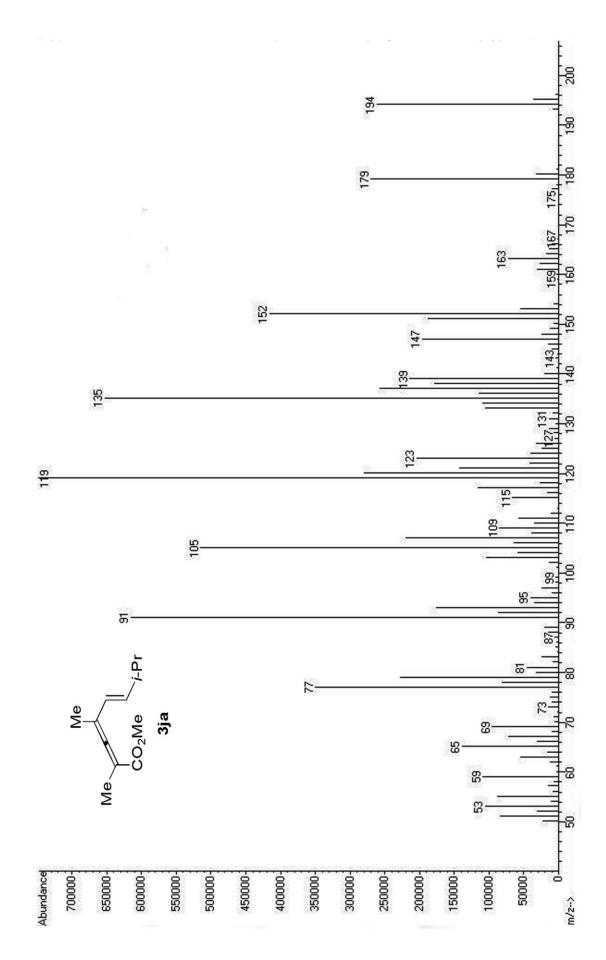



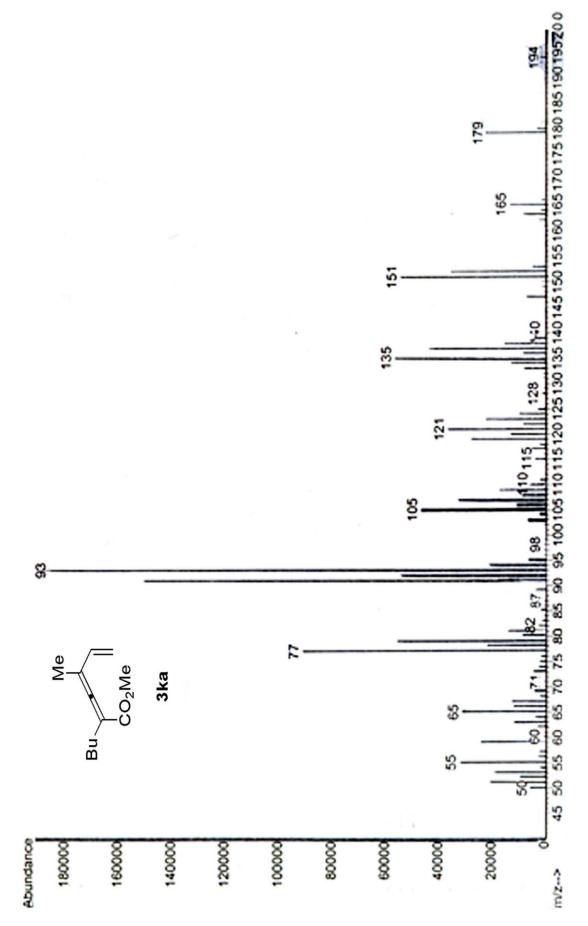



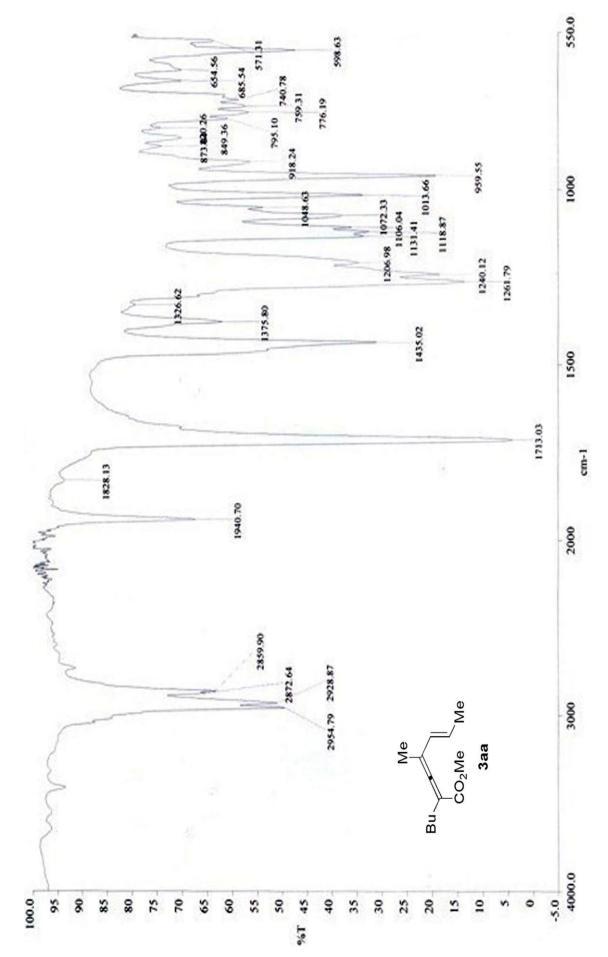



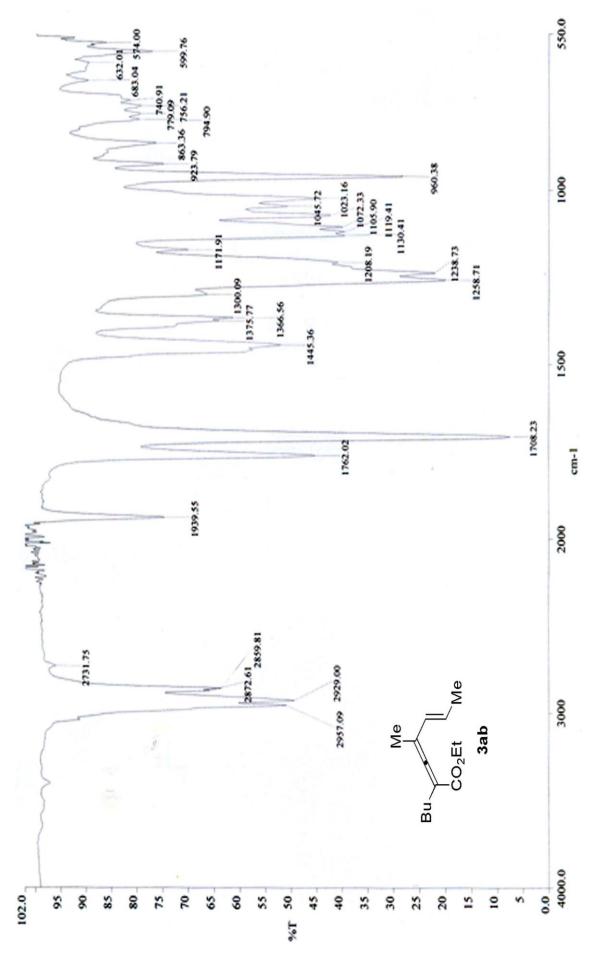



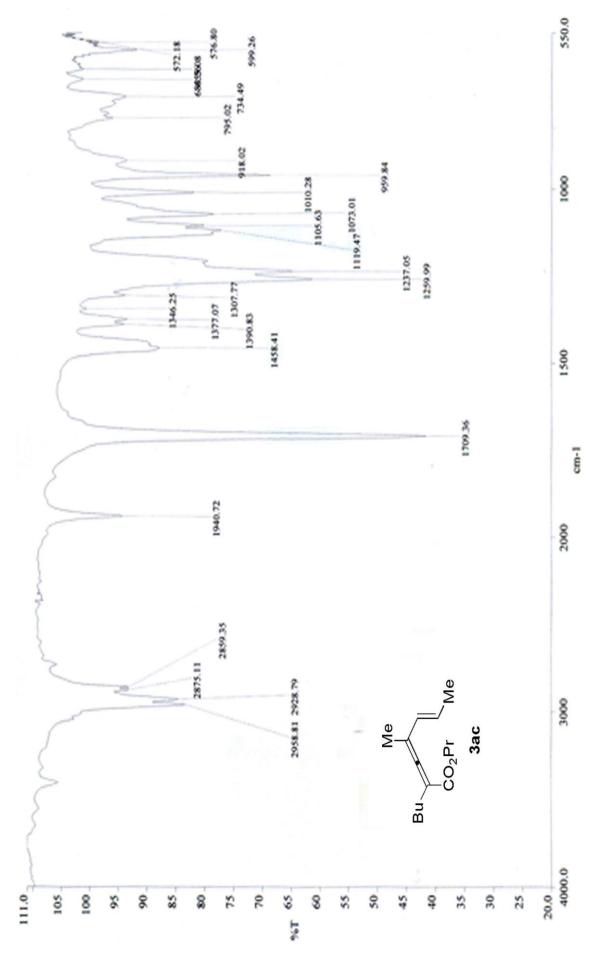



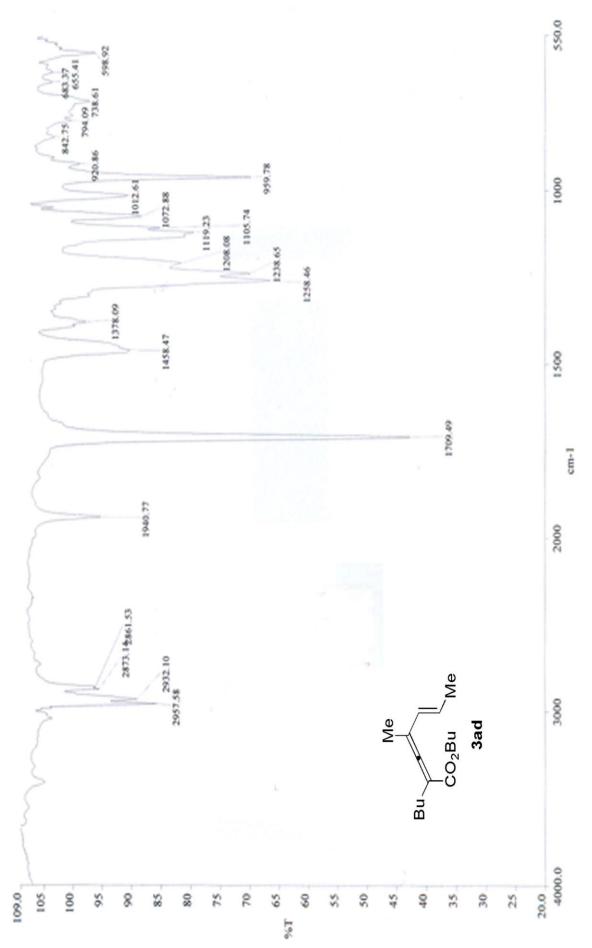


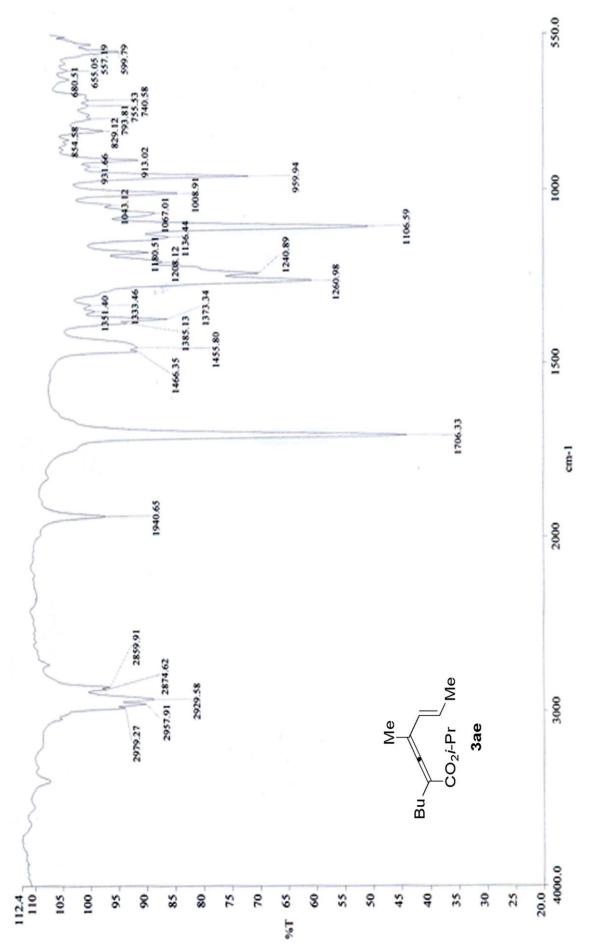


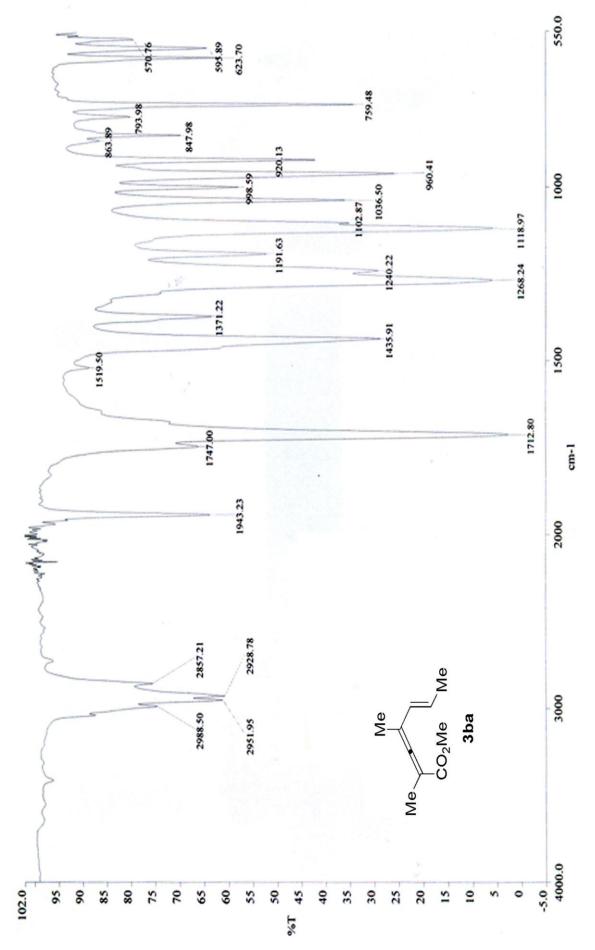



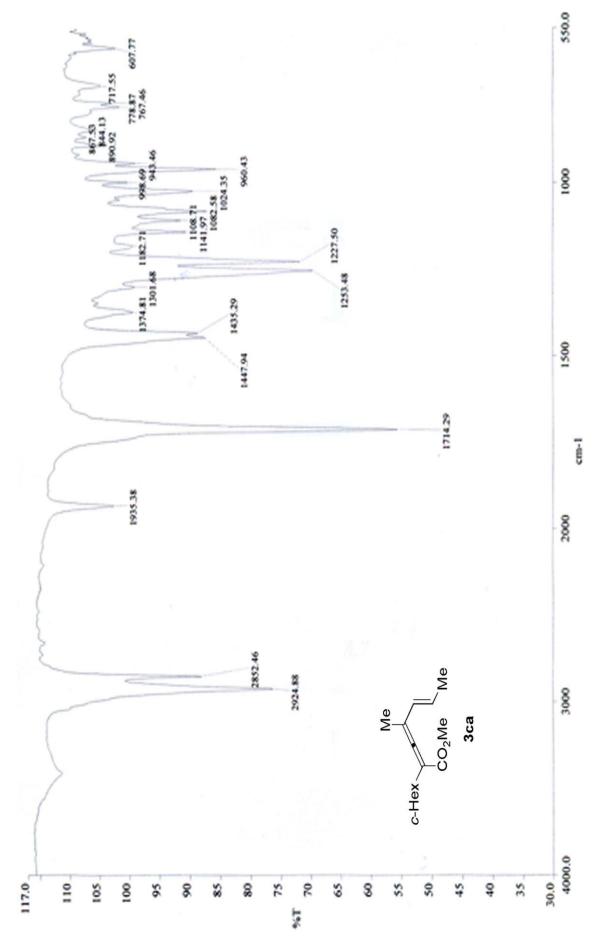



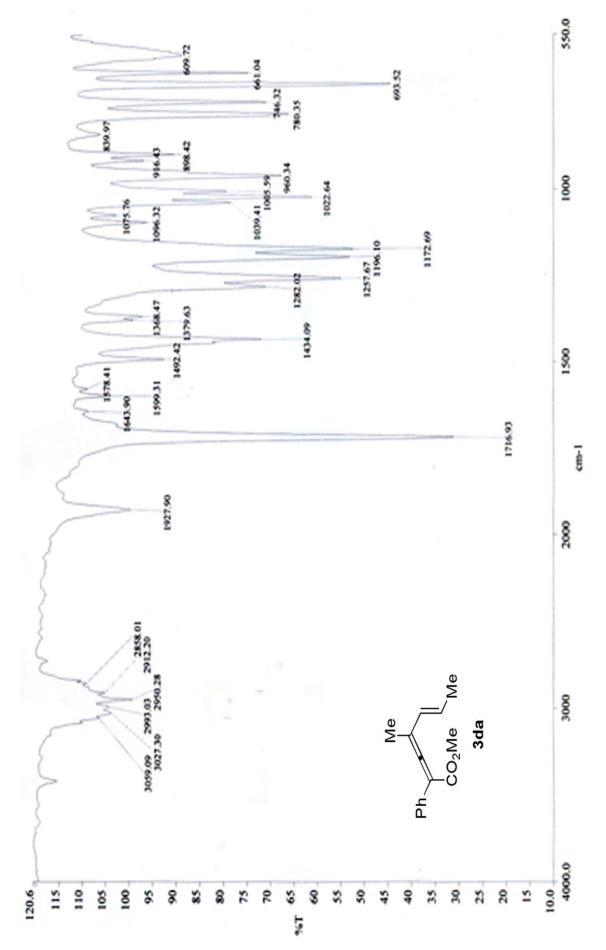



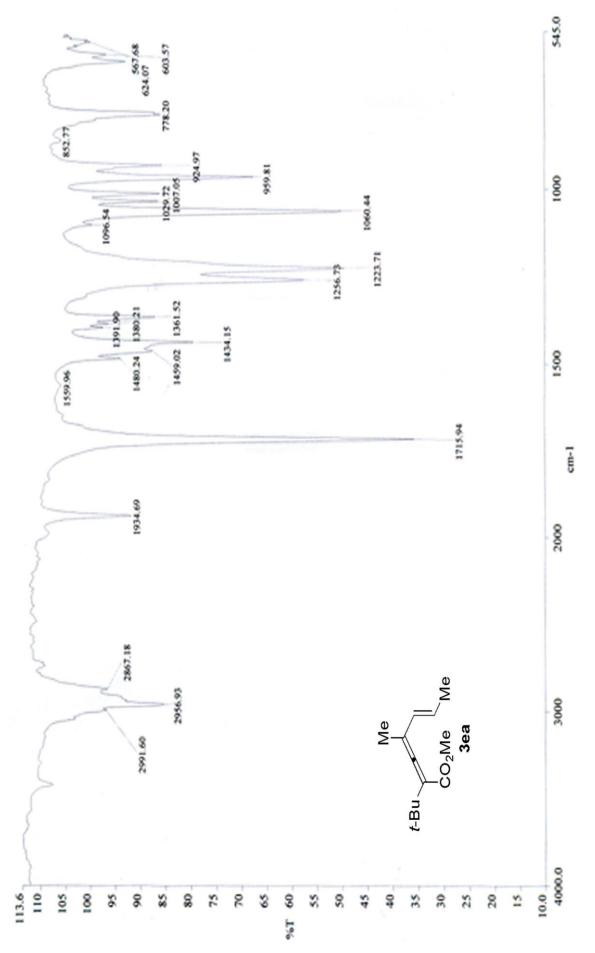


## **APPENDIX F**

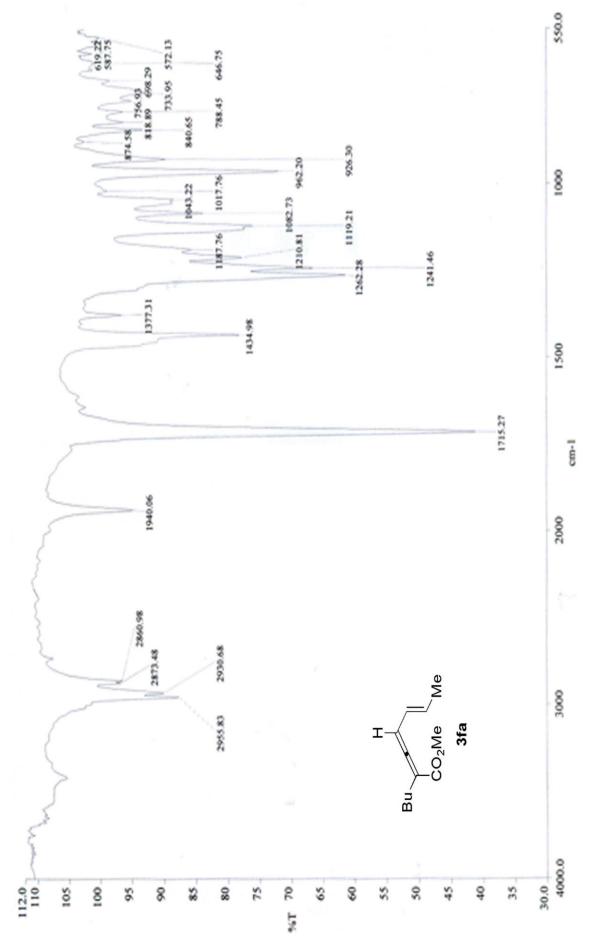

## FT-IR SPECTRUMS OF PRODUCTS

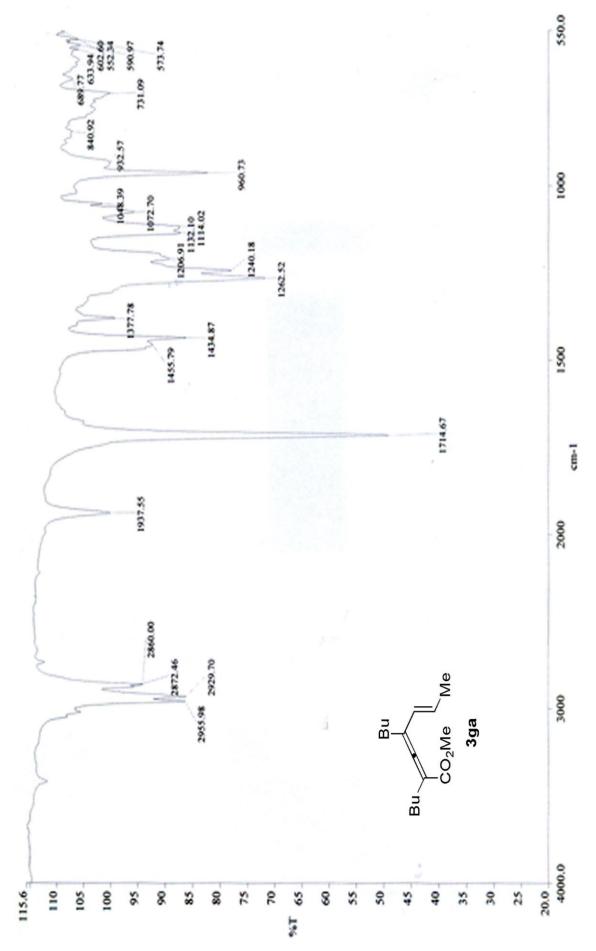


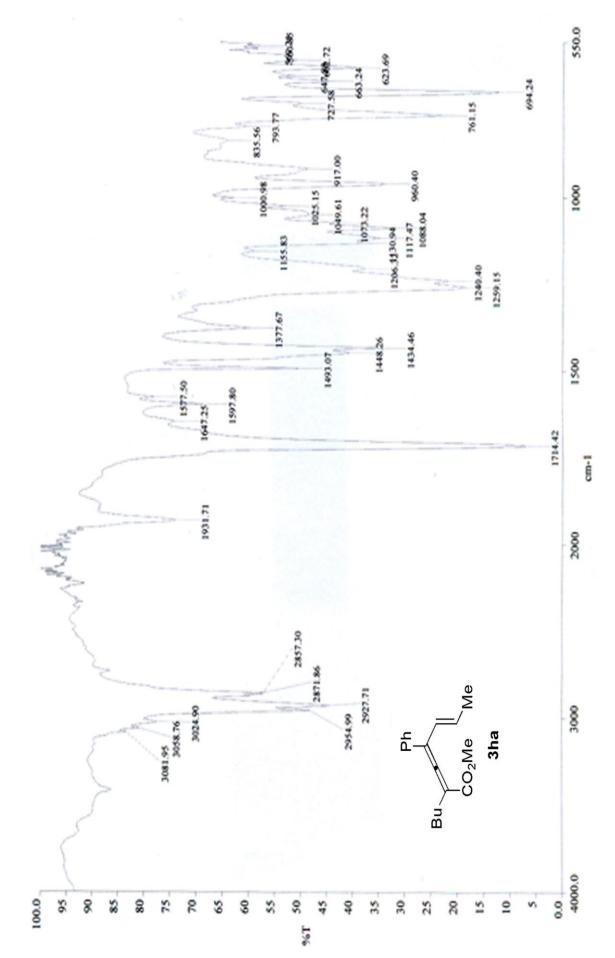



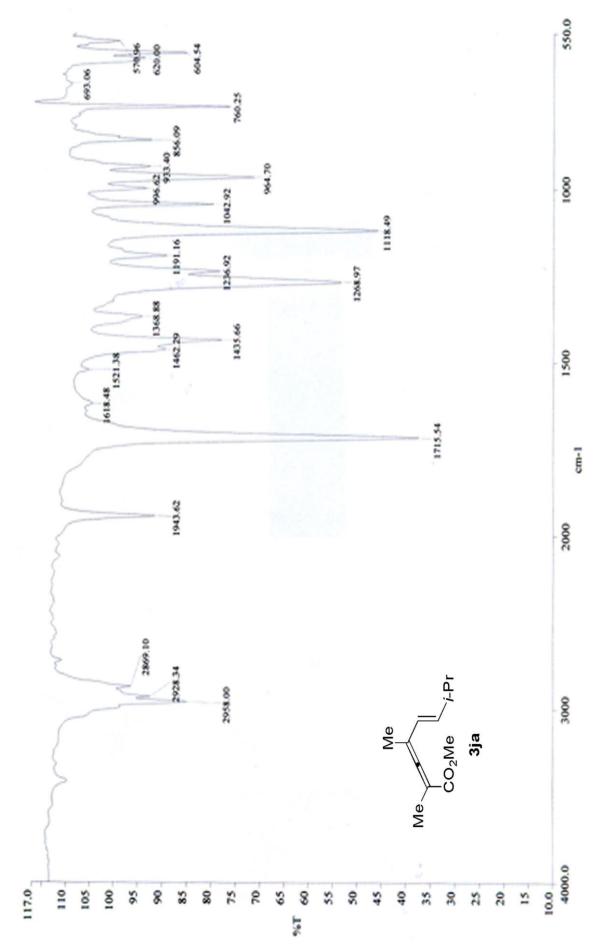



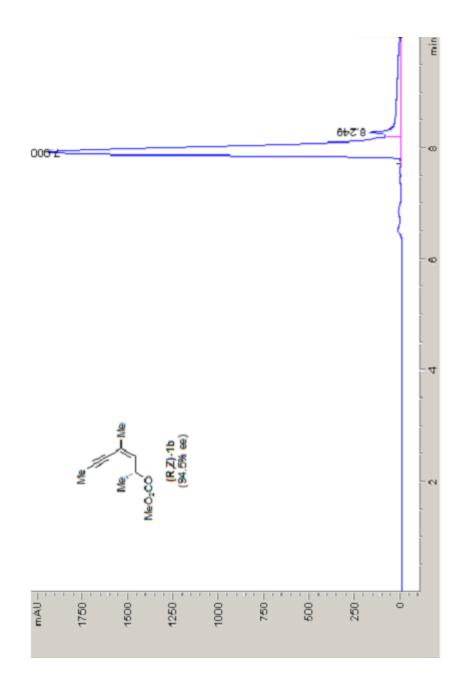



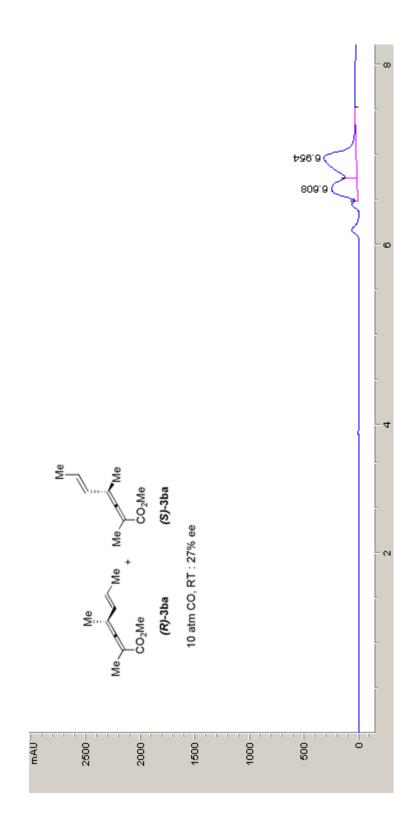


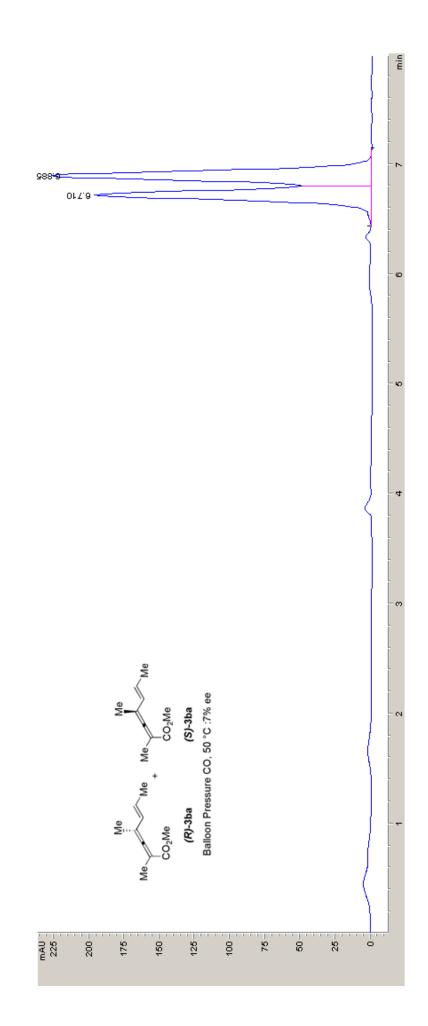



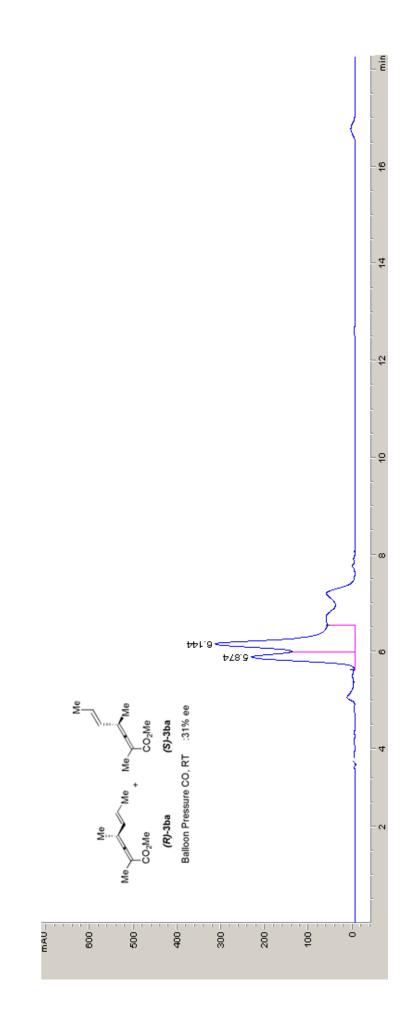






### **APPENDIX G**

# HPLC CHROMATOGRAMS OF REACTANTS AND PRODUCTS







