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ABSTRACT 

 

UTILIZATION OF TIMED AUTOMATA AS A VERIFICATION TOOL 

FOR REAL-TIME SECURITY PROTOCOLS 

 

Timed Automata is an extension to the automata-theoretic approach to the 

modeling of real time systems that introduces time into the classical automata. Since it 

has been first proposed by Alur and Dill in the early nineties, it has become an 

important research area and been widely studied in both the context of formal languages 

and modeling and verification of real time systems. Timed automata use dense time 

modeling, allowing efficient model checking of time-sensitive systems whose correct 

functioning depend on the timing properties. One of these application areas is the 

verification of security protocols.  

This thesis aims to study the timed automata model and utilize it as a 

verification tool for security protocols. As a case study, the Neuman-Stubblebine 

Repeated Authentication Protocol is modeled and verified employing the time-sensitive 

properties in the model. The flaws of the protocol are analyzed and it is commented on 

the benefits and challenges of the model. 
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ÖZET 

 

ZAMANLI ÖZDEVĠNĠM KURAMININ GERÇEK ZAMANLI 

GÜVENLĠK PROTOKOLLERĠNĠN DOĞRULANMASINDA 

KULLANIMI 

 

Zamanlı özdevinim kuramı, klasik özdevinirler (otomata) kavramına zaman 

değişkenini ekleyerek bu modeli genişleten bir kuramdır. Doksanlı yılların başlarında 

öne sürülen zamanlı özdevinim kuramı, hem biçimsel diller hem de gerçek zamanlı 

sistem modelleme ve doğrulama alanlarında geniş ölçüde çalışılmaktadır. Zamanı 

sürekli bir değişken olarak ele alan zamanlı özdevinirler, doğru çalışması zaman 

kısıtlarına bağlı olan zaman kritik sistemler üzerinde model denetimine olanak 

sağlamaktadır. Bu uygulama alanlarından biri de güvenlik protokollerinin 

doğrulanmasıdır.  

Bu tezde, zamanlı özdevinim kuramının incelenmesi ve güvenlik protokollerinin 

doğrulanmasında kullanımı amaçlanmaktadır. Bir durum çalışması olarak, Neuman-

Stubblebine Tekrarlı Kimlik Denetimi Protokolü’nün, zamana bağlı özellikleri de dahil 

edilerek modellenmesi ve doğrulanması sunulmaktadır. Protokolün doğrulama sonuçları 

incelenerek modelin artı ve eksileri üzerinde yorumlara da yer verilmektedir. 
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CHAPTER 1 

 

INTRODUCTION 

 

 Real time systems are designed to perform a certain task within certain 

timeliness requirements, such as real time controllers, multimedia applications and 

communication protocols. However for some cases, some real time systems may not 

behave as intended which constitutes an important problem. Thus, it is needed to verify 

the correctness of the system using some systematic methods.  

Formal verification methods can be used to model and analyze the behavior of a 

real time system to verify whether it meets the specified requirements. Formal 

verification can be performed using Theorem Proving methods that solve the general 

validity of a formula by using logical inference, or Model Checking methods that 

analyze a finite model of a system whether it fulfills the desired property. 

 In the literature, most verification methods (Pnueli 1977, Hoare 1978, Vardi and 

Wolper 1986) use the qualitative notion of time involving the partial ordering of the 

occurrence of events. However, the correctness of a real time system also depends on its 

quantitative timed properties. For example, for a communication protocol, it is more 

expressive to specify that ―the response should be received in 5 time units after it has 

sent the message‖ than ―the response should be received after it has sent the message‖.  

Since there is a need for the time-sensitive models in formal modeling and 

verification, some untimed formalisms are extended with timing information to obtain a 

model closer to the real world (Reed and Roscoe 1988, Alur and Henzinger 1989, Alur 

and Dill 1994, Cerone and Maggiolio-Schettini 1999). Among these, timed automata 

formalism is the most commonly used model, having mature and efficient automatic 

verification tools and an easily understandable syntax and semantics.  

Timed automata theory is proposed as an extension to the automata theoretic 

approach for the modeling of real time systems (Alur and Dill 1994). It is a class of 

automata extended with clock variables which model dense time. Timed automata 

theory has become an important research area and been widely studied in the context of 

both the theory of formal languages and verification of real time systems.  
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The theory of timed automata allows us to create models of real time systems 

which can be verified using model checking methods. There are some timed automata 

tools designed for this aim which have been used for several industrial and academic 

case studies. UPPAAL (Bengtsson and Larsen 1996), which is used in this thesis and 

KRONOS (Yovine 1997) are the most popular automatic verification tools among 

these. Similar to the other model checking methods, model checking with timed 

automata involves building a finite state model of a system and verifying a specified 

property by traversing through all reachable states. The method has the advantages of 

being fully automatic, generating a counter example in case of a negative result; 

nevertheless, it suffers from the state space explosion problem.  

Timed automata model checking is used for the verification of many real time 

systems such as power controllers, gear controllers and audio-video protocols. One of 

the most important application areas of timed automata is the verification of the security 

protocols which aim secure communications over a network and used to provide a goal 

such as the authentication or distribution of cryptographic keys. As the use of computers 

and the internet is considerably increasing, the correctness of the security protocols is 

getting more important. However, most of the security protocols are found to be flawed 

which brings the network into an insecure state.  

For a security protocol, the quantitative timing properties are critical and an 

intruder can attack the protocol by exploiting the timing and the flow of the messages. 

Hence, the timing properties should be employed into the security protocol model. 

Some recent studies concentrate on the analysis of the security protocols with timing 

information on the case studies of Needham-Schroeder and Yahalom authentication 

protocols (Corin, et al. 2004, 2007). The studies in (Jakubowska, et al. 2005, 2008) 

examine Kerberos, TMN, Neuman-Stubblebine and Andrew Secure RPC protocols by 

not modeling them directly as timed automata, but translating a language specification 

of a security protocol automatically to timed automata without integer variables.  

This study utilizes timed automata as a verification tool for security protocols 

including timing information. Our case study, models Neuman-Stubblebine repeated 

authentication protocol directly with timed automata; then, verifies its security 

properties using UPPAAL timed automata tool based on the goals of an authentication 

protocol. Studying on a repeated authentication protocol gives the opportunity to 

include the key expiration time in the model, in addition to the time needed for 

cryptographic operations and timeout intervals.  
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First, the theory of timed automata is introduced. Besides the basic definitions 

and the decidability properties of the model which are fundamental for verification, 

some variants of timed automata proposed in some studies are mentioned briefly, that 

provides a better theoretical understanding and reasoning on the model.  

As it will be explained in the theory of timed automata, the theoretical timed 

automata structures are hard to implement. Hence, the next chapter is devoted to the 

symbolic data structures and algorithms for timed automata implementation. This 

chapter provides an insight about the implementation of timed automata tools and how 

they perform automatic verification algorithmically. 

Later, model checking with timed automata is explained and the UPPAAL tool 

is introduced since the modeling and verification with this tool is used in next chapters.  

Next, the case study on Neuman-Stubblebine repeated authentication protocol is 

presented. It is a repeated protocol that consists of an initial and a subsequent 

authentication parts. Since the complete model of the protocol is so large that some 

problems arise in verification step, the initial and the subsequent authentication parts are 

analyzed individually. In this chapter, first, the modeling assumptions are given and it is 

explained how to model and abstract away the cryptographic details. Then, the 

construction of the automata models for the initial and subsequent parts are explained in 

detail. The verification of these parts are provided based on goals of an authentication 

protocol and the attacks on the protocol we can or cannot detect are explained. Later, 

these parts are merged to obtain a complete model for the protocol. 

Later, an analysis of the case study is provided including the benefits and the 

challenges of the model and some possible extensions that can be proposed. The most 

serious problem, state space explosion problem, is defined and restrictions and the 

limitations applied to avoid it in the case study are explained exhaustively.  

Finally, the study is concluded with the comments on the model and the further 

perspectives for the analysis of the security protocols using timed automata. 
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CHAPTER 2 

 

TIMED AUTOMATA THEORY 

 

2.1. Modeling Time 

Although many fields of science and engineering involve time concept, in 

computer science, time is totally not considered or abstracted by modeling only the 

required features of it. However, some kind of time modeling is necessary in many 

areas of computing such as in hardware design, parallel processing and complexity 

calculations (Furia, et al. 2010). In this study, the focus is the representation of time for 

the modeling, specification and verification of real time systems whose correct 

functioning depends on their timed properties. 

In the literature, most of the modeling and verification methods (Pnueli 1977, 

Hoare 1978, Vardi and Wolper 1986) involve qualitative notion of time rather than the 

quantitative notion. Qualitative notion only includes the relative ordering between 

events that specifies which event comes after the other. However, quantitative notion 

describes a distance between the events which is required for the verification of real 

time systems. For example, for a communication protocol, it is more expressive to 

specify that ―the event   should occur in   time units after the occurrence of the event 

 ‖ rather then ―the event   should occur after the occurrence of the event  ‖. 

To meet the need for formalisms with quantitative timing information, some 

untimed formalisms are extended with quantitative notion. These formalisms are: the 

extensions of the linear time logics (LTL) (Pnueli 1977) and the computational tree 

logic (CTL) (Emerson and Clarke 1982), namely metric temporal logic (MTL) (Alur 

and Henzinger 1990), timed temporal logic (TPTL) (Alur and Henzinger 1989), real-

time temporal logic (RTTL) (Ostroff 1989), explicit-clock temporal logic (XCTL) 

(Harel 1990), real-time computation tree logic (RTCTL) (Emerson, et al. 1990) and 

timed computation tree logic (TCTL) (Alur, et al. 1993a); timed process algebras such 

as timed Communicating Sequential Processes (TCSP) (Reed and Roscoe 1988); timed 

Petri Nets (Cerone and Maggiolio-Schettini 1999) which is more appropriate for work-
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flow processes (Srba 2008) and timed automata (Alur and Dill 1994) which is an 

extension to the automata-theoretic approach. 

 For a real time system modeling technique, the representation of time is an 

important design issue. Different approaches for the representation of time may be more 

appropriate for different kinds of systems or modeling objectives (Alur and Henzinger 

1992, Furia, et al. 2010). 

 Many formalisms assume that the states of a system are observed only at integral 

times; although, in a real-time system, events may occur at any point. This 

approach uses discrete time modeling, which maps onto the integer numbers 

domain. Clocks tick at regular intervals and events can occur at each clock tick, 

at the multiples of ε. Here, it is important how to define the interval between two 

clock ticks,  . If   is defined to be too large, then the model is too coarse; on the 

other hand, if ε is defined to be too small, then the state space will be too large.  

 Fictitious clock approach, introduces a special tick event into the model. Time is 

modeled as a global state variable on the domain of the natural numbers and it is 

divided into several ticks. The time delay between two events is measured by 

counting the number of these ticks. Hence, the exact time delay between two 

events cannot be measured.  

 In continuous time modeling, time is modeled with non-negative real numbers. 

Hence, events can occur at any time and delays may be arbitrarily small. Dense 

time is strictly more expressive than discrete time. However, it gives rise to an 

uncountable state space. Timed automata uses continuous time modeling which 

is more faithful to the nature of real-time systems. 

 In timed automata, the passage of time is modeled by the real-valued clock 

variables, which record the elapsed time. All clocks are synchronized. They run at the 

same speed, having the same derivative with respect to time, which is assumed to be 

equal to  . The absolute time is implicitly assumed by the model and the relative timing 

can be measured explicitly by testing the clock variables (Furia, et al. 2010). 

 The clocks can be tested and set to a value at the transitions. Note that we 

concentrate on the classical timed automata, in which only reset (setting to value  ) of a 

clock is allowed. Also, in timed automata, a transition from one state to another is 

assumed to be instantaneous; in other words, time passes only in states, not in edges.  
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 In timed automata, it is possible to have a zeno run which allows infinite number 

of events occurring in a finite amount of time. The zeno-timelocks, where time cannot 

pass beyond a certain point, also constitute zeno behavior resulting in the performance 

of an infinite number of actions in a finite period of time. (Penczek and Polrola 2006, 

Bowman and Gomez 2006) 

2.2. Timed Automata 

The class of timed automata is a special subclass of hybrid automata (Alur, et al. 

1993b) that include both discrete and continuous variables. Same as the classical 

automata, timed automata have finite number of states (locations) and edges. In 

addition, it has some number of real-valued clock variables which model the passage of 

time. 

 Alur and Dill who first proposed the timed automata theory (Alur and Dill 

1994), defined some restrictions on the clock variables. In this model, the clocks can be 

reset only when an edge is taken and only clocks reset to the value   is allowed.  

Definition (Clock Constraint): Let   be a set of clock variables. Then set      of 

clock constraints is given by the following grammar: 

                                      where           

 Clock constraints can be guards on edges that control whether it is allowed to 

take the transition in the current time. The guards can also be associated with locations 

and are called location invariants. The automata allowing the use of location invariants, 

introduces a more intuitive notion of progress. These automata can be called as timed 

safety automata but generally referred as timed automata. 

 In the timed automaton given in Figure 2.1, the clock constraints    ,      

and     are the guards on edge. To take the edge from    to   , event   must occur 

and the clock variable   must have a value greater than  . If this transition is enabled, 

the clock variable   is set to  .     is an invariant and forces to take the edge from    

to   when the clock variable   has a value smaller than  . Note that using this invariant 

does not have the same effect as having the guard         on the transition. 
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Figure 2.1. A Timed Automaton 

 

Definition (Clock valuation): Clock valuation is a function       , that assigns 

every clock to a real variable. Let   be a clock valuation. Then,  

 Initially,          for all  . 

 Clock reset:  
                

           
  

 Clock increment:                                                     

The interpretation      means that the valuation   satifies the constraint  . 

Definition (Timed Automaton): A timed automaton is a tuple                 where 

   is a finite event alphabet 

   is a finite set of states 

      is a set of start states 

      is a set of final (accepting) states 

   is a finite set of clocks 

                                are the edges where 

                                    with           

 A transition can be written as   
     
       whenever               , where   is 

a guard,   an event and   a subset of clocks to be reset. 

The following subclasses of automata are defined depending on the strictness on 

the inequalities of the clock constraints:  

 Open timed automata can only have the clock constraints given as       

                   . They are ―acceptance robust‖; when they accept a 

time trace, they accept also the neighbor timed traces. 

 Closed timed automata can only have the clock constraints given as        

                  . They are ―rejection robust‖; where rejected traces are 

robust under small perturbations.  
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 A run of timed automaton   has the following form:         
  
          

 
         

     
              

  
    

    
           , where each pair       is a timed event 

with    , which is the timestamp of the event    .  A run is accepted if      .  

Definition (Timed word): A timed word or a timed trace is a finite sequence of timed 

events with non-decreasing timestamps having the form                            

with         where      and     .  

 Timed words can be obtained from the runs of the timed automata where 

accepting timed words make up the language     . An example timed word is given 

below, for the automaton in Figure 2.1. 

                                  
      
        

    
       

    
       

    
       

      
        

    
       

x:    0           3.8         0         2         2          5.2        0 

y:    0       3.8        3.8     5.8       5.8          9          0  

Timed word (timed trace):                        

 In a run,      with     is called an action transition and     with     is a 

delay transition. If   in      is equal to  , then two consecutive transitions can be 

executed without time passing in between. Such runs are called weakly monotonic. But, 

it is sometimes more convenient to restrict the runs to contain non-zero passing times 

only, which are called strongly monotonic. Simply, weakly monotonic time traces 

(    ) allow several events may share the same time stamp where strongly 

monotonic time traces (    ) allow no two events happen at the same time (Penczek 

and Polrola 2006).  

2.3. Timed Regular Languages 

 Inspiring from the theory of regular languages accepted by finite state automata, 

timed regular languages can also be defined for timed automata. A timed language   is 

a collection of timed words.   is timed regular if there is a timed automaton whose 

accepting timed traces (timed words) make up the timed language   (Alur, et al. 2004, 

Asarin, et al. 2002). 
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Definition (Timed Regular Language): A timed language   is a timed regular 

language iff          for some timed automaton  .  

Definition (Untiming): If                               , then           

         . 

Theorem: Given a timed automaton                   , there exists an automaton 

over   which accepts             . 

 This theorem leads to the fact that, if   is a timed regular language, then 

          is a regular language. An example not timed regular language can be given 

as a language of timed words where every   symbol is followed by some   symbol after 

a delay of  . A timed automaton cannot be generated for that language since there can 

be unbounded number of   symbols in a timed word that needs the use of infinite 

number of clocks. Another example for a not timed regular language is the untimed 

language                            since it is not even a regular language. 

 The next theorem gives the closure properties of timed regular languages for 

union and intersection operations. Similar to the untimed automata, the union timed 

automata can be constructed by taking the disjoint union of all the automata, and the 

intersection automata can be obtained by constructing the product of the automata. 

Theorem: A set of timed regular languages is closed under union and intersection. 

However, the class of timed automata is not closed under complementation, which 

is included in next section. 

2.4. Decidability and Complexity of Timed Automata 

 A certain property is decidable for a formal language if there is a procedure that 

can determine whether the property holds in the model. The amount of memory and the 

time required for the algorithm that solves this decidability problem gives the 

complexity of the problem.  

 For timed automata, the emptiness, universality and language inclusion 

problems are the most studied decision problems since they are also the fundamental 

problems for verification. The solution of the language inclusion problem requires the 
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complementability (therefore, determinizability) of timed automata, which also 

constitute important decision problems. 

2.4.1. Emptiness Problem 

The emptiness problem asks whether the language generated by a formal model 

is empty. The following is the definition of the emptiness problem for timed automata.  

Definition (Emptiness Problem): It is the problem of ―given a timed automaton  , is 

the set of timed traces of   empty?‖. 

 In a verification task, given an implementation and a specification, the 

reachability problem is used to test whether a state which satisfies the specification is 

reachable. The emptiness problem is fundamental for verification tasks since it is 

reducible to the reachability problem that tests whether a state can be reached in a 

model.  

However, the solution of this problem is more cumbersome than untimed 

automata. Since the configurations of timed automata are infinite, even a very simple 

automaton generates infinitely many reachable states. Figure 2.2 gives a simple timed 

automaton giving rise to an infinite transition system where naive explicit state search is 

not reasonable. The idea is constructing a model on which finite state analysis is 

possible so that we can examine the decidability of the reachability problem.  

                

 

Figure 2.2. Illustration of an Infinite State System 

                      

 The decidability of the emptiness problem for timed automata is proved by 

constructing a transition table that mimics the runs of  . To achieve this goal, state 

space is partitioned into finitely many equivalence classes so that equivalent states 
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exhibit similar behaviors. Infinite number of clock valuations are partitioned into 

finitely many clock regions, whose definition is given below. 

Definition (Clock Regions): Let       be fixed. Define an equivalence relation   

on      .    partitions into finitely many equivalence classes called regions (Alur, et 

al. 1990, Alur and Dill 1994). 

Let for any     ,          denote the fractional part of   and     denote the 

integral part of  ; that is                . The equivalence relation   is defined 

over the set of all clock interpretations for  . 

                         if 

 for all        

 either             

 or both    and     are greater than   (exceeds    ) 

 for all         with    ,       

                                            

 for all        with      

                            

 Figure 2.3 shows the clock regions of a timed automaton with two clock 

variables   and  , having ― ‖ as the maximum clock constant in the clock constraints 

for   and ― ‖ for  . 

 

Figure 2.3. Clock Regions of a Timed Automaton 
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 A region automaton      can be constructed that is equivalent to the semantics 

of a timed automaton   with respect to reachability. This region automaton      

records the state of  , and the equivalence class of the current values of the clocks. 

Before formally defining a region automaton, let us define the time successor of a 

region which is simply the region that can be reached by the passage of time. 

Definition (Time Successor): A clock region    is a time successor of a clock region   

iff for each    , there exists a positive     such that         (Alur and Dill 

1994). 

                                            

 

Figure 2.4. Time Successors of a Clock Region 

 

 Figure 2.4 shows the time successors of the clock region               

        , which are, other than itself,                      ,      

                                ,                  . This means, when 

the clock valuation is in that region, the passage of time can bring us to the one of these 

time successors. Time successors of a region can be easily found by drawing a line 

parallel to     line, starting from this region to the upwards.  

Definition (Region Automata): For                   , a region automaton      is 

a transition table over the alphabet  : 

 the states:       

 the initial states:           

 R(A) has an edge                   iff there is an edge                  and a 

region    ; such that  

(i)     is a time successor of  ,  

(ii)     satisfies,  

(iii)            . 
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 Figure 2.5 gives the region automaton for the given timed automaton. The initial 

state of the region automaton is the state    where both the clocks are equal to  . The 

transition from    to    can be taken when   is greater than  . Notice that, the greatest 

constant in the time constraints is  . Hence, this constant will be considered while 

generating the regions. In order for the clock   to get greater than  , some time should 

elapse in state   . So, the event   can taken when      ,     or    . Since the 

clock   is reset at the transition, we can reach to the state    having the clock regions 

       ,     and    ,     and    . The rest of the region automaton is 

constructed in a similar way by considering the time successors and transitions for the 

states in region automata. 

 

 

Figure 2.5. Region Automaton of a Timed Automaton 

 

 The region automaton of a timed automaton   can recognize the language 

            . Hence, the emptiness problem of a timed automaton may be examined 

by checking the emptiness of its region automata. In order to calculate the complexity of 

this problem, we should calculate the number of clock regions in a region automaton.  

 Let    be the largest constant in the clock constraints of the clock     where   

is the set of all clocks. For each region, there is one clock constraint from the set 

                                                  . The number of 

ways to choose this value for each clock is             . The ordering of the 
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fractional parts of the clocks may be chosen in       ways (For example, for   clocks we 

may have    permutations as      ,      ,      ,      ,      , 

     ). The fractional part of a clock may also be equal to the fractional part of its 

predecessor (such as      ), the number of ways to choose this is bounded by     

Lemma: Given a timed automaton  , the number of regions of      is bounded by 

                            .  

Theorem: Given a timed automaton  , the emptiness of      can be checked in time 

                                    . 

Theorem: The problem of deciding the emptiness of the language of a given timed 

automaton  , is                 (Alur, et al.1990, Alur and Dill 1994). 

 Since the number of regions is exponential in the number of clocks for the 

region automata, it suffers from a combinatorics explosion. Hence, this structure is not 

feasible to implement. Instead of this, symbolic data structures and algorithms are used 

for implementation of timed automata to perform reachability tests easier on them, as 

explained in Chapter 3. 

2.4.2. Universality Problem 

Definition (Universality problem): It is the problem that asks ―given a timed 

automaton  , does it accept all timed traces?‖. 

Universality problem for timed automata is undecidable, which is proved for the 

classical timed automata in general sense, by reducing the problem to the halting 

problem of two-counter machines (Alur and Dill 1994). Before giving the proof, let us 

define the two counter machines. Then we will examine, given a 2-counter 

nondeterministic machine, how to construct the corresponding timed automaton. 

Definition (Two-counter machine): A nondeterministic 2-counter machine   is a 

triple                       with a sequence of   instructions and two counters  ,  .  

 In a two-counter machine, each    (i) can increment or decrement one of the 

counters and jumps nondeterministically to one of the possible next instructions, or (ii) 
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tests one of the counters for emptiness and jumps unconditionally to the next 

instruction. A configuration of   is a triple          where                    ,   

 ,    . A halting computation of   is a finite sequence of configurations starting 

with          and ending with         . The problem of deciding whether a given 

nondeterministic 2-counter machine has a halting computation, is        . 

Theorem: Given a timed automaton  , universality problem for   is undecidable. 

Proof: The universality problem for timed automata is examined by reducing this 

problem to the halting problem of two-counter machines. The automaton is encoded on 

the alphabet                  , where                     is a halting computation 

of  , having           ,           . The strings       is in a timed language        

such that, in this string, the subsequence of  , corresponding time interval         

encodes the     configuration in a way that, for all    , 

 if         then for every    at time   in the interval          , there is an 

   at time     

 if           then for every    at time   in the interval           except the 

last one, there is an    at time     

 if           then for every   at time   in the interval         except the last 

one, there is an    at time     

 similar requirements hold for    

 Let us say that given a 2-counter machine  , the words corresponding to the 

halting computations of   make up the language       . The idea is to construct the 

automaton        (this is the disjunction of several automata each demonstrating an 

unacceptable behavior for a two counter machine. These are the automata (i)    that 

accepts       for some    , there is no   symbol at time  , or the subsequence of   in 

the interval         is not of the form   
   

  , the string having the substring     , (ii) 

      accepts       iff the substring of   corresponding [1, 2) is not   , meaning that 

       or      or     , (iii) for each      , we construct an automaton    

which checks whether the next instruction is valid with respect to current instruction), 

accepts the complement of       . Hence, if the two-counter machine does not halt, we 

say that        is empty, implying that the automaton is universal (Alur and Dill, 1994). 

 



16 

 

Special Cases: 

There are some studies on universality problem with some restrictions on the 

timed automata where some of them yield to the decidability of the problem. Generally, 

in the verification studies, no such restrictions are applied on the timed automata model. 

However, we briefly cover the theorems stating the decidability results for some cases 

to see a direction of research on timed automata and have a better insight of the model. 

Considering the time traces being weakly or strongly monotonic, the decidability 

of the universality problem is dependent upon the open and closed subclasses of timed 

automata. The theorems below, give the decidability results of open and closed timed 

automata over      and     . The proofs for these theorems use the digitization 

properties of timed automata and can be found in (Ouaknine and Worrell 2003b). 

Theorem:  

(i) The universality problem for open and closed timed automata over      is 

undecidable.  

(ii) The universality problem for open timed automata over      is decidable.  

(iii) The universality problem for closed timed automata over either      or 

     is undecidable.  

 Universality problem for timed automata is also studied by adding some 

restrictions on the resources of a timed automaton which are the number of states, size 

of event alphabet and clock constraints. The study in (Adams, et al. 2007) examines the 

problem with minimal resources. The following theorems give these decidability 

results. 

Theorem:  

(i) Over     , the universality problem is undecidable for timed automata 

with a single state, a single-event alphabet, and clock constants   and   only. 

(ii) Over     , the universality problem is undecidable for timed automata 

with a single state, a single-event alphabet, and clock constants  ,   and   

only. 

 The next theorems state that, for timed automata over finite words, the one-clock 

universality problem is decidable with non-primitive recursive complexity. However, if 

ε-transitions or non-singular post-conditions are allowed, then the one-clock 
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universality problem is undecidable over both finite and infinite words. The proofs for 

these theorems can be found in (Adams, et al. 2005, 2007). The universality for the 

timed automata with one clock and  -transitions is undecidable. 

(iii) The universality for the timed automata with one clock and with non- 

singular post-conditions is undecidable. 

(iv) The universality for the timed automata with a single clock is decidable and 

has non-primitive recursive complexity (the problem does not lie in the 

complexity class            for any primitive recursive function     ) 

over finite timed words.  

(v) The universality for one-clock nondeterministic timed automata is 

undecidable over infinite timed words (Lasota and Walukiewicz 2008). 

2.4.3. Language Inclusion Problem 

Definition (Language Inclusion Problem): Given two timed automata    and   , it is 

the problem of checking whether            . 

 Language inclusion problem is important for the verification of systems. In 

order to perform verification of a system, the behavior of the implementation and the 

requirements that the system should satisfy can each be represented as a set of traces. 

Then, it can be checked whether the implementation satisfies the specification, in other 

words, whether the set of specification traces includes the set of implementation traces. 

Given a specification    and an implementation   , the implementation meets its 

specification iff            .  

Corollary: The language inclusion problem for the timed automata is undecidable. 

 The undecidability of the problem can be easily seen by reducing the 

universality problem to the language inclusion problem. The automaton   is universal 

iff               . 

Special Cases: 

 Similar to the universality problem, some studies yield decidability of the 

language inclusion problem for special cases. 
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Theorem:  

(i) The language inclusion problem over      is only decidable when   is a 

closed timed and   is an open timed automata.  

(ii) The language inclusion problem over      is undecidable in all cases 

(Ouaknine and Worrell 2003). 

 The problem also becomes decidable with some restrictions. The proofs for the 

following theorems can be found in (Ouaknine and Worrell 2004). 

Theorem: The language inclusion problem asking whether           is decidable 

where  

(i) the timed automaton   has at most one clock. 

(ii) the timed automaton   has   as the only constant used in the clock 

constraints. 

 In addition to these results, this problem is proved to be decidable for some 

subclasses or variants of timed automata which are given in sections 2.5 and 2.6. 

2.4.4. Complementability, Determinizability and Minimization 

2.4.4.1. Complementability 

 Complementing an untimed deterministic finite state automaton is simple and 

the complement automaton can be easily obtained by just exchanging the accepting and 

non accepting states. However, this is not the case for a timed automaton. 

Theorem: The class of timed regular languages is not closed under complementation.  

Proof: Given two timed automaton   and  ,           iff the intersection of      

and the complement of      is empty. Assume that the set of timed automata is closed 

under complementation. Then,           iff there is an automaton   such that 

          is nonempty, but           is empty. This follows that the complement 

of the inclusion problem is recursively enumerable, contradicting the undecidability of 

the inclusion problem (Alur and Dill 1994). 
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The study in (Tripakis 2006) examines the problems asking whether a timed 

automaton is complementable, determinizable, or minimizable; which also ask for a 

solution automaton if the answer is ―yes‖. The proofs are based on the reduction of the 

problems to the universality problem. 

Theorem: The problem ―Given a timed automaton   does there exist a timed 

automaton such that                 ? If so, construct such B‖ is not Turing computable. In 

other words, there does not exist an effective procedure which given a timed automaton 

  it constructs   such that                  if it exists, or says ―no‖ if such a timed 

automaton does not exist.  

Proof: Given a timed automaton  , if its complement timed automaton   exists, then 

we can compute  .      will be universal iff       . If   does not exist, then      

is not universal, because the empty language can be accepted by a timed automaton with 

no accepting states. 

2.4.4.2. Determinizability 

Definition (Deterministic timed automata): A timed automaton   is deterministic iff 

(i) the set of initial locations is a singleton, (ii)      and     , if there are two 

edges                and               , then the guards    and    are mutually 

exclusive.  

If   is a deterministic timed automaton, then for every timed word       , 

there is a unique run over   accepting it. Figure 2.6 gives an example deterministic 

timed automaton. 

 

 

Figure 2.6. A Deterministic Timed Automaton 
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Theorem: There does not exist an effective procedure which given a timed automaton 

  outputs a deterministic timed automaton   such that           if   exists, or says 

―no‖ if such a timed automaton does not exist. 

 Let us assume that such a procedure exists. (i) If   exists, since it is 

deterministic, one can construct the automaton   which is           , by interchanging the 

accepting and non-accepting states. Now,      is universal iff       . (ii) If   does 

not exist, then      is not universal since the universal language can be accepted by a 

deterministic timed automaton with a single accepting state, no clocks, and a self loop 

for each letter in   (Tripakis 2006). 

Figure 2.7 gives an example of timed automaton that cannot be complemented 

or determinized. Since there is no bound on the number of  ’s that can occur in any 

time interval, any timed automaton capturing the complement of      would require an 

unbounded number of clocks to keep track of the times of all the  ’s within the past one 

time unit (Alur and Dill 1994). 

 

 

Figure 2.7. An Automaton that cannot be Determinized and Complemented 

 

2.4.4.3. Minimization 

Minimization problems for a timed automaton  , ask whether it is possible to 

create an equivalent timed automaton   with a reduced number of clocks or lessened 

magnitude of clock constraints. 

Theorem: There does not exist an effective procedure which given a timed automaton 

  with   clocks (where    ), outputs a timed automaton B with     clocks such 

that            if it exists, or says ―no‖ if such a timed automaton does not exist. 
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Proof: The universality problem can be reduced to the minimization problem. Given  , 

if such an automaton   exists, construct a timed automaton having     clocks. If   

exists with zero clocks, check whether the untimed language of   is equal to   . Since it 

has no clock, it has no constraints on them. If         , then            . If 

such   does not exist,   is not universal since universal automaton can be reduced to an 

automaton with no clocks. 

Theorem: There does not exist an efficient procedure which given a timed automaton   

with   as the maximum constant in clock constraints, and outputs a timed automaton   

with     as the maximum constant in clock constraints such that            if it 

exists, or says ―no‖ is such a timed automaton does not exist.  

Proof: If exists such an automaton, size of the constraint can be reduced until it is zero 

or to a constant that cannot be reduced any more. To construct   having constants at 

most zero can be reduced to the problem in previous theorem (Finkel 2006). 

If it was possible to minimize a timed automaton into a reduced model, than we 

could be able to perform verification easier which would further improve the efficiency 

of the timed automata model.  

2.5. Variants of Timed Automata  

In the previous sections, the classical definition of timed automata is given. Then, 

its closure and decidability results are explained. It can be seen that, although it is a 

powerful tool for real time verification, it has some drawbacks in the formal language 

concepts. It is not closed under complementation and determinizability is undecidable. 

Clock reduction is possible for some timed automata but the possibility is also 

undecidable. For the verification aspects, the emptiness problem is decidable but 

universality problem is not decidable in general.  

In the literature, some variants of timed automata are proposed and studied 

whether they yield better decidability results or make up a determinizable class of timed 

automata. They are some modified or restricted classes of the classical timed automata, 

some of which lead to the decidability of some problems. 

Before going on these variants of the model, it is important to note that the timed 

automata tools implement and case studies use the classical timed automata model. 
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Although these proposed variants are not implemented, we give brief explanation of 

them to provide a better understanding of the timed automata model.  

2.5.1.  -transitions on Timed Automata 

A silent action   is a non observable event and the transition labeled with that 

action is called a silent transition. Timed automata with  -transitions, shown as    , are 

strictly more expressive than the timed automata without  -transitions,   . Figure 2.8 

gives an example     that accepts the timed words with even timestamps, that cannot 

be expressed with a timed automaton (Bérard, et al. 1998) (Note that UPPAAL tool that 

is used for drawing this figure, in fact does not accept the events   (the event alphabet) 

and  .). 

Theorem: Given a    , it is undecidable to determine whether there exists a      such 

that          . 

For a    , the complementability, determinizability and computability of the 

minimal number of clocks needed to recognize its  -timed regular language are also 

undecidable (Bouyer, et al. 2009). 

 

 

Figure 2.8. A     that cannot be Expressed with a    

 

2.5.2. Diagonal Constraints and Updates on Timed Automata 

In classical timed automata, only reset to   is allowed as clock update. The 

studies in (Bouyer, et al. 2000, 2004) concentrate on updatable timed automata which 

allows for different kinds of updates that may allow simpler and more concise 

representations of some real-time systems. They examine the decidability results of 

these models by considering the diagonal properties of timed automata.  
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 A timed automaton is diagonal-free if its clock constraints are defined by: 

                        where         and                  . Diagonal 

automata can also contain any sub formula of the form         where   and   are 

clocks, and          . Note that the diagonal-free automata have the same 

expressive power as the automata with diagonal constraints, since there exists a 

diagonal free timed automaton equivalent to a diagonal automaton (Alur and Dill 1994, 

Bérard, et al. 1998). 

The summary of the decidability results for updatable timed automata are given 

in Table 2.1. The decidable classes are not more powerful than classical automata, and 

even bisimilar automata for them can be constructed.  

 

Table 2.1. Decidability of Diagonal-free and Diagonal Automata with Updates 

Updates Diagonal-free Constraints Diagonal Constraints 

        

PSPACE-Complete 

PSPACE-Complete 

      

Undecidable       

      Undecidable 

    

PSPACE-Complete 

PSPACE-Complete 

    

Undecidable 
      

          

          Undecidable 

 

2.5.3. Robust Timed Automata 

The idea for robust timed automata comes from the real-time systems that 

cannot realize the exact time   but can have a physical error   which are insensitive to 

small errors. Robust timed automata accept tubes rather than trajectories where a tube is 

defined as an open set of trajectories that consists of a bundle of sufficiently similar 

trajectories. If a tube includes a trajectory, then it also includes its neighbors; hence the 

system accepts trajectories of time           (Gupta, et al. 1997, Henzinger and 

Jean-Francois 2000). 



24 

 

Similar to the classical automata, the emptiness problem of robust timed 

automata is        complete and the robust universality problem is undecidable. 

2.5.4. Event Clock Automata 

Event clock automata (   ) is a determinizable subclass of timed automata. In 

an    , the clocks can record the time elapsed after an event’s last occurrence, or the 

clocks can be used to predict the time of the next occurrence of an event. The first 

subclass of the event clock automata is called event-recording automata (   ) where 

the latter one is called event-predicting automata (   ) (Alur, et al. 1999). 

Although nondeterministic automata are more expressive than its deterministic 

counterpart, nondeterministic event clock automata and the deterministic one are 

equally expressive. For every event-clock automaton  , there is a deterministic event-

clock automaton that is equivalent to  . 

The event clock automata have a decidable language inclusion problem, it is 

                to check whether           for two event-clock automata. 

2.5.5. Alternating Timed Automata 

Alternating timed automata       is obtained by introducing universal 

transitions in the same way as it is done for Alternating Finite Automaton (AFA). It is 

known that the class of timed automata is not closed under complementation. Instead of 

restricting the model to deterministic timed automata or event-clock automata by 

restricting reset operations, alternating timed automata provides a model that is closed 

under Boolean operations.  

    is defined by the tuple                    with             

             is a finite partial function and for every   and  , the set 

                            gives a finite partition of     
 . 

Note that the class of languages recognized by one-clock alternating timed 

automaton is incomparable with the class of languages recognized by timed automata. 

The emptiness problem is decidable for one-clock    . However, the emptiness over 

infinite words for one-clock     is undecidable (Lasota and Walukiewicz 2008).  
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2.5.6. Integer Reset Timed Automata 

Integer Reset Timed Automata (    ) are a syntactic subclass of timed 

automata where clock resets are restricted to occur at integer valued time points. This 

subclass of timed automata is shown to be useful since they used for verification of 

some real time systems as given in (Suman, et al. 2008).  

      can be determinized to  -clock deterministic      which is 

complementable. It also yields to a decidable language inclusion problem such that if   

is a timed automaton and   is an     , than           is decidable. 

The study in (Suman and Pandya 2009) examines      with silent transitions, 

       which is closed under complementation. However, it is undecidable to 

determine whether for a given timed automaton there exists an ε      equivalent to 

it. 

2.6. Digitization of Timed Automata 

We know that timed automata uses continuous time modeling which is more 

faithful to the nature of real-time systems. Although timed automata tools, most case 

studies and our study involve dense time, this section gives brief information on the 

digitization concepts since they are important in terms of leading the decidability of 

language inclusion problem.  

Digitization techniques reduce the dense-time model to discrete time. Although 

dense time is more expressive, digitization makes the model checking easier. The 

―digitization‖ concepts are introduced and defined by Henzinger et al. (Henzinger, et al. 

1992b, Bosnacki 1999). 

Definition (Digitization): Given     and        , let          if        , 

otherwise         . For any precisely timed sequence         and        , let 

the  -digitization                             . For example, let us have a precisely 

timed trace                           . Then, this trace will have    -

digitization                          .  

Digitized timed automata only consider integral values for the clocks. Figure 2.9 

shows the time regions constructed for a digitized automaton. 
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Figure 2.9. Time Regions for a Digitized Timed Automaton 

 

Definition (Digitizability): A dense time property is digitizable iff it is closed both 

under digitization and under inverse digitization. A set of timed traces   is closed under 

digitization if for any      ,       .   is closed under inverse digitization if 

whenever a timed trace      such that        for all      , then    . 

Theorem: Let the set of timed traces   be closed under digitization,    be closed under 

inverse digitization and    be the set of all integral timed traces of   (those timed traces 

of   whose events are integral time stamps). Then,      if and only if        

(Ouaknine and Worrell 2003a). 

 This theorem yields a decidable language inclusion problem and underlines the 

importance of being able to determine the digitization properties of timed automata. The 

problem of closure under digitization is decidable for both open and closed timed 

automata; however, the problem of closure under inverse digitization is undecidable for 

closed timed automata.  
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CHAPTER 3 

 

IMPLEMENTATION OF TIMED AUTOMATA 

 

 As explained in the previous chapter, the class of timed automata is proved to be 

decidable for real time system verification by using region-based technique. However, 

this technique is hard to implement since it gives rise to an explosion in the number of 

regions depending on not only the number of components in a system but also the 

largest time constant and the number of clocks used to specify timing constraints. 

Hence, instead of implementing these structures, symbolic representation of states and 

on-the-fly model checking are preferred resulting in space and time savings.  

 On-the-fly model checking means dynamically building the state space during 

the model checking process, depending on the property to be model checked (Bozga, et 

al. 1998, Larsen, et al. 1995, Henzinger, et al. 1992a). In these on-the-fly algorithms, 

some symbolic data structures are used, which make the reachability analysis to be 

implemented in an efficient way.  

This chapter concentrates on the zone and Difference Bounded Matrix (DBM) 

data structures and the zone-based reachability algorithm that UPPAAL timed automata 

tool uses.  

3.1. Symbolic Data Structures 

In the implementation of timed automata, instead of clock regions, zones are used 

to obtain a finite representation of the infinite state space.  

Definition (Zone): Let    be the set of all clock valuations over a finite set of clocks  . 

A zone is a subset of    defined by a general clock constraint. 

A zone, which is simply a disjunction of inequalities between clock variables, is 

the maximal solution set of clock assignments satisfying some constraint. As an 

example, Figure 3.1 shows the zone defined by                      .  
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Figure 3.1. An example zone 

 

Given a timed automaton, its zone automaton can be constructed in a similar 

way as for the region automaton. Figure 3.2 gives the zone automaton for a timed 

automaton. As it is seen in the figure, unlike the region automaton, the symbolic states 

in the zone automaton have at most one successor for each event. Although zone 

automata may be bigger than region automata, in most cases zone automata have less 

number of states to explore. Because, the number of clock regions on a region 

automaton depends on the magnitudes of the constants of the clock constraints but the 

number of zones relatively is not affected by this fact (Alur 1999). 

 

 

Figure 3.2. Zone Automaton of a Timed Automaton 
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A symbolic state in a zone automaton can be shown as a pair      , where   is a 

location and   is the maximal set of clock assignments satisfying a clock constraint. 

Given a symbolic transition relation on the symbolic states; if the initial state 

          may lead to a set of final states according to the symbolic transition relation, 

all the final states         should be reachable according to concrete operational 

semantics (soundness). If a state is reachable according to concrete operational 

semantics, it should be possible to conclude this using the symbolic transition relation 

(completeness) (Bengtsson and Yi 2004). 

Zones can be efficiently represented in memory using Difference Bounded 

Matrices (DBM) that provides an easier implementation of zones. It allows testing for 

language inclusion of zones, computation of intersection of two zones, future of a zone, 

image of a zone after reset and the   approximation of a zone (Bengtsson and Yi 

2004, Bouyer and Laroussine 2008). 

Definition (Difference Bounded Matrix – DBM): A DBM for   clocks is an      -

square matrix of pairs                          . It keeps the upper bound 

for the difference of each pair of clocks where each element of the matrix is defined as: 

         
                              

           
  

A DBM                      defines a matrix, with    is always equal to   : 

                                              where     means there 

is no bound on it. For example, the zone defined by the equations              

         can be represented by: 

 

                 
               
               

   

The DBM representation of a zone is not unique. The canonical form of a DBM 

can be obtained by tightening the clock constraints by using the upper bounds on the 

clock differences.  

In practice, most of the upper bounds are redundant since some of the 

constraints may be derived from the other ones.  
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Definition (Minimal Constraint Systems): It is an equivalent reduced system of a 

constraint system with minimal number of constraints.  

 For all zones, finding their minimal constraint systems and storing them in 

memory may reduce the memory consumption. (Behrmann and Bengtsson 2002) gives 

more information on how to compute the minimal constraint system of a zone.  

3.2. Symbolic Reachability Analysis 

 For the verification of timed automata, a fundamental problem is the emptiness 

problem that is equivalent to the reachability problem that tests whether a state can be 

reached in a model. On-the-fly reachability algorithms calculate the states on-the-fly 

rather than pre-computing. Thus, only the needed part of state space is computed. The 

use of easy-to-implement structure DBMs and on-the-fly algorithms that glance 

symbolically on these structures make the timed automata implementable.  

The reachability analysis can be performed using forward or backward analyses. 

The backward analysis starts from final configurations, and computes the predecessors 

step-by-step iteratively. It checks whether an initial state is eventually computed or not. 

If such an initial state is computed, than goal location is reachable. Similarly, forward 

analysis starts from initial configurations and tries to reach some target by computing 

the successors. If such a final location is computed, it means that the goal location is 

reachable, and if not computed, it means that the goal location is not reachable. 

Theoretically, forward analysis algorithm termination is not guaranteed; however, it has 

the advantage that it is convenient for on-the-fly model checking with useful features 

like integer variables (Bengtsson and Yi 2004, Bouyer and Laroussine 2008, 

Mukhopadhyay and Podelski 1999). 

UPPAAL tool uses forward reachability analysis. Figure 3.3 gives the zone-

based symbolic reachability algorithm for timed automata. This algorithm keeps the 

     list holding the tuple of location and zone  s    to be visited. Starting from an 

initial location, we glance the states that are in the      list and insert the visited ones 

to the        list. If the zone   is a subset of a zone    in the        list, this will also 

be added there. Then, the state and zone tuples that are the successors of this state and 

zone are added to the      list since they are reached throughout the glancing of the 
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states. If the current state that we are examining is a final state, since it is reached, the 

reachability algorithm returns ―yes‖, otherwise returns ―false‖.  

The verification algorithm with forward analysis may have a termination 

problem since the relation   is not finite. In order to solve this problem, 

  normalization operation that guarantees the algorithm to terminate by limiting the 

number of computed zones is applied. The symbol      in the algorithm is used for the 

normalization operation.  

 

 

 

 

 

 

 

 

Figure 3.3. Algorithm for the Symbolic Reachability Analysis 

 
 Zone normalization uses the fact that once the clock value is greater than the 

maximal constant in the clock constraints, it is not important how greater it is.  -

normalization operation yields finitely many  -normalized zones defined by a  -

bounded constraints having constants between –   and  . Figure 3.4 gives the zone 

                  and its  -approximation for    .  

 

 

Figure 3.4. A Zone and its  -approximation 

         ,                

 while         do 

  take       from      

  if               then  

return ―YES‖ 

  if      for all                then 

   add       to        

   for all         such that                    do 

    add         to      

   end for 

  end if 

 end while 

 return ―NO‖ 
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 More detailed explanation on the zone normalization, possible problems with 

diagonal constraints and the normalization method to overcome the problem can be 

found in (Bouyer 2002, 2003, 2004, Bouyer, et al. 2005). Moreover, the implementation 

details of the normalization method, property checking and transformation operations to 

implement algorithms on DBMs are given in (Bengtsson and Yi 2004) and used in the 

verification engine of UPPAAL tool.  
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CHAPTER 4 

 

MODELING AND VERIFICATION WITH TIMED 

AUTOMATA 

 

4.1. Formal Verification Methods  

 Formal verification is the study of proving or disproving that a system meets 

certain specifications, using formal methods. There are three basic steps for formal 

verification: (i) building a formal model of the system, (ii) stating the properties of the 

system to be verified in a specification language and (iii) proving whether the model is 

correct with respect to the specifications.  

Two main approaches for verification of systems are Theorem Proving and 

Model Checking. Theorem proving methods prove the general validity of a formula, by 

using logical inference. Model checking involves building a finite model of a system 

and checking that the model fulfills the desired property by traversing through all 

reachable states. Both methods are widely used for verification with some automated 

tools; however theorem proving methods can be quite troublesome and impractical for 

complex designs and model checking suffers from state space explosion. This study 

concentrates on model checking method (Clarke, et al. 1999), that has the advantages of 

being fully automatic, generating counter example in case of a negative result and not 

requiring complicated proofs to be written. 

 Timed automata allows for an efficient model checking method (Bouyer and 

Laroussine 2008) which can be used to analyze time-sensitive features such as 

execution times, communication times and response times. Similar to the other model 

checking methods, it checks a finite model of a system for correctness against some 

certain requirements. It works by exploring all possible state transitions from the initial 

state of the system to check whether a specified property is satisfied. It has some 

drawbacks caused by the generation of huge state spaces as explained in section 6.2.1, 

which can be understood better after the case study. This section gives brief information 

about how model checking is performed using timed automata, before moving on the 

case study on the modeling and verification of a security protocol. 
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4.2. Modeling with Timed Automata 

 The first task of model checking is, designing a formal model of the system to 

be verified. Timed automata formalism, models the system as a network of processes 

which is composed of several components each having a transition system, namely as a 

network of timed automata.  

A network of timed automata, that models a concurrent system, consists of some 

number of timed automata running in parallel that may communicate and synchronize 

on some events. It is possible to implement a product timed automata which represents 

this composite process of the network of timed automata.  

Definition (Product or Parallel Composition of Timed Automata): The product of 

the automata                         and                         is denoted as 

       , and defined as                                         , where 

  is defined by: 

 For        , for every                       and                   

   ,   has                                    

 For        , for every      
 
            and every   in   ,   has 

          
 
            

 For        , for every                   and every   in   ,   has 

                       

 Simply, in the product automata, the transitions of the timed automata that does 

not correspond a shared action are interleaved, and the transitions with a shared action 

are synchronized. Figure 4.1 illustrates a simple example of a product automaton. In this 

network of timed automata, there are two timed automata representing      and      

processes, which synchronize on       and      events. For instance, when the user 

presses the button, the door goes into the opening state and the user waits for the door to 

open. The product automaton is given below, which is the composite process of these 

two systems. The clock resets, guards and the invariants take place in the composite 

automata as given in the definition.  
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Figure 4.1. An Example Network of Timed Automata 

 

4.3. Specification and Verification with Timed Automata 

 To perform verification, the specifications that must be satisfied by the system 

should be stated in a formal specification language. Then, it is possible to use a formal 

verification method to check whether the model satisfies the requirements. Verification 

of an automata model can be performed using a homogenous or heterogeneous 

approach.  

 In homogenous approach, the requirements of a system are specified as an 

automaton, similar to the system itself. Then, the behavior of the system model 

and the specification automata are compared. Let us say that the specification is 

given as the automaton    and the implementation as   . Then, the 

implementation meets its specification iff            . In this case, 

verification problem reduces to the emptiness check of            . For 

untimed automata, the complementation is decidable and the method is 

straightforward. In case of timed automata, this problem can be solved 

algorithmically when    is given as a deterministic timed automaton. 

 The heterogeneous (or dual language) approach, combines the automata 

formalism with a descriptive formalism suitable for specifying its properties. For 

example, the timed automata tool KRONOS uses TCTL (Timed Computation 

Tree Logic) and UPPAAL uses CTL (Computation Tree Logic) to specify the 
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requirements. Then, a reachability check is performed on the model to test 

whether the automata model satisfies the requirements (Furia, et al. 2010). 

 Note that in both cases, on-the-fly reachability algorithms are used for emptiness 

and reachability checking since the problem is PSPACE-complete. Instead of pre-

computing the product automaton, it is computed and traversed on-the-fly, as explained 

in the previous chapter. 

4.4. A Timed Automata Tool: UPPAAL 

 UPPAAL (Bengtsson and Larsen 1996) is a timed automata tool developed by 

Uppsala and Aalborg Universities. It extends timed automata with C-like data types 

such as integers and arrays and allows using urgent and committed locations that ease 

the modeling of a system. It has rich documentation related to both its implementation 

details and usage which can be found in (Larsen and Pettersson 1997, Amnell and 

Behrmann 2001, Behrmann and Bengtsson 2002, Behrmann and David 2004, Behrmann 

et al. 2006). The tool is in continuous development since its first official beta version in 

1999. In this study, the latest version UPPAAL 4.0.11, released in February 2010 is 

used. 

 UPPAAL is freely available and it provides an integrated environment for 

modeling, validation and verification of real-time systems with a Java interface and C++ 

verification engine. It is an efficient and mature tool that has been used in many 

academic and industrial case studies including the modeling and verification of bounded 

retransmission protocol (D’Argenio, et al. 1996, 1997), a collision avoidance protocol 

(Jensen, et al. 1996), TDMA protocol startup mechanism (Lönn and Pettersson 1997), 

audio-video protocols (Bengtsson, et al. 1996, Havelund, et al. 1997, Bengtsson, et al. 

2002), a gear controller (Lindahl, et al. 1998), lip synchronization algorithm (Bowman, 

et al. 1998), a power controller (Havelund, et al. 1999), commercial field bus protocol 

(Wang and Yi 2000), QoS properties in multimedia streams (Bordbar and Okano 2003) 

and WAP gateway (Hessel and Pettersson 2006). Some recent studies (Corin, et al. 

2004, 2007) use UPPAAL for verification of security protocols such as Needham-

Shroeder and Yahalom authentication protocols.  
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4.4.1. Modeling with UPPAAL 

 A system can easily be modeled as a network of timed automata, using the 

graphical user interface and writing some simple C-like coding for system definitions. 

Then, the system execution can be simulated by visualizing the possible dynamic 

behaviors of the system.  

In the UPPAAL modeling language, the actions in a network of timed automata 

are partitioned into a set of input and output actions, which provide the communication 

between the automata. The output (or send) statement over channel   is denoted as    

(emission) and an input (or receive) statement over channel   is denoted as    

(reception). Two edges in different processes can synchronize if one is emitting and the 

other is receiving on the same channel. 

UPPAAL provides easy modeling of a system using C-like data structures, 

committed and urgent states and synchronization channels. It also allows transitions to 

have guards, synchronizations or updates and allows states to have location invariants. 

The syntax of these expressions and the restrictions on them are explained in detail in 

UPPAAL documentation (Behrmann and David 2004).  

 

 

Figure 4.2. An Example Timed Automaton Designed using UPPAAL 

 

Figure 4.2 gives a simple example of timed automata designed using UPPAAL. 

In the figure, the state with double border lines demonstrates that it is the initial state. 

When the automaton takes the input over the       channel, it goes into state    if the 

guard     is satisfied. When the transition is taken, it performs the specified updates. 

As it is seen, besides resetting clocks, UPPAAL has the advantage of calling functions 

and using assignment expressions as an update which allows for the easy modeling of a 

system. The state    has an invariant demonstrating that the automaton can stay in this 

state as long as     . 
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4.4.2. Specification and Verification with UPPAAL  

 UPPAAL automatically performs verification of timed automata models based 

on constraint solving and on-the-fly techniques. In case of a negative result, it generates 

a diagnostic trace that can be loaded to the simulator and examined how the property is 

violated.  

The properties to be checked with UPPAAL verification engine are specified 

using a subset of Computation Tree Logic (CTL). This query language consists of path 

and state formulas. 

State formulas describe side-effect free expressions that can be evaluated 

pertaining to a state (e.g.     , is true in a state whenever   equals  ). They can be 

used to test whether a process is in a particular state using expressions on the form    , 

where   is a process and   is a state. 

Deadlock-freedom is a special property for systems which are supposed to 

operate indefinitely. Absence of deadlock can be checked using a special state formula, 

                  . In general, deadlocks are states where the system is unable to 

progress further. The study in (Bowman and Gomez 2006) classifies the deadlocks in 

timed automata, as (i) pure-actionlocks, analogue to the deadlock in untimed 

specifications where the system cannot perform any action transitions but time can 

progress, (ii) time-actionlocks in which neither action nor time transitions can be 

performed and (iii) zeno-timelocks (also called pure timelocks) where a system can still 

perform transitions that may be action or time transitions but time cannot pass beyond a 

certain point. The state formula                    guarantees the absence of 

actionlocks. If this expression is not verified, the system may have a pure-actionlock or 

a time-actionlock. 

 Path formulas quantify over paths of the model. They can be classified into 

reachability, safety, liveness and bounded liveness properties (see Figure 4.3). 

 Reachability properties (something will possibly happen): Given a formula, 

they check, whether it can possibly be satisfied by any reachable state. For 

example for a security protocol, a reachability property may ask whether a 

process can enter the critical section. The path formula       is used to express 

there is a path that, starting from initial state, reaches a state where   is 

eventually satisfied.  
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 Safety properties (something bad will never happen): They are the properties 

required to always hold. For example, ―it cannot happen that both processes are 

in their critical sections simultaneously‖ defines a safety property. The path 

formulae        expresses that for all paths,   will always hold (something good 

is invariantly true), and the formulae        expresses that for some paths,   will 

eventually hold (there should exist a minimal path such that   is always true). 

 Liveness properties (something will eventually happen): These properties are 

characterized by the fact that no event can really violate them. The path formula 

      states that   is eventually satisfied. Besides this eventually liveness 

properties, a more useful form is the leadsto or response property. It is written as 

      that means whenever   is satisfied, then eventually   is satisfied. For 

example for a communication protocol, ―whenever a message has been sent then 

eventually it will be received‖ forms a liveness property. Bounded form of the 

liveness properties,                states that whenever   holds, then for all 

paths thereafter   must also hold within some time. Such a property can be: 

―whenever a message has been sent, then eventually it will be received within 

two time units‖.  

 

 

Figure 4.3. Path formula for Reachability, Safety and Liveness Properties 
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CHAPTER 5 

 

A CASE STUDY: USING TIMED AUTOMATA FOR 

MODELING AND VERIFICATION OF NEUMAN-

STUBBLEBINE REPEATED AUTHENTICATION 

PROTOCOL 

 

5.1. Related Work 

 Timed automata formalism is a widely used model for the verification of real 

time systems with many case studies including audio-video protocols, gear controller, 

lip synchronization algorithm and power controllers. This study focuses on the 

modeling and verification of security protocols using timed automata. 

Some recent studies analyze security protocols with quantitative timing 

properties involving the use of timed automata. The studies in (Jakubowska, et al. 2005, 

2008) examine Kerberos, TMN, Neumann-Stubblebine, Andrew Secure and Wide 

Mouthed Frog protocols by not modeling them directly as timed automata, but 

translating a language specification of a security protocol automatically to timed 

automata without integer variables. Then, the translated timed automata model is used 

as input for the model checker KRONOS (Yovine 1997) and VerICS (Dembinski, et al. 

2003). Similarly in (Benerecetti and Cuomo 2009), a model checking tool is presented 

which translates a security specification language into timed automata and uses the 

UPPAAL tool as the verification engine. Additionally, a case study on Wide Mouthed 

Frog protocol is provided.  

Similar to our case study, these studies perform verification using timed 

automata tools. However, our approach is closer to the studies in (Corin, et al. 2004, 

2007) which model Needham-Schroeder and Yahalom protocols directly with timed 

automata and use UPPAAL tool for verification. Our case study models Neuman-

Stubblebine repeated authentication protocol which allows for employing the key 

expiration time in the model. Since it is a large protocol involving two parts, the model 

tends to grow enormously. Directly modeling provides us full control over the timed 
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automata model and also enables us to make use of the full expressiveness and data 

structures of UPPAAL. Moreover, we are not required to have an expertise on a 

specification language to model a protocol.  

5.2. Modeling Security Protocols using Timed Automata 

Timed automata provide a model close to the real system. A timed automata 

model for a protocol can be generated by building a finite state machine whose states 

and transitions simulate the behavior of the protocol principals. Then, all possible 

execution traces are explored to analyze whether the protocol has some security flaws.  

Model checking a protocol involves an analysis based on the protocol 

specification, independent of the cryptographic operations. Hence, the cryptosystem is 

assumed to be perfect and the mathematical details of the cryptology are abstracted 

away. It is focused on the protocol steps and the protocol messages sent by the 

principals. Since we are related to the sequence of steps in the protocol specification, 

the flaws related to the different combinations of the messages are examined by 

modeling an intruder which aims to attack the protocol. 

Modeling cryptology may require some coding such as assigning and testing 

some local/global variables and performing some operations. UPPAAL makes it easier 

to model a protocol directly with timed automata since it allows such simple coding. 

Performing most of the operations as the updates of the transitions and checking the 

values of the variables in the guards to decide whether they comply with the protocol 

specification are very helpful to model a protocol. 

To create a model of the protocol, it is crucial to examine the description of the 

protocol and the behavior of the principals. In a server involved authentication protocol 

such as the Neuman-Stubblebine authentication protocol used in our case study, the 

initiator  , authenticates itself to the responder  , using the trusted authentication server 

 ; and obtains a session key to communicate with  . By modeling each principal as an 

automaton, a network of timed automata is obtained which models the protocol 

execution. Note that a network of timed automata deadlocks if no more transitions can 

be involved in a run. Hence, a behaviour that is not specified in the protocol, causes a 

deadlock and does not generate the complete the protocol execution trace. 
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The principals  ,   and   communicate with each other by sending or receiving 

some messages over the network. The messaging can be modeled by using binary 

synchronization channels. The sender automaton emits an output signal that will be 

captured by another automaton receiving the signal. The message sent/received can be 

kept in a global variable so that each principal automaton can access the message 

variable. Figure 5.1 demonstrates a general view for the network of timed automata. For 

example, when the initiator emits the           signal, this means that it has created 

and sent the message (it also assigns the message to the global message variable). The 

network takes this message over           and emits           signal, which is 

captured by the responder over          . Then, the responder accesses the global 

message variable and reads it. 

 

 

Figure 5.1. General View of Automata for Principals and the Network 

 

5.3. Neuman-Stubblebine Repeated Authentication Protocol 

Neuman-Stubblebine protocol (Neuman and Stubblebine 1993) is an 

authentication protocol that involves a session key exchange and mutual authentication 

between two principals. Our study performs a case study on this protocol since it is a 

repeated protocol that involves an expiration time that can be studied using timed 

automata and it requires less number of message transfers then the similar nonce-based 

Kehne-Langendorfer-Schoenwalder repeated authentication protocol (Schonwalder, et 

al. 1992).  

The protocol consists of two parts. First, the initial authentication part is 

executed which provides mutual authentication. In this part, the initiator acquires a 

ticket to be used in the subsequent part of the protocol. The subsequent part is used to 

Initiator Responder Server 

init_msg! serv_msg! 

serv_msg? 

resp_msg! 

resp_msg? 

Network 

init_msg? 
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re-authenticate the principal identities without using the server. This part can be 

repeated several times until the ticket expires. 

The following symbols are used in the protocol specification given for the initial 

and subsequent authentication parts: 

  ,   and   are the principals where   is the key distribution server.  

   ,   ,    , and     are the nonces. 

    ,    , and     are the keys where the subscript letters denote the principals 

whom the key is for (For example     is shared between   and the server  ). 

    is the expiration time for the session key.  

        means,   concatenated with  , encrypted with the key  . 

 

1. Initial Authentication Part: 

 The initial part requires the exchange of four protocol messages.   initiates the 

protocol by sending its identity   and a nonce   . After   receives this message, it 

sends its identity and a nonce created by   as clear text and  ’s name, nonce and a 

suggested expiration time for the credentials as a block encrypted with the key    . The 

server can decrypt this message since it knows    , and assures that they are created by 

 . Then, the server sends   a ticket, and  ’s nonce. It also sends the identity of  ,  ’s 

nonce, a session key    , the expiration time    encrypted with    .   decrypts the 

block encrypted with    and verifies the    is same with the    in message  . In the 

last message, it sends the ticket and    to  , proving its identity. 

1.              

2.                            

3.                                           

4.                               

 This initial authentication provides mutual authentication between the principals. 

After this initial part, the initiator   possesses the ticket              and the session 

key     that can be used for subsequent authentications. 
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2. Subsequent Authentication Part: 

 In this second part,   uses the ticket to authenticate itself to the responder.   

checks the sender’s identity, shared key and the expiration time of the ticket. If it is 

valid, the authentication is provided between the principals. 

1.                            

2.                
 
      

3.                  

The Neuman-Stubblebine protocol is exposed to some security flaws (Clark and 

Jacob 1997, Hwang, et al. 1995). 

Attack 1: The initial part of the protocol is exposed to a type flaw attack, where the 

responder   accepts the nonce    as the key    . 

1.                 

2.                               

3.         

4.                               

Attack 2: The subsequent part of the protocol is subject to a parallel session attack. 

Here, the initial ticket is recorded from a legitimate run of the protocol. 

1.                               

2.              
     

 
      

1'.                                

2'.                           

3.                     

 

 Our case study focuses on the modeling the protocol as a network of timed 

automata composed of the protocol principals and an intruder, then examines whether 

our timed automata model is able to detect the flaws on the protocol.  

5.4. Modeling the Neuman-Stubblebine Initial Part 

In the first step of the protocol modeling, the initial authentication part, which 

requires the transmission of four messages, is modeled. Then, the model for the 
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subsequent part that requires three messages for re-authentication is generated. Finally, 

these two parts are combined and a complete model for the protocol is obtained. 

5.4.1. Modeling Assumptions 

 Our timed automata model has the following assumptions: 

 The principals show no behavior other than the behavior described in the 

protocol specification 

 Principals know their secret keys they use with server 

 A kind of black box security protocol analysis approach (Cremers 2006) is used 

in the protocol modeling. Cryptographic functions are considered as abstract 

black boxes, immune to cryptanalysis. Perfect cryptology is assumed such that:  

o Nobody can decrypt the messages unless they know the secret keys.  

o A ciphertext      can be generated by principal possessing   and  . 

o Nobody can guess the secret keys or newly generated nonces. 

 The medium does not introduce errors, message modification can only occur in 

the existence of an intruder. 

 The intruder has the capabilities of the powerful Dolev - Yao intruder (Dolev 

and Yao 1981) which has the ability to eavesdrop, replay, modify or inject 

messages. All communication is assumed to occur over an insecure network. 

 Network delays are not taken into consideration since they are negligible with 

respect to the time consuming operations such as encryption or decryption. 

5.4.2. Modeling Cryptology 

 Since the cryptosystem is assumed to be perfect, we used an abstraction for the 

cryptographic operations. These cryptographic abstractions are held in the local 

functions of each principal,            ,                                and 

                               , described in local declarations of each automata. 

Each principal can call these functions when needed in the protocol execution 

and the result of the operation is assigned in their local variable       . During the 

execution of these operations, time elapses, so when one of these functions is called, the 
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principal goes in a new state and gets the result in the specified amount of time. Here, 

we make use of the advantage of the timed automata that can model the delay and 

deadline requirements. A principal’s automaton will have the states and transitions as 

given in Figure 5.2, to generate a nonce, perform encryption or decryption. The states 

marked with ―C‖ are the committed states where the transition is taken as soon as we 

enter the state and time does not pass. The states in the middle are not committed since 

they allow the passage of time during the cryptographic operations. 

  

 

Figure 5.2. Timed Automata for Cryptographic Operations 

 

A message sent/received by a principal is represented as an integer, which 

contains the information described in the protocol specification. As it is seen in the 

protocol specification, a protocol message consists of a combination of the agent ids, 

nonces or encrypted blocks. The creation of the messages and the encryption/decryption 

model used in the case study are similar to the model used in (Corin, et al. 2004, 2007). 

Nonce Generation: 

In the modeling of the initial authentication, the initiator and the responder each 

generates one nonce value by calling their             function. This function returns 

a result by incrementing the global       variable. 

Encryption/Decryption: 

Two arrays       and     are used for encryption and decryption, where the 

first one holds the plaintexts and the latter holds the keys. When a block is encrypted, 

the plaintext is placed in the       array and the key is placed in the     array. The 

corresponding index is returned as the ciphertext, which is the result of the encryption.  
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Figure 5.3 shows an example scheme. Here,    which has the value    is 

encrypted by using the key       . Let us say that the current index value is  . Then, 

when the function                 is called,          will contain the value    and 

       will contain   . Decryption is performed again by using these arrays. Let us say 

that                    is called with         and       . Then,        will be 

compared to the value of    ; in other words it is checked whether the specified key is 

correct. If this key is not same with the corresponding key of the ciphertext, then the 

block cannot be decrypted. If it is same with the value in       , then the block can be 

decrypted, in other words          is returned as the plaintext which has the value   . 

 

 

Figure 5.3. Modeling Encryption and Decryption 

 

Representing Protocol Variables: 

As mentioned above, a protocol message is represented as an integer in the 

model. UPPAAL uses 16 bit integers where the leftmost bit is the sign bit. In order to 

contain the whole message in an integer and have simplicity in the model, it is 

necessary to limit the number of bits to represent the blocks contained in a message. To 

figure out the number of bits to use for each variable, the largest message and the largest 

block to be encrypted/decrypted (since the plaintexts will be contained in an integer 

array, they also must not exceed the size of the integer) is taken into the consideration. 

The largest message of the protocol is in the third step of the protocol, server   sends   

the message:                                         . and the largest block in 

the protocol specification is                  . It is seen that, the message can at most 

contain two encrypted blocks and a nonce; and the largest block contains an identity, a 

nonce, a key and an expiration time value.  

plain key 

index 

ciphertext: 7 

0 

 1 

.. 

7 

... 

15 

0 

1 

.. 

7 

... 

15 

encrypt(Nb,Kab) 

Nb=15, Kab=13 

...... 

 
...... 

...... 

15 

...... 

 
...... 

...... 

13 
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In order not to exceed the number of bits of an integer, the nonces, keys and the 

indices (in other words, ciphertexts or encrypted blocks) are represented by using four 

bits. The agent ids and the    are represented by two bits to be able to fit the message 

content in an integer. Representing the ids with two bits does not create a problem since 

the initiator, the responder and the intruder has the agent ids    ,     and     

respectively. However, the time duration that can be represented by only two bits is not 

enough to complete the protocol execution; because the protocol needs at least eight 

time units to finish the execution even if each cryptographic operation is assumed to 

take one time unit. Hence, the expiration time is used as       in the calculations.  

The keys shared between the principals     and     are defined as           

   , where             . In the implementation, the possible values for the nonces, 

id’s, indexes and keys are restricted (see Table 5.1) since there may be some problems 

in the model when some of these values coincide. In section 6.2.2, it is explained why 

some predefined values are used and what would be the problems when they coincide. 

 

Table 5.1. Variables and Their Values Used in Cryptology Modeling 

Identities (A, B, Intruder) 1, 2, 3 

Secret Keys (Kas, Kbs, Kab) 11,12,13 

Nonce Values
*
 10, 14,15 

Index Values [4, 9] 

0 means a value is not set or wrong 

* 1 and 2 are also used as nonces for the subsequent part of the protocol 

 

The lengths of these variables are                             

                  and                               . To reduce the state 

space of the intruder (see section 6.2.1) and have simplicity in the model, instead of 

these six variables, only two global length variables             and             

are used in our model. These values do not change during the execution and they are 

defined as constant integers which makes us save from space.  

Creating and Reading Messages: 

 Up to now, it is decided on the number of bits to represent each part of a 

message and how to encrypt/decrypt blocks with a secret key. Now we can go on with 

how to create and read messages.  
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A message is created and read by using shift and    operations (Corin, et al. 

2004, 2007). Parts of the protocol message are appended to the message by shifting the 

message to the left as the length of the part that will be appended. Then, the new part is 

appended using the    operation. Hence a message is created and ready to be sent. To 

extract information from a received message, shift and     operations are used. This 

time the message is shifted to the right and the     operation with the mask is applied. 

The mask variables are also defined as global constant integers similar to the length 

variables used to obtain the specified number of rightmost bits: 

                                 and                                 

For example, when   wants to create the message      , it shifts    left for         

times, and    s the result with   . Figure 5.4 demonstrates how to create this message 

and Figure 5.5 shows how the server reads the message   of the protocol. 

 

 

Figure 5.4. Creating a Message 

 

 

Figure 5.5. Reading a Message 

now,   knows    and  . Then,   decrypts              by calling 

                       where              ,          

and extracts  ,    and    from the plaintext in a similar way. 

S reads the message                         

                        

                  

                                     

                                

                    

                    

                    

                    

  creates the message               
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5.4.3. Initiator, Responder and Server Automata 

In the Neuman-Stubblebine protocol, the messages are transferred between the 

initiator, responder and the trusted server. The steps of the protocol are implemented by 

mainly these three automata, that model the creation of messages, sending and receiving 

messages, extracting information and checking them using its knowledge. 

The knowledge bases of the principals are modeled using the local variables of 

each principal. For example, the principal   has     as the initial knowledge. Then, it 

generates   , owns a ticket, learns    , and    and these values are added to this 

principal’s knowledge base. The principal  , has     as the initial knowledge and gets a 

claimed id,   , generates   ,    and learns    . It should keep this knowledge to be 

used in the later steps of the protocol (e.g. while checking the values received in the 

fourth step of the message). Hence, it is necessary to keep each principal’s knowledge 

in their local variables. 

In order to be able to analyze the timing properties, each principal automaton 

has its local clock variable to keep the time elapsed for the cryptographic operations and 

check timeouts, in addition to a global clock representing the total time passed. 

The Initiator: 

 The initiator  , involves in the following three steps of the protocol: 

1.              

3.                                           

4.                               

 The Initiator automaton is given in Figure 5.6, which is activated by the      

automaton that emits the        signal. The Initiator, first generates a nonce which is 

performed as given in Figure 5.2. It creates the message      by assigning the message 

to the global variable     and signals           to indicate that it has sent the 

message. This signal will be captured by the network and will be transmitted to the 

responder. After sending the message, in state   , initiator waits for the protocol 

message   from the server. When the message                                   is 

sent by the server, the network emits           which will be captured by the 

          of the initiator that brings it to state   . In this transition, initiator gets the 

block encrypted with    , the ticket which is              , and   . It decrypts the 
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block with the key     which is shared by the initiator and the server. Decryption of a 

block is performed by its function similar to the generation of a nonce. Since it is a time 

consuming operation, time elapses during decryption. So, we use a location invariant in 

the state that waits for decryption. The transition from    to   , has a guard. In order to 

take the transition, besides the time constraint,  ’s identity sent by the server must be 

same as the identity that   wants to communicate with, and the nonce value must be 

same as the one generated and sent by itself. If this guard is satisfied, the initiator gets 

the     and    values and encrypts    with    . Then, it creates the message 

                      by concatenating the ticket and this encrypted block, emits the 

          signal indicating that it has sent the message. After this step, the initial 

authentication execution finishes for the initiator and it sets its local variable         to 

    , which will be used for verification step. 

 

 

Figure 5.6. The Initiator Automaton for the Initial Authentication Part 

 

 Let us assume that the initiator has received a wrong message from the server in 

the third step. Then, since the    will be different from the one the initiator itself 

generated, the guard will not be satisfied and the transition from state    to    will not 

be taken. Hence, the automata will deadlock and the         value will be   which 

means that there is something wrong with the execution of the protocol. 

 In the automaton, some states are defined as committed since it allows for 

accurate modeling of atomic behaviors and avoids unnecessary interleavings.    and 

   are such committed states. On the other hand, there are some states such as    and 

   where time should elapse in some states such as or interleavings should be allowed. 
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 From the point of analysis of timeouts, some modifications on state    can be 

proposed where the initiator waits for the protocol message 3. Total time waited for this 

message can be measured in order to be used for the analysis of possible attacks. Figure 

5.7 shows the changes in states   ,    and in their transitions. The local variable 

         , keeps the time waited for the message which is incremented when the local 

clock    becomes  . This time recording is performed until the timeout is reached since 

the protocol run does not continue when the message does not arrive in timeout interval. 

The guard       in the transition outgoing from A5 ensures that           is 

incremented each time    gets   by preventing the automaton to take this transition 

before incrementing          for the last time unit. 

 

 

Figure 5.7. Measuring the Time Waited for a Message 

 

 Note that, in the initial authentication part of our case study, only the waiting 

time for the Responder automaton is included in the model since it is used to detect the 

attack of the protocol and we have state space explosion problem when we included 

these transitions in both principals. 

The Responder: 

 The responder  , involves in the following three steps of the protocol: 

1.              

2.                            

4.                               

 The automaton for responder   is given in Figure 5.8. It starts the protocol 

execution after it gets the first protocol message over           signal. The creation 

of the automaton is performed in a similar way as for the initiator. 
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 As for the timeout interval, in state   ,   waits for the protocol message  , 

                      from  . The variable           keeps the total time waited for 

the message which is incremented when the local clock    becomes  . This part is 

similar to the piece of automata given in Figure 5.7 and used for protocol verification 

using timing information. 

The responder   finishes its execution by setting its local variable         to  , 

which means that the claimed identity is authenticated, only if the last protocol message 

is correct. This check is done using a guard and the transition to state   . If the values 

are correct, it gets the key    , decrypts the block         to check whether it is same 

with the nonce generated by itself. 

 

 

Figure 5.8. The Responder Automaton for the Initial Authentication Part 

 

The Server: 

 The server  , involves in the following two steps of the protocol: 

2.                            

3.                                           

 The server automaton, given in the Figure 5.9, is only involved in the initial 

authentication and no addition to the automaton is done for the subsequent 

authentication part.  

The server initially knows its shared keys between principals which is calculated 

by                   . It performs key distribution between two principals 

(having ids     and    ), which are generated by                      .  
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Figure 5.9. The Server Automaton 

 

In the model, in order to reduce the state space of the intruder, some more 

guards are introduced in the Intruder automata, indicating the current step of the 

protocol execution. For this aim, the principals keep track of the protocol steps they 

have executed, in terms of the sent and received messages. The variables       , 

       and        are added to the initiator, responder and the server automata 

respectively, to use in these guards. The values of these variables denote that: 

           has sent the protocol message   

           has received the protocol message   

           has sent the protocol message   

           has received the protocol message   

           has sent the protocol message   

           has received the protocol message   

           has received the protocol message   

           has sent the protocol message   

5.4.4. Dolev-Yao Intruder 

 The flaws of a security protocol are examined by modeling an intruder (also 

called attacker, spy or enemy) who wants to exploit the features of a protocol. The 

Dolev-Yao intruder model (Dolev and Yao 1981) is an easily applicable intruder model 

that is frequently used in the formal verification methods. This model assumes that the 

intruder has the full control of network and delivers the messages sent from one identity 

to another. 
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The Dolev-Yao intruder has the abilities to: 

 Deliver Messages - transmit the message to the intended recipient without any 

modification. 

 Block Messages - intercept a message by not delivering it to its recipient.  

 Decompose Messages - decompose an overheard message and improve its 

knowledge using the constituent parts of the received messages. The message 

can still be delivered to intended recipient, without alteration. 

 Perform Encryption/Decryption - encrypt or decrypt the information in its 

knowledge base. (Note that decryption is possible only if he knows the correct 

secret key. He also cannot guess the keys or the generated nonces.) 

 Compose Fake Messages - derive new messages by composing some 

constituent parts or encrypted/decrypted blocks. 

The intruder automaton should be able to represent the knowledge of the Dolev-

Yao intruder which can be used to compose fake messages. The intruder’s knowledge 

includes the identities of the principals, its own keys and nonces, origin and destination 

of all messages, the states of all principals. In addition since it can read all the messages, 

it also knows every part of the messages, everything it can generate by encrypting 

something with something that may be used as a key, everything it can generate by 

decrypting something (provided that it knows the correct key) and every concatenation 

of data it knows. 

Our intruder automaton is composed of the pieces of automata each fulfilling the 

one of the capabilities listed above. 

5.4.4.1. Delivering the Messages 

The piece of automaton given in Figure 5.10 models the message transmission. 

Here, it is seen that the messages can be received by the network from the initiator over 

the           channel, from the responder over the           channel and from the 

server over the           channel where these signals are emitted by the principals 

when they have sent a message. On the other direction, these received messages can be 

transmitted to the initiator over the           channel, to the receiver over the 

          channel or to the server over the           channel. It can be seen that a 
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message can be sent to any principal using this automaton. Hence, besides the correct 

recipient, it is possible to send a message to any principal that the intruder wants. When 

one of the output signals are emitted by the network, the corresponding principal 

captures the signal and understands that the message is sent to him. Then, it reads the 

message which is kept in the global variable    .  

 

 

Figure 5.10. A Simple Network Model 

 

Note that the intruder may also have the ability to create and send its own 

messages; hence the dotted transition can also be employed. In our protocol model, if 

the intruder needs to send its own message, then it receives a signal over a channel, 

discards it and sends its own message. However, in the full protocol model including 

both the initial and subsequent parts, the intruder may learn the secret key in the initial 

part and use it by initiating the execution of subsequent part. To initiate a 

communication, this transition is needed and employed in the complete protocol model, 

which is given in section 5.8. 

5.4.4.2. Decomposing Messages 

 The intruder can capture the messages, decompose them into its constituent parts 

and add to its knowlegde base. For example, when the message  ,    is captured by the 

intruder, it has the ability to read the initiator’s identity and its nonce   , hence, learns 

them. The piece of timed automata given in Figure 5.11 is used to enable the intruder 

improve its knowledge by adding the information extracted from the messages sent.  



57 

 

 

Figure 5.11. Intruder Decomposing Messages 

 

In fact, the intruder can nondeterministically take one of the transitions from    

to    to read a message. However, this increases the state space so large that it gets 

impossible to verify some queries. Because of that, in order to limit the possible number 

of transitions, we added some guards to these transitions. This guards restrict the 

transitions to be taken only if the corresponding protocol step has been executed. It is 

important that these limitations do not lessen the power of the intruder, but decreases 

the number of infeasible executions which make the state space grow enormously. 

In the figure, there are four transitions that may be taken when one of the four 

steps of the protocol’s initial authentication is executed. For example the intruder can 

examine the message      only if           which means that   has sent the first 

protocol message     . It is also avoided to take the same transition again once the 

intruder added the contents of a message to its knowledge base.  

5.4.4.3. Performing Encryption and Decryption 

The intruder has the ability to generate a nonce, do encryption and decryption 

using the parameters in its knowledge base. Here it is important to model the intruder 

such that it cannot guess the principals’ nonces, secret keys and cannot decrypt a 

message without knowing the key (due to the perfect cryptosystem assumption).  

The piece of automata given in Figure 5.12 selects the parameters to apply 

encryption or decryption. It can use any variable in its knowledge base by 

nondeterministically selecting the plaintext/ciphertext and the key. Again, to avoid a 

state space explosion, the guards are used which allow the use of a variable only if it is 
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set (it is not set if the value of a variable is  . See Table 5.1 for the possible values of 

the variables). In this automaton,  ,   and   are the identities,    is the nonce generated 

by the intruder. 

 

 

Figure 5.12. Intruder Parameter Selection for Encryption/Decryption 

 

5.4.4.4. Composing Fake Messages 

The Dolev-Yao intruder can also create new messages and inject them into the 

network. So, the model will be expanded with a message creation part for the intruder, 

where it can populate each constituent part of a message with some known information. 

Figure 5.13 shows that piece of timed automaton. A local variable       is used to 

keep some constituent parts which is initially  . While creating a new message,       

can be set to any variable that the intruder knows. Then, in order to append a new 

content to the message, it can be shifted left for         or         times depending 

on the length of the content to be appended. 

 

 

Figure 5.13. Intruder Deriving New Messages 
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Note that in section 5.4.2, it is mentioned that only two length variables are used 

to reduce the state space of the intruder. If it was not reduced, there would be more 

number of transitions from     to     which causes the state space to increase 

enormously (see Figure 6.2). 

By using this message creation part, the intruder can generate any messages 

using its knowledge or the result which is obtained as the result of an encryption or 

decryption operation. 

5.4.4.5. The Dolev-Yao Intruder Model 

Our Dolev-Yao intruder model (see Figure 5.14) combines all these features 

where the intruder can deliver, block, decompose messages, perform 

encryption/decryption on nondeterministically selected parameters and generate fake 

messages using its knowledge base.  

 

 

Figure 5.14. The Intruder Model for the Initial Authentication Part 
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The automata parts of the intruder are merged in a way that it enables the 

possible executions of the intruder. For example, the intruder can append more than one 

encrypted blocks to a new message. Then, a transition should be added from the 

message creation part to the parameter selection part for encryption/decryption.  

The model contains many loops and it can perform as many operations as it 

wants. This enlarges the state space so that the model verification goes out of memory. 

So, the number of operations that intruder may perform is restricted by the variable 

      . Nonce generation, encryption, decryption and shifting for message creation 

increments the number of operations performed. The intruder cannot perform more than 

       number of these operations. Note that this number should not be so large to 

cause state space explosion and should not be so small to by-pass a possible attack.  

In addition, the model should prevent possible errors. For example a possible 

error caused by data loss may occur when the data is right shifted although its rightmost 

bits contain data. This can be avoided by using a guard that checks if the rightmost bits 

to be shifted contain data or not.  

In the generation and explanation of the model, a possible state space explosion 

is frequently mentioned and considered. It is a very struggling problem for model 

checking that we came up with which is explained in section 6.2.1 in detail. 

5.5. Validation and Verification of Neuman-Stubblebine Initial Part 

Validation of a model is concerned with building the right model that correctly 

represents the behaviors of the real world system. The generated model should 

implement the protocol execution in order to have the correct verification results. 

Verification of a model is concerned with building the model right. A security 

protocol must satisfy some requirements in order to provide a secure communication 

between the principals. However, many protocols are shown to be flawed. Hence, a 

security protocol should be verified to check if it satisfies its requirements. 

This section gives the validation and verification results for our Neuman-

Stubblebine Repeated Authentication Protocol model obtained using UPPAAL. 

Note that, for the initial part, the automata for the principals are named as 

           ,            ,        and           ; for the subsequent part, they are 



61 

 

named as            ,             and           . For the complete model, these 

automata are merged as the          ,          ,        and          automata. 

5.5.1. Parameters and Configurations used in the Case Study 

Verification of a specification can be performed by using either UPPAAL’s 

graphical user interface or the stand-alone command line verifier. In this study, the 

verifier is executed using the command line, which is more appropriate for verifying 

large tasks. The verifier reads in the      file (which is automatically generated by the 

tool during the graphical design) and checks whether it satisfies the query in the file 

given in a file with    extension. The following command form is used execute the 

verifier from the command line: 

                                             

The options to specify may be related to state space representation, state space 

reduction, search order and trace options (Behrmann and David 2004). Since our model 

is large and needs large amount of memory, the following options to reduce memory 

consumption is used in this study (the non-listed properties are used with their default 

stand-alone command line verifier configurations): 

 State Space Representation: Minimal Constraint Systems  

This representation uses less memory than DBMs.  

 State Space Reduction: Aggressive Space Optimization  

This optimization may take more time but uses less memory by decreasing the 

number of states stored. (    option) 

 Search Order: Breadth First Search  

Depth first search cannot complete the verification of some of our queries since 

it runs out of memory where breadth first search generally finds out the 

diagnostics traces faster. 

 Trace Options: Generate Some Trace  

The diagnostic traces of each property are generated and written in a     file 

which can be read by the simulator so that they can be viewed on the model. In 

this study, –    and –    options are used to generate some or shortest traces. 
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In addition,    option is used to see the number of states stored and explored 

during the verification process. To measure the time passed during the verification, the 

     command in Linux is used which prints the execution time of a process. As an 

example, the following line can be executed to verify the queries in           on the 

model in             and writes the diagnostic trace into the              file. 

                 –    –                                       

The verification is performed on Ubuntu      Operating System on Intel Core  

Duo      ,          processor and     of RAM.  

5.5.2. Validation and Simulation of the Model 

To ensure the correctness of our model, it is validated by checking whether the 

protocol works as specified. In a successful run of the protocol, the initiator 

authenticates itself to the responder at the end of the protocol execution, and both of 

these principal’s         variables should be set to  . Query 1 is used to test whether 

the model is able to generate the correct run of the protocol. 

Query 1: Is such a state reachable where both the initiator and the responder finish the 

protocol execution? 

                                               

Query 1 is satisfied and the correct protocol execution is simulated successfully.  

5.5.3. Verification of the Neuman-Stubblebine Initial Part 

In this study, the correctness of an authentication protocol is aimed to be verified 

based on the goals of an authentication protocol. Two high level goals for an 

authentication protocol are listed as follows in (Woo and Lam 1994): 

 Authentication: For each principal, after the successful run of the protocol, it 

should be assured that it is talking to the principal in its mind. 

 Key establishment: A shared secret becomes available to the principals, for 

subsequent cryptographic use. 
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The possible attacks for the Neuman-Stubblebine protocol are analyzed by 

writing specifications derived from these authentication goals. In order to examine the 

protocol goals given above, the correspondence and the secrecy properties should be 

verified.  

Correspondence means that the execution of different principals in an 

authentication protocol proceeds in a lock-stepped fashion. While the authenticating 

principal finishes its part of the protocol, the authenticated principal must have been 

present and participated in its part of the protocol.  

Secrecy property specifies that a distributed session key cannot be discovered by 

the intruder. In the analysis of these goals, if an attack is found on a protocol, it is 

inferred that the protocol is incorrect since it does not satisfy the properties that it is 

intended for.  

 This section gives these specifications and the UPPAAL queries that we used to 

check whether our protocol model satisfies these properties.  

Query 2: Is such a state reachable where the responder has finished but the initiator 

has not finished the initial protocol execution? 

                                                  

Query 2 is related to the correspondence property. Here, it is used the fact that 

this property is not satisfied when the responder finishes the protocol execution 

although the initiator has not executed its part. In such a situation, one can say that an 

intruder has sent fake messages to the responder and attacked to the protocol. However, 

this property is satisfied. It means that the intruder caused the responder to finish its run 

by sending fake messages and we have found an attack on the protocol.  

The diagnostic trace generated by UPPAAL (written in an .xtr file) is loaded 

into its simulator to be able to view the transitions and the operations performed. The 

transitions of the principal automata, the content of the     variable and the operations 

to create the message are examined to find out the execution of the attack scenerio. 

From the diagnostic trace, it is seen that this is the execution trace of the type 

flaw attack given in section 5.3. In this execution, after the responder sends the message 

to the server, the intruder (in Figure 5.14) extracts the information in messages   and   

in the transitions from    to   , and learns   ,   , and             (kept in its variable 

         ). It skips the protocol message  . To create a fake message, it takes 

          into the       variable between the states    ,     and    . Then, it selects 



64 

 

   as        and    as       , to encrypt    with   . It composes this encrypted 

block with           and sends it to the responder as the protocol message  . In this 

attack,   accepts the nonce    as the key    . As it is seen, a type flaw attack 

(substitution of a different type of message field) can be detected since the types of 

constituent parts for the encryption, decryption or message creation operations are not 

restricted. The intruder has the ability to make a composition of any of these variables 

that may be accepted by the responder as a correct message.  

The next query is related to the secrecy property. The next query verifies the 

distribution of the key (at the end of the protocol execution, the secret key     is 

generated by the server and distributed to the initiator and the responder) and the 

secrecy of this key by checking whether it can be learned by the intruder. The check is 

performed using the       variable in order to include all the decomposed pieces of the 

messages and their encryptions or decryptions.  

Query 3: The execution of the protocol run leads to the fact that, the secret key 

generated by the server is distributed to the protocol principals, and it cannot be 

learned by the intruder.  

                                                                  

                                                                

                    

The property is satisfied, meaning that all the executions where the initiator and 

the responder finished the initial part lead to the equivalence of     s owned by them 

and this secret key cannot be obtained by the intruder. (Note that this property is true for 

the correct execution of the protocol in which both the initiator and the responder 

finishes their protocol execution.) 

In the next queries, the aim is to find out whether the timing information can be 

used to analyze the attacks on a protocol. The timeout intervals - the time periods that a 

principal waits for a message - can be used for this purpose. If a message comes earlier 

than the required time to prepare a message (depending on the encryption/decryption 

times), then it can be said that the principal has received a fake message (Corin, et al. 

2004, 2007).  

In a normal run (see Figure 5.15.a), assuming the time to create or read a 

message is negligible, the timeout for the responder is:  
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1.   sends message 1 to   

2.   performs encryption, sends message 2 to   

3.   performs decryption, then two encryptions, sends message   to   

4.   performs a decryption and an encryption, sends message 4 to   

 

 

 

 

 

Figure 5.15. Normal (a) and Attacked (b) Message Flows of the Protocol 
 

However, in a flawed run, the message can be received in a shorter time: 

                                          (illustrated in Figure 5.15.b, where 

the letter   in paranthesis indicate that the message comes from/goes to the intruder). 

1.   sends message 1 to   (intruder reads the content) 

2.   performs decryption, sends message 2 to   

3. Intruder captures and reads the message, performs an encryption, creates and 

sends a fake message 4 to   

In our model, it is assumed that the time needed for the encryption and 

decryption are the same for all principals. To measure the duration of time until the 

message is received, a local variable          is used which is incremented at each 

time unit the responder waits (see Figure 5.8, state   ). Query 4 tests for a possible 

attack using the fact that if the message comes earlier than the required time for the 

cryptographic operations, then we can say that there is an attack on the protocol. 

Initiator        Responder      Server Initiator(I)      Responder     Server(I) 

The fake message 

arrives too early 

than the timeout. 

(b) (a) 
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Query 4: Is such a state reachable where the responder has finished the protocol 

execution but the message has been received in a shorter time than the required time for 

the correct protocol execution? 

                                                                   

                                                                      

This query is satisfied meaning that such a state is reachable. The diagnostic 

trace causing an earlier message is the execution trace of the attack detected in Query 2. 

Hence, it can be inferred that the attacks can also be detected by examining the 

quantitative timing information of the protocol. 

In some protocols, a constraint on           can be used to prevent a specific 

attack. For example, if the intruder needed more number of encryptions and decryptions 

than the normal run to perform an attack, then it would be possible to limit           

in a way that leaving no space for the executions of the intruder (such as the example 

given in (Corin, et al. 2007)). However, this is not the case in our protocol. The 

constraint                                     does not prevent this attack 

since the intruder can wait for a while before sending the message. 

In an authentication protocol, the timeout intervals can be examined for both the 

initiator and the responder. As we mentioned in section 5.4.3, only the waiting time for 

the responder automaton is included in our model since it is provides the detection the 

attack of the protocol and we have state space explosion problem when such transitions 

are included in both principals. 

The timeout for the initiator can be analyzed by modifying the initiator automata 

in Figure 5.6 as in Figure 5.7 and removing the transitions counting           from the 

responder automata to avoid state space explosion. On that model, Query 5 can be used 

to test whether the initiator gets the protocol message   earlier than the required time for 

the creation of the message. 

Query 5: Is such a state reachable where the initiator has finished the protocol 

execution but the message has been received in a shorter time than the required time for 

the correct protocol execution? 
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The query is not satisfied, hence it is not possible for the initiator to get the 

protocol message 4 earlier than the required time for the correct execution. 

5.6. Modeling Neuman-Stubblebine Subsequent Part 

Because of the fact that the intruder model increases the state space so 

enormously and it may cause state space explosion, the initial and subsequent 

authentication parts are analyzed individually. Up to now, the initial part of the protocol 

is modeled and verified. This section gives the model for the subsequent authentication 

part which involves only the initiator, responder and the intruder.  

In the subsequent part, the knowledge acquired in the initial part should be 

included in the model as if the principals already know them. In the initial part, the 

initiator learns the shared key    , the ticket               to be used in the subsequent 

part. Hence, this information should be added to the initiator’s knowledge base. 

Similarly, also the responder should know     to communicate with the initiator in case 

the ticket check is successful.  

In addition, the       and the     arrays should contain the values for the 

already encrypted blocks. Then, these arrays should contain the corresponding plaintext 

and the key for the ciphertext ticket to enable the responder to decrypt the ticket and 

check its correctness. In this second part, Init automaton is expanded with the 

initialization of these values as given in Figure 5.16. In the execution of the initial part, 

the block          corresponds to    ,       , and the encrypted block 

             resides in the index  . Hence, the     index of       and     arrays 

should keep the corresponding values in order to make it decryptable by the responder. 

 

 

Figure 5.16. The Init Automaton for the Subsequent Part 

 

 The model includes the initiator and the responder both involving in all three 

steps of the subsequent part of the protocol. 
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1.                            

2.                       

3.                  

 The automata for the subsequent part are constructed as the continuation of the 

initial part in order to make them easily combined. Figure 5.17 and Figure 5.18 give the 

initiator and the responder automata respectively. 

 

 

Figure 5.17. The Initiator Automata for the Subsequent Authentication Part 

 

 

Figure 5.18. The Responder Automata for the Subsequent Authentication Part 

 

 The global clock variable          is employed in the model to keep the time 

elapsed from the beginning of the protocol execution, and used for testing the key 

expiration time. The ticket expires when          is greater than the expiration time. 

When the responder gets the first message, it checks the validity of the ticket. If it is still 

valid and the message content is correct, it continues the protocol execution. Note that 
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the expiration time is checked by comparing the          with       instead of   , 

due to the design considerations, as explained in section 5.4.2.  

 The intruder model for the initial part is extended so that in addition to the 

protocol messages of this part, it can also read the messages of the subsequent part, 

decompose them, perform encryption/decryption and compose fake messages as given 

in Figure 5.19 (The dotted empty transition from state I1 to I3 is not employed in this 

subsequent model; but it is needed and used in the complete intruder model). 

 
 

 

Figure 5.19. The Intruder Automata for the Neuman-Stubblebine Protocol 
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5.7. Validation and Verification of the Subsequent Part 

 The following query is used to validate the model by checking whether the 

principals can both finish the execution of the subsequent part. The property is satisfied 

and the correct protocol execution is simulated. 

Query 6: Is such a state reachable where both the initiator and the responder finish the 

protocol execution? 

                                               

Similar to the Query 2, the following query is related to the correspondence 

property and checks whether there is a run such that the responder finishes protocol 

execution although the initiator has not. 

Query 7: Is such a state reachable where the responder has finished but the initiator 

has not finished the initial protocol execution? 

                                                  

 The property is not satisfied meaning that no such state is reachable. However, 

the protocol is exposed to a parallel session attack given in section 5.3 which may yield 

a protocol run not satisfying the correspondence property. 

In this model, one automaton for the initiator and one automaton for the 

responder are used allowing them to execute just one protocol run at a time. Hence, the 

model cannot detect the parallel session attack that occurs when two protocol runs are 

executed concurrently and messages from one run are used to form fake messages in 

another run.  

In this attack, the initiator sends the protocol message 1 to the responder and 

goes to state    . The responder takes the message, sends the initiator message 2 and 

goes to state     where it waits for the protocol message3. However, in the parallel 

session attack, the intruder reads these messages, composes a new message as message1 

of another protocol run and sends it to the responder which should be accepted in state 

   . Since the responder is currently in state    , it cannot accept this message1 of 

another run and the model cannot generate this flawed scenerio. 
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Query 8 checks the secrecy property for the subsequent part in a similar way as 

for Query 3. The query is satisfied meaning that in a correct protocol execution, the 

secret key shared by the responder and the initiator cannot be learned by the intruder. 

Query 8: The execution of the protocol run leads to the fact that, the secret key shared 

by the responder and the initiator cannot be learned by the intruder. 

                                                                    

                                                        

As for the analysis of the timing of the message arrivals, the next queries check 

whether a message arrives earlier than expected, similar to queries 4 and 5. 

Query 9: Is such a state reachable where the responder has finished the protocol 

execution but the protocol message 3 has been received in a shorter time than the 

required time for the correct execution of the protocol? 

                                                                         

                          

Query 10: Is such a state reachable where the initiator has finished the protocol 

execution but the protocol message 2 has been received in a shorter time than the 

required time for the correct execution of the protocol? 

                                                                         

                                                 

These queries are not satisfied meaning that the messages do not arrive earlier 

than expected. As it is seen, although it may be possible to have premature messages in 

case of the parallel session attack, our model is unable to detect them since it cannot 

model the concurrent execution of more than one protocol executions. 

5.8. Combining the Initial and Subsequent Parts  

This section gives the complete automata for the initiator and the responder that 

model the execution of both initial and subsequent authentication parts. The intruder 

model for the complete protocol execution is same with the one given in Figure 5.19 

with the additional empty transition from state    to   . Figure 5.20 and Figure 5.21 

give the complete protocol model for the initiator and the responder. 
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Figure 5.20. The Initiator Automata for the Neuman-Stubblebine Protocol 

 

 

Figure 5.21. The Responder Automata for the Neuman-Stubblebine Protocol 
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In this complete model, the automata designed for initial and subsequent 

authentication are merged by involving the key expiration time   . The global clock 

         is used to test the key expiration time, which is reset by the Init automaton so 

that          keeps the time elapsed from the beginning of the protocol execution. The 

execution expires when               , as given in Figure 5.21.  

If the ticket expires, then the responder does not accept the protocol message 1 

of the subsequent part and goes to the initial authentication to get a new session key. 

The initiator has two transitions after the execution of the initial part which may 

continue with the subsequent part or go back to the initial part to get a new session key 

and a ticket, depending on the responder’s behavior. 

The protocol execution can be executed more than once by using the Init 

automata emitting        signal in a loop and reseting the clock         . So, it is 

possible to simulate the model continuing by the second iteration of the protocol, 

starting from the initial authentication part. Our limitation here to simulate it once is 

related to the limitation of the size of encryption/decryption arrays and the nonce values 

can be generated (see section 6.2.2), which are restricted to have smaller state space and 

to be able to verify our queries. 

Table 5.2 lists the summary of the verification results for the queries including 

the number of states stored, number of states explored, the user and the system time for 

the queries performed in our case study (using random seed values). 

 

Table 5.2. Verification Results for the Queries 

Query Model Seed 
States 

stored 

States 

explored 
Real time Satisfied 

1 Initial 1279609757 444648 651457 0m9.859s Yes 

2 Initial 1279609786 444648 651457 0m11.549s Yes 

3 Initial 1279609964 9045526 13472396 2m51.765s Yes 

4 Initial 1279610160 444648 651457 0m11.670s Yes 

5  Initial (*) 1279610225 1828010 2978888 0m31.286s No 

6 Subs. 1279610723 15472 24182 0m0.360s Yes 

7 Subs. 1279610746 12396981 20603774 4m1.857s No 

8 Subs. 1279611000 16404642 24710183 5m29.892s Yes 

9 Subs. 1279611343 12396981 20603774 4m2.420s No 

10 Subs. 1279611634 12396981 20603774 4m3.139s No 

1,2,3,4, 

5,6,7, 

8,9,10 

Complete out of memory 
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The system marked with (*) contains the part of timed automata for the initiator 

timeout given in Figure 5.7, instead of the responder timeout part, since the query 

checks the timing for the initiator. Query 10 also checks the timing for the initiator on 

the subsequent model which does not have a state space explosion problem and includes 

the timing for both principals. 

As it is seen from the table, the verifier goes out of memory in all queries during 

the verification of the complete model. This is caused by the state space explosion 

problem which is explained in the next chapter.  
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CHAPTER 6 

 

ANALYSIS OF THE CASE STUDY: TIMED AUTOMATA 

AS A VERIFICATION TOOL FOR SECURITY 

PROTOCOLS 

 

6.1. Benefits of the Model 

Timed automata formalism provides an easily understandable model for the 

verification of concurrent systems. The state transitions give good insight about the real 

system so that the analysis can be performed in an easier way. Our protocol model 

mimics the protocol execution and allows studying on some example scenarios and 

counter examples by simulating and analyzing the model visually. 

Timed automata modeling is suitable for the systems that can be viewed as a 

parallel composition of processes. To model a security protocol, each principal can be 

modeled as an automaton which represents the behavior of the principal who involves in 

protocol steps by sending and receiving messages, generating nonces, performing 

encryption and decryption, reading and checking message contents. The communication 

between the principals can also be easily represented by using the synchronization 

channels between automata. The emitting and receiving signals with a global message 

variable successfully model the message transfer. 

C-like data structures and functions supported by UPPAAL are very useful for 

modeling cryptology. They provide the cryptographic operations to be held in the local 

functions of each principal which is close to the real world. In addition, these variables 

allow us to model the knowledge bases of the principals so that they know their ids, 

newly generated nonces, message contents…etc. 

 One of the most important advantages of timed automata is its ability to model 

time-sensitive systems. Since the correct functioning of the security protocols depend 

on some timing relationships between the events, timing information is important in 

their analysis. In our model, the network delays are considered to be negligible and the 

timing information for the time consuming operations such as nonce generation, 
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message encryption and decryption, the timeout intervals for the messages, and the 

expiration time of the session key, are included.  

Automatic verification of the model is another advantage since it needs less or 

no human intervention. Once the required properties are specified, the verification is 

performed automatically by the model checking tools. 

6.2. Challenges of the Model 

6.2.1. State Space Explosion Problem 

The most challenging problem of automatic verification and model checking is 

the usage of large amount of time and memory. Because of the fact that model checking 

performs reachability analysis to verify properties by exploring all possible states, it has 

to keep the clock values and the control structure of the automata. This results in the 

usage of huge amount of memory and it is called the state space explosion problem. 

This problem occurs on the systems with many components having transitions in 

parallel, since the number of states in a transition system grows exponentially with the 

number of the components.  

In a large system such as the protocol in our case study, the verifier goes out of 

memory because of the state space explosion. It is a serious problem; because, the 

verification process cannot be completed whether an erroneous state that does not 

satisfy the specified property has not been found before explosion. Such a situation is 

illustrated in Figure 6.1. The exploration starts from the initial states and continues as 

the expanding circles. After the state space explosion, it goes out of memory and 

crashes. In that case, the erroneous states may not be detected.  

 

 

Figure 6.1. Reachability Analysis and State Space Explosion 

reachable 
states 

initial states 

erroneous states 

state space 
explosion 
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This problem is also a current focus in the literature and some methods are 

proposed to overcome this problem. These can be classified as the methods to (i) reduce 

the number of states to explore, (ii) reduce the memory requirements needed for storing 

explored states, (iii) use parallelism or distributed environment, or (iv) exploring only 

part of the state space (Pelánek 2009). Some of these methods are provided or proposed 

as a future work for UPPAAL tool, and can be examined using the documentations in 

(Amnell, et al. 2001, Behrmann, et al. 2002, 2006). This section focuses on the 

modifications on our model to overcome this situation. 

There are some studies in which some verification results cannot be obtained 

due to the fact that UPPAAL ran out of memory (Harrison, et al. 2007, Huber and 

Schoeberl 2009, Heidarian, et al. 2009). Also, in our study, state space explosion 

problem arises in some cases. For some queries, the verifier runs out of memory and 

crashes. It is not a solution to increase memory since UPPAAL is a 32-bit process 

which means that it cannot address more than 4GB of memory. Hence, some restrictions 

and limitations are applied in our model to reduce the state space: 

 Separate initial and the subsequent authentication parts: 

The state space explosion problem is the reason why the initial and the 

subsequent authentication parts are modeled and verified separately. Because, 

the number of states is much larger in the complete protocol model that also 

employs some more transitions to ensure the continuity of the protocol 

execution. Since the queries cannot be checked on this model, the verification is 

performed for each part individually. 

 Simple Modeling and Eliminating the Redundant States: 

The states that do not exhibit interesting behavior are eliminated and the 

unnecessary behaviors are not employed in the model since it may be very 

consumptive. In addition, all possible operations are performed in the updates of 

transitions to reduce the number of transitions and states. 

 Use of Committed States: 

The use of committed states restricts the nondeterminism in the model. This kind 

of states are used in our model to guide the state space exploration and avoid the 

unnecessary interleavings of independent transitions, which can be considered as 

a simple form of partial order reduction. These states are not stored in the passed 

list and the interleavings of any state with a committed location is not explored. 
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This reduces the state space so much that changing even one state from 

committed to a not committed state may result in explosion.  

 Limit the Number of Operations: 

The intruder model allows the attacker to perform unbounded number of 

encryption/decryption operations and composing new messages, resulting in a 

huge state space. To prevent the execution of unbounded number of these 

operations, the number of operations that the intruder can perform is limited by 

using the variable        in a way that the value is not so small to by-pass a 

possible attack. 

 Keep the number of clocks and variables as low as possible: 

A symbolic state of a timed automaton includes the location vector, clock zone 

and variable valuations. So, reducing the number of variables provides us 

considerable savings. In our model, it is tried to use constant variables whose 

values do not change during the execution (such as the principal ids, initial 

knowledge of shared keys, etc.) and bounded integer variables which can be 

represented using less number of bits (such as the nonces and index variables 

used for encryption and decryption) 

For example, defining           and           instead of defining 

different length variables as             ,           ,             , 

             and            , saves us a few transitions from state to 

which might have ended up in exponential growth in possible next transitions 

and states. As it is seen in Figure 6.2, the first automaton with more number of 

length variables has five transitions where the other one has only two transitions. 

 

 

Figure 6.2. Reduced Number of Transitions  
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 Adding Guards: 

Some more guards are especially employed in the intruder model to reduce the 

number of available interleavings and nondeterminism without lessening the 

power of intruder, which caused an exhausting modeling phase.  

For example the parts of intruder automata in Figure 5.11, Figure 5.12 and 

Figure 5.13 involve some guards that prevent to take unnecessary transitions (It 

is unnecessary to try to extract a message where the intruder cannot learn 

anything new or to use an uninitialized variable. Hence, it is pointless to have 

these transitions as available transitions and increase the state space). 

 Make use of the UPPAAL verifier options: 

The minimal constraint graphs and aggressive state optimization that decreases 

the number of stored states are used to reduce the memory consumption 

although it may increase time consumption which is less restrictive in our study. 

These reductions provides considerably time and memory savings. However, the 

problem still exists for the verification of the complete protocol execution involving 

both the initial and the subsequent parts. 

6.2.2. Collision of Variable Values 

In a model, if it is possible to find an attack, then it should also be a possible 

attack on the real world. However; some flaws, although which is not an attack in fact, 

can be found because of some weaknesses or deficiencies of the model. In earlier phases 

of our study, such a problem had occured which is caused by the possibility of having 

same values for different data types in the model. 

For example, the values of the principal ids, nonces, the index values 

representing encrypted blocks could coincide, resulting in the responder accepting 

wrong messages as they were correct since the values seem to be correct. An example 

situation is given in Figure 6.3. 

In this execution, the responder   accepts an incorrect message because of the 

fact that the values of the message components seem to be true. In this example, the 

identity variables have the values    ,    ; and the       is initially  . The agents 

increment the value of this nonce variable and they get     ,     . The index 

values for the       and     arrays start from  . In the first step of protocol execution, 
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  sends the message including its identity and nonce.   creates the protocol message2 

(encrypts the block         with     filling in the     index), to send it to the server. 

The intruder does not transmit it, and it also omits the third step. It encrypts  ’s identity 

with   (which is meaningless in a real execution); filling in the     index (      and 

    arrays become as in the figure). It sends a fake message including only  ’s identity. 

In real execution, this fake message is not accepted by  . However, in this deficient 

model, it may be identified as the correct protocol message 4.   reads the empty (zero) 

part of the message as                , and        =1, which are possible to be 

decrypted because of the collided values. 

 

Figure 6.3. A Deficient Run Caused by the Collisions on the Variable Values 

 

To prevent the problem, the integer values to be used for each type are 

predefined. By using the variables values given in Table 5.1, such number collisions do 

not occur. One disadvantage of this solution is the limitation on the numbers to be used 

since we use only   bits for the values of a component. This also limits the number of 

protocol executions since the nonce values to be generated and the number encryptions 

that can be performed are limited. One way to overcome this problem may be to 

increase the number of bits to represent these cryptology modeling variables which is in 

trade-off with state space explosion. 
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6.3. Possible Extensions  

6.3.1. Retransmissions  

The model can be further extended by modeling the retransmissions which 

involve resending of messages that may be damaged or lost. A message can be 

retransmitted if the response message does not arrive in a specific timeout interval.  

To model retransmissions, an extra transition can be added from the waiting 

state to the sending state as it is seen in Figure 6.4 and Figure 6.5.  

 

 

Figure 6.4. Extension for the Initiator Automaton for Retransmission 

 

 

Figure 6.5. Extension for the Responder Automaton for Retransmission 

 

The transitions from    to    and from    to    model retransmissions that 

make the principals resend the message. These transitions are allowed when the timeout 

is reached and the total number of allowed retransmissions is not exceeded. This model 

is closer to the real protocol execution; however, it increases the state space 

considerably. 
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6.3.2. Parallel Sessions 

The subsequent part of Neuman-Stubblebine authentication protocol is exposed 

to a parallel session attack given in section 5.3.  

The parallel session attack occurs when two protocol runs are executed 

concurrently and messages from one run are used to form fake messages in another run. 

However, our model is able to execute just one protocol run at a time. Consequently, 

our automata model which has one automaton for the initiator and one automaton for 

the responder, allowing them to execute just one protocol run at a time cannot detect the 

parallel session attack.  

One idea may be to extend the network of timed automata by using more than one 

instantiations of the principal automata templates in the system definition to model 

different runs of the protocol. This can be done in a way that the instantiations of a 

principal should share the same knowledge base in order to behave as a single principal 

involving in different protocol runs. Nevertheless, besides having a huge state space, 

this does not provide us a way to analyze unbounded number of parallel protocol runs. 

The model and the protocol analysis can be further extended so that it is possible to 

examine unbounded number of parallel sessions. 
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CHAPTER 7 

 

CONCLUSIONS 

 

 In this thesis, the objective is to study the timed automata model which 

introduces quantitative time information into the real time system verification and 

utilize it for security protocols. After the analysis of the timed automata theory and its 

implementation, a case study is performed on a repeated authentication protocol, by 

directly modeling it with timed automata. The time needed for the cryptographic 

operations, message timeouts and key expiration time are also employed in the model.  

In summary, the following steps are performed for modeling the protocol: 

 Each principal is designed as an automaton whose transitions mimic the protocol 

execution, which together make up a network of timed automata. 

 The communication of the principals is provided using the shared variables and 

the synchronization channels between the automata. 

 Dolev-Yao intruder model is used which also models the network. It is 

concentrated on the modeling of the intruder in a way that it has all of the 

abilities of the Dolev-Yao model and does not have large numbers of variables 

and the state transitions.  

 The details of the cryptographic operations (nonce generation, encryption and 

decryption) are abstracted away. Cryptology modeling and message creations 

are employed in the updates of the transitions. 

 Some simplifications and limitations are applied on the model to avoid state 

space explosion. 

Then, the model is aimed to be verified to find out the possible attacks. 

 The properties to be checked are specified based on the goals of an 

authentication protocol 

 The properties are written in the query language of UPPAAL which performs 

automatic verification. 

 The execution of the diagnostic traces are examined using the visual simulator. 
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 It is concluded that the timed automata model for an authentication protocol can 

be used to examine the predefined goals of a protocol. Model checking of Neuman-

Stubblebine authentication protocol with timed automata is able to find the type flaw 

attack in the initial part of the protocol, by analyzing the correspondence property. In 

addition, this attack can also be detected by using the quantitative time information. 

However, the parallel session attack in the subsequent part, which occurs when 

two protocol runs are executed concurrently, cannot be detected since our model allows 

the principals to execute just one protocol run at a time. The model can be further 

improved by employing the parallel execution of more than one protocol runs so that it 

can detect the parallel session attacks. 

In addition, similar to the other model checking methods, timed automata model 

suffers from the state space explosion problem that occurs in large models. In our case 

study, although the state space is tried to be reduced by using the verifier options and 

some limitations are applied on the model, the complete protocol model including both 

the initial and subsequent authentication parts cannot be verified since the verifier goes 

out of memory. Hence, some work should be devoted to overcome the state space 

explosion problem. 
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