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ABSTRACT 

 
DETECTION OF MAN-MADE STRUCTURES IN AERIAL IMAGERY 

USING QUASI-SUPERVISED LEARNING AND TEXTURE 
FEATURES 

 

In this thesis, the quasi-supervised statistical learning algorithm has been applied 

for texture recognitioning analysis. The main objective of the proposed method is to 

detect man-made objects or differences on the terrain as a result of habitating. From this 

point of view, gaining information about human presence in a region of interest using 

aerial imagery is of vital importance. This task is adressed using a machine learning 

paradigm in a quasi-supervised learning.    

Eigthteen different sized aerial images were used in all computations and 

analysis. The available data was divided into a reference control set which consist of 

normalcy condition samples with no human presence, and a mixed testing data set 

which consisting images of habitate and cultivated terrain. Grey level co-occurrence 

matrices were then computed for each block and “Haralick Features” were extracted and 

organized into a texture vector. The quasi-supervised learning was then applied to the 

collection of texture vectors to identify those image blocks which show human presence 

in the test data set.  

In the performance evaluatian part, detected abnormal areas were compared with 

manually labeled data to determine the corresponding reciever operating characteristic 

curve. The results showed that the quasi-supervised learning algorithm is able to 

identify the indicators of human presence in a region such as houses, roads and objects 

that are not likely to be observed  in areas free from human habitation.  
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ÖZET 

 
DOKU ÖZNİTELEKLERİ VE YARI GÜDÜMLÜ ÖĞRENME İLE 
HAVA GÖRÜNTÜLERİNDE İNSANA AİT YAPILARIN TESPİT 

EDİLMESİ 
 

Bu tezde, doku özniteliklerinin tanınması ve analizi için istatistiksel “yarı 

güdümlü öğrenme” hava fotoğraflarına uygulanmıştır. Sözü edilen metodun ana hedefi; 

insana ait nesneleri ve arazideki değişimleri tespit etmektir. Bu bakış açısıyla;  

incelenenen bir arazi parçasında insan varlığına ilişkin bir bilgiye sahip olmak büyük 

önem arz etmektedir. Bu iş yarı güdümlü öğrenme yardımıyla  yapılmaya çalışılacaktır.  

Tüm hesaplamalarda ve analizlerde farklı boyuttaki 18 hava fotoğrafı 

kullanılmıştır. Mevcut resimler, insana ait izler bulunmayan referans kontrol grubuna ve 

insana ait izler içeren karışık test grubuna ayrılmıştır. Daha sonra gri seviyeli eş oluşum 

matrisleri hesaplanmış ve bu matrislerden “Haralick öznitelikleri” ile desen vektörleri 

elde edilmiştir. Sonraki adımda yarı güdümlü öğrenmenin, insana ait izler içeren 

blokları tespit edebilmesi için öğrenme algoritması desen vektörleri üzerinde 

koşturulmuştur.      

 Performans değerlendirme kısmında ise; yarı güdümlü öğrenmenin tespit ettiği 

anormal bölgeler, el ile etiketlenmiş bloklarla karşılaştırılarak sınıflandırma başarım 

eğrisi çıkartılmaktadır. Sonuçlar yarı güdümlü öğrenmenin evler, yollar gibi insana ait 

nesneler ile doğal yaşamda bulunması güç olan dokuları yüksek bir yüzdeyle otomatik 

olarak tespit edebildiğini göstermektedir.  

 v



TABLE OF CONTENTS 

 

LIST OF FIGURES ............................................................................................................ viii 

 

LIST OF TABLES..................................................................................................................x 

 

CHAPTER 1. INTRODUCTION ...........................................................................................1 

 

CHAPTER 2. TEXTURE RECOGNITION...........................................................................3 

2.1. Image Texture ..............................................................................................3 

2.2. Texture Analysis ..........................................................................................3 

2.2.1. Texture Segmentation ...........................................................................4 

2.2.2. Texture Classification ...........................................................................4 

 

CHAPTER 3. PROBLEM DESCRIPTION AND PROPOSED METHOD ..........................8 

3.1. Problem Description ....................................................................................8 

3.2. Problem Solving and Proposed Method ......................................................9 

3.3. Grey Level Co-occurrence Matrices (GLCM).............................................9 

3.3.1. Grey Level Co-occurrence Matrices Example....................................10 

3.4. Quasi Supervised Statistical Learning Method..........................................12 

 

CHAPTER 4. IMPLEMENTATION PART ........................................................................14 

4.1. Introduction to Specific Implementation .................................................14 

4.1.1. Materials .............................................................................................14 

4.1.1.1 Control Images............................................................................15 

4.1.1.2 Test Images .................................................................................16 

4.1.2. Specific Implementation .....................................................................18 

4.2. Labeling The Test Images.........................................................................25 

4.2.1. True Detection and False Alarm.........................................................27 

 

CHAPTER 5. EXPERIMENTAL RESULTS ......................................................................29 

5.1. Detection performance..............................................................................29 

5.1.1. Optimal Block Size.............................................................................29 

 vi



5.1.1.1. Performance of  7ˣ7 pixel (9m²) Block Size ..............................29 

5.1.1.2. Performance of  10ˣ10 pixel (18.5m²) Block Size .....................32 

5.1.1.3. Performance of  14ˣ14 pixel (36m²) Block Size ........................35 

5.1.1.4. Performance of  20ˣ20 pixel (74m²) Block Size ........................37 

5.1.1.5. Performance of  28ˣ28 pixel (145m²) Block Size ......................39 

5.1.1.6. Performance of  40ˣ40 pixel (296m²) Block Size  ....................40 

5.1.1.7. Performance of  56ˣ56 pixel (580m²) Block Size ......................42 

5.1.1.8. Performance of  63ˣ63 pixel (734m²) Block Size ......................44 

5.1.1.9. Performance of  80ˣ80 pixel (1183m²) Block Size ....................46 

5.1.2. Optimal Distance For GLCM Feature Vectors...................................50 

5.1.3. Quantization Level..............................................................................55 

 

CHAPTER 6. CONCLUSION .............................................................................................57 

 
REFERENCES .....................................................................................................................59 

  

 

 

 vii



LIST OF FIGURES 

  

Figure                                                                                                                         Page 

Figure 3.1. Sample image, 4 grey levels ………………………………………………10 

Figure 4.1. Control image, Size of 250ˣ250……………………………………………15 

Figure 4.2. Control image, Size of 350ˣ350..…………………………………………. 16 

Figure 4.3. Test image, Size 350ˣ350 pixels ………………………….………………17 

Figure 4.4. Test images, Size 500ˣ500 pixels…………………………………………. 17 

Figure 4.5. Test images, Size 250ˣ250 pixels, 100 non-overlapping blocks ..................18 

Figure 4.6. Control images, Size 250ˣ250 pixels, 100 non-overlapping blocks .............18 

Figure 4.7. The first block representation with a blue colored grid................................19 

Figure 4.8. 0º, 45º, 90º, 135º degree and 1 pixel distance neighborhood of G2 .............22 

Figure 4.9. Test images and 7-10-14-20 pixel blocks.....................................................25 

Figure 4.10. Test images and 28, 40, 63 and 80  pixel block illustration .......................26 

Figure 4.11. True detection ares,  abnormally labeled grids...........................................27 

Figure 5.1. True detection ares, labeled grids for 175ˣ175 pixel. ...................................30 

Figure 5.2. Curves for 7ˣ7 pixel sized block and 1 pixel distances ................................31 

Figure 5.3. Blue grids and Red grids ..............................................................................32 

Figure 5.4. Blue colored blocks, the labeled data for 250ˣ250 pixel sized test image....33 

Figure 5.5. ROC curves for 10ˣ10 pixel sized block and 1, 3 pixel distances ................34 

Figure 5.6. ROC curves for 10ˣ10 pixel sized block and 5 pixel distances. ...................35 

Figure 5.7. Blue colored blocks, the labeled data for 350ˣ350 pixel sized test image....35 

Figure 5.8. ROC curves for 14ˣ14 pixel sized block and 1 pixel distances. ...................36 

Figure 5.9. ROC curves for 14ˣ14 pixel sized block and 3, 5 pixel distances. ...............36 

Figure 5.10. ROC curves for 14ˣ14 pixel sized block and 8 pixel distances ..................37 

Figure 5.11. ROC curves for 20ˣ20 pixel sized block and 1, 3, 5, 8 pixel distances ......38 

Figure 5.12. ROC curve for 20ˣ20 pixel sized block and 10 pixel distances..................39 

Figure 5.13. ROC curves for 28ˣ28 pixel sized block and 1, 3 pixel distances ..............39 

Figure 5.14. ROC curves for 28ˣ28 pixel sized block and 5, 8, 10 pixel distances. .......40 

Figure 5.15. Blue colored blocks, the labeled data.........................................................41 

Figure 5.16. ROC curve for 40ˣ40 pixel (296m²) Block Size  and 1 pixel distance.......41 

Figure 5.17. ROC curves for 40ˣ40 pixel (296m²) Block Size  and 3, 5, 8, 10 pixel 

distances........................................................................................................42 

 viii



Figure 5.18. ROC curves for 56ˣ56 pixel (580m²) Block Size  and 1, 3, 5, 8, 10        

pixel distances...............................................................................................43 

Figure 5.19. ROC curves for 63ˣ63 pixel (734m²) Block Size and 1, 3, 5, 8               

pixel distances...............................................................................................44 

Figure 5.20. ROC curves for 63ˣ63 pixel (734m²) Block Size and 1, 3, 5, 8, 10         

pixel distances...............................................................................................45 

Figure 5.21. Blue colored blocks, the labeled data for 2000ˣ2000 pixel sized test ........46 

Figure 5.22. ROC curve for 80ˣ80 pixel (1183m²) Block Size  and 1, 3, 5, 8, 10       

pixel distances...............................................................................................47 

Figure 5.23. ROC curve for 100ˣ100 pixel (1849m²) Block Size  and 1, 3, 5, 8, 10   

pixel distances...............................................................................................48 

Figure 5.24. ROC curves for optimal block size ............................................................48 

Figure 5.25. True detection regions and the regions where QSL failed with the    

textural feature of 80ˣ80 pixel blocks and 1 pixel neighborhood .................49 

Figure 5.26. ROC curves for optimal distance neighborhood GLMC feature, 10ˣ10  

pixel blocks and 1, 3, 5 pixel neighborhoods respectively ...........................51 

Figure 5.27. ROC curves for optimal distance neighborhood GLMC feature, 14ˣ14  

pixel blocks and 1, 3, 5, 8, 10 pixel neighborhoods respectively .................51 

Figure 5.28. ROC curves for optimal distance neighborhood GLMC feature, 20ˣ20  

pixel blocks and 1, 3, 5 pixel neighborhoods respectively ...........................52 

Figure 5.29. ROC curves for optimal distance neighborhood GLMC feature, 28ˣ28  

pixel blocks and 1, 3, 5 pixel neighborhoods respectively. ..........................52 

Figure 5.30. ROC curves for optimal distance neighborhood GLMC feature, 40ˣ40  

pixel blocks and 1, 3, 5 pixel neighborhoods respectively ...........................53 

Figure 5.31. ROC curves for optimal distance neighborhood GLMC feature, 56ˣ56  

pixel blocks and 1, 3, 5 pixel neighborhoods respectively. ..........................53 

Figure 5.32. ROC curves for optimal distance neighborhood GLMC feature, 63ˣ63  

pixel blocks and 1, 3, 5 pixel neighborhoods respectively ...........................54 

Figure 5.33. ROC curves for optimal distance neighborhood GLMC feature, 63ˣ63  

pixel blocks and 1, 3, 5 pixel neighborhoods respectively ...........................54 

Figure 5.34. ROC curves for optimal quantization level. ...............................................56 

 

 

 ix



 x

LIST OF TABLES 

 

Table  Page 

Table 3.1. Grey levels of sample image..........................................................................10 

Table 3.2. A Grey Level Co-occurrence Matrice Table .................................................11 

Table 3.3. 0º and 1 pixel distance Grey Level Co-occurrence Matrice Table ................11 

Table 3.4. 90º and 1 pixel distance Grey Level Co-occurrence Matrice Table ..............11 

Table 3.5. 45º and 1 pixel distance Grey Level Co-occurrence Matrice Table ..............11 

Table 3.6. 135º and 1 pixel distance Grey Level Co-occurrence Matrice Table ............12 

Table 4.1. Image and Block Sizes...................................................................................15 

Table 4.2. Four direction(0º- 45º- 90º- 135º) GLCM features........................................23 

Table 4.3. Feature vector ................................................................................................23 

Table 4.4. Textural feature vectors used in experiments ................................................24 

 

 



CHAPTER 1 

Equation Chapter 0 Section 1 

INTRODUCTION 

 

Today machine learning applications are being used in many fields. The aim of 

the machine learning is to automatically learn to recognize complex patterns and make 

intelligent decisions based on data. With the advent of air photography, unmanned air 

vehicle technologies and high-speed computers, it is becoming possible to perform 

learning algorithms on pictorial data. High resolution air photographs are used for 

reconnaissance efforts. Intelligence specialists try to gain information by visual 

observation or other detection methods, about the activities and resources of potential 

threats. They look for tangible structures, movements of opposing forces and any 

terrestrial abnormalities on a particular area.  

In this thesis, an automated quasi-supervised learning algorithm is applied to air 

photographs in a reconnaissance scenario. The pictorial information was provided from 

a reconnaissance aircraft and all the images used in the experiments were captured using 

a high-resolution aerial camera. The resolution of the images was 0.43 meter per pixel.  

Aerial images were converted to grayscale image and computations were made on 

grayscale images. The study was carried-out on eighteen aerial images of different sizes 

extracted from a big aerial image, nine of these images have natural terrestrial 

conditions and there are not any human made structures or vehicles etc. The other nine 

images have terrestrial conditions such as cultivated lands, human made buildings and 

roads. Images were farther divided into 625 square-shaped grid blocks; each block 

representing the related regions on the images. Nine different block sizes were used in 

the experiments and sizes of these blocks are: 7, 10, 14, 20, 28, 40, 56, 63, and 80 pixels 

respectively. In other words, images were divided into blocks of 9m², 18.5m², 36.2m², 

74m², 145m², 296m², 580m², 734m², and 1183m² areas on land respectively. For every 

block size, co-occurrence matrices were computed from each block. There are two 

parameters used in computing co-occurrence matrices, first one is the distance between 

neighboring pixels and the second is the angular relationship of the neighboring pixels. 

Various alternatives were used to compute different co-occurrence matrices. From these 
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matrices, several Haralick features were calculated and organized into texture vectors to 

be used for recognition.  

The strategy used for recognition is a quasi-supervised learning that requires the 

prior knowledge of only the presence or absence of abnormalities in the respective 

datasets and not the labeling of individual samples. Quasi-supervised statically learning 

depends on a reference control data set which consist of only normalcy condition with 

no human presence and a mixed testing data set which consist of human-made objects 

along with unhabitated land. The learning algorithm than detects the samples that are 

unique to the testing data set. By definition, those regions special to the testing data set 

are abnormal regions that we want to detect as regions of interest. For a reconnaissance 

scenario like this, the regions of interest on aerial images can be illustrated as human- 

made constructions, roads and cultivated terrains.  

This thesis is organized as follows: in chapter 5, performance of the learning 

algorithm with different distance parameters and different block sizes are measured via 

using the receiver operating curve. In performance evaluation part, each block in the test 

image was needed to be labeled manually as normal or abnormal. The blocks which 

consist of completely or partially human-made objects were labeled as abnormal 

regions. These abnormal blocks have roads, cultivated soil or anything that shows 

human existence. After labeling testing data set, abnormally labeled regions were tried 

to be detected by using quasi-supervised learning. If those detected regions match with 

the abnormally labeled regions, we consider those regions as “true detection” areas and 

vice versa we consider as “false alarm” areas. The area under receiver operating curve 

gives the rate of true detections versus false alarms. The most successful texture profiles 

than determined via ROC curve. Experimental results showed that optimum parameters 

of the learning algorithm are 64 grey levels, 1 pixel distance neighborhood and 80ˣ80 

pixel block size. 
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CHAPTER 2 

Equation Chapter 0 Section 2 

TEXTURE RECOGNITION 

 

2.1. Image Texture 

 

Texture is one of the important characteristics used in identifying objects or 

regions in images. There are many researchers in image processing and computer vision 

areas who have considered the concept of feature vectors to cope with texture 

classification. In texture segmentation, many algorithms partition the image into a set of 

regions which are visually distinct and uniform with respect to textural properties [9], 

[10], [11]. In remote sensing radar aplications, texture features have been used to 

identify forest regions and their boundaries and to identify and analyse variuos crops 

[12], [13]. In biomedical data analyse, texture features are used for identifying diseases 

[27], [28], [29]. In industrail vision inspection, texture features have been used to 

perform the classification of different surface materials [14]. Obviously, there are many 

other applications in which texture is used to carry-out a recognition or a classifcation 

task.  

 

2.2. Texture Analysis  

 

Texture analysis is important in many applications of computer image analysis 

for classification or segmentation of images based on local spatial variations of intensity 

or color. A successful classification or segmentation requires an efficient description of 

image texture. Important applications include industrial and biomedical surface 

inspection, for example for defects and disease, ground classification and segmentation 

of satellite or aerial imagery, segmentation of textured regions in document analysis, 

and content-based access to image databases. However, despite many potential areas of 

application for texture analysis, there are only a limited number of successful examples. 

A major problem is that textures in the real world are often not uniform, due to changes 
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in orientation, scale or other visual appearance. In addition, the degree of computational 

complexity of many of the proposed texture measures is very high. 

 

2.2.1. Texture Segmentation 

 

 Texture segmentation is a difficult problem because one usually does not know a 

priori of what types of textures exist in an image, how many different textures there are, 

and what regions in the image have which textures. In fact, one does not need to know 

which specific textures exist in the image in order to do texture segmentation. All that is 

needed is a way to tell that two textures (usually in adjacent regions of the images) are 

different. The two general approaches to performing texture segmentation are analogous 

to methods for image segmentation: region-based approaches or boundary-based 

approaches. In a region-based approach, one tries to identify regions of the image which 

have a uniform texture. Pixels or small local regions are merged based on the similarity 

of some texture property. The regions having different textures are then considered to be 

segmented regions. This method has the advantage that the boundaries of regions are 

always closed and therefore, the regions with different textures are always well 

separated. It has the disadvantage, however, that in many region-based segmentation 

methods, one has to specify the number of distinct textures present in the image in 

advance. In addition, thresholds on similarity values are needed. The boundary-based 

approaches are based on the detection of differences in texture in adjacent regions. Thus 

boundaries are detected where there are differences in texture. In this method, one does 

not need to know the number of textured regions in the image in advance. However, the 

boundaries may have gaps and two regions with different textures are not identified as 

separate closed regions.  

 

2.2.2. Texture Classification 

 

 Texture classification process involves two phases: the learning phase and the 

recognition phase. In the learning phase, the target is to build a model for the texture 

content of each texture class present in the training data, which generally comprises of 

images with known class labels. The texture content of the training images is captured 

with the chosen texture analysis method, which yields a set of textural features for each 

 4



image. These features, which can be scalar numbers or discrete histograms or empirical 

distributions, characterize given textural properties of the images, such as spatial 

structure, contrast, roughness, orientation, etc. In the recognition phase the texture 

content of the unknown sample is first described with the same texture analysis method. 

Then the textural features of the sample are compared to those of the training images 

with a classification algorithm, and the sample is assigned to the category with the best 

match. Optionally, if the best match is not sufficiently good according to some 

predefined criteria; the unknown sample can be rejected instead. 

 A wide variety of techniques for describing image texture have been proposed. 

Texture analysis methods were divided into four categories: statistical, geometrical, 

model-based and signal processing. In this part, a short introduction will be provided. 

For surveys on texture analysis methods, Haralick was proposed very usefull textural 

features [2].   

 Statistical methods analyze the spatial distribution of gray values, by computing 

local features at each point in the image, and deriving a set of statistics from the 

distributions of the local features. Depending on the number of pixels defining the local 

feature statistical methods can be further classified into first-order (one pixel), second-

order (two pixels) and higher-order (three or more pixels) statistics. The basic difference 

is that first-order statistics estimate properties (e.g. average and variance) of individual 

pixel values, ignoring the spatial interaction between image pixels, whereas second- and 

higher-order statistics estimate properties of two or more pixel values occurring at 

specific locations relative to each other. The most widely used statistical methods are 

co-occurrence features [1] and gray level differences, which have inspired a variety of 

modifications later on. Other statistical approaches include autocorrelation function, 

which has been used for analyzing the regularity and coarseness of texture, and gray 

level run lengths, but their performance has been found to be relatively poor.  

 Geometrical methods consider texture to be composed of texture primitives, 

attempting to describe the primitives and the rules governing their spatial organization. 

The primitives may be extracted by edge detection with a Laplacian-of-Gaussian or 

difference-of-Gaussian filter, by adaptive region extraction [18], or by mathematical 

morphology. Once the primitives have been identified, the analysis is completed either 

by computing statistics of the primitives or by deciphering the placement rule of the 

elements [19]. 
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 Model-based methods hypothesize the underlying texture process, constructing a 

parametric generative model, which could have created the observed intensity 

distribution. Pixel-based models view an image as a collection of pixels, whereas 

region-based models regard an image as a set of subpatterns placed according to given 

rules. The observed intensity function is regarded as the output of a transfer function 

whose input is a sequence of independent random variables, i.e. the observed intensity 

is a linear combination of intensities in a specific neighborhood plus an additive noise 

term. Various types of models can be obtained with different neighborhood systems and 

noise sources. Random field models analyze spatial variations in two dimensions. 

Global random field models threat the entire image as a realization of a random field, 

whereas local random field models assume relationships of intensities in small 

neighborhoods. Widely used classes of local random field models type are Markov 

random field models, where the conditional probability of the intensity of a given pixel 

depends only on the intensities of the pixels in its neighborhood. In a Gaussian Markov 

random field model the intensity of a pixel is a linear combination of the values in its 

neighborhood plus a correlated noise term. Describing texture with the random field 

models is an optimization problem, the chosen model is fitted to the image, and an 

estimation algorithm is used to set the parameters of the model to yield the best fit. The 

obtained parameter values are then used in further processing, e.g. for segmenting the 

image. In contrast to autoregressive and Markov models fractals have high power in low 

frequencies, which enables them to model processes with long periodicities. An 

interesting property of this model is that fractal dimension is scale invariant. Several 

methods have been proposed for estimating the fractal dimension of an image. 

 There exist a number of classification algorithms. Among the most widely used 

are parametric statistical classifiers derived from the Bayesian decision theory, 

nonparametric k-nearest neighbor classifier, and various neural networks such as 

multilayer perceptrons. Given a texture description method, the performance of the 

method is often demonstrated using a texture classification experiment, which typically 

comprises of following steps;  

 

 Selection of image data: the image data and textures may be artificial or 

natural, possibly obtained in a real world application. An important part 

of the selection of image data is the availability and quality of the ground 

truth associated with the images. 
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 Partitioning of the image data into sub images. Image data are often 

limited in terms of the number of original source images available, hence 

in order to increase the amount of data the images are divided into sub 

images, either overlapped or disjoint, of a particular window size.  

 Preprocessing of the subimages and dividing available data into training 

and testing sets.  

 Selection of the classification algorithm. In addition to classification 

algorithm this may involve other selections such as metrics or 

dissimilarity measures. Selection of classification algorithm can have 

great impact in the final performance of the texture classification 

procedure and no classifier can survive with poor features. Also good 

features can be wasted with poor classifier design.  

 Definition of the performance criterion. Determining the proportion of 

true detections (classification accuracy) or false alarms (classification 

error) is used as performance criterion. 

 

 It is obvious that the final outcome of a texture classification experiment 

depends on numerous factors, both in terms of the possible built-in parameters in the 

texture description algorithm and the various choices in the experimental setup. Results 

of texture classification experiments have always been suspect to dependence on 

individual choices in image acquisition, preprocessing, sampling etc. 

 

 

 

 

 

 

 

 

 

 

 

 7



CHAPTER 3 

Equation Chapter 0 Section 2 

PROBLEM DESCRIPTION AND PROPOSED METHOD 

 

3.1. Problem Description 

  

 Today air reconnaissence efforts constitute the backbone of the military 

intelligence. Many countries use reconnaissance and surveillance aircrafts for military 

purposes. In addition, these aircrafts are used in many countries for civilian purposes 

too. But especially they are used for border surveillance (patrolling) or prevention of 

smuggling and illegal migrations. A photo reconnaissance aircraft has no armament and 

does not necessarily require high performance capacity. High resolution aerial images 

are available with the state-of-the-art aerial imaging technologies. Intelligence 

specialists try to find possible threats on these aerial images by visual observation or 

other detection methods. They search for the clues that prove the enemy activities or 

potential enemy.  

 Currently, unmanned reconnaissance aircrafts capture air images and transmit 

the aerial data to the hub. Experts in the hub scan the aerial data and search for anything 

unnatural. Without any machine learning application, this process is very exhaustive 

and it is a time consuming jop. The application of machine learning techniques to aerial 

data can be a usefull method in detecting human existence on the air photographs. Both 

supervised or unsupervised learning techniques can be used in solving human-existence 

detection problem on the air photographs. In aerial image reconnaissance tasks we 

search everything that is unnatural and proves human existence on images. From this 

point of view supervised learning algorithms are not suitable for this task. Because 

supervised learning needs pre-determined classes and the definition of a certain segment 

of data. However, in aerial images, we do not search certain shapes we look for 

anything that proves human existence. For unsupervised learning applications the target 

variable is unknown or has only been recorded for too small a number of cases. So, 

unsupervised learning or quasi-supervised learning is suitable for aerial reconnaissance 

task. 
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3.2. Problem Solving  

 

In thesis, a quasi-supervised learning algorithm was used to recognize the 

abnormally defined regions that proves human existence. The specific implementation 

was constructed as follows: First, aerial image was divided into a reference control data 

set and a mixed testing data set. Eigthteen aerial images were extracted from two big 

aerial images. Nine of these images were belong to control data set and the other nine 

were belong to the test data set. In the second step, all images were then divided into 

625 non-overlapping pixel blocks. In the third step, grey level co-occurrence matrices 

were computed from each block. From these matrices, several Haralick features were 

calculated and organized into texture vectors to be used for recognition. 42 texture 

profiles were generated by changing the block sizes and distace parameter. Finally, the 

quasi-supervised learning was applied to the collection of texture vectors to recognize 

the blocks which consist man-made structures and the most successful system 

parameters were determined by using ROC curve. The specific implementation will be 

explained in chapter 4. 

 

3.3. Grey Level Co-occurrence Matrices (GLCM)  

  

 For extracting the textural information of a grey tone image the grey level co-

occurrence matrices (also called the Grey Tone Spatial Dependency Matrix) are one of 

best known texture analyse methods in the literature. The studies showed that statistical 

computations on grey levels of images were able to give usefull descriptors of 

perceptual feeling of texture [1], [2]. Suppose that we have an n×m sized image to be 

analysed and gray tone appearing in each resolution cell is quantized to some levels. We 

make a gray tone comparison of each resolution cell to it is “d” distance pixel 

neigbours. There are 4 possible angular neigbourhoods.  

  Matematically a Co-occurrence matrice C is defined over an n x m image I, 

parameterized by an offset (Δx,  Δy), as: 

 

          C C x y  ji,  =  


n

p 1



m

q 1

 qp,  = i and I   jdqdp  ,1, if I    (3.1) 
0, otherwise 
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 The grey tone of  the resolution cell is compared with the “ ”  distance and  

“0º, 45º, 90º, 135º” degrees neighbours’ grey tone. The above function takes the value 

of “1” if the argument is true and takes “0” otherwise. It is possible to generate a set of 

different co-occurrence matrices from the same image by changing distance parameter 

and angular neigborhood. The value of the image is a grayscale value quantized to some 

grey level. The GLCM is a tabulation of how often different combinations of pixel 

brightness values (grey levels) occur in an image. If the quantization level is N, than we 

will have a N×N  dimensional co-occurrence matrix. Symmetrical property is an innate 

property of GLCM. Symetric matrix means that the same values occur in cells on 

opposite sides of the diagonal. This property and computation of a GLCM will be 

presented with an example below.  

d

 

3.3.1  Grey Level Co-occurrence Matrice Example  

 

       

       

        

      

 

Figure 3.1. Sample Image, 4grey levels 

 

 Suppose that we have a sample image which was quantised to 4 grey levels and 

it’s grey levels are: 

 

Table 3.1. Grey Levels of Sample Image 

 

0 0 1 1 

0 0 1 1 

0 2 2 2 

2 2 3 3 
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Table 3.2. A Grey Level Co-occurrence Matrice Table 

 

Neighbour pixel value   
Reference pixel value 

0 1 2 3 

0 0,0 0,1 0,2 0,3 

1 1,0 1,1 1,2 1,3 
2 2,0 2,1 2,2 2,3 

3 3,0 3,1 3,2 3,3 
 
 
 
 

Table 3.3. 0º and 1 pixel distance Grey Level Co-occurrence Matrice Table 
 

4 2 1 0 

2 4 0 0 

1 0 6 1 

0 0 1 2 

 
 
 
 

  Table 3.4. 90º and 1 pixel distance Grey Level Co-occurrence Matrice Table 
 

6 0 2 0 

0 4 2 0 

2 2 2 2 

0 0 2 0 

 
 
 
 

Table 3.5. 45º and 1 pixel distance Grey Level Co-occurrence Matrice Table 
 

4 1 0 0 

1 2 2 0 

0 2 4 1 

0 0 1 0 
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Table 3.6. 135º and 1 pixel distance Grey Level Co-occurrence Matrice Table 
 

2 1 3 0 

1 2 1 0 

3 1 0 2 

0 0 2 0 

 
 

3.4. Quasi Supervised Statistical Learning Method 

 

 Supervised learning applications requires the definition of a certain segment of 

data. The ground truth data set are available in some cases but in aerial reconnaissance 

tasks target variables are not known. An alternative strategy can be used in aerail image 

reconnaissance tasks. In this thesis, the strategy used for recognitioning the man-made 

objects is a quasi-supervised stastical learning. The method used for quasi-supervised 

learning can be explained as follows: Available data is divided into two groups, one of 

which is known to be free of the objects of detection, and the other containing the 

objects of detection along with features of normalcy commonly shared with the first 

dataset. The objects of detection in the aerial image reconnaissance tasks are usually 

man-made structures or specific abnormalities on the ground. The first dataset can be 

referred to as the reference control dataset, while the second as the mixed testing 

dataset. Such a scenario describes a quasi-supervised learning setting that requires the 

prior knowledge of only the presence or absence of abnormalities in the respective 

datasets and not the labeling of individual samples. Since abnormal regions are unique 

to the testing data and do not exist in the reference control data, we expect the learning 

algorithm to detect the regions specific to testing data. The approach uses the ratio of 

the number of times a given block is assigned to the reference control and mixed testing 

datasets through the course of successive nearest neighbor classifications on it’s tecture 

profile with randomly assembled reference sets as an estimate of the posterior 

probability of the respective classes for that block.  

 A reference set is generated with “2n” elements, n of them is taken from the 

control data set and n of them is taken from the testing data. The point “x” is assigned to 

the label of it’s nearest neighbor. This classification is done repeatedly for N times. 
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After N times of  nearest neighbor classification the posterior probabilities of the point 

is estimated.  R = {xi, yi}  “xi” represents the point, “yi” represents the class label (0 for 

control data and 1 for test data). Nearest neigbor classifier is defined by: 

 

rF   iyx   With  argi  min li ,....3,2,1 ,     d  ixx,    (3.2) 

 

 Let the    .,........2,1, iidNxRx   be a reference set consist of equal elements 

from each data set. Let control data set labeled with “0” (class 0) and test data set 

labeled with “1” (class 1). We have previosly mentioned the nearest neighbor classifier.  

 

 
  

N

xFr

xf

N

j




 1

01

0  
  (3.3) 

 
  

N

xFr

xf

N

j




 1
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1  
  (3.4) 

 

Equation (3.3) and Equation (3.4) takes the value of “1” when the inside 

argument is true and takes “0” otherwise. These two values estimates the class 

conditional probability densities for “class 0” and “class 1” respectively. The 

probability of assigning a point “x” to either of the two classes by a nearest neighbor 

classifier is directly proportional to the number of points of each class in a 

neighborhood of  x. Supposing n points from each class are included in the reference set 

each time, the total number of distinct reference sets is the combination of all possible 

sets. Implementation of all possible sets is well beyond today’s computation ability. But 

it is still possible to compute the average number times a given point would be assigned 

to either class. As a result quasi-supervised learning estimates the posterior probability 

of a given point “x” by the help of a reference set which consist of equally represented 

elements from each classes.  
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CHAPTER 4 

Equation Chapter 0 Section 3 

IMPLEMENTATION PART 

 

4.1. Introduction to Specific Implementation 

 

First, aerial images were divided into two groups: one is the reference control 

data set and the other one is the mixed testing data set. All images were than divided 

into small non-overlapping blocks and texture features were computed from those 

blocks. In the classification part, habitated regions were recognized by using the quasi-

supervised statistical learning algorithm. The most important advantage of this 

algorithm is manual segmentation of regions is not needed in learning phase. All the 

information required is the existence of normal and abnormal profiles in each image. 

Finally the most succesfull feature profile was determined with the performance 

evaluation metods. In this chapter the specific implementation of the quasi-supervised 

learning to the aerial images will  be presented.  

 

4.1.1. Materials  

 

 The images used in this thesis was provided from a reconnaissance aircraft 

belonging to the Turkish Armed Forces. All the images used in the experiments have 

the same resolution of 43 cm. per pixel. These images are usually used for mapping or 

geolocical tasks. In thesis, aerial data was divided into two classification group as 

mentioned beforehand. First group of images have natural characteristics and represents 

the normalcy conditions which is known to be free of the objects of detection, and  the 

second group of images have residential areas, some roads, cultivated soil and man-

made structures defining the habitation.   

 There are nine control images and nine test images of different sizes, ranging 

175ˣ175 pixels to 2000ˣ2000 pixels. Also nine different size of blocks were used in the 

experiments. The image sizes and the block sizes are seen on the table below. 
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Table 4.1. Image and Block Sizes 

 

Image size (pixel) Block size (pixel) Block Area (m²) 

175ˣ175 7ˣ7  9m²  

250ˣ250 10ˣ10  18.5m²  

350ˣ350  14ˣ14  36.2m²  

500ˣ500  20ˣ20  74m²  

700ˣ700  28ˣ28  145m²  

1000ˣ1000  40ˣ40  296m²  

1400ˣ1400  56ˣ56  580m²  

1575ˣ1575 63ˣ63  734m²  

2000ˣ2000  80ˣ80  1183m²  

 
 
4.1.1.1. Control Images 

 

 In experiments, totally 18 different images were used. First nine of the aerial 

images were belong to the reference control data set, representing the natural 

terrestrail conditions. Resolution of the control images are “43cm.” per pixel.   

 

 

Figure 4.1. Control image, represents the normalcy terrestrial conditions. Size of 
250ˣ250 pixels. 
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Figure 4.2. Control image, represents the normalcy terrestrial conditions. Size of 
350ˣ350 pixels. 

 
 Control data set consist of nine aerial images. Each images were divided into 

625 non-overlaping blocks. The block sizes used in experiments were 7ˣ7, 10ˣ10, 14ˣ14, 

20ˣ20, 28ˣ28, 40ˣ40, 56ˣ56, 63ˣ63, 80ˣ80 pixels respectively. Proportional to block sizes, 

control image sizes chance in a range of 175ˣ175, 250ˣ250, 350ˣ350, 500ˣ500, 700ˣ700, 

1000ˣ1000, 1400ˣ1400, 1575ˣ1575, 2000ˣ2000 pixels.  

 

4.1.1.2. Test Images 

 

 Nine test images were used in the experiments. Resolution of the test images are 

“43cm.” per pixel. These images had the same sizes with control images. Test images 

consist of man-made structures along with unhabitated land. Man-made structures and 

the elements of habitated land were constituted the objects of detections in 

recognitioning human existence in aerial images.      
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Figure 4.3. Test image, consist of both natural areas and man-made structures, 350ˣ350  
pixels  

 

 

Figure 4.4. Test image, consist of both natural areas and man-made structures, 500ˣ500 
pixels  
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4.1.2. Specific Implementation 

 

 In the first step, all images were quantised to 64 grey levels. Than images were 

divided into non-overlaping blocks as seen in Figure 4.5. In order to divide each images 

into 625 blocks nine different size of blocks were used. For example, 175ˣ175 pixels 

sized image was divided into 7ˣ7 pixels blocks. So 25 blocks were extracted in vertical 

axis, and 25 blocks were extracted in horizontal axis.    

  

 

Figure 4.5. Test image, size 250ˣ250 pixels. Control images and Test images divided 
into 100 non-overlapping blocks. 

 
 

 

Figure 4.6. Control image, size 250ˣ250 pixels. Control images and Test images divided 
into 100 non-overlapping blocks. 
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 In the second step, the grey level co-occurrence matrices were computed and 

from these matrices four Haralick features were calculated and organized as a texture 

vector in order to recognize the man-made structures in the test images. Texture 

computation process will be defined with an example: 

 

 

 

Figure 4.7 First block is represented with a blue colored grid. 

 

 Suppose that in our example we have the block size of 7ˣ7 pixel. First block, 

(first row first and first column element) represented with a blue colored block is the 

first element of the computation. Grey levels of that block is seen on matrix “B”, size of  

7ˣ7 pixels:  

 

 

 

   

                 B = 

 

                              

119 116 86 50 75 119 146 

105 111 82 62 72 107 131 

103 103 90 91 99 108 119 

102 111 119 122 127 136 137 

113 125 116 121 134 139 140 

127 106 63 47 77 108 128 
  

135 90 37 25 56 95 113 
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               G1 = 

 

                           

 

 

 

 First block was then converted to 64 grey level image. And matrix G1 represents 

the 64 grey level image. Matrix G1 was generated after quantization of matrix B to 64 

grey levels. We have previosly mentioned  that co-occurrence matrices dimention is 

determined by the number of the grey levels of an image. So in this example, a 64ˣ64 

dimensional grey level co-occurrence matrice was computed. In order to illustrate the 

grey level co-occurrence matrice, a smaller sized matrice was then generated by 

quantization of matrice B into 10 grey levels. Matrice G2 represents the 10 grey leveled 

image. 

 

 

 

 

              G2 = 

 

 

 

 

 

   

 

 

 

 

 

29 29 21 12 19 29 36 

26 27 20 15 18 26 32 

25 25 22 22 24 27 29 

25 27 29 30 31 34 34 

28 31 29 30 33 34 35 

31 26 16 12 19 27 32 

33 22 9 6 14 23 28 

4 4 3 2 3 4 5 

4 4 3 2 3 4 5 

4 4 3 3 3 4 4 

4 4 4 4 4 5 5 

4 4 4 4 5 5 5 

4 4 2 2 3 4 5 

5 3 1 1 2 3 4 
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 Grey level co-occurrence matrices which were computed from the matrice G2 

are seen below:    

 

 

 

 

GLCM_0º = 

 

 

 

 

 

 

 

 

  

 

GLCM_45º = 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GLCM_90º =  

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 0 0 0 0 0 0 

0 2 1 1 0 0 0 0 0 0 

0 1 2 6 1 0 0 0 0 0 

0 1 6 4 8 1 0 0 0 0 

0 0 1 8 24 5 0 0 0 0 

0 0 0 1 5 6 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 0 0 

0 1 0 4 2 1 0 0 0 0 

0 1 4 2 7 2 0 0 0 0 

0 0 2 7 20 5 0 0 0 0 

0 0 1 2 5 4 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 2 0 0 0 0 0 0 0 

0 2 2 2 2 0 0 0 0 0 

0 0 2 8 5 1 0 0 0 0 

0 0 2 5 28 7 0 0 0 0 

0 0 0 1 7 8 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 
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 0 0 0 0 0 0 0 0 0 0 

  0 0 1 0 1 0 0 0 0 0 

 0 1 2 3 2 0 0 0 0 0 

GLCM_135º= 0 0 3 4 8 1 0 0 0 0 

 0 1 2 8 20 5 0 0 0 0 

 0 0 0 1 5 4 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 
 

 

                                                 

   (1)  45º Degree                                          (2) 135º Degree 

 

                     

(3) 90º Degree                                          (4) 0º Degree 

 

Figure 4.8.  0º, 45º, 90º, 135º degree and 1 pixel distance neighborhood GLCM of G2 
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Table 4.2. Four direction (0º- 45º- 90º- 135º) GLCM features. 

Contrast     

0.7619 

Contrast     

1.2778 

Contrast     

0.6667 

Contrast    

  1.0556 

Correlation     

0.6403 

Correlation     

0.3296 

Correlation     

0.6327 

Correlation  

    0.4164 

Entropy     

0.1267 

Entropy     

0.1200 

Entropy     

0.1545 

Entropy  

    0.1246 

Homogeneity     

0.7143 

Homogeneity     

0.6505 

Homogeneity     

0.7619 

Homogeneity  

    0.6875 

0º degree features 45º degree features 90º degree features 135º degree features 

 

Table 4.3. Feature vector. 

     0.7619 Contrast 

    0.6403 Correlation 

    0.1267 Entropy 

    0.7143 Homogeneity 

 

0º degree 

    1.2778 Contrast 

    0.3296 Correlation 

    0.1200 Entropy 

    0.6505 Homogeneity 

 

45º  degree 

    0.6667 Contrast 

    0.6327 Correlation 

    0.1545 Entropy 

    0.7619 Homogeneity 

 
 

90º  degree 

    1.0556 Contrast 

    0.4164 Correlation 

    0.1246 Entropy 

    0.6875 Homogeneity 

 

135º  degree 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 This vector represents the texture profile of the first block which was computed 

from four direction co-occurrence matrices and four of Haralick features. The test 

images and control images, firstly splited into 625 blocks. This texture vector was 

constructed from one pixel distance neigbourhood grey level co-occurrence matrice. 

And the same procedure was done with the distances of three, five, eight and ten pixel 
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neighbourhood grey level matrices. At the end of these exhaustive computation a set of 

texture profiles were collected. 42 different textural features were tested in the 

experiments for determining the optimal system parameters. These textural vectors were 

generating by using different distances of neighbourhoods and different sizes of blocks. 

All textural features are seen on the table below. 

 

Table 4.4.  Textural feature vectors used in experiments. 

 

 

Distance 

Block  

size 

1pixel 

distance   

neighborhood 

GLCM 

3 pixel 

distance 

neighborhood 

GLCM 

5 pixel 

distance 

neighborhood 

GLCM 

8 pixel 

distance 

neighborhood 

GLCM 

10 pixel 

distance 

neigborhod 

GLCM 

7ˣ7  x x x - - 

10ˣ10  x x x x - 

14ˣ14  x x x x x 

20ˣ20  x x x x x 

28ˣ28  x x x x x 

40ˣ40  x x x x x 

56ˣ56  x x x x x 

63ˣ63  x x x x x 

80ˣ80  x x x x x 

   

 After generating the raw feature vectors, mean-variance normalization was then 

carried-out along the feature vectors. It is one of the most common approaches for 

feature normalization, especially when close to Gaussian distribution is assumed. It is 

subtraction of the population mean and scaling to achieve unit variance is seen on the 

equation 4.1. The  is the raw value of the i′th feature,  iF  iF  is the feature mean, 

 iF  is the standart deviation and  iF '  is the normalized feature vector.   

 

     

 i
iF

iF
F

iF




'    (4.1) 

 

   

 24



4.2. Labeling the Test Images 

 

 In order to evaluate the detection performance of the learning algorithm with 

different texture profiles, we need to determine the abnormal blocks manually 

beforehand. In our experiments there are nine different block size as mentioned before. 

These blocks and images are illustrated on figures below; 

 

                 

 

 

              

 

Figure 4.9.  Test images and 7, 10, 14 and 20 pixel sized blocks. 
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Figure 4.9.  Test images and 28, 40, 63, 80 pixel sized blocks. 

 

 Every test image and each block was labeled as normal and abnormal with 

manually evaluation. The regions that we consider as abnormal are the blocks consist of  

man-made objects. There are two scenario of labeling a block as abnormal, in the first 

situation; man-made objects constitute the full area of the blocks or the majority of the 

block area, in the second situation; the object constitutes only a small part of the related 

block. It is a dilemma whether or not these small parts of structures is enough to 

determine a block as abnormal. If we consider these blocks as normal it wouldn’t be a 

convinient decision, because these blocks have abnormal textural features too. On the 

other hand, we can not estimate the effect of these abnormalities to the texture, this 

would put the classifier under heavy constrain. As a result in the labeling strategy, the 
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blocks which have man-made structures was considered as abnormal regions. After 

classification, we expect the learning algorithm to recognize those areas. In the figure 

below the blue colored blocks represent the abnormally labeled regions. 

 

 

 

Figure 4.11.  True detection ares,  abnormally labeled grids. 

 

 Blue colored blocks represent the abnormally labeled regions. These regions 

have parts of foothpaths, roads, plowed land and buildings. The recognition 

performance of each texture profile was evaluated against manual labeling for 

determining the most successful texture vector and optimal system parameters.  

 

4.2.1. True Detections and False Alarms  

 

 The aim of  the quasi-supervised learning algorithm is to recognize the blocks 

considering man-made structures or objects which do not exist on unhabitated lands. 

The success of the learning algortihm was evaluated with the number of true detections 
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and false alarms. True detections are the regions where both learning algorithm and 

manually labeled data approves the abnormality. False alarms are the regions where 

learning algorithm finds a normalcy area as abnormal. The number of true detections 

and false alarms give usefull informations about the success of a specific texture profile. 

Reciever operating characteristics curve was generated by using the ratio of true 

detections versus false alarms. The area under reciever operating characteristics curve 

yield the performance evalutaion ratio of texture profiles.  

 

 

 

 

 

 

  
 .   
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CHAPTER 5 

Equation Chapter 0 Section 3 

EXPERIMENTAL RESULTS 

 

5.1. Detection Performance  

 

 The performance of the learning algorithm with different textural parameters 

was evaluated by the experimental results in this paper. Every man-made structures and 

objects of human existence on aerial images were expected to recognize with learning 

algorithm. In this chapter, the optimal system parameters are determined and the success 

of the learning algorithm under given textural properties will be defined.  

 

5.1.1. Optimal Block Size  

 

 Experiments were carried-out with nine different block sizes. These blocks have 

the size of 7ˣ7, 10ˣ10, 14ˣ14, 20ˣ20 ,28ˣ28, 40ˣ40, 56ˣ56, 63ˣ63, 80ˣ80 pixels 

respectively. This also means that each block has an area of 9m², 18.5m², 36.2m², 74m², 

145m², 296m², 580m², 734m², and 1183m² on land respectively. In the labeling part we 

have mentioned that the blocks which consider the objects of detections were labeled as 

abnormal regions, no matter how big the area of the object is.   

 

5.1.1.1. Performance of  7ˣ7 Pixel (9 m²) Block Size 

 

 175ˣ175 pixel sized test image and control images were divided into 7ˣ7 pixel 

blocks. All the blocks in the test image were labeled as normal or abnormal beforehand 

and the labeled data is seen on the figure below as blue colored blocks. Texture vector 

was computed by one pixel distance grey level co-occurrence matrices. Than quasi-

supervised learning algorithm was implemented on texture vectors and the regions of 

interest in aerial images were recognized. Detection performance was assessed with 

reciever operating characteristics curve.  
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Figure 5.1.  True detection ares, labeled grids for 175ˣ175 pixel. 

  

 At the end of the recognition process, posterior probabilities of each block was 

computed in order to assign the related block to class 1 or class 0.  represents the 

probability of assigning the i’th block to class 0, and 

 iF0

 iF1  represents the probabiltiy of 

assigning i’th block to class 1. We will decide labels of each block according to the 

comparison rule given below; 

 

                                         Treshold Value,       assign class 1   iF1

                                          iF1  Treshold Value,       assign class 0          

                                         Treshold Value,      assign class 0   iF0
   If   (5.1) 

                                          iF0  Treshold Value,      assign class 1 

  

 This comparison rule simply defines that if the block’s class probability is 

greater than the treshold value, related block will be assigned to the related class. 

Optimal treshold value is determined according to the number of true detections and the 
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number of false alarms. Optimal treshold value was selected as the sharpest point of 

reciever operating characteristics curve where true detection rate is optimal and false 

alarm rate is minimum. 

 

 

Optimal 
Treshold 

Figure 5.2. ROC curves for 7ˣ7 pixel sized block and 1 pixel distances. 

  

 Reciever operating characteristics curve represents the detection performance of 

the learning algorithm with texture profile of 7ˣ7 pixel block sizes and 1 pixel distance 

GLCM. The red colored treshold value (0,45) was considered as the optimal treshold, it 

is the sharpest point of reciever operating characteristics curve. Even the with the 

optimal treshold value, the learning algorithm could find only 72 percent of true 

detection areas. There are 200 blocks of true detection regions and 425 blocks of false 

error regions. With the optimal treshold value, learning algorithm was able to detect 144 

ares of true detections.  
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Figure 5.3. Blue grids and Red grids. 

 

 Figure 5.3. represents the detection performance with the texture profile of one 

pixel distance grey level co-occurrence matrice and 7ˣ7 pixel blocks. Blue colored 

blocks are used to illustrate the regions where classifier had succeded and red colored 

blocks are used to illustrate the regions where classifier could not detected with the 

treshold value of 0,45. Important point in performance evaluation of the texture vector 

of 7ˣ7 pixel blocks, learning algorithm was detected too many false regions.  

 

 5.1.1.2. Performance of  10ˣ10 Pixel (18.5 m²) Block Size  

 

 250ˣ250 pixel sized test image and control image was used in the experiment. 

Both images were divided into 10ˣ10 pixel blocks. Texture vectors were computed from 

one pixel distance grey level co-occurrence matrice. The labeled data is seen as blue 

blocks on the figure below.   
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Figure 5.4. Blue colored blocks, the labeled data for 250ˣ250 pixel sized test image. 

 

 The blue colored places are the regions of interest, we expect the classifier to 

find these blocks. There are 213 blocks marked as abnormal region. As seen on the 

figure 5.5. and figure 5.6. The textural feature of 10ˣ10 pixel block is not succesfull and 

and even worse than 7ˣ7 pixel sized block. Another textural feature which was used in 

this experiment was calculated from the 10ˣ10 pixel blocks and three pixel distance 

neighbourhood grey level co-occurrence matrices. This feature profile had given a 

worse detection result than the feature of one pixel distance neighbourhood grey level 

co-occurrence matrice. Also another experiment was carried-out along the five pixel 

distance neighbourhood grey level co-occurrence matrices, this two textural profiles 

yielded that one pixel distance neighbourhood is the most informative textural property.  
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Figure 5.5. ROC curves for 10ˣ10 pixel sized block and 1, 3 pixel distances 
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Figure 5.6. ROC curves for 10ˣ10 pixel sized block and 5 pixel distances 

  

5.1.1.3. Performance of  14ˣ14 Pixel (36 m²) Block Size  

 

 350ˣ350 pixel sized test image and control image was used in the experiment 

and both images were divided into 14ˣ14 pixel blocks. The labeled data for 350ˣ350 

pixel sized test image is seen on the figure below. There are 246 abnormal places and 

379 normal places.  

 

 

 

Figure 5.7. Blue colored blocks, the labeled data for 350ˣ350 pixel sized test image 
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Figure 5.8. ROC curves for 14ˣ14 pixel sized block and 1 pixel distances 

  

 

                

Figure 5.9. ROC curves for 14ˣ14 pixel sized block and 3 pixel distances. 
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Figure 5.10. ROC curves for 14ˣ14 pixel sized block and 8 pixel distances. 

 

 Even with a suitable treshold value, only 80 percent of abnormal regions were 

able to detected and learning algorithm had given too many false alarms with the 14ˣ14 

pixel blocks textural properties.  

 

5.1.1.4. Performance of  20ˣ20 Pixel (74 m²) Block Size  

 

 500ˣ500 pixel sized test image and control image was used in the experiment 

and both images were divided into 20ˣ20 pixel blocks. The test image was labeled 

manually. As a result, 203 regions were labeled as the regions of interest and the other 

422 blocks were labeled as normal. 

  This block size has an area of 74 m² on land. The aim of using this block size 

was to detect the vehichles and some structures which have the size of five meters. But 

experimental results showed that the block size of  20ˣ20 pixel is not suitable for 

recognitioning the materials like small vehicles and other structures. Detection 

performance of 20ˣ20 pixel block was better than the smaller sized blocks. The 
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performance of 20ˣ20 pixel block is seen with the reciever operating characteristics 

curve on the figures below. 

 

 

 

  

 

Figure 5.11. ROC curves for 20ˣ20 pixel sized block and 1, 3, 5, 8 pixel distances 
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Figure 5.12. ROC curve for 20ˣ20 pixel sized block and 10 pixel distances. 

 

5.1.1.5. Performance of  28ˣ28 Pixel (145m²) Block Size  

 

 700ˣ700 pixel sized test image and control image was used in the experiment 

and both images were divided into 28ˣ28 pixel blocks. There are 145 abnormal places 

and 480 normal places. 

  

 

Figure 5.13. ROC curves for 28ˣ28 pixel sized block and 1, 3 pixel distances. 
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Figure 5.14. ROC curves for 28ˣ28 pixel sized block and 5, 8, 10 pixel distances. 

 

 Detection performance was better than smaller sized blocks but the performance 

of the learning algorithm was not good enough. This experiment showed that the texture 

property of 28ˣ28 pixel blocks is not suitable for recognitioning task.   

 

5.1.1.6. Performance of  40ˣ40 Pixel (296m²) Block Size   

 

 1000ˣ1000 pixel sized test image and control image was used in the experiment 

and both image divided into 40ˣ40 pixel blocks. After manually labeling 138 blocks 

were appeared as regions of interest and the other 487 blocks were appeare as normal. 

The labeled data is seen on the figures below.  
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Figure 5.15. Blue colored blocks, the labeled data for 1000ˣ1000 pixel sized test image 

     

 

 

Figure 5.16. ROC curve for 40ˣ40 pixel (296m²) Block Size  and 1 pixel distance. 
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Figure 5.17. ROC curves for 40ˣ40 pixel (296m²) Block Size  and 3, 5, 8, 10 pixel 
distances. 

 

 This experiment showed that the results of the bigger sized blocks are better than 

small ones. Another result was noted that one pixel distance grey level co-occurrence 

matrices are the most informative textural property.  

 

5.1.1.7. Performance of  56ˣ56 Pixel (580m²) Block Size  

 

 1400ˣ1400 pixel sized test image and control image was used in the experiment 

and both images were divided into 56ˣ56 pixel blocks. 164 blocks were noted as 

abnormal blocks and 461 blocks were noted as normal. The reciever operating 

characteristics curves are seen on the figures below.  
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Figure 5.18. ROC curves for 56ˣ56 pixel (580m²) Block Size  and 1, 3, 5, 8, 10 pixel 
distances. 

 

 Detection performance of 56ˣ56 pixel (580m²) block size textural features is 

better than 40ˣ40 pixel sized blocks, and again the most informative feature is the one 

from 1 pixel distance neighbourhood.    
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5.1.1.8. Performance of  63ˣ63 Pixel (734m²) Block Size  

 

 1575ˣ1575 pixel sized test image and control image was used in the experiment 

and both images were divided into 63ˣ63 pixel blocks. 175 blocks were noted as 

abnormal and the other 450 blocks were noted as normal. The reciever operating 

characteristics curves are seen on the figures below. 

 

    

    

 

Figure 5.19. ROC curves for 63ˣ63 pixel (734m²) Block Size and 1, 3, 5, 8 pixel 
distances. 
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1pixel GLMC 

 

Figure 5.20. ROC curves for 63ˣ63 pixel (734m²) Block Size  and 1, 3, 5, 8, 10 pixel 
distances. 

 

 Figure 5.20. illustrates the performance of the textural features with different 

distances. The area under reciever operating characteristics curve was maximized with 

the one pixel distance GLCM feature, blue colored plot symbolizes the 1 pixel distance 

GLCM ROC curve. And black plot is for 3 pixel distance GLCM, green plot is for 5 

distance pixel GLCM, yellow one is for 8 distance pixel GLCM, red plot is for 10 

distance pixel GLCM.  

 These experiment showed that bigger block sizes give more accurate 

recognitions and generally one pixel distance grey level co-occurrence matrices yielded 

more textural information.  
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5.1.1.9. Performance of  80ˣ80 Pixel (1183m²) Block Size  

 

 Along experiments for searching the optimal block size, 80ˣ80 pixel (1183m²) 

sized block yielded the best detection performance of all. The area of the  80ˣ80 pixel 

sized block is 1183m² and this is equal to a square having 34.4 meters side line. Along 

searching for optimal block size, some experiments carried- out for 100ˣ100 pixel block 

and 120ˣ120 pixel block. But after 80ˣ80 pixel (1183m²) block size, detection 

performance was observed to decrease. Experiments showed clearly that block sizes of 

100ˣ100 pixel or more than 100ˣ100 pixel are not convenient for identifying the objects  

of detections in the aerial images such as houses, roads and cultivated lands.   

 2000ˣ2000 pixel sized test image and control image was divided into 625 non-

overlapping grid blocks. Each block was marked as normal or abnormal with manually. 

The abnormally marked blocks are seen on the figure below. 174 blocks marked as 

abnormal and the rest 451 blocks marked as normal. 

 

 

 

Figure 5.21. Blue colored blocks, the labeled data for 2000ˣ2000 pixel sized test. 
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Figure 5.22. ROC curve for 80ˣ80 pixel (1183m²) Block Size  and 1, 3, 5, 8, 10 pixel 
distances. 
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Figure 5.23. ROC curve for 100ˣ100 pixel (1849m²) Block Size  and 1, 3, 5, 8, 10 pixel 
distances. 

 

                 

80x80 pixel 
block curve 

 

Figure 5.24. ROC curves for optimal block size. 
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  On the Figure 5.24. The blue colored curve represents the 80ˣ80 pixel blocks, 

red colored curves represents 63ˣ63 pixel block, yellow colored curve represents 40ˣ40 

pixel block, cyan colored curve represents pixel 28ˣ28 pixel block, magenta colored 

curve represents 20ˣ20 pixel block, black colored curve represents 14ˣ14 pixel block, 

green colored curve represents 10ˣ10 pixel block and one pixel distance neighbourhood 

textural features. 

 From the reciever operating characteristics curve which is illustrated in figure 

5.23, textures of the block sizes more than 80ˣ80 pixels is not suitable for detecting the 

objects of interest in the aerial images. The blocks of 100ˣ100 pixels and 120ˣ120 pixels 

had given a bad detection performance. Among the blocks which were examined in the 

experiments, the 80ˣ80 pixel sized block feature was the most effective of all. The area 

under reciever operating characteristics curve was maximum with the 80ˣ80 pixel block 

and one pixel distance neighborhood.   

                    

 

 

Figure 5.25. True detection regions and the regions where QSL failed with the textural 
feature of 80ˣ80 pixel blocks and 1 pixel distance neighborhood GLCM. 
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 A suitable treshold value of 0.32 the learning algorithm could detected over 80 

percent of  all objects of detections and it had given the minimum false alarm rate. 

Remember that, there were 174 blocks that we expected the learning algorithm to detect 

in the 2000ˣ2000 pixel test image. As a result nearly 140 regions of interest were 

detected by the learning algorithm.  

 On the Figure 5.25. regions of true detections and the false alarms are illustrated. 

Blue colored blocks represent the true detection areas where learning algorithm was 

detected truly and red colored grids are the regions where learning algorithm could not 

detect (Figure 5.25). The common property of red blocks is there is a little abnormal 

structure along the whole area of the block. So texture feature vectors of those blocks 

are more similar to normal feature vectors. We have mentioned about classification 

algorithm, quasi-supervised learning algorithm tries to detect the abnormal ones via the 

distances between feature vectors in the feature space. For improving quasi-supervised 

learning algorithm’s performance more samples should be used in the learning phase 

and more discriminative features can be used.  

 Consequently, 80ˣ80 pixel blocks and 1 pixel distance neighborhood GLCM 

feature vector is the most succesfull block size in detecting the man-made structures on 

aerial images. 

 

5.1.2. Optimal Distance for GLCM Feature Vectors  

 

 Each block was associated with a feature vector and distance measures that 

compute distances between these feature vectors were used to find similarities between 

blocks with the assumption that images that are close to each other in the feature space 

are also visually similar. Because of this assumption we should determine the most 

informative texture feature vector. 

 We have talked about computation of the grey level co-occurrence matrices and 

four Haralick features extracted from those matrices. In computing the grey level co-

occurrence matrices, the distances of 1 pixel, 3 pixel, 5 pixel, 8 pixel and 10 pixel 

neighbourhood were  used in the experiments. Distance between pixels is another 

important parameter in building the texture vectors. Experiments  showed that the most 

informative texture feature vector is the one pixel distance neighborhood. Below, some 

reciever operating curves is given and it is clear that the area under reciever operating 
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curve is maximum with the one pixel distance neighborhood grey level co-occurrence 

matrice.  

 

                    

 

Figure 5.26. ROC curves for optimal distance neighborhood GLMC feature, 10ˣ10 pixel 
blocks and 1, 3, 5 pixel neighborhoods respectively. 

 

 

                   

 

Figure 5.27. ROC curves for optimal distance neighborhood GLMC feature, 14ˣ14 pixel 
blocks and 1, 3, 5, 8, 10 pixel distance neighborhoods respectively. 
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Figure 5.28. ROC curves for optimal distance neighborhood GLMC feature, 20ˣ20 pixel 
blocks and 1, 3, 5 pixel neighborhoods respectively. 

 
 
 

                   

 
Figure 5.29. ROC curves for optimal distance neighborhood GLMC feature, 28ˣ28 pixel 

blocks and 1, 3, 5 pixel distance neighbourhoods respectively. 
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Figure 5.30. ROC curves for optimal distance neighborhood GLMC feature, 40ˣ40 pixel 
blocks and 1, 3, 5 pixel distance neighbourhoods respectively. 

 

 

 

                    

 

Figure 5.31. ROC curves for optimal distance neighborhood GLMC feature, 56ˣ56 pixel 
blocks and 1, 3, 5 pixel distance neighbourhoods respectively. 
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Figure 5.32. ROC curves for optimal distance neighborhood GLMC feature, 63ˣ63 pixel 
blocks and 1, 3, 5 pixel distance neighbourhoods respectively. 

 
 
 

                     

 

Figure 5.33. ROC curves for optimal distance neighborhood GLMC feature, 80ˣ80 pixel 
blocks and 1, 3, 5 pixel distance neighbourhoods respectively. 
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 In all figures for optimal distance above, the blue colored curves were used for 

representing the 1 pixel distance neighbourhood, red colored curves were used for 

representing 3 pixel distance neighbourhood, green colored curves were used for 

representing 5 pixel distance neighbourhood,  magenta colored  curves were used for  

representing 8 pixel distance neighbourhood and cyan colored curves were used for 

representing 10 pixel distance neighbourhood.  

 One pixel distance neighbourhood features had given bad results in small sized 

blocks like 10ˣ10 pixel block and 14ˣ14 pixel sized block. But the block sizes of 20ˣ20 

pixels or more, one pixel distance neighborhood became more succesfull in recognition. 

Remember that 80ˣ80 pixel block size is the best one. As a result we can say that along 

all experiment, the 80ˣ80 pixel sized blocks and one pixel distance grey level co-

occurrence matrices were found as the optimal system parameters for quasi-supervised 

learning algorithm in detecting man-made structures on aerial images.  

 

5.1.3. Quantization Level 

  

 The effect of quantization to detection performance was also tested. Experiments 

for quantization were carried-out along the 2000ˣ2000 pixel sized test image and control 

image. Quantization is consist of seperation of RGB cube into equal sub cubes. The 

effect of grey levels was tested on four different cases: 32, 64, 128, 256 grey leveled 

images were used. In the feature extraction part, 2000ˣ2000 pixels test image and 

control was used in for the experiments. Both images were divided into 80ˣ80 pixel 

blocks.  For each grey levels, one pixel distance neigbourhood co-occurrence matrices 

were then computed and organized into feature vectors. 

 Experiments on the effect of grey levels to the detection success resulted that 64 

grey level is the most successful feature property of all. Actually 32 grey level textural 

features also had given a good detection performance and it was very close to the 64 

level grey level. All four grey levels had different computation time. Reducing the grey 

levels has the same meaning to reduce the computation time.  In aerial reconnaissance 

scenario the learning algorithm should respond in near real time. if it is necessary, the 

32 grey levels can be used for extracting textural features. Because using 32 grey levels 

will reduce computation time and the performance of the learning will not be effected 

severely. 
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Figure 5.34. ROC curves for optimal quantization level(GLMC features are 80ˣ80pixel 

blocks and 1 pixel distance neighborhoods and 32, 64, 128, 256 grey levels 
respectively). 

 

 Blue colored curve represents the 32 grey level feature, red colored curve 

represents the 64 grey level feature, green curve represents the 128 grey level feature 

and magenta colored curve represents the 256 grey levels. Detection performance of 

four different textural features are very close to each other as seen on the figure, but the 

most successful textural profile is 64 grey level feature vector.  
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CHAPTER 6 

Equation Chapter 0 Section 3 

CONCLUSION 

 

 In this thesis, a quasi-supervised learning algorithm was implemented on 

eigthteen aerial images. Images were divided into reference control dataset and a testing 

data set, nine of the images were belong to the testing data set and the other nine images 

were belong to control data set. The elements of reference control data were normalcy 

terrestrial conditions and natural looking, but testing images consisted of both man-

made structures like building, roads etc. and natural terrestrial land. Those images 

splited into small blocks and each block was associated with a textural feature vector. 

Totally 42 different texture profile were tested and selection of the most successful 

texture profile is presented. 

 Since image classification is based on textural features and texture is defined 

with feature vectors, we should determine the most informative textural properties. 

Learning algorithm needs a distance measure that computes the distances between the 

feature vectors. These distance measures are used to determine the similarities between 

images with the assumption of  images close to each other in the feature space is also 

smilar. So in order to make a true recognition we should find the correct textural 

properties. Experiments were carried-out along 42 different textural features. These 

features were computed from the nine different pairs of test and control images, each 

image was quantized to grey levels and grey level information was used. The purpose of 

all the experiments are to detemine the optimal system parameters for learning 

algorithm. 80ˣ80 pixel size block and one pixel distance neighbourhood grey level co-

occurrence matrices were observed as the most efficent assets in detecting the man-

made structures on the aerial images. 

 Supervised learning requires the definition of a certain segment of data. In some 

applications, the ground truth data are available and the target variables are well 

defined. But in our scenario of detecting man-made structures in aerial images, there is 

no pre-determined object and target variable is unknown. So we should use a quasi-

supervised learning in aerial reconnaissance scenario. Quasi-supervised statistical 

learning algorithm is an appropriate tool for this task. Because it is based on a 

 57



classification method that divides available data into reference control data which has 

only normalcy conditions and a mixed testing data which has abnormal regions along 

with normals. Than identifiying the samples that are specific to testing data is enough 

for detecting the man-made structures in the aerial  images. 

 The results of the experiments showed that abnormal regions can be identified 

accurately with the appropriate texture vectors. According to the experimental results 

and performance evaluation of those 42 texture profiles, one pixel distance 

neighbourhood grey level co-occurrence matrices and the block size of 80ˣ80 pixels had 

given good detection results. Grey level information was used in all experiments and the 

most successfull textural profile in grey tones was 64 level quantization. It was noted 

that quantization level do not effect detection performance too much.  

 Consequently; quasi-supervised learning was observed as a successful technique 

for recognitioning man-made structures in aerial images. The 80ˣ80 pixel block size, 

one pixel distance neighbourhood and 64 level quantization properties are the most 

succesfull system parameters for aerial images. In future works, number of the samples 

can be increased and color information can be used for improving the detection success. 
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