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ABSTRACT

HIGGS BOSONS OF GAUGE-EXTENDED SUPERSYMMETRY AT THE LHC

This thesis work is devoted to a detailed phenomenological analysis of the Higgs

sector of gauge-extended supersymmetry in light of the mostrecent experimental bounds.

Such extra gauge symmetries, obtained by adding an extra Abelian symmetryU(1)′ to

the gauge structure of the Standard Model (SM) and Minimal Supersymmetric Standard

Model (MSSM) which have the same gauge structure, are urged by theµ problem of the

MSSM, and they also arise frequently in low-energy supersymmetric models stemming

from GUTs and strings.

We analyze the Higgs boson masses and their dependencies on various model pa-

rameters. In particular, we compute masses of all the Higgs bosons, and confront the

mass of the lightest one with the LEP and Tevatron experiments. Then we indicate the

restrictions from LEP and Tevatron bounds on the masses and remaining model parame-

ters. We analyze correlations among various model parameters, and determine excluded

regions by both scanning the parameter space and examining certain likely parameter val-

ues. Furthermore, we make educated projections for LHC measurements in light of the

LEP and Tevatron restrictions on the parameter space.

As a result of this thesis work we find thatµ-problem motivated generic low-

energyU(1)′ model yields lightest Higgs masses as large as∼ 200 GeV, and violates

the Tevatron bounds for certain ranges of parameters. However, we find thatU(1)′ model

stemming from E(6) breaking elevate Higgs boson mass into Tevatron’s forbidden band

whenU(1)′ gauge coupling takes larger values than the one corresponding to one-step

GUT breaking. We also obtain that the Tevatron bounds put strong restrictions on certain

parameters of theU(1)′ model and they lead to determinations of certain parameter ranges

before the LHC measurements.
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ÖZET

AYAR GENİŞLETMELİ SÜPERṠIMETRİK MODELLERİN LHC’DEK İ HİGGS

ṠINYALLER İ

Bu tez çalışması ayar genişletmeli süpersimetrik modellerin Higgs sektörünün de-

taylı fenomenolojik analizine dayanır. Standart modelin ve aynı ayar yapısına sahip Mini-

mal Süpersimetrik Standart Modelin (MSSM) ayar yapısına extra abelyenU(1)′ simetrisi

ekleyerek elde edilen bu extra ayar simetrileri MSSM’inµ problemini çözmek için ileri

sürülmüştür, ve büyük birleşim teorisi ile sicim teorilerinden kaynaklanan düşük enerjili

süpersimetrik modellerde de ortaya çıkarlar.

Bu çalışmada Higgs bozon kütleleri ve bu kütlelerin çeşitli model parametrelerine

bağlılığını analiz ettik.Özellikle tüm Higgs bozonlarının kütlelerini hesapladık, ve en

hafif Higgs kütlesini LEP ve Tevatron deneyleri ile karşılaştırdık. Sonra LEP ve Teva-

tron sınırlarından gelen, Higgs kütleleri ve geri kalan model parametreleri üzerindeki

sınırlandırmaları gösterdik. Çeşitli model parametreleri arasındaki ilişkileri analiz ettik

ve parametre uzayını tarayarak ve muhtemel parametre değerlerini inceleyerek dışlanan

bölgeleri belirledik. Daha sonra parametre uzayı üzerindeki LEP ve Tevatron sınırlan-

dırmaları ışığında LHC ölçümleri için tahminde bulunduk.

Bu tez çalışmasının sonucu olarakµ-probleminin çözümünden kaynaklanan düşük

enerjili U(1)′ modelinin en hafif Higgs kütlesinin∼ 200 GeV kadar büyük değerler

alabilmesine olanak sağladığını ve belli parametre bölgesi için Tevatron sınırını ihlal

ettiğini bulduk. Bununla birlikte E(6) grubunun kırılmasından kaynaklananU(1)′ mod-

elinin, Higgs bozonu kütlesini Tevatronun yasak bandına,ancakU(1)′ ayar birleşme kat-

sayısının büyük birleşim teorisinin tek adımda kırılmasına karşılık gelen ayar birleşim

katsayısından büyük değerler aldığında yükseldiğini bulduk. Aynı zamanda Tevatron

sınırınınU(1)′ modelinin belli parametreleri üzerine güçlü sınırlandırmalar koyduğunu

belirledik ve bu da bizi LHC ölçümleri öncesinde belli parametre aralıklarını belirlemeye

yönlerdirdi.
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CHAPTER 1

INTRODUCTION

The curiosity is the most important and efficient factor which lead people to

search. Before the 1960, two questions “What is the world made of?” and “What holds

it together?” make scientists wonder about the answer for these questions. As a result

of this curiosity the Standard Model (SM) is proposed by Weinberg, Salam and Glashow

(Glashow, 1961; Weinberg, 1967). The Standard Model describes the fundamental par-

ticles in universe and how they interact with each other. According to SM, elementary

particles which constitute the matter are called fermions.Fermions are particles with

spin fractional namely in this case 1/2 and obey to the Fermi-Dirac statistics. These el-

ementary particles include six leptons (electron(e), muon(µ), tau(τ ) and their neutrinos

(νe, νµ, ντ )) and six quarks (up(u), down(d), charm(c), strange(s), top(t) and bottom(b)).

The combination of these quarks form the known baryons (consisting of three quarks)

and mesons (consisting of one quark and one anti-quark) suchas; proton(p ≈ uud),

neutron(n ≈ udd), pion(π+ ≈ ud̄). At the same time the Standard Model describes three

fundamental interactions which are strong, weak and electromagnetic interactions. There

is also one more fundamental interaction called gravitation which is not determined by

the SM. Each interaction has a mediator carrying the physical forces. These particles

with spin 1 are bosons which obey the Bose-Einstein statistics. The mediators of the

strong, weak and electromagnetic interactions are, respectively, gluon,W±, Z0 bosons

and photon. To each of the forces corresponds the gauge symmetry group and the theory

exhibits an exact invariance under the combination of thesesymmetries. Therefore it is

stated that the Standard Model is a gauge theory.

The theory is based onSU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge symmetry group with

subscriptsC,L, Y that refer to color, left chirality and weak hypercharge. These sub-

scripts represent the characteristic properties of the groups; for instance, weak hyper-

charge (Y ) is the charge of the particles underU(1)Y symmetry group. Components

of this gauge group stand for the strong, weak and electromagnetic interactions, respec-

tively. Each gauge group has generators and for each generator a “vector field” arises.

These vector fields come from the necessities of the Lagrangian to be invariant under the

local group transformations called gauge invariance. These vector fields are also called as

“gauge fields” which can be thought of as the carriers of physical forces. The gauge fields

1



of the each group are given in Chapter 2.

The gauge invariance forbids the mass terms of the fermions and gauge bosons in

the SM Lagrangian. Hence it seems that these should be massless, however from the ex-

perimental results it is known that these particles have mass . To give mass to the particles

it is considered that the vacuum is filled by a Higgs field whichhas a nonzero value at

the vacuum state (at the minimum of the Higgs potential energy). When the Higgs field

acquires its vacuum expectation value (VEV), electroweak symmetry is spontaneously

broken. By breaking of the symmetry when one massive Higgs boson arises, three mass-

less Goldstone bosons occur. These Goldstone bosons are eaten by the massless gauge

fields and give to gauge bosons their masses. The fermions also interact with the Higgs

field and when the Higgs field acquire its VEV, the fermions gettheir masses. The mech-

anism that cause the spontaneous symmetry breaking (SSB) and give mass to particles

is called as the “Higgs Mechanism”, and detailed explanation about the SSB and Higgs

mechanism is given in Appendix A.

The Standard Model explains lots of experimental facts, however it has some prob-

lems, such as “the hierarchy problem” which is explained in Chapter 2. To overcome this

problem we need extension of the SM. The supersymmetry is oneof the theories proposed

to solve this problem by J. Wess and B. Zumino in 1974 and by some other scientists in-

dependently. The Minimal Supersymmetric Standard Model (MSSM) which is the first

realistic supersymmetric version of the SM was proposed in 1981 by Howard Georgi and

Savas Dimopoulos, is the minimal supersymmetric extensionof the SM since these are

the same gauge structure as seen in Chapter 3 with detailed explanation. Besides this, we

give a discussion about the MSSM in regard to its symmetries,gauge structure as well

as particle and super-partner spectrum in Chapter 3. For example, the Higgs sector of

the MSSM can be summarized as following. There are two Higgs doublets in the MSSM

contrary to the SM. While in the SM there is only one Higgs boson, in the MSSM five

Higgs bosons arise: two of them are neutral and CP even scalarHiggs bosons (h and

H), two of them are charged Higgs bosons (H±) and the rest is the neutral and CP odd

pseudoscalar Higgs boson (A).

Although the MSSM solves some problems of the SM, in Chapter 4we make

an observation that the superpotential of the MSSM containsa dimensionful parameter

- theµ parameter - which can be of arbitrary scale, while the natural coefficient should

be dimensionless and at the electroweak scale. This problemcan be solved naturally if

one considers an extraU(1)′ which is spontaneously broken at the soft-breaking scale.

Such extraU(1)′ symmetries are also predicted in stringy scenarios and supersymmetric

2



GUTs. We discuss generic features ofU(1)′ models, and explain their differences from

the MSSM. For instance, in theU(1)′ model with one extra singlet Higgs scalar there is

one extra Higgs boson that is neutral, CP even scalar (H ′). When we consider the gauge

boson sector, we see that there is also one extra neutral gauge boson (Z ′) in theU(1)′

model.

Having set up theU(1)′ model, in Chapter 5 we go on to study its Higgs sector.

We compute quantum corrections to its Higgs potential at oneloop level by including

quantum fluctuations of top quark, bottom quark, scalar top quark, and scalar bottom

quark. We adopt effective potential approximation with a renormalization scale around

the top quark mass.

After design this setup, in Chapter 6 we present details of our works. In our

work we analyze the Higgs boson masses and their parametric dependencies on various

model parameters in order to determine the allowed regions under the LEP and Tevatron

bounds for certain selectedU(1)′ models and to make projections for LHC measurements

in light of these restrictions. In our work we compute, especially, masses of all the Higgs

bosons, and compare the mass of the lightest one with the LEP and Tevatron experiments

which, respectively, state that a light scalar with standard couplings to quarks and leptons

cannot weigh below∼ 114 GeV, and in between the159 GeV and167 GeV. We analyze

correlations among various model parameters, and determine excluded regions by both

scanning the parameter space and by examining certain likely parameter values.

In the last Chapter we conclude this thesis work and its findings by stating that the

Tevatron and LEP bounds guide to expectations at the LHC for theU(1)′ model.

3



CHAPTER 2

STANDARD MODEL IN BRIEF

2.1. The Structure of the Model

The Standard Model (SM) is a gauge theory that describes the fundamental parti-

cles and their interactions and it is based on the following gauge group structure:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y (2.1)

where to each group corresponds a fundamental interaction;strong, weak and electro-

magnetic, respectively. The gauge fields of each group whicharise from making the

Lagrangian invariant under the local gauge transformationare considered as the carriers

of the corresponding interaction.

The number of the gauge fields is equal to the number of generators of each group.

There are ”n2 − 1” generators for a non-Abelian groupSU(n) while ”n2 = 1” for an

Abelian groupU(1). Abelian groups have commuting generators with each other while

generators of non-Abelian groups anticommute. In the Standard Model there are 12 gauge

fields:1 gauge field for an abelianU(1) group, 3 and 8 gauge fields for nonabelianSU(2)

andSU(3) groups, respectively. These gauge fields and their properties are given in Table

2.1.

As mentioned in Chapter 1, the SM has 12 fermions considered as fundamental

Table 2.1. Properties of the Gauge Groups

Gauge Groups Gauge Fields Properties Number of Generators
SU(3)C Ga

µ, a = 1, 2..., 8 Color n2 − 1 = 8

SU(2)L W i
µ, i = 1, 2, 3 Isospin n2 − 1 = 3

U(1)Y Bµ Hypercharge n2 = 1

4



particles. These fermions can be written in a 3-fold family structure (Pich, 2005),

[
νe u

e− d′

]
,

[
νµ c

µ− s′

]
,

[
ντ t

τ− b′

]
(2.2)

where each family has the same properties except for their mass and their flavor quantum

number. Hered′, s′ andb′ stand for the weak eigenstates whiled, s andb stand for the

mass eigenstates. We prefer the representation with prime for these quarks since there is a

mixing between the mass eigenstates. The relation between these two eigenstates is given

by




d′

s′

b′


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b


 ≡ V




d

s

b


 (2.3)

where the3 × 3 unitary matrix is called Cabibbo- Kobayashi- Maskawa matrix V that

expresses the quark mixing.

Representation in (2.2) gives us a general information about the particle content of

the SM. To obtain more information about the particles we should examine some proper-

ties of the fermions such as their property to be a Dirac spinor. Dirac spinors are written as

right-handed and left-handed by means of their helicities.Right and left handed particles

mean that directions of their spin and the motion are the sameand opposite, respectively.

According to gauge structure of the SM the left handed fermions should be repre-

sented as a doublet since they are invariant underSU(2)L andU(1)Y symmetries. How-

ever, right handed fermions should be represented as singlet since they are only invariant

underU(1)Y symmetry.

Lℓ =

(
νℓ

ℓ−

)

L

and Qq =

(
qu

qd′

)

L

and ℓ−R, quR, qdR (2.4)

where there is noνR particle in the SM because neutrino is considered as massless. Here

left handed and right handed fermions transform differently since they are represented

differently. Here it should be noted that the mixing betweenquark mass states exist only

in the left handed representation since mass state mixing arises to be invariant under
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SU(2)L symmetry.

For the mass terms of the fermions, mixing of the left-right handed fermions is

necessary,mff̄ = m(f̄RfL + f̄LfR), however, it is not possible since it violates gauge

invariance of the Lagrangian. Therefore mass terms of fermions are forbidden in the

Lagrangian. Nevertheless, experiments show that the fermions are massive. To obtain

mass terms of the fermions to be included in the Lagrangian weintroduce a new complex,

scalar doublet Higgs field,H =


 H+

H0


. The Higgs field has a vacuum expectation

value (VEV) which is constant throughout all space. When theHiggs field acquires its

VEV due to its desire to be at the minimum potential energy, the electroweak symmetry is

spontaneously broken. Then, massless fermions get their masses by interacting with the

Higgs field, such ashe(L̄eHeR + h.c.) wherehe is an arbitrary coupling of interaction.

SinceLe andH are doublets,̄LeH becomes a singlet and then we can multiply this by the

right handed singlet. When the VEV of the Higgs field are put into he(L̄eHeR + h.c.) we

obtain the mass term of the fermions which are gauge invariance like(hev/
√

2)(f̄RfL +

f̄LfR) . This mechanism is called the Higgs mechanism and detailed explanation of it is

given in Appendix.

All symmetry groups have a charge under the related symmetrygroup, such as

electric charge of a particle under electromagneticU(1)EM symmetry group. The charge

of the particles under theU(1)Y symmetry group called hypercharge is determined by

using the Gell-Mann-Nishijima relation (Novaes, 1999):

Q = T3 +
1

2
Y (2.5)

whereQ, T3 andY represent electromagnetic charge, third component of the isospin and

hypercharge of a particle. So the hypercharges of the fermions and Higgs field areYLℓ
=

−1, YQq = 1
3
, YℓR = −2, YquR

= 4
3
, YqdR

= −2
3

andYH = 1.

To explain it more clear it is better to go on by giving an example. The Dirac

Lagrangian density for a free fermion is given as

L = iψ(x)γµ∂µψ(x) −mψ(x)ψ(x). (2.6)

Since the first term of the Lagrangian above is not invariant under the local gauge transfor-

mations, the covariant derivative replaces the partial derivative to make the Lagrangian in-
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variant. For simplicity the local gauge transformation underU(1) gauge symmetry group

can be considered. For this symmetry transformation, covariant derivative is defined as

follows

Dµ = ∂µ + iqAµ (2.7)

whereAµ is a vector field, introduced to construct a covariant derivative and,q is the

fermion’s electric charge, which is generator of theU(1) symmetry group. The transfor-

mation rules for the fermion and gauge fields are given by

ψ′ = eiθ(x)ψ (2.8)

A′
µ = Aµ +

1

q
∂µθ(x). (2.9)

Now, the Lagrangian in (2.6) becomes

L = iψ(x)γµDµψ(x) −mψ(x)ψ(x) − 1

4
F µνFµν (2.10)

whereFµν is the field strength tensor of theU(1) symmetry group. This term represents

the kinetic energy term of the gauge fieldAµ and it is written as follows in terms of the

gauge field:

Fµν = ∂µAν − ∂νAµ. (2.11)

Terms of the Lagrangian in (2.10) are invariant under the local gauge transformation.

However, the mass term (1
2
M2

AAµA
µ) of the gauge field is forbidden in the Lagrangian

since this term is not invariant. If one generalizes this situation, it can be stated that

the gauge fields should be massless, however it is known that the gauge bosons of the

weak interactionW± andZ are massive, while photon which is the gauge boson of the

electromagnetic interaction remains massless (Table 2.2). To get rid of this contradiction,

a Higgs field that is also necessary for the fermions masses can be introduced. According
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Table 2.2. Gauge Bosons correspond to Gauge Groups

Gauge Groups Gauge Bosons Massive/Massless
SU(3)C ga a = 1, 2, ..8 Massless
SU(2)L W±, Z0 Massive
U(1)Y Aµ Massless

to Higgs mechanism, massless gauge fields interact with thisHiggs field and as a result of

this interaction the gauge bosons and one Higgs boson (h) which have physical mass states

arise. While some of the gauge bosons acquire mass, some of them remain massless. After

the Higgs field is defined, the Lagrangian in (2.10) becomes asfollows:

L = iψ(x)γµDµψ(x) −mψ(x)ψ(x) − 1

4
F µνFµν + (DµH)† (DµH) − V (H) (2.12)

where(DµH)† (DµH) shows the kinetic energy of the Higgs field whileV (H) shows the

potential energy. The potential energy term is given byV (H) = −µ2|H|2 + λ|H|4 where

−µ2 is proportional to the mass terms of the Higgs boson andλ is quartic gauge coupling.

The Lagrangian in (2.12) is a total Lagrangian. Now, let us examine the elec-

troweak theory and construct the Lagrangian in this theory step by step. The electroweak

theory based on theSU(2) ⊗ U(1) gauge group has the following Lagrangian:

LSU(2)⊗U(1) = Lgauge + Lscalar + Lfermion + LY ukawa (2.13)

The electroweak Lagrangian can be represented as above, butactually this representation

is not correct since there are mixings among the terms; for example, there are also gauge

fields in the scalar part (within the covariant derivative).The kinetic energy of the gauge

fields are

Lgauge = −1

4
BµνB

µν − 1

4
W i
µνW

iµν (2.14)

whereBµν andW i
µν are the field strength tensors of theU(1)Y andSU(2)L gauge groups,

respectively. The field strength tensors are given in terms of the gauge fields of the related
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gauge group as follows:

Bµν = ∂µBν − ∂νBµ (2.15)

W i
µν = ∂µW

i
ν − ∂νW

i
µ − g2ǫijkW

j
µW

k
ν (2.16)

where theg2 is gauge coupling of theSU(2) group andǫijk are the structure constants in

the form of absolute antisymmetric Levi-Civita tensor. Thestructure of the field strength

tensors should be like above to be invariant under the gauge transformations.

The scalar part of the SM Lagrangian,

Lscalar = (DµH)† (DµH) − V (H), (2.17)

whereH =


 H+

H0


 is the complex and scalar Higgs field introduced to give mass to

the particles and gauge bosons. The covariant derivative is

Dµ = ∂µ + i
gY
2
YHBµ + ig2T

iW i
µ (2.18)

Dµ = ∂µ + i
gY
2
Bµ + ig2

σi

2
W i
µ (2.19)

where the hypercharge of the Higgs field isYH = +1 andT i = σi

2
are the generators

of theSU(2) group. Here the gauge coupling of theU(1) group is taken bygY

2
due to

the simplicity of the calculation. The first term in (2.17) gives us the three and four point

interactions between the gauge and scalar fields. The secondterm,V (H) is the Higgs

potential given by

V (H) = µ2H†H + λ(H†H)2. (2.20)

In this termλ must be positive (λ > 0) to satisfy the vacuum stability. Whenµ2 < 0, the
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Higgs field acquire its VEV

〈H〉 =

√
−µ

2

2λ
=

v√
2

(2.21)

and then electroweak symmetry is spontaneously broken (SU(2)L⊗U(1)Y → U(1)EM).

After that, in addition to one massive Higgs boson, three massless Higgs bosons also arise.

These so called Goldstone bosons are eaten by the massless gauge fields and become the

third polarization state which is longitudinal. Then massive gauge bosons arise in the

theory.

The fermion part of the Lagrangian,

Lfermion = Lleptons + Lquarks (2.22)

Lleptons = L̄ℓiγ
µDL

µLℓ + ℓ̄Riγ
µDR

µ ℓR (2.23)

Lquarks = Q̄qiγ
µDL

µQq + q̄uRiγ
µDR

µ quR + q̄dRiγ
µDR

µ qdR (2.24)

where the covariant derivatives are

DL
µ = ∂µ + i

gY
2
YLℓ

Bµ + ig2
σi

2
W i
µ (2.25)

DR
µ = ∂µ + i

gY
2
Yℓ,qRBµ (2.26)

There is no mass term in the fermion part. So one can write the Yukawa interaction

terms to determine the mass of the fermions.

LY ukawa = −hℓL̄ ·HℓR − hqdQ̄ ·HqdR − hquQ̄ · H̃quR + h.c. (2.27)

The dot products in the Lagrangian can be rewritten asL̄ · H = ǫabLaHb whereL =
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 La

Lb


, H =


 Ha

Hb


 and ǫab is the completely antisymmetric SU(2) tensor with

ǫ12 = 1. To give mass to the up quark (for all family) one needs a different representation

of the Higgs field defined. This representation should haveYH̃ = −1 hypercharge. It is

represented likẽH ≡ iσ2H
† =


 H0

−H−


.

When we examine the kinetic term of the Higgs (scalar) Lagrangian and work out

analytical calculations, we can see that there is a mixing between the gauge fields. To

diagonalize the mass matrix obtained from this Lagrangian,the new fields are introduced,

Aµ = cos θWBµ + sin θWW
3
µ (2.28)

Zµ = − sin θWBµ + cos θWW
3
µ . (2.29)

where theθW is the weak (Weinberg) angle defined by

sin θW =
g2√

g2
Y + g2

2

, cos θW =
gY√
g2
Y + g2

2

. (2.30)

As seen from above equations, the thirdSU(2) gauge fieldW 3
µ andU(1) gauge fieldBµ

come together to form the neutral gauge bosons photonAµ andZµ. The combination of

the firstW 1
µ and secondW 2

µ gauge fields of theSU(2) gauge group are also defined as the

charged gauge bosons,

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ). (2.31)

By going on to work out the analytical calculations using thenew introduced fields

we obtain the masses ofW±, Z weak gauge bosons and also we see that the mass of the
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photon is zero,

MW =
g2v

2
(2.32)

MZ =
√
g2
2 + g2

Y

v

2
=

MW

cos θW
(2.33)

MA = 0 (2.34)

The experimental value of the above parameters areMW ∼ 80 GeV,MZ ∼ 90 GeV and

sin2 θW ∼ 0.22 (Novaes, 1999).

The second term of the scalar Lagrangian, that is potential energy term gives us

the mass of the Higgs boson. We can obtain this by applying necessary transformations

to make Lagrangian invariant under local gauge transformations. As a result of this cal-

culation the mass of the Higgs boson is derived as

mh =
√

−2µ2 =
√

2λv. (2.35)

wherev =
√

−µ2

λ
. Theµ2 andλ parameters are unknown in SM, therefore the value of

the Higgs mass is not determined in the SM. However the ratio of two parameter (VEV of

the Higgs field) can be determined by using the experimental value of the vector bosons

as

v ≃ 246 GeV. (2.36)

While the exact value of theλ parameter is not known in the SM, it is known that its

value is approximately smaller than unity (λ < 1). Therefore, the approximate value of

the Higgs mass is considered asm2
h ≈ (100 GeV)2.

We can obtain that there arise one massive Higgs boson after the spontaneous

symmetry breaking (SSB) in the SM by working out the analytical calculations as above.

In addition to this method we can determine how many massive Higgs bosons arise by

comparing the number of the degree of freedom (dof) of the states before and after the
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Table 2.3. The Gauge and Higgs fields of the SM Before the SSB and Their Corre-
sponding Gauge and Higgs Bosons After the SSB, also Their Degree of
Freedom

Before the SSB After the SSB

Name Fields DOF Name Bosons DOF

Gauge Fields
Bµ 2 dof

Gauge Bosons
Aµ 2 dof

W i
µ (i = 1, 2, 3) 2 × 3 = 6 dof W∓, Z0 3 × 3 = 9 dof

Higgs Field H =

(
H+

H0

)
2 × 2 = 4 dof Higgs Boson h 1 dof

Total 12 dof Total 12 dof

SSB. While the number of dof is being determined, there are two points to be taken into

account.

(a)The massless gauge field or gauge bosons have two transverse polarization

states, that is these have two degree of freedom.

(b)The massive gauge bosons have three polarization state.Two of them are the

transverse polarization states, the rest is the longitudinal state.

When we calculate and compare the number of the total dof before and after the

SSB, we can see that after the SSB, there is one extra dof and this dof belongs to a Higgs

boson which arise after the SSB as seen from Table 2.3.

2.2. The Problems of the Model

While the Standard Model explains almost all experimental facts, there are lots of

unexplained arbitrary parameters and unsolved problems inthe SM. Therefore this theory

is not a complete theory. The problems of the SM can be summarized as follows:

• Baryon Asymmetry Problem : It is considered that the amounts of matter and an-

timatter were equal in early times -at high energies- after the Big Bang. Since as the

temperature decreases and the matter interacts with antimatter and they annihilate,

the amount of matter and antimatter will decrease due to the annihilation. In this

situation one expects that the amounts of the matter and antimatter should be less

than before and equal at low energies; however, the amounts are not equal in the

universe. There are more matter than antimatter, everything in the universe consists

of matter. This difference is known as “baryon asymmetry problem” and the SM
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can not explain the causes of this problem. It can be solved bythe CP violation in

the quark sector, but it is too small to explain this (Quigg, 2009).

• Fermion Problem : In the Standard Model it is not determined how many fermion

families there are. While it is known that there are three fermion families, only first

fermion family (νe, e
−, u, d) exists in nature. The SM does not explain the pres-

ence of the second(νµ, µ−, c, s) and third(ντ , τ
−, t, b) fermion families, the heavier

copies of the first family and does not predict their quantum numbers. Moreover, the

SM can not predict the fermion masses precisely. It seems that fermion masses can

be explained via the Higgs mechanism; however, the value of the masses depends

on the arbitrary coupling of the Higgs boson to the fermions which can not be deter-

mined in the SM (Quigg, 2009). Furthermore, the mixing angles that parametrize

the mismatch between flavor eigenstates and mass eigenstates also depend on this

coupling and so the mixing angles can not be also determined in the SM (Quigg,

2009).

• Unification Problem : The Standard Model states that there are three single sym-

metry groups and gauge couplings. Nevertheless, accordingto the Grand Unifi-

cation Theory (GUT) these three groups should be combined athigh energies and

there must be one gauge coupling. The SM can not explain this unification. More-

over, the SM does not contain the fourth fundamental force, gravity and so gives no

information concerning gravitational interaction.

• Quantization of Electric Charge : The Standard Model does not explain why

all particles have the quantized charges which are multiples of e/3. Since this

property allows the electrical neutrality of atoms, it is important for stability of

matter (Langacker, 2009).

• Cosmological Constant Problem: The cosmological constant can be thought of

as the energy of the vacuum. However, the spontaneous symmetry breaking (SSB)

also generates a vacuum expectation value (VEV) of the Higgsfield at the minimum

of the Higgs potential. When the theory is coupled to the gravity, the VEV of the

Higgs field contributes to the cosmological constant (Langacker, 2009). Then the

cosmological constant becomes

Λcosm = Λbare + ΛSSB (2.37)
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whereΛbare = 8πGNV (0) is the vacuum energy in the absence of the SSB. While

in the absence of the SSB the value of the observed constant isapproximate to the

bare value(Λobs ∼ Λbare), when one takes into account the SSB, the value of the

ΛSSB will become|ΛSSB| ∼ 1056Λobs. It is 1056 times larger in magnitude than the

observed value. This difference can not be explained in the SM.

• Dark Matter and Dark Energy Problem : According to the cosmological obser-

vations it is noted that the standard model is able to explainonly about4% of the

matter present in the universe. This observation states that about24% of the miss-

ing 96% should be dark matter, while the rest should be dark energy. Dark matter

behaves just like the other matter we know, but it interacts only weakly with the

standard model fields. Dark energy is a constant energy density for the vacuum.

Although we have known these experimentally, the SM can not explain the amount

of dark matter. Attempts to explain the dark energy in terms of vacuum energy of

the standard model lead to a mismatch of 120 orders of magnitude as explained

above.

• Strong CP Problem: When we take the charge conjugate of a particle (change a

particle with its antiparticle or vice versa) and apply a parity symmetry (swap left

and right), if the laws of physics remain the same, we can say that CP symmetry

is conserved. Theoretically it can be found that the standard model should contain

a term that break CP symmetry in the strong interaction sector (QCD). However,

experimentally there is no observation related to such violation, implying the coeffi-

cient of this term is very close to zero. This fine tuning is also considered unnatural.

• Neutrino Masses and Mixings: According to the standard model, the neutrinos

are massless particles. However, neutrino oscillation experiments have shown that

neutrinos must have mass. This is also a problem of the SM.

In addition to these, there is another important problem, known as the “Hierarchy

Problem”, about quantum corrections to the Higgs mass.
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2.2.1. The Hierarchy Problem

Neutral part of the Higgs field of the Standard Model has a classical potential

given as follows:

V = µ2|H|2 + λ|H|4 (2.38)

According to the SM ifµ2 < 0 andλ > 0 conditions are satisfied, this neutral Higgs

field will have a nonvanishing vacuum expectation value (VEV) at the minimum of the

potential. Value of this VEV is determined by using the extremum condition -take first

derivative of the Higgs potential and equal to zero-. The determined value is〈H〉 = ν =
√
−µ2/2λ.

Experimental value of theµ2 standing for the mass of the Higgs boson is approxi-

mately−(100 GeV)2. This is the classical value, when one considers the quantumeffects,

this value will change. The correction from the quantum effects will be larger than the

classical value and this is known as the “hierarchy problem”.

Quantum effects can be considered as loop corrections (Figure 2.1). While the

incoming and outgoing particles and their properties such as momentum is known, it is

not known what happens in the loop. Every particle that couples to the Higgs field di-

rectly or indirectly contributes to the quantum corrections. Particles with spin 0 and 1

have different contributions and these are represented as Figure 2.1. In this figure dashed

lines represent scalar bosons (Higgs or another scalar boson) while solid lines represent

fermions. To calculate the loop contribution, propagatorswhich give the probability am-

Figure 2.1. One loop radiative corrections to the Higss mass-squared valuem2
H for (a)

an interaction with a scalar (b) an interaction with a fermion.

plitude for a particle to travel with a certain energy and momentum can be used. For

16



example, propagators for a scalar and fermion are given by

Gscalar =
i

p2 −m2
s + iǫ

, Gfermion =
i

γµpµ −mf + iǫ
(2.39)

Total propagator of the process is

G(p) = G0(p) +G0(p)

∑
int(p)

i
G0(p) +G0(p)

∑
int(p)

i
G0(p)

∑
int(p)

i
G0(p) + ...

(2.40)

where the first term shows the propagator for the free particle, G0(p) = i/(p2 − m2
h),

other terms represent the interaction propagators.
∑

int(p) stands for the amplitude of the

process and at the same time this shows the self energy of particle which represents the

contribution to the Higgs field’s energy due to interactionsbetween the particle and the

Higgs field.

The right hand side in (2.40) can be rewritten as

G(p) = G0(p)(1 +

∑
int(p)

i
G0(p) +

∑
int(p)

i
G0(p)

∑
int(p)

i
G0(p) + ...) (2.41)

G(p) = G0(p)(1 −
∑

int(p)

i
G0(p))

−1 = (G0(p)
−1 −

∑
int(p)

i
)−1 =

i

p2 −m2
h −

∑
int

.

(2.42)

To derive the second line from the first one, the series expansion rule is used. As can be

deduced from the last equation by analogy to the propagator for free particle, to find the

correction to the mass it is enough to calculate the amplitude of the process.

m2
h(corrected) = m2

h +
∑

int

(p) (2.43)

When the amplitude is calculated, one can find the corrected Higgs mass as following,

m2
h(corrected) = m2

h

(
1 − λs

16π2

m2
s

m2
h

ln

(
Λ2 +m2

s

m2
s

))
+

λs
16π2

Λ2 (2.44)
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whereΛ is called the ultraviolet cutoff used to avoid the infinity ofthe loop integral. It is

the upper scale in which the SM is valid. This equation represents the interaction of the

scalar with the Higgs field. The interaction of a fermion withthe Higgs field gives the

following contribution:

m2
h(corrected) = m2

h

(
1 +

λ2
f

8π2

m2
f

m2
h

ln

(
Λ2 +m2

f

m2
f

))
−

λ2
f

8π2
Λ2. (2.45)

GenerallyΛ is equal to the scale of the Planck Mass,Λ = MP
∼= 1018GeV . WhenΛ

acquire this value, while logarithmic term has a logical contribution which is approximate

to the tree level mass, other correction term changing withΛ2 will be quadratically di-

vergent. It is approximately 30 order of the magnitude larger than the required value of

m2
h ∼ (100GeV )2 (Martin, 1997). This problem known as the “Hierarchy Problem” is

one of the very important problems that need new theories beyond the SM.
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CHAPTER 3

SUPERSYMMETRIC STANDARD MODEL IN BRIEF

3.1. Basics of Supersymmetry

The “Hierarchy Problem” of the Standard Model is the most important problem

about the Higgs mass stabilization. Supersymmetry (SUSY) is one of the theories sug-

gested to solve this problem (Martin, 1997). Supersymmetrystates that if there is a boson

partner for every fermion and vice versa, the quadratic corrections of the Higgs mass can-

cel each other for the fermion and corresponding boson partner which is called superpart-

ner. To satisfy this there must be a relation between the coupling constants (λs = 2λ2
f ). If

m2
S = m2

f , the logarithmic corrections also cancel each other. Thereis no corrections in

this case which is expressed as unbroken supersymmetry.

The particles and their superpartners have the same quantumnumbers except for

their spins. The spins of the particle and superpartner differ by 1/2 unit. When the

connection between the fermion and its superpartner boson is examined, it is noted that

supersymmetry transforms a fermionic state into a bosonic state or vice versa. Thus,

SUSY transformations are given by

Q̂|Fermion >= |Boson >, Q̂|Boson >= |Fermion > (3.1)

whereQ̂ is an operator generating such transformations. We will represent SUSY gener-

ator which is an operator asQ instead ofQ̂. Since there is1/2 unit difference between

spins of the fermions and bosons, generatorQ must be spinorial.

Generators of any symmetry are charges of the associated symmetry such as the

electric charge which is generator of the electromagnetic symmetry group (U(1)EM ).

Therefore charge of supersymmetryQ must be commute with the Hamiltonian of the

system,

[Qa, H ] = 0 (3.2)
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whereQa is one of two components of spinorial chargeQ. The generatorsQ andQ† must

satisfy the below anticommutation and commutation relations as a result of the Coleman-

Mandula theorem (Coleman, 1967)

{Q ,Q†} ∝ P µ, (3.3)

{Q ,Q } = {Q†, Q†} = 0, (3.4)

[P µ, Q ] = [P µ, Q†] = 0 (3.5)

whereP µ is the four- momentum generator of space-time translationsand we have sup-

pressed the spinor indices onQ andQ†. Supersymmetry is an extension of the Poincare

group which contains the Lorentz transformations and translation. WhileP µ is genera-

tor of the space-time translation,Mµν is generator of the Lorentz transformation. There

are also some relations about these generators, for the detailed information related to the

SUSY algebra one can look at (Aitchison, 2007; Wess, 1992).

Supersymmetry solves not only the hierarchy problem, but also gauge coupling

unification and dark matter problem. How Supersymmetry solves these problem will be

explained later.

There are some supersymmetric extensions of the SM, the minimal extension of it

is based on the same gauge symmetry group (SU(3) ⊗ SU(2) ⊗ U(1)) and is called the

Minimal Supersymmetric Standard Model (MSSM). The number of MSSM particles is

minimum within supersymmetric models.

Before giving the information about the structure of the MSSM, it can be instruc-

tive to give some definitions about supersymmetry representation and algebra.

3.1.1. Supermultiplets

In the SM left handed and right handed fermions are represented by doublets and

singlets, respectively. However, in the SUSY all particles, fields and their superpartners

are combined in multiplets so-called “supermultiplets” according to their some properties.

One of the properties of particles in a supermultiplet is that the number of the degree of

freedom of the bosonic and fermionic states should be same (nF = nB). There are two
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Table 3.1. Chiral(Matter) Supermultiplets in the MSSM

Names Superfields Spin 0 Spin 1/2 SU(3)C,SU(2)L,U(1)Y

Squarks,Quarks Q̂i (ũLi
d̃Li

) (uLi
dLi

) (3, 2, 1/3)
ûc

Ri
ũ∗

Ri
u†

Ri
(3̄, 1,−4/3)

d̂c
Ri

d̃∗Ri
d†Ri

(3̄, 1, 2/3)

Sleptons,Leptons L̂i (ν̃Li ẽLi
) (νLi

eLi
) (1, 2,−1)

êc
Ri

ẽ∗Ri
e†Ri

(1, 1, 2)

Higgs,Higgsinos Ĥu (H+
u H0

u) (H̃+
u H̃0

u) (1, 2, +1)
Ĥd (H0

d H−
d ) (H̃0

d H̃−
d ) (1, 2,−1)

known supermultiplets in SUSY.

Chiral (Matter) Supermultiplets : All chiral particles which have left and right

handed parts and their superpartners are combined in one supermultiplet in terms of left

handed particles. So there must be one chirality in the SUSY,there is no right handed par-

ticle in the particle content of the SUSY, yet the conjugatesof the right handed particles

is included as seen in Table 3.1. This supermultiplets are called “chiral (matter) super-

multiplets” (Table 3.1). To determine the properties of thefermions and boson partners,

equality property of the number of degree of freedom can be used. According to this it

is stated that if a fermion is a two component Weyl spinor, then the corresponding boson

partner should be complex scalar to have two dof, it can not bea real scalar having one

dof. The particles in a chiral supermultiplet have the aboveproperties (Martin, 1997).

Gauge (Vector) Supermultiplets: Like chiral fermions, the boson particles and

their superpartners are also combined in one supermultiplet so-called “gauge (vector)

supermultiplets” Table 3.2. These supermultiplets consist of one spin 1 massless vector

boson (two dof) and a massless spin 1/2 two component Weyl spinor (Martin, 1997).

If superpartners of particles are bosons and fermions, theyare called by prepend-

ing an “s” and appending “-ino” to the name of the SM particle as seen in Table 3.1

and 3.2, respectively. For example, the boson partner of thequarks or leptons are called

squarks or sleptons which mean scalar quarks and leptons, the fermion partner of bosons

are called Higgsino, gluino, wino or bino. There are also superpartners of the gauge

bosons, photon and Z boson which arise by mixing of theW 0 andB0 after the elec-

troweak breaking, photino and zino.
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Table 3.2. Gauge(Vector) Supermultiplet in the MSSM

Names Superfields Spin 1/2 Spin 1 SU(3)C,SU(2)L,U(1)Y

Gluino,Gluons Ĝa g̃ g (8, 1, 0)

Winos,Wbosons Ŵ W̃∓ W̃ 0 W∓ W 0 (1, 3, 0)
Bino,Bboson B̂ B̃0 B0 (1, 1, 0)

3.1.2. Superfields and Superspace

As seen in Table 3.1 and Table 3.2 the combination of a fermionor boson and their

superpartners is shown as a “superfield”. A superfield is denoted byΦ̂ and its relation with

the bosonic and fermionic fields can be represented by

Φ̂(x, θ) = φ(x) + θψ(x) + ... (3.6)

whereφ andψ shows a spin= 0 boson, spin= 1/2 two component Weyl fermion,

respectively.θ is a spinor parameter. This spinor parameter is necessary toobtain a field

with integer spin from a fermion with half-integer spin. Thecomponents of this spinor

parameter are anticommuting parameters ({θα, θβ} = 0) which are “Grassmann numbers”

and these numbers have some specific properties (Dress, 2004), for example; the square

of a Grassmann number equals to zeroθ2
α = 0.

Above representation is fundamental, actually there are extra terms obtained by

applying the power series expansion in spinor parameterθ and its conjugatēθ. General

superfield is given by

Φ̂(x, θ, θ∗) = φ(x) + θψ(x) + θ̄χ̄(x) + θθm(x) + θ̄θ̄n(x) + θσmθ̄V(x)

+ θθθ̄λ̄(x) + θ̄θ̄θϕ(x) + θθθ̄θ̄d(x) (3.7)

where (θθ) can be rewritten as (ǫαβθβθα) andǫ is an antisymmetrical tensor (ǫ12 = 1, ǫ21 =

−1). The higher order terms than above are vanish because of theproperty of the Grass-

mann numbers. Here the component fieldsφ(x), m(x) andn(x) are complex scalar or

pseudoscalar fields,ψ(x) andϕ(x) are left handed Weyl spinors,χ̄(x) andλ̄(x) are right
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handed Weyl spinor fields,V (x) is a four-vector field andd(x) is a scalar.

General representation takes different forms with respectto the type of the su-

perfields. There are two type of superfields corresponding tosupermultiplets, chiral and

vector superfields (Wess, 1992).

Chiral superfields do not include the conjugate of a spinor parameter and they

should satisfy the condition̄DΦ̂ = 0 whereD̄ = − ∂
∂θ

+ iθ̄γµ∂µ is called covariant

derivative.

The chiral superfield is

Φ̂ = φ(x) +
√

2θψ(x) + θθF (x) (3.8)

where F(x) is an auxiliary field to make the Lagrangian invariant under supersymmetry

transformation when the classical equations of motions arenot satisfied (off-shell condi-

tion). There is also D-term which introduced to make the vector supermultiplets invariant.

Detailed explanation about them in terms of components of superfields will be explained

in Section 3.1.3. Here we give a brief definition about these in terms of superfield formal-

ism.

The product of two superfields is again a chiral superfield while the product of

a superfield with a conjugate superfield is not a chiral superfield. We can see this by

constructing the combination of the superfields.

Φ̂i(y, θ)Φ̂j(y, θ) = φi(y)φ(y)j +
√

2θ[ψi(y)φj(y) + φi(y)ψj(y)]

+ θθ[φi(y)Fj(y) + φj(y)Fi(y) − ψi(y)ψj(y)] (3.9)

This product represents interaction terms in the theory which form components of the

Superpotential. As we can see, the structure of the product of two chiral superfields is the

same with the original chiral superfields. By integrating this two times we can obtain the

F term of the Lagrangian that is the Lagrangian of the auxiliary field. However, we see
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that below combination is not the same structure with the chiral superfield.

Φ̂i(y, θ)Φ̂
†
j(y, θ) = φi(y)φ

∗
j(y) +

√
2θψi(y)φ

∗
j(y) +

√
2θ̄ψ̄i(y)φj(y) + +θθφ∗

j (y)Fi(y)

+ θ̄θ̄Fj(y)
∗φi(y) + 2θ̄ψ̄j(y)θψi(y) +

√
2θθθ̄ψ̄j(y)Fi(y)

+
√

2θ̄θ̄θψj(y)F̄
∗
i (y) + θ̄θ̄θθF ∗

j (y)Fi(y) (3.10)

Equation 3.10 stands for the kinetic term of the theory whichis called the Kähler Po-

tential. From this product we can obtain the D-term contribution since it behaves like a

vector field. The coefficient of thēθθ̄θθ term gives us D-term contribution to the scalar

Lagrangian described in following section.

The vector superfield which is the other kind of the superfieldincludes both the

spinor parameter and its conjugate, and they have a vector field. Vector superfields satisfy

the conditionV = V †. General representation for a vector field can be given by

V̂ (x, θ, θ̄) = −θσµθ̄Vµ + iθθθ̄λ̄− iθ̄θ̄θλ+
1

2
θθθ̄θ̄D (3.11)

whereVµ is a vector field,λ is fermionic superpartner of vector field andD is an auxiliary

field mentioned before. The detailed explanation is given inreference (Wess, 1992).

As a result, it can be stated that a superfield is a field which depends not only

on space-time coordinatesxµ corresponding to bosonic degrees of freedom, but also on

fermionic degrees of freedom- specifically, spinor parameter and its conjugateθ andθ∗

(Aitchison, 2007).

While the ordinary space-time coordinatesxµ correspond to bosonic coordinates,

a spinor parameter and its conjugate mentioned above correspond to the fermionic ones

in SUSY. In total, there are four fermionic coordinates (θ1, θ2, θ∗1, θ∗2) corresponding to

each of bosonic states. A space involving these bosonic and fermionic coordinates (xµ, θ,

θ∗) is called the “superspace”.

Superpotential : Superpotential is an analytic function which includes interac-

tions of the chiral superfields such as Yukawa interactions of the SM and the mass term to

obtain three mass dimensions [W ]=3. Since superpotential is an analytic function, it does

not include the complex conjugate of a superfield.

Ŵ (φ̂) = aφ̂+ bφ̂2 + cφ̂3 (3.12)

24



whereφ̂ is a chiral superfield containing a scalar or a fermion and their superpartner and

mass dimensions of the a,b,c parameters are [a]= 2, [b]=1, [c]=0. Superpotential is used

to obtain the scalar potential of superfields.

3.1.3. The Lagrangian for the Supersymmetric Standard Model

The Supersymmetric Standard Model Lagrangian is composed of the Lagrangian

of the chiral and gauge superfields. To determine the supersymmetric Lagrangian it is

instructive to begin with the chiral and gauge Lagrangian.

• Chiral (Matter) Lagrangian

If the Lagrangian is written using components of the superfield instead of super-

field notation, it is easier to compare the MSSM Lagrangian with the SM Lagrangian

(Shah, 2003).

Lfree = ∂µφ∗ i∂µφi + iψ† iσ̄µ∂µψi + F ∗ iFi (3.13)

whereφ andψ are the scalar and fermion components of a chiral superfield,F is the

auxiliary field which is introduced to get the supersymmetryalgebra to work off shell

(when the classical equations of motion are not satisfied). This auxiliary field is a complex

scalar field which does not have a kinetic term. Since the lagrangian density must be

4 mass dimensions, the new auxiliary field must have 2 mass dimensions according to

Lauxiliary = F ∗F . This Lagrangian is invariant under the supersymmetry transformations

(Martin, 1997). The interaction part of the chiral Lagrangian is given by

Lint =

(
−1

2
W ijψiψj +W iFi

)
+ c.c. (3.14)

whereW is the superpotential,W i andW ij are the first and second derivatives of the

superpotential with respect to scalar components of the superfields.

W =
1

2
M ijφiφj +

1

6
φiφjφk (3.15)
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W i =
∂

∂φi
W (3.16)

W ij =
∂2

∂φi∂φj
W (3.17)

The classical equation of motion of the auxiliary field F gives Fi = −W ∗
i and

F ∗i = −W i. Using these the total chiral Lagrangian can be derived as follows:

Lchiral =Lfree + Lint (3.18)

Lchiral =∂µφ∗ i∂µφi + iψ† iσ̄µ∂µψi −
1

2

(
W ijψiψj +W ∗

ijψ
†iψ†j)− F ∗ iFi (3.19)

• Gauge (Vector) Lagrangian

The gauge Lagrangian in SM can be written in the supersymmetric model as

Lgauge = −1

4
F a
µνF

µνa + iλ†aσ̄µDµλ
a +

1

2
DaDa (3.20)

whereF a
µν , λ

a,Dµλ
a are a field strength tensor, a gaugino field, the covariant derivative of

the gaugino field, respectively andDa is a real bosonic auxiliary field introduced in order

for supersymmetry to be consistent off-shell. This auxiliary field has no kinetic term and

has 2 mass dimension like the fermionic auxiliary fieldF i.

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν (3.21)

Dµλ
a = ∂µλ

a + gfabcAbµλ
c (3.22)

where g is gauge coupling constant andfabc are structure constants which are antisym-

metric in all indices and differs according to symmetry group.

• Gauge Interactions with the Components of the Chiral Superfields

The chiral and gauge Lagrangians described above are invariant under the supersymmetric

transformations; however, the chiral Lagrangian is not invariant under the gauge transfor-
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mations while the gauge Lagrangian is invariant. To make theLagrangian invariant we

must define the covariant derivatives instead of ordinary derivatives as defined in the SM.

These covariant derivatives are

Dµφi = ∂µφi − igAaµ(T
aφ)i (3.23)

(Dµφ)∗i = ∂µφ
∗
i + igAaµ(φ

∗T a)i (3.24)

Dµψi = ∂µψi − igAaµ(T
aψ)i. (3.25)

whereT a are generators of the symmetry groups, for example forU(1) andSU(2) sym-

metries,T a stand for hypercharge and pauli spin matrices, respectively.

As seen from the equations above gauge bosons couple to scalars and fermions

in the chiral superfields. In addition to these there are someinteraction terms that can be

seen below between the other gauge fields (gaugino and bosonic auxiliary fieldDa) and

components of the superfields (scalars and fermions).

(φ∗T aψ)λa, λ†a(ψ†T aφ), and (φ∗T aφ)Da (3.26)

Now, the total supersymmetric Lagrangian which is invariant under the supersymmetry

and gauge transformations can be written as follows:

Lsusy =Dµφ∗ iDµφi + iψ† iσ̄µDµψi −
1

2

(
W ijψiψj +W ∗

ijψ
†iψ†j)− F ∗ iFi

− 1

4
F a
µνF

µνa − iλ†aσ̄µDµλ
a +

1

2
DaDa

−
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ † T aφ) + g(φ∗T aφ)Da (3.27)

The equation of motion for theDa term gives the value of the bosonic auxiliary field in

terms of scalar fields,

Da = −g(φ∗T aφ). (3.28)
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Substituting Equation (3.28) into the total Lagrangian (3.27) and organizing it we get

Lsusy =(Dµφi)∗Dµφi + iψ† iσ̄µDµψi −
1

4
F a
µνF

µνa + iλ†aσ̄µDµλ
a

−
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ)

− 1

2

(
W ijψiψj +W ∗

ijψ
†iψ†j)

− F ∗ iFi −
1

2
DaDa (3.29)

where the first line is the gauge-invariant kinetic energiesfor the components of the chi-

ral and gauge superfields. The next line describes the interactions of the gauginos with

the scalar and fermion components of the chiral superfields,that is, these terms describe

how gauginos couple matter fermions to their superpartner,or Higgs bosons to their su-

perpartners. The third line describes the non-gauge, superpotential interactions of matter

and Higgs fields as well as fermion mass terms. The last line describes the scalar potential

which consist of two distinct contribution (Baer, 2006). The first term is called the F-term

contribution that arise from the superpotential. The second term is related to the gauge

interactions and it is called the D-term contribution (Kazakov, 2001).

Vscalar = VF + VD (3.30)

where

VF = F ∗ iFi and VD =
1

2
DaDa (3.31)

F ∗ i = −∂W
∂φi

and Da = −g(φ∗T aφ). (3.32)

The supersymmetric Lagrangian in (3.29) is the total Lagrangian when the Super-

symmetry is not broken. However, it is known that the supersymmetry is broken. Because

if SUSY were an exact symmetry, the sparticles could have been the same mass with the

original particles, and these sparticles could have been seen in nature. Since there has

been no sparticles in nature, it can be stated that the SUSY isbroken symmetry. This

breaking is called “soft supersymmetry breaking” as the symmetry is broken by keep-
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ing the cancellation of the quadratic divergences at the SM Higgs mass. Due to this soft

breaking of the SUSY there must be additional terms to the supersymmetric Lagrangian

in (3.29),

Lsoft = −(m2)ijφ
j∗φi −

1

2
(Maλ

aλa + h.c) +

(
1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi + h.c.

)

(3.33)

where theLsoft contains the mass-squared terms(m2)ij of the scalars, the gaugino masses

Ma for each gauge group, trilinear and bilinear scalar couplingsaijk andbij , respectively

and linear (tadpole) couplingsti. The linear coupling term exist only ifφi is a gauge

singlet. The terms inLsoft break the supersymmetry since they involve only scalars and

gauginos and not their respective superpartners. These soft terms gives the masses to the

scalars and gauginos in a theory even if the gauge bosons and fermions in chiral super-

multiplets are massless or relatively light (Martin, 1997). Soft terms of the Lagrangian

are defined as a third contribution to the scalar potential. Now, the scalar potential can be

rewritten as follows:

Vscalar = VF + VD + Vsoft (3.34)

The potential termsVF andVD are given in Equation 3.31 andVsoft is represented as

Lagrangian in Equation 3.33.

As mentioned before minimal extension of the Standard Modelis Minimal Super-

symmetric Standard Model (MSSM). Since we gave the basic information about SUSY,

now we are ready to examine the structure of this minimal model.

3.2. The Structure of the Minimal Supersymmetric Standard Model

Minimal supersymmetric model is the minimal extension of the SM because they

have the same gauge groups,SU(3)⊗SU(2)⊗U(1). Since there are superpartners of each

bosons and fermions, the number of the particle in MSSM is double of the SM’s. Particle

content of the MSSM is given in Table 3.1 and 3.2 as a chiral andgauge supermultiplets.

While there is one Higgs doublet in the SM, one extra Higgs doublet is necessary in the

MSSM as seen in Table 3.1 and its superpartner . Why do we need two Higgs doublets?
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The first reason of this is to cancel the anomaly which occur when the superpartner

of the Higgs field is taken into account. In the SM there is no anomaly, that is SM satisfy

the condition for cancellation of gauge anomalies,Tr[T 2
3 Y ] = Tr[Y 3] = 0, whereT3 and

Y are the third component of the weak isospin and the weak hypercharge, respectively

(Martin, 1997). The hypercharge of the particles can be computed by using the Gell-Mann

Nishijima formula. When the Higgs fields’ superpartner withthe hyperchargeY
H̃

= 1 is

considered, the above condition are not satisfied,Tr[T 2
3 Y ] = Tr[Y 3] 6= 0. Therefore to

get rid of this anomaly it is necessary to introduce a new Higgs field.

The second reason is about the structure of the supersymmetry. As seen above, the

Higgs doublet in the SM is not sufficient to give mass to up quark. While in the SM the

complex conjugate of the Higgs field can be defined, in the SUSYit can not be defined

since the superpotential which is the only source of Yukawa interactions used to give mass

to the fermions must be analytic. Complex conjugate of any parameters is not allowed

in superpotential, therefore, second Higgs field is defined in the SUSY and this field is

represented by

Hu =

(
H+
u

H0
u

)
, Hd =

(
H0
d

H−
d

)
. (3.35)

To satisfy the conservation of charge, the hypercharge of the new Higgs doublet (Hd) is

foundYHd
= −1 by applying the Gell-Mann Nishijima formula.

The general superpotential term for the MSSM is given by

Ŵ = µĤu · Ĥd + huQ̂ · Ĥu û
c
R + hdQ̂ · Ĥd d̂

c
R + heL̂ · Ĥd ê

c
R (3.36)

whereHu, Hd, Q, L, u
c
R, d

c
R, e

c
R denotes the superfields,hu, hd andhe are dimensionless

Yukawa coupling constants.µ parameter refers to the supersymmetric version of the SM

Higgs mass. Here the gauge(color and weak isospin) and family indices are suppressed.

The dot product of two doublet superfields can be written by using an antisymmetric

parameterǫαβ. For instance, the first term of the superpotential is written asµĤu · Ĥd =

µǫαβ(Hu)α(Hd)β and the second term is written ashuQ̂ · Ĥu û
c
R = huǫ

αβQiaα(Hu)βu
ca
Ri

wherei = 1, 2, 3 is a family index,a = 1, 2, 3 is a color index andα, β = 1, 2 are the

weak indices. Another notation which can be used for the dot products isµĤu · Ĥd =

ĤT
u (iσ2)Ĥd.
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The hypercharge of each term in the superpotential is conserved, hence it is said

that the superpotential is invariant underU(1)Y . The above superpotential also satisfy

the conservation of the Baryon and Lepton number. In addition to the above terms in the

superpotential there can be extra terms which is gauge invariant and renormalizable but

violate the baryonB or leptonL symmetry.

Ŵ ′ = µ′L̂ · Ĥu + λ1L̂ · L̂ êcR + λ2L̂ · Q̂ d̂cR + λ3û
c
R d̂

c
R d̂

c
R (3.37)

where the lepton and baryon numbers areL = +1 for Li, L = −1 for ecR andL = 0 for

all others,B = +1/3 for Qi, B = −1/3 for ucR, dcR andB = 0 for all others. The first

three term violates the conservation of lepton number sincethese have “1” lepton number

while the last term violates the conservation of the baryon symmetry because this has

“1” baryon number. Nevertheless baryon and lepton number violating interactions have

never been seen experimentally. If both violating interactions were present, the proton

could decay rapidly. To keep the proton sufficiently stable anew symmetry (R-parity) is

introduced.

PR = (−1)3B+2S+L (3.38)

where B, L and S represent the baryon, lepton numbers and spinof the each particle. R

parity condition states that the scalar and fermion (spinoror vector) components of a chiral

scalar (spinor) superfield have opposite R parities due to the (−1)2S dependence. So,

while all of the Standard Model particles and the Higgs bosons have even R-parity (PR =

+1), all of the superpartners of the SM particles and fields haveodd parity (PR = −1).

Since this symmetry is not conserved in (3.37) superpotential, these terms are forbidden

while the superpotential in (3.36) is allowed.

If R parity is exactly conserved, then there can be no mixing between the SM

particles (PR = +1) and their superpartners with opposite R parity (PR = −1). More-

over, every interaction in the allowed superpotential (3.36) contains an even number of

odd R parity sparticles (PR = −1). This property has important phenomenological con-

sequences:

• Experimentally sparticles can only be produced in pairs.

• The lightest sparticle called the “lightest supersymmetric particle” (LSP) must be
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stable, it can not decay at all. If the LSP is electrically neutral, it could be an

attractive candidate for non-baryonic dark matter.

• Each particle produced in experiments must decay into a state that contains an odd

number of other sparticles and any number of the SM particles. At the last step

there must be at least one LSP.

After giving a general information about structure of the minimal supersymmetric

model let us examine the Higgs sector of the MSSM in detail.

3.2.1. Higgs Sector

Minimal Supersymmetric Standard Model contains two Higgs doublets with hy-

perchargesYHu = +1, YHu = −1.

Hu =

(
H+
u

H0
u

)
, Hd =

(
H0
d

H−
d

)
. (3.39)

To determine the Higgs mass firstly we must find the Higgs potential and we can

do this by working out the scalar potential for the Higgs scalar at the tree level.

Vtree = VF + VD + Vsoft (3.40)

Then the F-term, D-term and soft term contributions to the scalar potential can be

obtained as

VF = |µ|2(|Hu|2 + |Hd|2) (3.41)

VD =
G2

8

(
|Hu|2 − |Hd|2

)2
+
g2
2

2

(
|Hu|2|Hd|2 − |Hu ·Hd|2

)
(3.42)

Vsoft = m2
Hu

|Hu|2 +m2
Hd
|Hd|2 +Bµ(Hu ·Hd + h.c.) (3.43)

whereG2 = g2
2 + g2

Y . Hereg2 andgY are the gauge couplings of the gauge groups of
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Table 3.3. The Gauge and Higgs fields of the MSSM Before the SSBand Their Cor-
responding Gauge and Higgs Bosons After the SSB, also Their Degree of
Freedom

Before the SSB After the SSB

Name Fields DOF Name Bosons DOF

Gauge Fields
Bµ 2 dof

Gauge Bosons
Aµ 2 dof

W i
µ (i = 1, 2, 3) 2 × 3 = 6 dof W∓, Z0 3 × 3 = 9 dof

Higgs Fields Hu, Hd 2 × 4 = 8 dof Higgs Bosons h,H,A, H± 5 dof
Total 20 dof Total 20 dof

SU(2)L andU(1)Y , respectively.m2
Hu

,m2
Hd

are mass-squared terms of the scalars and B

is bilinear scalar coupling constant.

Vtree = (m2
Hu

+ µ2)|Hu|2 + (m2
Hd

+ µ2)|Hd|2 +Bµ(Hu ·Hd + h.c.)

+
G2

8

(
|Hu|2 − |Hd|2

)2
+
g2
2

2

(
|Hu|2|Hd|2 − |Hu ·Hd|2

)
(3.44)

Since the neutral part of the Higgs field has a non-vanishing value at the vacuum

state (the minimum of the potential), the fields can be expanded as follows:

Hu =
1√
2

(
H+
u

vu + φu + iϕu

)
, Hd =

1√
2

(
vd + φd + iϕd

H−
d

)
. (3.45)

Electroweak symmetry is spontaneously broken when the Higgs fields acquire

their vacuum expectation values at the minimum,

〈H0
u〉 =

υu√
2
, 〈H+

u 〉 = 0, 〈H0
d〉 =

υd√
2
, 〈H−

d 〉 = 0, (3.46)

Then Higgs fields interact with fermions and gauge fields. At the end of this interaction

while the fermions get their masses, the gauge and Higgs fields also acquire their physical

mass states. After the SSB, 5 Higgs bosons arise as seen in Table (3.3). Two of them are

the CP even (scalar) neutral Higgs bosons(h andH), one of them is CP odd (pseudoscalar)

neutral Higgs boson (A) and two of them are charged Higgs bosons (H±).

After giving the general properties of the MSSM and its Higgssector, now let’s
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determine the masses of the gauge bosons. To derive the masses of the gauge bosons of

the MSSM, the kinetic energy terms of the Higgs field is used that is written as follows:

L ∋ |DµHu|2 + |DµHd|2 (3.47)

where covariant derivatives can be determined as seen belowto make the Lagrangian

under theU(1)Y andSU(2)L symmetries.

DµHu = (∂µ + ig2
σi
2
W i
µ + i

gY
2
Bµ)Hu, (3.48)

DµHd = (∂µ + ig2
σi
2
W i
µ − i

gY
2
Bµ)Hd. (3.49)

When the Higgs fields acquire their VEVs at the minimum of the Higgs potential energy

as in 3.46, gauge bosons acquire their masses by following the same way as in the SM,

M2
W =

g2
2

2
(v2
u + v2

d) and M2
Z =

g2
Y + g2

2

2
(v2
u + v2

d). (3.50)

If we determine the Higgs potential energy, we can get the formula for the mass-

squared matrix of the Higgs bosons by taking the second derivative of the Higgs potential

with respect to the components of the Higgs fields. Because the conservation of electric

charge one states that there must be no mixing between the charges and neutral compo-

nents of the Higgs fields. So we consider these part separately.

Since we examine the components of the Higgs fields, writing the Higgs potential

in terms of component fields may be helpful.

VMSSM = (m2
Hu

+ µ2)(|H0
u|2 + |H+

u |2) + (m2
Hd

+ µ2)(|H0
d |2 + |H−

d |2)

− Bµ(H0
uH

0
d −H+

u H
−
d + h.c.)

+
g2
Y

8

[
(|H+

u |2 − |H0
u|2 + |H0

d |2 − |H−
d |2)2 + 4|H+

u |2|H0
u|2 + 4|H0

d |2|H−
d |2
]

− g2
Y

2
(H+∗

u H−∗
d H0

uH
0
d +H0∗

u H
0∗
d H

+
u H

−
d )

+
g2

8

[
|H+

u |2 + |H0
u|2 − |H0

d |2 − |H−
d |2
]2

(3.51)
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where we renamed the tree level potential of the MSSM as MSSM potential (VMSSM ).

Firstly, we can examine the charged fields. The Lagrangian should have following

form to include the mass terms of the charged Higgs fields:

L ∋
(
H+∗
u H−

d

)
M2

H±

(
H+
u

H−∗
d

)
(3.52)

where

M2
H± =




∂2VMSSM

∂H+
u ∂H

+∗
u

|hi→vi

∂2VMSSM

∂H+∗
u ∂H−∗

d

|hi→vi

∂2VMSSM

∂H+
u ∂H

−
d

|hi→vi

∂2VMSSM

∂H−
d
∂H−∗

d

|hi→vi


 (3.53)

Now, derivatives of the tree level scalar potential with respect to above components give

us the mass squared matrix of the charged Higgs fields as seen below (Baer, 2006). It

should be noted that these derivatives must be taken at the VEV of the Higgs field.

M2
H± =

(
Bµ cot β +

g2
2

2
v2
d −Bµ+

g2
2

2
vuvd

−Bµ+
g2
2

2
vuvd Bµ tanβ +

g2
2

2
v2
u

)
(3.54)

Diagonalizing this matrix we can obtain the masses of the charges Higgs bosons,

mG± = 0 and m2
H± = Bµ(cotβ + tanβ) +M2

W (3.55)

wheretanβ = gY /g2 andM2
W = g2(v

2
u + v2

d)/2. The masslessG± bosons are Goldstone

bosons which are eaten by the charged gauge bosonsW±.

For the neutral part the mass squared matrix can be found by using the below

formula:

M2
ij =

(
∂2

∂Ψi∂Ψj

V

)

0

(3.56)

with Ψi ∈ {φu, φd, ϕu, ϕd}. Instead of finding the (4 × 4) mass squared matrix as above,

we can decomposes into to (2×2) matrices by using CP invariance property. CP invariance
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of the Higgs sector states that there is also no mixing between the real and imaginary part

of the Higgs fields.

For examining the real and imaginary part of the neutral Higgs fields, the La-

grangian should include the following part:

L ∋ 1

2

(
ϕu ϕd

)
M2

H0
I

(
ϕu

ϕd

)
, L ∋ 1

2

(
φu φd

)
M2

H0
R

(
φu

φd

)
. (3.57)

The mass matrices of the imaginary part of the neutral Higgs fields and its value

are given by

M2
H0

I
=

(
∂2VMSSM

∂ϕu∂ϕu

∂2VMSSM

∂ϕu∂ϕd

∂2VMSSM

∂ϕd∂ϕu

∂2VMSSM

∂ϕd∂ϕd

)

hi→vi

, M2
H0

I
=

(
Bµ cotβ Bµ

Bµ Bµ tanβ

)
(3.58)

The eigenvalues of this mixing matrix give the physical masses of the Higgs bosons

(Aitchison, 2007; , Baer, 2006).

m0
G = 0 and m2

A = Bµ(cot β + tan β) (3.59)

whereG0 is also Goldstone boson which are eaten buy the neutral gaugebosonZ0 andA

is the pseudoscalar (CP odd) Higgs boson.

The real part of the neutral Higgs fields has following mass squared matrix

M2
H0

R
=

(
∂2VMSSM

∂φu∂φu

∂2VMSSM

∂φu∂ϕd

∂2VMSSM

∂φd∂φu

∂2VMSSM

∂φd∂φd

)

hi→vi

(3.60)

M2
H0

R
=

(
m2
A cos2 β +M2

Z sin2 β −(m2
A +M2

Z) sinβ cosβ

−(m2
A +M2

Z) sin β cosβ m2
A sin2 β +M2

Z cos2 β

)
(3.61)
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Masses of the neutral Higgs bosons are found as follows:

m2
h,H =

1

2

[
(m2

A +M2
Z) ±

√
(m2

A +M2
Z)2 − 4m2

AM
2
Z cos2 2β

]
(3.62)

whereh andH shows the lighter and heavier neutral Higgs bosons.

The relation between the bosons which have physical mass states and fields can

be found from the mixing matrix by deriving the eigenvectors,

(
G+

H+

)
=

(
cosβ sin β

− sin β cos β

)(
H−∗
d

H+
u

)
(3.63)

(
G0

A

)
=

(
sin β − cos β

cosβ sin β

)(
ϕu

ϕd

)
,

(
h

H

)
=

(
cosα sinα

− sinα cosα

)(
φu

φd

)

(3.64)

whereα andβ are the mixing angles with

tanα =
(m2

A −M2
Z) cos 2β +

√
(m2

A +M2
Z)2 − 4m2

AM
2
Z cos 2β

(m2
A +M2

Z) sin 2β
. (3.65)

When we compare the masses of the physical Higgs bosons, the first result we

obtain ism2
H± = m2

A + M2
W , somH± is larger than the masses of the pseudoscalar

Higgs bosonmA and gauge bosonmW . The second result is related to the lightest neutral

Higgs boson mass. While the massesmA, mH andmH± are unconstraint, the massmh is

bounded. SinceMZ parameter is known from the experiments, the mass term of lightest

Higgs boson in (3.62) include 2 unknown parameter,mA andcosβ. If we examine the

conditions when them2
A is small and large, we obtain the maximum value of the mass

mh ≤MZ | cos 2β| ≤ MZ (3.66)

where the maximum value ofcos 2β = 1. According to this resultmh should be equal or

smaller thanMZ ≈ 90 GeV (mh ≤ MZ). Nevertheless, experimental lower bound from
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the LEP experiment is

mh ≥ 114.4 GeV (3.67)

at the % 95 Confidence Level. Therefore we can say that the one-loop quantum cor-

rections is significant in the MSSM. Under the radiative correction from the top quark

lightest Higgs boson mass becomes

m2
h ≤M2

Z cos2 2β +
3m4

t sin4 β

2π2(v2
u + v2

d)
ln

(
mt̃

mt

)
(3.68)

wheremt is the top quark mass andm2
t̃

= (m2
t̃1

+ m2
t̃2

)/2 is the average of the squared

masses of two scalar top quarks (Aitchison, 2007; , Baer, 2006). As seen in (3.68) these

corrections shift the upper limit of the lightest MSSM Higgsboson mass and satisfy the

LEP limit. But despite of the quantum corrections, the mass of the lightest Higgs boson

can not exceed135 GeV (mh ≤ 135 GeV).

3.3. The Successes and Problems of the MSSM

Supersymmetry and also Minimal Supersymmetric Standard Model are introduced

mainly to stabilize the Higgs sector which is unstable to thequantum corrections. Besides

this, there are other motivations for the MSSM. One of them isto unify the gauge coupling

constant.

As seen from in Figure (3.1), SM can not explain the unification of the three fun-

damental forces. That is, there is no a mass scale or interaction scale at which the electro-

magnetic, weak and strong interactions have the same strength. In this figure Y-axis is the

fine-structure constants (1/αi) which is related to square of the gauge coupling constant

(αi ∝ g2
i ). X-axis shows the mass or energy on a logarithmic scale. Theindices1, 2, 3

stand for theU(1)Y , SU(2)L, SU(3)C couplings, respectively. While this unification can

not explained by the SM, MSSM unify these three forces at highenergies.

The other motivation for the MSSM is to explain the Dark Matter problem. Stan-

dard Model can explain the small amount of total matter in theuniverse, however the

amount of dark matter is much larger than the matter explained by the SM. The addi-

tional particle content and R-parity properties of the MSSMhelp us to explain the dark
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Figure 3.1. Gauge coupling unification (a) in the SM and (b) inthe MSSM (Aitchison,
2007).

matter. As explained before the Lightest Supersymmetric Particle (LSP) must be stable

as a result of the R-parity. It is also weakly interacting massive particle (WIMP) that is

in the 102 − 103 GeV range with only weak interaction strength couplings, itdoes not

have electromagnetic or strong interactions. Because of having the similar properties to

the dark matter, LSP might be best candidate for the dark matter.

Although the Minimal supersymmetric model solve some important problem of

the SM mentioned above, most of them remain unsolved. New ones are also introduced.

One of them is the “little hierarch problem ”. The MSSM predicts a light Higgs

boson near the Z mass at the tree level, while the experimental lower bound is 114 GeV

according to the LEP experiment. Whereas this LEP bound can not be satisfied at the tree

level, one loop radiative correction from the top quark may be used to satisfy it. To satisfy

it, the mass of the top quark must be taken to be∼ 1 TeV. Thus supersymmetry(SUSY)

must be broken above the weak scale, recreant in fine-tuning of ∼ 1% or worse in the soft

SUSY-breaking parameters in order to reproduce the observed value of the weak scale.

This is how the little hierarchy problem appears in the context of the MSSM.

The other and most important problem of the MSSM is theµ problem. When the

following general superpotential term for the MSSM is examined,

Ŵ = µĤu · Ĥd + huQ̂ · ĤuûcR + hdQ̂ · Ĥdd̂cR + heL̂ · ĤdêcR (3.69)
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it is realized the first term containsµ parameter with a mass dimension which is not re-

stricted to be at the electroweak scale, the soft supersymmetry breaking mass parameters’

scale. This is known as “µ problem” of the MSSM. Because of these problems we need to

extend the Minimal Supersymmetric Standard Model. Although there are some theories

for extension, we will explain one of them in the next chapter.
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CHAPTER 4

GAUGE-EXTENDED SUPERSYMMETRIC MODEL

4.1. Motivations for the U(1)′ Model

While gauge structure of the Standard Model and Minimal Supersymmetric Stan-

dard Model is given bySU(3) ⊗ SU(2) ⊗ U(1), the simplest gauge extension of the

MSSM is found by expanding its gauge group with an additionalAbelian factor and this

model is calledU(1)′ model. There are two main motivations for this model. The most

direct motivation for such an extra group factor is the need to solve theµ problem of the

MSSM (Kim, 1984; Giudice, 1998). Indeed, the mass term of theHiggsinos

ŴMSSM ∋ µĤu · Ĥd (4.1)

involves a dimensionful parameterµ and this parameter can be totaly arbitrary scale.

However, theµ parameter should be dimensionless like natural coefficients and should be

at the electroweak scale that is the scale of mass parametersof the theory determined by

the soft supersymmetry breaking. To overcome thisµ problem, theµ parameter can be

replaced by a new SM chiral superfield̂S (Cvetic, 1997). When the scalar component of

this superfield acquire its vacuum expectation value (VEV) via the spontaneous symmetry

breaking, effectiveµ parameter is induced,

µeff = hs〈S〉. (4.2)

Then Equation (4.1) becomes

Ŵ ∋ hsŜĤu · Ĥd (4.3)

with hs being a Yukawa coupling. Gauge invariance of the superpotential under theU(1)′

symmetry requires that total charges of each term in the new superpotential for theU(1)′
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model should be zero (the charges of the particle and field is given in Table (4.1)). That

is, for the Higgsino mass term of the superpotential gauge invariance condition is given

by

QS +QHu +QHd
= 0 (4.4)

whereQS 6= 0 (Sert, 2010). These conditions forbid a bareµ term as in (4.1) completely,

andµ parameter is deemed to arise from the VEV ofS via (4.2). In addition to these

constraints arising from the gauge invariance, there are also some constraints arising to

avoid quantum-induced trilinear mixing among the gauge bosons that causes the triangle

anomalies in the gauge sector and so gauge coupling non-unification. The anomalies can

be cancelled either by introducing family non-universal charges (Demir, 2005; Hayreter,

2007) or by adding exotics to the models descending from E(6)and other GUT groups

(Langacker, 1998). In the present work we shall assume that anomalies are cancelled by

additional matter falling outside the reach of LHC experiments.

Table 4.1. The gauge quantum numbers of chiral superfields where i=1,2,3 stands for
the family index

Superfields SU(3)C SU(2)L U(1)Y U(1)′

Q̂i 3 2 1/3 QQi

ûc
Ri

3̄ 1 −4/3 Qui

d̂c
Ri

3̄ 1 2/3 Qdi

L̂i 1 2 −1 QLi

êc
Ri

1 1 2 Qei

Ĥu 1 2 1 QHu

Ĥd 1 2 −1 QHd

Ŝ 1 1 0 QS

Theµ problem mentioned above is one of the motivations for introducingU(1)′

model. In addition to this, such extra gauge symmetries arise in low energy supersym-

metric models stemming from GUTs and strings (Barr, 1985; Hewett, 1989; Cvetic, 1996;

Cleaver, 1998; Ghilencea, 2002). As an example we can examine the E(6) GUT (King,

2006; Diener, 2009), the breaking pattern of the E(6) groupsis given

E(6) → SO(10) ⊗ U(1)ψ → SU(5) ⊗ U(1)χ ⊗ U(1)ψ → GSM ⊗ U(1)′. (4.5)

In this chain each arrow corresponds to spontaneous symmetry breaking at a specific
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energy scale and after these breaking two extraU(1) symmetries occur,U(1)ψ andU(1)χ.

U(1)′ at the last step is a linear combination of these extra symmetries like that

U(1)′ = cos θE(6) U(1)ψ − sin θE(6) U(1)χ (4.6)

which is a lightU(1)′ invariance broken near theTeV scale whereas the other orthogonal

combinationU(1)′′ = cos θE(6) U(1)χ + sin θE(6) U(1)ψ is broken at a much higher scale

not accessible to LHC experiments. The angleθE(6) (mixing angle) designates the break-

ing direction inU(1)ψ⊗U(1)χ space and it is a function of the associated gauge couplings

and VEVs that realize the symmetry breaking. For all different values of theθE(6) mixing

angle, there are variousU(1)′ models based on E(6) groups. For instance, inψ Model

θE(6) = 0, in η Model θE(6) = arcsin
√

3
8
, in I Model θE(6) = − arcsin

√
5
8
, inN Model

θE(6) = arcsin 1
4
, in S ModelθE(6) = arcsin

√
27
32

. We excludedχ model (θE(6) = −π
2
) as

it does not lead to a solution forµ problem (the singletS acquires vanishingU(1)′ charge)

(Barr, 1985; Hewett, 1989; Cvetic, 1996; Cleaver, 1998; Ghilencea, 2002).

4.2. The Structure of theU(1)′ Model

U(1)′ model is obtained by adding an extra abelianU(1) group to the gauge group

of the SM or MSSM. The gauge structure of the model can be represented as follows:

SU(3) ⊗ SU(2) ⊗ U(1) ⊗ U(1)′ (4.7)

The extraU(1) group requires an extra gauge bosonZ ′ and gauge fermioñZ ′ with

respect to MSSM. Also the Higgs sector of such models differ from those of the SM and

MSSM (Spira, 1998). Firstly, there are an extra Higgs field that can be represented as

a chiral, singlet SM superfield̂S in addition to two Higgs doubletsHu andHd of the

MSSM. The Higgs fields can be given by

Hu =

(
H+
u

H0
u

)
, Hd =

(
H0
d

H−
u

)
and S. (4.8)
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Table 4.2. Gauge Fields, Higgs Fields and Their Corresponding Bosons in the Models
wherei = 1, 2, 3 anda = 1, 2, .., 8 .

Fields/Bosons SM MSSM U(1)′ Model

GaugeFields Ga
µ, W i

µ, Bµ Ga
µ, W i

µ, Bµ Ga
µ, W i

µ, Bµ, B′
µ

HiggsFields H Hu, Hd Hu, Hd, S
GaugeBosons ga, W±, Z, Aµ ga, W±, Z, Aµ ga, W±, Z, Z ′, Aµ

HiggsBosons h h, H, AH± h, H, H ′, AH±

where doublets and singlet fields are complex scalar fields. Moreover, the modifications

in the masses and couplings of the Higgs bosons are also different from the MSSM and

SM (Demir, 2004). The additional fields and bosons may be summarized as in Table

4.2 by comparing the other models. All the particles and fields are charged under this

extraU(1) symmetry. Quantum numbers of theU(1)′ model particle contents are given

in Table (4.1).

If Higgs sector of theU(1)′ Model is considered again, Table 4.3 may be helpful

to comprehend how many Higgs boson arises in this model. As seen in Table 4.3 there

are six Higgs boson arising inU(1)′ Model after the spontaneously electroweak symmetry

breaking. One extra Higgs boson is a CP even (scalar) neutralboson heavier than other

neutral bosons. Table (4.3) gives information not only about Higgs sector, but also about

gauge sector. As seen from the Table (4.3), there are 5 gauge bosons arising;W±, Z, Z ′

and photon(Aµ). However, the neutral gauge bosonsZ andZ ′ exhibit nontrivial mixing

(Langacker, 2008) andZ − Z ′ mass-squared matrix is given by

(MZ−Z′)2 =

(
M2

Z δ2
Z−Z′

δ2
Z−Z′ M2

Z′

)
(4.9)

where

M2
Z =

G2

4
[υ2
u + υ2

d] (4.10)

M2
Z′ = g′2Y [Q2

Hu
υ2
u +Q2

Hd
υ2
d +Q2

Sv
2
s ] (4.11)
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Table 4.3. The Gauge and Higgs fields of theU(1)′ Model Before the SSB and Their
Corresponding Gauge and Higgs Bosons After the SSB, also Their Degree
of Freedom

Before the SSB After the SSB

Name Fields DOF Name Bosons DOF

Gauge Fields
Bµ 2 dof

Gauge Bosons
Aµ 2 dof

W i
µ (i = 1, 2, 3) 2 × 3 = 6 dof W∓, Z0 3 × 3 = 9 dof

B′
µ 2 dof Z′0 3 dof

Higgs Fields
Hu, Hd 2 × 4 = 8 dof

Higgs Bosons
h,H,AH± 5 dof

S 2 dof H′ 1 dof
Total 20 dof Total 20 dof

δ2 =
g′YG

2
[QHuυ

2
u −QHd

υ2
d] (4.12)

These values can be derived from the kinetic part of the HiggsLagrangian for the

U(1)′ Model. The two eigenvalues of this matrix give the masses of the physical massive

vector bosons,

M2
Z1,Z2

=
1

2

[
M2

Z +M2
Z′ ∓

√
(M2

Z −M2
Z′)2 + 4δ4

Z−Z′

]
. (4.13)

If there is no mixingMZ1
will be a mass of the SMZ boson. The mixing angle of the

mixing matrix in (4.9) can be found from diagonalization of this matrix. To diagonalize

(4.9) the rotation matrix below is used

R =

(
cosα sinα

− sinα cosα

)
(4.14)

Using this rotation matrix andR† · (MZ−Z′)2 · R = diag(M2
Z1
,M2

Z2
) diagonalization

condition, the mixing angle can be derived by equaling the off-diagonal terms to zero as

follows (Ali, 2009),

αZ−Z′ =
1

2
arctan

(
2δ2
Z−Z′

M2
Z′ −M2

Z

)
. (4.15)

45



The value of the mixing angleαZ−Z′ must be a few10−3 according to the LEP experi-

ments. This puts a bound on theZ2 boson mass. In particular, in generic E(6) models

mZ2
must weigh nearly aTeV or more according to the Tevatron measurements (Erler,

2009).

Another important aspect of this model is the Higgs sector which constitute the

main structure of this thesis work. Therefore, the Higgs Sector of this model at the tree

level and one loop level will be explained in the following chapter.
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CHAPTER 5

HIGGS SECTOR OF THE U(1)′ MODEL

5.1. Higgs Sector of the U(1)′ Model at the Tree Level

The Higgs sector of the model, as mentioned before, involvesthe singlet Higgs

S and the electroweak doubletsHu andHd. All of them are charged under U(1)′ gauge

group. The Higgs fields expand around the vacuum state as follows

Hu =
1√
2

( √
2H+

u

vu + φu + iϕu

)
, Hd =

1√
2

(
vd + φd + iϕd√

2H−
d

)
,

S =
1√
2

(vs + φs + iϕs) (5.1)

whereH+
u andH−

d span the charged sector involving the charged Goldstone eaten up by

theW± boson as well as the charged Higgs boson. The remaining ones span the neutral

degrees of freedom:φu,d,s are scalars andϕu,d,s are pseudoscalars.

When the local gauge symmetry is broken, the Higgs fields getsthe vacuum ex-

pectation values (VEVs) in the vacuum given by

vu√
2
≡ 〈H0

u〉 ,
vd√
2
≡ 〈H0

d〉 ,
vs√
2
≡ 〈S〉 (5.2)

and then theW±, Z andZ ′ bosons all acquire masses. Besides the gauge bosons, the

Higgs bosons get also their masses. Masses of the Higgs bosons are determined by taking

the second derivative of the scalar potential with respect to the components of the Higgs

field, scalar and pseudoscalar fields:

M2
ij =

(
∂2

∂Ψi∂Ψj

V

)

0

(5.3)

with Ψi ∈ {φu, φd, φs, ϕu, ϕd, ϕs}.
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At the tree level the potential in (5.3) is the tree level scalar potential of the Higgs

fields composed ofF term,D term and soft breaking pieces.

Vtree = VF + VD + Vsoft (5.4)

with

VF =|hs|2
[
|Hu ·Hd|2 + |S|2(|Hu|2 + |Hd|2)

]
, (5.5)

VD =
G2

8

(
|Hu|2 − |Hd|2

)2
+
g2
2

2

(
|Hu|2|Hd|2 − |Hu ·Hd|2

)
(5.6)

+
g′Y

2

2

(
QHu|Hu|2 +QHd

|Hd|2 +QS|S|2
)2
,

Vsoft =m2
Hu

|Hu|2 +m2
Hd
|Hd|2 +m2

s|S|2 + (hsAsSHu ·Hd + h.c.) (5.7)

whereG2 = g2
2 + g2

Y (Sert, 2010; Cincioglu, 2010). Hereg2, gY andg′Y are the gauge

couplings of the gauge groups ofSU(2)L, U(1)Y andU(1)′, respectively. Soft masses

of the scalar Higgsm2
Hu
, m2

Hd
, m2

S are obtained by taking the first derivative of the

potential with respect to scalar components of the Higgs fields (φi) and equaling zero,

that is applying the condition for finding the extremum points.

(
∂V

∂Ψi

)

0

= 0 (5.8)

These soft masses are obtained as follows

(m̄2
Hu

) = m2
0 cotβ +

1

8
G2v2 cos 2β − 1

2
g′2YQHu(Q̄Hv

2 +QSv
2
s) −

1

2
h2
s(v

2 cos2 β + v2
s)

(m̄2
Hd

) = m2
0 tanβ − 1

8
G2v2 cos 2β − 1

2
g′2YQHd

(Q̄Hv
2 +QSv

2
s ) −

1

2
h2
s(v

2 sin2 β + v2
s)

(m̄2
S) = m2

0

v2

v2
s

sin β cosβ − 1

2
g′2YQS(Q̄Hv

2 +QSv
2
s) −

1

2
h2
sv

2 , (5.9)
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where(m̄2
Hu

), (m̄2
Hd

) and(m̄2
S) stand for(m2

Hu
)tree, (m2

Hd
)tree and(m2

S)tree andm2
0 =

(hs/
√

2)As, Q̄H = QHu sin2 β +QHd
cos2 β, v2 = v2

u + v2
d andtanβ = vu/vd.

Once the mass states of the Higgs fields are derived by using the tree level poten-

tial, we obtain (6x6) mass-squared matrix of the Higgs fields. Diagonalizing this matrix

we get one massive pseudoscalar Higgs boson, 3 massive scalar Higgs bosons and 2

massless Goldstone bosons which are eaten by the neutral gauge bosonsZ andZ ′. The

mass-squareds of the Higgs bosons at the tree level are derived by

m2
A0 =

√
2Ahsvs
sin 2β

[
1 +

v2

4v2
s

sin2 2β

]
, (5.10)

which is never negative, and

m2
h0
1

≤M2
Z cos2 2β +

1

2
h2
sv

2sin22β + g
′2
1 (QHd

cos2 β +QHu sin2 β)2v2 (5.11)

m2
H± = M2

W +

√
2Ahsvs
sin 2β

− 1

2
h2
sv

2 (5.12)

m2
H± could be lighter than theW boson due to the negative third contribution. It could be

negative for some choices of the parameters (Cvetic, 1997).

5.2. Higgs Sector of the U(1)′ Model at the One Loop Level

Due to the soft breaking of supersymmetry, the Higgs boson masses shift in pro-

portion to particle–sparticle mass splitting under quantum corrections. Though all parti-

cles which couple to the Higgs fieldsS,Hu andHd contribute to the Higgs boson masses,

the largest correction comes from the top quark and its superpartner scalar top quark (and

to a lesser extent from the bottom quark multiplet). Including top and bottom quark su-

perfields, the superpotential takes the form

Ŵ ∋ hsŜĤu · Ĥd + htQ̂ · Ĥut̂
c
R + hbQ̂ · Ĥdb̂

c
R (5.13)
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whereht andhb are top and bottom Yukawa couplings . This superpotential encodes the

dominant couplings of the Higgs fields which determine theF term contributions.

At the one loop there is a contribution to the tree level Higgspotential due to the

radiative corrections and this contribution can be computed by using the effective potential

method. In fact, the radiatively corrected potential is written as

Vtotal (H) = Vtree (H) + ∆V (H) . (5.14)

The contributions of the quantum fluctuations in (5.14) readas

∆V =
1

64 π2
Str

[
M4

(
ln

M2

Λ2
− 3

2

)]
(5.15)

where Str≡
∑

J(−1)2J(2J + 1)Tr is the usual supertrace which generates a factor of6

for squarks and−12 for quarks (Demir, 2004; Sert, 2010). The number of the factor can

be calculated by multiplying the number of color (3 for quarks and squarks), the number

of spin (2(+1/2,−1/2) and 0 for the quarks and squarks, respectively), the number of

charges (2(+,−) for the quarks and squarks) and(−1)2J . Λ is the renormalization scale

andM is the field-dependent mass matrix of quarks and squarks (we takeΛ = mt +

mZ2
/2). The dominant contribution comes from top quark (and bottom quark, to a lesser

extent) multiplet. More explicitly we can write the radiative correction to the tree level

scalar potential as follows:

∆V =
6

64π2

[
∑

k=1,2

(m2
(t̃,b̃)k

)2

[
ln

(
m2

(t̃,b̃)k

Λ2

)
− 3

2

]
− 2(m2

(t,b)k
)2

[
ln

(
m2

(t,b)k

Λ2

)
− 3

2

]]

(5.16)

The required top and bottom quark field-dependent masses read as

m2
t (H) = h2

t

∣∣H0
u

∣∣2 , m2
b (H) = h2

b

∣∣H0
d

∣∣2 . (5.17)

The mass-squareds of their superpartners are also necessary to calculate (5.15), the mass-
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squareds of squarks are obtained by diagonalizing the mass-squared matrix below

m2
f̃

=


 M2

f̃LL
M2

f̃LR

M2
f̃RL

M2
f̃RR


 (5.18)

wheref = t or b. For instance, the entries of the stop mass-squared matrix read to be

M2
t̃LL

=m2
Q̃

+m2
t −

1

12

(
3g2

2 − g2
Y

)
(|H0

u|2 − |H0
d |2)

+g′2Y QQ

(
QHu|Hu|2 +QHd

|Hd|2 +QS|S|2
)

M2
t̃RR

=m2
t̃R

+m2
t −

1

3
g2
Y (|H0

u|2 − |H0
d |2)

+g′2Y QU

(
QHu |Hu|2 +QHd

|Hd|2 +QS|S|2
)

M2
t̃LR

=M2
t̃RL

= ht
(
AtH

0
u − hsSH

0
d

)
(5.19)

These entries are obtained by taking the second derivative of the general tree level poten-

tial including all the scalars. The coefficients of the quadratic fields after the derivatives

give us above entries.

Insertion of the top and bottom mass matrices into (5.15) generates the full one-

loop effective potential. Radiatively corrected Higgs masses and mixings are computed

from the effective potential (Demir, 2004). Now, Higgs potential in (5.3) and (5.8) be-

comes the radiatively corrected effective potential,

(
∂Vtotal
∂Ψi

)

0

= 0 , M2
ij =

(
∂2

∂Ψi∂Ψj

Vtotal

)

0

(5.20)

with Ψi ∈ {φu, φd, φs, ϕu, ϕd, ϕs}. The soft masses of the Higgs scalars at one loop

include additional terms arising from the radiative correction, and these contribution is
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expressed as

m2
Hu

= (m2
Hu

)tree −
1

vu

(
∂∆V

∂φu

)

0

m2
Hd

= (m2
Hd

)tree −
1

vd

(
∂∆V

∂φd

)

0

m2
S = (m2

S)tree −
1

vs

(
∂∆V

∂φs

)

0

, (5.21)

where(m2
Hu

)tree, (m2
Hd

)tree and(m2
S)tree are given in (5.9).

The mass-squared matrix of the Higgs bosons can be formed by substituting above

values into the total scalar potential and taking the below derivatives of the total scalar

potential:

M2 =




(
∂2Vtotal

∂φu∂φu

)
0

(
∂2Vtotal

∂φu∂φd

)
0

(
∂2Vtotal

∂φu∂φs

)
0

(
∂2Vtotal

∂φu∂ϕu

)
0

(
∂2Vtotal

∂φu∂ϕd

)
0

(
∂2Vtotal

∂φu∂ϕs

)
0(

∂2Vtotal

∂φd∂φu

)
0

(
∂2Vtotal

∂φd∂φd

)
0

(
∂2Vtotal

∂φd∂φs

)
0

(
∂2Vtotal

∂φd∂ϕu

)
0

(
∂2Vtotal

∂φd∂ϕd

)
0

(
∂2Vtotal

∂φd∂ϕs

)
0(

∂2Vtotal

∂φs∂φu

)
0

(
∂2Vtotal

∂φs∂φd

)
0

(
∂2Vtotal

∂φs∂φs

)
0

(
∂2Vtotal

∂φs∂ϕu

)
0

(
∂2Vtotal

∂φs∂ϕd

)
0

(
∂2Vtotal

∂φs∂ϕs

)
0(

∂2Vtotal

∂ϕu∂φu

)
0

(
∂2Vtotal

∂ϕu∂φd

)
0

(
∂2Vtotal

∂ϕu∂φs

)
0

(
∂2Vtotal

∂ϕu∂ϕu

)
0

(
∂2Vtotal

∂ϕu∂ϕd

)
0

(
∂2Vtotal

∂ϕu∂ϕs

)
0(

∂2Vtotal

∂ϕd∂φu

)
0

(
∂2Vtotal

∂ϕd∂φd

)
0

(
∂2Vtotal

∂ϕd∂φs

)
0

(
∂2Vtotal

∂ϕd∂ϕu

)
0

(
∂2Vtotal

∂ϕd∂ϕd

)
0

(
∂2Vtotal

∂ϕd∂ϕs

)
0(

∂2Vtotal

∂ϕs∂φu

)
0

(
∂2Vtotal

∂ϕs∂φd

)
0

(
∂2Vtotal

∂ϕs∂φs

)
0

(
∂2Vtotal

∂ϕs∂ϕu

)
0

(
∂2Vtotal

∂ϕs∂ϕd

)
0

(
∂2Vtotal

∂ϕs∂ϕs

)
0




(5.22)

in the(φu, φd, φs, ϕu, ϕd, ϕs) basis. Above matrix can be considered as a combination of

the scalar part, pseudoscalar part and mixing parts,

M2 =

(
M2

SS M2
SP

M2
PS M2

PP

)
. (5.23)

Since there is no mixing between the scalar and pseudoscalarparts in the CP conserving

limit (M2
SP = M2

PS = 0), we can examine these parts separately. Firstly let’s examine

pseudoscalar part of the mass-squared matrix in the (ϕu, ϕd, ϕs) basis. After we find the

entries of pseudoscalar matrix we must diagonalize it to findthe physical mass states. This
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matrix is a3 × 3 matrix, hence diagonalization condition should be appliedtwo times,

R1 =




cosβ − sin β 0

sin β cosβ 0

0 0 1


 , R2 =




cosα 0 sinα

0 1 0

− sinα cosα 0


 (5.24)

wheretanβ = vu/vd andcotα = (v sin β cos β)/vs is found after some calculations.

Using the above rotation matrix and diagonalization condition (R† ·M2
PP ·R), it is found

that there is one massive Higgs state called pseudoscalar Higgs boson (A) and two mass-

less Goldstone bosons which are eaten by the neutralZ andZ ′ bosons in the (GZ′, GZ , A)

basis while these bosons acquire their masses. The relationbetween the basis states can

be found by multiplying the rotation matrices:




ϕu

ϕd

ϕs


 =




cosβ − sin β 0

sin β cosβ 0

0 0 1







cosα 0 sinα

0 1 0

− sinα cosα 0







GZ′

GZ

A


 (5.25)

Firstly the matrix are multiplied and then orthogonality condition (M †M = 1) is used to

find the second basis in terms of the first basis and below result is obtained.




GZ′

GZ

A


 =




cosβ cosα sin β cosα − sinα

− sin β cosβ 0

cosβ sinα sin β sinα cosα







ϕu

ϕd

ϕs


 (5.26)

From this matrix the physical states of the pseudoscalar CP-odd Higgs bosons are ob-

tained as below:

GZ = − sin βϕu + cosβϕd , (5.27)

GZ′ = cosβ cosαϕu + sin β cosαϕd − sinαϕs (5.28)

A = cosβ sinαϕu + sin β sinαϕd + cosαϕs (5.29)
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After the relation between the basis states is obtained as above, by finding eigenvalues

of the mixing mass squared matrix for the pseudoscalar part we can obtain masses of the

pseudoscalar Higgs bosons which have physical mass states as mentioned above. Two of

them are found to be equal zero corresponding to Goldstone bosons and the value of the

rest is found as follows:

M2
P =

M2
A

sin2 α
(5.30)

M2
A = M2

0

(
1 +

3h2
t

32π2

At
As

F
)

(5.31)

whereM2
0 is a mass parameter introduced for simplicity andF is a loop function depends

explicitly on the renormalization scale, and their explicit forms are as the following

M2
0 =

hsAsvs√
2 sin β cos β

, (5.32)

F(Λ2, m2
t̃1
, m2

t̃2
) = −2 + ln

(
m2
t̃1
m2
t̃2

Λ4

)
+
m2
t̃1

+m2
t̃2

m2
t̃1
−m2

t̃2

ln

(
m2
t̃1

m2
t̃2

)
. (5.33)

Now, let’s examine the scalar part of the mass-squared matrix in the (φu, φd, φs)

basis. After the define the entries of the matrix which is given below, we must diagonalize

it to find the mass states of the CP-even scalar Higgs bosons (Demir, 2004).

M2
SS =




M2
uu +M2

A cos2 β M2
ud −M2

A sin β cosβ M2
us −M2

A cotα cosβ

M2
ud −M2

A sin β cos β M2
dd +M2

A sin2 β M2
ds −M2

A cotα sin β

M2
us −M2

A cotα cosβ M2
ds −M2

A cotα sin β M2
ss +M2

A cot2 α




(5.34)

The explicit form ofM2
A is given in (5.31), the mass parametersM2

ij(i, j = u, d, s) may
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be represented as

M2
ij = vivj{λ̄ij +

3

(4π)2
[
(ρim̃

2
j + m̃2

i ρj)

m2
t̃1

+m2
t̃2

(2 − G) +

(
ρiρj + ζiζj + δidδjs

h2
th

2
s

4

)
F

+

(
ρiρj +

m̃2
i m̃

2
j

(m2
t̃1
−m2

t̃2
)2

)
G − δiuδjuh

4
t ln

{
m4
t

Q4

}
]} (5.35)

whereλ̄ij = λij for i 6= j, λ̄ij = 2λi for i = j which are given by

λu,d =
1

8
G2 +

1

2
Q2

(Hu,Hd) gY
′2, λs =

1

2
Q2
Hs
gY

′2, (5.36)

λud = −1

4
G2 +QHuQHd

gY
′2 + h2

s, λus,ds = QHsQ(Hu,Hd) gY
′2 + h2

s (5.37)

andG is the loop function which is independent of the renormalization scale and has the

following form

G(m2
t̃1
, m2

t̃2
) = 2 −

m2
t̃1

+m2
t̃2

m2
t̃1
−m2

t̃2

ln

(
m2
t̃1

m2
t̃2

)
(5.38)

For simplicity we have introduced some quantities which is dimensionless,

ρu = h2
t − λu, ρd = (h2

s − λud)/2, ρs = (h2
s − λus)/2, (5.39)

and

ζu = −1

8
(g2

2 −
5

3
g2
Y ) +

1

2
(QQ −Quc)QHu g

′
Y , (5.40)

ζd =
1

8
(g2

2 −
5

3
g2
Y ) +

1

2
(QQ −Quc)QHd

g′Y , (5.41)

ζs = − (ζu + ζd) (5.42)
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where the Equations (5.40)-(5.42) are D-term contributions, and also dimensionful

m̃2
u = ζuδ + h2

tAt(At − µeff cotβ) (5.43)

m̃2
d = ζdδ + h2

tµeff(µeff − At tan β) (5.44)

m̃2
s = ζsδ +

v2
d

v2
s

h2
tµeff(µeff −At tanβ) (5.45)

with δ = M2
Q̃
−M2

ũc + ζuv
2
u + ζdv

2
d + ζsv

2
s .

When we diagonalize (5.34) we see that there are three massive scalar Higgs

bosonsh,H andH ′. The approximate values of these masses and their variations against

some model parameters have been computed by doing numericalcalculations and steps

of this analysis and results are given in the next chapter.
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CHAPTER 6

TEVATRON BOUNDS AND EXPECTATIONS FOR THE

LHC

At the wake of LHC experiments, it is convenient to study the Higgs boson masses

in U(1)′ models. The existing bounds from the LEP and Tevatron experiments given

in Figure (6.1) can guide one to more likely regions of the parameter space. The LEP

experiments (Barate, 2003) have ended with a clear preference for the lightest Higgs

boson mass:

mh > 114.4 GeV . (6.1)

The knowledge of the Higgs mass has recently been further supported by the Tevatron re-

sults (Aaltonen, 2010; Dominguez, 2009) which state that the lightest Higgs boson cannot

have a mass in the range

159 GeV < mh < 168 GeV . (6.2)

It is clear that LEP bound influences the parameter spaces of the SM, MSSM

and its extensions likeU(1)′ models. The reason is that the LEP range is covered by all

these models of electroweak breaking. However, it is obvious that the Tevatron bound

has almost no impact on the MSSM parameter space within whichmh cannot exceed

∼ 135 GeV. However, the Tevatron bounds can be quite effective for extensions of the

MSSM whose lightest Higgs bosons can weigh above2MW . This is the case inU(1)′

models (Demir, 2004).

In this work we shall analyzeU(1)′ models in regard to their Higgs mass pre-

dictions and constrained parameter space under the LEP as well as Tevatron bounds by

assuming that the Higgs boson searched by D∅ and CDF corresponds to that of theU(1)′

models. In course of the analysis, we shall consider theU(1)′ model achieved by low-

energy considerations as well as by high-energy considerations (the GUT and stringy

U(1)′ models mentioned before). In each case we shall scan the parameter space to deter-
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Figure 6.1. Bounds of the Higgs mass arising from the LEP and Tevatron experiments.
For the LEP experiment the mass of the Higgs boson should bemH >
114, 4 GeV while for the Tevatron experiment the mass range excluded at
95 C.L. for a SM Higgs is163 < mH < 166 GeV , with an expected
exclusion of159 < mH < 168 GeV (CDF and D0 Collaboration, 2009).

mine the bounds on the model parameters by imposing the bounds from direct searches.

6.1. Analysis

In this section we shall perform a numerical analysis of Higgs boson masses in

order to determine the allowed regions under the LEP and Tevatron bounds (Sert, 2010).

In the following we will first discuss the parameter space to be employed, and then we

shall provide a set of figures each probing certain parameterranges in theU(1)′ models

considered.
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6.1.1. Parameters

In course of the analysis, we shall partly scan the parameterspace and partly

analyze certain parameter regions which best exhibit the bounds from the Higgs mass

measurements. We first list down various parameter values tobe used in the scan.

U(1)′ Gauge Coupling : TheU(1)′ models we consider are inherentlyuncon-

strained in that, irrespective of their low–energy or high-energy origin, we letU(1)′ gauge

couplingg′Y to vary in a reasonable range in units of the hypercharge gauge coupling. We

thus call all the models we investigate as ‘UnconstrainedU(1)′ Models’, or,UU(1)′ Mod-

els, in short.

We shall be dealing with four differentUU(1)′ models:

• UU(1)′ from E(6) supersymmetric GUT: Theη, N andψ Models. These models

can be obtained from equation 4.6 with the anglesθE(6) = arcsin
√

3
8

in η Model,

θE(6) = arcsin 1
4

in N Model,θE(6) = 0 in ψ Model.

• UU(1)′ from low-energy (solution of theµ problem): This is the low-energy model

obtained by takingQHu = QHd
= QQL

= −1 and henceQtcR
= Qdc

R
= QS = 2,

and we call this model as theX Model.

The charge assignments of E(6)-based models can be found in Table 6.1. We use

the same symbols with these models but mutate them by giving up the typically-assumed

valueg′Y =
√

5
3
(g2

2 + g2
Y ) sin θW (obtained by one-step GUT breaking), and changing it in

the rangegY to 2gY . The motivation behind this mutation of the E(6)-basedU(1)′ groups

is that one-step GUT breaking is too unrealistic to follow; the GUT group is broken at

various steps as indicated in (4.5). By varying theg′Y we will treat E(6)-based models

as some kind of specificUU ′ models in which we can probe the impact of differentg′Y

values on the lightest Higgs mass.

Unlike the E(6)-based models, we adopt the value ofg′Y from one-step GUT break-

ing in analyzing theX model. InX model, by the need to cancel the anomalies, we

assume that there exist an unspecified sector of fairly lightchiral fields, and normaliza-

tion of the charge and other issues depend on that sector (Cvetic, 1997). Our analysis

will be indicative of a genericU(1)′ model stemming from mainly the need to evade the

naturalness problems associated with theµ problem of the MSSM.

The Gauge and Yukawa Couplings :In U(1)′ models, at the tree level one can

writem2
h . ai + bi h

2
s as deduced from Equation (5.11) whereai, bi are some constants

to be determined from the given value oftanβ, charge assignments as well as the soft
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Table 6.1. Charges of the particles underU(1)′ models

QX 2
√

15Qη 2
√

10QN 2
√

6Qψ

QHu -1 4 -2 -2
QHd

-1 1 -3 -2
QS 2 -5 5 4
QQL

-1 -2 1 1
QtcR

2 -2 1 1
Qdc

R
2 1 2 1

supersymmetry-breaking sector. Hence, for sufficiently largebi/ai ratios, one can expect

mh ∝ hs. At one-loop level, it is interesting to probe if such a relation also exists for

the gauge coupling, Yukawa coupling and other important model parameters. We will be

dealing with this issue numerically, by changing the value of g′Y as stated above.

The Z-Z′ Mixing : We shall always require theZ −Z ′ mixing to obey the bound

|αZ−Z′| < 10−3 for consistency with current measurements (Abazov , 2008).The collider

analyses (Kotwal, 2008) constrainmZ2
to be nearly aTeV or higher with the assumption

thatZ2 boson decays exclusively into the SM fermions. However, inclusion of decay

channels into superpartners increases theZ2 width, and hence, decreases themZ2
lower

bound by a couple of100 GeVs (Langacker, 2008). But, for simplicity and definiteness,

we takemZ2
≥ 1 TeV as a nominal value.

Ratio of the Higgs VEVs tan β : We fix tan β from the knowledge ofαZ−Z′

(Demir, 2004). Since the value of the mixing angleαZ−Z′ is small as mentioned above,

we can determine the value of thetan β = vu/vd by using the small angle approximation

tan(2αZ−Z′) ≈ 2αZ−Z′ as: tan2 β = Fd/Fu where

Fu = (2g′Y /G)QHu + αZ−Z′(−1 + (2g′Y /G)2(Q2
Hu

+Q2
S(v

2
s/v

2))) ,

Fd = (2g′Y /G)QHd
− αZ−Z′(−1 + (2g′Y /G)2(Q2

Hd
+Q2

S(v
2
s/v

2))) . (6.3)

Using this expression we find thattan β stays around 1 (this is true as far asvs is not very

large), and thus, we scantan β values from0.5 to 5 in E(6)-based models, and in theX

Model. The post-LEP analyses of the MSSM disfavorstan β ∼ 1 yet in U(1)′ models

there is no such conclusive result. One can in fact, considertanβ values significantly
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smaller than unity, as a concrete exampleη model favorstan β = 0.5.

The Higgsino Yukawa Coupling : Our analysis respectshs = 1/
√

2 in ourX

model; this value is suggested by the RGE analysis of (Cvetic, 1997). However, not only

for ourX model but also for our mutated E(6) models we allowhs to vary from0.1 to 0.8

for determining its impact on the Higgs boson masses. The Higgsino Yukawa couplinghs

determines the effectiveµ parameter in units of the singlet VEVvs as in Equation (4.2).

The Squark Soft Mass-Squareds :We scan each ofmQ̃, mt̃R
andmb̃R

in [0.1, 1]

TeV range. Following the PDG values (Amsler , 2008), we require light stop and sbottom

to weigh appropriately:mt̃1
> 180 GeV andmb̃1

> 240 GeV. These bounds follow from

direct searches at the Tevatron and other colliders.

Singlet VEV vs : We scanvs in [1, 2] TeV range so thatmZ2
can be larger than

1 TeV. In doing this we setµeff < 1 TeV as the upper limit of this parameter. Larger

values ofµeff are more fine-tuned in such models than the MSSM (Barger, 2006). Such

keen values ofvs andµeff turn out to be necessary for keeping the mentioned models at

the low energy region and also for satisfying the aforementioned constraints.

Trilinear Couplings : In the general scan we vary each ofAt,Ab,As in [−1, 1] TeV

range, independently. This is followed by a specific scan regarding Tevatron bounds

where the trilinears and soft masses of the scalar quarks areassigned to share some com-

mon values. We do this for all of the models we are considering.

These parameter regions will be employed in scanning the parameter space for

determining the allowed domains. In addition to and agreement with these, we shall

select out certain parameter values to illustrate how strong or weak the bounds from Higgs

mass measurements can be. The results are displayed in a set of figures in the following

subsection.

6.1.2. Scan of the Parameter Space

In this subsection we present our scan results for various model parameters in light

of the Tevatron and LEP bounds on the lightest Higgs mass. We start the analysis with a

general scan using the inputs mentioned in the previous subsection. This will allow us to

perform a specific search concentrated around the Tevatron exclusion limits. In both of the

scans we will present the results forX model first, which is followed by the E(6)-based

modelsη,N andψ models.

Related with the general scan we present Figure 6.2 whereinhs, g′Y andµeff

are variables on the surface (The only exception isX model for whichg′Y is taken at
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Figure 6.2. The plots for theX,η,N andψ models (from top to bottom). The mass
of the lightest Higgs boson against the gauge couplingg′Y (left-panels),
Higgsino Yukawa couplinghs (middle-panels), and effectiveµ parameter
(right-panels).

its GUT normalized value.). The remaining variables, whoseranges were mentioned in

the previous section, vary in the background. In Figure 6.2,shown are the variations

of the lightest Higgs boson mass against the gauge couplingg′Y (left-panels), Higgsino

Yukawa couplinghs (middle-panels), and the effectiveµ parameterµeff (right-panels).

The shading convention is such that the points givingmh > 168 GeV are shown by black

dots, those yielding114.4 GeV ≤ mh ≤ 159 GeV by grey dots, and those yielding

159 GeV ≤ mh ≤ 168 GeV by grey crosses.

As are seen from the left panels of Figure 6.2, increase in theg′Y gives rise to

higher upper bounds onmh for E(6)-based models. The same behavior, though not shown

explicitly, occurs in theX model (which already yieldsmh values as high as195 GeV).

Excepting theη model, the E(6)-based models are seen to accommodate Higgs boson

masses larger than the Tevatron upper bound wheng′Y rises to extreme values above∼ 0.8.
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Needless to say, the regions with grey dots are followed by regions with grey crosses (the

forbidden region), as expected from the dependence of the Higgs boson mass ong′Y . The

η model does not touch even the Tevatron lower bound of the excluded region for the

parameter values considered.

Depicted in the middle panels of Figure 6.2 is the variation of the Higgs boson

mass with the Higgsino Yukawa coupling for the models considered. Clearly,hs param-

eter is more determinative thang′Y in thatmh tends to stay in a strip of values for the

entire range ofhs. Indeed, upper bound onmh (and its lower bound, to a lesser extent)

varies linearly withhs for X,N andψ models. This is also true for theη model at least

up tohs ∼ 0.65. In general, Tevatron bounds dividehs values into two disjoint regions

separated by the forbidden region yieldingmh values excluded by the Tevatron results.

One keeps in mind that, in this and following figures, theη model serves to illustrate

E(6)-based models yielding a genuine light Higgs boson: TheHiggs boson stays light for

the entire range of parameter values considered. At least for theX model, one can write

159 & mh & 114.4 ⇒ hs ∈ [0.3, 0.7] and mh & 168 ⇒ hs ∈ [0.6, 0.8] (6.4)

from the distribution of the allowed regions (top middle panel). More precisely, the Hig-

gsino Yukawa coupling largely determines the ranges of the Higgs mass in that whilemh

barely saturates the lower edge of the Tevatron exclusion band for hs < 0.52, it takes

values above the Tevatron upper edge forhs > 0.58. In other words, Tevatron bound

divideshs ranges into two regions in relation withmh values: Thehs values for lowmh (

114.4 GeV ≤ mh ≤ 158 GeV) and those for highmh (mh > 168 GeV). This distinction

is valid for all the variables we are analyzing.

The variation of the Higgs boson mass with the effectiveµ parameter is shown in

the right-panels for Figure 6.2, for each model. It is clear thatµeff & 300 GeV for the

LEP bound to be respected. On the other hand, one needsµeff & 500 GeV for mh to

touch the lower limit of the Tevatron exclusion band in theX model. Similar conclusions

hold also for the mutated E(6) models:µeff & 700 GeV for ψ andN models (while the

forbidden Tevatron territory is never reached in theη model). Theη model is bounded by

LEP data only (at least within the input values assumed for which we consideredvs ≤ 2

TeV).

From the scans above we conclude that:

• All models are constrained by the LEP bound, that is, each of them predict Higss
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masses below114.4 GeV for certain ranges of parameters.

• TheX model, a genuine low-energy realization of UU(1)′ models based solely

on the solution of theµ problem, yields largemh values, and thus, violated the

Tevatron forbidden band low values ofg′Y , hs andµeff compared to the mutated

E(6)-based models. The latter require typically large values of g′Y , hs andµeff

for yieldingmh values falling within the Tevatron territory ( Meanwhile, this can

happen only ifg′Y & 0.77 in N model andg′Y & 0.7 in ψ model with a Yukawa

coupling saturatinghs & 0.62). In fact, theη model does not even approach to the

159 GeV border so that it does not feel Tevatron bounds at all. There is left only a

small parameter space whereinmh exceeds159 GeV for ψ andN models. One can

safely say that for ‘small’g′Y andhs the E(6)-based models predictmh to be low,

significantly below159 GeV. In other words, Tevatron bounds shows tendency to

rule out non-perturbative behavior of E(6)-based models.

• One notices that heavy Higgs limit typically require largeµeff (close toTeV do-

main) and thus one expects Higgsinos to be significantly heavy in such regions.

The LSP is to be dominated by the gauginos, mainly. In such regions, one expects

the physical neutralino corresponding tõZ ′ to be also heavy due to the fact that

Z̃ ′ mixes withS̃ by a term proportional tohsvs (Ali, 2009). Therefore, the light

neutralinos are to be dominantly determined by the MSSM gauginos.

Using the grand picture reached above, we now perform a point-wise search aim-

ing to cover critical points wherein Tevatron exclusion is manifest. We project implica-

tions of these exclusions to scalar fermions and other neutral Higgs bosons. But, for doing

this we first fix certain variables, and by doing so, we get rid of overlapping regions (seen

in surface parameters while others running in the background).

From Figure 6.2, we find it sufficient to consider values aroundhs ∼ 0.7 andg′Y ∼
2gY . More precisely, we consider Higgsino Yukawa couplings ashs = 0.65, 0.5, 0.7 and

0.7 for X, η,N andψ models, respectively. We setg′Y = 1.9gY for all three mutated E(6)

models, while we keep it as in Figure 6.2 for theX model.

Figure 6.3 shows variations of themh and scalar top quark masses (mt̃1
andmt̃2

)

with µeff andMZ2
. Our shading convention is the same as in Figure 6.2. The inputs are

selected as:mcommon = mQ̃ = mt̃R
= mb̃R

= −At = −Ab = −As = 0.2 to 1 TeV

with increments 200 GeV inN andψ models. InX andη models we scanmcommon

from 0.5 to1 TeV with increments 100 GeV. These inputs are also used in the following

figure. In any panel of the figures we observe a hierarchy such that largestmcommon value
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Figure 6.3. The mass of the lightest Higgs boson against the effective µ parameter
(left-panels), the mass of the light scalar topmt̃1

against the mass of theZ2

boson (middle-panels), and the mass of the heavy scalar topmt̃2
against

the mass of theZ2 boson (right-panels) inX, η,N andψ models (top to
bottom).

corresponds to the largestmh value (topmost data lines) which is fixed at1 TeV.This is

the targeted search. Now, as can be seen from the left panels of Figure 6.3, the effective

µ parameter should satisfyµeff > 500 GeV inX model, while others demanding higher

values. This is due to already fixedhs parameter value. In this figure, the impact of

Tevatron exclusions is seen clearly (gray-crosses) on scalar fermions (middle and right

panels ofX,N andψ models), too. It is interesting to check model dependent issues for

this sector because the scalar fermions shall be important for discriminating among the

supersymmetric models (even among the U(1)′ models) at the LHC and ILC. The goal of

Figure 6.3 is to serve this aim, in which scalar quark masses are plotted against varyingZ2

boson mass (middle and right-panels). The correlation between sfermion masses andMZ2

comes mainly from the U(1)′ D-term contributions (proportional tog2
Y ′v2

s ) to theLL and
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RR entries of the sfermion mass-squared matrices. There are also F-term contributions

proportional tohsvs toLR entries but their effects are much smaller compared to thosein

theLL andRR entries (see Eq. (5.19) for details). This is an important effect not found

in the minimal model: Variation of sfermion masses withµ probes only theLR entry in

the MSSM given by (Baer, 2006)

M2
t̃LL

= m2
Q̃

+m2
t +M2

Z cos 2β(
1

2
− 2

3
sin2θW )

M2
t̃RR

= m2
t̃R

+m2
t +M2

Z cos 2β(
2

3
sin2θW )

M2
t̃LR

= M2
t̃RL

= mt(−At + µ cotβ) (6.5)

It is in such extensions of the MSSM that one finds explicit dependence onµeff in not

only theLR entries but also inLL andRR entries; effects ofµeff are more widespread

than in the minimal model whereµ is regarded as some external parameter determined

from the electroweak breaking condition.

From Figure 6.3 one concludes that variations ofmh andmt̃1,2
are much more

violent inX model than in the E(6)-based models. In theX model changes inMZ2
and

µeff influence Higgs and stop masses violently so that allowed andforbidden regions are

seen rather clearly. In E(6)-based models what we have nearly constant strips, and thus,

mh andmt̃1,2
remain essentially unchanged withµeff andMZ2

. Moreover, in mutated

E(6) models the forbidden regions and allowed regions fall into distinct strips, signalling

thus the aforementioned near constancy of the Higgs and stopmasses.

From Figure 6.3 it is possible to read out certain likely ranges for stop and Higgs

boson masses, which will be key observables in collider experiments like LHC and ILC.

Indeed, inX model one deduces that

• Higgs in low-mass region=⇒mt̃1
∈ [600, 800] GeV andmZ2

∈ [1.0, 1.3] TeV,

• Higgs in high-mass region=⇒mt̃1
∈ [200, 550] GeV andmZ2

∈ [1.5, 1.8] TeV.

Therefore, in principle, taking theX model as the underlying setup, one can determine

if Higgs is in the low- or high-mass domains by a measurement of the scalar top quark

masses. For instance, if collider searches exclude low-mass light stops up to∼ 600 GeV

then one immediately concludes that the Higgs boson should be light, i. e. below2MW .
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Contrary to modelX, E(6)-based modelsN andψ allow theZ ′ mass to be more

confined,i.e. the mass of theZ2 boson is in∼ [1, 1.4] TeV range within these two models.

Furthermore, these two models can rule outmt̃1
around∼ [300, 500] GeV (One keeps

in mind, however, that in these models low (high) stop mass values are related with low

(high)mh values, in contradiction with theX model). Besides this, all three ofX,N and

ψ models exploration ofhigh-mass region demands larger values formt̃2
. One notices

that largest (smallest) splitting betweenmt̃2
andmt̃1

is observed inX (ψ) model.

As an extension of the MSSM, the present model predicts 3 CP-even Higgs bosons:

h, H andH ′. There is no analogue ofH ′ in the MSSM. The model predicts one single

pseudoscalar Higgs bosonA as in the MSSM. In the decoupling regimei. e. when heavier

Higgs bosons decouple fromh one expects the mass hierarchymH′ ∼ mZ2
≫ mH ∼

mA ≫ mh. It is thus convenient to analyze the model in regard to its Higgs mass spectra

to determine in what regime the model is working. To this end,we depict variations ofmh

with mH , m′
H andmZ2

in Figure 6.4. The notation is such thatmA andmH′ are denoted

by grey dots,mH andmZ2
by black dots. For quantifying the analysis we define the ratios

R1 ≡ mH

mA
,R2 ≡ mZ2

mH′
which are, respectively, shown by gray and black dots in Figure 6.4.

The input parameters are taken as in Figure 6.3.

In Figure 6.4, shown in the leftmost column are variations ofmh with mH (black

dots) and withmA (grey dots). It is clear that, theX andN models are well inside the

decoupling regime for the parameter ranges considered. On the other hand, theψ andη

models, especially theη model, are far from their decoupling regime. In this regime,the

lightest Higgs can weigh well above its lower bound. One notices that,A andH bosons

exhibit no sign of degeneracy in theη model.

The variations ofmh withm′
H andmZ2

are shown in the middle column of Figure

6.4. One observes that grand behavior is similar to those in the first column. One, how-

ever, makes the distinction thatmh depends violently onm′
H andmZ2

in X andη models

while it stays almost completely independent forψ andN models.

All the properties summarized above are quantified in the third column wherein

mh is plotted againstR1 andR2. The degree to whichR1,2 measure close to unity give a

quantitative measure of how close the parameter values are to the decoupling regime. One

notices that they differ significantly from unity inη andψ models. In summary,mA/mH

ratio drops to∼ 0.8 in η model. This is also true formZ2
/mH′. It is interesting to observe

thatR1 andR2 behave very similar in most of the parameter space. This figure depicts

the heavy model dependency of neutral Higgs masses.

Experiments at the LHC and ILC will be able to measure all these Higgs boson
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Figure 6.4. Variations of the lightest Higgs boson massmh with those of the heavy
CP-even Higgs scalarsH, H ′ and of the CP-odd scalarA. Also given is
the dependence ofmh on theZ2 boson mass. In the decoupling region,
mH ∼ mA andmH′ ∼ mZ2

.

masses, couplings and decay modes (Barger, 2006). Clearly,N andψ (especiallyψ)

model yield lightest ofH,A among all the models considered. In course of collider

searches, these two models will be differentiated from the others by their relatively light

heavy-Higgs sector.
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CHAPTER 7

CONCLUSION

In this thesis work we examined the Higgs sector in unconstrainedU(1)′ model.

U(1)′ model is a gauge-extended minimal supersymmetric model which contains an extra

gauge field (B′
µ) and a singlet, chiral SM Higgs field (S). Therefore, this model has a

neutral Higgs boson (H ′) in addition to the neutral Higgs bosons of the MSSM (h and

H) and an extra gauge bosonZ ′ to theW± andZ gauge bosons found in the MSSM. We

renamed this model as unconstrainedU(1)′ model (UU(1)′) since we let gauge coupling

of theU(1)′ modelg′Y to vary in a reasonable range in unit of the hypercharge gauge

couplinggY .

Within this thesis content beforeU(1)′ model, in Chapter 2 and 3 we explained

the general structure of the Standard Model (SM) and minimalsupersymmetric extension

of the SM (MSSM) including their Higgs sector and their problems to understand why we

needU(1)′ models . Minimal supersymmetric model is introduced to solve the Hierarchy

problem of the SM which states that Higgs boson is unstable under quantum corrections.

Although MSSM can solve this problem, it suffer from theµ problem which is the main

motivation of theU(1)′ model. Then we gave detailed explanation for the motivationof

theU(1)′ model and its structure in Chapter 4. Moreover, Higgs sectorof theU(1)′ model

which is related to our main work was explained in Chapter 5 with details.

In Chapter 6 we analyzed the lightest Higgs boson mass against various model

parameters and particles masses. Firstly, we examined the variation of the lightest Higgs

mass against the gauge coupling of theU(1)′ modelg′Y , Higgsino Yukawa coupling con-

stanths and effectiveµ parameterµeff as seen in Figure 6.2. All these variables belong to

theU(1)′ model. MSSM does not contain these, onlyµ parameter is included instead of

µeff parameter. From Figure 6.2 we can say that the LEP bound is satisfied for all model

we have considered as in the MSSM. We can also obtain this result for the MSSM from

the analytical calculation. Contrary to the LEP bound, we can conclude that the Tevatron

bound is satisfied by the three modelX,ψ andN sinceη model gets smaller values than

lower bound of the Tevatron exclusion region. While theX model is the most sensitive

model to the Tevatron bound, theψ andN model satisfy it only at the higher values of

the variables. However, MSSM is not sensitive to the Tevatron bound since the maximum

mass of the lightest Higgs boson in the MSSM is135 GeV inspite of radiative corrections.
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We can conclude from the Figure 6.2 that Tevatron bound divide all model parameters into

two distinct regions, low-mass region and high-mass regionfor the mass of the lightest

Higgs boson. For instance, in the X model for the low-mass region, Higgsino Yukawa

coupling should have smaller values than 0.52 while for the high-mass region its value

should be larger than 0.58.

Using conclusions of Figure 6.2 which had been obtained by scanning the param-

eter space, we selected some specific values and performed our desired work which is

shown in Figure 6.3 and 6.4. These certain parameter ranges were chosen from ranges

satisfying higher values than upper limit of the Tevatron bound. As a result of this anal-

ysis we obtained more precise values which show excluded parameter regions satisfying

the Tevatron exclusion bound clearly. We can state that theX model exhibit the best

behavior in this sense. Theψ andN model also show the excluded and allowed region

clearly, however, theη model can not reach even the Tevatron lower limit. Therefore, we

can conclude that certainUU ′ models such as theη model can be the first one to be ruled

out.

Figure 6.4 which represents the variations between the masses of the scalar top

quarks and mass of theZ ′ boson denotes that we can determine whether the lightest Higgs

mass is in the above or below the Tevatron exclusion region bymeasuring the mass of the

scalar top quarks except for theη model. We can deduce from this figure this situation is

also valid for the mass of theZ ′ boson only in theX model. From the last figure we can

see that in theX model the variation of themh depends on violently the variation of the

heavier Higgs bosons andZ ′ boson masses. However, in theN andψ modelsmh remains

almost stable with changes of the variables. Therefore, we deduce that the relation among

masses of the neutral Higgs bosons depends on the model.

Experimental data we have used for our analysis belongs to data obtained on 6

November 2009. After our analysis new results are obtained as seen in Figure 7.1. Ac-

cording to this figure not only the previous excluded region by the Tevatron is extended,

but also Tevatron excludes additional region around the LEPlimit. Now the lightest Higgs

mass can not get the values in the below ranges:

158 < mh < 175 GeV and 100 < mh < 109 GeV (7.1)

in the 95% confidence level. The expected value of the first bound is 156 < mh <

173 GeV.

As a result of this thesis work we restricted the allowed regions for the parameters
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Figure 7.1. Bounds of the Higgs mass arising from the LEP and Tevatron experiments.
For the LEP experiment the mass of the Higgs boson should bemH >
114, 4 GeV while for the Tevatron experiment the mass ranges excluded at
95% C.L. for a SM Higgs are100 < mh < 109 GeV and158 < mH < 175
GeV , with an expected exclusion of156 < mH < 173 GeV (CDF and
D0 Collaboration, 2010).

which we had considered. The results of this thesis, though unavoidably carry a degree of

model dependence, can be directly tested at the LHC (and at the ILC with much higher

precision). If measurements of the Higgs mass at the LHC get large values like130 −
140 GeV or above, we can interpret this situation as presence of extensions of the MSSM

like UU(1)′ models. Depending on the new exclusion limits, we might find more regions

of parameter space excluded.
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APPENDIX A

SPONTANEOUS SYMMETRY BREAKING (SSB)

According to gauge theories the mass terms of the gauge bosons and chiral fermions

are not allowed. However, experimentally it is known that fermions and gauge bosons

such as, electron andW±, Z0 bosons have mass.

Therefore, in order to generate masses gauge invariance must be spontaneously

broken. To explain how the symmetry is spontaneously consider the Lagrangian below:

L = ∂µH
∗∂µH − V (H∗H) (A.1)

with

V (H) = µ2|H|2 + λ|H|4 (A.2)

whereλ which is quartic coupling constant should be larger than zero λ > 0 in order to

have a ground state for the potential.

This Lagrangian has two main properties (Pich, 2005):

1. It is invariant under a groupG of transformations,

2. It has two degenerate states with minimal energy as in Figure A.1 if µ2 < 0.

The vacuum expectation value of the Higgs fields corresponding to these energies are

calculated by using the minimization condition∂V
∂H

= 0. If one of these degenerate states

is chosen, one says that the symmetry is spontaneously broken.

Firstly let’s examine the condition whenH is a scalar and the invariance of the

vacuum states underH → −H symmetry which Lagrangian is invariant.

There are two possibilities with respect to the sign of theµ2 parameter:

1. If µ2 > 0 the potential has one minimum atH = 0 and this vacuum condition

is invariant underH → −H symmetry as seen from Figure A.1.(a).

2. If µ2 < 0 the potential has two degenerate minimum at〈H0〉 = ±
√

−µ2

2λ
=

± v√
2

and vacuum conditions are not invariant underH → −H symmetry as in Figure

A.1.b. When we choose one of the vacuum states (for example the positive one,〈H0〉 =
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Figure A.1. Shape of scalar potential when (a)µ2 > 0, (b)µ2 < 0 in two dimension.

√
−µ2

2λ
= v√

2
) we cause breaking of the symmetry. To overcome of this non-invariance

we expand the Higgs field around vacuum state as follows:

H0(x) = h(x) + 〈H0〉 (A.3)

whereh(x) represents the fluctuation around vacuum state as we can see from Figure

A.2.a. We put this expansion into the potential energy and then we obtain that there arise

one “massive Higgs Boson (h)” with massmh =
√
−2µ2. The calculation about these

can be found in reference (Abers, 1973).

This condition is valid for discrete symmetries in two dimensions. When we con-

sider continuous symmetry in three dimensions, we should take into account the phase

transformations which are continuous.

A.1. Global Phase Transformations

Lagrangian is invariant under the global phase transformation,H(x) → eiθH(x)

transformation whereθ is independent ofx. In three dimension the Higgs field should be

complex and in this condition one of the axis represents the real parts of the Higgs fields,

while one of them shows the imaginary part of them as seen in Figure A.2.b.
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Figure A.2. (a) Fluctuations in two dimension, (b) Shape of scalar potential and fluctu-
ations in three dimension forµ2 < 0.

The Higgs field can be expanded as below at the vacuum state:

H0(x) =
1√
2
[v + φ(x) + iϕ(x)] (A.4)

When we do the same calculation as explained above we see thatφ becomes a “massive

Higgs Boson (h)” andϕ arise as a ”masslessGoldstone Boson”.

Goldstone Theorem: If a Lagrangian is invariant under a continuous symmetry

groupG, but the vacuum is only invariant under a subgroupH ⊂ G, then there must exist

as many massless spin-0 particles (Goldstone bosons) as broken generators (generators of

G which do not belong toH) (Pich, 2005).

A.2. Local Phase Transformations

Lagrangian is not invariant under the local phase transformations given by

H(x) → eiθ(x)H(x). (A.5)
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Firstly we must obtain an invariant Lagrangian under the given symmetry. To make La-

grangian invariant ”Covariant Derivative” is defined instead of partial derivative.

Dµ = ∂µ − igTAµ with A′
µ = Aµ − ∂µθ(x) (A.6)

whereg, T andAµ are gauge coupling, generators corresponding to symmetry groups and

a vector field, respectively. For the detailed explanation look at (Abers, 1973). After

Lagrangian becomes invariant, we can consider the vacuum states: there are also two

vacuum states and Higgs fields can be expanded around a chosenvacuum state as it is

in the global phase transformation. When we examine the potential energy and do some

calculations, we see that there arise one “massive Higgs Boson (h)” and one “massive

Vector Field (Aµ)” while there is no massless Goldstone Boson. This mechanism is known

as “Higgs Mechanism”. Massless Goldstone boson is eaten by vector field and become

longitudinal polarization state of it.
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