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ABSTRACT

DYNAMIC ANALYSIS OF FLEXIBLE MECHANISMS BY FINITE
ELEMENT METHOD

In this study, vibration characteristics of flexible four-bar mechanisms are
investigated by using the procedure developed in ANSYS. Kinematics and kinetics of
the four-bar mechanism having rigid and flexible links are presented for finite element
modelling of the flexible mechanism. Equations of motion for rigid and flexible four-
bar mechanisms are derived by using Lagrangian dynamics to show the theoretical
approach. In order to find the natural frequencies of the flexible four-bar mechanism for
different configurations, eigenanalysis of the mechanism is carried out by considering
the discrete crank positions. Dynamic natural frequencies based on the motion induced
axial loads are found by using the discrete inertia forces acting on the nodes of the finite
element model. The mode shapes of the flexible four-bar mechanism are also found and

plotted with undeformed configurations.



OZET

ESNEK MEKANIZMALARIN SONLU ELEMANLAR METODU ILE
DINAMIK ANALIZI

Bu calismada, ANSYS’te gelistirilmis yordam kullanilarak esnek doért ¢ubuk
mekanizmalarinin titresim karakteristikleri incelenmistir. Rijit ve esnek uzuvlu dort
¢ubuk mekanizmalarinin kinetik ve kinematik analizleri esnek mekanizmanin sonlu
eleman modellenmesi i¢in sunulmustur. Teorik yaklasimi gostermek i¢in Lagrange
dinamigi kullanilarak rijit ve esnek dort ¢gubuk mekanizmalarinin hareket denklemleri
elde edilmistir. Esnek dort ¢ubuk mekanizmasinin farkli konumsal durumlarindaki
dogal frekanslar1 bulmak i¢in mekanizmanin 6zdeger analizi farkli krank pozisyonlari
disiiniilerek gergeklestirilmistir. Hareket zorlamali eksenel yiiklere dayanan dinamik
dogal frekanslar sonlu elaman modelinin diiglimlerine etkiyen farkli atalet kuvvetleri
kullanilarak bulunmustur. Esnek dort ¢ubuk mekanizmasinin titresim bigimleri de

bulunmustur ve sekil degistirmemis hali ile birlikte grafigi ¢izilmistir.
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CHAPTER 1

GENERAL INTRODUCTION

The high productivity, high-technology system demanded by the modern
mechanical industry require high operating speeds, superior reliability, accurate
performance, light weights and high-precision machinery. In order to overcome high
speed operation and increase efficiency, weights of many components in industrial
robots and various machines are reduced. As operating speed increases and weights of
components decrease, a rigid-body model is not enough anymore. So, these components
can not treat as rigid links, they become flexible.

High speed-lightweight manipulators can be thought as an example of flexible
multibody system. And four-bar mechanisms are mostly used due to their
manufacturing techniques and low cost.

Modeling, analysis and control of flexible mechanisms have been researched
since the early 70s. The investigation has been focused mostly on the definition of
accurate mathematical models both for single flexible bodies and multi-body systems.

Finite element method is used for modelling of flexible links which behave like
both continuous systems with infinite degrees of freedom and discrete systems. A
general model to describe the elastic motion of a mechanism can be established with the
use of finite element methods resulting in a set of second order differential equations. A
common assumption in this procedure is that the total motion is comprised of an elastic
motion superposed onto the rigid body motion. As a result the equations of this motion
have a significant feature time dependent coefficients. If the effects of nonlinear elastic
deflections and/or nonlinear joint characteristics are considered, the equations of motion
will be nonlinear. The dynamic response is viewed as a transient response and a steady
state response.

A general approach is presented for modelling of a flexible multibody system by
using a lumped mass finite element method (Han and Zhao 1990). Modelling and
design of controller for a flexible four-bar mechanism is presented. The non-linear
equations of motion are obtained by Lagrangian approach (Karkoub and Yigit 1999).

Theoretical and practical knowledge of the finite element method and analyzing



engineering problems with ANSYS are studied (Madenci and Guven 2006). Analysis
techniques of mechanisms are studied (S6ylemez 1999). Deriving the dynamic equation
of motion of a four-bar mechanism in order to minimize the dimensions of the
mechanism by using Lagrangian formulation is investigated (Tang 2006). Both
Freudenstein’s equation and the best Chebyshev’s theory are studied in order to provide
them as best solution for the tasks (Todorov 2002). The equations of motion for a
flexible mechanism are obtained by using displacement finite element theory (Turcic
and Midha 1984). The method of solution of the equations of motion is the steady-state
solution method which allows the steady-state solution (Turcic and Midha 1984). A
flexible four-bar mechanism is analyzed to verify the analytical modeling and solution
techniques. A comparison of the experimental and analytical results of the mechanism
obtained over the specified range is presented (Turcic et al. 1984). Floquet theory for
stability analysis of a closed-loop flexible mechanism by using modal coordinates is
presented (Yang and Park 1998). The finite element modeling of a flexible mechanism
is studied on rigid-elastic coupling and, geometrical stiffness effect of internal axial
forces on a beam element (YYang and Sadler 2000). A method for free vibration analysis
of planar flexible mechanisms whose body is considered as a beam and modelled using
higher-order beam elements for longitudinal and flexural deformations is presented.
Dynamical frequencies and dynamical mode shapes including the gyroscopic effects
and dynamic axial loads are found by using the modal summation method (Yu and Xi
2003). The geometric nonlinearity due to the large elastic deformations of three flexible
links is considered in setting up the dynamic equation of elastic linkages of the
mechanism (Yuxin 1997). The first approximation of Liapunov’s stability theorem and
Floquet theory are used in order to analyze the stability of elastic motion of a flexible
four bar crank rocker mechanism (Zhang and Xu 2004).

This thesis has 4 chapters. First chapter presents the subject and summaries the
previous studies on the titled subjects. Second chapter provides the theory. Numerical
examples and their results are given in Chapter 3. And finally, conclusion is written in
Chapter 4.

In this study, natural frequencies and corresponding modes shapes of the flexible
mechanisms are investigated by using the procedure developed in ANSYS. The
developed procedure uses the discrete crank positions and the discrete inertia forces
applied to the nodes of the finite element model. Inertia forces of the links are found by

using the kinematic analysis of the rigid four-bar mechanism. Static and dynamic



natural frequencies and corresponding mode shapes are found and presented in
graphical forms.



CHAPTER 2

ANALYSIS AND MODELLING OF FOUR-BAR
MECHANISM

2.1. Kinematics of Rigid Four-Bar Mechanism

A four-bar mechanism of which links are drawn as position vectors is shown in

Figure 2.1.
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Figure 2.1. A four-bar linkage mechanism showing position vectors

The vector loop closure equation shown in Figure 2.1 is written as:

L+E—T, =0 (2.1)
Equation 2.1 is expressed in terms of complex numbers as follows:
re'” +re'* —re'% —r, =0 (2.2)

By using the Euler expansion, Equation 2.2 is written as:



r,(cosd, +isind,)+r,(cos b, +isinb,)
—r,(cosé, +ising,)—r, =0

Equation 2.3 can be resolved into real and imaginary parts as:

r,cos@, +r,cos6;, —r,cosd, —r, =0

r,sing, +r,sing, —r,sind, =0

(2.3)

(2.4)

(2.5)

Taking the square of both sides of Equations 2.4 and 2.5 and summing them, the

following equation is found:

r,> = (~r,sin@, +r,sin6,)? + (-, c0s O, +1,C0S O, +1,)?

and by arranging:

> =r,% +r1,2 +1,° = 2r,r,c0s 0, + 2r,r, c0s 6,
—2r,r,(sind, sing, +cos @, cosd,)

(2.6.9)

(2.6.b)

is obtained. To simplify the Equation 2.6.b, the constants K, K;, and Kz are defined in

terms of the constant link lengths in the equations:

r-1
K, =1
r-2
;
1
K,=-1
r.4
2 2 2 2
K r, —r, +r, +n
L=

K,cos8, -K, cosé, + K, =coséb, cosd, +siné, sing,

2.7)

(2.8)

(2.9)

(2.10)



Then Freudenstein's equation (Todorov 2002) is obtained as follows:

K, cosé, —K, cosd, + K, =cos(d, —6,)

(2.11)

In order to reduce the Equation 2.11 to a more tractable form for solution, the

following half angle identities are substituted:

2tan(ﬁ)
sin ), =—29
1+tan® (=%
(2)
1—tan2(ﬂ
cosd, =—92
1+tan2(?4

Then, the following equation which is quadratic in terms of tan(g,/2) is found:

Atan? (9—2“) + Btan(g—z“) +C=0

where

A=cos®, -K,cosb, -K, cosg, +K,
B =-2sing,

C=K, - (K, +1)cosé, +K,

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

6, expressed in Equation 2.14 can be found by solving the quadratic equation

as:

—Bi\/BZ—4AC)

0, =2tan™
A ( oA

(2.18)



where the plus and minus sign refers to two different configuration of the mechanism.

In order to make velocity analysis of four-bar linkage, the derivation of Equation

2.2 is considered since ry is constant and @, =0, the aformentioned equation is found:
ir,w,e'” +ir,we'” —ir,m,e' =0 (2.19)
Resolving into real and imaginary parts, the following equations are written:
r,@, coS 6, + r,w, cosé, —r,w, cosd, =0 (2.20)
and
—r,w,SIN6, —r,w,8iN0, +1,0,5IN60, =0 (2.21)

Then velocity equations are obtained as follows:

o, = r,m, s!n(é?4 —-0,) (2.22)
r, sin(@,-40,)

_ 1w, sin(0, - 0;)

= 2.23
©a r, sin(@, -6,) (2:23)

In order to make acceleration analysis of four-bar linkage, the derivation of

Equation 2.19 is taken and the following equation is found:

2_i6 H i0, 26,
-r,o, e +IL,a,e ”? -ro, e
.2 2 . 2 22 - 3 3 - (224)
+ira,e'” +r,m,°e'" —ir,a,e' =0
Resolving into real and imaginary parts, the following equations are written:
-r,w,” C0S 0, — I, Sin 0, - ,m,” COS 6,
(2.25)

. 2 .
—r,a,8in 6, +r,w,” cos@, +r,a,sin6, =0

and



2 - 2 .
-r,w,” sin@, +r,a,c0s 6, -r,w,” sinod,

+ 01, C0S 0, +1,m,°sin@, —r,0, €086, =0
The following parameters are defined:
D, =-r,m,” c0s 6, — 1, sin 6, - ,w,” cos @, + r,w,” cos 6,
D, =-r;sin6,
D, =r,sing,
E, =-r,o,”siné, +1,a, 0086, - r,m,” sin G, + r,w,” sin b,
E, =r,cosé,
E, =-r,c080,
Therefore, Equation 2.25 and 2.26 are written as:
D, +D,a; +D,a, =0
E,+E,a; +E;, =0
Then, acceleration equations are obtained as follows:

o - ~DiEs +DsEy
? D2E3 _E2D3

a0 = E,D,+E,D,
4=
D2E3 _E2D3

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)



By carrying out the substitution and simplification, angular acceleration
expressions of link 3 and link 4 are found as (Soylemez 1999):

_r,w,°c0s(0, —0,) +1,a,siN(0, — 0,) + 1,0,” cos(6, — 0,) - 1,,°

: r, sin(8, — 6,)

(2.37)

1w, c0s(0, — 0,) +1,a,sin(0, - 0,) —1,0,° c08(6, — 6,) + 1,0,”
! r, sin(@, — 6,)

(2.38)

s e

0)) O4

Figure 2.2. Four-bar mechanism showing the centers of gravity of links

The centers of gravity of the links are shown in Figure 2.2. Accelerations of the

centers of gravity can be found using the standard kinematic relationships as follows:

gy = 0,0, €S0, —g,a,Sin b, (2.39)
gy, =—0,@," SiNG, +7,a, 00, (2.40)
8y, = T, €00, —T,a, SN0, — g,m," c0sH, —g,a, sin b, (2.41)
Agay = 1,0, SING, + 1,0, C0S O, — §,0,” SiN O, + g, COS 6, (2.42)
gy = 0,0, €00, —g,a, S0, (2.43)



gy = —0,40,” SiN 6, +7,, C0s 0, (2.44)

2.2. Kinetics of Rigid Four-Bar Mechanism
Kinetic analysis of rigid four-bar mechanism is based on the accelerations of the

centers of gravity given by Equations 2.39 to 2.44.
Inertial force and inertial moment of the link i are given by

Ifiinertia —_— é (245)

M’ iinertia = Gi&i (246)

It is well-known that inertial force and inertial moment represent the resistence
to linear and angular accelerations, respectively.
For dynamic force analysis of four-bar mechanism under external force or/and

moment, dynamic equilibrium conditions for any link i are given as:

> F =Y ma, (2.47)

> F, =Y ma, (2.48)

YM, =>lga (2.49)

Considering the dynamic equilibrium conditions for each link, the unknown

forces can be found using the standard procedure which are available in related
textbooks.

2.3. Equations of Motion

Lagrangian dynamic formulation is employed to derive equation of motion of

rigid and flexible four-bar mechanism.

10



2.3.1. Lagrangian Method for Rigid Four-Bar Mechanism

The four-bar mechanism shown in Figure 2.2 is considered again. The total

kinetic energy of the mechanism is written below:
1 S 2 2
T :EZ(miVGi +1go]) (2.50)
i=1

Then the total potential energy of the system is written as follows:

V=m,0Ys +M30Yg +M,0Yc, (2.51)
The Lagrangian of the entire system can be written as:
L=T-V (2.52)

Since the four-bar mechanism has one degree of freedom, all parameters can be
written in terms of &, . Therefore, the equation of motion by using Lagrange equation

can be expressed as:

) &g, (259
dt\ 6w, ) 06,

It can be found in compact form as (Tang 2006):

M(@6,)a, +V(0,,0,)=T,, (2.54)
where

M(6,) =23, + 3,82 + 3,52 + P,CS, | (2.55)

11



V(6, w,)=

| oS
ZJSSZ(&;
2

+S,

3+Sz

3, +s, aszj ]

06, 00,
0S4 +5 0S,

oS,

¥ 2J45{259

2

06, : 00,
0S,

e

86,

+ P?_S{acl

oG

+S,

00,

+
00, 00,

éC,
86,

oG

B -3, -S,
00, 06, 00,

in which

1
J, :E(ng§+|62+m3r22)
1
J3 :E(m3g§+lG3)

3= (Mgl +1c.)
P, =m,r,g,
C,(6,,6,) =cos(6, - 6,)
G(,,0,,6,) =(-m,gg9, —m,gr,)sin8, —m,gg, sind, —m,gg, sin o,

$,(0,,0,,0,) = 2% = SN0 =0.)
06, rsin(6,-6,)

5.0,0,0) = 20 - 50,20,
06, r,sin(0,-40,)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

12



2.3.2. Lagrangian Method for Flexible Four-Bar Mechanism

The deformed and undeformed configuration of flexible four-bar mechanism is
shown in Figure 2.3 (Yu and Xi 2003).

Deformed
Configuration

Undeformed
Configuration

~

Figure 2.3. Deformed and undeformed configurations of flexible four-bar

mechanism.

The position of any arbitrary point P on any link j shown in Figure 2.4 is written

in the body-fixed coordinate system xoy as (Yu and Xi 2003):

X
Figure 2.4. Displacement of any arbitrary point P.
- o x +u,
R, =R, +{, &, }{ ) } (2.65)

13



where R,; is the rigid-body position vector of reference point o,, &,;, and €,; are unit

X,i!

vectors in the x; and y, directions, respectively.

The absolute velocity of point P'can be written in body-fixed coordinate system

If'é _ Vo,i,x - @V, l"Ii 266
. Voiy ’ o, (X +u;)] |V, (260)

where v, and v, are the x and y velocity components of the reference point o;. U,

as follows:

and v, are the time derivatives of lateral and longitudinal deflections.

The Kkinetic energy of the link i is given by:
1 f EY
Ti :EJ.piAiRiRidXi (2.67)
0

The strain energy of the link i is given by:

i

: 2
1 ou 1 o
V.==|EAl = |dx +=[EI| = |dx 2.68
i 22[ IA‘(@XiJ i 2'([ ||(8X2i] i ( )

The work potential of the axial force for any link i is given by:
1% (v
W, == Pi(—] dx, (2.69)

where P, is the axial force acting on the link i.

The lagrangian for link i may be written as:

14



L =T, -V,-W, (2.70)

Depending on the selected generalized coordinate, equation of motion is found.

For example, using the finite element discretization technique, equation of motion for
flexible mechanism can be found. This is given in next section.

2.4. Finite Element Model for Flexible Four-Bar Mechanism

The finite element model shown in Figure 2.5 is used to model any link of the

flexible four-bar mechanism (Turcic and Midha 1984).
{d}=[NJjue 2.71)

where {d} is the local displacement vector of any point on element and {ue} is the nodal

displacements vector including nodal displacements shown in Figure 2.5.

Y
Vo X
u
y 2
V1 Uy 0,
N9
0¥
0 X
Figure 2.5. A finite element for flexible link
wel=lu, v, 6 u, v, 6] (2.72)

The equation of motion for a single finite element of the mechanism is derived

by using Lagrangian equation:

15



d (9KE | _9(KE)  A(PE) _
dt(a{ue}) a{ue}+a{ue} Q) (2.73)

where {Q} are the generalized forces acting on elements.
The position of any point in the finite element {R} shown in figiire 2.6 can be

written as:
{Ri={Ro}+ [T, }{d} (2.74)

where {RO} is the position of the origin of the local (x,y) coordinate system, [Tm] is the

transformation matrix between the local (x,y) coordinate system and the reference (X,Y)

coordinate system which is given by:

Y

X

Figure 2.6. Positions of any point in terms of {d}

cos@ -—sind
[r. =] " (2.75)
sind cosé@

The kinetic energy of the element is given below:
KE = % [ plRf" Rjav (2.76)

16



The equation of motion of a single finite element is expressed as:

I B+ e = Qe+ 4Q¢ )+ 1Qac I 105 -2t - e fu) - 2.77)

where

[1/3
0
0

1/6
0

[me]= AL

0

0
0

0
0

e
el

1

[ EA /L

—EA /L

0 0 1/6 0 0
13/35  11L/210 O 9/70  —13L/420
11L/210 L?/105 O 13L/420 —L%/140
0 0 1/3 0 0 (2.78)
9/70  13L/420 O 13/35  —11L/210
~13L/420 —L?/140 0 -11L/210 L*/105 |
0 0 ~EA /L 0 0 |
12E1/1®  6ElI/L? 0 —~12EI/L®  6El/L?
6EI/L*>  4El/L 0 —6EI/L? —2EI/L
0 0 EA /L 0 0 (2.79)
—~12E1/® —6EI/L? 0 12EI /> —6EI/L?
6EI/L*>  2EI/L 0 —6EI /> 4EI/L |
[me, J= [ INT [, T fF, INJav (2.80)
[me..]= [ oINT [T T [, INTav (2.81)

} is the force vector having the forces acting on the elements from adjacent

elements, {Qf} is the force vector due to the adjacent links, {sz} is the external force

vector acting on the element. 2[m

acceleration and [m

accelerations.

e
acc

e
vel

]{ue} has the forces resulting from Coriolis

]{ue} has the forces resulting from tangential and normal

The equation of motion of links is expressed as (Turcic and Midha 1984):

i i+ [ R = QL+ 1QU = ! 03 2l o' - [ '

(2.82)
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The equation of motion of entire mechanism is given by (Turcic and Midha
1984):

(2.83)

[ Y} [CHu}+ [Ku) = {Quc - [M KO, -2 md + M, [}
j

-[Mdd +2md,, + M, JJu

where [C] is the viscous damping matrix, {u} is the displacement vector, {u} is the
velocity vector, {u} is the acceleration vector, and {UO} is the rigid body acceleration

vector of the mechanism.
The derivation of equation of motion is based on small strain theory. However
axial force is effective of the stiffness properties of the beam. Using the large strain

theory, the geometric stiffness matrix is found as follows (Turcic and Midha 1984):

0 0 0 0 0 0
0 6/5 L/10 0 -6/5 L/10
[ke]:E 0 L/10 2L%/15 0 -L/10 -L?/30 (280
> Ljo 0 0o 0 O 0 '
0 -6/5 -L/10 0 6/5 -L/10
0 L/10 —L?/30 0 -L/10 2L%/15

where F is axial force acting on element.
The equation of motion given by Equation 2.83 has been modified as (Yang and
Sadler 2000):

MO+ o]+ 2m, JOj+ (Ko ]+ M, Jfu}=F)-MT0,) - 289)

where
] =T ([ AN L] IN]ox ) F] (2.86)
and

=BT (T paINY LAY INJex ] @287)
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Eigenanalysis is applied to the system having mass and structural stiffness
matrices, due to lack of generalized force vector in free vibration analysis as follows
(Yu and Xi 2003):

[M, (@)U, }+[K, (@)]U, } =0 (2.88)

From the following equation the natural frequencies and modal vectors can be
obtained for flexible four-bar mechanism:

K, (6,0} = 0Z[M, (6,0 }X} (2.89)
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CHAPTER 3

NUMERICAL EXAMPLES

3.1. Introduction

In this chapter, two example flexible mechanisms are presented for different
loading conditions. The first one is selected for free vibration analysis of flexible four
bar mechanism with different crank angles. In the second example, inertia forces are
considered to find the natural frequencies of the flexible four bar mechanism for
different configurations. The developed procedure in ANSYS is tested by using the

results available in the literature, then some applications are done.

3.2. Kinetics of Four-Bar Mechanism

In this section, kinetic analysis of an example for four-bar mechanism is
presented for rigid and flexible models. Flexible four-bar mechanism is modelled by
using beam finite elements in ANSYS. The following subsections gives the details for

the solution procedure developed in this study.

3.2.1. Rigid Mechanism

Figure 3.1 shows an example for four-bar mechanism modelled by using lamped
parameter approach. The inertia forces given by Equation 2.42 for the lumped masses
can be found by using the acceleration expressions given by Equations 2.36 to 2.41.
Considering these forces, kinetic analysis of rigid four-bar mechanism can be carried
out by using the standard procedure based on the Equation 2.44 to 2.46.

The inertia forces acting on these lumped masses are summarized below:

i=1,..12 (3.1)
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F ——ma i=1..12 (3.2)

where a, is the acceleration of mass m;, and can be calculated by using the formulation

given in Equations 2.36 to 2.41.

Figure 3.1. A four-bar mechanism showing lumped masses.

The numerical values of the first mechanism shown in Figure 3.1 are listed

below:

r, =254mm (length of link 1)
r, =100mm (length of link 2)
r, =279.4mm (length of link 3)
r, =266.7mm (length of link 4)
d, =69.85mm (distance between Aand m,)
d, =139.7mm (distance between Aand m. )
ds =209.55mm (distance between Aand my)

dy =200.025mm (distance between O, and m, )
d,, =133.35mm (distance betweenO, and m,,)

d,, =66.675mm (distance betweenO, and m,,)
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In the second mechanism, the numerical values are taken as the same listed

above except r,=102 mm.

For the four-bar mechanism shown in Figure 3.1, the acceleration of the lumped

masses are:
a,, =a,, =—T,m, c0s6, —r,a,sinb, (3.3)

3, =2, =—T,0, SinG, +1,a,c0s0, (3.4)

a,, =—T,w, c0s6, —r,a,sind, —d,w,’ cosd, —d,a, sin b, (3.5)
a,, =—T,m," SiNG, +1,a,c0s6, —d,w,” sind; +d,a; cos b, (3.6)

ag, =—1,m,” 088, —1,a,sin6, —d.m,” cos @, —d.a, Sin 6, (3.7)
a5, =—T,@," SN, +1,a, C0S 6, — ds,” sin 6, + dgar, COS 6, (3.8)

a,, = —T,w, c0s0, —ra,sind, —d,w,” cosd, —d.a, sin b, (3.9)
a5, =—T,@," SiNG, +,a, C0s 6, —dg,” SiN G + dgcr; COS (3.10)

a, =a, =-Tw, c0sd,—ra,sind, —d,w,’ cosd, —d,a,sind,  (3.11)
a,, =y, =—1,w, SiNG, +1,a,c080, —d,w," sin0; +d,a;c0s6,  (3.12)

ay, = -0y, cos @, —dya, Sin 6, (3.13)

3y, =—0ym,” sin 6, +dqaz, COS 6, (3.14)
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a5, =—d,,0,° c0s 6, —d e, Sin 6,
a0, = —0,@,” siN 6, +d,4cx, COS 6,
a,,, =—d,m,” cosd, —d,,a,sing,
a,,, =—0d,,0,” sin@, +d,,a, cos o,

3.2.2. Flexible Mechanism

(3.15)

(3.16)

(3.17)

(3.18)

The flexible four-bar mechanism selected as an example earlier modelled by
BEAM4 and COMBIN7 elements in ANSYS (Madenci and Guven 2006). The finite

element model is shown in Figure 3.2. Element numbers are shown in square boxes.

Figure 3.2. Finite element model of flexible four-bar mechanism.
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The cross-sectional dimensions and material properties of the first flexible four-

bar mechanism are listed below (Yu and Xi 2003):

b=1.6mm
h =25.4mm

E =200000 MPa

p=7.8%10"° tonnes /mm°

v=0.3

(width of thelinks)
(height of thelinks)

(modulus of elasticity)

(density)

(poisson'sratio)

For the second mechanism, the cross-sectional dimensions and material properties are

given as (Yu and Xi 2003):

b, =4.24mm

h, =25.4mm

by =1.6mm

h; =25.4mm

b, =1.6mm

h, =25.4mm

E =68900 MPa

p, =2.698*107° tonnes /mm®
ps =2.923*10"° tonnes / mm®

P4 =2.923*107° tonnes / mm?
v=03

(width of thelink2)
(heignt of thelink2)
(width of thelink3)
(height of the link3)
(width of thelink4)
(height of thelink4)

(modulus of elasticity)
(density of link2)
(density of link3)

(density of link4)

(poisson'sratio)

The boundary conditions of the mechanism are applied as:

e Node 1 is clamped due to the input torque applied to link 2.

e Node 12 is pinned.
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3.3. Vibrations of the Flexible Mechanism

3.3.1. Natural Frequencies of Mechanism without Internal Force

Natural frequencies of flexible four-bar mechanism modelled by finite element
method are found in ANSYS for different crank angle 6,. This type analysis is known
as eigenanalysis of mechanism for instantaneous structure. For the mechanism of which
parameters are given in previous sections, the natural frequencies and corresponding

mode shapes are presented in Figures 3.3 to 3.12.
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Figure 3.3. Natural frequencies of flexible four-bar mechanism.
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Figure 3.6. Third mode shape of flexible four-bar mechanism for 6,=0°.
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Figure 3.9. Third mode shape of flexible four-bar mechanism for 6,=120°.
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Figure 3.11. Second mode shape of flexible four-bar mechanism for 6,=240°.

Figure 3.12. Third mode shape of flexible four-bar mechanism for 6,=240°.
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3.3.2. Natural Frequencies of Mechanism with Internal Force

The internal force due to the inertia force are taken into account in finding the
natural frequencies of mechanism for different angular velocities @,. Inertia forces

acting on the lumped masses of the mechanism are considered in finite element model

created in Ansys. The results are shown in Figures 3.13 to 3.21.
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270 1 1 1 1 1 1 1 1 1 1 1
0 30 60 9 120 150 180 210 240 270 300 330 360
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Figure 3.13. First natural frequencies of flexible four-bar mechanism.
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Figure 3.14. Second natural frequencies of flexible mechanism.
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Figure 3.15. Third natural frequencies of flexible four-bar mechanism.

Figure 3.17. First mode shapes of flexible four-bar mechanism for @, = 20rad/s.
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Figure 3.20. Third mode shape of flexible four-bar mechanism for @, =10rad/s.
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Figure 3.21. Third mode shapes of flexible four-bar mechanism for @, =20rad/s.

3.4. Discussion of Results

The upper and lower limits of the static natural frequencies of the flexible four-
bar mechanism based on the crank angular position can be seen from the Figure 3.3.
The first, second, and third mode shapes of the mechanism plotted in Figures 3.4-3.12
are consistent in each other. For example, in the first mode shapes of the mechanism for
different crank angular positions, pin A has a displacement in the counterclockwise
direction.

It can be seen from Figure 3.13-3.15 that the crank angular velocity is effective
on the first and second dynamic natural frequencies but not on the third one. The first
and second mode shapes of the mechanism plotted in Figures 3.16-3.21 are very
consistent in each other, namely the links have the similar displacements for these
modes.

The present results are in agreement with the results available in the literature
(Yu and Xi 2003) for Figures 3.3 to 3.6 completely. On the other hand, the results given
in Figures 3.13 to 3.15 are in agreement with the same literature for 30 <&, <360.
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CHAPTER 4

CONCLUSIONS

This study presents an eigenanalysis of flexible four-bar mechanism by using
finite element model conjunction with kinematic and kinetic relationships. The solution
procedure based on the discrete crank positions and the discrete inertia forces applied to
the nodes of the finite element model has been developed in ANSYS Parametric Design
Language (APDL) to accomplish this analysis. The present results are in good

agreement with the results available in literature.
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