

UTILIZATION OF TIMED AUTOMATA AS A

VERIFICATION TOOL FOR REAL-TIME

SECURITY PROTOCOLS

A Thesis Submitted to

the Graduate School of Engineering and Sciences of

İzmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by

Burcu KÜLAHÇIOĞLU

July 2010

İZMİR

We approve the thesis of Burcu KÜLAHÇIOĞLU

Prof. Dr. Sıtkı AYTAÇ

Supervisor

Assoc. Prof. Dr. Ahmet KOLTUKSUZ

Co-Supervisor

Assist. Prof. Dr. Ufuk ÇELİKKAN

Committee Member

Assist. Prof. Dr. Gökhan DALKILIÇ

Committee Member

Assist. Prof. Dr. Serap ATAY

Committee Member

08 July 2010

 _____________________________ _____________________________

 Prof. Dr. Sıtkı AYTAÇ Assoc. Prof. Dr. Talat YALÇIN

 Head of the Department Dean of the Graduate School of

 of Computer Engineering Engineering and Sciences

ACKNOWLEDGEMENTS

Foremost, I would like to gratefully acknowledge the supervision of my

co-advisor, Assoc. Prof. Dr. Ahmet Koltuksuz, for his patience, motivation,

enthusiasm and valuable guidance throughout my research.

I would like to thank to Prof. Dr. Sıtkı Aytaç for his support and

encouragement. My sincere thanks go to Asst. Prof. Dr. Serap Atay for her

advices through my study.

I would also like to express my sincere appreciation to Selma Tekir for her

patience and advices. She was always there to discuss my studies and motivate me

during my research.

I would like to thank Mutlu Beyazıt for his motivation and jokes that made

the study more enjoyable. My room mate Gürcan Gerçek also deserves my thanks.

I would like to give my special thanks to my family for supporting me not

only throughout my education but my whole life. I would also like to express my

deepest gratitude for my colleague and fiancé Murat Özkan for his academic

support and encouragement.

Finally, I would like to thank to The Scientific and Technological Research

Council of Turkey (TUBITAK-BĠDEB) for supporting me during my master of

science degree education.

iv

ABSTRACT

UTILIZATION OF TIMED AUTOMATA AS A VERIFICATION TOOL

FOR REAL-TIME SECURITY PROTOCOLS

Timed Automata is an extension to the automata-theoretic approach to the

modeling of real time systems that introduces time into the classical automata. Since it

has been first proposed by Alur and Dill in the early nineties, it has become an

important research area and been widely studied in both the context of formal languages

and modeling and verification of real time systems. Timed automata use dense time

modeling, allowing efficient model checking of time-sensitive systems whose correct

functioning depend on the timing properties. One of these application areas is the

verification of security protocols.

This thesis aims to study the timed automata model and utilize it as a

verification tool for security protocols. As a case study, the Neuman-Stubblebine

Repeated Authentication Protocol is modeled and verified employing the time-sensitive

properties in the model. The flaws of the protocol are analyzed and it is commented on

the benefits and challenges of the model.

v

ÖZET

ZAMANLI ÖZDEVĠNĠM KURAMININ GERÇEK ZAMANLI

GÜVENLĠK PROTOKOLLERĠNĠN DOĞRULANMASINDA

KULLANIMI

Zamanlı özdevinim kuramı, klasik özdevinirler (otomata) kavramına zaman

değişkenini ekleyerek bu modeli genişleten bir kuramdır. Doksanlı yılların başlarında

öne sürülen zamanlı özdevinim kuramı, hem biçimsel diller hem de gerçek zamanlı

sistem modelleme ve doğrulama alanlarında geniş ölçüde çalışılmaktadır. Zamanı

sürekli bir değişken olarak ele alan zamanlı özdevinirler, doğru çalışması zaman

kısıtlarına bağlı olan zaman kritik sistemler üzerinde model denetimine olanak

sağlamaktadır. Bu uygulama alanlarından biri de güvenlik protokollerinin

doğrulanmasıdır.

Bu tezde, zamanlı özdevinim kuramının incelenmesi ve güvenlik protokollerinin

doğrulanmasında kullanımı amaçlanmaktadır. Bir durum çalışması olarak, Neuman-

Stubblebine Tekrarlı Kimlik Denetimi Protokolü’nün, zamana bağlı özellikleri de dahil

edilerek modellenmesi ve doğrulanması sunulmaktadır. Protokolün doğrulama sonuçları

incelenerek modelin artı ve eksileri üzerinde yorumlara da yer verilmektedir.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. TIMED AUTOMATA THEORY ... 4

2.1. Modeling Time ... 4

2.2. Timed Automata ... 6

2.3. Timed Regular Languages .. 8

2.4. Decidability and Complexity of Timed Automata 9

2.4.1. Emptiness Problem ... 10

2.4.2. Universality Problem .. 14

2.4.3. Language Inclusion Problem .. 17

2.4.4. Complementability, Determinizability and Minimization 18

2.5. Variants of Timed Automata .. 21

2.5.1. -transitions on Timed Automata ... 22

2.5.2. Diagonal Constraints and Updates on Timed Automata 22

2.5.3. Robust Timed Automata .. 23

2.5.4. Event Clock Automata ... 24

2.5.5. Alternating Timed Automata .. 24

2.5.6. Integer Reset Timed Automata ... 25

2.6. Digitization of Timed Automata .. 25

CHAPTER 3. IMPLEMENTATION OF TIMED AUTOMATA 27

3.1. Symbolic Data Structures ... 27

3.2. Symbolic Reachability Analysis... 30

vii

CHAPTER 4. MODELING AND VERIFICATION WITH TIMED AUTOMATA 33

4.1. Formal Verification Methods ... 33

4.2. Modeling with Timed Automata .. 34

4.3. Specification and Verification with Timed Automata........................ 35

4.4. A Timed Automata Tool: UPPAAL ... 36

4.4.1. Modeling with UPPAAL .. 37

4.4.2. Specification and Verification with UPPAAL 38

CHAPTER 5. A CASE STUDY: USING TIMED AUTOMATA FOR MODELING

AND VERIFICATION OF NEUMAN-STUBBLEBINE REPEATED

AUTHENTICATION PROTOCOL .. 40

5.1. Related Work .. 40

5.2. Modeling Security Protocols using Timed Automata 41

5.3. Neuman-Stubblebine Repeated Authentication Protocol 42

5.4. Modeling the Neuman-Stubblebine Initial Part 44

5.4.1. Modeling Assumptions ... 45

5.4.2. Modeling Cryptology ... 45

5.4.3. Initiator, Responder and Server Automata 50

5.4.4. Dolev-Yao Intruder .. 54

5.5. Validation and Verification of Neuman-Stubblebine Initial Part 60

5.5.1. Parameters and Configurations used in the Case Study 61

5.5.2. Validation and Simulation of the Model 62

5.5.3. Verification of the Neuman-Stubblebine Initial Part.................... 62

5.6. Modeling Neuman-Stubblebine Subsequent Part 67

5.7. Validation and Verification of the Subsequent Part 70

5.8. Combining the Initial and Subsequent Parts 71

CHAPTER 6. ANALYSIS OF THE CASE STUDY: TIMED AUTOMATA AS A

VERIFICATION TOOL FOR SECURITY PROTOCOLS 75

6.1. Benefits of the Model ... 75

6.2. Challenges of the Model ... 76

6.2.1. State Space Explosion Problem .. 76

viii

6.2.2. Collision of Variable Values .. 79

6.3. Possible Extensions .. 81

6.3.1. Retransmissions .. 81

6.3.2. Parallel Sessions ... 82

CHAPTER 7. CONCLUSIONS .. 83

REFERENCES ... 85

ix

LIST OF FIGURES

Figure Page

Figure 2.1. A Timed Automaton ... 7

Figure 2.2. Illustration of an Infinite State System ... 10

Figure 2.3. Clock Regions of a Timed Automaton ... 11

Figure 2.4. Time Successors of a Clock Region ... 12

Figure 2.5. Region Automaton of a Timed Automaton .. 13

Figure 2.6. A Deterministic Timed Automaton .. 19

Figure 2.7. An Automaton that cannot be Determinized and Complemented 20

Figure 2.8. A that cannot be Expressed with a .. 22

Figure 2.9. Time Regions for a Digitized Timed Automaton ... 26

Figure 3.1. An example zone .. 28

Figure 3.2. Zone Automaton of a Timed Automaton ... 28

Figure 3.3. Algorithm for the Symbolic Reachability Analysis 31

Figure 3.4. A Zone and its -approximation .. 31

Figure 4.1. An Example Network of Timed Automata .. 35

Figure 4.2. An Example Timed Automaton Designed using UPPAAL 37

Figure 4.3. Path formula for Reachability, Safety and Liveness Properties 39

Figure 5.1. General View of Automata for Principals and the Network 42

Figure 5.2. Timed Automata for Cryptographic Operations .. 46

Figure 5.3. Modeling Encryption and Decryption .. 47

Figure 5.4. Creating a Message .. 49

Figure 5.5. Reading a Message ... 49

Figure 5.6. The Initiator Automaton for the Initial Authentication Part 51

Figure 5.7. Measuring the Time Waited for a Message .. 52

Figure 5.8. The Responder Automaton for the Initial Authentication Part 53

Figure 5.9. The Server Automaton ... 54

Figure 5.10. A Simple Network Model .. 56

Figure 5.11. Intruder Decomposing Messages ... 57

Figure 5.12. Intruder Parameter Selection for Encryption/Decryption 58

Figure 5.13. Intruder Deriving New Messages ... 58

Figure 5.14. The Intruder Model for the Initial Authentication Part 59

x

Figure 5.15. Normal (a) and Attacked (b) Message Flows of the Protocol 65

Figure 5.16. The Init Automaton for the Subsequent Part .. 67

Figure 5.17. The Initiator Automata for the Subsequent Authentication Part 68

Figure 5.18. The Responder Automata for the Subsequent Authentication Part 68

Figure 5.19. The Intruder Automata for the Neuman-Stubblebine Protocol 69

Figure 5.20. The Initiator Automata for the Neuman-Stubblebine Protocol 72

Figure 5.21. The Responder Automata for the Neuman-Stubblebine Protocol 72

Figure 6.1. Reachability Analysis and State Space Explosion 76

Figure 6.2. Reduced Number of Transitions ... 78

Figure 6.3. A Deficient Run Caused by the Collisions on the Variable Values 80

Figure 6.4. Extension for the Initiator Automaton for Retransmission 81

Figure 6.5. Extension for the Responder Automaton for Retransmission 81

xi

LIST OF TABLES

Table Page

Table 2.1. Decidability of Diagonal-free and Diagonal Automata with Updates 23

Table 5.1. Variables and Their Values Used in Cryptology Modeling 48

Table 5.2. Verification Results for the Queries .. 73

1

CHAPTER 1

INTRODUCTION

 Real time systems are designed to perform a certain task within certain

timeliness requirements, such as real time controllers, multimedia applications and

communication protocols. However for some cases, some real time systems may not

behave as intended which constitutes an important problem. Thus, it is needed to verify

the correctness of the system using some systematic methods.

Formal verification methods can be used to model and analyze the behavior of a

real time system to verify whether it meets the specified requirements. Formal

verification can be performed using Theorem Proving methods that solve the general

validity of a formula by using logical inference, or Model Checking methods that

analyze a finite model of a system whether it fulfills the desired property.

 In the literature, most verification methods (Pnueli 1977, Hoare 1978, Vardi and

Wolper 1986) use the qualitative notion of time involving the partial ordering of the

occurrence of events. However, the correctness of a real time system also depends on its

quantitative timed properties. For example, for a communication protocol, it is more

expressive to specify that ―the response should be received in 5 time units after it has

sent the message‖ than ―the response should be received after it has sent the message‖.

Since there is a need for the time-sensitive models in formal modeling and

verification, some untimed formalisms are extended with timing information to obtain a

model closer to the real world (Reed and Roscoe 1988, Alur and Henzinger 1989, Alur

and Dill 1994, Cerone and Maggiolio-Schettini 1999). Among these, timed automata

formalism is the most commonly used model, having mature and efficient automatic

verification tools and an easily understandable syntax and semantics.

Timed automata theory is proposed as an extension to the automata theoretic

approach for the modeling of real time systems (Alur and Dill 1994). It is a class of

automata extended with clock variables which model dense time. Timed automata

theory has become an important research area and been widely studied in the context of

both the theory of formal languages and verification of real time systems.

2

The theory of timed automata allows us to create models of real time systems

which can be verified using model checking methods. There are some timed automata

tools designed for this aim which have been used for several industrial and academic

case studies. UPPAAL (Bengtsson and Larsen 1996), which is used in this thesis and

KRONOS (Yovine 1997) are the most popular automatic verification tools among

these. Similar to the other model checking methods, model checking with timed

automata involves building a finite state model of a system and verifying a specified

property by traversing through all reachable states. The method has the advantages of

being fully automatic, generating a counter example in case of a negative result;

nevertheless, it suffers from the state space explosion problem.

Timed automata model checking is used for the verification of many real time

systems such as power controllers, gear controllers and audio-video protocols. One of

the most important application areas of timed automata is the verification of the security

protocols which aim secure communications over a network and used to provide a goal

such as the authentication or distribution of cryptographic keys. As the use of computers

and the internet is considerably increasing, the correctness of the security protocols is

getting more important. However, most of the security protocols are found to be flawed

which brings the network into an insecure state.

For a security protocol, the quantitative timing properties are critical and an

intruder can attack the protocol by exploiting the timing and the flow of the messages.

Hence, the timing properties should be employed into the security protocol model.

Some recent studies concentrate on the analysis of the security protocols with timing

information on the case studies of Needham-Schroeder and Yahalom authentication

protocols (Corin, et al. 2004, 2007). The studies in (Jakubowska, et al. 2005, 2008)

examine Kerberos, TMN, Neuman-Stubblebine and Andrew Secure RPC protocols by

not modeling them directly as timed automata, but translating a language specification

of a security protocol automatically to timed automata without integer variables.

This study utilizes timed automata as a verification tool for security protocols

including timing information. Our case study, models Neuman-Stubblebine repeated

authentication protocol directly with timed automata; then, verifies its security

properties using UPPAAL timed automata tool based on the goals of an authentication

protocol. Studying on a repeated authentication protocol gives the opportunity to

include the key expiration time in the model, in addition to the time needed for

cryptographic operations and timeout intervals.

3

First, the theory of timed automata is introduced. Besides the basic definitions

and the decidability properties of the model which are fundamental for verification,

some variants of timed automata proposed in some studies are mentioned briefly, that

provides a better theoretical understanding and reasoning on the model.

As it will be explained in the theory of timed automata, the theoretical timed

automata structures are hard to implement. Hence, the next chapter is devoted to the

symbolic data structures and algorithms for timed automata implementation. This

chapter provides an insight about the implementation of timed automata tools and how

they perform automatic verification algorithmically.

Later, model checking with timed automata is explained and the UPPAAL tool

is introduced since the modeling and verification with this tool is used in next chapters.

Next, the case study on Neuman-Stubblebine repeated authentication protocol is

presented. It is a repeated protocol that consists of an initial and a subsequent

authentication parts. Since the complete model of the protocol is so large that some

problems arise in verification step, the initial and the subsequent authentication parts are

analyzed individually. In this chapter, first, the modeling assumptions are given and it is

explained how to model and abstract away the cryptographic details. Then, the

construction of the automata models for the initial and subsequent parts are explained in

detail. The verification of these parts are provided based on goals of an authentication

protocol and the attacks on the protocol we can or cannot detect are explained. Later,

these parts are merged to obtain a complete model for the protocol.

Later, an analysis of the case study is provided including the benefits and the

challenges of the model and some possible extensions that can be proposed. The most

serious problem, state space explosion problem, is defined and restrictions and the

limitations applied to avoid it in the case study are explained exhaustively.

Finally, the study is concluded with the comments on the model and the further

perspectives for the analysis of the security protocols using timed automata.

4

CHAPTER 2

TIMED AUTOMATA THEORY

2.1. Modeling Time

Although many fields of science and engineering involve time concept, in

computer science, time is totally not considered or abstracted by modeling only the

required features of it. However, some kind of time modeling is necessary in many

areas of computing such as in hardware design, parallel processing and complexity

calculations (Furia, et al. 2010). In this study, the focus is the representation of time for

the modeling, specification and verification of real time systems whose correct

functioning depends on their timed properties.

In the literature, most of the modeling and verification methods (Pnueli 1977,

Hoare 1978, Vardi and Wolper 1986) involve qualitative notion of time rather than the

quantitative notion. Qualitative notion only includes the relative ordering between

events that specifies which event comes after the other. However, quantitative notion

describes a distance between the events which is required for the verification of real

time systems. For example, for a communication protocol, it is more expressive to

specify that ―the event should occur in time units after the occurrence of the event

 ‖ rather then ―the event should occur after the occurrence of the event ‖.

To meet the need for formalisms with quantitative timing information, some

untimed formalisms are extended with quantitative notion. These formalisms are: the

extensions of the linear time logics (LTL) (Pnueli 1977) and the computational tree

logic (CTL) (Emerson and Clarke 1982), namely metric temporal logic (MTL) (Alur

and Henzinger 1990), timed temporal logic (TPTL) (Alur and Henzinger 1989), real-

time temporal logic (RTTL) (Ostroff 1989), explicit-clock temporal logic (XCTL)

(Harel 1990), real-time computation tree logic (RTCTL) (Emerson, et al. 1990) and

timed computation tree logic (TCTL) (Alur, et al. 1993a); timed process algebras such

as timed Communicating Sequential Processes (TCSP) (Reed and Roscoe 1988); timed

Petri Nets (Cerone and Maggiolio-Schettini 1999) which is more appropriate for work-

5

flow processes (Srba 2008) and timed automata (Alur and Dill 1994) which is an

extension to the automata-theoretic approach.

 For a real time system modeling technique, the representation of time is an

important design issue. Different approaches for the representation of time may be more

appropriate for different kinds of systems or modeling objectives (Alur and Henzinger

1992, Furia, et al. 2010).

 Many formalisms assume that the states of a system are observed only at integral

times; although, in a real-time system, events may occur at any point. This

approach uses discrete time modeling, which maps onto the integer numbers

domain. Clocks tick at regular intervals and events can occur at each clock tick,

at the multiples of ε. Here, it is important how to define the interval between two

clock ticks, . If is defined to be too large, then the model is too coarse; on the

other hand, if ε is defined to be too small, then the state space will be too large.

 Fictitious clock approach, introduces a special tick event into the model. Time is

modeled as a global state variable on the domain of the natural numbers and it is

divided into several ticks. The time delay between two events is measured by

counting the number of these ticks. Hence, the exact time delay between two

events cannot be measured.

 In continuous time modeling, time is modeled with non-negative real numbers.

Hence, events can occur at any time and delays may be arbitrarily small. Dense

time is strictly more expressive than discrete time. However, it gives rise to an

uncountable state space. Timed automata uses continuous time modeling which

is more faithful to the nature of real-time systems.

 In timed automata, the passage of time is modeled by the real-valued clock

variables, which record the elapsed time. All clocks are synchronized. They run at the

same speed, having the same derivative with respect to time, which is assumed to be

equal to . The absolute time is implicitly assumed by the model and the relative timing

can be measured explicitly by testing the clock variables (Furia, et al. 2010).

 The clocks can be tested and set to a value at the transitions. Note that we

concentrate on the classical timed automata, in which only reset (setting to value) of a

clock is allowed. Also, in timed automata, a transition from one state to another is

assumed to be instantaneous; in other words, time passes only in states, not in edges.

6

 In timed automata, it is possible to have a zeno run which allows infinite number

of events occurring in a finite amount of time. The zeno-timelocks, where time cannot

pass beyond a certain point, also constitute zeno behavior resulting in the performance

of an infinite number of actions in a finite period of time. (Penczek and Polrola 2006,

Bowman and Gomez 2006)

2.2. Timed Automata

The class of timed automata is a special subclass of hybrid automata (Alur, et al.

1993b) that include both discrete and continuous variables. Same as the classical

automata, timed automata have finite number of states (locations) and edges. In

addition, it has some number of real-valued clock variables which model the passage of

time.

 Alur and Dill who first proposed the timed automata theory (Alur and Dill

1994), defined some restrictions on the clock variables. In this model, the clocks can be

reset only when an edge is taken and only clocks reset to the value is allowed.

Definition (Clock Constraint): Let be a set of clock variables. Then set of

clock constraints is given by the following grammar:

 where

 Clock constraints can be guards on edges that control whether it is allowed to

take the transition in the current time. The guards can also be associated with locations

and are called location invariants. The automata allowing the use of location invariants,

introduces a more intuitive notion of progress. These automata can be called as timed

safety automata but generally referred as timed automata.

 In the timed automaton given in Figure 2.1, the clock constraints ,

and are the guards on edge. To take the edge from to , event must occur

and the clock variable must have a value greater than . If this transition is enabled,

the clock variable is set to . is an invariant and forces to take the edge from

to when the clock variable has a value smaller than . Note that using this invariant

does not have the same effect as having the guard on the transition.

7

Figure 2.1. A Timed Automaton

Definition (Clock valuation): Clock valuation is a function , that assigns

every clock to a real variable. Let be a clock valuation. Then,

 Initially, for all .

 Clock reset:

 Clock increment:

The interpretation means that the valuation satifies the constraint .

Definition (Timed Automaton): A timed automaton is a tuple where

 is a finite event alphabet

 is a finite set of states

 is a set of start states

 is a set of final (accepting) states

 is a finite set of clocks

 are the edges where

 with

 A transition can be written as

 whenever , where is

a guard, an event and a subset of clocks to be reset.

The following subclasses of automata are defined depending on the strictness on

the inequalities of the clock constraints:

 Open timed automata can only have the clock constraints given as

 . They are ―acceptance robust‖; when they accept a

time trace, they accept also the neighbor timed traces.

 Closed timed automata can only have the clock constraints given as

 . They are ―rejection robust‖; where rejected traces are

robust under small perturbations.

8

 A run of timed automaton has the following form:

 , where each pair is a timed event

with , which is the timestamp of the event . A run is accepted if .

Definition (Timed word): A timed word or a timed trace is a finite sequence of timed

events with non-decreasing timestamps having the form

with where and .

 Timed words can be obtained from the runs of the timed automata where

accepting timed words make up the language . An example timed word is given

below, for the automaton in Figure 2.1.

x: 0 3.8 0 2 2 5.2 0

y: 0 3.8 3.8 5.8 5.8 9 0

Timed word (timed trace):

 In a run, with is called an action transition and with is a

delay transition. If in is equal to , then two consecutive transitions can be

executed without time passing in between. Such runs are called weakly monotonic. But,

it is sometimes more convenient to restrict the runs to contain non-zero passing times

only, which are called strongly monotonic. Simply, weakly monotonic time traces

() allow several events may share the same time stamp where strongly

monotonic time traces () allow no two events happen at the same time (Penczek

and Polrola 2006).

2.3. Timed Regular Languages

 Inspiring from the theory of regular languages accepted by finite state automata,

timed regular languages can also be defined for timed automata. A timed language is

a collection of timed words. is timed regular if there is a timed automaton whose

accepting timed traces (timed words) make up the timed language (Alur, et al. 2004,

Asarin, et al. 2002).

9

Definition (Timed Regular Language): A timed language is a timed regular

language iff for some timed automaton .

Definition (Untiming): If , then

 .

Theorem: Given a timed automaton , there exists an automaton

over which accepts .

 This theorem leads to the fact that, if is a timed regular language, then

 is a regular language. An example not timed regular language can be given

as a language of timed words where every symbol is followed by some symbol after

a delay of . A timed automaton cannot be generated for that language since there can

be unbounded number of symbols in a timed word that needs the use of infinite

number of clocks. Another example for a not timed regular language is the untimed

language since it is not even a regular language.

 The next theorem gives the closure properties of timed regular languages for

union and intersection operations. Similar to the untimed automata, the union timed

automata can be constructed by taking the disjoint union of all the automata, and the

intersection automata can be obtained by constructing the product of the automata.

Theorem: A set of timed regular languages is closed under union and intersection.

However, the class of timed automata is not closed under complementation, which

is included in next section.

2.4. Decidability and Complexity of Timed Automata

 A certain property is decidable for a formal language if there is a procedure that

can determine whether the property holds in the model. The amount of memory and the

time required for the algorithm that solves this decidability problem gives the

complexity of the problem.

 For timed automata, the emptiness, universality and language inclusion

problems are the most studied decision problems since they are also the fundamental

problems for verification. The solution of the language inclusion problem requires the

10

complementability (therefore, determinizability) of timed automata, which also

constitute important decision problems.

2.4.1. Emptiness Problem

The emptiness problem asks whether the language generated by a formal model

is empty. The following is the definition of the emptiness problem for timed automata.

Definition (Emptiness Problem): It is the problem of ―given a timed automaton , is

the set of timed traces of empty?‖.

 In a verification task, given an implementation and a specification, the

reachability problem is used to test whether a state which satisfies the specification is

reachable. The emptiness problem is fundamental for verification tasks since it is

reducible to the reachability problem that tests whether a state can be reached in a

model.

However, the solution of this problem is more cumbersome than untimed

automata. Since the configurations of timed automata are infinite, even a very simple

automaton generates infinitely many reachable states. Figure 2.2 gives a simple timed

automaton giving rise to an infinite transition system where naive explicit state search is

not reasonable. The idea is constructing a model on which finite state analysis is

possible so that we can examine the decidability of the reachability problem.

Figure 2.2. Illustration of an Infinite State System

 The decidability of the emptiness problem for timed automata is proved by

constructing a transition table that mimics the runs of . To achieve this goal, state

space is partitioned into finitely many equivalence classes so that equivalent states

11

exhibit similar behaviors. Infinite number of clock valuations are partitioned into

finitely many clock regions, whose definition is given below.

Definition (Clock Regions): Let be fixed. Define an equivalence relation

on . partitions into finitely many equivalence classes called regions (Alur, et

al. 1990, Alur and Dill 1994).

Let for any , denote the fractional part of and denote the

integral part of ; that is . The equivalence relation is defined

over the set of all clock interpretations for .

 if

 for all

 either

 or both and are greater than (exceeds)

 for all with ,



 for all with



 Figure 2.3 shows the clock regions of a timed automaton with two clock

variables and , having ― ‖ as the maximum clock constant in the clock constraints

for and ― ‖ for .

Figure 2.3. Clock Regions of a Timed Automaton

 , , , , ,

 , , ,

 , , ,

 , , ,

 , , ,

 ,

 , ,

 , , ,

 , ,

12

 A region automaton can be constructed that is equivalent to the semantics

of a timed automaton with respect to reachability. This region automaton

records the state of , and the equivalence class of the current values of the clocks.

Before formally defining a region automaton, let us define the time successor of a

region which is simply the region that can be reached by the passage of time.

Definition (Time Successor): A clock region is a time successor of a clock region

iff for each , there exists a positive such that (Alur and Dill

1994).

Figure 2.4. Time Successors of a Clock Region

 Figure 2.4 shows the time successors of the clock region

 , which are, other than itself, ,

 , . This means, when

the clock valuation is in that region, the passage of time can bring us to the one of these

time successors. Time successors of a region can be easily found by drawing a line

parallel to line, starting from this region to the upwards.

Definition (Region Automata): For , a region automaton is

a transition table over the alphabet :

 the states:

 the initial states:

 R(A) has an edge iff there is an edge and a

region ; such that

(i) is a time successor of ,

(ii) satisfies,

(iii) .

13

 Figure 2.5 gives the region automaton for the given timed automaton. The initial

state of the region automaton is the state where both the clocks are equal to . The

transition from to can be taken when is greater than . Notice that, the greatest

constant in the time constraints is . Hence, this constant will be considered while

generating the regions. In order for the clock to get greater than , some time should

elapse in state . So, the event can taken when , or . Since the

clock is reset at the transition, we can reach to the state having the clock regions

 , and , and . The rest of the region automaton is

constructed in a similar way by considering the time successors and transitions for the

states in region automata.

Figure 2.5. Region Automaton of a Timed Automaton

 The region automaton of a timed automaton can recognize the language

 . Hence, the emptiness problem of a timed automaton may be examined

by checking the emptiness of its region automata. In order to calculate the complexity of

this problem, we should calculate the number of clock regions in a region automaton.

 Let be the largest constant in the clock constraints of the clock where

is the set of all clocks. For each region, there is one clock constraint from the set

 . The number of

ways to choose this value for each clock is . The ordering of the

14

fractional parts of the clocks may be chosen in ways (For example, for clocks we

may have permutations as , , , , ,

). The fractional part of a clock may also be equal to the fractional part of its

predecessor (such as), the number of ways to choose this is bounded by

Lemma: Given a timed automaton , the number of regions of is bounded by

 .

Theorem: Given a timed automaton , the emptiness of can be checked in time

 .

Theorem: The problem of deciding the emptiness of the language of a given timed

automaton , is (Alur, et al.1990, Alur and Dill 1994).

 Since the number of regions is exponential in the number of clocks for the

region automata, it suffers from a combinatorics explosion. Hence, this structure is not

feasible to implement. Instead of this, symbolic data structures and algorithms are used

for implementation of timed automata to perform reachability tests easier on them, as

explained in Chapter 3.

2.4.2. Universality Problem

Definition (Universality problem): It is the problem that asks ―given a timed

automaton , does it accept all timed traces?‖.

Universality problem for timed automata is undecidable, which is proved for the

classical timed automata in general sense, by reducing the problem to the halting

problem of two-counter machines (Alur and Dill 1994). Before giving the proof, let us

define the two counter machines. Then we will examine, given a 2-counter

nondeterministic machine, how to construct the corresponding timed automaton.

Definition (Two-counter machine): A nondeterministic 2-counter machine is a

triple with a sequence of instructions and two counters , .

 In a two-counter machine, each (i) can increment or decrement one of the

counters and jumps nondeterministically to one of the possible next instructions, or (ii)

15

tests one of the counters for emptiness and jumps unconditionally to the next

instruction. A configuration of is a triple where ,

 , . A halting computation of is a finite sequence of configurations starting

with and ending with . The problem of deciding whether a given

nondeterministic 2-counter machine has a halting computation, is .

Theorem: Given a timed automaton , universality problem for is undecidable.

Proof: The universality problem for timed automata is examined by reducing this

problem to the halting problem of two-counter machines. The automaton is encoded on

the alphabet , where is a halting computation

of , having , . The strings is in a timed language

such that, in this string, the subsequence of , corresponding time interval

encodes the configuration in a way that, for all ,

 if then for every at time in the interval , there is an

 at time

 if then for every at time in the interval except the

last one, there is an at time

 if then for every at time in the interval except the last

one, there is an at time

 similar requirements hold for

 Let us say that given a 2-counter machine , the words corresponding to the

halting computations of make up the language . The idea is to construct the

automaton (this is the disjunction of several automata each demonstrating an

unacceptable behavior for a two counter machine. These are the automata (i) that

accepts for some , there is no symbol at time , or the subsequence of in

the interval is not of the form

 , the string having the substring , (ii)

 accepts iff the substring of corresponding [1, 2) is not , meaning that

 or or , (iii) for each , we construct an automaton

which checks whether the next instruction is valid with respect to current instruction),

accepts the complement of . Hence, if the two-counter machine does not halt, we

say that is empty, implying that the automaton is universal (Alur and Dill, 1994).

16

Special Cases:

There are some studies on universality problem with some restrictions on the

timed automata where some of them yield to the decidability of the problem. Generally,

in the verification studies, no such restrictions are applied on the timed automata model.

However, we briefly cover the theorems stating the decidability results for some cases

to see a direction of research on timed automata and have a better insight of the model.

Considering the time traces being weakly or strongly monotonic, the decidability

of the universality problem is dependent upon the open and closed subclasses of timed

automata. The theorems below, give the decidability results of open and closed timed

automata over and . The proofs for these theorems use the digitization

properties of timed automata and can be found in (Ouaknine and Worrell 2003b).

Theorem:

(i) The universality problem for open and closed timed automata over is

undecidable.

(ii) The universality problem for open timed automata over is decidable.

(iii) The universality problem for closed timed automata over either or

 is undecidable.

 Universality problem for timed automata is also studied by adding some

restrictions on the resources of a timed automaton which are the number of states, size

of event alphabet and clock constraints. The study in (Adams, et al. 2007) examines the

problem with minimal resources. The following theorems give these decidability

results.

Theorem:

(i) Over , the universality problem is undecidable for timed automata

with a single state, a single-event alphabet, and clock constants and only.

(ii) Over , the universality problem is undecidable for timed automata

with a single state, a single-event alphabet, and clock constants , and

only.

 The next theorems state that, for timed automata over finite words, the one-clock

universality problem is decidable with non-primitive recursive complexity. However, if

ε-transitions or non-singular post-conditions are allowed, then the one-clock

17

universality problem is undecidable over both finite and infinite words. The proofs for

these theorems can be found in (Adams, et al. 2005, 2007). The universality for the

timed automata with one clock and -transitions is undecidable.

(iii) The universality for the timed automata with one clock and with non-

singular post-conditions is undecidable.

(iv) The universality for the timed automata with a single clock is decidable and

has non-primitive recursive complexity (the problem does not lie in the

complexity class for any primitive recursive function)

over finite timed words.

(v) The universality for one-clock nondeterministic timed automata is

undecidable over infinite timed words (Lasota and Walukiewicz 2008).

2.4.3. Language Inclusion Problem

Definition (Language Inclusion Problem): Given two timed automata and , it is

the problem of checking whether .

 Language inclusion problem is important for the verification of systems. In

order to perform verification of a system, the behavior of the implementation and the

requirements that the system should satisfy can each be represented as a set of traces.

Then, it can be checked whether the implementation satisfies the specification, in other

words, whether the set of specification traces includes the set of implementation traces.

Given a specification and an implementation , the implementation meets its

specification iff .

Corollary: The language inclusion problem for the timed automata is undecidable.

 The undecidability of the problem can be easily seen by reducing the

universality problem to the language inclusion problem. The automaton is universal

iff .

Special Cases:

 Similar to the universality problem, some studies yield decidability of the

language inclusion problem for special cases.

18

Theorem:

(i) The language inclusion problem over is only decidable when is a

closed timed and is an open timed automata.

(ii) The language inclusion problem over is undecidable in all cases

(Ouaknine and Worrell 2003).

 The problem also becomes decidable with some restrictions. The proofs for the

following theorems can be found in (Ouaknine and Worrell 2004).

Theorem: The language inclusion problem asking whether is decidable

where

(i) the timed automaton has at most one clock.

(ii) the timed automaton has as the only constant used in the clock

constraints.

 In addition to these results, this problem is proved to be decidable for some

subclasses or variants of timed automata which are given in sections 2.5 and 2.6.

2.4.4. Complementability, Determinizability and Minimization

2.4.4.1. Complementability

 Complementing an untimed deterministic finite state automaton is simple and

the complement automaton can be easily obtained by just exchanging the accepting and

non accepting states. However, this is not the case for a timed automaton.

Theorem: The class of timed regular languages is not closed under complementation.

Proof: Given two timed automaton and , iff the intersection of

and the complement of is empty. Assume that the set of timed automata is closed

under complementation. Then, iff there is an automaton such that

 is nonempty, but is empty. This follows that the complement

of the inclusion problem is recursively enumerable, contradicting the undecidability of

the inclusion problem (Alur and Dill 1994).

19

The study in (Tripakis 2006) examines the problems asking whether a timed

automaton is complementable, determinizable, or minimizable; which also ask for a

solution automaton if the answer is ―yes‖. The proofs are based on the reduction of the

problems to the universality problem.

Theorem: The problem ―Given a timed automaton does there exist a timed

automaton such that ? If so, construct such B‖ is not Turing computable. In

other words, there does not exist an effective procedure which given a timed automaton

 it constructs such that if it exists, or says ―no‖ if such a timed

automaton does not exist.

Proof: Given a timed automaton , if its complement timed automaton exists, then

we can compute . will be universal iff . If does not exist, then

is not universal, because the empty language can be accepted by a timed automaton with

no accepting states.

2.4.4.2. Determinizability

Definition (Deterministic timed automata): A timed automaton is deterministic iff

(i) the set of initial locations is a singleton, (ii) and , if there are two

edges and , then the guards and are mutually

exclusive.

If is a deterministic timed automaton, then for every timed word ,

there is a unique run over accepting it. Figure 2.6 gives an example deterministic

timed automaton.

Figure 2.6. A Deterministic Timed Automaton

20

Theorem: There does not exist an effective procedure which given a timed automaton

 outputs a deterministic timed automaton such that if exists, or says

―no‖ if such a timed automaton does not exist.

 Let us assume that such a procedure exists. (i) If exists, since it is

deterministic, one can construct the automaton which is , by interchanging the

accepting and non-accepting states. Now, is universal iff . (ii) If does

not exist, then is not universal since the universal language can be accepted by a

deterministic timed automaton with a single accepting state, no clocks, and a self loop

for each letter in (Tripakis 2006).

Figure 2.7 gives an example of timed automaton that cannot be complemented

or determinized. Since there is no bound on the number of ’s that can occur in any

time interval, any timed automaton capturing the complement of would require an

unbounded number of clocks to keep track of the times of all the ’s within the past one

time unit (Alur and Dill 1994).

Figure 2.7. An Automaton that cannot be Determinized and Complemented

2.4.4.3. Minimization

Minimization problems for a timed automaton , ask whether it is possible to

create an equivalent timed automaton with a reduced number of clocks or lessened

magnitude of clock constraints.

Theorem: There does not exist an effective procedure which given a timed automaton

 with clocks (where), outputs a timed automaton B with clocks such

that if it exists, or says ―no‖ if such a timed automaton does not exist.

21

Proof: The universality problem can be reduced to the minimization problem. Given ,

if such an automaton exists, construct a timed automaton having clocks. If

exists with zero clocks, check whether the untimed language of is equal to . Since it

has no clock, it has no constraints on them. If , then . If

such does not exist, is not universal since universal automaton can be reduced to an

automaton with no clocks.

Theorem: There does not exist an efficient procedure which given a timed automaton

with as the maximum constant in clock constraints, and outputs a timed automaton

with as the maximum constant in clock constraints such that if it

exists, or says ―no‖ is such a timed automaton does not exist.

Proof: If exists such an automaton, size of the constraint can be reduced until it is zero

or to a constant that cannot be reduced any more. To construct having constants at

most zero can be reduced to the problem in previous theorem (Finkel 2006).

If it was possible to minimize a timed automaton into a reduced model, than we

could be able to perform verification easier which would further improve the efficiency

of the timed automata model.

2.5. Variants of Timed Automata

In the previous sections, the classical definition of timed automata is given. Then,

its closure and decidability results are explained. It can be seen that, although it is a

powerful tool for real time verification, it has some drawbacks in the formal language

concepts. It is not closed under complementation and determinizability is undecidable.

Clock reduction is possible for some timed automata but the possibility is also

undecidable. For the verification aspects, the emptiness problem is decidable but

universality problem is not decidable in general.

In the literature, some variants of timed automata are proposed and studied

whether they yield better decidability results or make up a determinizable class of timed

automata. They are some modified or restricted classes of the classical timed automata,

some of which lead to the decidability of some problems.

Before going on these variants of the model, it is important to note that the timed

automata tools implement and case studies use the classical timed automata model.

22

Although these proposed variants are not implemented, we give brief explanation of

them to provide a better understanding of the timed automata model.

2.5.1. -transitions on Timed Automata

A silent action is a non observable event and the transition labeled with that

action is called a silent transition. Timed automata with -transitions, shown as , are

strictly more expressive than the timed automata without -transitions, . Figure 2.8

gives an example that accepts the timed words with even timestamps, that cannot

be expressed with a timed automaton (Bérard, et al. 1998) (Note that UPPAAL tool that

is used for drawing this figure, in fact does not accept the events (the event alphabet)

and .).

Theorem: Given a , it is undecidable to determine whether there exists a such

that .

For a , the complementability, determinizability and computability of the

minimal number of clocks needed to recognize its -timed regular language are also

undecidable (Bouyer, et al. 2009).

Figure 2.8. A that cannot be Expressed with a

2.5.2. Diagonal Constraints and Updates on Timed Automata

In classical timed automata, only reset to is allowed as clock update. The

studies in (Bouyer, et al. 2000, 2004) concentrate on updatable timed automata which

allows for different kinds of updates that may allow simpler and more concise

representations of some real-time systems. They examine the decidability results of

these models by considering the diagonal properties of timed automata.

23

 A timed automaton is diagonal-free if its clock constraints are defined by:

 where and . Diagonal

automata can also contain any sub formula of the form where and are

clocks, and . Note that the diagonal-free automata have the same

expressive power as the automata with diagonal constraints, since there exists a

diagonal free timed automaton equivalent to a diagonal automaton (Alur and Dill 1994,

Bérard, et al. 1998).

The summary of the decidability results for updatable timed automata are given

in Table 2.1. The decidable classes are not more powerful than classical automata, and

even bisimilar automata for them can be constructed.

Table 2.1. Decidability of Diagonal-free and Diagonal Automata with Updates

Updates Diagonal-free Constraints Diagonal Constraints

PSPACE-Complete

PSPACE-Complete

Undecidable

 Undecidable

PSPACE-Complete

PSPACE-Complete

Undecidable

 Undecidable

2.5.3. Robust Timed Automata

The idea for robust timed automata comes from the real-time systems that

cannot realize the exact time but can have a physical error which are insensitive to

small errors. Robust timed automata accept tubes rather than trajectories where a tube is

defined as an open set of trajectories that consists of a bundle of sufficiently similar

trajectories. If a tube includes a trajectory, then it also includes its neighbors; hence the

system accepts trajectories of time (Gupta, et al. 1997, Henzinger and

Jean-Francois 2000).

24

Similar to the classical automata, the emptiness problem of robust timed

automata is complete and the robust universality problem is undecidable.

2.5.4. Event Clock Automata

Event clock automata () is a determinizable subclass of timed automata. In

an , the clocks can record the time elapsed after an event’s last occurrence, or the

clocks can be used to predict the time of the next occurrence of an event. The first

subclass of the event clock automata is called event-recording automata () where

the latter one is called event-predicting automata () (Alur, et al. 1999).

Although nondeterministic automata are more expressive than its deterministic

counterpart, nondeterministic event clock automata and the deterministic one are

equally expressive. For every event-clock automaton , there is a deterministic event-

clock automaton that is equivalent to .

The event clock automata have a decidable language inclusion problem, it is

 to check whether for two event-clock automata.

2.5.5. Alternating Timed Automata

Alternating timed automata is obtained by introducing universal

transitions in the same way as it is done for Alternating Finite Automaton (AFA). It is

known that the class of timed automata is not closed under complementation. Instead of

restricting the model to deterministic timed automata or event-clock automata by

restricting reset operations, alternating timed automata provides a model that is closed

under Boolean operations.

 is defined by the tuple with

 is a finite partial function and for every and , the set

 gives a finite partition of
 .

Note that the class of languages recognized by one-clock alternating timed

automaton is incomparable with the class of languages recognized by timed automata.

The emptiness problem is decidable for one-clock . However, the emptiness over

infinite words for one-clock is undecidable (Lasota and Walukiewicz 2008).

25

2.5.6. Integer Reset Timed Automata

Integer Reset Timed Automata () are a syntactic subclass of timed

automata where clock resets are restricted to occur at integer valued time points. This

subclass of timed automata is shown to be useful since they used for verification of

some real time systems as given in (Suman, et al. 2008).

 can be determinized to -clock deterministic which is

complementable. It also yields to a decidable language inclusion problem such that if

is a timed automaton and is an , than is decidable.

The study in (Suman and Pandya 2009) examines with silent transitions,

 which is closed under complementation. However, it is undecidable to

determine whether for a given timed automaton there exists an ε equivalent to

it.

2.6. Digitization of Timed Automata

We know that timed automata uses continuous time modeling which is more

faithful to the nature of real-time systems. Although timed automata tools, most case

studies and our study involve dense time, this section gives brief information on the

digitization concepts since they are important in terms of leading the decidability of

language inclusion problem.

Digitization techniques reduce the dense-time model to discrete time. Although

dense time is more expressive, digitization makes the model checking easier. The

―digitization‖ concepts are introduced and defined by Henzinger et al. (Henzinger, et al.

1992b, Bosnacki 1999).

Definition (Digitization): Given and , let if ,

otherwise . For any precisely timed sequence and , let

the -digitization . For example, let us have a precisely

timed trace . Then, this trace will have -

digitization .

Digitized timed automata only consider integral values for the clocks. Figure 2.9

shows the time regions constructed for a digitized automaton.

26

Figure 2.9. Time Regions for a Digitized Timed Automaton

Definition (Digitizability): A dense time property is digitizable iff it is closed both

under digitization and under inverse digitization. A set of timed traces is closed under

digitization if for any , . is closed under inverse digitization if

whenever a timed trace such that for all , then .

Theorem: Let the set of timed traces be closed under digitization, be closed under

inverse digitization and be the set of all integral timed traces of (those timed traces

of whose events are integral time stamps). Then, if and only if

(Ouaknine and Worrell 2003a).

 This theorem yields a decidable language inclusion problem and underlines the

importance of being able to determine the digitization properties of timed automata. The

problem of closure under digitization is decidable for both open and closed timed

automata; however, the problem of closure under inverse digitization is undecidable for

closed timed automata.

27

CHAPTER 3

IMPLEMENTATION OF TIMED AUTOMATA

 As explained in the previous chapter, the class of timed automata is proved to be

decidable for real time system verification by using region-based technique. However,

this technique is hard to implement since it gives rise to an explosion in the number of

regions depending on not only the number of components in a system but also the

largest time constant and the number of clocks used to specify timing constraints.

Hence, instead of implementing these structures, symbolic representation of states and

on-the-fly model checking are preferred resulting in space and time savings.

 On-the-fly model checking means dynamically building the state space during

the model checking process, depending on the property to be model checked (Bozga, et

al. 1998, Larsen, et al. 1995, Henzinger, et al. 1992a). In these on-the-fly algorithms,

some symbolic data structures are used, which make the reachability analysis to be

implemented in an efficient way.

This chapter concentrates on the zone and Difference Bounded Matrix (DBM)

data structures and the zone-based reachability algorithm that UPPAAL timed automata

tool uses.

3.1. Symbolic Data Structures

In the implementation of timed automata, instead of clock regions, zones are used

to obtain a finite representation of the infinite state space.

Definition (Zone): Let be the set of all clock valuations over a finite set of clocks .

A zone is a subset of defined by a general clock constraint.

A zone, which is simply a disjunction of inequalities between clock variables, is

the maximal solution set of clock assignments satisfying some constraint. As an

example, Figure 3.1 shows the zone defined by .

28

Figure 3.1. An example zone

Given a timed automaton, its zone automaton can be constructed in a similar

way as for the region automaton. Figure 3.2 gives the zone automaton for a timed

automaton. As it is seen in the figure, unlike the region automaton, the symbolic states

in the zone automaton have at most one successor for each event. Although zone

automata may be bigger than region automata, in most cases zone automata have less

number of states to explore. Because, the number of clock regions on a region

automaton depends on the magnitudes of the constants of the clock constraints but the

number of zones relatively is not affected by this fact (Alur 1999).

Figure 3.2. Zone Automaton of a Timed Automaton

29

A symbolic state in a zone automaton can be shown as a pair , where is a

location and is the maximal set of clock assignments satisfying a clock constraint.

Given a symbolic transition relation on the symbolic states; if the initial state

 may lead to a set of final states according to the symbolic transition relation,

all the final states should be reachable according to concrete operational

semantics (soundness). If a state is reachable according to concrete operational

semantics, it should be possible to conclude this using the symbolic transition relation

(completeness) (Bengtsson and Yi 2004).

Zones can be efficiently represented in memory using Difference Bounded

Matrices (DBM) that provides an easier implementation of zones. It allows testing for

language inclusion of zones, computation of intersection of two zones, future of a zone,

image of a zone after reset and the approximation of a zone (Bengtsson and Yi

2004, Bouyer and Laroussine 2008).

Definition (Difference Bounded Matrix – DBM): A DBM for clocks is an -

square matrix of pairs . It keeps the upper bound

for the difference of each pair of clocks where each element of the matrix is defined as:

A DBM defines a matrix, with is always equal to :

 where means there

is no bound on it. For example, the zone defined by the equations

 can be represented by:

The DBM representation of a zone is not unique. The canonical form of a DBM

can be obtained by tightening the clock constraints by using the upper bounds on the

clock differences.

In practice, most of the upper bounds are redundant since some of the

constraints may be derived from the other ones.

30

Definition (Minimal Constraint Systems): It is an equivalent reduced system of a

constraint system with minimal number of constraints.

 For all zones, finding their minimal constraint systems and storing them in

memory may reduce the memory consumption. (Behrmann and Bengtsson 2002) gives

more information on how to compute the minimal constraint system of a zone.

3.2. Symbolic Reachability Analysis

 For the verification of timed automata, a fundamental problem is the emptiness

problem that is equivalent to the reachability problem that tests whether a state can be

reached in a model. On-the-fly reachability algorithms calculate the states on-the-fly

rather than pre-computing. Thus, only the needed part of state space is computed. The

use of easy-to-implement structure DBMs and on-the-fly algorithms that glance

symbolically on these structures make the timed automata implementable.

The reachability analysis can be performed using forward or backward analyses.

The backward analysis starts from final configurations, and computes the predecessors

step-by-step iteratively. It checks whether an initial state is eventually computed or not.

If such an initial state is computed, than goal location is reachable. Similarly, forward

analysis starts from initial configurations and tries to reach some target by computing

the successors. If such a final location is computed, it means that the goal location is

reachable, and if not computed, it means that the goal location is not reachable.

Theoretically, forward analysis algorithm termination is not guaranteed; however, it has

the advantage that it is convenient for on-the-fly model checking with useful features

like integer variables (Bengtsson and Yi 2004, Bouyer and Laroussine 2008,

Mukhopadhyay and Podelski 1999).

UPPAAL tool uses forward reachability analysis. Figure 3.3 gives the zone-

based symbolic reachability algorithm for timed automata. This algorithm keeps the

 list holding the tuple of location and zone s to be visited. Starting from an

initial location, we glance the states that are in the list and insert the visited ones

to the list. If the zone is a subset of a zone in the list, this will also

be added there. Then, the state and zone tuples that are the successors of this state and

zone are added to the list since they are reached throughout the glancing of the

31

states. If the current state that we are examining is a final state, since it is reached, the

reachability algorithm returns ―yes‖, otherwise returns ―false‖.

The verification algorithm with forward analysis may have a termination

problem since the relation is not finite. In order to solve this problem,

 normalization operation that guarantees the algorithm to terminate by limiting the

number of computed zones is applied. The symbol in the algorithm is used for the

normalization operation.

Figure 3.3. Algorithm for the Symbolic Reachability Analysis

 Zone normalization uses the fact that once the clock value is greater than the

maximal constant in the clock constraints, it is not important how greater it is. -

normalization operation yields finitely many -normalized zones defined by a -

bounded constraints having constants between – and . Figure 3.4 gives the zone

 and its -approximation for .

Figure 3.4. A Zone and its -approximation

 ,

 while do

 take from

 if then

return ―YES‖

 if for all then

 add to

 for all such that do

 add to

 end for

 end if

 end while

 return ―NO‖

32

 More detailed explanation on the zone normalization, possible problems with

diagonal constraints and the normalization method to overcome the problem can be

found in (Bouyer 2002, 2003, 2004, Bouyer, et al. 2005). Moreover, the implementation

details of the normalization method, property checking and transformation operations to

implement algorithms on DBMs are given in (Bengtsson and Yi 2004) and used in the

verification engine of UPPAAL tool.

33

CHAPTER 4

MODELING AND VERIFICATION WITH TIMED

AUTOMATA

4.1. Formal Verification Methods

 Formal verification is the study of proving or disproving that a system meets

certain specifications, using formal methods. There are three basic steps for formal

verification: (i) building a formal model of the system, (ii) stating the properties of the

system to be verified in a specification language and (iii) proving whether the model is

correct with respect to the specifications.

Two main approaches for verification of systems are Theorem Proving and

Model Checking. Theorem proving methods prove the general validity of a formula, by

using logical inference. Model checking involves building a finite model of a system

and checking that the model fulfills the desired property by traversing through all

reachable states. Both methods are widely used for verification with some automated

tools; however theorem proving methods can be quite troublesome and impractical for

complex designs and model checking suffers from state space explosion. This study

concentrates on model checking method (Clarke, et al. 1999), that has the advantages of

being fully automatic, generating counter example in case of a negative result and not

requiring complicated proofs to be written.

 Timed automata allows for an efficient model checking method (Bouyer and

Laroussine 2008) which can be used to analyze time-sensitive features such as

execution times, communication times and response times. Similar to the other model

checking methods, it checks a finite model of a system for correctness against some

certain requirements. It works by exploring all possible state transitions from the initial

state of the system to check whether a specified property is satisfied. It has some

drawbacks caused by the generation of huge state spaces as explained in section 6.2.1,

which can be understood better after the case study. This section gives brief information

about how model checking is performed using timed automata, before moving on the

case study on the modeling and verification of a security protocol.

34

4.2. Modeling with Timed Automata

 The first task of model checking is, designing a formal model of the system to

be verified. Timed automata formalism, models the system as a network of processes

which is composed of several components each having a transition system, namely as a

network of timed automata.

A network of timed automata, that models a concurrent system, consists of some

number of timed automata running in parallel that may communicate and synchronize

on some events. It is possible to implement a product timed automata which represents

this composite process of the network of timed automata.

Definition (Product or Parallel Composition of Timed Automata): The product of

the automata and is denoted as

 , and defined as , where

 is defined by:

 For , for every and

 , has

 For , for every

 and every in , has

 For , for every and every in , has

 Simply, in the product automata, the transitions of the timed automata that does

not correspond a shared action are interleaved, and the transitions with a shared action

are synchronized. Figure 4.1 illustrates a simple example of a product automaton. In this

network of timed automata, there are two timed automata representing and

processes, which synchronize on and events. For instance, when the user

presses the button, the door goes into the opening state and the user waits for the door to

open. The product automaton is given below, which is the composite process of these

two systems. The clock resets, guards and the invariants take place in the composite

automata as given in the definition.

35

Figure 4.1. An Example Network of Timed Automata

4.3. Specification and Verification with Timed Automata

 To perform verification, the specifications that must be satisfied by the system

should be stated in a formal specification language. Then, it is possible to use a formal

verification method to check whether the model satisfies the requirements. Verification

of an automata model can be performed using a homogenous or heterogeneous

approach.

 In homogenous approach, the requirements of a system are specified as an

automaton, similar to the system itself. Then, the behavior of the system model

and the specification automata are compared. Let us say that the specification is

given as the automaton and the implementation as . Then, the

implementation meets its specification iff . In this case,

verification problem reduces to the emptiness check of . For

untimed automata, the complementation is decidable and the method is

straightforward. In case of timed automata, this problem can be solved

algorithmically when is given as a deterministic timed automaton.

 The heterogeneous (or dual language) approach, combines the automata

formalism with a descriptive formalism suitable for specifying its properties. For

example, the timed automata tool KRONOS uses TCTL (Timed Computation

Tree Logic) and UPPAAL uses CTL (Computation Tree Logic) to specify the

36

requirements. Then, a reachability check is performed on the model to test

whether the automata model satisfies the requirements (Furia, et al. 2010).

 Note that in both cases, on-the-fly reachability algorithms are used for emptiness

and reachability checking since the problem is PSPACE-complete. Instead of pre-

computing the product automaton, it is computed and traversed on-the-fly, as explained

in the previous chapter.

4.4. A Timed Automata Tool: UPPAAL

 UPPAAL (Bengtsson and Larsen 1996) is a timed automata tool developed by

Uppsala and Aalborg Universities. It extends timed automata with C-like data types

such as integers and arrays and allows using urgent and committed locations that ease

the modeling of a system. It has rich documentation related to both its implementation

details and usage which can be found in (Larsen and Pettersson 1997, Amnell and

Behrmann 2001, Behrmann and Bengtsson 2002, Behrmann and David 2004, Behrmann

et al. 2006). The tool is in continuous development since its first official beta version in

1999. In this study, the latest version UPPAAL 4.0.11, released in February 2010 is

used.

 UPPAAL is freely available and it provides an integrated environment for

modeling, validation and verification of real-time systems with a Java interface and C++

verification engine. It is an efficient and mature tool that has been used in many

academic and industrial case studies including the modeling and verification of bounded

retransmission protocol (D’Argenio, et al. 1996, 1997), a collision avoidance protocol

(Jensen, et al. 1996), TDMA protocol startup mechanism (Lönn and Pettersson 1997),

audio-video protocols (Bengtsson, et al. 1996, Havelund, et al. 1997, Bengtsson, et al.

2002), a gear controller (Lindahl, et al. 1998), lip synchronization algorithm (Bowman,

et al. 1998), a power controller (Havelund, et al. 1999), commercial field bus protocol

(Wang and Yi 2000), QoS properties in multimedia streams (Bordbar and Okano 2003)

and WAP gateway (Hessel and Pettersson 2006). Some recent studies (Corin, et al.

2004, 2007) use UPPAAL for verification of security protocols such as Needham-

Shroeder and Yahalom authentication protocols.

37

4.4.1. Modeling with UPPAAL

 A system can easily be modeled as a network of timed automata, using the

graphical user interface and writing some simple C-like coding for system definitions.

Then, the system execution can be simulated by visualizing the possible dynamic

behaviors of the system.

In the UPPAAL modeling language, the actions in a network of timed automata

are partitioned into a set of input and output actions, which provide the communication

between the automata. The output (or send) statement over channel is denoted as

(emission) and an input (or receive) statement over channel is denoted as

(reception). Two edges in different processes can synchronize if one is emitting and the

other is receiving on the same channel.

UPPAAL provides easy modeling of a system using C-like data structures,

committed and urgent states and synchronization channels. It also allows transitions to

have guards, synchronizations or updates and allows states to have location invariants.

The syntax of these expressions and the restrictions on them are explained in detail in

UPPAAL documentation (Behrmann and David 2004).

Figure 4.2. An Example Timed Automaton Designed using UPPAAL

Figure 4.2 gives a simple example of timed automata designed using UPPAAL.

In the figure, the state with double border lines demonstrates that it is the initial state.

When the automaton takes the input over the channel, it goes into state if the

guard is satisfied. When the transition is taken, it performs the specified updates.

As it is seen, besides resetting clocks, UPPAAL has the advantage of calling functions

and using assignment expressions as an update which allows for the easy modeling of a

system. The state has an invariant demonstrating that the automaton can stay in this

state as long as .

38

4.4.2. Specification and Verification with UPPAAL

 UPPAAL automatically performs verification of timed automata models based

on constraint solving and on-the-fly techniques. In case of a negative result, it generates

a diagnostic trace that can be loaded to the simulator and examined how the property is

violated.

The properties to be checked with UPPAAL verification engine are specified

using a subset of Computation Tree Logic (CTL). This query language consists of path

and state formulas.

State formulas describe side-effect free expressions that can be evaluated

pertaining to a state (e.g. , is true in a state whenever equals). They can be

used to test whether a process is in a particular state using expressions on the form ,

where is a process and is a state.

Deadlock-freedom is a special property for systems which are supposed to

operate indefinitely. Absence of deadlock can be checked using a special state formula,

 . In general, deadlocks are states where the system is unable to

progress further. The study in (Bowman and Gomez 2006) classifies the deadlocks in

timed automata, as (i) pure-actionlocks, analogue to the deadlock in untimed

specifications where the system cannot perform any action transitions but time can

progress, (ii) time-actionlocks in which neither action nor time transitions can be

performed and (iii) zeno-timelocks (also called pure timelocks) where a system can still

perform transitions that may be action or time transitions but time cannot pass beyond a

certain point. The state formula guarantees the absence of

actionlocks. If this expression is not verified, the system may have a pure-actionlock or

a time-actionlock.

 Path formulas quantify over paths of the model. They can be classified into

reachability, safety, liveness and bounded liveness properties (see Figure 4.3).

 Reachability properties (something will possibly happen): Given a formula,

they check, whether it can possibly be satisfied by any reachable state. For

example for a security protocol, a reachability property may ask whether a

process can enter the critical section. The path formula is used to express

there is a path that, starting from initial state, reaches a state where is

eventually satisfied.

39

 Safety properties (something bad will never happen): They are the properties

required to always hold. For example, ―it cannot happen that both processes are

in their critical sections simultaneously‖ defines a safety property. The path

formulae expresses that for all paths, will always hold (something good

is invariantly true), and the formulae expresses that for some paths, will

eventually hold (there should exist a minimal path such that is always true).

 Liveness properties (something will eventually happen): These properties are

characterized by the fact that no event can really violate them. The path formula

 states that is eventually satisfied. Besides this eventually liveness

properties, a more useful form is the leadsto or response property. It is written as

 that means whenever is satisfied, then eventually is satisfied. For

example for a communication protocol, ―whenever a message has been sent then

eventually it will be received‖ forms a liveness property. Bounded form of the

liveness properties, states that whenever holds, then for all

paths thereafter must also hold within some time. Such a property can be:

―whenever a message has been sent, then eventually it will be received within

two time units‖.

Figure 4.3. Path formula for Reachability, Safety and Liveness Properties

40

CHAPTER 5

A CASE STUDY: USING TIMED AUTOMATA FOR

MODELING AND VERIFICATION OF NEUMAN-

STUBBLEBINE REPEATED AUTHENTICATION

PROTOCOL

5.1. Related Work

 Timed automata formalism is a widely used model for the verification of real

time systems with many case studies including audio-video protocols, gear controller,

lip synchronization algorithm and power controllers. This study focuses on the

modeling and verification of security protocols using timed automata.

Some recent studies analyze security protocols with quantitative timing

properties involving the use of timed automata. The studies in (Jakubowska, et al. 2005,

2008) examine Kerberos, TMN, Neumann-Stubblebine, Andrew Secure and Wide

Mouthed Frog protocols by not modeling them directly as timed automata, but

translating a language specification of a security protocol automatically to timed

automata without integer variables. Then, the translated timed automata model is used

as input for the model checker KRONOS (Yovine 1997) and VerICS (Dembinski, et al.

2003). Similarly in (Benerecetti and Cuomo 2009), a model checking tool is presented

which translates a security specification language into timed automata and uses the

UPPAAL tool as the verification engine. Additionally, a case study on Wide Mouthed

Frog protocol is provided.

Similar to our case study, these studies perform verification using timed

automata tools. However, our approach is closer to the studies in (Corin, et al. 2004,

2007) which model Needham-Schroeder and Yahalom protocols directly with timed

automata and use UPPAAL tool for verification. Our case study models Neuman-

Stubblebine repeated authentication protocol which allows for employing the key

expiration time in the model. Since it is a large protocol involving two parts, the model

tends to grow enormously. Directly modeling provides us full control over the timed

41

automata model and also enables us to make use of the full expressiveness and data

structures of UPPAAL. Moreover, we are not required to have an expertise on a

specification language to model a protocol.

5.2. Modeling Security Protocols using Timed Automata

Timed automata provide a model close to the real system. A timed automata

model for a protocol can be generated by building a finite state machine whose states

and transitions simulate the behavior of the protocol principals. Then, all possible

execution traces are explored to analyze whether the protocol has some security flaws.

Model checking a protocol involves an analysis based on the protocol

specification, independent of the cryptographic operations. Hence, the cryptosystem is

assumed to be perfect and the mathematical details of the cryptology are abstracted

away. It is focused on the protocol steps and the protocol messages sent by the

principals. Since we are related to the sequence of steps in the protocol specification,

the flaws related to the different combinations of the messages are examined by

modeling an intruder which aims to attack the protocol.

Modeling cryptology may require some coding such as assigning and testing

some local/global variables and performing some operations. UPPAAL makes it easier

to model a protocol directly with timed automata since it allows such simple coding.

Performing most of the operations as the updates of the transitions and checking the

values of the variables in the guards to decide whether they comply with the protocol

specification are very helpful to model a protocol.

To create a model of the protocol, it is crucial to examine the description of the

protocol and the behavior of the principals. In a server involved authentication protocol

such as the Neuman-Stubblebine authentication protocol used in our case study, the

initiator , authenticates itself to the responder , using the trusted authentication server

 ; and obtains a session key to communicate with . By modeling each principal as an

automaton, a network of timed automata is obtained which models the protocol

execution. Note that a network of timed automata deadlocks if no more transitions can

be involved in a run. Hence, a behaviour that is not specified in the protocol, causes a

deadlock and does not generate the complete the protocol execution trace.

42

The principals , and communicate with each other by sending or receiving

some messages over the network. The messaging can be modeled by using binary

synchronization channels. The sender automaton emits an output signal that will be

captured by another automaton receiving the signal. The message sent/received can be

kept in a global variable so that each principal automaton can access the message

variable. Figure 5.1 demonstrates a general view for the network of timed automata. For

example, when the initiator emits the signal, this means that it has created

and sent the message (it also assigns the message to the global message variable). The

network takes this message over and emits signal, which is

captured by the responder over . Then, the responder accesses the global

message variable and reads it.

Figure 5.1. General View of Automata for Principals and the Network

5.3. Neuman-Stubblebine Repeated Authentication Protocol

Neuman-Stubblebine protocol (Neuman and Stubblebine 1993) is an

authentication protocol that involves a session key exchange and mutual authentication

between two principals. Our study performs a case study on this protocol since it is a

repeated protocol that involves an expiration time that can be studied using timed

automata and it requires less number of message transfers then the similar nonce-based

Kehne-Langendorfer-Schoenwalder repeated authentication protocol (Schonwalder, et

al. 1992).

The protocol consists of two parts. First, the initial authentication part is

executed which provides mutual authentication. In this part, the initiator acquires a

ticket to be used in the subsequent part of the protocol. The subsequent part is used to

Initiator Responder Server

init_msg! serv_msg!

serv_msg?

resp_msg!

resp_msg?

Network

init_msg?

43

re-authenticate the principal identities without using the server. This part can be

repeated several times until the ticket expires.

The following symbols are used in the protocol specification given for the initial

and subsequent authentication parts:

 , and are the principals where is the key distribution server.

 , , , and are the nonces.

 , , and are the keys where the subscript letters denote the principals

whom the key is for (For example is shared between and the server).

 is the expiration time for the session key.

 means, concatenated with , encrypted with the key .

1. Initial Authentication Part:

 The initial part requires the exchange of four protocol messages. initiates the

protocol by sending its identity and a nonce . After receives this message, it

sends its identity and a nonce created by as clear text and ’s name, nonce and a

suggested expiration time for the credentials as a block encrypted with the key . The

server can decrypt this message since it knows , and assures that they are created by

 . Then, the server sends a ticket, and ’s nonce. It also sends the identity of , ’s

nonce, a session key , the expiration time encrypted with . decrypts the

block encrypted with and verifies the is same with the in message . In the

last message, it sends the ticket and to , proving its identity.

1.

2.

3.

4.

 This initial authentication provides mutual authentication between the principals.

After this initial part, the initiator possesses the ticket and the session

key that can be used for subsequent authentications.

44

2. Subsequent Authentication Part:

 In this second part, uses the ticket to authenticate itself to the responder.

checks the sender’s identity, shared key and the expiration time of the ticket. If it is

valid, the authentication is provided between the principals.

1.

2.

3.

The Neuman-Stubblebine protocol is exposed to some security flaws (Clark and

Jacob 1997, Hwang, et al. 1995).

Attack 1: The initial part of the protocol is exposed to a type flaw attack, where the

responder accepts the nonce as the key .

1.

2.

3.

4.

Attack 2: The subsequent part of the protocol is subject to a parallel session attack.

Here, the initial ticket is recorded from a legitimate run of the protocol.

1.

2.

1'.

2'.

3.

 Our case study focuses on the modeling the protocol as a network of timed

automata composed of the protocol principals and an intruder, then examines whether

our timed automata model is able to detect the flaws on the protocol.

5.4. Modeling the Neuman-Stubblebine Initial Part

In the first step of the protocol modeling, the initial authentication part, which

requires the transmission of four messages, is modeled. Then, the model for the

45

subsequent part that requires three messages for re-authentication is generated. Finally,

these two parts are combined and a complete model for the protocol is obtained.

5.4.1. Modeling Assumptions

 Our timed automata model has the following assumptions:

 The principals show no behavior other than the behavior described in the

protocol specification

 Principals know their secret keys they use with server

 A kind of black box security protocol analysis approach (Cremers 2006) is used

in the protocol modeling. Cryptographic functions are considered as abstract

black boxes, immune to cryptanalysis. Perfect cryptology is assumed such that:

o Nobody can decrypt the messages unless they know the secret keys.

o A ciphertext can be generated by principal possessing and .

o Nobody can guess the secret keys or newly generated nonces.

 The medium does not introduce errors, message modification can only occur in

the existence of an intruder.

 The intruder has the capabilities of the powerful Dolev - Yao intruder (Dolev

and Yao 1981) which has the ability to eavesdrop, replay, modify or inject

messages. All communication is assumed to occur over an insecure network.

 Network delays are not taken into consideration since they are negligible with

respect to the time consuming operations such as encryption or decryption.

5.4.2. Modeling Cryptology

 Since the cryptosystem is assumed to be perfect, we used an abstraction for the

cryptographic operations. These cryptographic abstractions are held in the local

functions of each principal, , and

 , described in local declarations of each automata.

Each principal can call these functions when needed in the protocol execution

and the result of the operation is assigned in their local variable . During the

execution of these operations, time elapses, so when one of these functions is called, the

46

principal goes in a new state and gets the result in the specified amount of time. Here,

we make use of the advantage of the timed automata that can model the delay and

deadline requirements. A principal’s automaton will have the states and transitions as

given in Figure 5.2, to generate a nonce, perform encryption or decryption. The states

marked with ―C‖ are the committed states where the transition is taken as soon as we

enter the state and time does not pass. The states in the middle are not committed since

they allow the passage of time during the cryptographic operations.

Figure 5.2. Timed Automata for Cryptographic Operations

A message sent/received by a principal is represented as an integer, which

contains the information described in the protocol specification. As it is seen in the

protocol specification, a protocol message consists of a combination of the agent ids,

nonces or encrypted blocks. The creation of the messages and the encryption/decryption

model used in the case study are similar to the model used in (Corin, et al. 2004, 2007).

Nonce Generation:

In the modeling of the initial authentication, the initiator and the responder each

generates one nonce value by calling their function. This function returns

a result by incrementing the global variable.

Encryption/Decryption:

Two arrays and are used for encryption and decryption, where the

first one holds the plaintexts and the latter holds the keys. When a block is encrypted,

the plaintext is placed in the array and the key is placed in the array. The

corresponding index is returned as the ciphertext, which is the result of the encryption.

47

Figure 5.3 shows an example scheme. Here, which has the value is

encrypted by using the key . Let us say that the current index value is . Then,

when the function is called, will contain the value and

 will contain . Decryption is performed again by using these arrays. Let us say

that is called with and . Then, will be

compared to the value of ; in other words it is checked whether the specified key is

correct. If this key is not same with the corresponding key of the ciphertext, then the

block cannot be decrypted. If it is same with the value in , then the block can be

decrypted, in other words is returned as the plaintext which has the value .

Figure 5.3. Modeling Encryption and Decryption

Representing Protocol Variables:

As mentioned above, a protocol message is represented as an integer in the

model. UPPAAL uses 16 bit integers where the leftmost bit is the sign bit. In order to

contain the whole message in an integer and have simplicity in the model, it is

necessary to limit the number of bits to represent the blocks contained in a message. To

figure out the number of bits to use for each variable, the largest message and the largest

block to be encrypted/decrypted (since the plaintexts will be contained in an integer

array, they also must not exceed the size of the integer) is taken into the consideration.

The largest message of the protocol is in the third step of the protocol, server sends

the message: . and the largest block in

the protocol specification is . It is seen that, the message can at most

contain two encrypted blocks and a nonce; and the largest block contains an identity, a

nonce, a key and an expiration time value.

plain key

index

ciphertext: 7

0

 1

..

7

...

15

0

1

..

7

...

15

encrypt(Nb,Kab)

Nb=15, Kab=13

......

......

......

15

......

......

......

13

48

In order not to exceed the number of bits of an integer, the nonces, keys and the

indices (in other words, ciphertexts or encrypted blocks) are represented by using four

bits. The agent ids and the are represented by two bits to be able to fit the message

content in an integer. Representing the ids with two bits does not create a problem since

the initiator, the responder and the intruder has the agent ids , and

respectively. However, the time duration that can be represented by only two bits is not

enough to complete the protocol execution; because the protocol needs at least eight

time units to finish the execution even if each cryptographic operation is assumed to

take one time unit. Hence, the expiration time is used as in the calculations.

The keys shared between the principals and are defined as

 , where . In the implementation, the possible values for the nonces,

id’s, indexes and keys are restricted (see Table 5.1) since there may be some problems

in the model when some of these values coincide. In section 6.2.2, it is explained why

some predefined values are used and what would be the problems when they coincide.

Table 5.1. Variables and Their Values Used in Cryptology Modeling

Identities (A, B, Intruder) 1, 2, 3

Secret Keys (Kas, Kbs, Kab) 11,12,13

Nonce Values
*
 10, 14,15

Index Values [4, 9]

0 means a value is not set or wrong

* 1 and 2 are also used as nonces for the subsequent part of the protocol

The lengths of these variables are

 and . To reduce the state

space of the intruder (see section 6.2.1) and have simplicity in the model, instead of

these six variables, only two global length variables and

are used in our model. These values do not change during the execution and they are

defined as constant integers which makes us save from space.

Creating and Reading Messages:

 Up to now, it is decided on the number of bits to represent each part of a

message and how to encrypt/decrypt blocks with a secret key. Now we can go on with

how to create and read messages.

49

A message is created and read by using shift and operations (Corin, et al.

2004, 2007). Parts of the protocol message are appended to the message by shifting the

message to the left as the length of the part that will be appended. Then, the new part is

appended using the operation. Hence a message is created and ready to be sent. To

extract information from a received message, shift and operations are used. This

time the message is shifted to the right and the operation with the mask is applied.

The mask variables are also defined as global constant integers similar to the length

variables used to obtain the specified number of rightmost bits:

 and

For example, when wants to create the message , it shifts left for

times, and s the result with . Figure 5.4 demonstrates how to create this message

and Figure 5.5 shows how the server reads the message of the protocol.

Figure 5.4. Creating a Message

Figure 5.5. Reading a Message

now, knows and . Then, decrypts by calling

 where ,

and extracts , and from the plaintext in a similar way.

S reads the message

 creates the message

50

5.4.3. Initiator, Responder and Server Automata

In the Neuman-Stubblebine protocol, the messages are transferred between the

initiator, responder and the trusted server. The steps of the protocol are implemented by

mainly these three automata, that model the creation of messages, sending and receiving

messages, extracting information and checking them using its knowledge.

The knowledge bases of the principals are modeled using the local variables of

each principal. For example, the principal has as the initial knowledge. Then, it

generates , owns a ticket, learns , and and these values are added to this

principal’s knowledge base. The principal , has as the initial knowledge and gets a

claimed id, , generates , and learns . It should keep this knowledge to be

used in the later steps of the protocol (e.g. while checking the values received in the

fourth step of the message). Hence, it is necessary to keep each principal’s knowledge

in their local variables.

In order to be able to analyze the timing properties, each principal automaton

has its local clock variable to keep the time elapsed for the cryptographic operations and

check timeouts, in addition to a global clock representing the total time passed.

The Initiator:

 The initiator , involves in the following three steps of the protocol:

1.

3.

4.

 The Initiator automaton is given in Figure 5.6, which is activated by the

automaton that emits the signal. The Initiator, first generates a nonce which is

performed as given in Figure 5.2. It creates the message by assigning the message

to the global variable and signals to indicate that it has sent the

message. This signal will be captured by the network and will be transmitted to the

responder. After sending the message, in state , initiator waits for the protocol

message from the server. When the message is

sent by the server, the network emits which will be captured by the

 of the initiator that brings it to state . In this transition, initiator gets the

block encrypted with , the ticket which is , and . It decrypts the

51

block with the key which is shared by the initiator and the server. Decryption of a

block is performed by its function similar to the generation of a nonce. Since it is a time

consuming operation, time elapses during decryption. So, we use a location invariant in

the state that waits for decryption. The transition from to , has a guard. In order to

take the transition, besides the time constraint, ’s identity sent by the server must be

same as the identity that wants to communicate with, and the nonce value must be

same as the one generated and sent by itself. If this guard is satisfied, the initiator gets

the and values and encrypts with . Then, it creates the message

 by concatenating the ticket and this encrypted block, emits the

 signal indicating that it has sent the message. After this step, the initial

authentication execution finishes for the initiator and it sets its local variable to

 , which will be used for verification step.

Figure 5.6. The Initiator Automaton for the Initial Authentication Part

 Let us assume that the initiator has received a wrong message from the server in

the third step. Then, since the will be different from the one the initiator itself

generated, the guard will not be satisfied and the transition from state to will not

be taken. Hence, the automata will deadlock and the value will be which

means that there is something wrong with the execution of the protocol.

 In the automaton, some states are defined as committed since it allows for

accurate modeling of atomic behaviors and avoids unnecessary interleavings. and

 are such committed states. On the other hand, there are some states such as and

 where time should elapse in some states such as or interleavings should be allowed.

52

 From the point of analysis of timeouts, some modifications on state can be

proposed where the initiator waits for the protocol message 3. Total time waited for this

message can be measured in order to be used for the analysis of possible attacks. Figure

5.7 shows the changes in states , and in their transitions. The local variable

 , keeps the time waited for the message which is incremented when the local

clock becomes . This time recording is performed until the timeout is reached since

the protocol run does not continue when the message does not arrive in timeout interval.

The guard in the transition outgoing from A5 ensures that is

incremented each time gets by preventing the automaton to take this transition

before incrementing for the last time unit.

Figure 5.7. Measuring the Time Waited for a Message

 Note that, in the initial authentication part of our case study, only the waiting

time for the Responder automaton is included in the model since it is used to detect the

attack of the protocol and we have state space explosion problem when we included

these transitions in both principals.

The Responder:

 The responder , involves in the following three steps of the protocol:

1.

2.

4.

 The automaton for responder is given in Figure 5.8. It starts the protocol

execution after it gets the first protocol message over signal. The creation

of the automaton is performed in a similar way as for the initiator.

53

 As for the timeout interval, in state , waits for the protocol message ,

 from . The variable keeps the total time waited for

the message which is incremented when the local clock becomes . This part is

similar to the piece of automata given in Figure 5.7 and used for protocol verification

using timing information.

The responder finishes its execution by setting its local variable to ,

which means that the claimed identity is authenticated, only if the last protocol message

is correct. This check is done using a guard and the transition to state . If the values

are correct, it gets the key , decrypts the block to check whether it is same

with the nonce generated by itself.

Figure 5.8. The Responder Automaton for the Initial Authentication Part

The Server:

 The server , involves in the following two steps of the protocol:

2.

3.

 The server automaton, given in the Figure 5.9, is only involved in the initial

authentication and no addition to the automaton is done for the subsequent

authentication part.

The server initially knows its shared keys between principals which is calculated

by . It performs key distribution between two principals

(having ids and), which are generated by .

54

Figure 5.9. The Server Automaton

In the model, in order to reduce the state space of the intruder, some more

guards are introduced in the Intruder automata, indicating the current step of the

protocol execution. For this aim, the principals keep track of the protocol steps they

have executed, in terms of the sent and received messages. The variables ,

 and are added to the initiator, responder and the server automata

respectively, to use in these guards. The values of these variables denote that:

 has sent the protocol message

 has received the protocol message

 has sent the protocol message

 has received the protocol message

 has sent the protocol message

 has received the protocol message

 has received the protocol message

 has sent the protocol message

5.4.4. Dolev-Yao Intruder

 The flaws of a security protocol are examined by modeling an intruder (also

called attacker, spy or enemy) who wants to exploit the features of a protocol. The

Dolev-Yao intruder model (Dolev and Yao 1981) is an easily applicable intruder model

that is frequently used in the formal verification methods. This model assumes that the

intruder has the full control of network and delivers the messages sent from one identity

to another.

55

The Dolev-Yao intruder has the abilities to:

 Deliver Messages - transmit the message to the intended recipient without any

modification.

 Block Messages - intercept a message by not delivering it to its recipient.

 Decompose Messages - decompose an overheard message and improve its

knowledge using the constituent parts of the received messages. The message

can still be delivered to intended recipient, without alteration.

 Perform Encryption/Decryption - encrypt or decrypt the information in its

knowledge base. (Note that decryption is possible only if he knows the correct

secret key. He also cannot guess the keys or the generated nonces.)

 Compose Fake Messages - derive new messages by composing some

constituent parts or encrypted/decrypted blocks.

The intruder automaton should be able to represent the knowledge of the Dolev-

Yao intruder which can be used to compose fake messages. The intruder’s knowledge

includes the identities of the principals, its own keys and nonces, origin and destination

of all messages, the states of all principals. In addition since it can read all the messages,

it also knows every part of the messages, everything it can generate by encrypting

something with something that may be used as a key, everything it can generate by

decrypting something (provided that it knows the correct key) and every concatenation

of data it knows.

Our intruder automaton is composed of the pieces of automata each fulfilling the

one of the capabilities listed above.

5.4.4.1. Delivering the Messages

The piece of automaton given in Figure 5.10 models the message transmission.

Here, it is seen that the messages can be received by the network from the initiator over

the channel, from the responder over the channel and from the

server over the channel where these signals are emitted by the principals

when they have sent a message. On the other direction, these received messages can be

transmitted to the initiator over the channel, to the receiver over the

 channel or to the server over the channel. It can be seen that a

56

message can be sent to any principal using this automaton. Hence, besides the correct

recipient, it is possible to send a message to any principal that the intruder wants. When

one of the output signals are emitted by the network, the corresponding principal

captures the signal and understands that the message is sent to him. Then, it reads the

message which is kept in the global variable .

Figure 5.10. A Simple Network Model

Note that the intruder may also have the ability to create and send its own

messages; hence the dotted transition can also be employed. In our protocol model, if

the intruder needs to send its own message, then it receives a signal over a channel,

discards it and sends its own message. However, in the full protocol model including

both the initial and subsequent parts, the intruder may learn the secret key in the initial

part and use it by initiating the execution of subsequent part. To initiate a

communication, this transition is needed and employed in the complete protocol model,

which is given in section 5.8.

5.4.4.2. Decomposing Messages

 The intruder can capture the messages, decompose them into its constituent parts

and add to its knowlegde base. For example, when the message , is captured by the

intruder, it has the ability to read the initiator’s identity and its nonce , hence, learns

them. The piece of timed automata given in Figure 5.11 is used to enable the intruder

improve its knowledge by adding the information extracted from the messages sent.

57

Figure 5.11. Intruder Decomposing Messages

In fact, the intruder can nondeterministically take one of the transitions from

to to read a message. However, this increases the state space so large that it gets

impossible to verify some queries. Because of that, in order to limit the possible number

of transitions, we added some guards to these transitions. This guards restrict the

transitions to be taken only if the corresponding protocol step has been executed. It is

important that these limitations do not lessen the power of the intruder, but decreases

the number of infeasible executions which make the state space grow enormously.

In the figure, there are four transitions that may be taken when one of the four

steps of the protocol’s initial authentication is executed. For example the intruder can

examine the message only if which means that has sent the first

protocol message . It is also avoided to take the same transition again once the

intruder added the contents of a message to its knowledge base.

5.4.4.3. Performing Encryption and Decryption

The intruder has the ability to generate a nonce, do encryption and decryption

using the parameters in its knowledge base. Here it is important to model the intruder

such that it cannot guess the principals’ nonces, secret keys and cannot decrypt a

message without knowing the key (due to the perfect cryptosystem assumption).

The piece of automata given in Figure 5.12 selects the parameters to apply

encryption or decryption. It can use any variable in its knowledge base by

nondeterministically selecting the plaintext/ciphertext and the key. Again, to avoid a

state space explosion, the guards are used which allow the use of a variable only if it is

58

set (it is not set if the value of a variable is . See Table 5.1 for the possible values of

the variables). In this automaton, , and are the identities, is the nonce generated

by the intruder.

Figure 5.12. Intruder Parameter Selection for Encryption/Decryption

5.4.4.4. Composing Fake Messages

The Dolev-Yao intruder can also create new messages and inject them into the

network. So, the model will be expanded with a message creation part for the intruder,

where it can populate each constituent part of a message with some known information.

Figure 5.13 shows that piece of timed automaton. A local variable is used to

keep some constituent parts which is initially . While creating a new message,

can be set to any variable that the intruder knows. Then, in order to append a new

content to the message, it can be shifted left for or times depending

on the length of the content to be appended.

Figure 5.13. Intruder Deriving New Messages

59

Note that in section 5.4.2, it is mentioned that only two length variables are used

to reduce the state space of the intruder. If it was not reduced, there would be more

number of transitions from to which causes the state space to increase

enormously (see Figure 6.2).

By using this message creation part, the intruder can generate any messages

using its knowledge or the result which is obtained as the result of an encryption or

decryption operation.

5.4.4.5. The Dolev-Yao Intruder Model

Our Dolev-Yao intruder model (see Figure 5.14) combines all these features

where the intruder can deliver, block, decompose messages, perform

encryption/decryption on nondeterministically selected parameters and generate fake

messages using its knowledge base.

Figure 5.14. The Intruder Model for the Initial Authentication Part

60

The automata parts of the intruder are merged in a way that it enables the

possible executions of the intruder. For example, the intruder can append more than one

encrypted blocks to a new message. Then, a transition should be added from the

message creation part to the parameter selection part for encryption/decryption.

The model contains many loops and it can perform as many operations as it

wants. This enlarges the state space so that the model verification goes out of memory.

So, the number of operations that intruder may perform is restricted by the variable

 . Nonce generation, encryption, decryption and shifting for message creation

increments the number of operations performed. The intruder cannot perform more than

 number of these operations. Note that this number should not be so large to

cause state space explosion and should not be so small to by-pass a possible attack.

In addition, the model should prevent possible errors. For example a possible

error caused by data loss may occur when the data is right shifted although its rightmost

bits contain data. This can be avoided by using a guard that checks if the rightmost bits

to be shifted contain data or not.

In the generation and explanation of the model, a possible state space explosion

is frequently mentioned and considered. It is a very struggling problem for model

checking that we came up with which is explained in section 6.2.1 in detail.

5.5. Validation and Verification of Neuman-Stubblebine Initial Part

Validation of a model is concerned with building the right model that correctly

represents the behaviors of the real world system. The generated model should

implement the protocol execution in order to have the correct verification results.

Verification of a model is concerned with building the model right. A security

protocol must satisfy some requirements in order to provide a secure communication

between the principals. However, many protocols are shown to be flawed. Hence, a

security protocol should be verified to check if it satisfies its requirements.

This section gives the validation and verification results for our Neuman-

Stubblebine Repeated Authentication Protocol model obtained using UPPAAL.

Note that, for the initial part, the automata for the principals are named as

 , , and ; for the subsequent part, they are

61

named as , and . For the complete model, these

automata are merged as the , , and automata.

5.5.1. Parameters and Configurations used in the Case Study

Verification of a specification can be performed by using either UPPAAL’s

graphical user interface or the stand-alone command line verifier. In this study, the

verifier is executed using the command line, which is more appropriate for verifying

large tasks. The verifier reads in the file (which is automatically generated by the

tool during the graphical design) and checks whether it satisfies the query in the file

given in a file with extension. The following command form is used execute the

verifier from the command line:

The options to specify may be related to state space representation, state space

reduction, search order and trace options (Behrmann and David 2004). Since our model

is large and needs large amount of memory, the following options to reduce memory

consumption is used in this study (the non-listed properties are used with their default

stand-alone command line verifier configurations):

 State Space Representation: Minimal Constraint Systems

This representation uses less memory than DBMs.

 State Space Reduction: Aggressive Space Optimization

This optimization may take more time but uses less memory by decreasing the

number of states stored. (option)

 Search Order: Breadth First Search

Depth first search cannot complete the verification of some of our queries since

it runs out of memory where breadth first search generally finds out the

diagnostics traces faster.

 Trace Options: Generate Some Trace

The diagnostic traces of each property are generated and written in a file

which can be read by the simulator so that they can be viewed on the model. In

this study, – and – options are used to generate some or shortest traces.

62

In addition, option is used to see the number of states stored and explored

during the verification process. To measure the time passed during the verification, the

 command in Linux is used which prints the execution time of a process. As an

example, the following line can be executed to verify the queries in on the

model in and writes the diagnostic trace into the file.

 – –

The verification is performed on Ubuntu Operating System on Intel Core

Duo , processor and of RAM.

5.5.2. Validation and Simulation of the Model

To ensure the correctness of our model, it is validated by checking whether the

protocol works as specified. In a successful run of the protocol, the initiator

authenticates itself to the responder at the end of the protocol execution, and both of

these principal’s variables should be set to . Query 1 is used to test whether

the model is able to generate the correct run of the protocol.

Query 1: Is such a state reachable where both the initiator and the responder finish the

protocol execution?

Query 1 is satisfied and the correct protocol execution is simulated successfully.

5.5.3. Verification of the Neuman-Stubblebine Initial Part

In this study, the correctness of an authentication protocol is aimed to be verified

based on the goals of an authentication protocol. Two high level goals for an

authentication protocol are listed as follows in (Woo and Lam 1994):

 Authentication: For each principal, after the successful run of the protocol, it

should be assured that it is talking to the principal in its mind.

 Key establishment: A shared secret becomes available to the principals, for

subsequent cryptographic use.

63

The possible attacks for the Neuman-Stubblebine protocol are analyzed by

writing specifications derived from these authentication goals. In order to examine the

protocol goals given above, the correspondence and the secrecy properties should be

verified.

Correspondence means that the execution of different principals in an

authentication protocol proceeds in a lock-stepped fashion. While the authenticating

principal finishes its part of the protocol, the authenticated principal must have been

present and participated in its part of the protocol.

Secrecy property specifies that a distributed session key cannot be discovered by

the intruder. In the analysis of these goals, if an attack is found on a protocol, it is

inferred that the protocol is incorrect since it does not satisfy the properties that it is

intended for.

 This section gives these specifications and the UPPAAL queries that we used to

check whether our protocol model satisfies these properties.

Query 2: Is such a state reachable where the responder has finished but the initiator

has not finished the initial protocol execution?

Query 2 is related to the correspondence property. Here, it is used the fact that

this property is not satisfied when the responder finishes the protocol execution

although the initiator has not executed its part. In such a situation, one can say that an

intruder has sent fake messages to the responder and attacked to the protocol. However,

this property is satisfied. It means that the intruder caused the responder to finish its run

by sending fake messages and we have found an attack on the protocol.

The diagnostic trace generated by UPPAAL (written in an .xtr file) is loaded

into its simulator to be able to view the transitions and the operations performed. The

transitions of the principal automata, the content of the variable and the operations

to create the message are examined to find out the execution of the attack scenerio.

From the diagnostic trace, it is seen that this is the execution trace of the type

flaw attack given in section 5.3. In this execution, after the responder sends the message

to the server, the intruder (in Figure 5.14) extracts the information in messages and

in the transitions from to , and learns , , and (kept in its variable

). It skips the protocol message . To create a fake message, it takes

 into the variable between the states , and . Then, it selects

64

 as and as , to encrypt with . It composes this encrypted

block with and sends it to the responder as the protocol message . In this

attack, accepts the nonce as the key . As it is seen, a type flaw attack

(substitution of a different type of message field) can be detected since the types of

constituent parts for the encryption, decryption or message creation operations are not

restricted. The intruder has the ability to make a composition of any of these variables

that may be accepted by the responder as a correct message.

The next query is related to the secrecy property. The next query verifies the

distribution of the key (at the end of the protocol execution, the secret key is

generated by the server and distributed to the initiator and the responder) and the

secrecy of this key by checking whether it can be learned by the intruder. The check is

performed using the variable in order to include all the decomposed pieces of the

messages and their encryptions or decryptions.

Query 3: The execution of the protocol run leads to the fact that, the secret key

generated by the server is distributed to the protocol principals, and it cannot be

learned by the intruder.

The property is satisfied, meaning that all the executions where the initiator and

the responder finished the initial part lead to the equivalence of s owned by them

and this secret key cannot be obtained by the intruder. (Note that this property is true for

the correct execution of the protocol in which both the initiator and the responder

finishes their protocol execution.)

In the next queries, the aim is to find out whether the timing information can be

used to analyze the attacks on a protocol. The timeout intervals - the time periods that a

principal waits for a message - can be used for this purpose. If a message comes earlier

than the required time to prepare a message (depending on the encryption/decryption

times), then it can be said that the principal has received a fake message (Corin, et al.

2004, 2007).

In a normal run (see Figure 5.15.a), assuming the time to create or read a

message is negligible, the timeout for the responder is:

65

1. sends message 1 to

2. performs encryption, sends message 2 to

3. performs decryption, then two encryptions, sends message to

4. performs a decryption and an encryption, sends message 4 to

Figure 5.15. Normal (a) and Attacked (b) Message Flows of the Protocol

However, in a flawed run, the message can be received in a shorter time:

 (illustrated in Figure 5.15.b, where

the letter in paranthesis indicate that the message comes from/goes to the intruder).

1. sends message 1 to (intruder reads the content)

2. performs decryption, sends message 2 to

3. Intruder captures and reads the message, performs an encryption, creates and

sends a fake message 4 to

In our model, it is assumed that the time needed for the encryption and

decryption are the same for all principals. To measure the duration of time until the

message is received, a local variable is used which is incremented at each

time unit the responder waits (see Figure 5.8, state). Query 4 tests for a possible

attack using the fact that if the message comes earlier than the required time for the

cryptographic operations, then we can say that there is an attack on the protocol.

Initiator Responder Server Initiator(I) Responder Server(I)

The fake message

arrives too early

than the timeout.

(b) (a)

66

Query 4: Is such a state reachable where the responder has finished the protocol

execution but the message has been received in a shorter time than the required time for

the correct protocol execution?

This query is satisfied meaning that such a state is reachable. The diagnostic

trace causing an earlier message is the execution trace of the attack detected in Query 2.

Hence, it can be inferred that the attacks can also be detected by examining the

quantitative timing information of the protocol.

In some protocols, a constraint on can be used to prevent a specific

attack. For example, if the intruder needed more number of encryptions and decryptions

than the normal run to perform an attack, then it would be possible to limit

in a way that leaving no space for the executions of the intruder (such as the example

given in (Corin, et al. 2007)). However, this is not the case in our protocol. The

constraint does not prevent this attack

since the intruder can wait for a while before sending the message.

In an authentication protocol, the timeout intervals can be examined for both the

initiator and the responder. As we mentioned in section 5.4.3, only the waiting time for

the responder automaton is included in our model since it is provides the detection the

attack of the protocol and we have state space explosion problem when such transitions

are included in both principals.

The timeout for the initiator can be analyzed by modifying the initiator automata

in Figure 5.6 as in Figure 5.7 and removing the transitions counting from the

responder automata to avoid state space explosion. On that model, Query 5 can be used

to test whether the initiator gets the protocol message earlier than the required time for

the creation of the message.

Query 5: Is such a state reachable where the initiator has finished the protocol

execution but the message has been received in a shorter time than the required time for

the correct protocol execution?

67

The query is not satisfied, hence it is not possible for the initiator to get the

protocol message 4 earlier than the required time for the correct execution.

5.6. Modeling Neuman-Stubblebine Subsequent Part

Because of the fact that the intruder model increases the state space so

enormously and it may cause state space explosion, the initial and subsequent

authentication parts are analyzed individually. Up to now, the initial part of the protocol

is modeled and verified. This section gives the model for the subsequent authentication

part which involves only the initiator, responder and the intruder.

In the subsequent part, the knowledge acquired in the initial part should be

included in the model as if the principals already know them. In the initial part, the

initiator learns the shared key , the ticket to be used in the subsequent

part. Hence, this information should be added to the initiator’s knowledge base.

Similarly, also the responder should know to communicate with the initiator in case

the ticket check is successful.

In addition, the and the arrays should contain the values for the

already encrypted blocks. Then, these arrays should contain the corresponding plaintext

and the key for the ciphertext ticket to enable the responder to decrypt the ticket and

check its correctness. In this second part, Init automaton is expanded with the

initialization of these values as given in Figure 5.16. In the execution of the initial part,

the block corresponds to , , and the encrypted block

 resides in the index . Hence, the index of and arrays

should keep the corresponding values in order to make it decryptable by the responder.

Figure 5.16. The Init Automaton for the Subsequent Part

 The model includes the initiator and the responder both involving in all three

steps of the subsequent part of the protocol.

68

1.

2.

3.

 The automata for the subsequent part are constructed as the continuation of the

initial part in order to make them easily combined. Figure 5.17 and Figure 5.18 give the

initiator and the responder automata respectively.

Figure 5.17. The Initiator Automata for the Subsequent Authentication Part

Figure 5.18. The Responder Automata for the Subsequent Authentication Part

 The global clock variable is employed in the model to keep the time

elapsed from the beginning of the protocol execution, and used for testing the key

expiration time. The ticket expires when is greater than the expiration time.

When the responder gets the first message, it checks the validity of the ticket. If it is still

valid and the message content is correct, it continues the protocol execution. Note that

69

the expiration time is checked by comparing the with instead of ,

due to the design considerations, as explained in section 5.4.2.

 The intruder model for the initial part is extended so that in addition to the

protocol messages of this part, it can also read the messages of the subsequent part,

decompose them, perform encryption/decryption and compose fake messages as given

in Figure 5.19 (The dotted empty transition from state I1 to I3 is not employed in this

subsequent model; but it is needed and used in the complete intruder model).

Figure 5.19. The Intruder Automata for the Neuman-Stubblebine Protocol

70

5.7. Validation and Verification of the Subsequent Part

 The following query is used to validate the model by checking whether the

principals can both finish the execution of the subsequent part. The property is satisfied

and the correct protocol execution is simulated.

Query 6: Is such a state reachable where both the initiator and the responder finish the

protocol execution?

Similar to the Query 2, the following query is related to the correspondence

property and checks whether there is a run such that the responder finishes protocol

execution although the initiator has not.

Query 7: Is such a state reachable where the responder has finished but the initiator

has not finished the initial protocol execution?

 The property is not satisfied meaning that no such state is reachable. However,

the protocol is exposed to a parallel session attack given in section 5.3 which may yield

a protocol run not satisfying the correspondence property.

In this model, one automaton for the initiator and one automaton for the

responder are used allowing them to execute just one protocol run at a time. Hence, the

model cannot detect the parallel session attack that occurs when two protocol runs are

executed concurrently and messages from one run are used to form fake messages in

another run.

In this attack, the initiator sends the protocol message 1 to the responder and

goes to state . The responder takes the message, sends the initiator message 2 and

goes to state where it waits for the protocol message3. However, in the parallel

session attack, the intruder reads these messages, composes a new message as message1

of another protocol run and sends it to the responder which should be accepted in state

 . Since the responder is currently in state , it cannot accept this message1 of

another run and the model cannot generate this flawed scenerio.

71

Query 8 checks the secrecy property for the subsequent part in a similar way as

for Query 3. The query is satisfied meaning that in a correct protocol execution, the

secret key shared by the responder and the initiator cannot be learned by the intruder.

Query 8: The execution of the protocol run leads to the fact that, the secret key shared

by the responder and the initiator cannot be learned by the intruder.

As for the analysis of the timing of the message arrivals, the next queries check

whether a message arrives earlier than expected, similar to queries 4 and 5.

Query 9: Is such a state reachable where the responder has finished the protocol

execution but the protocol message 3 has been received in a shorter time than the

required time for the correct execution of the protocol?

Query 10: Is such a state reachable where the initiator has finished the protocol

execution but the protocol message 2 has been received in a shorter time than the

required time for the correct execution of the protocol?

These queries are not satisfied meaning that the messages do not arrive earlier

than expected. As it is seen, although it may be possible to have premature messages in

case of the parallel session attack, our model is unable to detect them since it cannot

model the concurrent execution of more than one protocol executions.

5.8. Combining the Initial and Subsequent Parts

This section gives the complete automata for the initiator and the responder that

model the execution of both initial and subsequent authentication parts. The intruder

model for the complete protocol execution is same with the one given in Figure 5.19

with the additional empty transition from state to . Figure 5.20 and Figure 5.21

give the complete protocol model for the initiator and the responder.

72

Figure 5.20. The Initiator Automata for the Neuman-Stubblebine Protocol

Figure 5.21. The Responder Automata for the Neuman-Stubblebine Protocol

73

In this complete model, the automata designed for initial and subsequent

authentication are merged by involving the key expiration time . The global clock

 is used to test the key expiration time, which is reset by the Init automaton so

that keeps the time elapsed from the beginning of the protocol execution. The

execution expires when , as given in Figure 5.21.

If the ticket expires, then the responder does not accept the protocol message 1

of the subsequent part and goes to the initial authentication to get a new session key.

The initiator has two transitions after the execution of the initial part which may

continue with the subsequent part or go back to the initial part to get a new session key

and a ticket, depending on the responder’s behavior.

The protocol execution can be executed more than once by using the Init

automata emitting signal in a loop and reseting the clock . So, it is

possible to simulate the model continuing by the second iteration of the protocol,

starting from the initial authentication part. Our limitation here to simulate it once is

related to the limitation of the size of encryption/decryption arrays and the nonce values

can be generated (see section 6.2.2), which are restricted to have smaller state space and

to be able to verify our queries.

Table 5.2 lists the summary of the verification results for the queries including

the number of states stored, number of states explored, the user and the system time for

the queries performed in our case study (using random seed values).

Table 5.2. Verification Results for the Queries

Query Model Seed
States

stored

States

explored
Real time Satisfied

1 Initial 1279609757 444648 651457 0m9.859s Yes

2 Initial 1279609786 444648 651457 0m11.549s Yes

3 Initial 1279609964 9045526 13472396 2m51.765s Yes

4 Initial 1279610160 444648 651457 0m11.670s Yes

5 Initial (*) 1279610225 1828010 2978888 0m31.286s No

6 Subs. 1279610723 15472 24182 0m0.360s Yes

7 Subs. 1279610746 12396981 20603774 4m1.857s No

8 Subs. 1279611000 16404642 24710183 5m29.892s Yes

9 Subs. 1279611343 12396981 20603774 4m2.420s No

10 Subs. 1279611634 12396981 20603774 4m3.139s No

1,2,3,4,

5,6,7,

8,9,10

Complete out of memory

74

The system marked with (*) contains the part of timed automata for the initiator

timeout given in Figure 5.7, instead of the responder timeout part, since the query

checks the timing for the initiator. Query 10 also checks the timing for the initiator on

the subsequent model which does not have a state space explosion problem and includes

the timing for both principals.

As it is seen from the table, the verifier goes out of memory in all queries during

the verification of the complete model. This is caused by the state space explosion

problem which is explained in the next chapter.

75

CHAPTER 6

ANALYSIS OF THE CASE STUDY: TIMED AUTOMATA

AS A VERIFICATION TOOL FOR SECURITY

PROTOCOLS

6.1. Benefits of the Model

Timed automata formalism provides an easily understandable model for the

verification of concurrent systems. The state transitions give good insight about the real

system so that the analysis can be performed in an easier way. Our protocol model

mimics the protocol execution and allows studying on some example scenarios and

counter examples by simulating and analyzing the model visually.

Timed automata modeling is suitable for the systems that can be viewed as a

parallel composition of processes. To model a security protocol, each principal can be

modeled as an automaton which represents the behavior of the principal who involves in

protocol steps by sending and receiving messages, generating nonces, performing

encryption and decryption, reading and checking message contents. The communication

between the principals can also be easily represented by using the synchronization

channels between automata. The emitting and receiving signals with a global message

variable successfully model the message transfer.

C-like data structures and functions supported by UPPAAL are very useful for

modeling cryptology. They provide the cryptographic operations to be held in the local

functions of each principal which is close to the real world. In addition, these variables

allow us to model the knowledge bases of the principals so that they know their ids,

newly generated nonces, message contents…etc.

 One of the most important advantages of timed automata is its ability to model

time-sensitive systems. Since the correct functioning of the security protocols depend

on some timing relationships between the events, timing information is important in

their analysis. In our model, the network delays are considered to be negligible and the

timing information for the time consuming operations such as nonce generation,

76

message encryption and decryption, the timeout intervals for the messages, and the

expiration time of the session key, are included.

Automatic verification of the model is another advantage since it needs less or

no human intervention. Once the required properties are specified, the verification is

performed automatically by the model checking tools.

6.2. Challenges of the Model

6.2.1. State Space Explosion Problem

The most challenging problem of automatic verification and model checking is

the usage of large amount of time and memory. Because of the fact that model checking

performs reachability analysis to verify properties by exploring all possible states, it has

to keep the clock values and the control structure of the automata. This results in the

usage of huge amount of memory and it is called the state space explosion problem.

This problem occurs on the systems with many components having transitions in

parallel, since the number of states in a transition system grows exponentially with the

number of the components.

In a large system such as the protocol in our case study, the verifier goes out of

memory because of the state space explosion. It is a serious problem; because, the

verification process cannot be completed whether an erroneous state that does not

satisfy the specified property has not been found before explosion. Such a situation is

illustrated in Figure 6.1. The exploration starts from the initial states and continues as

the expanding circles. After the state space explosion, it goes out of memory and

crashes. In that case, the erroneous states may not be detected.

Figure 6.1. Reachability Analysis and State Space Explosion

reachable
states

initial states

erroneous states

state space
explosion

77

This problem is also a current focus in the literature and some methods are

proposed to overcome this problem. These can be classified as the methods to (i) reduce

the number of states to explore, (ii) reduce the memory requirements needed for storing

explored states, (iii) use parallelism or distributed environment, or (iv) exploring only

part of the state space (Pelánek 2009). Some of these methods are provided or proposed

as a future work for UPPAAL tool, and can be examined using the documentations in

(Amnell, et al. 2001, Behrmann, et al. 2002, 2006). This section focuses on the

modifications on our model to overcome this situation.

There are some studies in which some verification results cannot be obtained

due to the fact that UPPAAL ran out of memory (Harrison, et al. 2007, Huber and

Schoeberl 2009, Heidarian, et al. 2009). Also, in our study, state space explosion

problem arises in some cases. For some queries, the verifier runs out of memory and

crashes. It is not a solution to increase memory since UPPAAL is a 32-bit process

which means that it cannot address more than 4GB of memory. Hence, some restrictions

and limitations are applied in our model to reduce the state space:

 Separate initial and the subsequent authentication parts:

The state space explosion problem is the reason why the initial and the

subsequent authentication parts are modeled and verified separately. Because,

the number of states is much larger in the complete protocol model that also

employs some more transitions to ensure the continuity of the protocol

execution. Since the queries cannot be checked on this model, the verification is

performed for each part individually.

 Simple Modeling and Eliminating the Redundant States:

The states that do not exhibit interesting behavior are eliminated and the

unnecessary behaviors are not employed in the model since it may be very

consumptive. In addition, all possible operations are performed in the updates of

transitions to reduce the number of transitions and states.

 Use of Committed States:

The use of committed states restricts the nondeterminism in the model. This kind

of states are used in our model to guide the state space exploration and avoid the

unnecessary interleavings of independent transitions, which can be considered as

a simple form of partial order reduction. These states are not stored in the passed

list and the interleavings of any state with a committed location is not explored.

78

This reduces the state space so much that changing even one state from

committed to a not committed state may result in explosion.

 Limit the Number of Operations:

The intruder model allows the attacker to perform unbounded number of

encryption/decryption operations and composing new messages, resulting in a

huge state space. To prevent the execution of unbounded number of these

operations, the number of operations that the intruder can perform is limited by

using the variable in a way that the value is not so small to by-pass a

possible attack.

 Keep the number of clocks and variables as low as possible:

A symbolic state of a timed automaton includes the location vector, clock zone

and variable valuations. So, reducing the number of variables provides us

considerable savings. In our model, it is tried to use constant variables whose

values do not change during the execution (such as the principal ids, initial

knowledge of shared keys, etc.) and bounded integer variables which can be

represented using less number of bits (such as the nonces and index variables

used for encryption and decryption)

For example, defining and instead of defining

different length variables as , , ,

 and , saves us a few transitions from state to

which might have ended up in exponential growth in possible next transitions

and states. As it is seen in Figure 6.2, the first automaton with more number of

length variables has five transitions where the other one has only two transitions.

Figure 6.2. Reduced Number of Transitions

79

 Adding Guards:

Some more guards are especially employed in the intruder model to reduce the

number of available interleavings and nondeterminism without lessening the

power of intruder, which caused an exhausting modeling phase.

For example the parts of intruder automata in Figure 5.11, Figure 5.12 and

Figure 5.13 involve some guards that prevent to take unnecessary transitions (It

is unnecessary to try to extract a message where the intruder cannot learn

anything new or to use an uninitialized variable. Hence, it is pointless to have

these transitions as available transitions and increase the state space).

 Make use of the UPPAAL verifier options:

The minimal constraint graphs and aggressive state optimization that decreases

the number of stored states are used to reduce the memory consumption

although it may increase time consumption which is less restrictive in our study.

These reductions provides considerably time and memory savings. However, the

problem still exists for the verification of the complete protocol execution involving

both the initial and the subsequent parts.

6.2.2. Collision of Variable Values

In a model, if it is possible to find an attack, then it should also be a possible

attack on the real world. However; some flaws, although which is not an attack in fact,

can be found because of some weaknesses or deficiencies of the model. In earlier phases

of our study, such a problem had occured which is caused by the possibility of having

same values for different data types in the model.

For example, the values of the principal ids, nonces, the index values

representing encrypted blocks could coincide, resulting in the responder accepting

wrong messages as they were correct since the values seem to be correct. An example

situation is given in Figure 6.3.

In this execution, the responder accepts an incorrect message because of the

fact that the values of the message components seem to be true. In this example, the

identity variables have the values , ; and the is initially . The agents

increment the value of this nonce variable and they get , . The index

values for the and arrays start from . In the first step of protocol execution,

80

 sends the message including its identity and nonce. creates the protocol message2

(encrypts the block with filling in the index), to send it to the server.

The intruder does not transmit it, and it also omits the third step. It encrypts ’s identity

with (which is meaningless in a real execution); filling in the index (and

 arrays become as in the figure). It sends a fake message including only ’s identity.

In real execution, this fake message is not accepted by . However, in this deficient

model, it may be identified as the correct protocol message 4. reads the empty (zero)

part of the message as , and =1, which are possible to be

decrypted because of the collided values.

Figure 6.3. A Deficient Run Caused by the Collisions on the Variable Values

To prevent the problem, the integer values to be used for each type are

predefined. By using the variables values given in Table 5.1, such number collisions do

not occur. One disadvantage of this solution is the limitation on the numbers to be used

since we use only bits for the values of a component. This also limits the number of

protocol executions since the nonce values to be generated and the number encryptions

that can be performed are limited. One way to overcome this problem may be to

increase the number of bits to represent these cryptology modeling variables which is in

trade-off with state space explosion.

1.

2.

3.

4.

4’.

plain key

12

1

......

......

......

69

2

......

......

......

0

 1

..

..

15

0

1

..

..

15

81

6.3. Possible Extensions

6.3.1. Retransmissions

The model can be further extended by modeling the retransmissions which

involve resending of messages that may be damaged or lost. A message can be

retransmitted if the response message does not arrive in a specific timeout interval.

To model retransmissions, an extra transition can be added from the waiting

state to the sending state as it is seen in Figure 6.4 and Figure 6.5.

Figure 6.4. Extension for the Initiator Automaton for Retransmission

Figure 6.5. Extension for the Responder Automaton for Retransmission

The transitions from to and from to model retransmissions that

make the principals resend the message. These transitions are allowed when the timeout

is reached and the total number of allowed retransmissions is not exceeded. This model

is closer to the real protocol execution; however, it increases the state space

considerably.

82

6.3.2. Parallel Sessions

The subsequent part of Neuman-Stubblebine authentication protocol is exposed

to a parallel session attack given in section 5.3.

The parallel session attack occurs when two protocol runs are executed

concurrently and messages from one run are used to form fake messages in another run.

However, our model is able to execute just one protocol run at a time. Consequently,

our automata model which has one automaton for the initiator and one automaton for

the responder, allowing them to execute just one protocol run at a time cannot detect the

parallel session attack.

One idea may be to extend the network of timed automata by using more than one

instantiations of the principal automata templates in the system definition to model

different runs of the protocol. This can be done in a way that the instantiations of a

principal should share the same knowledge base in order to behave as a single principal

involving in different protocol runs. Nevertheless, besides having a huge state space,

this does not provide us a way to analyze unbounded number of parallel protocol runs.

The model and the protocol analysis can be further extended so that it is possible to

examine unbounded number of parallel sessions.

83

CHAPTER 7

CONCLUSIONS

 In this thesis, the objective is to study the timed automata model which

introduces quantitative time information into the real time system verification and

utilize it for security protocols. After the analysis of the timed automata theory and its

implementation, a case study is performed on a repeated authentication protocol, by

directly modeling it with timed automata. The time needed for the cryptographic

operations, message timeouts and key expiration time are also employed in the model.

In summary, the following steps are performed for modeling the protocol:

 Each principal is designed as an automaton whose transitions mimic the protocol

execution, which together make up a network of timed automata.

 The communication of the principals is provided using the shared variables and

the synchronization channels between the automata.

 Dolev-Yao intruder model is used which also models the network. It is

concentrated on the modeling of the intruder in a way that it has all of the

abilities of the Dolev-Yao model and does not have large numbers of variables

and the state transitions.

 The details of the cryptographic operations (nonce generation, encryption and

decryption) are abstracted away. Cryptology modeling and message creations

are employed in the updates of the transitions.

 Some simplifications and limitations are applied on the model to avoid state

space explosion.

Then, the model is aimed to be verified to find out the possible attacks.

 The properties to be checked are specified based on the goals of an

authentication protocol

 The properties are written in the query language of UPPAAL which performs

automatic verification.

 The execution of the diagnostic traces are examined using the visual simulator.

84

 It is concluded that the timed automata model for an authentication protocol can

be used to examine the predefined goals of a protocol. Model checking of Neuman-

Stubblebine authentication protocol with timed automata is able to find the type flaw

attack in the initial part of the protocol, by analyzing the correspondence property. In

addition, this attack can also be detected by using the quantitative time information.

However, the parallel session attack in the subsequent part, which occurs when

two protocol runs are executed concurrently, cannot be detected since our model allows

the principals to execute just one protocol run at a time. The model can be further

improved by employing the parallel execution of more than one protocol runs so that it

can detect the parallel session attacks.

In addition, similar to the other model checking methods, timed automata model

suffers from the state space explosion problem that occurs in large models. In our case

study, although the state space is tried to be reduced by using the verifier options and

some limitations are applied on the model, the complete protocol model including both

the initial and subsequent authentication parts cannot be verified since the verifier goes

out of memory. Hence, some work should be devoted to overcome the state space

explosion problem.

85

REFERENCES

Abdulla P.A., Deneux J., Ouaknine J. and Worrell J. (2005). "Decidability and

Complexity Results for Timed Automata via Channel Machines", Proceedings of

32nd International Colloquium on Automata, Languages and Programming

(ICALP): 1089-1101.

Adams S., Ouaknine J. and Worrell J. (2007). "Undecidability of Universality for Timed

Automata with Minimal Resources", Lecture Notes in Computer Science (LCNS)

4763/2007, Springer: 25-37.

Alur R. (1999). "Timed Automata", 11th International Conference on Computer-Aided

Verification, Lecture Notes in Computer Science (LCNS) 1633/1999, Springer: 8-

22

Alur R. and Henzinger T.A. (1989). "A Really Temporal Logic", Proceedings of the

30th Annual Symposium on Foundations of Computer Science (IEEE Computer

Society Press): 164-169.

Alur R. and Henzinger T.A. (1990). "Real Time Logics: Complexity and

Expressiveness", Proc. of the Fifth Annual Symposium on Logic in Computer

Science (IEEE Computer Society Press): 390-401.

Alur R. and Dill D. L. (1994). "A Theory of Timed Automata", Theoretical Computer

Science 126: 183-235.

Alur R. and T.A. Henzinger. (1992). "Logics and Models of Real Time: A Survey",

Proceedings of the Real-Time: Theory in Practice, REX Workshop, Springer: 74-

106.

Alur R., Courcoubetis C. and Dill L. (1990). "Model-checking for Real-time Systems",

Proceedings of the 5th IEEE Symposium on Logic in Computer Science: 414-425.

Alur R., Courcoubetis C. and Dill D. (1993). "Model-checking in Dense Real-time",

Information and Computation 104: 2-34.

Alur R., Courcoubetis C., Henzinger T.A. and Ho P.H. (1993). "Hybrid Automata: An

Algorithmic Approach to the Specification and Verification of Hybrid Systems",

Lecture Notes in Computer Science (LCNS) 736/1993, Springer: 209-229.

Alur R., Fix L. and Henzinger T.A. (1999). "Event-clock Automata: A Determinizable

Class of Timed Automata", Theoretical Computer Science 211: 253-273.

Amnell T. and Behrmann G. (2001). "UPPAAL – Now, Next, and Future", Lecture

Notes in Computer Science (LCNS) 2067/2001,Springer: 99-124.

86

Asarin E., Caspi P. and Maler O. (2002). "Timed Regular Expressions", Journal of the

ACM 49: 172-206.

Behrmann G. and Bengtsson J. (2002) "UPPAAL Implementation Secrets", Lecture

Notes in Computer Science (LCNS) 2469/2002,Springer: 3-22.

Behrmann G. and David A. (2004). "A Tutorial on UPPAAL", Lecture Notes in

Computer Science (LCNS) 3185/2004,Springer: 200-236.

Behrmann G.,David A, Larsen K. G., Hakansson J., Petterson P., Yi W. and Hendriks

M. (2006). "UPPAAL 4.0.", Proceedings of the 3rd International Conference on

the Quantitative Evaluation of SysTems (QEST): 125-126.

Benerecetti M. and Cuomo N. (2009)."TPMC: A Model Checker For Time Sensitive

Security Protocols", Journal of Computers 4: 366-377.

Bengtsson J. and Larsen K. (1996). "UPPAAL — A Tool Suite for Automatic

Verification of Real-time Systems", Lecture Notes in Computer Science (LCNS)

1066/1996, Springer: 232-243.

Bengtsson, J. and Yi, W. (2004). "Timed automata: Semantics, Algorithms and Tools."

Lecture Notes in Computer Science (LCNS) 3098/2004, Springer: 87-124.

Bengtsson J., David Griffioen W. O., Kristoffersen K. J., Larsen K. G., Larsson

F., Pettersson P. and Yi W. (1996). "Verification of an Audio Protocol with Bus

Collision using Uppaal", Lecture Notes in Computer Science (LNCS) 1102/1996,

Springer and Proceedings of the 8th International Conference on Computer Aided

Verification (CAV 96): 244-256.

Bengtsson O., David Griffioen W.O., Kristoffersen K.J., Are K., Kristoffersen J.,

Larsen K. G., Larsson F., Pettersson P. and Yi W. (2002). "Automated Analysis of

an Audio Control Protocol Using UPPAAL" Journal of Logic and Algebraic

Programming: 52-53.

Bérard B., Petit A., Diekert V. and Gastin P. (1998). "Characterization of the Expressive

Power of Silent Transitions in Timed Automata", Fundamenta Informaticae 36,

Citeseer: 145-182.

Bordbar B. and Okano K. (2003). "Verification of Timeliness QoS Properties in

Multimedia Systems." Formal Methods and Software Engineering 2885,

Springer: 523-540.

Bosnacki, D. (1999). "Digitization of Timed Automata", Proceedings of Formal

Methods for Industrial Critical Systems (FMICS 99): 283-302.

Bouyer, P. (2004). "Forward Analysis of Updatable Timed Automata", Formal Methods

in System Design 24: 281-320.

87

Bouyer, P. and Laroussine F. (2008). "Model Checking Timed Automata", Modeling

and Verification of Real-Time Systems, John Wiley & Sons, Ltd.: 111-140.

Bouyer P. (2002). "Timed Automata May Cause Some Troubles", Research Report

LSV–02–9, LSV, ENS DE.

Bouyer, P. (2003). "Untameable Timed Automata", Lecture Notes in Computer Science

(LNCS) 2607/2003, Springer and Proceedings of the 20th Annual Symposium on

Theoretical Aspects of Computer Science: 620-631.

Bouyer P., Dufourd C., Fleury E. and Petit A. (2000). "Are Timed Automata

Updatable?", CAV 00: Proceedings of the 12th International Conference on

Computer Aided Verification, Springer: 464-479.

Bouyer P., Dufourd C., Fleury E. and Petit A. (2004). "Updatable Timed Automata",

Theoretical Computer Science 321, Elsevier: 291-345.

Bouyer P., Laroussinie F. and Reynier P. (2005). "Diagonal Constraints in Timed

Automata: Forward Analysis of Timed Systems", Lecture Notes in Computer

Science (LCNS) 3829/2005, Springer: 112-126.

Bouyer P., Haddad S. and Reynier P.A. (2009). "Undecidability Results for Timed

Automata with Silent Transitions", Fundamenta Informaticae 92: 1-25.

Bowman H. and Gomez R. (2006). "Timelocks in Timed Automata", Concurrency

Theory: Calculi an Automata for Modelling Untimed and Timed Concurrent

Systems, ISBN-13: 978-1852338954, Springer: 347-376.

Bowman H., Faconti G., Katoen J.P., Latella D. and Massink M. (1998). "Automatic

Verification of a Lip Synchronisation Algorithm using UPPAAL", Proceedings of

the 3rd International Workshop on Formal Methods for Industrial Critical

Systems: 97-124.

Bozga M., Daws C., Maler O., Olivero A., Tripakis S. and Yovine S. (1998). "Kronos:

A Model-Checking Tool for Real-Time Systems", Proceedings of the 10th

International Conference on Computer Aided Verification (CAV 98), Springer:

546-550.

Cerone, A. and Maggiolio-Schettini A. (1999). "Time-based Expressivity of Timed

Petri Nets for System Specification", Theoetical Computer Science 216, Elsevier:

1-53.

Clark J., and Jacob J. (1997). A Survey of Authentication Protocol Literature Version

1.0.

Clarke E.M., Grumberg O. and Peled D.A. (1999). Model checking, The MIT Press,

ISBN-13: 978-0262032704.

88

Corin R., Etalle S., Hartel P.H. and Mader A. (2007). "Timed Analysis of Security

Protocols", Journal of Computer Security 15: 619-645.

Corin R., Etalle S., Hartel P.H. and Mader A. (2004). "Timed Model Checking of

Security Protocols", FMSE 04: Proceedings of the 2004 ACM Workshop on

Formal Methods in Security Engineering: 23-32.

Cremers, C. J. (2006). "Scyther – Semantics and Verification of Security Protocols",

Ph.D. Thesis, Technische Universiteit Eindhoven.

D’Argenio P.R., Katoen J.P., Ruys T.C. and Tretmans G. J. (1997). "The Bounded

Retransmission Protocol must be on time", Lecture Notes in Computer Science

(LCNS) 1217/1997, Springer: 416-431.

D’Argenio P.R., Katoen J.P., Ruys T. and Tretmans J. (1996). "Modeling and Verifying

a Bounded Retransmission Protocol", University of Maribor.

Dembinski P., Janowska A., Janowski P., Penczek W., Polrola A., Szreter M., Wozna

B., Zbrzezny A. (2003). "Verics: A Tool for Verifying Timed Automata and

Estelle Specifications", 9th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems: 278-283.

Dolev, D. and Yao A.C. (1981). "On the Security of Public Key Protocols",

Proceedings of the 22nd Annual Symposium on Foundations of Computer

Science: 350-357.

Emerson, E.A and Clarke, E.M. (1982). ―Using Branching Time Temporal Logic to

Synthesize Synchronization Skeletons‖, Science of Computer Programming 2:

241-266.

Emerson E.A., Mok A.K., Sistla,A.P. and Srinivasan J. (1990). "Quantitative Temporal

Reasoning", Lecture Notes in Computer Science (LCNS) 531, Springer and

Proceedings of the 2nd International Workshop on Computer Aided Verification

(CAV'90): 136-145.

Finkel, O. (2006). "Undecidable Problems about Timed Automata", Lecture Notes in

Computer Science (LCNS) 4202/2006, Springer: 187.

Furia C.A., Mandrioli D., Morzenti A. and Rossi M. (2010). "Modeling Time in

Computing: A Taxonomy and a Comparative Survey", ACM Computing Surveys

(CSUR) 42: 1-59.

Gupta V., Henzinger T.A. and Jagadeesan R. (1997). "Robust Timed Automata",

Lecture Notes in Computer Science (LCNS) 1201/1997, Springer: 331-345.

Harel E. and Lichtenstein O. (1990). "Explicit Clock Temporal Logic", Proceedings of

the 5th Annual Symosium on Logic in Computer Science, IEEE Computer Society

Press: 402–413.

89

Harrison M.D., Kray C., Sun Z., and Zhang H. (2007). "Factoring User Experience into

the Design of Ambient and Mobile Systems", Engineering Interactive Systems

EIS 2007, Lecture Notes in Computer Science (LCNS) 4940/2008, Springer: 243-

259.

Havelund K., Larsen K. G. and Skou A. (1999). "Formal Verification of a Power

Controller Using the Real-Time Model Checker", Proceedings of the 5th

International AMAST Workshop on Real-Time and Probabilistic Systems: 277-

298.

Havelund K., Skou A., Larsen K.G. and Lund K. (1997). "Formal Modeling and

Analysis of an Audio/Video Protocol: An Industrial Case Study Using UPPAAL",

In Proceedings of the 18th IEEE Real-Time Systems Symposium: 2-13.

Heidarian F., Schmaltz J. and Vaandrager F. (2009). "Analysis of a Clock

Synchronization Protocol for Wireless Sensor Networks", Lecture Notes in

Computer Science (LCNS) 5850/2009, Springer and Proceedings of the 2nd

World Congress on Formal Methods: 516-531.

Henzinger T.A. and Jean-Francois R. (2000). "Robust Undecidability of Timed and

Hybrid Systems", Lecture Notes in Computer Science (LCNS) 1790/2000,

Springer: 145-159.

Henzinger T.A., Nicollin X., Sifakis J. and Yovine S. (1992). "Symbolic Model

Checking for Real-time Systems", Information and Computation 111: 394-406.

Henzinger T.A., Manna Z. and Pnueli A. (1992). "What Good are Digital Clocks?",

Proceedings of the 19th International Colloquium on Automata, Languages and

Programming: 545-558.

Hessel A. and Pettersson P. (2006). "Model-Based Testing of a WAP Gateway: an

Industrial Study", Proceedings of the 11th International Workshop on Formal

Methods for Industrial Critical Systems (FMICS 06), and Lecture Notes in

Computer Science (LCNS) 4346/2007, Springer: 116-131.

Hoare, C.A.R. (1978). ―Communicating Sequential Processes‖, Communications of the

ACM 21: 666-677.

Huber B. and Schoeberl M. (2009). "Comparison of Implicit Path Enumeration and

Model Checking Based WCET Analysis", Proceedings of the 9th International

Workshop on Worst-Case Execution Time (WCET) Analysis.

Hwang T., Lee N. Y., Li C. M., Ko M.Y. and Chen Y.H. (1995). "Two Attacks on

Neuman-Stubblebine Authentication Protocols", Information Processing Letters

53: 103-107.

Jakubowska G. and Penczek W. (2008). "Modelling and Checking Timed

Authentication of Security Protocols", Fundamenta Informaticae 79: 363-378.

90

Jakubowska G., Penczek W. and Srebrny M. (2005). "Verifying Security Protocols with

Timestamps via Translation to Timed Automata", Proceedings of the

International Workshop on Concurrency, Specification and Programming

(CS&P'05), Warsaw University: 100-115.

Jensen H.E., Larsen K. G., Ejersbo H., Kim J., Larsen G. and Skou A. (1996).

"Modelling and Analysis of a Collision Avoidance Protocol using SPIN and

UPPAAL", DIMACS Series in Discrete Mathematics and Theoretical Computer

Science 32: 33-50.

Larsen K. G. and Pettersson P. (1997). "Uppaal – Status & Developments", Lecture

Notes in Computer Science (LCNS) 1254/1997, Springer, and Proceedings of the

9th International Conference on Computer Aided Verification: 456-459.

Larsen K.G., Pettersson P. and Yi W. (1995). "Compositional and Symbolic Model-

checking of Real-time Systems", Proceedings of the 16th IEEE Real-Time

Systems Symposium: 76-87.

Lasota S. and Walukiewicz L. (2008). "Alternating Timed Automata", ACM

Transactions on Computational Logic (TOCL): 1-27.

Lindahl M., Pettersson P. and Yi W. (1998). "Formal Design and Analysis of a Gear

Controller", Proceedings of the 4th International Workshop on Tools and

Algorithms for the Construction and Analysis of Systems , and Lecture Notes In

Computer Science (LCNS) 1384/1998, Springer: 281-297.

Lönn H. and Pettersson P. (1997). "Formal Verification of a TDMA Protocol Start-Up

Mechanism." In Pacific Rim International Symposium on Fault-Tolerant Systems,

IEEE Computer Society: 235-242.

Mukhopadhyay S. and Podelski A. (1999). "Beyond Region Graphs: Symbolic Forward

Analysis of Timed Automata", Lecture notes in Computer Science (LCNS)

1738/1999, Springer: 232-244.

Neuman B.C. and Stubblebine S.G. (1993)."A note on the Use of Timestamps as

Nonces", SIGOPS Operating Systems Review 27, ACM: 10-14.

Ostroff J.S. (1989). Temporal Logic for Real Time Systems, Wiley Advanced Software

Development Series, John Wiley & Sons, ISBN: 0-471-92402-4.

Ouaknine J. and Worrell J. (2004). "On the Language Inclusion Problem for Timed

Automata: Closing a Decidability Gap", Proceedings of IEEE Symposium on

Logic in Computer Science (LICS): 54-63.

Ouaknine J. and Worrell J. (2003). "Revisiting Digitization, Robustness, and

Decidability for Timed Automata", Proceedings of IEEE Symposium on Logic in

Computer Science (LICS):198-207.

91

Ouaknine J. and Worrell J. (2003). "Universality and Language Inclusion for Open and

Closed Timed Automata", Lecture Notes in Computer Science (LCNS) 2623/2003,

Springer: 375-388.

Pelánek R. (2009). "Fighting State Space Explosion: Review and Evaluation", Lecture

Notes in Computer Science (LCNS) 5596/2009, Springer: 37-52.

Penczek W. and Polrola A. (2006). Advances in Verification of Time Petri Nets and

Timed Automata: A Temporal Logic Approach, Springer-Verlag, ISBN: 978-

3540328698.

Pnueli A. (1977). "The Temporal Logic of Programs", Proceedings of the 18
th

 IEEE

Symposium on Foundations of Computer Science: 46-77.

Reed G.M. and Roscoe A.W. (1988). "A Timed Model for Communicating Sequential

Processes", Theoretical Computer Science 58, Elsevier: 314-323.

Schonwalder K., Kehne A., Schonwalder J., Langendorfer H. and Braunschweig T.

(1992). "A Nonce-Based Protocol for Multiple Authentications", ACM SIGOPS

Operating Systems Review 26: 84 - 89.

Srba J. (2008). "Comparing the Expressiveness of Timed Automata and Timed

Extensions of Petri Nets", Proceedings of the 6th international Conference on

Formal Modeling and Analysis of Timed Systems, and Lecture Notes In Computer

Science (LCNS) 5215, Springer: 15-32.

Suman P.V. and Pandya P. K. (2009). "Determinization and Expressiveness of Integer

Reset Timed Automata with Silent Transitions", Proceedings of the 3rd

International Conference on Language and Automata Theory and Applications:

728-739.

Suman P.V., Pandya P.K., Krishna S.N.and Manasa L. (2008). "Timed Automata with

Integer Resets: Language Inclusion and Expressiveness", Proceedings of the 6th

international conference on Formal Modeling and Analysis of Timed Systems: 78-

92.

Tripakis, S. (2006). "Folk theorems on the Determinization and Minimization of Timed

Automata", Information Processing Letters 99, Elsevier: 222-226.

Vardi M. and Wolper P. (1986). "An Automata-theoretic Approach to Automatic

Program Verification", Proceedings of the First IEEE Symposium on Logic in

Computer Science: 332-344.

Wang A.D. and Yi W. (2000). "Modelling and Analysis of a Commercial Field Bus

Protocol", Proceedings of 12th Euromicro Conference on Real-Time Systems,

IEEE: 165-172.

92

Woo T.Y.C. and Lam S.S. (1994). "Design, Verification and Implementation of an

Authentication Protocol", Proceedings of International Conference on Network

Protocols.

Yovine S. (1997). "KRONOS: A Verification Tool for Real-time Systems",

International Journal on Software Tools for Technology Transfer, Springer: 123-

133.

