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ABSTRACT 

 

DYNAMIC ANALYSIS OF FLEXIBLE MECHANISMS BY FINITE 

ELEMENT METHOD 
 

In this study, vibration characteristics of flexible four-bar mechanisms are 

investigated by using the procedure developed in ANSYS. Kinematics and kinetics of 

the four-bar mechanism having rigid and flexible links are presented for finite element 

modelling of the flexible mechanism. Equations of motion for rigid and flexible four-

bar mechanisms are derived by using Lagrangian dynamics to show the theoretical 

approach. In order to find the natural frequencies of the flexible four-bar mechanism for 

different configurations, eigenanalysis of the mechanism is carried out by considering 

the discrete crank positions. Dynamic natural frequencies based on the motion induced 

axial loads are found by using the discrete inertia forces acting on the nodes of the finite 

element model. The mode shapes of the flexible four-bar mechanism are also found and 

plotted with undeformed configurations. 
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ÖZET 

 

ESNEK MEKANİZMALARIN SONLU ELEMANLAR METODU İLE 

DİNAMİK ANALİZİ 

 

Bu çalışmada, ANSYS’te geliştirilmiş yordam kullanılarak esnek dört çubuk 

mekanizmalarının titreşim karakteristikleri incelenmiştir. Rijit ve esnek uzuvlu dört 

çubuk mekanizmalarının kinetik ve kinematik analizleri esnek mekanizmanın sonlu 

eleman modellenmesi için sunulmuştur. Teorik yaklaşımı göstermek için Lagrange 

dinamiği kullanılarak rijit ve esnek dört çubuk mekanizmalarının hareket denklemleri 

elde edilmiştir. Esnek dört çubuk mekanizmasının farklı konumsal durumlarındaki 

doğal frekansları bulmak için mekanizmanın özdeğer analizi farklı krank pozisyonları 

düşünülerek gerçekleştirilmiştir. Hareket zorlamalı eksenel yüklere dayanan dinamik 

doğal frekanslar sonlu elaman modelinin düğümlerine etkiyen farklı atalet kuvvetleri 

kullanılarak bulunmuştur. Esnek dört çubuk mekanizmasının titreşim biçimleri de 

bulunmuştur ve şekil değiştirmemiş hali ile birlikte grafiği çizilmiştir. 
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

The high productivity, high-technology system demanded by the modern 

mechanical industry require high operating speeds, superior reliability, accurate 

performance, light weights and high-precision machinery. In order to overcome high 

speed operation and increase efficiency, weights of many components in industrial 

robots and various machines are reduced. As operating speed increases and weights of 

components decrease, a rigid-body model is not enough anymore. So, these components 

can not treat as rigid links, they become flexible.  

High speed-lightweight manipulators can be thought as an example of flexible 

multibody system. And four-bar mechanisms are mostly used due to their 

manufacturing techniques and low cost. 

Modeling, analysis and control of flexible mechanisms have been researched 

since the early 70s. The investigation has been focused mostly on the definition of 

accurate mathematical models both for single flexible bodies and multi-body systems. 

Finite element method is used for modelling of flexible links which behave like 

both continuous systems with infinite degrees of freedom and discrete systems. A 

general model to describe the elastic motion of a mechanism can be established with the 

use of finite element methods resulting in a set of second order differential equations. A 

common assumption in this procedure is that the total motion is comprised of an elastic 

motion superposed onto the rigid body motion. As a result the equations of this motion 

have a significant feature time dependent coefficients. If the effects of nonlinear elastic 

deflections and/or nonlinear joint characteristics are considered, the equations of motion 

will be nonlinear. The dynamic response is viewed as a transient response and a steady 

state response. 

A general approach is presented for modelling of a flexible multibody system by 

using a lumped mass finite element method (Han and Zhao 1990). Modelling and 

design of controller for a flexible four-bar mechanism is presented. The non-linear 

equations of motion are obtained by Lagrangian approach (Karkoub and Yigit 1999). 

Theoretical and practical knowledge of the finite element method and analyzing 



 2 

engineering problems with ANSYS are studied (Madenci and Guven 2006). Analysis 

techniques of mechanisms are studied (Söylemez 1999). Deriving the dynamic equation 

of motion of a four-bar mechanism in order to minimize the dimensions of the 

mechanism by using Lagrangian formulation is investigated (Tang 2006). Both 

Freudenstein’s equation and the best Chebyshev’s theory are studied in order to provide 

them as best solution for the tasks (Todorov 2002). The equations of motion for a 

flexible mechanism are obtained by using displacement finite element theory (Turcic 

and Midha 1984). The method of solution of the equations of motion is the steady-state 

solution method which allows the steady-state solution (Turcic and Midha 1984). A 

flexible four-bar mechanism is analyzed to verify the analytical modeling and solution 

techniques. A comparison of the experimental and analytical results of the mechanism 

obtained over the specified range is presented (Turcic et al. 1984). Floquet theory for 

stability analysis of a closed-loop flexible mechanism by using modal coordinates is 

presented (Yang and Park 1998). The finite element modeling of a flexible mechanism 

is studied on rigid-elastic coupling and, geometrical stiffness effect of internal axial 

forces on a beam element (Yang and Sadler 2000). A method for free vibration analysis 

of planar flexible mechanisms whose body is considered as a beam and modelled using 

higher-order beam elements for longitudinal and flexural deformations is presented. 

Dynamical frequencies and dynamical mode shapes including the gyroscopic effects 

and dynamic axial loads are found by using the modal summation method (Yu and Xi 

2003). The geometric nonlinearity due to the large elastic deformations of three flexible 

links is considered in setting up the dynamic equation of elastic linkages of the 

mechanism (Yuxin 1997). The first approximation of Liapunov’s stability theorem and 

Floquet theory are used in order to analyze the stability of elastic motion of a flexible 

four bar crank rocker mechanism (Zhang and Xu 2004). 

This thesis has 4 chapters. First chapter presents the subject and summaries the 

previous studies on the titled subjects. Second chapter provides the theory. Numerical 

examples and their results are given in Chapter 3. And finally, conclusion is written in 

Chapter 4. 

In this study, natural frequencies and corresponding modes shapes of the flexible 

mechanisms are investigated by using the procedure developed in ANSYS. The 

developed procedure uses the discrete crank positions and the discrete inertia forces 

applied to the nodes of the finite element model. Inertia forces of the links are found by 

using the kinematic analysis of the rigid four-bar mechanism. Static and dynamic 
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natural frequencies and corresponding mode shapes are found and presented in 

graphical forms. 
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CHAPTER 2 

 

ANALYSIS AND MODELLING OF FOUR-BAR 

MECHANISM 

 

2.1. Kinematics of Rigid Four-Bar Mechanism 

 

A four-bar mechanism of which links are drawn as position vectors is shown in 

Figure 2.1.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1. A four-bar linkage mechanism showing position vectors 

 

The vector loop closure equation shown in Figure 2.1 is written as: 

 

   0 rrrr 1432 


     

(2.1) 

 

Equation 2.1 is expressed in terms of complex numbers as follows: 

 

0rrrr 1432
432 

 iii
eee

     

(2.2) 

 

By using the Euler expansion, Equation 2.2 is written as: 

 

Y 

X 

x 

y 

θ3 

O2 

θ2 
θ4 

2r


3r


4r


1r


O4 

A 

B 
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0r)sin(cosr

)sin(cosr)sin(cosr

1444

333222









i

ii

    

(2.3) 

 

Equation 2.3 can be resolved into real and imaginary parts as: 

 

0rcosrcosrcosr 1443322  
   

(2.4) 

 

0sinrsinrsinr 443322  
          

(2.5) 

 

Taking the square of both sides of Equations 2.4 and 2.5 and summing them, the 

following equation is found:  

 

2

14422

2

4422

2

3 )rcosrcosr()sinrsinr(r  
  

(2.6.a) 

 

and by arranging: 

 

)coscossin(sinrr2

cosrr2cosrr2rrrr

424242

414212

2

1

2

4

2

2

2

3









  

(2.6.b) 

 

is obtained. To simplify the Equation 2.6.b, the constants K1, K2, and K3 are defined in 

terms of the constant link lengths in the equations: 

 

2

1
1

r

r
K 

     

(2.7) 

 

4

1
2

r

r
K 

     

(2.8) 

 

42

2

1

2

4

2

3

2

2
3

2 rr

rrrr
K




    

(2.9) 

 

424232241 sinsincoscosKcosKcosK     (2.10) 
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Then Freudenstein's equation (Todorov 2002) is obtained as follows: 

 

)cos(KcosKcosK 4232241  

   

(2.11) 

 

In order to reduce the Equation 2.11 to a more tractable form for solution, the 

following half angle identities are substituted: 

 

)
2

(tan1

)
2

tan(2

sin
42

4

4 









     

(2.12) 

 

)
2

(tan1

)
2

(tan1

cos
42

42

4 











     

(2.13) 

 

Then, the following equation which is quadratic in terms of )2tan( 4 is found: 

 

0)
2

tan()
2

(tan 442  CBA


          

(2.14) 

 

where 

322212 KcosKcosKcos  A

   

(2.15) 

 

2sin2 B

     

(2.16) 

 

3221 Kcos)1K(K  C

   

(2.17) 

 

4  expressed in Equation 2.14 can be found by solving the quadratic equation 

as: 

 

)
2

4
(tan2

2
1

4
A

ACBB 
 

   

(2.18) 
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where the plus and minus sign refers to two different configuration of the mechanism. 

 

In order to make velocity analysis of four-bar linkage, the derivation of Equation 

2.2 is considered since r1 is constant and 01  , the aformentioned equation is found:  

 

0rrr 432

443322 
  iii

eieiei

          

(2.19) 

 

Resolving into real and imaginary parts, the following equations are written: 

 

0cosrcosrcosr 444333222  
   

(2.20) 

and  

0sinrsinrsinr 444333222  
   

(2.21) 

 

Then velocity equations are obtained as follows:  

 

)sin(

)sin(

r

r

43

24

3

22
3











    

(2.22) 

 

)sin(

)sin(

r

r

34

32

4

22
4











    

(2.23) 

 

In order to make acceleration analysis of four-bar linkage, the derivation of 

Equation 2.19 is taken and the following equation is found:  

 

0rrr

r-rr-

443

322

44

2

4433

2

3322

2

22













iii

iii

eieei

eeie

    

(2.24) 

 

Resolving into real and imaginary parts, the following equations are written:  

 

0sinrcosrsinr

cosr-sinrcosr-

4444

2

44333

3

2

332222

2

22









   

(2.25) 

and 
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0cosrsinrcosr

sinr-cosrsinr-

4444

2

44333

3

2

332222

2

22









   

(2.26) 

 

The following parameters are defined: 

 

4

2

443

2

332222

2

221 cosrcosr-sinrcos-rD  

  

(2.27) 

 

332 sin-rD 

     

(2.28) 

 

443 sinrD 

     

(2.29) 

 

4

2

443

2

332222

2

221 sinrsinr-cosrsin-rE  

  

(2.30) 

 

332 cosrE 

     

(2.31) 

 

443 cosrE 

    

(2.32) 

 

Therefore, Equation 2.25 and 2.26 are written as: 

 

0DDD 43321  
            

(2.33) 

 

0EEE 43321  
           

(2.34) 

 

Then, acceleration equations are obtained as follows:  

 

3232

1331

3
DEED

EDED-






          

(2.35) 

 

3232

1221
4

DEED

DEDE-






         

(2.36) 
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By carrying out the substitution and simplification, angular acceleration 

expressions of link 3 and link 4 are found as (Söylemez 1999):  

 

)sin(r

r)cos(r)sin(r)cos(r

343

2

4434

2

33422242

2

22
3











 

(2.37) 

 

)sin(r

r)cos(r)sin(r)cos(r

344

2

3334

2

44422232

2

22
4











 

(2.38) 

 

 

 

 

 

 

 

 

Figure 2.2. Four-bar mechanism showing the centers of gravity of links 

 

The centers of gravity of the links are shown in Figure 2.2. Accelerations of the 

centers of gravity can be found using the standard kinematic relationships as follows: 

 

2222

2

22G2x singcosa   g

        

(2.39) 

 

2222

2

22G2y cosgsina   g

        

(2.40) 

 

3333

2

332222

2

22G3x singcossinrcosra   g

    

(2.41) 
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2

332222

2

22G3y cosgsincosrsinra   g

    

(2.42) 

 

4444

2

44G4x singcosa   g

        

(2.43) 
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4444

2

44G4y cosgsina   g

       

(2.44) 

 

2.2. Kinetics of Rigid Four-Bar Mechanism 

 

Kinetic analysis of rigid four-bar mechanism is based on the accelerations of the 

centers of gravity given by Equations 2.39 to 2.44. 

Inertial force and inertial moment of the link i are given by 

 

ii

inertia

i amF




    

(2.45) 

 

iGi

inertia

i IM 




    

(2.46) 

 

It is well-known that inertial force and inertial moment represent the resistence 

to linear and angular accelerations, respectively. 

For dynamic force analysis of four-bar mechanism under external force or/and 

moment, dynamic equilibrium conditions for any link i are given as: 

 

  ixix amF

    

(2.47) 

 

  iyiy amF

    

(2.48) 

 

  iGiz IM 
    

(2.49) 

 

Considering the dynamic equilibrium conditions for each link, the unknown 

forces can be found using the standard procedure which are available in related 

textbooks. 

 

2.3. Equations of Motion 

 

Lagrangian dynamic formulation is employed to derive equation of motion of 

rigid and flexible four-bar mechanism.  
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2.3.1. Lagrangian Method for Rigid Four-Bar Mechanism 

 

The four-bar mechanism shown in Figure 2.2 is considered again. The total 

kinetic energy of the mechanism is written below:  

 





3

1

22 )(
2

1

i

iGiGii IvmT 
    

(2.50) 

 

Then the total potential energy of the system is written as follows:  

 

G44G33G22 ymymymV ggg 

   

     (2.51) 

 

The Lagrangian of the entire system can be written as:  

 

VTL       (2.52) 

 

Since the four-bar mechanism has one degree of freedom, all parameters can be 

written in terms of 2 . Therefore, the equation of motion by using Lagrange equation 

can be expressed as:  

 

extT
LL

dt

d



















22            

(2.53) 

 

It can be found in compact form as (Tang 2006): 

 

22222 ),()(  TVM 

      

(2.54) 

where 

 212

2

34

2

2322 2)( SCPSJSJJM 
   

(2.55) 
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(2.56) 

in which 

)(
2

1 2

232

2

222 rmIgmJ G 

    

(2.57) 

 

)(
2

1
3

2

333 GIgmJ 

         

(2.58) 

 

)(
2

1
4

2

444 GIgmJ 

          

(2.59) 

 

3232 grmP 

     

(2.60) 

 

)cos(),( 32321  C

    

(2.61) 

 

44433322322432 sinmsinmsin)mm(),,(  gggggrggG 
 

(2.62) 
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2

3
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














r

r
S

          

(2.63) 
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)sin(
),,(
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2

4
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


















r

r
S

          

(2.64) 
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2.3.2. Lagrangian Method for Flexible Four-Bar Mechanism 

 

The deformed and undeformed configuration of flexible four-bar mechanism is 

shown in Figure 2.3 (Yu and Xi 2003).  

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Deformed and undeformed configurations of flexible four-bar 

mechanism. 

 

The position of any arbitrary point P on any link j shown in Figure 2.4 is written 

in the body-fixed coordinate system xoy as (Yu and Xi 2003): 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Displacement of any arbitrary point P. 
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(2.65) 
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where i0,R


 is the rigid-body position vector of reference point io , ix,e


, and iy,e


 are unit 

vectors in the ix  and iy  directions, respectively. 

 

The absolute velocity of point P'can be written in body-fixed coordinate system 

as follows: 

 





























i

i

ii

i

yi,o,

xi,o,

i
v

u
 

)ux(

v-

v

v
R





i

i





       

(2.66) 

 

where xi,o,v  and yi,o,v  are the x and y velocity components of the reference point io . iu  

and iv  are the time derivatives of lateral and longitudinal deflections. 

 

The kinetic energy of the link i is given by: 

 


ir

0

iiRR
2

1
iiii dxAT




      

(2.67) 

 

The strain energy of the link i is given by: 

 

 


























ii r

0

2

2r

0

2

2

1

2

1
i

i
iii

i

iii dx
x

v
IEdx

x

u
AEV

         

(2.68) 

 

The work potential of the axial force for any link i is given by: 

 

 













ir

0

2

2

1
i

i

ii dx
x

v
PW

      

(2.69) 

 

where iP  is the axial force acting on the link i. 

 

The lagrangian for link i may be written as: 
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iiii WVTL 

    

(2.70) 

 

Depending on the selected generalized coordinate, equation of motion is found. 

For example, using the finite element discretization technique, equation of motion for 

flexible mechanism can be found. This is given in next section. 

 

2.4. Finite Element Model for Flexible Four-Bar Mechanism 

 

The finite element model shown in Figure 2.5 is used to model any link of the 

flexible four-bar mechanism (Turcic and Midha 1984). 

 

    eu d N

     

(2.71) 

 

where  d  is the local displacement vector of any point on element and  eu  is the nodal 

displacements vector including nodal displacements shown in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. A finite element for flexible link 

 

   Tvuvu 222111

eu 

       

(2.72) 

The equation of motion for a single finite element of the mechanism is derived 

by using Lagrangian equation: 
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     
 Q

u

)(

u

)(

u eee






















 PEKEKE

dt

d

          

(2.73) 

 

where  Q  are the generalized forces acting on elements. 

The position of any point in the finite element  R  shown in figüre 2.6 can be 

written as: 

 

      d RR 0 mT

        

(2.74) 

 

where  0R  is the position of the origin of the local (x,y) coordinate system,  mT  is the 

transformation matrix between the local (x,y) coordinate system and the reference (X,Y) 

coordinate system which is given by: 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Positions of any point in terms of  d  
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(2.75) 

 

The kinetic energy of the element is given below: 

 

    dVRRKE  T

2

1


    

(2.76) 
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The equation of motion of a single finite element is expressed as: 

 

                    eee

0

e

ex

e

1

e

e1

ee u- u2UQQQuu e

acc

e

vel

eee mmmkm  

 

(2.77) 

 

where  

 
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


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

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(2.78) 
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
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
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22

2323
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(2.79) 

 

        dVNTTNm m

T

m

T
e

vel
 

   

(2.80) 

 

        dVNTTNm m

T

m

T
e

acc
 

   

(2.81) 

 

 e

e1Q  is the force vector having the forces acting on the elements from adjacent 

elements,  e

1Q  is the force vector due to the adjacent links,  e

exQ  is the external force 

vector acting on the element.    u2 ee

velm  has the forces resulting from Coriolis 

acceleration and   eue

accm  has the forces resulting from tangential and normal 

accelerations. 

The equation of motion of links is expressed as (Turcic and Midha 1984): 

 

                  lll

0

l

ex

l

1

ll u- u2UQQuu l

acc

l

vel

lll mmmkm  
  
 

(2.82) 
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The equation of motion of entire mechanism is given by (Turcic and Midha 

1984): 

 

                 

   u2-

 u2UQuuu 0ex

accvel

vel

MMdMdd

MMdMKCM



 

 

(2.83) 

 

where  C  is the viscous damping matrix,  u  is the displacement vector,  u  is the 

velocity vector,  u  is the acceleration vector, and  0U  is the rigid body acceleration 

vector of the mechanism. 

The derivation of equation of motion is based on small strain theory. However 

axial force is effective of the stiffness properties of the beam. Using the large strain 

theory, the geometric stiffness matrix is found as follows (Turcic and Midha 1984): 
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L

F
k e
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(2.84) 

 

where F is axial force acting on element. 

The equation of motion given by Equation 2.83 has been modified as (Yang and 

Sadler 2000): 

 

                    UFUU2U 000
 MMKMCM  

 

(2.85) 

 

where 

             ii
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i TdxNTTNATM
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(2.86) 

and  
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(2.87) 
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Eigenanalysis is applied to the system having mass and structural stiffness 

matrices, due to lack of generalized force vector in free vibration analysis as follows 

(Yu and Xi 2003): 

 

      0U)(U)( r2r2   rr KM 

   

(2.88) 

 

From the following equation the natural frequencies and modal vectors can be 

obtained for flexible four-bar mechanism: 

 

     X)(X)( ,2

2

,2 krnkr MK  

   

(2.89) 
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CHAPTER 3 

 

NUMERICAL EXAMPLES 

 

3.1. Introduction 

 

 In this chapter, two example flexible mechanisms are presented for different 

loading conditions. The first one is selected for free vibration analysis of flexible four 

bar mechanism with different crank angles. In the second example, inertia forces are 

considered to find the natural frequencies of the flexible four bar mechanism for 

different configurations. The developed procedure in ANSYS is tested by using the 

results available in the literature, then some applications are done. 

 

3.2. Kinetics of Four-Bar Mechanism 

 

In this section, kinetic analysis of an example for four-bar mechanism is 

presented for rigid and flexible models. Flexible four-bar mechanism is modelled by 

using beam finite elements in ANSYS. The following subsections gives the details for 

the solution procedure developed in this study. 

 

3.2.1. Rigid Mechanism 

 

Figure 3.1 shows an example for four-bar mechanism modelled by using lamped 

parameter approach. The inertia forces given by Equation 2.42 for the lumped masses 

can be found by using the acceleration expressions given by Equations 2.36 to 2.41. 

Considering these forces, kinetic analysis of rigid four-bar mechanism can be carried 

out by using the standard procedure based on the Equation 2.44 to 2.46. 

The inertia forces acting on these lumped masses are summarized below: 

 

ixiix amF 
   

12,...,1i

   

(3.1) 
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iyiiy amF 
   

12,...,1i

   

(3.2) 

 

where ia  is the acceleration of mass im  and can be calculated by using the formulation 

given in Equations 2.36 to 2.41. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. A four-bar mechanism showing lumped masses. 

 

The numerical values of the first mechanism shown in Figure 3.1 are listed 

below: 

 

)1linkoflength(254r1 mm
 

)2linkoflength(100r2 mm
 

)3linkoflength(4.279r3 mm
 

)4linkoflength(7.266r4 mm
 

)andbetweendistance(85.69d 44 mAmm
 

)andbetweendistance(7.139d 55 mAmm
 

)andbetweendistance(55.209d 66 mAmm
 

)andbetweendistance(025.200d 949 mOmm
 

)andbetweendistance(35.133d 10410 mOmm
 

)andbetweendistance(675.66d 11411 mOmm
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In the second mechanism, the numerical values are taken as the same listed 

above except r2=102 mm. 

 

For the four-bar mechanism shown in Figure 3.1, the acceleration of the lumped 

masses are: 

 

2222

2

223x2x sinrcosaa   r

   

(3.3) 

 

2222

2

223y2y cosrsinaa   r

   

(3.4) 

 

3343

2

342222

2

224x sindcossinrcosra   d

      

(3.5) 

 

3343

2

342222

2

224y cossincosrsinra  dd 

      

(3.6) 

 

3353

2

352222

2

225x sindcossinrcosra   d

      

(3.7) 
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2

352222

2

225y cossincosrsinra  dd 

      

(3.8) 
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(3.9) 
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(3.10) 
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228x7x sindcossinrcosraa   d
       

(3.11) 
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372222
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228y7y cossincosrsinraa  dd 
 
        

(3.12) 

 

4494

2

499x sincosa  dd 

      

(3.13) 
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2

499y cossina  dd 

      

(3.14) 
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44104

2

41010x sincosa  dd 

        

(3.15) 

 

44104

2

41010y cossina  dd 

        

(3.16) 

 

44114

2

41111x sincosa  dd 

        

(3.17) 

 

44114

2

41111y cossina  dd 

        

(3.18) 

 

3.2.2. Flexible Mechanism 

 

The flexible four-bar mechanism selected as an example earlier modelled by 

BEAM4 and COMBIN7 elements in ANSYS (Madenci and Guven 2006). The finite 

element model is shown in Figure 3.2. Element numbers are shown in square boxes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Finite element model of flexible four-bar mechanism. 
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The cross-sectional dimensions and material properties of the first flexible four-

bar mechanism are listed below (Yu and Xi 2003): 

 

)links  theofwidth (6.1 mmb 
 

)links  theofheight (4.25 mmh 
 

 

)elasticity of modulus(200000E MPa
 

)density(/10*8.7 39 mmtonnes
 

)ratiospoisson'(3.0  

 

For the second mechanism, the cross-sectional dimensions and material properties are 

given as (Yu and Xi 2003): 

 

)link2  theofwidth (24.42 mmb 
 

)link2  theofheight (4.252 mmh 
 

)link3  theofwidth (6.13 mmb 
 

)link3  theofheight (4.253 mmh 
 

)link4  theofwidth (6.14 mmb 
 

)link4  theofheight (4.254 mmh 
 

 

)elasticity of modulus(68900E MPa
 

)link2 ofdensity (/10*698.2 39
2 mmtonnes

 

)link3 ofdensity (/10*923.2 39
3 mmtonnes

 

)link4 ofdensity (/10*923.2 39
4 mmtonnes

 

)ratiospoisson'(3.0  

 

The boundary conditions of the mechanism are applied as: 

 Node 1 is clamped due to the input torque applied to link 2. 

 Node 12 is pinned. 
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3.3. Vibrations of the Flexible Mechanism 

 

3.3.1. Natural Frequencies of Mechanism without Internal Force 

 

Natural frequencies of flexible four-bar mechanism modelled by finite element 

method are found in ANSYS for different crank angle 2 . This type analysis is known 

as eigenanalysis of mechanism for instantaneous structure. For the mechanism of which 

parameters are given in previous sections, the natural frequencies and corresponding 

mode shapes are presented in Figures 3.3 to 3.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Natural frequencies of flexible four-bar mechanism. 
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Figure 3.4. First mode shape of flexible four-bar mechanism for θ2=0
o
. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Second mode shape of flexible four-bar mechanism for θ2=0
o
. 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Third mode shape of flexible four-bar mechanism for θ2=0
o
. 
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Figure 3.7. First mode shape of flexible four-bar mechanism for θ2=120
o
. 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Second mode shape of flexible four-bar mechanism for θ2=120
o
. 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Third mode shape of flexible four-bar mechanism for θ2=120
o
. 
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Figure 3.10. First mode shape of flexible four-bar mechanism for θ2=240
o
. 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. Second mode shape of flexible four-bar mechanism for θ2=240
o
. 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Third mode shape of flexible four-bar mechanism for θ2=240
o
. 
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3.3.2. Natural Frequencies of Mechanism with Internal Force 

 

The internal force due to the inertia force are taken into account in finding the 

natural frequencies of mechanism for different angular velocities 2 . Inertia forces 

acting on the lumped masses of the mechanism are considered in finite element model 

created in Ansys. The results are shown in Figures 3.13 to 3.21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. First natural frequencies of flexible four-bar mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. Second natural frequencies of flexible mechanism. 
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Figure 3.15. Third natural frequencies of flexible four-bar mechanism. 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. First mode shape of flexible four-bar mechanism for srad /102  . 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. First mode shapes of flexible four-bar mechanism for srad /202  . 
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Figure 3.18. Second mode shape of flexible four-bar mechanism for srad /102  . 

 

 

 

 

 

 

 

 

 

 

Figure 3.19. Second mode shapes of flexible four-bar mechanism for srad /202  . 

 

 

 

 

 

 

 

 

 

 

Figure 3.20. Third mode shape of flexible four-bar mechanism for srad /102  . 
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Figure 3.21. Third mode shapes of flexible four-bar mechanism for srad /202  . 

 

3.4. Discussion of Results 

 

 The upper and lower limits of the static natural frequencies of the flexible four-

bar mechanism based on the crank angular position can be seen from the Figure 3.3. 

The first, second, and third mode shapes of the mechanism plotted in Figures 3.4-3.12 

are consistent in each other. For example, in the first mode shapes of the mechanism for 

different crank angular positions, pin A has a displacement in the counterclockwise 

direction. 

 It can be seen from Figure 3.13-3.15 that the crank angular velocity is effective 

on the first and second dynamic natural frequencies but not on the third one. The first 

and second mode shapes of the mechanism plotted in Figures 3.16-3.21 are very 

consistent in each other, namely the links have the similar displacements for these 

modes. 

 The present results are in agreement with the results available in the literature 

(Yu and Xi 2003) for Figures 3.3 to 3.6 completely. On the other hand, the results given 

in Figures 3.13 to 3.15 are in agreement with the same literature for 36030 2  . 
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CHAPTER 4 

 

CONCLUSIONS 

 

This study presents an eigenanalysis of flexible four-bar mechanism by using 

finite element model conjunction with kinematic and kinetic relationships. The solution 

procedure based on the discrete crank positions and the discrete inertia forces applied to 

the nodes of the finite element model has been developed in ANSYS Parametric Design 

Language (APDL) to accomplish this analysis. The present results are in good 

agreement with the results available in literature. 
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