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ABSTRACT

HIGGS BOSONS OF GAUGE-EXTENDED SUPERSYMMETRY AT THE LHC

This thesis work is devoted to a detailed phenomenologitalais of the Higgs
sector of gauge-extended supersymmetry in light of the measint experimental bounds.
Such extra gauge symmetries, obtained by adding an extrhaAb®ymmetryU (1)’ to
the gauge structure of the Standard Model (SM) and MinimaleB&ymmetric Standard
Model (MSSM) which have the same gauge structure, are urgdley, problem of the
MSSM, and they also arise frequently in low-energy supersgtnc models stemming
from GUTs and strings.

We analyze the Higgs boson masses and their dependenciesiomsymodel pa-
rameters. In particular, we compute masses of all the Higgeis, and confront the
mass of the lightest one with the LEP and Tevatron experisaehihen we indicate the
restrictions from LEP and Tevatron bounds on the massesasndining model parame-
ters. We analyze correlations among various model paraseted determine excluded
regions by both scanning the parameter space and examanitagclikely parameter val-
ues. Furthermore, we make educated projections for LHC umneasents in light of the
LEP and Tevatron restrictions on the parameter space.

As a result of this thesis work we find thatproblem motivated generic low-
energyU (1)’ model yields lightest Higgs masses as large~a200 GeV, and violates
the Tevatron bounds for certain ranges of parameters. Haywere find that/ (1) model
stemming from E(6) breaking elevate Higgs boson mass intati@n’s forbidden band
whenU(1)" gauge coupling takes larger values than the one correspgpnaolione-step
GUT breaking. We also obtain that the Tevatron bounds paohgtrestrictions on certain
parameters of th&' (1)’ model and they lead to determinations of certain paramateyas
before the LHC measurements.



OZET

AYAR GENISLETMELI SUPERSMETRIK MODELLERIN LHC'DEK | HIGGS
SINYALLERI

Bu tez calismasi ayar genisletmeli stipersimetrik lede Higgs sektoriiniin de-
tayli fenomenolojik analizine dayanir. Standart modegrayni ayar yapisina sahip Mini-
mal Supersimetrik Standart Modelin (MSSM) ayar yapisxteaeabelyeri/ (1)’ simetrisi
ekleyerek elde edilen bu extra ayar simetrileri MSSMiiproblemini ¢ozmek igin ileri
surtlmustur, ve buyuk birlesim teorisi ile sicimdrilerinden kaynaklanan dusuk ener;jili
supersimetrik modellerde de ortaya ¢ikarlar.

Bu calismada Higgs bozon kutleleri ve bu kitlelerigidemodel parametrelerine
baglihgini analiz ettik. Ozellikle tum Higgs bozonlarinin kutlelerini hesapladve en
hafif Higgs kutlesini LEP ve Tevatron deneyleri ile kaastirdik. Sonra LEP ve Teva-
tron sinirlarindan gelen, Higgs kutleleri ve geri kaland®loparametreleri Uzerindeki
sinirlandirmalar gosterdik. Cesitli model paramiettiearasindaki iligkileri analiz ettik
ve parametre uzayini tarayarak ve muhtemel parametreldggeinceleyerek dislanan
bolgeleri belirledik. Daha sonra parametre uzay! Uzkykn LEP ve Tevatron sinirlan-
dirmalari 1siginda LHC olctmleri icin tahminde botluk.

Bu tez calismasinin sonucu olagafprobleminin ¢oziminden kaynaklanan dusiik
enerjili U(1)" modelinin en hafif Higgs kutlesinin- 200 GeV kadar blyik degerler
alabilmesine olanak sagladigini ve belli parametregésil icin Tevatron sinirini ihlal
ettigini bulduk. Bununla birlikte E(6) grubunun kirlimaslan kaynaklanaf/(1)" mod-
elinin, Higgs bozonu kutlesini Tevatronun yasak bandameaklU (1)" ayar birlesme kat-
sayisinin buyuk birlesim teorisinin tek adimda kiribmea karsilik gelen ayar birlesim
katsayisindan buyik degerler aldiginda yuksefdigulduk. Ayni zamanda Tevatron
sinirnninU(1)" modelinin belli parametreleri Uzerine gugli sinidamalar koydugunu
belirledik ve bu da bizi LHC dlcimleri dncesinde belapametre araliklarini belirlemeye
yonlerdirdi.
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CHAPTER 1

INTRODUCTION

The curiosity is the most important and efficient factor whiead people to
search. Before the 1960, two questions “What is the worldeva@” and “What holds
it together?” make scientists wonder about the answer fgdlguestions. As a result
of this curiosity the Standard Model (SM) is proposed by Weng, Salam and Glashow
(Glashow, 1961; Weinberg, 1967). The Standard Model dessrihe fundamental par-
ticles in universe and how they interact with each other. ohdimg to SM, elementary
particles which constitute the matter are called fermioRsrmions are particles with
spin fractional namely in this case 1/2 and obey to the F&mae statistics. These el-
ementary particles include six leptons (electegnmuon(:), tau¢) and their neutrinos
(Ve, vy, V7)) and six quarks (up(u), down(d), charm(c), strange(s)(tyand bottom(b)).
The combination of these quarks form the known baryons (sting of three quarks)
and mesons (consisting of one quark and one anti-quark) asiclprotong ~ wuud),
neutrong ~ udd), pion(r™ ~ ud). At the same time the Standard Model describes three
fundamental interactions which are strong, weak and @ew@gnetic interactions. There
is also one more fundamental interaction called gravitatubiich is not determined by
the SM. Each interaction has a mediator carrying the phlyficees. These patrticles
with spin 1 are bosons which obey the Bose-Einstein stedistirhe mediators of the
strong, weak and electromagnetic interactions are, réispsg gluon, W=, Z° bosons
and photon. To each of the forces corresponds the gauge syymgneup and the theory
exhibits an exact invariance under the combination of tlsgsemetries. Therefore it is
stated that the Standard Model is a gauge theory.

The theory is based ofiU (3)c @ SU(2), ® U(1)y gauge symmetry group with
subscriptsC, L, Y that refer to color, left chirality and weak hypercharge.e3é sub-
scripts represent the characteristic properties of thepgpfor instance, weak hyper-
charge ) is the charge of the particles und€(1)y symmetry group. Components
of this gauge group stand for the strong, weak and electrogtaginteractions, respec-
tively. Each gauge group has generators and for each generévector field” arises.
These vector fields come from the necessities of the Lagaartgibe invariant under the
local group transformations called gauge invariance. &estor fields are also called as
“gauge fields” which can be thought of as the carriers of ptatgorces. The gauge fields



of the each group are given in Chapter 2.

The gauge invariance forbids the mass terms of the fermiotigauge bosons in
the SM Lagrangian. Hence it seems that these should be rsastavever from the ex-
perimental results it is known that these particles havesmas give mass to the particles
it is considered that the vacuum is filled by a Higgs field whiets a nonzero value at
the vacuum state (at the minimum of the Higgs potential grjerg/hen the Higgs field
acquires its vacuum expectation value (VEV), electroweakreetry is spontaneously
broken. By breaking of the symmetry when one massive Higgsiarises, three mass-
less Goldstone bosons occur. These Goldstone bosons arelgathe massless gauge
fields and give to gauge bosons their masses. The fermiomsnadsact with the Higgs
field and when the Higgs field acquire its VEV, the fermionstgetr masses. The mech-
anism that cause the spontaneous symmetry breaking (S$Bjies mass to particles
is called as the “Higgs Mechanism”, and detailed explamagioout the SSB and Higgs
mechanism is given in Appendix A.

The Standard Model explains lots of experimental facts, dvawit has some prob-
lems, such as “the hierarchy problem” which is explainedaer 2. To overcome this
problem we need extension of the SM. The supersymmetry isfihe theories proposed
to solve this problem by J. Wess and B. Zumino in 1974 and byesaotimer scientists in-
dependently. The Minimal Supersymmetric Standard Moded@MI) which is the first
realistic supersymmetric version of the SM was propose®81lby Howard Georgi and
Savas Dimopoulos, is the minimal supersymmetric extensidhe SM since these are
the same gauge structure as seen in Chapter 3 with detajahexion. Besides this, we
give a discussion about the MSSM in regard to its symmetgasge structure as well
as particle and super-partner spectrum in Chapter 3. Fonghea the Higgs sector of
the MSSM can be summarized as following. There are two Higgbkkts in the MSSM
contrary to the SM. While in the SM there is only one Higgs bpsn the MSSM five
Higgs bosons arise: two of them are neutral and CP even ddalgs bosons/ and
H), two of them are charged Higgs bosois%) and the rest is the neutral and CP odd
pseudoscalar Higgs bosoA)(

Although the MSSM solves some problems of the SM, in Chapterednake
an observation that the superpotential of the MSSM contaidsnensionful parameter
- the « parameter - which can be of arbitrary scale, while the natwoefficient should
be dimensionless and at the electroweak scale. This protdenioe solved naturally if
one considers an extid(1)" which is spontaneously broken at the soft-breaking scale.
Such extrd/ (1)’ symmetries are also predicted in stringy scenarios and sypenetric



GUTs. We discuss generic featureslofl )’ models, and explain their differences from
the MSSM. For instance, in thé(1)" model with one extra singlet Higgs scalar there is
one extra Higgs boson that is neutral, CP even scé&lg. (When we consider the gauge
boson sector, we see that there is also one extra neutraé dmspn £’) in the U (1)
model.

Having set up thé/(1)’ model, in Chapter 5 we go on to study its Higgs sector.
We compute quantum corrections to its Higgs potential atloop level by including
guantum fluctuations of top quark, bottom quark, scalar toark}; and scalar bottom
quark. We adopt effective potential approximation with aamnalization scale around
the top quark mass.

After design this setup, in Chapter 6 we present details ofvaarks. In our
work we analyze the Higgs boson masses and their paramep&ndencies on various
model parameters in order to determine the allowed regiodsnthe LEP and Tevatron
bounds for certain selectéd 1)’ models and to make projections for LHC measurements
in light of these restrictions. In our work we compute, esail¢ masses of all the Higgs
bosons, and compare the mass of the lightest one with the h&Fevatron experiments
which, respectively, state that a light scalar with stadad&uplings to quarks and leptons
cannot weigh below 114 GeV, and in between the59 GeV and167 GeV. We analyze
correlations among various model parameters, and deterexauded regions by both
scanning the parameter space and by examining certaigy fleeghmeter values.

In the last Chapter we conclude this thesis work and its fomllyy stating that the
Tevatron and LEP bounds guide to expectations at the LHG&/{1)’ model.



CHAPTER 2

STANDARD MODEL IN BRIEF

2.1. The Structure of the Model

The Standard Model (SM) is a gauge theory that describesutitamental parti-
cles and their interactions and it is based on the followiaggg group structure:

SU(3)C®SU(2)L®U(1)Y (2.1)

where to each group corresponds a fundamental interaddtoong, weak and electro-
magnetic, respectively. The gauge fields of each group wai@e from making the
Lagrangian invariant under the local gauge transformadrenconsidered as the carriers
of the corresponding interaction.

The number of the gauge fields is equal to the number of gemsrateach group.
There are 12 — 1" generators for a non-Abelian grouf/ (n) while "n? = 1" for an
Abelian groupU(1). Abelian groups have commuting generators with each otidew
generators of non-Abelian groups anticommute. In the Stahblodel there are 12 gauge
fields: 1 gauge field for an abeliali(1) group, 3 and 8 gauge fields for nonabelt&li(2)
andSU (3) groups, respectively. These gauge fields and their pregate given in Table
2.1.

As mentioned in Chapter 1, the SM has 12 fermions considesddralamental

Table 2.1. Properties of the Gauge Groups

Gauge Groups Gauge Fields Properties | Number of Generator$
SU@3)¢c G%a=1,2.,8 Color n?—-1=38
SU((2)p Wi i=1,2,3 Isospin n?—-1=3
Ul)y B, Hypercharge n?=1




particles. These fermions can be written in a 3-fold famitysture (Pich, 2005),

Ve U v, ¢ v, t
D eI

where each family has the same properties except for theis snad their flavor quantum
number. Herel’, s andt’ stand for the weak eigenstates whiles andb stand for the
mass eigenstates. We prefer the representation with pantbdse quarks since there is a
mixing between the mass eigenstates. The relation betwese two eigenstates is given

by

d Via Vs Vb d d
s =1 Vea Vs Va s | =V | s (2.3)
v Vie Vis Vi b b

where the3 x 3 unitary matrix is called Cabibbo- Kobayashi- Maskawa nxatfithat
expresses the quark mixing.

Representation in (2.2) gives us a general information etheparticle content of
the SM. To obtain more information about the particles weuthexamine some proper-
ties of the fermions such as their property to be a Dirac spDivac spinors are written as
right-handed and left-handed by means of their helicifitaght and left handed particles
mean that directions of their spin and the motion are the sandepposite, respectively.

According to gauge structure of the SM the left handed fenm&hould be repre-
sented as a doublet since they are invariant usd&r2), andU (1), symmetries. How-
ever, right handed fermions should be represented as sgigte they are only invariant
underU(1)y symmetry.

L= < Vf ) and Q, = < u ) and (g, qur, qar (2.4)
12 . qa )

where there is noy particle in the SM because neutrino is considered as massiese

left handed and right handed fermions transform diffegesthce they are represented
differently. Here it should be noted that the mixing betwegeark mass states exist only
in the left handed representation since mass state mixisgsato be invariant under



SU(2), symmetry.

For the mass terms of the fermions, mixing of the left-rigahtied fermions is
necessarymff = m(frfr + frfr), however, it is not possible since it violates gauge
invariance of the Lagrangian. Therefore mass terms of fammare forbidden in the
Lagrangian. Nevertheless, experiments show that the éeisrére massive. To obtain

mass terms of the fermions to be included in the Lagrangiamin@duce a new complex,
+

scalar doublet Higgs fieldil = I;O . The Higgs field has a vacuum expectation
value (VEV) which is constant throughout all space. WhenHiiggs field acquires its
VEV due to its desire to be at the minimum potential energydlectroweak symmetry is
spontaneously broken. Then, massless fermions get thesendy interacting with the
Higgs field, such a&.(L.Heg + h.c.) whereh, is an arbitrary coupling of interaction.
SinceL. andH are doublets[.. H becomes a singlet and then we can multiply this by the
right handed singlet. When the VEV of the Higgs field are ptdin(L.Heg + h.c.) we
obtain the mass term of the fermions which are gauge inveeitike (h.v/v/2)(frfr +
frfr) . This mechanism is called the Higgs mechanism and detaiigidmation of it is
given in Appendix.

All symmetry groups have a charge under the related symngetyp, such as
electric charge of a particle under electromagnétit) ), Symmetry group. The charge
of the particles under th&(1)y symmetry group called hypercharge is determined by

using the Gell-Mann-Nishijima relation (Novaes, 1999):

Q=T+ %Y (2.5)

where(, T3 andY represent electromagnetic charge, third component osthepin and
hypercharge of a particle. So the hypercharges of the fersrand Higgs field arg;, =
1, Y, =3, Y, =-2,Y,,, =3, Y, =—2andYy = 1.

To explain it more clear it is better to go on by giving an exémprhe Dirac
Lagrangian density for a free fermion is given as

L = ip(2)y"0utp(x) — mi(z)y (). (2.6)

Since the first term of the Lagrangian above is not invariadeu the local gauge transfor-
mations, the covariant derivative replaces the partialdgve to make the Lagrangian in-



variant. For simplicity the local gauge transformation enid(1) gauge symmetry group
can be considered. For this symmetry transformation, caviaderivative is defined as
follows

D, =0, +igA, 2.7)

where A, is a vector field, introduced to construct a covariant déikieaand, ¢ is the
fermion’s electric charge, which is generator of tiel) symmetry group. The transfor-
mation rules for the fermion and gauge fields are given by

wl _ ezﬂ(m)w (28)
A= A, + é@,ﬂ(x}. (2.9)

Now, the Lagrangian in (2.6) becomes

L = () Dytb(x) — mB(x) () — iF”"FW (2.10)

whereF),, is the field strength tensor of tli&(1) symmetry group. This term represents
the kinetic energy term of the gauge field and it is written as follows in terms of the

gauge field:
F,., =0,A,—0A,. (2.11)

Terms of the Lagrangian in (2.10) are invariant under thallgauge transformation.
However, the mass tern%MjAMA”) of the gauge field is forbidden in the Lagrangian
since this term is not invariant. If one generalizes thigatibn, it can be stated that
the gauge fields should be massless, however it is knownhbagduge bosons of the
weak interactiori’* and Z are massive, while photon which is the gauge boson of the
electromagnetic interaction remains massless (Table Pojet rid of this contradiction,

a Higgs field that is also necessary for the fermions masselsemtroduced. According



Table 2.2. Gauge Bosons correspond to Gauge Groups

Gauge Groups Gauge Bosong Massive/Massless
SU@3)¢e 9g“a=1,2,.8 Massless
SU2)L W=, 20 Massive

U(l)y A, Massless

to Higgs mechanism, massless gauge fields interact witliggs field and as a result of
this interaction the gauge bosons and one Higgs bagamt{ich have physical mass states
arise. While some of the gauge bosons acquire mass, sonenofémain massless. After
the Higgs field is defined, the Lagrangian in (2.10) becomédsliasvs:

£ = @)y Dy () — mib(ayb(x) — 1P Fy + (D, H)! (DAH) ~ V(H) (2.12)

where(D,H)" (D" H) shows the kinetic energy of the Higgs field whif¢ /) shows the
potential energy. The potential energy term is giveViiy/ ) = —p?|H|? + M| H|* where
—u? is proportional to the mass terms of the Higgs boson)aiscjuartic gauge coupling.

The Lagrangian in (2.12) is a total Lagrangian. Now, let uamexe the elec-
troweak theory and construct the Lagrangian in this thetay by step. The electroweak
theory based on th€U (2) ® U(1) gauge group has the following Lagrangian:

ESU(?)@U(I) = 'Cgauge + 'Cscalar + 'Cfermion + EYukawa (213)

The electroweak Lagrangian can be represented as aboagtbatly this representation

is not correct since there are mixings among the terms; famge, there are also gauge
fields in the scalar part (within the covariant derivativEhe kinetic energy of the gauge
fields are

1 1
Egauge - __BMVBM - Z

1 W, W (2.14)

whereB,,, andV., are the field strength tensors of thi¢1 ), andSU(2),, gauge groups,
respectively. The field strength tensors are given in teffrtfseogauge fields of the related



gauge group as follows:
B,, =0,B, —0,B, (2.15)
Wi, = 0.W, — 0,W, — gaeijs W)W\ (2.16)

where they, is gauge coupling of th8U (2) group and;;;, are the structure constants in
the form of absolute antisymmetric Levi-Civita tensor. Hieicture of the field strength
tensors should be like above to be invariant under the gaageformations.

The scalar part of the SM Lagrangian,

‘cscalar = (DuH)T (DMH) - V(H>, (217)

+

H
whereH = . is the complex and scalar Higgs field introduced to give mass t
H

the particles and gauge bosons. The covariant derivative is

D, =0, + z'%YYHBM +igyTW! (2.18)
D, =0, + i%BH + z‘gQ%W,j (2.19)

where the hypercharge of the Higgs fieldYis = +1 and7"? = "7 are the generators
of the SU(2) group. Here the gauge coupling of theg1) group is taken by2- due to
the simplicity of the calculation. The first term in (2.17ygs us the three and four point
interactions between the gauge and scalar fields. The seeandV (H) is the Higgs
potential given by

V(H) = p*H H + \NHTH). (2.20)

In this term\ must be positiveX > 0) to satisfy the vacuum stability. Whert < 0, the



Higgs field acquire its VEV

(Hy = /-5 = = (2.21)

and then electroweak symmetry is spontaneously brakeid), @ U(1)y — U(1)gu).
After that, in addition to one massive Higgs boson, threesteas Higgs bosons also arise.
These so called Goldstone bosons are eaten by the masalgesfgdds and become the
third polarization state which is longitudinal. Then massgauge bosons arise in the
theory.

The fermion part of the Lagrangian,

'Cfermion - Eleptons + Equm‘ks (222)
'Cleptons = I_/EZWMD/I;LZ + ZRZ’YMD,}EER (223)
Equarks = quf}/uDﬁQq + unZﬁ)ﬂquun + QdRZ-ﬂ)ﬂuD‘deR (224)

where the covariant derivatives are

DE=0,+ i‘%yYLeBM + z‘gg%wg (2.25)
9
DE =0, + %anBM (2.26)

There is no mass term in the fermion part. So one can write tlkawa interaction

terms to determine the mass of the fermions.

EYulmwa = _hél_/ . HER - hqu : HQdR - hun ' ﬁun + h.c. (227)

The dot products in the Lagrangian can be rewrittedasd = ¢*L,H, whereL =

10



L, H, . . . .
( ) , H = ( and e® is the completely antisymmetric SU(2) tensor with
Ly Hy,

¢!2 = 1. To give mass to the up quark (for all family) one needs a differepresentation

of the Higgs field defined. This representation should Haye= —1 hypercharge. It is

~ HO

represented likél = io, H' = .
When we examine the kinetic term of the Higgs (scalar) Lagjemand work out

analytical calculations, we can see that there is a mixirg/den the gauge fields. To

diagonalize the mass matrix obtained from this Lagrandfanew fields are introduced,
A, = costw B, + sin waj (2.28)
Z, = —sinby By, + cos Oy W, (2.29)
where thd)yy, is the weak (Weinberg) angle defined by

92 cos Oy = gy

ViE+ g2 Vi +93

sin ‘9W =

(2.30)

As seen from above equations, the thittl (2) gauge fieldV} andU(1) gauge fieldB,,
come together to form the neutral gauge bosons phdpandZ,. The combination of
the firstV; and secondlV’? gauge fields of th€ U/ (2) gauge group are also defined as the
charged gauge bosons,

Wi:i

= WL F . (2.31)

By going on to work out the analytical calculations usingrtlees introduced fields
we obtain the masses 0f ¥, Z weak gauge bosons and also we see that the mass of the

11



photon is zero,

My, = 2= (2.32)

= (2.33)
My =0 (2.34)

The experimental value of the above parametersiase~ 80 GeV, M, ~ 90 GeV and
sin® Oy ~ 0.22 (Novaes, 1999).

The second term of the scalar Lagrangian, that is potentiigy term gives us
the mass of the Higgs boson. We can obtain this by applyingssacy transformations
to make Lagrangian invariant under local gauge transfaomat As a result of this cal-
culation the mass of the Higgs boson is derived as

mp = \/ —2u% = V2. (2.35)

wherev = \/—% Thex? and\ parameters are unknown in SM, therefore the value of
the Higgs mass is not determined in the SM. However the rétiw@parameter (VEV of
the Higgs field) can be determined by using the experimedalevof the vector bosons
as

v~ 246 GeV. (2.36)

While the exact value of th@ parameter is not known in the SM, it is known that its
value is approximately smaller than unity & 1). Therefore, the approximate value of
the Higgs mass is consideredrag ~ (100 GeV)?.

We can obtain that there arise one massive Higgs boson aiespgontaneous
symmetry breaking (SSB) in the SM by working out the anabjtealculations as above.
In addition to this method we can determine how many massiggdtbosons arise by
comparing the number of the degree of freedom (dof) of thiesthefore and after the

12



Table 2.3. The Gauge and Higgs fields of the SM Before the SSBTaeir Corre-
sponding Gauge and Higgs Bosons After the SSB, also Theird@egf

Freedom
Before the SSB After the SSB
Name | Fields | DOF Name | Bosons | DOF
. B, 2 dof A, 2 dof
Gauge Fields Wi (i =1,2,3) | 2x3=6dof Gauge Bosons | 2" 0 | 5 5 g gof
+
Higgs Field | H = ( ‘Z.O ) 2 x2=4dof | Higgs Boson h 1 dof
Total 12 dof Total 12 dof

SSB. While the number of dof is being determined, there acepints to be taken into
account.

(a)The massless gauge field or gauge bosons have two treagvelarization
states, that is these have two degree of freedom.

(b)The massive gauge bosons have three polarization Jtateof them are the
transverse polarization states, the rest is the longitudiiate.

When we calculate and compare the number of the total dotéefiod after the
SSB, we can see that after the SSB, there is one extra dof endbtbelongs to a Higgs
boson which arise after the SSB as seen from Table 2.3.

2.2. The Problems of the Model

While the Standard Model explains almost all experimeratetd, there are lots of
unexplained arbitrary parameters and unsolved probleth&i8M. Therefore this theory
is not a complete theory. The problems of the SM can be suraethas follows:

e Baryon Asymmetry Problem: Itis considered that the amounts of matter and an-
timatter were equal in early times -at high energies- aftelBig Bang. Since as the
temperature decreases and the matter interacts with dteémaad they annihilate,
the amount of matter and antimatter will decrease due torhéndation. In this
situation one expects that the amounts of the matter andhattér should be less
than before and equal at low energies; however, the amountsch equal in the
universe. There are more matter than antimatter, eveythithe universe consists
of matter. This difference is known abdryon asymmetry problem” and the SM

13



can not explain the causes of this problem. It can be solveatid{P violation in
the quark sector, but it is too small to explain this (Quiga02).

Fermion Problem : In the Standard Model it is not determined how many fermion
families there are. While it is known that there are threefen families, only first
fermion family (v., e, u, d) exists in nature. The SM does not explain the pres-
ence of the second,, 11—, ¢, s) and third(v, 7, ¢, b) fermion families, the heavier
copies of the first family and does not predict their quantuimbers. Moreover, the
SM can not predict the fermion masses precisely. It seem$dimion masses can
be explained via the Higgs mechanism; however, the valubeofitasses depends
on the arbitrary coupling of the Higgs boson to the fermiohgcWv can not be deter-
mined in the SM (Quigg, 2009). Furthermore, the mixing asdglat parametrize
the mismatch between flavor eigenstates and mass eigenaksdedepend on this
coupling and so the mixing angles can not be also determm#étki SM (Quigg,
2009).

Unification Problem : The Standard Model states that there are three single sym-
metry groups and gauge couplings. Nevertheless, accotditige Grand Unifi-
cation Theory (GUT) these three groups should be combinb@yhtenergies and
there must be one gauge coupling. The SM can not explain tifisation. More-
over, the SM does not contain the fourth fundamental forc@yity and so gives no
information concerning gravitational interaction.

Quantization of Electric Charge : The Standard Model does not explain why
all particles have the quantized charges which are mudtipfec/3. Since this
property allows the electrical neutrality of atoms, it ispontant for stability of
matter (Langacker, 2009).

Cosmological Constant Problem: The cosmological constant can be thought of
as the energy of the vacuum. However, the spontaneous syynbneéking (SSB)
also generates a vacuum expectation value (VEV) of the Higlgkat the minimum

of the Higgs potential. When the theory is coupled to the ityathe VEV of the
Higgs field contributes to the cosmological constant (Lakga 2009). Then the
cosmological constant becomes

Acosm = Abare + ASSB (237)

14



whereA,,.. = 817GV (0) is the vacuum energy in the absence of the SSB. While
in the absence of the SSB the value of the observed constappisximate to the
bare valug A, ~ Awre), When one takes into account the SSB, the value of the
Assp Will become|Agsp| ~ 10°A 4. Itis 10°° times larger in magnitude than the
observed value. This difference can not be explained in ke S

e Dark Matter and Dark Energy Problem : According to the cosmological obser-
vations it is noted that the standard model is able to exmaly about4% of the
matter present in the universe. This observation statésbwut24% of the miss-
ing 96% should be dark matter, while the rest should be dark energyk Bhatter
behaves just like the other matter we know, but it interacly aveakly with the
standard model fields. Dark energy is a constant energy tgdiosithe vacuum.
Although we have known these experimentally, the SM can xyiaén the amount
of dark matter. Attempts to explain the dark energy in terfmngaguum energy of
the standard model lead to a mismatch of 120 orders of matm@s explained
above.

e Strong CP Problem When we take the charge conjugate of a particle (change a
particle with its antiparticle or vice versa) and apply aifyssymmetry (swap left
and right), if the laws of physics remain the same, we can lsaly@P symmetry
is conserved. Theoretically it can be found that the stahderdel should contain
a term that break CP symmetry in the strong interaction s€@GD). However,
experimentally there is no observation related to suchatimh, implying the coeffi-
cient of this term is very close to zero. This fine tuning i®alensidered unnatural.

e Neutrino Masses and Mixings: According to the standard model, the neutrinos
are massless particles. However, neutrino oscillatiomexgents have shown that
neutrinos must have mass. This is also a problem of the SM.

In addition to these, there is another important probleroyknas the “Hierarchy
Problem”, about quantum corrections to the Higgs mass.
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2.2.1. The Hierarchy Problem

Neutral part of the Higgs field of the Standard Model has asata$ potential
given as follows:

V= | H?* + \H|* (2.38)

According to the SM ifu? < 0 and\ > 0 conditions are satisfied, this neutral Higgs
field will have a nonvanishing vacuum expectation value (YBYthe minimum of the
potential. Value of this VEV is determined by using the extuen condition -take first
derivative of the Higgs potential and equal to zero-. Thedeined value iSH) = v =
NETIY

Experimental value of the? standing for the mass of the Higgs boson is approxi-
mately— (100 GeV)?2. This is the classical value, when one considers the quaetiacts,
this value will change. The correction from the quantumaewill be larger than the
classical value and this is known as the “hierarchy problem”

Quantum effects can be considered as loop correctionsrg-@d). While the
incoming and outgoing particles and their properties sichmamentum is known, it is
not known what happens in the loop. Every particle that cesipb the Higgs field di-
rectly or indirectly contributes to the quantum correctiorParticles with spin 0 and 1
have different contributions and these are represente@yaseR2.1. In this figure dashed
lines represent scalar bosons (Higgs or another scalanpogole solid lines represent
fermions. To calculate the loop contribution, propagatangch give the probability am-

e Ll e Al S .+ Sl - W Sl G L LT T e Ly R SR S e e e e W i

(2] (k]

Figure 2.1. One loop radiative corrections to the Higss rsasmred value:?, for (a)
an interaction with a scalar (b) an interaction with a fenmio

plitude for a particle to travel with a certain energy and neotam can be used. For
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example, propagators for a scalar and fermion are given by

Gscalm‘ =5 ' Gfermion = ' (239)

p? —m? + i€’ YD, — my + i€

Total propagator of the process is

G(p) = Golp) + Gol) =22 o) + o) 2 Gy ) 2t V) )

)
(2.40)

where the first term shows the propagator for the free pertie)(p) = i/(p> — m3),
other terms represent the interaction propagafois, (p) stands for the amplitude of the
process and at the same time this shows the self energy afleavhich represents the
contribution to the Higgs field’s energy due to interactitwesween the particle and the
Higgs field.

The right hand side in (2.40) can be rewritten as

G(p) = Colp)(1 + 2Py ) 4 2P ) @) 4 (2.41)

1

(2.42)

To derive the second line from the first one, the series expamsle is used. As can be
deduced from the last equation by analogy to the propagatdrde particle, to find the
correction to the mass it is enough to calculate the ammitfdhe process.

mi(corrected) = mi + Z(p) (243)

int

When the amplitude is calculated, one can find the correctggsHnass as following,

A 2 A? 2 A
mi(cm,rected) =m; (1 s sy <ﬂ)) 4 T8 A2 (2.44)

1672 m3 m?2 1672
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whereA is called the ultraviolet cutoff used to avoid the infinitytbe loop integral. It is

the upper scale in which the SM is valid. This equation regmesthe interaction of the
scalar with the Higgs field. The interaction of a fermion witle Higgs field gives the
following contribution:

)\2 m2 A2 + m2 )\2
2 — 2 2 f f A2
mh(corrected) =My <1 + {72 Wln <T§ - QA . (245)

GenerallyA is equal to the scale of the Planck Mads= Mp = 108GeV. WhenA
acquire this value, while logarithmic term has a logicaltctution which is approximate
to the tree level mass, other correction term changing Withvill be quadratically di-
vergent. It is approximately 30 order of the magnitude latgan the required value of
m3 ~ (100GeV)? (Martin, 1997). This problem known as the “Hierarchy Probles
one of the very important problems that need new theoriesrizethe SM.
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CHAPTER 3

SUPERSYMMETRIC STANDARD MODEL IN BRIEF

3.1. Basics of Supersymmetry

The “Hierarchy Problem” of the Standard Model is the mostamg@nt problem
about the Higgs mass stabilization. Supersymmetry (SUSY9he of the theories sug-
gested to solve this problem (Martin, 1997). Supersymmneates that if there is a boson
partner for every fermion and vice versa, the quadraticemtions of the Higgs mass can-
cel each other for the fermion and corresponding boson @arthich is called superpart-
ner. To satisfy this there must be a relation between thelcmugonstants X, = 2)@). If
m$ = mj, the logarithmic corrections also cancel each other. Ttsene corrections in
this case which is expressed as unbroken supersymmetry.

The particles and their superpartners have the same quaminnbers except for
their spins. The spins of the particle and superpartneeriffy 1/2 unit. When the
connection between the fermion and its superpartner b@sexamined, it is noted that
supersymmetry transforms a fermionic state into a bosdaie or vice versa. Thus,
SUSY transformations are given by

@|Fermion >= |Boson >, @|Boson >=|Fermion > (3.1)

Where@ Is an operator generating such transformations. We wilesgnt SUSY gener-
ator which is an operator &g instead of@. Since there id /2 unit difference between
spins of the fermions and bosons, generglanust be spinorial.

Generators of any symmetry are charges of the associateshelyynsuch as the
electric charge which is generator of the electromagnetionsetry group U(1)ga).
Therefore charge of supersymmetgymust be commute with the Hamiltonian of the
system,

[QG7H] = (32)
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whereQ), is one of two components of spinorial chaigeThe generator§ and@' must
satisfy the below anticommutation and commutation retettias a result of the Coleman-
Mandula theorem (Coleman, 1967)

{Q.Q"} o P, (3.3)
{Q.Q}={Q"Q"} =0, (3.4)
[P, Q]=[P".Q"=0 (3.5)

where P* is the four- momentum generator of space-time translatoaswe have sup-
pressed the spinor indices ghand@'. Supersymmetry is an extension of the Poincare
group which contains the Lorentz transformations and tatios. While P* is genera-
tor of the space-time translatio®/*” is generator of the Lorentz transformation. There
are also some relations about these generators, for thiéedatdormation related to the
SUSY algebra one can look at (Aitchison, 2007; Wess, 1992).

Supersymmetry solves not only the hierarchy problem, tad ghuge coupling
unification and dark matter problem. How Supersymmetryesothese problem will be
explained later.

There are some supersymmetric extensions of the SM, themaleixtension of it
is based on the same gauge symmetry gréip(8) ® SU(2) ® U(1)) and is called the
Minimal Supersymmetric Standard Model (MSSM). The numifeM8SM particles is
minimum within supersymmetric models.

Before giving the information about the structure of the ME$ can be instruc-
tive to give some definitions about supersymmetry reprasentand algebra.

3.1.1. Supermultiplets

In the SM left handed and right handed fermions are repredém doublets and
singlets, respectively. However, in the SUSY all particlesdds and their superpartners
are combined in multiplets so-called “supermultiplet@aing to their some properties.
One of the properties of particles in a supermultiplet ig the number of the degree of
freedom of the bosonic and fermionic states should be same=(ng). There are two
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Table 3.1. Chiral(Matter) Supermultiplets in the MSSM

| Names | Superfields | Spin 0 | Spin 1/2 | SU(3)¢,SU(2)L, U(1)y |

Squarks, Quarks Qz (FlzlmL dLl) (uLi dLL) (3a 2) 1/3)

%, W, uly, (3, 1,—4/3)

ds, dy, di, 3,1, 2/3)
Sleptons, Leptons L; (vL; en,) | (i, er,) (1, 2,-1)

%, h, ¢k (1,1, 2
Higgs, Higgsinos H, (HF HY) | (H} HY) (1, 2,+1)

Hy (Hy Hy) | (Hy Hy) (1,2,-1)

known supermultiplets in SUSY.

Chiral (Matter) Supermultiplets : All chiral particles which have left and right
handed parts and their superpartners are combined in oeensulbiplet in terms of left
handed particles. So there must be one chirality in the StHg&Ye is no right handed par-
ticle in the particle content of the SUSY, yet the conjugatethe right handed particles
is included as seen in Table 3.1. This supermultiplets diecc&chiral (matter) super-
multiplets” (Table 3.1). To determine the properties of filenions and boson partners,
equality property of the number of degree of freedom can leel.ug\ccording to this it
is stated that if a fermion is a two component Weyl spinomttie corresponding boson
partner should be complex scalar to have two dof, it can na @l scalar having one
dof. The particles in a chiral supermultiplet have the aljmeperties (Martin, 1997).

Gauge (Vector) Supermultiplets Like chiral fermions, the boson particles and
their superpartners are also combined in one supermulsplealled “gauge (vector)
supermultiplets” Table 3.2. These supermultiplets cardi®ne spin 1 massless vector
boson (two dof) and a massless spin 1/2 two component WaybsgMartin, 1997).

If superpartners of particles are bosons and fermions,dheygalled by prepend-
ing an “s” and appending “-ino” to the name of the SM partickesaen in Table 3.1
and 3.2, respectively. For example, the boson partner afjtlaeks or leptons are called
squarks or sleptons which mean scalar quarks and leptangertiion partner of bosons
are called Higgsino, gluino, wino or bino. There are alsoespartners of the gauge
bosons, photon and Z boson which arise by mixing of iHi&¢ and B° after the elec-
troweak breaking, photino and zino.
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Table 3.2. Gauge(Vector) Supermultiplet in the MSSM

| Names | Superfields | Spin 1/2 | Spin 1 | SU3)c,SU(2)L, U(1)y |
Gluino, Gluons G, g g 8, 1, 0)
Winos, W bosons W wF s wo | w¥ wo 1, 3, 0)
Bino, B boson B BY BY (1, 1, 0)

3.1.2. Superfields and Superspace

As seen in Table 3.1 and Table 3.2 the combination of a fermidroson and their
superpartners is shown as a “superfield”. A superfield is tmm@ and its relation with
the bosonic and fermionic fields can be represented by

~

O(z,0) = ¢(z) + 0(z) + ... (3.6)

where ¢ and« shows a spin= 0 boson, spin= 1/2 two component Weyl fermion,
respectively! is a spinor parameter. This spinor parameter is necessatytan a field
with integer spin from a fermion with half-integer spin. Tbemponents of this spinor
parameter are anticommuting parametéés (65} = 0) which are “Grassmann numbers”
and these numbers have some specific properties (Dress), 2@0dxample; the square
of a Grassmann number equals to z&je= 0.

Above representation is fundamental, actually there atea dg&rms obtained by
applying the power series expansion in spinor paranteterd its conjugaté. General
superfield is given by

O(z,0,0") = ¢(x) + 0y () + Ox(x) + 00m(z) + 00n(z) + 00V, x)
+ 000X (z) + B00p(x) + 0000d(x) (3.7)

where () can be rewritten as {;0°0~) ande is an antisymmetrical tensang = 1, €5 =
—1). The higher order terms than above are vanish because pfdperty of the Grass-
mann numbers. Here the component fields), m(xz) andn(x) are complex scalar or
pseudoscalar fields;(x) andy(z) are left handed Weyl spinorg(x) and(z) are right
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handed Weyl spinor field$/ (z) is a four-vector field and(x) is a scalar.

General representation takes different forms with respethe type of the su-
perfields. There are two type of superfields correspondirsgpermultiplets, chiral and
vector superfields (Wess, 1992).

Chiral superfields do not include the conjugate of a spinsampater and they
should satisfy the conditio® = 0 where D = —2 + ify*9, is called covariant
derivative.

The chiral superfield is

O = ¢(x) + V20 (z) + 00F (x) (3.8)

where F(x) is an auxiliary field to make the Lagrangian ireariunder supersymmetry
transformation when the classical equations of motionsateatisfied (off-shell condi-
tion). There is also D-term which introduced to make the estipermultiplets invariant.
Detailed explanation about them in terms of components pédields will be explained
in Section 3.1.3. Here we give a brief definition about thegeiims of superfield formal-
ism.

The product of two superfields is again a chiral superfieldevtiie product of
a superfield with a conjugate superfield is not a chiral sugldrfiWe can see this by
constructing the combination of the superfields.

iy, 0)2;(y, 0) = 6i(y)d(y); + V201 ()05 (y) + di(y)1;(y)]
+ 00[0i(y) F5(y) + &5 (y) Fi(y) — vi(y)v;(y)] (3.9)

This product represents interaction terms in the theoryciiorm components of the
Superpotential. As we can see, the structure of the prodiwtocchiral superfields is the
same with the original chiral superfields. By integrating tivo times we can obtain the
F term of the Lagrangian that is the Lagrangian of the auxilieeld. However, we see
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that below combination is not the same structure with theatsuperfield.

iy, 0)@L(y, 0) = 6i(y) &5 (y) + V20 (y) &5 (y) + V200 (y) 65 (y) + +006% (y) Fi(y)
+00F;(y) dily) + 200, (y)00i(y) + V2000¢;(y) Fi(y)
+ V20000 (y) F; (y) + 0000F; (y) Fi(y) (3.10)

Equation 3.10 stands for the kinetic term of the theory whgchalled the Kahler Po-
tential. From this product we can obtain the D-term contrdousince it behaves like a
vector field. The coefficient of théfgd term gives us D-term contribution to the scalar
Lagrangian described in following section.

The vector superfield which is the other kind of the superfietdudes both the
spinor parameter and its conjugate, and they have a vedthr¥ector superfields satisfy
the conditionl’ = V. General representation for a vector field can be given by

~ _ _ . 1
V(z,0,0) = —00"0V, + i000\ — 600X + 500€0D (3.11)

whereV/, is a vector field \ is fermionic superpartner of vector field ahdis an auxiliary
field mentioned before. The detailed explanation is giverefarence (Wess, 1992).

As a result, it can be stated that a superfield is a field whigiendés not only
on space-time coordinate$ corresponding to bosonic degrees of freedom, but also on
fermionic degrees of freedom- specifically, spinor paramand its conjugat@ and0*
(Aitchison, 2007).

While the ordinary space-time coordinatéscorrespond to bosonic coordinates,
a spinor parameter and its conjugate mentioned above pomdgo the fermionic ones
in SUSY. In total, there are four fermionic coordinatés, ¢-, 07, 6;) corresponding to
each of bosonic states. A space involving these bosoniceanddnic coordinatest{', 0,

0*) is called the “superspace”.

Superpotential : Superpotential is an analytic function which includesrat-
tions of the chiral superfields such as Yukawa interactidniseoSM and the mass term to
obtain three mass dimension&[=3. Since superpotential is an analytic function, it does
not include the complex conjugate of a superfield.

W (o) = ag + bd> + g’ (3.12)
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where$ is a chiral superfield containing a scalar or a fermion and guperpartner and
mass dimensions of the a,b,c parameters are [a]= 2, [b]H0.[Superpotential is used
to obtain the scalar potential of superfields.

3.1.3. The Lagrangian for the Supersymmetric Standard Mode

The Supersymmetric Standard Model Lagrangian is compoisind d.agrangian
of the chiral and gauge superfields. To determine the supengfric Lagrangian it is
instructive to begin with the chiral and gauge Lagrangian.

e Chiral (Matter) Lagrangian

If the Lagrangian is written using components of the suplérfrestead of super-
field notation, it is easier to compare the MSSM Lagrangiatinwthe SM Lagrangian
(Shah, 2003).

Liree = 0"¢* 10,0 + i 50 0b; + F*'E, (3.13)

where¢ and ) are the scalar and fermion components of a chiral superfieid, the
auxiliary field which is introduced to get the supersymmetiyebra to work off shell
(when the classical equations of motion are not satisfielais duxiliary field is a complex
scalar field which does not have a kinetic term. Since thealagjan density must be
4 mass dimensions, the new auxiliary field must have 2 maserdiltons according to
Louwzitiary = F*F. This Lagrangian is invariant under the supersymmetrysfaamations
(Martin, 1997). The interaction part of the chiral Lagraargis given by

1. .. .
Eint = (_iwmwiwj + WZE) + c.c. (314)

whereV is the superpotentialy* and W% are the first and second derivatives of the
superpotential with respect to scalar components of therfiefuls.

1 1
W = §MZ]¢i¢j + 6¢Z¢j¢k (3.15)
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0

f= 3.16
Wh=5 @W (3.16)
g 02
WY = W 3.17
0009, (3.17)
The classical equation of motion of the auxiliary field F give = —W; and

F* = —T/*. Using these the total chiral Lagrangian can be derived lasfs:
Leniral =L free + Ling (3.18)
Lonirar =00 0y + i 0Oy — 5 (Wihisy + Wisgl') — (R, (319)
e Gauge (Vector) Lagrangian

The gauge Lagrangian in SM can be written in the supersynematidel as

1 1
Lgauge = =7 Fu 7" + iAGH DA + 5D D" (3.20)

whereF},

the gaugino field, respectively aiel is a real bosonic auxiliary field introduced in order

A%, D, \* are a field strength tensor, a gaugino field, the covariantatere of

for supersymmetry to be consistent off-shell. This auwyligeld has no kinetic term and
has 2 mass dimension like the fermionic auxiliary fiéld

Fi, = 0,AL — 9,A% + gf* AL A (3.21)

Dy = 9\ + g feAb X (3.22)

where g is gauge coupling constant affé¢ are structure constants which are antisym-
metric in all indices and differs according to symmetry grou

e Gauge Interactions with the Components of the Chiral Superglds

The chiral and gauge Lagrangians described above areamnvamder the supersymmetric
transformations; however, the chiral Lagrangian is na&rrant under the gauge transfor-
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mations while the gauge Lagrangian is invariant. To make_tgrangian invariant we
must define the covariant derivatives instead of ordinarivdtves as defined in the SM.
These covariant derivatives are

D,u,¢i = ,LL¢Z' — ZgAZ(Ta¢)Z (323)
(Duo)i = Oud; + igAy(¢™T?); (3.24)
DM@Z)Z‘ = (%wl — ZgAZ(Ta@Z))Z (325)

whereT®* are generators of the symmetry groups, for examplé/fdr) andSU(2) sym-
metries,T* stand for hypercharge and pauli spin matrices, respegtivel

As seen from the equations above gauge bosons couple tossaalh fermions
in the chiral superfields. In addition to these there are sioteeaction terms that can be
seen below between the other gauge fields (gaugino and leosaxiliary field D) and
components of the superfields (scalars and fermions).

(P*T* )N,  N(¢TT%), and (¢*T%¢)D" (3.26)

Now, the total supersymmetric Lagrangian which is invariamder the supersymmetry
and gauge transformations can be written as follows:

Lausy =D"¢" Dty + 76" Dy — o (Wit + WigMul) — FHUF,
1 1
= F P = iN"G DA + S DD

— V2g(¢* T )X — V29 A1 (¢ § T¢) + g(¢*T"¢) D" (3.27)

The equation of motion for th&“ term gives the value of the bosonic auxiliary field in
terms of scalar fields,

Da

—9(¢"T"9). (3.28)
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Substituting Equation (3.28) into the total Lagrangiar2{3.and organizing it we get

. tie 1o uva o oxtao "
'Csusy :(Dﬂgbl) Du¢z + Z@Z)T U“Duwi — ZFHVFM + ZAT O'MDMA

—V2g(¢" T P)N" — V2 AT (1T )
1 .. . .
=5 (W + Wiwyh)

1
~ F"'F;— 5 D"D" (3.29)

where the first line is the gauge-invariant kinetic enerfpeshe components of the chi-

ral and gauge superfields. The next line describes the atiena of the gauginos with

the scalar and fermion components of the chiral superfidhds,is, these terms describe
how gauginos couple matter fermions to their superpartwatiggs bosons to their su-

perpartners. The third line describes the non-gauge, pagattial interactions of matter

and Higgs fields as well as fermion mass terms. The last linerdees the scalar potential
which consist of two distinct contribution (Baer, 2006).€Mirst term is called the F-term

contribution that arise from the superpotential. The sddenm is related to the gauge
interactions and it is called the D-term contribution (Kieag 2001).

Vicatar = VP + Vb (3.30)

where
Vi = F*'F, and Vp= %D“D“ (3.31)
i and peo —g(¢*T%¢). (3.32)

0,

The supersymmetric Lagrangian in (3.29) is the total Lagi@mwhen the Super-
symmetry is not broken. However, it is known that the suparsgetry is broken. Because
if SUSY were an exact symmetry, the sparticles could have beesame mass with the
original particles, and these sparticles could have been senature. Since there has
been no sparticles in nature, it can be stated that the SU®Yolen symmetry. This
breaking is called “soft supersymmetry breaking” as the ety is broken by keep-
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ing the cancellation of the quadratic divergences at the $@§g$imass. Due to this soft
breaking of the SUSY there must be additional terms to thersypnmetric Lagrangian
in (3.29),

L 1 1 .. 1. ,
Lot = —(mQ)}qb]*qﬁi — i(Ma)\“)\“ + h.c) + (6awk¢i¢j¢k + ib”@(bj +t'o; + h.c.)

(3.33)

where theC,, s, contains the mass-squared ter(m&);i of the scalars, the gaugino masses
M, for each gauge group, trilinear and bilinear scalar coggliV* andb™, respectively
and linear (tadpole) couplings. The linear coupling term exist only if; is a gauge
singlet. The terms iiC,,; break the supersymmetry since they involve only scalars and
gauginos and not their respective superpartners. Thestesok gives the masses to the
scalars and gauginos in a theory even if the gauge bosonsanehs in chiral super-
multiplets are massless or relatively light (Martin, 199%pft terms of the Lagrangian
are defined as a third contribution to the scalar potentialvNhe scalar potential can be
rewritten as follows:

Vtscalm‘ = VF + VD + Vsoft (334)

The potential term$/» and V) are given in Equation 3.31 and,; is represented as
Lagrangian in Equation 3.33.

As mentioned before minimal extension of the Standard Msddinimal Super-
symmetric Standard Model (MSSM). Since we gave the basarnmdtion about SUSY,
now we are ready to examine the structure of this minimal rhode

3.2. The Structure of the Minimal Supersymmetric Standard Model

Minimal supersymmetric model is the minimal extension & 8M because they
have the same gauge group$](3)®SU(2)®U(1). Since there are superpartners of each
bosons and fermions, the number of the particle in MSSM ibtoof the SM’s. Particle
content of the MSSM is given in Table 3.1 and 3.2 as a chiralgadje supermultiplets.
While there is one Higgs doublet in the SM, one extra Higgsutietus necessary in the
MSSM as seen in Table 3.1 and its superpartner . Why do we meeHiggs doublets?
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The first reason of this is to cancel the anomaly which occiamthe superpartner
of the Higgs field is taken into account. In the SM there is nonaaly, that is SM satisfy
the condition for cancellation of gauge anomalis|72Y| = Tr[Y?] = 0, whereTs and
Y are the third component of the weak isospin and the weak biipege, respectively
(Martin, 1997). The hypercharge of the particles can be adetpby using the Gell-Mann
Nishijima formula. When the Higgs fields’ superpartner vifike hyperchargés; = 1 is
considered, the above condition are not satisfled7;Y] = Tr[Y?] # 0. Therefore to
get rid of this anomaly it is necessary to introduce a new Bliggld.

The second reason is about the structure of the supersymmstseen above, the
Higgs doublet in the SM is not sufficient to give mass to up guayhile in the SM the
complex conjugate of the Higgs field can be defined, in the S@$#n not be defined
since the superpotential which is the only source of Yukaueractions used to give mass
to the fermions must be analytic. Complex conjugate of amarmpaters is not allowed
in superpotential, therefore, second Higgs field is defimetheé SUSY and this field is

Hy Hy
H, =  Hy = . (3.35)
H, Hy

To satisfy the conservation of charge, the hyperchargeeoh#w Higgs doubletH,) is

represented by

foundYy, = —1 by applying the Gell-Mann Nishijima formula.
The general superpotential term for the MSSM is given by

—

W:ufl\u[i[\d+hu@a%+hdémgl\%+hezmé\% (336)

whereH,, H,, Q, L, u$, d%, €% denotes the superfields,, i, andh, are dimensionless
Yukawa coupling constantg. parameter refers to the supersymmetric version of the SM
Higgs mass. Here the gauge(color and weak isospin) andyfamdices are suppressed.
The dot product of two doublet superfields can be written bpgign antisymmetric
parametee®®. For instance, the first term of the superpotential is \AmiHSMI/-I\u . I/{\d =
pe*?(H,)a(Hy)p and the second term is written asO - H, U5y = hue™ Qiaa(Hy)guss
wherei = 1,2,3 is a family index,a = 1,2, 3 is a color index andv, 5 = 1,2 are the
weak indices. Another notation which can be used for the duodyrcts isufl\u . }/I\d =

HT (ioy)H,.
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The hypercharge of each term in the superpotential is ceedehence it is said
that the superpotential is invariant undéfl),.. The above superpotential also satisfy
the conservation of the Baryon and Lepton number. In addibahe above terms in the
superpotential there can be extra terms which is gaugeiamtaand renormalizable but
violate the baryorB or leptonL symmetry.

W' = /L Hy+ ML - L&+ ML -Qdy, + Asilsy dyy di, (3.37)
where the lepton and baryon numbers are- +1 for L;, L = —1 for e, and L = 0 for

all others,B = +1/3 for Q);, B = —1/3 for u%, d and B = 0 for all others. The first
three term violates the conservation of lepton number dimese have “1” lepton number
while the last term violates the conservation of the barygmmetry because this has
“1” baryon number. Nevertheless baryon and lepton numbmating interactions have
never been seen experimentally. If both violating intecexst were present, the proton
could decay rapidly. To keep the proton sufficiently stablea symmetry (R-parity) is
introduced.

PR — (_1)BB+25+L (338)

where B, L and S represent the baryon, lepton numbers and&ghe each particle. R
parity condition states that the scalar and fermion (span@ector) components of a chiral
scalar (spinor) superfield have opposite R parities due éd-t1)?° dependence. So,
while all of the Standard Model particles and the Higgs bedmve even R-parityH{y =
+1), all of the superpartners of the SM patrticles and fields twalee parity Pr = —1).
Since this symmetry is not conserved in (3.37) superpakrthiese terms are forbidden
while the superpotential in (3.36) is allowed.

If R parity is exactly conserved, then there can be no mixiayveen the SM
particles Pr = +1) and their superpartners with opposite R pari®&; (= —1). More-
over, every interaction in the allowed superpotential §3.&ntains an even number of
odd R parity sparticlesKr = —1). This property has important phenomenological con-
sequences:

e Experimentally sparticles can only be produced in pairs.

e The lightest sparticle called the “lightest supersymnagtarticle” (LSP) must be
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stable, it can not decay at all. If the LSP is electrically &l it could be an
attractive candidate for non-baryonic dark matter.

e Each particle produced in experiments must decay into a #tat contains an odd
number of other sparticles and any number of the SM partickdsthe last step
there must be at least one LSP.

After giving a general information about structure of thexmmal supersymmetric
model let us examine the Higgs sector of the MSSM in detalil.

3.2.1. Higgs Sector

Minimal Supersymmetric Standard Model contains two Higgshdets with hy-
percharge§’y, = +1, Yy, = —1.

Hf Hy
H, =  Hy= . (3.39)
;) Hy

To determine the Higgs mass firstly we must find the Higgs pi@teand we can
do this by working out the scalar potential for the Higgs acat the tree level.

V;ree = VF + VD + Vtsoft (340)

Then the F-term, D-term and soft term contributions to treasgotential can be

obtained as
Ve = [p*(|H* + [Hdl*) (3.41)
Vb = %2 (1Hu? = [Ha?)* + %g (|H[*| Hal? — | H, - Ha|?) (3.42)
Viosr = mipy, |Hul> +m3y |Hal* + Bu(H, - Hy + h.c.) (3.43)

whereG? = ¢2 + ¢2. Hereg, andgy are the gauge couplings of the gauge groups of
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Table 3.3. The Gauge and Higgs fields of the MSSM Before the &®BTheir Cor-
responding Gauge and Higgs Bosons After the SSB, also Thegjrd2 of

Freedom
Before the SSB After the SSB
Name | Fields | DOF Name | Bosons | DOF
. By 2 dof Ap 2 dof
Gauge Fields Wi (i=1,2,3) | 2x3=6dof Gauge Bosons | 570 | 53— g dof
Higgs Fields Hy,, Hy 2 x4 =8dof | Higgs Bosons | h,H,A, HE 5 dof
Total 20 dof Total 20 dof

i 2 2
SU(2)r andU(1)y, respectivelyms; , m3;, are mass-squared terms of the scalars and B
is bilinear scalar coupling constant.

Viree = (miy, + p2)| Hu|* + (m3;, + 1) |Ha|* + Bu(H, - Hy + h.c.)

G2 9 g2
+ (|Hu* = [Ha|?)” + 52 (|H,*|Hal?* — |H,, - Hg?) (3.44)

Since the neutral part of the Higgs field has a non-vanishahgevat the vacuum
state (the minimum of the potential), the fields can be expdras follows:

1 Hy 1 + g + 1
H,— — u , Hy= L[ vatéativa ) g e
V2 Uy + Oy + 10y V2 H;

Electroweak symmetry is spontaneously broken when the $Higgdds acquire
their vacuum expectation values at the minimum,

Vd

ﬁ’

Uy,

(H,) = Vi

(H,)) =0, (Hy)= (Hy) =0, (3.46)

Then Higgs fields interact with fermions and gauge fields.h&ténd of this interaction
while the fermions get their masses, the gauge and Higgs fd$t acquire their physical
mass states. After the SSB, 5 Higgs bosons arise as seenlé(3a2). Two of them are
the CP even (scalar) neutral Higgs bosarea{d /), one of them is CP odd (pseudoscalar)
neutral Higgs boson4) and two of them are charged Higgs bosoHAs .

After giving the general properties of the MSSM and its Higgstor, now let’s
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determine the masses of the gauge bosons. To derive thesmddbe gauge bosons of
the MSSM, the kinetic energy terms of the Higgs field is used thwritten as follows:

L >|D,H,|>+ |D,Hy|* (3.47)

where covariant derivatives can be determined as seen helomake the Lagrangian
under theJ(1)y andSU(2);, symmetries.

.05 i g
D,H, = (0, + 2925W” + Z?YBM)HW (3.48)
D,Hy = (8, +igr2w' — i B VI 3.49
% d_(u+2925 ,LL_Z? u) d- (3.49)

When the Higgs fields acquire their VEVs at the minimum of thgdd potential energy
as in 3.46, gauge bosons acquire their masses by followengaime way as in the SM,

2
M}, = g—;(vi +0v3) and Mz =

g + 95
2

(V2 + 7). (3.50)

If we determine the Higgs potential energy, we can get theafda for the mass-
squared matrix of the Higgs bosons by taking the secondater@/of the Higgs potential
with respect to the components of the Higgs fields. Becausedhservation of electric
charge one states that there must be no mixing between tihgeshand neutral compo-
nents of the Higgs fields. So we consider these part separatel

Since we examine the components of the Higgs fields, writieg-iggs potential
in terms of component fields may be helpful.

Varssar = (miy, + w2 ((HOP? + |1 %)+ (my, + p2) (1HSP + |H7 )
— Bu(HHY — HH; + h.c.)
I (B — PP+ HYP — Hy 2 + ALY+ AL
OB HOHY + HHY L H)
+ 2P+ P - |HYP? — | Hy ) (3.51)
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where we renamed the tree level potential of the MSSM as MS&tenpial (/37ssnr)-
Firstly, we can examine the charged fields. The Lagrangiaaldthave following
form to include the mass terms of the charged Higgs fields:

H’+
L>( H™ H; | M. “ (3.52)
u d H —x
Hd
where
32‘2&1554\4 b aQZI\/ISSJM b
HFoHT* i—U; HT*9H * iU
Mz, = [ Ofeot OH "OH, (3.53)
9°Vussm 0“Vmssm

OH, OH, [0, OH oH,* Ihi—vi

Now, derivatives of the tree level scalar potential withpexst to above components give
us the mass squared matrix of the charged Higgs fields as séam {Baer, 2006). It
should be noted that these derivatives must be taken at thed¥Ehe Higgs field.

Bucot 3+ %v2  —Bu+ ﬁvuv
My = " 592 2ha PR T (3.54)
—Bp+ Zv,vg  Bptan§+ 202
Diagonalizing this matrix we can obtain the masses of theggsaHiggs bosons,
meg+ =0 and  m3+ = Bu(cot 3+ tan 8) + Mg, (3.55)

wheretanf = gy /g, and M3, = g»(v2 + v32)/2. The massles§® bosons are Goldstone
bosons which are eaten by the charged gauge bd$ons

For the neutral part the mass squared matrix can be foundibyg tise below
formula:

82
2 _

with ¥; € {¢u, da, vu, pa}. INstead of finding thed(x 4) mass squared matrix as above,
we can decomposes into t2x2) matrices by using CP invariance property. CP invariance
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of the Higgs sector states that there is also no mixing betweereal and imaginary part
of the Higgs fields.

For examining the real and imaginary part of the neutral Hifglds, the La-
grangian should include the following part:

£34 (v wa) i (7). £33 (0 a)ariy (2 ). @s

d

The mass matrices of the imaginary part of the neutral Higddgiand its value

are given by
?Vissm  02Vussu
M2, = OpuOpu Opudpq M2 = Bpcot Bu 3.58
H? 2 2 ) H? ( . )
I “Vivssy  9°Vussu I BM BM tanﬁ
0pa0pu 0pa0pa hi—v;

The eigenvalues of this mixing matrix give the physical neasef the Higgs bosons
(Aitchison, 2007; , Baer, 2006).

m% =0 and m?% = Bu(cot 3+ tan 3) (3.59)

whereG? is also Goldstone boson which are eaten buy the neutral drsgpsZ° and A
is the pseudoscalar (CP odd) Higgs boson.
The real part of the neutral Higgs fields has following massased matrix

PVussu  *Vussu
HY PVissm  *Viussm ( )
olo¥te /o 004004 h; —v;

M2, — ( m% cos? B+ M2sin? 3 —(m?% 4+ M2)sin 3 cos 3 ) (3.61)

—(m? + M2)sin Bcos 3 m?sin? 3+ M2 cos? 3
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Masses of the neutral Higgs bosons are found as follows:

1
m%vH =3 l(mi + M3) £ \/(mi + M2)? — 4m?* M% cos? 23 (3.62)

whereh and H shows the lighter and heavier neutral Higgs bosons.
The relation between the bosons which have physical masssiad fields can
be found from the mixing matrix by deriving the eigenvectors

( Gt ) _ ( cos3 sinf ) < H* ) (3.63)
H* —sinf cos 3 HY

GY B sinf3 —cospf Dy h B cosa  sina bu

A ~\ cos G sinf ©d 7 H /) \ —sina cosa bq

wherea and/ are the mixing angles with

(m% — M%) cos28 + +/(m?% + M2)2 — 4m% M2 cos 23

t —
e (m% + M%) sin2p3

(3.65)

When we compare the masses of the physical Higgs bosonsysheesult we
obtain ism2,. = m?% + M}, sompy= is larger than the masses of the pseudoscalar
Higgs bosonn 4 and gauge bosomy;,. The second result is related to the lightest neutral
Higgs boson mass. While the masses, my andmg+ are unconstraint, the mass, is
bounded. Sincé/, parameter is known from the experiments, the mass term lotielgy
Higgs boson in (3.62) include 2 unknown parametey, andcos 3. If we examine the
conditions when then? is small and large, we obtain the maximum value of the mass

my, < Mz|cos28| < My (3.66)

where the maximum value @bs 23 = 1. According to this resulin;, should be equal or
smaller than\/; ~ 90 GeV (m; < Myz). Nevertheless, experimental lower bound from
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the LEP experiment is
my, > 114.4GeV (3.67)

at the % 95 Confidence Level. Therefore we can say that thdompeguantum cor-
rections is significant in the MSSM. Under the radiative eotion from the top quark
lightest Higgs boson mass becomes

4 —
m; < M7 cos® 283 + _Smy sin”§ In <%> (3.68)

2m2(v2 4 v3) my

wherem; is the top quark mass and? = (m? +m? )/2 is the average of the squared
masses of two scalar top quarks (Aitchison, 2007; , BaeroR208s seen in (3.68) these
corrections shift the upper limit of the lightest MSSM Hidgsson mass and satisfy the
LEP limit. But despite of the quantum corrections, the mdgt® lightest Higgs boson
can not exceed35 GeV (m; < 135 GeV).

3.3. The Successes and Problems of the MSSM

Supersymmetry and also Minimal Supersymmetric StandardieVere introduced
mainly to stabilize the Higgs sector which is unstable toghantum corrections. Besides
this, there are other motivations for the MSSM. One of theto imify the gauge coupling
constant.

As seen from in Figure (3.1), SM can not explain the unificabbthe three fun-
damental forces. That is, there is no a mass scale or in@mesttale at which the electro-
magnetic, weak and strong interactions have the same #trdnghis figure Y-axis is the
fine-structure constants («;) which is related to square of the gauge coupling constant
(o o< g?). X-axis shows the mass or energy on a logarithmic scale. iffdiees1, 2, 3
stand for thed/(1)y, SU(2)., SU(3)c couplings, respectively. While this unification can
not explained by the SM, MSSM unify these three forces at biggrgies.

The other motivation for the MSSM is to explain the Dark Matieoblem. Stan-
dard Model can explain the small amount of total matter inuh&erse, however the
amount of dark matter is much larger than the matter expiabnethe SM. The addi-
tional particle content and R-parity properties of the MSB#p us to explain the dark
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Figure 3.1. Gauge coupling unification (a) in the SM and (iheaMSSM (Aitchison,
2007).

matter. As explained before the Lightest Supersymmetnitidia (LSP) must be stable
as a result of the R-parity. It is also weakly interacting anas particle (WIMP) that is
in the 10 — 10 GeV range with only weak interaction strength couplinggides not
have electromagnetic or strong interactions. Becausewhf@ahe similar properties to
the dark matter, LSP might be best candidate for the darkematt

Although the Minimal supersymmetric model solve some intgoar problem of
the SM mentioned above, most of them remain unsolved. New aresalso introduced.

One of them is thelittle hierarch problem ”. The MSSM predicts a light Higgs
boson near the Z mass at the tree level, while the experimentar bound is 114 GeV
according to the LEP experiment. Whereas this LEP bound ctbensatisfied at the tree
level, one loop radiative correction from the top quark maybed to satisfy it. To satisfy
it, the mass of the top quark must be taken to-bé TeV. Thus supersymmetry(SUSY)
must be broken above the weak scale, recreant in fine-tufiingl§; or worse in the soft
SUSY-breaking parameters in order to reproduce the obdefmeie of the weak scale.
This is how the little hierarchy problem appears in the ceindéthe MSSM.

The other and most important problem of the MSSM isjifroblem. When the
following general superpotential term for the MSSM is exa®ai,

o~

W = pH, - Hy+ h,Q - Haty + ha@Q - Hadsy + ho L - Huel, (3.69)
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it is realized the first term containsparameter with a mass dimension which is not re-
stricted to be at the electroweak scale, the soft supersymimeaking mass parameters’
scale. Thisis known agi‘problem” of the MSSM. Because of these problems we need to
extend the Minimal Supersymmetric Standard Model. AltHotigere are some theories

for extension, we will explain one of them in the next chapter
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CHAPTER 4

GAUGE-EXTENDED SUPERSYMMETRIC MODEL

4.1. Motivations for the U(1) Model

While gauge structure of the Standard Model and Minimal &yremetric Stan-
dard Model is given bySU(3) ® SU(2) ® U(1), the simplest gauge extension of the
MSSM is found by expanding its gauge group with an additiéxzlian factor and this
model is called/ (1)’ model. There are two main motivations for this model. Thetmos
direct motivation for such an extra group factor is the neesialve theu problem of the
MSSM (Kim, 1984; Giudice, 1998). Indeed, the mass term oHlggsinos

Warssn > nH, - Hy (4.1)

involves a dimensionful parameterand this parameter can be totaly arbitrary scale.
However, the: parameter should be dimensionless like natural coeffiei@nd should be

at the electroweak scale that is the scale of mass paranoétdes theory determined by
the soft supersymmetry breaking. To overcome thjgroblem, theu parameter can be
replaced by a new SM chiral superfie@d (Cvetic, 1997). When the scalar component of
this superfield acquire its vacuum expectation value (VE¥ Ylve spontaneous symmetry
breaking, effective, parameter is induced,

Hess = ha(S). (4.2)

Then Equation (4.1) becomes

W > h,SH, - Hy (4.3)

with h4 being a Yukawa coupling. Gauge invariance of the superpiatemder the/ (1)’
symmetry requires that total charges of each term in the ng@erpotential for thé/(1)’

41



model should be zero (the charges of the particle and fielodrengn Table (4.1)). That
is, for the Higgsino mass term of the superpotential gaugariance condition is given
by

Qs +Qu, +Qu, =0 (4.4)
whereQs # 0 (Sert, 2010). These conditions forbid a bareerm as in (4.1) completely,
and ;. parameter is deemed to arise from the VEVSfia (4.2). In addition to these
constraints arising from the gauge invariance, there @@ sdme constraints arising to
avoid quantum-induced trilinear mixing among the gaugehsshat causes the triangle
anomalies in the gauge sector and so gauge coupling noratiofi. The anomalies can
be cancelled either by introducing family non-universarges (Demir, 2005; Hayreter,
2007) or by adding exotics to the models descending from &f@)other GUT groups
(Langacker, 1998). In the present work we shall assume tiahalies are cancelled by
additional matter falling outside the reach of LHC expennse

Table 4.1. The gauge quantum numbers of chiral superfielésenkl,2,3 stands for
the family index

Superfields | SU3)¢ | SU(2)r | U(l)y | U(1)
Q; 3 2 1/3 Qq,
iy, 3 1| 43 | Qu
ds 3 1 23 | Qu
Li 1 2 -1 QLi
é\% 1 1 2 Qei
H, 1 2 1 Qm,
Hd 1 2 -1 QHd,

S 1 1 0 Qs

The p problem mentioned above is one of the motivations for inicdag U (1)’
model. In addition to this, such extra gauge symmetriegandow energy supersym-
metric models stemming from GUTs and strings (Barr, 198%yétg 1989; Cvetic, 1996;
Cleaver, 1998; Ghilencea, 2002). As an example we can exathéE(6) GUT (King,
2006; Diener, 2009), the breaking pattern of the E(6) grasigé/en

E(6) — SO(10) ® U(1)y — SU(B) @ U(1)y ® U(1)y — Gsy @ U(1).  (4.5)

In this chain each arrow corresponds to spontaneous symibetaking at a specific
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energy scale and after these breaking two eXi{f) symmetries occut/(1),, andU(1),.
U(1)" at the last step is a linear combination of these extra synesdike that

U(1) = cosOpe) U(1)y —sinbOpe) U(1)y (4.6)

which is a lightU (1)’ invariance broken near tlig:V scale whereas the other orthogonal
combinationl/(1)” = cos 0ge) U(1)y + sin g U(1), is broken at a much higher scale
not accessible to LHC experiments. The angig, (mixing angle) designates the break-
ing directioninU(1),®U (1), space and itis a function of the associated gauge couplings
and VEVs that realize the symmetry breaking. For all diffénealues of thé ) mixing
angle, there are various(1)’ models based on E(6) groups. For instance) iklodel

O = 0, in ) Model f) = arcsin \/g in I Model ) = — arcsin \/g .in N Model

0@ = arcsin 1, in S Model 6 = arcsin \/g—z We excludedy model @ = —Z) as

it does not lead to a solution farproblem (the single$ acquires vanishing/ (1)’ charge)
(Barr, 1985; Hewett, 1989; Cvetic, 1996; Cleaver, 1998;&tuea, 2002).

4.2. The Structure of theU(1)" Model

U(1) model is obtained by adding an extra abeli&ii) group to the gauge group
of the SM or MSSM. The gauge structure of the model can be septed as follows:

SU®3) @ SU(2) @ U(1) ® U(1)’ (4.7)

The extral/ (1) group requires an extra gauge bosirand gauge fermios’ with
respect to MSSM. Also the Higgs sector of such models diffemfthose of the SM and
MSSM (Spira, 1998). Firstly, there are an extra Higgs fielat ttan be represented as
a chiral, singlet SM superfielé\ in addition to two Higgs doublet#/, and H, of the
MSSM. The Higgs fields can be given by

HF HY
H, = “ ), Hy= “ ) and S. (4.8)
H) H;
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Table 4.2. Gauge Fields, Higgs Fields and Their Correspgri8osons in the Models
where; = 1,2,3anda = 1,2, ..,8.

Fields/Bosons SM MSSM U(1)’ Model
Gauge Fields G, Wy, B, G4, Wy, B, G, W,, B, B,
Higgs Fields H H,, Hy H,, Hy, S
GaugeBosons | ¢, WE, Z, A, | g¢, W=, Z, A, | ¢, W, Z, 7', A,
Higgs Bosons h h,H, AH* h,H H ,AH*

where doublets and singlet fields are complex scalar fieldsebVer, the modifications
in the masses and couplings of the Higgs bosons are alsoetiffrom the MSSM and

SM (Demir, 2004). The additional fields and bosons may be samzed as in Table

4.2 by comparing the other models. All the particles and sielce charged under this
extralU(1) symmetry. Quantum numbers of th&1)" model particle contents are given
in Table (4.1).

If Higgs sector of thé/(1)’ Model is considered again, Table 4.3 may be helpful
to comprehend how many Higgs boson arises in this model. &s seTable 4.3 there
are six Higgs boson arising #4(1)" Model after the spontaneously electroweak symmetry
breaking. One extra Higgs boson is a CP even (scalar) ndagsaln heavier than other
neutral bosons. Table (4.3) gives information not only albtiggs sector, but also about
gauge sector. As seen from the Table (4.3), there are 5 gasgab arisingiV*, 7, 7’
and photond,). However, the neutral gauge bosansind Z’ exhibit nontrivial mixing
(Langacker, 2008) and — Z’ mass-squared matrix is given by

M2 &,
(My_z)? = ( , ) (4.9)
07—z Mz
where
2 G2 2 2
M; = I[Uu + v3] (4.10)
My, = g [Q%, v + QF,v7 + Q5v?] (4.11)
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Table 4.3. The Gauge and Higgs fields of the )’ Model Before the SSB and Their
Corresponding Gauge and Higgs Bosons After the SSB, alsio Dbgree

of Freedom

Before the SSB After the SSB
Name | Fields | DOF Name | Bosons | DOF
. By, 2 dof Ay 2 dof

Gauge Fields W/i(i=1,2,3) | 2x3=6dof Gauge Bosons | 1,20 | g 5 g qof

B, 2 dof Z'0 3 dof

— ES
Higgs Fields H“:S,Hd 2x é (Tof8 dof Higgs Bosons h, H’Hf}H ? gg;
Total 20 dof Total 20 dof

G
2 _ Yy 2 2

These values can be derived from the kinetic part of the Higggangian for the
U(1) Model. The two eigenvalues of this matrix give the masseh®physical massive
vector bosons,

1
M, 4 =5 M3+ M3 F V(MZ = M2)2 +455_, ] . (4.13)

If there is no mixingM, will be a mass of the SMY boson. The mixing angle of the
mixing matrix in (4.9) can be found from diagonalization bistmatrix. To diagonalize
(4.9) the rotation matrix below is used

—sina  cosq

cosa  sin«
R = < ) (4.14)

Using this rotation matrix and' - (M;_z/)? - R = diag(M} , M%) diagonalization
condition, the mixing angle can be derived by equaling tHial@agonal terms to zero as
follows (Ali, 2009),

Oy g1 = larctan % . (4.15)
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The value of the mixing angle,_, must be a few 02 according to the LEP experi-
ments. This puts a bound on tl® boson mass. In particular, in generic E(6) models
myz, must weigh nearly &eV or more according to the Tevatron measurements (Erler,
2009).

Another important aspect of this model is the Higgs sectackiconstitute the
main structure of this thesis work. Therefore, the Higgst@eaf this model at the tree
level and one loop level will be explained in the followingagtter.
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CHAPTER 5

HIGGS SECTOR OF THE U(1)’ MODEL

5.1. Higgs Sector of the U(1)Model at the Tree Level

The Higgs sector of the model, as mentioned before, invdlvesinglet Higgs
S and the electroweak doublets, and H,. All of them are charged under U(Igauge
group. The Higgs fields expand around the vacuum state asvill

1 V2H} 1 [ va+ ¢q+ipg
H, = — , Hy=— ,
V2 Uy + Gy + 10y, V2 V2H;

S = %(vswsw%) (5.1)

whereH; and H; span the charged sector involving the charged Goldstoea egt by
the W+ boson as well as the charged Higgs boson. The remaining paegise neutral
degrees of freedomy,, 4 ; are scalars angd, ; ; are pseudoscalars.

When the local gauge symmetry is broken, the Higgs fieldsthetsacuum ex-
pectation values (VEVS) in the vacuum given by

= (HY), 5= (HY) 75 =) (5.2)

and then théV*, Z and Z’ bosons all acquire masses. Besides the gauge bosons, the
Higgs bosons get also their masses. Masses of the Higgsdasodetermined by taking

the second derivative of the scalar potential with respett¢ components of the Higgs
field, scalar and pseudoscalar fields:

82
2 _
Mi; = (axpia% V)O 53)
with \Ijz € {¢u7 ¢d7 Cbs, Pus Pd, 908}
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At the tree level the potential in (5.3) is the tree level acalotential of the Higgs
fields composed of” term, D term and soft breaking pieces.

V;ree = VF + VD + Vtsoft (54)
with
Vi =|h|? [|Hu - Hal* + [SPP(1Hu|* + |Hal*)] (5.5)
_G_2 2 2\ 2 9_% 2 2 2 6
Vp = 3 (|Hu* = |Hal*)" + 5 (|Hu|*|Ha|* — |H, - Ha|?) (5.6)
;2
+ 0 (Qu, [ HUP + Qu, | Ha? + Qs]SP?)”

Viopt =myy |Hu|* + miy |Hal* +m?2| S| + (heA,SH, - Hy + h.c.) (5.7)

whereG? = ¢2 + g% (Sert, 2010; Cincioglu, 2010). Heig, gy andgi are the gauge
couplings of the gauge groups 61/(2).,U(1)y andU(1)’, respectively. Soft masses
of the scalar Higgsn};, , m7;,, m% are obtained by taking the first derivative of the
potential with respect to scalar components of the Higgddig¢b;) and equaling zero,
that is applying the condition for finding the extremum psint

(2) <o -

These soft masses are obtained as follows

1 1 _ 1
(m%,u) = m% cot 8 + §G202 cos 203 — §g§2QHu(QHU2 + Qs’U?) — ihg('zﬂ cos® B + 'Uf)

1 1 ~ 1
(mi,d) = mg tan 3 — gGQ’UQ cos 23 — éggQHd(QHvz + Qsv?) — §h§('02 sin? 3 + v?)

v? 1 _ 1
(m) = mgﬁ sin 3 cos 3 — 595@5(@1{112 + Qgv?) — §h§1}2 , (5.9)

S
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where (7, ), (m7;,) and (m3) stand for(mi; )uee, (M3, )iree @NA (M%) 1ree andmg =
(hs/V2)As, Qu = Qup, sin® B+ Qp, cos® 3, v? = v? + v2 andtan 3 = v, /vg.

Once the mass states of the Higgs fields are derived by usengeth level poten-
tial, we obtain ¢x6) mass-squared matrix of the Higgs fields. Diagonalizing thatrix
we get one massive pseudoscalar Higgs boson, 3 massive Bligégs bosons and 2
massless Goldstone bosons which are eaten by the neutgd agons”Z andZ’. The
mass-squareds of the Higgs bosons at the tree level areddryw

V2Ah v?
2o =—""11 in? 2 1
Ao sin 23 l * 4v2 S ﬁ} ’ (5.10)

which is never negative, and

1 /
mi? < MZ cos® 23 + §h§112$m225 + 9.2(Qp, cos® B+ Qp, sin® 3)*v? (5.11)

V2Ahsvs Lo (5.12)
sin 23 27 '

’m?qi = MI%V +
m7,. could be lighter than thE” boson due to the negative third contribution. It could be
negative for some choices of the parameters (Cvetic, 1997).

5.2. Higgs Sector of the U(Y)Model at the One Loop Level

Due to the soft breaking of supersymmetry, the Higgs bosossesashift in pro-
portion to particle—sparticle mass splitting under quamtwrrections. Though all parti-
cles which couple to the Higgs fields H, and H,; contribute to the Higgs boson masses,
the largest correction comes from the top quark and its pap&rer scalar top quark (and
to a lesser extent from the bottom quark multiplet). Inahgdiop and bottom quark su-
perfields, the superpotential takes the form

W 3 hoSH, - Hy+ h@Q - Holyy + @ - Habs, (5.13)
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whereh; andh, are top and bottom Yukawa couplings . This superpotenticbeées the
dominant couplings of the Higgs fields which determine kheerm contributions.

At the one loop there is a contribution to the tree level Higgtential due to the
radiative corrections and this contribution can be congbbteusing the effective potential
method. In fact, the radiatively corrected potential istten as

‘/total (H) = V;‘,ree (H) + AV (H> . (514)

The contributions of the quantum fluctuations in (5.14) raad

AV =

= 7T2Str [M‘* (m M 5)} (5.15)

where Str= >~ ,(—1)?/(2J + 1)Tr is the usual supertrace which generates a factér of
for squarks and-12 for quarks (Demir, 2004; Sert, 2010). The number of the factm

be calculated by multiplying the number of color (3 for guaand squarks), the number
of spin @(+1/2,—1/2) and 0O for the quarks and squarks, respectively), the number o
charges%(+, —) for the quarks and squarks) afid1)?/. A is the renormalization scale
and M is the field-dependent mass matrix of quarks and squarksgkeaAt = m; +
mz,/2). The dominant contribution comes from top quark (and bottmark, to a lesser
extent) multiplet. More explicitly we can write the radiagicorrection to the tree level
scalar potential as follows:

The required top and bottom quark field-dependent massdsasea
2 2
mi (H) = hi |Hy|” ., mj (H)=hj |Hg|" . (5.17)

The mass-squareds of their superpartners are also necessatculate (5.15), the mass-
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squareds of squarks are obtained by diagonalizing the stass-ed matrix below

M?2 M?2

mj; J;LL J;LR (5.18)
MfRL MfRR

wheref = t or b. For instance, the entries of the stop mass-squared meatikto be

1
Mz, =m% +mi — I (395 — gv) (1H,I> — |HJI)
+9y Qq (Qu, |Hul” + Qu, | Hal* + Qs|S[?)
1
Mqp :mth +m; — 5952/(|H3|2 — [Hg|?)
+9y Qu (Qu, | Hul” + Qu,| Hal* + Qs|SI?)
MszR :MszL = Iy (AtHS - hsSHS) (5.19)

These entries are obtained by taking the second derivdtiegeneral tree level poten-
tial including all the scalars. The coefficients of the quidrfields after the derivatives
give us above entries.

Insertion of the top and bottom mass matrices into (5.15ggERSs the full one-
loop effective potential. Radiatively corrected Higgs sesand mixings are computed
from the effective potential (Demir, 2004). Now, Higgs patial in (5.3) and (5.8) be-
comes the radiatively corrected effective potential,

a‘/;‘,oml o 2 82
( o, )o =0, M = (vamz ) (5.20)

with U, € {¢., da, s, ou, va, ps}- The soft masses of the Higgs scalars at one loop
include additional terms arising from the radiative coti@t, and these contribution is
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expressed as

w \ OPu
1 (OAV
0
1 (O0AV
m% = (m%)tree T (W) ) (5.21)
S s 0

where(m3; Jirces (M, )iree @NA(M%)1rcc are given in (5.9).

The mass-squared matrix of the Higgs bosons can be formedhsyititing above
values into the total scalar potential and taking the belevwdtives of the total scalar
potential:

<82V;£otal > <82V;£otal > <a2v;£otal > <a2v;£otal > < 82‘/ZtOtal ) < 82‘/ZtOtal )

Oy O 0 0duddgq 0 Obu0ds 0 Opudpu 0 Odudpq 0 Opudps 0
82%02&01 > <82V;£otal > <a2v;£otal > <a2v;£otal > < 82‘/ZtOtal ) < 82‘/ZtOtal )

< 0%q0¢u ) 0%ad¢a /) 064995 ) 0%ad¢pu ) 964994 ) 0%q0¢s /)
82%02&01 > <82V;£otal > <a2v;£otal > <a2v;£otal > < 82‘/ZtOtal ) < 82‘/ZtOtal )

M2 — < 0¢s0duy 0 0¢s0¢q 0 0¢s0ds 0 OpsOpuy 0 0psOpq 0 0ps0ps 0
<82V;£otal > <82V;£otal > <a2v;£otal > < 82%02&01 ) < 82‘/ZtOtal ) < 82‘/ZtOtal )

OpuOdu 0 Opubda 0 OpuO0ds 0 OpuOpu 0 Opudpq 0 OpuOps 0
82%02&01 > <82V;£otal > <a2v;£otal > <a2v;£otal > < 82‘/ZtOtal ) < 82‘/ZtOtal )

<8S0da¢u 0 ¢adda ) 0padds ) Opadpu ) Opadea ) dpades )
<82V;£otal > <82V;£otal > <a2v;£otal > <a2v;£otal > < 82‘/ZtOtal ) < 82‘/ZtOtal )

Ops0du 0 Ops0¢q 0 Ops0¢s 0 OpsOpu 0 OpsOpq 0 OpsO0ps 0

(5.22)

in the (¢, ¢4, ¢s, Pu, pa, ¢s) basis. Above matrix can be considered as a combination of
the scalar part, pseudoscalar part and mixing parts,

M2, M2
M? = ( is gP ) . (5.23)
MPS MPP

Since there is no mixing between the scalar and pseudogatsrin the CP conserving
limit (M2, = M3, = 0), we can examine these parts separately. Firstly let's &x@am
pseudoscalar part of the mass-squared matrix inghed,, ps) basis. After we find the

entries of pseudoscalar matrix we must diagonalize it tothieghysical mass states. This
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matrix is a3 x 3 matrix, hence diagonalization condition should be appiealtimes,

cosF —sinf 0 COS & 0 sina
Ry=1] sing cosg 0 |, Ry = 0 1 0 (5.24)
0 0 1 —sina cosa 0

wheretan 8 = v, /vy andcota = (vsin 5 cos3)/v, is found after some calculations.
Using the above rotation matrix and diagonalization caadi(R' - M2, - R), it is found
that there is one massive Higgs state called pseudoscajgstlbson ) and two mass-
less Goldstone bosons which are eaten by the nedtaald 2’ bosons inthe® ./, Gz, A)
basis while these bosons acquire their masses. The relmioreen the basis states can
be found by multiplying the rotation matrices:

Du cosF —sinf 0 cos & 0 sina Gy
wqg | =] sinf cosfB 0 0 1 0 Gy (5.25)
Vs 0 0 1 —sina cosa 0 A

Firstly the matrix are multiplied and then orthogonalityndétion (/"M = 1) is used to
find the second basis in terms of the first basis and belowtrissaibtained.

Gy cosFcosa sinffcosa —sina Du
Gy | = —sin 3 cos 3 0 ©Og (5.26)
A cosfsina sinfGsina  cos«a Vs

From this matrix the physical states of the pseudoscalao@PHiggs bosons are ob-
tained as below:

Gz = —sin By, + cos By , (5.27)
Gz = cos (3 cos ap, + sin [ cos apy — sin aps (5.28)
A =cos (sin ap, + sin §sin apg + cos aps (5.29)
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After the relation between the basis states is obtained agealby finding eigenvalues
of the mixing mass squared matrix for the pseudoscalar paxdam obtain masses of the
pseudoscalar Higgs bosons which have physical mass ssatesrdioned above. Two of

them are found to be equal zero corresponding to Goldstosenscand the value of the
rest is found as follows:

M?
M} =—4 (5.30)
SIn” «
3h A
2 2 t t
M? = M (1 i A ) (5.31)

wherelM¢ is a mass parameter introduced for simplicity @i a loop function depends
explicitly on the renormalization scale, and their expliorms are as the following

hSAS S
M2 = T (5.32)
V2 sin 3 cos 3
m2 m? m?2 +mg m?2
2 .2 2\ it i i i
F(A,mz,m; ) =—-2+1n < /1\4 2) + mt{ — mi In <mi> . (5.33)

Now, let’s examine the scalar part of the mass-squared xnatthe (., ¢4, ¢;)
basis. After the define the entries of the matrix which is givelow, we must diagonalize
it to find the mass states of the CP-even scalar Higgs bosami(P2004).

M2, + M%cos* 3 M2, — M3sinfcosf M2, — M3 cot acos 3
Mig=| M2, — M:sinfcos M2+ M3sin?f3 M3, — M3 cot asin 3
M2, — M3 cotacos 3 M3, — M5 cot asin 3 M2 + M3 cot?
(5.34)

The explicit form ofM?2 is given in (5.31), the mass parametM% (1,7 = u,d,s) may
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be represented as

+ | pipj + —5— | G = 6105,k In { } (5.35)
PiPi (m2 — mt~2)2 Q* y
where)\;; = \; fori # j, \;; = 2\, for i = j which are given by
IR R 2 P )
Aud = SG + 2Q(Hu,Hd) gy As = 2QHS gy, (5.36)

1
Aud = _ZGQ + Qn,Qn, ngz + hga Aus,ds = Qn,Q (Hu,Ha) gylz + hi (5.37)

andg is the loop function which is independent of the renormaidarascale and has the
following form

mZ +m? m2
G(mi ,m:)=2— ; = 1n< ;) (5.38)

For simplicity we have introduced some quantities whichimsahsionless,

Pu=h2=Au, pa= (02— Xa)/2, ps=(h®— Aus)/2, (5.39)
and
1,, 5 ,
Cu = _g(QQ - ggy) (QQ Que)QH, Gy (5.40)
1 2 5 2 1 /
Ca= g(QQ - ggy) + §(QQ - QUC)QHd Gy (5.41)
Cs=— (Cu+ ) (5.42)
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where the Equations (5.40)-(5.42) are D-term contribj@md also dimensionful

M, = Cub + h{ AL(Ay — pregs cot 3) (5.43)
Mg = Cad + B pregf(pregr — Artan 3) (5.44)
~9 'Ug 2

My = GO A S hipters (pegr — Ay tan §) (5.45)

S

with § = Mé — M2, + Cuvl + Cavg + (2.

When we diagonalize (5.34) we see that there are three neassalar Higgs
bosonsh, H andH'. The approximate values of these masses and their vasaainst
some model parameters have been computed by doing numealcalations and steps
of this analysis and results are given in the next chapter.
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CHAPTER 6

TEVATRON BOUNDS AND EXPECTATIONS FOR THE
LHC

At the wake of LHC experiments, it is convenient to study thgds boson masses
in U(1)" models. The existing bounds from the LEP and Tevatron exysris given
in Figure (6.1) can guide one to more likely regions of theapaster space. The LEP
experiments (Barate, 2003) have ended with a clear prefertor the lightest Higgs
boson mass:

mp, > 114.4 GeV . (6.1)

The knowledge of the Higgs mass has recently been furthgrostenl by the Tevatron re-
sults (Aaltonen, 2010; Dominguez, 2009) which state thatithtest Higgs boson cannot
have a mass in the range

159 GeV < my, < 168 GeV . (6.2)

It is clear that LEP bound influences the parameter spacelseoEM, MSSM
and its extensions lik&’(1)’ models. The reason is that the LEP range is covered by alll
these models of electroweak breaking. However, it is olwithat the Tevatron bound
has almost no impact on the MSSM parameter space within whicltannot exceed
~ 135 GeV. However, the Tevatron bounds can be quite effective foeresibns of the
MSSM whose lightest Higgs bosons can weigh ab2¥§,,. This is the case it/ (1)
models (Demir, 2004).

In this work we shall analyz& (1)’ models in regard to their Higgs mass pre-
dictions and constrained parameter space under the LEPI|basvBevatron bounds by
assuming that the Higgs boson searched bydndd CDF corresponds to that of the1)’
models. In course of the analysis, we shall considertttie’ model achieved by low-
energy considerations as well as by high-energy considaeg{the GUT and stringy
U(1)" models mentioned before). In each case we shall scan thexptaspace to deter-
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Figure 6.1. Bounds of the Higgs mass arising from the LEP @&awdffon experiments.
For the LEP experiment the mass of the Higgs boson shoula he>
114, 4 GeV while for the Tevatron experiment the mass range exdatle
95 C.L. for a SM Higgs isl63 < my < 166 GeV , with an expected
exclusion of159 < my < 168 GeV (CDF and DO Collaboration, 2009).

mine the bounds on the model parameters by imposing the lsdtomd direct searches.

6.1. Analysis

In this section we shall perform a numerical analysis of Hipgson masses in
order to determine the allowed regions under the LEP andtivaounds (Sert, 2010).
In the following we will first discuss the parameter space écelmployed, and then we
shall provide a set of figures each probing certain paramateyes in thé/ (1)’ models

considered.
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6.1.1. Parameters

In course of the analysis, we shall partly scan the paransgtace and partly
analyze certain parameter regions which best exhibit thenté® from the Higgs mass
measurements. We first list down various parameter valules tsed in the scan.

U(1) Gauge Coupling : The U(1)" models we consider are inherentigicon-
strainedin that, irrespective of their low—energy or high-energigir, we letU (1)’ gauge
couplinggy to vary in a reasonable range in units of the hyperchargesgenigpling. We
thus call all the models we investigate as ‘Unconstrairiét)’ Models’, or,UU (1)’ Mod-
els, in short.

We shall be dealing with four differeitU (1)’ models:

e UU(1) from E(6) supersymmetric GUT: Thg N andvy Models. These models
can be obtained from equation 4.6 with the andlgg) = arcsin \/g in n Model,
0@ = arcsin § in N Model, 0 = 0in ¢ Model.

e UU(1) from low-energy (solution of thg problem): This is the low-energy model

obtained by takin@)r, = Qn, = Qg, = —1 and henc&)., = Qus, = Qs = 2,
and we call this model as th€ Model.

The charge assignments of E(6)-based models can be fouratbie §.1. We use
the same symbols with these models but mutate them by giyrigautypically-assumed
valueg), = 4/ %(g% + ¢%) sin Ay (obtained by one-step GUT breaking), and changing itin
the rangeyy to 2¢gy. The motivation behind this mutation of the E(6)-bag&d)’ groups
is that one-step GUT breaking is too unrealistic to folloie IGUT group is broken at
various steps as indicated in (4.5). By varying thewe will treat E(6)-based models
as some kind of specific U’ models in which we can probe the impact of differght
values on the lightest Higgs mass.

Unlike the E(6)-based models, we adopt the valug drom one-step GUT break-
ing in analyzing theX model. InX model, by the need to cancel the anomalies, we
assume that there exist an unspecified sector of fairly toiral fields, and normaliza-
tion of the charge and other issues depend on that sectorti¢C¥897). Our analysis
will be indicative of a generi€/(1)" model stemming from mainly the need to evade the
naturalness problems associated withghmoblem of the MSSM.

The Gauge and Yukawa Couplings :In U(1)" models, at the tree level one can
write m? < a; + b; h? as deduced from Equation (5.11) whereb; are some constants
to be determined from the given value tafn 3, charge assignments as well as the soft
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Table 6.1. Charges of the particles undéd )’ models

| [ Qx [2V15Q, ] 2V10Qy | 2V6Qy |
4

Qu, | -1 2 2
Qn, | -1 1 -3 2
Qs 2 5 5 4
Qo, | -1 2 1 1
Qr, 2 2 1 1
Qu, | 2 1 2 1

supersymmetry-breaking sector. Hence, for sufficientigda; /a, ratios, one can expect
my o h,. At one-loop level, it is interesting to probe if such a redatalso exists for
the gauge coupling, Yukawa coupling and other importantehpdrameters. We will be
dealing with this issue numerically, by changing the valtigjoas stated above.

The Z-Z' Mixing : We shall always require thg — 7’ mixing to obey the bound
laz_ 7| < 1073 for consistency with current measurements (Abazov , 200@&.collider
analyses (Kotwal, 2008) constrainy,, to be nearly aeV or higher with the assumption
that Z, boson decays exclusively into the SM fermions. Howevedusion of decay
channels into superpartners increasesAhavidth, and hence, decreases thg, lower
bound by a couple of00 GeVs (Langacker, 2008). But, for simplicity and definiteness,
we takemy, > 1 TeV as a nominal value.

Ratio of the Higgs VEVstan 5 : We fix tan 3 from the knowledge otv;_
(Demir, 2004). Since the value of the mixing anglg_ . is small as mentioned above,
we can determine the value of then § = v, /v, by using the small angle approximation
tan(2az_z) ~ 207 gz as:  tan?f = Fy/F, where

F.= 29y /G)Qu, +az_z(—1+ (QQQ/G)%Q%{U + Q%(UE/UQ))) )
Fy = (29y/G)Qu, — az_z/(=1+ (29y/G)*(Q%, + Q5(v/v%)).  (6.3)

Using this expression we find thiain § stays around 1 (this is true as far@gss not very
large), and thus, we scaan 3 values from0.5 to 5 in E(6)-based models, and in thé

Model. The post-LEP analyses of the MSSM disfavais 5 ~ 1 yet in U(1) models
there is no such conclusive result. One can in fact, considef values significantly
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smaller than unity, as a concrete examplaodel favorsan 5 = 0.5.

The Higgsino Yukawa Coupling : Our analysis respects, = 1/1/2 in our X
model; this value is suggested by the RGE analysis of (CvE#@7). However, not only
for our X model but also for our mutated E(6) models we alfoyto vary from0.1 t0 0.8
for determining its impact on the Higgs boson masses. Thgsitip Yukawa coupling
determines the effective parameter in units of the singlet VEX as in Equation (4.2).

The Squark Soft Mass-Squareds We scan each of.;, m;, andmy_in [0.1,1]
TeV range. Following the PDG values (Amsler, 2008), we requgfet lstop and sbottom
to weigh appropriatelyin;, > 180 GeV andm; > 240 GeV. These bounds follow from
direct searches at the Tevatron and other colliders.

Singlet VEV v, : We scanu in [1,2] TeV range so thatuz, can be larger than
1 TeV. In doing this we sef..;; < 1TeV as the upper limit of this parameter. Larger
values ofy.. s are more fine-tuned in such models than the MSSM (Barger,)2@gh
keen values of; and .. ;¢ turn out to be necessary for keeping the mentioned models at
the low energy region and also for satisfying the aforenoeti constraints.

Trilinear Couplings : Inthe general scan we vary each4f A,, Asin [—1,1] TeV
range, independently. This is followed by a specific scamndigg Tevatron bounds
where the trilinears and soft masses of the scalar quarkssargned to share some com-
mon values. We do this for all of the models we are considering

These parameter regions will be employed in scanning thanpeter space for
determining the allowed domains. In addition to and agregmgth these, we shall
select out certain parameter values to illustrate how gtaonveak the bounds from Higgs
mass measurements can be. The results are displayed infdigetes in the following
subsection.

6.1.2. Scan of the Parameter Space

In this subsection we present our scan results for variousehparameters in light
of the Tevatron and LEP bounds on the lightest Higgs mass.t&vetke analysis with a
general scan using the inputs mentioned in the previousestiba. This will allow us to
perform a specific search concentrated around the Tevatotusgon limits. In both of the
scans we will present the results & model first, which is followed by the E(6)-based
modelsn, N and) models.

Related with the general scan we present Figure 6.2 whérgipy, and .y
are variables on the surface (The only exceptioXisnodel for whichg;, is taken at
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Figure 6.2. The plots for th&',n, N andvy models (from top to bottom). The mass
of the lightest Higgs boson against the gauge coupdipdleft-panels),
Higgsino Yukawa coupling, (middle-panels), and effectiye parameter
(right-panels).

its GUT normalized value.). The remaining variables, wh@sges were mentioned in
the previous section, vary in the background. In Figure 8lywn are the variations
of the lightest Higgs boson mass against the gauge couplingeft-panels), Higgsino
Yukawa couplingh, (middle-panels), and the effectiyeparameten..;; (right-panels).
The shading convention is such that the points giving> 168 GeV are shown by black
dots, those yielding14.4 GeV < m, < 159 GeV by grey dots, and those yielding
159 GeV < my, < 168 GeV by grey crosses.

As are seen from the left panels of Figure 6.2, increase irythgives rise to
higher upper bounds an,, for E(6)-based models. The same behavior, though not shown
explicitly, occurs in theX model (which already yields:; values as high a5 GeV).
Excepting then model, the E(6)-based models are seen to accommodate Higgs b
masses larger than the Tevatron upper bound wheises to extreme values above).8.
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Needless to say, the regions with grey dots are followed gypnes with grey crosses (the
forbidden region), as expected from the dependence of thgsHioson mass ajj.. The

n model does not touch even the Tevatron lower bound of theudgdl region for the
parameter values considered.

Depicted in the middle panels of Figure 6.2 is the variatibthe Higgs boson
mass with the Higgsino Yukawa coupling for the models comsd. Clearlyj, param-
eter is more determinative thag in thatm, tends to stay in a strip of values for the
entire range ofi,. Indeed, upper bound an,, (and its lower bound, to a lesser extent)
varies linearly withh, for X, N andy models. This is also true for themodel at least
up tohs ~ 0.65. In general, Tevatron bounds divide values into two disjoint regions
separated by the forbidden region yieldimg values excluded by the Tevatron results.
One keeps in mind that, in this and following figures, thenodel serves to illustrate
E(6)-based models yielding a genuine light Higgs boson: Higgs boson stays light for
the entire range of parameter values considered. At leattédoX model, one can write

159 > my, > 1144 = h, €[0.3,0.7] and my, > 168 = h, €[0.6,0.8] (6.4)

from the distribution of the allowed regions (top middle pgnMore precisely, the Hig-
gsino Yukawa coupling largely determines the ranges of tigg$imass in that while:,,
barely saturates the lower edge of the Tevatron exclusiod @ 7, < 0.52, it takes
values above the Tevatron upper edge/ipr> 0.58. In other words, Tevatron bound
dividesh, ranges into two regions in relation with;, values: Thée, values for lowm;, (
114.4 GeV < m;, < 158 GeV) and those for highny, (m;, > 168 GeV). This distinction
is valid for all the variables we are analyzing.

The variation of the Higgs boson mass with the effectiygarameter is shown in
the right-panels for Figure 6.2, for each model. It is clégtf.,.;r 2 300 GeV for the
LEP bound to be respected. On the other hand, one negds> 500 GeV for m, to
touch the lower limit of the Tevatron exclusion band in tienodel. Similar conclusions
hold also for the mutated E(6) models:;; = 700 GeV for ¢» and N models (while the
forbidden Tevatron territory is never reached in th@odel). They model is bounded by
LEP data only (at least within the input values assumed fackwvtve considered, < 2
TeV).

From the scans above we conclude that:

¢ All models are constrained by the LEP bound, that is, eacherhtpredict Higss
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masses below14.4 GeV for certain ranges of parameters.

e The X model, a genuine low-energy realization of UU(fodels based solely
on the solution of the: problem, yields largen, values, and thus, violated the
Tevatron forbidden band low values gf, h, and s, compared to the mutated
E(6)-based models. The latter require typically large @slofg;, hs and p.yy
for yielding m,, values falling within the Tevatron territory ( Meanwhildiig can
happen only ifg}, = 0.77 in N model andg;. = 0.7 in ¢» model with a Yukawa
coupling saturating, = 0.62). In fact, then model does not even approach to the
159 GeV border so that it does not feel Tevatron bounds at all. Tteeleft only a
small parameter space whereiry exceedd 59 GeV for ¢y and N models. One can
safely say that for ‘smally}, andh the E(6)-based models prediet, to be low,
significantly below159 GeV. In other words, Tevatron bounds shows tendency to
rule out non-perturbative behavior of E(6)-based models.

e One notices that heavy Higgs limit typically require largg, (close toTeV do-
main) and thus one expects Higgsinos to be significantly yn@asuch regions.
The LSP is to be dominated by the gauginos, mainly. In suciomsgone expects
the physical neutralino correspondingf(’)to be also heavy due to the fact that
Z' mixes with S by a term proportional té,v, (Ali, 2009). Therefore, the light
neutralinos are to be dominantly determined by the MSSM igasg

Using the grand picture reached above, we now perform a-pogd search aim-
ing to cover critical points wherein Tevatron exclusion ianifest. We project implica-
tions of these exclusions to scalar fermions and other agdiggs bosons. But, for doing
this we first fix certain variables, and by doing so, we get fidwerlapping regions (seen
in surface parameters while others running in the backgtpun

From Figure 6.2, we find it sufficient to consider values atbun~ 0.7 andg}, ~
2¢gy. More precisely, we consider Higgsino Yukawa couplingéas- 0.65,0.5,0.7 and
0.7 for X, n, N andy models, respectively. We sgt = 1.9¢gy for all three mutated E(6)
models, while we keep it as in Figure 6.2 for tNemodel.

Figure 6.3 shows variations of the;, and scalar top quark masses;( andm;,)
with zi.; and Mz,. Our shading convention is the same as in Figure 6.2. Theasrgra
= —A;, = A, = —A, = 02t01TeV
with increments 200 GeV iV and models. InX and»n models we scami ,mmon

selected asm ommon = mg = mg, = mg,

from 0.5 to1 TeV with increments 100 GeV. These inputs are also used in theafivlg
figure. In any panel of the figures we observe a hierarchy athdrgesin  mmo, Value
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Figure 6.3. The mass of the lightest Higgs boson against ffeetiee 1 parameter
(left-panels), the mass of the light scalar tag against the mass of thg,
boson (middle-panels), and the mass of the heavy scalantppgainst
the mass of the&Z; boson (right-panels) itX', », N and« models (top to
bottom).

corresponds to the largest;, value (topmost data lines) which is fixedlaeV.This is
the targeted search. Now, as can be seen from the left paneigure 6.3, the effective
1 parameter should satisfy.; > 500 GeV in X model, while others demanding higher
values. This is due to already fixéd parameter value. In this figure, the impact of
Tevatron exclusions is seen clearly (gray-crosses) orasstaimions (middle and right
panels ofX, N and) models), too. It is interesting to check model dependeneiss$or
this sector because the scalar fermions shall be imporartdi$criminating among the
supersymmetric models (even among the Ufigdels) at the LHC and ILC. The goal of
Figure 6.3 is to serve this aim, in which scalar quark masseglatted against varyings
boson mass (middle and right-panels). The correlationéeatvefermion masses and,,
comes mainly from the U(1)D-term contributions (proportional tg.,v?) to the L L and
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RR entries of the sfermion mass-squared matrices. There sod=alerm contributions
proportional toh v, to LR entries but their effects are much smaller compared to timose
the LL and RR entries (see Eq. (5.19) for details). This is an importafgotinot found

in the minimal model: Variation of sfermion masses witlprobes only the. R entry in
the MSSM given by (Baer, 2006)

) 1 2

Mz, = m% + mf + M% cos Zﬁ(é - gsinQHW)
2
ME2RR = mth +mj + M} cos 2ﬁ(§smﬂew)
Mi g = My, =mi(—A; + pcot 3) (6.5)

It is in such extensions of the MSSM that one finds explicitetefence o in not
only the LR entries but also i and RR entries; effects of..;, are more widespread
than in the minimal model where is regarded as some external parameter determined
from the electroweak breaking condition.

From Figure 6.3 one concludes that variationsiof andm;, , are much more
violent in X model than in the E(6)-based models. In tiemodel changes i/, and
Ly s influence Higgs and stop masses violently so that alloweda@nbitiden regions are
seen rather clearly. In E(6)-based models what we haveyneamistant strips, and thus,
my, andm;, , remain essentially unchanged with;; and Mz,. Moreover, in mutated
E(6) models the forbidden regions and allowed regionsiiéd distinct strips, signalling
thus the aforementioned near constancy of the Higgs andsaspes.

From Figure 6.3 it is possible to read out certain likely s épr stop and Higgs
boson masses, which will be key observables in collider expnts like LHC and ILC.
Indeed, inX model one deduces that

e Higgs in low-mass regior=- m;, € [600,800] GeV andmg, € [1.0,1.3] TeV,
e Higgs in high-mass regioa=- m;, € [200,550] GeV andm, € [1.5,1.8] TeV.

Therefore, in principle, taking th& model as the underlying setup, one can determine
if Higgs is in the low- or high-mass domains by a measuremétti@scalar top quark
masses. For instance, if collider searches exclude lovsiigig stops up tev 600 GeV
then one immediately concludes that the Higgs boson shaulgjbt,i. e. below2 My, .
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Contrary to modelX, E(6)-based modeld and+ allow the Z" mass to be more
confinedj.e. the mass of the/, boson isin~ [1, 1.4] TeV range within these two models.
Furthermore, these two models can rule oyt around~ [300, 500] GeV (One keeps
in mind, however, that in these models low (high) stop massegare related with low
(high) m,, values, in contradiction with th& model). Besides this, all three &f, N and
1» models exploration ohigh-mass region demands larger values far;,. One notices
that largest (smallest) splitting between, andm;, is observed inX () model.

As an extension of the MSSM, the present model predicts 3veR4diggs bosons:
h, H andH’. There is no analogue df’ in the MSSM. The model predicts one single
pseudoscalar Higgs bosaas in the MSSM. In the decoupling regimes. when heavier
Higgs bosons decouple fromone expects the mass hierarahy;: ~ myz, > my ~
ma > my. Itis thus convenient to analyze the model in regard to itggdimass spectra
to determine in what regime the model is working. To this emeldepict variations of,,
with my, m’; andmz, in Figure 6.4. The notation is such that, andm . are denoted
by grey dots g andm, by black dots. For quantifying the analysis we define thesati

Ry =21 Ry = fo which are, respectively, shown by gray and black dots in €.
The input parameters are taken as in Figure 6.3.

In Figure 6.4, shown in the leftmost column are variations:gfwith my (black
dots) and withm 4 (grey dots). It is clear that, th& and N models are well inside the
decoupling regime for the parameter ranges consideredh®ather hand, th¢ andn
models, especially the model, are far from their decoupling regime. In this regithe,
lightest Higgs can weigh well above its lower bound. Onecestithat, A and H bosons
exhibit no sign of degeneracy in tlyanodel.

The variations ofn;,, with m/;, andm , are shown in the middle column of Figure
6.4. One observes that grand behavior is similar to thosedrfitst column. One, how-
ever, makes the distinction tha;, depends violently om’;, andm, in X andn models
while it stays almost completely independentfoand N models.

All the properties summarized above are quantified in thel tbtolumn wherein
my, is plotted againsfz; andR,. The degree to whicl, , measure close to unity give a
quantitative measure of how close the parameter values #ne tlecoupling regime. One
notices that they differ significantly from unity inand+ models. In summaryn a/my
ratio drops to~ 0.8 in » model. This is also true fonz, /my:. Itis interesting to observe
that R; and R, behave very similar in most of the parameter space. Thisdigepicts
the heavy model dependency of neutral Higgs masses.

Experiments at the LHC and ILC will be able to measure all ¢ndgygs boson
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Figure 6.4. Variations of the lightest Higgs boson masswith those of the heavy
CP-even Higgs scalard, H' and of the CP-odd scalat. Also given is
the dependence of;, on theZ, boson mass. In the decoupling region,
mpy ~ my andmg: ~ my,.

masses, couplings and decay modes (Barger, 2006). Cléarand (especially:))
model yield lightest ofH, A among all the models considered. In course of collider
searches, these two models will be differentiated from thers by their relatively light

heavy-Higgs sector.
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CHAPTER 7

CONCLUSION

In this thesis work we examined the Higgs sector in uncoimstdd/ (1)’ model.
U(1)’ model is a gauge-extended minimal supersymmetric modelwdontains an extra
gauge field B;) and a singlet, chiral SM Higgs field>]. Therefore, this model has a
neutral Higgs bosonH’) in addition to the neutral Higgs bosons of the MSSMahd
H) and an extra gauge bosdito thelV* andZ gauge bosons found in the MSSM. We
renamed this model as unconstrairiéd )’ model (/U (1)) since we let gauge coupling
of the U(1)’ model g;- to vary in a reasonable range in unit of the hypercharge gauge
couplinggy .

Within this thesis content befor€(1)’ model, in Chapter 2 and 3 we explained
the general structure of the Standard Model (SM) and mingupérsymmetric extension
of the SM (MSSM) including their Higgs sector and their peaibk to understand why we
needU (1)’ models . Minimal supersymmetric model is introduced to sthe Hierarchy
problem of the SM which states that Higgs boson is unstaldemuguantum corrections.
Although MSSM can solve this problem, it suffer from thgroblem which is the main
motivation of thel/ (1)’ model. Then we gave detailed explanation for the motivation
theU (1)’ model and its structure in Chapter 4. Moreover, Higgs sefttire U (1)’ model
which is related to our main work was explained in Chapter th wetails.

In Chapter 6 we analyzed the lightest Higgs boson mass dgairnisus model
parameters and particles masses. Firstly, we examinedatregion of the lightest Higgs
mass against the gauge coupling of the )’ modelg;,, Higgsino Yukawa coupling con-
stanth, and effectivg: parametey.. ;s as seen in Figure 6.2. All these variables belong to
theU(1)’ model. MSSM does not contain these, oplparameter is included instead of
sy Parameter. From Figure 6.2 we can say that the LEP bounds$isdtfor all model
we have considered as in the MSSM. We can also obtain thi# festhe MSSM from
the analytical calculation. Contrary to the LEP bound, we @anclude that the Tevatron
bound is satisfied by the three modélw and NV sincen model gets smaller values than
lower bound of the Tevatron exclusion region. While tienodel is the most sensitive
model to the Tevatron bound, theand N model satisfy it only at the higher values of
the variables. However, MSSM is not sensitive to the Tevalh@und since the maximum
mass of the lightest Higgs boson in the MSSM35 GeV inspite of radiative corrections.
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We can conclude from the Figure 6.2 that Tevatron bound di@itimodel parameters into
two distinct regions, low-mass region and high-mass refporthe mass of the lightest
Higgs boson. For instance, in the X model for the low-massregHiggsino Yukawa
coupling should have smaller values than 0.52 while for tigh4mass region its value
should be larger than 0.58.

Using conclusions of Figure 6.2 which had been obtained bgrsiag the param-
eter space, we selected some specific values and performetesived work which is
shown in Figure 6.3 and 6.4. These certain parameter ranges ahosen from ranges
satisfying higher values than upper limit of the Tevatronitb. As a result of this anal-
ysis we obtained more precise values which show excludeahpeter regions satisfying
the Tevatron exclusion bound clearly. We can state thatXhmodel exhibit the best
behavior in this sense. Theand N model also show the excluded and allowed region
clearly, however, the model can not reach even the Tevatron lower limit. Therefaee
can conclude that certali~U’ models such as themodel can be the first one to be ruled
out.

Figure 6.4 which represents the variations between theenasxfsthe scalar top
quarks and mass of th# boson denotes that we can determine whether the lightegsHig
mass is in the above or below the Tevatron exclusion regianégsuring the mass of the
scalar top quarks except for themodel. We can deduce from this figure this situation is
also valid for the mass of th&’ boson only in theX model. From the last figure we can
see that in theX model the variation of the:;, depends on violently the variation of the
heavier Higgs bosons arfl boson masses. However, in tNeand«> modelsm;, remains
almost stable with changes of the variables. Therefore,edece that the relation among
masses of the neutral Higgs bosons depends on the model.

Experimental data we have used for our analysis belongstiatdained on 6
November 2009. After our analysis new results are obtaigeskan in Figure 7.1. Ac-
cording to this figure not only the previous excluded regigritie Tevatron is extended,
but also Tevatron excludes additional region around thelir&®. Now the lightest Higgs
mass can not get the values in the below ranges:

158 < my;, < 175 GeV and 100 < m;, < 109 GeV (7.2)

in the 95% confidence level. The expected value of the firsnbda 156 < m; <
173 GeV.
As a result of this thesis work we restricted the allowedargifor the parameters
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Figure 7.1. Bounds of the Higgs mass arising from the LEP awvdifon experiments.
For the LEP experiment the mass of the Higgs boson shoula he>
114, 4 GeV while for the Tevatron experiment the mass ranges erdladl
95% C.L. fora SM Higgs aré00 < my, < 109 GeV andl58 < my < 175
GeV , with an expected exclusion 056 < my < 173 GeV (CDF and

DO Collaboration, 2010).

which we had considered. The results of this thesis, thongliaidably carry a degree

of

model dependence, can be directly tested at the LHC (ancdL @ with much higher

precision). If measurements of the Higgs mass at the LHCaggelvalues like 30 —

140 GeV or above, we can interpret this situation as presence ofsites of the MSSM
like UU(1)" models. Depending on the new exclusion limits, we might firadenegions

of parameter space excluded.
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APPENDIX A

SPONTANEOUS SYMMETRY BREAKING (SSB)

According to gauge theories the mass terms of the gauge asarchiral fermions
are not allowed. However, experimentally it is known thatrfns and gauge bosons
such as, electron ardé’*, Z° bosons have mass.

Therefore, in order to generate masses gauge invarianceb@awspontaneously
broken. To explain how the symmetry is spontaneously censite Lagrangian below:

L=0,H0"H—V(HH) (A.1)

with

V(H) = @) H? + A H (A.2)

where\ which is quartic coupling constant should be larger thao 2er- 0 in order to
have a ground state for the potential.

This Lagrangian has two main properties (Pich, 2005):

1. Itis invariant under a grou@ of transformations,

2. It has two degenerate states with minimal energy as inr&igul if 42 < 0.
The vacuum expectation value of the Higgs fields correspanth these energies are
calculated by using the minimization conditigﬁ = 0. If one of these degenerate states
is chosen, one says that the symmetry is spontaneouslyrbroke

Firstly let's examine the condition wheH is a scalar and the invariance of the
vacuum states undéf — — H symmetry which Lagrangian is invariant.

There are two possibilities with respect to the sign of th@arameter:

1. If % > 0 the potential has one minimum &t = 0 and this vacuum condition
is invariant unde — —H symmetry as seen from Figure A.1.(a).

2

5 : - B B
2. If u* < 0 the potential has two degenerate minimum{&t) = +/ -4 =
i% and vacuum conditions are not invariant undér— —H symmetry as in Figure

A.1l.b. When we choose one of the vacuum states (for examglpdsitive one{ H°) =
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H) V(H)

@

Figure A.1. Shape of scalar potential when ga)> 0, (b) u? < 0 in two dimension.

,/—% = %) we cause breaking of the symmetry. To overcome of this ngariance
we expand the Higgs field around vacuum state as follows:

H(x) = h(x) + (H) (A.3)

whereh(x) represents the fluctuation around vacuum state as we camased-fgure
A.2.a. We put this expansion into the potential energy aed the obtain that there arise
one “massive Higgs Bosom)’ with massm,, = /—2u2. The calculation about these
can be found in reference (Abers, 1973).

This condition is valid for discrete symmetries in two dirsems. When we con-
sider continuous symmetry in three dimensions, we sholde itato account the phase
transformations which are continuous.

A.1. Global Phase Transformations

Lagrangian is invariant under the global phase transfaomatf (z) — ¢ H(x)
transformation wher@ is independent of. In three dimension the Higgs field should be
complex and in this condition one of the axis representsehkeparts of the Higgs fields,
while one of them shows the imaginary part of them as seerguar&iA.2.b.
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Figure A.2. (a) Fluctuations in two dimension, (b) Shapecaiar potential and fluctu-
ations in three dimension for* < 0.

The Higgs field can be expanded as below at the vacuum state:

H(x) = %[v T o) + ()] (A.4)

When we do the same calculation as explained above we seg tigabmes a “massive
Higgs Boson f)” and ¢ arise as a "massles2oldstone Boson”.

Goldstone Theorem:If a Lagrangian is invariant under a continuous symmetry
group(, but the vacuum is only invariant under a subgréiip- G, then there must exist
as many massless spin-0 particles (Goldstone bosons)lkenbgenerators (generators of
G which do not belong td{) (Pich, 2005).

A.2. Local Phase Transformations

Lagrangian is not invariant under the local phase transdtions given by

H(z) — @ H(z). (A.5)
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Firstly we must obtain an invariant Lagrangian under thegisymmetry. To make La-
grangian invariant "Covariant Derivative” is defined iredeof partial derivative.

D, =8, —igTA, with A, = A, —9,0(z) (A.6)

whereg, T'andA,, are gauge coupling, generators corresponding to symmetupg and

a vector field, respectively. For the detailed explanataoklat (Abers, 1973). After
Lagrangian becomes invariant, we can consider the vacuatesstthere are also two
vacuum states and Higgs fields can be expanded around a chexs&am state as it is

in the global phase transformation. When we examine thengiateenergy and do some
calculations, we see that there arise one “massive HiggsrB@#9” and one “massive
Vector Field (4,,)” while there is no massless Goldstone Boson. This mechsisiknown

as ‘Higgs Mechanisni. Massless Goldstone boson is eaten by vector field and becom
longitudinal polarization state of it.
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