

DEVELOPMENT OF A STATIC ANALYSIS

TOOL TO FIND SECURITY VULNERABILITIES
IN JAVA APPLICATIONS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Bertan TOPUZ

March 2010
İZMİR

We approve the thesis of Bertan TOPUZ

Assist. Prof. Dr. Tuğkan TUĞLULAR
Supervisor

Prof. Dr. Sıtkı AYTAÇ
Committee Member

Prof. Dr. Şaban EREN
Committee Member

12 March 2010

______________________________ __________________________
Prof. Dr. Sıtkı AYTAÇ Assoc. Prof. Dr. Talat YALÇIN
Head of the Depertment of Dean of the Graduate School of
Computer Engineering Engineering and Sciences

ACKNOWLEDGEMENTS

I would like to express my profound appreciation and gratitude to my advisor,

Assist. Prof. Dr. Tuğkan TUĞLULAR, his valuable guidance, ideas and

encouragement in the preparation of this manuscript.

I am very grateful to my committee member, Prof. Dr. Sıtkı AYTAÇ and Prof.

Dr. Şaban EREN for their valuable contributions and recommendations.

I would like to thank to my company, Solify-TURKEY for their support.

I would like to express my gratitude to my family for their invaluable patience,

understanding, support and encouragements all throughout my life.

 iv

ABSTRACT

DEVELOPMENT OF A STATIC ANALYSIS TOOL TO FIND
SECURITY VULNERABILITIES IN JAVA APPLICATIONS

 The scope of this thesis is to enhance a static analysis tool in order to find

security limitations in java applications. This will contribute to the removal of some of

the existing limitations related with the lack of java source codes.

 The generally used tools for a static analysis are FindBugs, Jlint, PMD,

ESC/Java2, Checkstyle. In this study, it is aimed to utilize PMD static analysis tool

which already has been developed to find defects Possible bugs (empty

try/catch/finally/switch statements), Dead code (unused local variables, parameters and

private methods), Suboptimal code (wasteful String/StringBuffer usage),

Overcomplicated expressions (unnecessary if statements for loops that could be while

loops), Duplicate code (copied/pasted code means copied/pasted bugs). On the other

hand, faults possible unexpected exception, length may be less than zero, division by

zero, stream not closed on all paths and should be a static inner class cases were not

implemented by PMD static analysis tool.

 PMD performs syntactic checks and dataflow analysis on program source code.

In addition to some detection of clearly erroneous code, many of the “bugs” PMD

looks for are stylistic conventions whose violation might be suspicious under some

circumstances. For example, having a try statement with an empty catch block might

indicate that the caught error is incorrectly discarded. Because PMD includes many

detectors for bugs that depend on programming style, PMD includes support for

selecting which detectors or groups of detectors should be run. While PMD’s main

structure was conserved, boundary overflow vulnerability rules have been

implemented to PMD.

 v

ÖZET

JAVA UYGULAMALARINDA GÜVENLİĞE İLİŞKİN
ZAYIFLIKLARIN BULUNMASINA YÖNELİK BİR STATİK

ANALİZİNİN GELİŞTİRİLMESİ

 Bu tez java uygulamalarinda bulunan güvenlik sınırlamaları saptanmasına

yönelik statik analiz araçlarını geliştirmeyi amaçlamaktadır. Bu amaçla, java kaynaklı

kodlarla ilgili varolan açıkların ortadan kaldırılmasına katkıda bulunacaktır.

 FindBugs, Jlint, PMD, Checkstyle ve ESC/Java2 yaygın olarak kullanılan statik

analiz araçlarıdır. Bu çalışmada, Possible bugs (olası hatalar), Dead code

(kullanılmayan kod), Suboptimal code (yetersiz kod), Overcomplicated expressions

(karmaşık ifadeler) ve Duplicate code (ikinci kod) gibi hataların saptanmasına yönelik

geliştirilmiş olan PMD statik analiz aracının kullanımı amaçlanmaktadır. Buna karşılık

PMD’nin faults possible unexpected exception (olası beklenmeyen kural dışı durum),

length may be less than zero(yapı boyutu sıfırdan küçük olabilir), division by zero

(sıfıra bölünme), stream not closed on all paths (I/O için açılan katarın kapatılmaması)

gibi açıkları bulamadığı saptanmıştır.

Bazı hatalı kodları saptamasının yanında PMD’nin bulmaya çalıştığı hataların

çoğu, biçimsel hatalara dayanmaktadır. Örnek olarak, try catch yapısındaki boş catch

bloğunu gösterebilmektedir. PMD, programlama stiline bağlı olarak birçok algılayıcı

kural içermektedir ve bu kuralları isteğe göre seçebilme özelliğine sahiptir. PMD’nin

ana yapısı korunarak taşma zayıflıkları için yeni kurallar geliştirilmiştir.

 vi

TABLE OF CONTENTS

LIST OF TABLES...viii

LIST OF FIGURES ... ix

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. STATIC ANALYSIS ... 3

 2.1. Principles of Static Analysis ... 3

 2.2. Types of Static Analysis ... 4

 2.2.1. Secure Information Flow ... 4

 2.2.1.1.Type-Based Analysis ... 5

 2.2.2. Data Flow Analysis... 8

 2.2.2.1. Fixed Point Algorithm .. 9

 2.2.2.2. Forwards-Backwards-May-Must ... 10

 2.2.3. Mutability Analysis .. 11

 2.2.4. Points to Analysis ... 12

 2.2.5. Dependence Analysis.. 13

 2.2.6. Escape Analysis .. 15

 2.2.7. Alias Control and Confinement .. 16

 2.3. Static Analysis Tools .. 18

 2.3.1. How Static Analysis Tools Find Flaws .. 21

 2.3.2. Limitations of Static Analysis .. 23

 2.3.2.1. Path Limitations .. 24

 2.3.2.2. Abstract Domain ... 25

 2.3.2.3. Missing Source Code ..26

 2.3.2.4. Out of Scope.. 27

 2.3.3. Open Source Tools ... 27

 2.3.4. Commercial Tools .. 28

 2.3.5. Comparison of Static Analysis Tools ... 29

 vii

CHAPTER 3. PMD... 31

 3.1. Overview of PMD... 31

 3.2. Rulesets of PMD ... 32

 3.3. Writing Rules .. 32

 3.3.1. Writing XPath Rules... 33

 3.3.2. Writing Java Rules.. 36

CHAPTER 4. PMD RULES FOR SECURITY VULNERABILITIES 40

 4.1. Overview of Security Vulnerabilities ... 40

 4.2. PMD Rules for Security Vulnerabilities ... 42

 4.3. Boundary Overflow Vulnerabilities.. 44

CHAPTER 5. TOOL SUPPORT AND CASE STUDY... 45

 5.1. Boundary Overflow Vulnerability Checker Tool 45

 5.1.1. Design and Implementation.. 45

 5.1.2. Usage of the Tool.. 46

 5.2. Case Study .. 47

 5.2.1. JMAP Java Port Scanner .. 50

 5.2.2. Faltron Java Port Scanner ... 51

 5.2.3. A Java Port Scanner.. 52

CHAPTER 6. CONCLUSIONS ... 56

REFERENCES .. 57

APPENDICES

APPENDIX A. OPEN SOURCE TOOLS.. 61

APPENDIX B. COMMERCIAL TOOLS .. 65

APPENDIX C. RULESETS OF PMD ... 69

 viii

LIST OF TABLES

Table Page
Table 2.1. The classic data flow analyses ... 10

Table 2.2. Comparison of static analysis tools. ... 29

Table 4.1. Properties of vulnerabilities .. 41

Table 4.2. Types of vulnerabilities for each tool finds ... 42

Table 5.1. JMAP Local Variables and Method/Constructor Parameters.................... 50

Table 5.2. JMAP Input Contracts.. 50

Table 5.3. JMAP Output ... 51

Table 5.4. Faltron Local Variables and Method/Constructor Parameters................... 51

Table 5.5. Faltron Input Contracts .. 52

Table 5.6. Faltron Output.. 52

Table 5.7. A Java Port Scanner Local Variables and

 Method/Constructor Parameters .. 52

Table 5.8. A Java Port Scanner Input Contracts ... 53

Table 5.9. A Java Port Scanner Output... 53

Table 5.10. Comparison of the three test runs .. 53

Table 5.11. Comparison of the three port scanners .. 55

 ix

LIST OF FIGURES

Figure Page
Figure 2.1. The abstract operation of addition ... 4

Figure 2.2. CFGs for assignments, output, return statements, and declarations 7

Figure 2.3. Sequence of S1 S2. ... 7

Figure 2.4. Inductive graph constructions. .. 7

Figure 2.5. CFG of the iterative factorial function. ... 8

Figure 2.6. A graphical comparison of number of true positives

 for each tool ... 30

Figure 3.1. PMD Rule Designer... 34

Figure 5.1. Boundary overflow vulnerability checker tool .. 47

Figure 5.2. JMAP Java Port Scanner.. 48

Figure 5.3. Faltron Java Port Scanner .. 49

Figure 5.4. A Port Scanner ... 49

 1

CHAPTER 1

INTRODUCTION

Static analysis is the automatic method to reason about runtime properties of

program code without actually executing it. Properties that will be considered include

those which lead to premature termination or ill-defined results of the program, but

preclude for instance purely syntactic properties such as syntax errors or simple type

errors. Nor does static analysis address errors involving the functional correctness of

the software. Hence, static analysis can be used to check that the program execution is

not prematurely aborted due to unexpected runtime events, but it does not guarantee

that the program computes the correct result. While static analysis can be used to check

for e.g. deadlock, timeliness or non-termination there are other, more specialized,

techniques for checking such properties; although relying on similar principles.

Static analysis should be contrasted with dynamic analysis which concerns

analysis of programs based on their execution, and includes e.g. testing, performance

monitoring, fault isolation and debugging.

Static analysis is useful in several respects. It can be used to detect certain types

of software runtime errors e.g. division by zero, arithmetic overflows, array indices out

of bounds, buffer overflows etc without actually executing the code. However, static

analysis does not in general guarantee the absence of runtime errors. While static

analysis can reduce the need for testing or even detect errors that in practice cannot be

found by testing, it is not meant to replace testing.

In addition to finding errors, static analysis can also be used to produce more

efficient code; in particular for safe languages like Java, where efficiency was not the

primary goal of the language designers. Many runtime tests carried out in Java

programs can in practice be avoided given certain information about the runtime

behavior. For instance, tests that array indices are not out-of-bounds can be omitted if

it is known that the value of the indices is limited to values in-bounds. Static analysis

can provide such information.

Static analysis can also be used for type inference in untyped or weakly typed

languages or type checking in languages with non-static type systems. Finally static

 2

analysis can be used for debugging purposes, automatic test case generation, impact

analysis, and intrusion detection and for software metrics.

 In this thesis, we will focus on to find security vulnerabilities in java

applications.

 3

CHAPTER 2

STATIC ANALYSIS

2.1. Principles of Static Analysis

Some properties checked by static analysis tools can be carried out by

relatively straightforward pattern matching techniques. However, most properties are

more challenging and require much more sophisticated analysis techniques. It is often

claimed that static analysis is done without executing the program, but for nontrivial

properties this is only partially true. Static analysis usually implies executing the

program not in a standard way, but on an abstract machine and with a set of abstract

non-standard values replacing the standard ones. The underlying concept is that of a

state; a state is a collection of program variables and the association of values to those

variables. State information is crucial to determine if a statement such as x=x/y may

result in division by zero (it may do so if y may have the value zero at the time when

the division is made). In the case of an intra-procedural analysis the state takes account

only of local variables while a context-sensitive analysis must take account also of

global variables plus the contents of the stack and the heap. The program statements

are state transformers and the aim of static analysis is to associate the set of all possible

states with all program points. Such sets of states are typically infinite or at least very

large and the analysis must therefore resort to some simplified description of the sets

representing only some of the relationships between the program variables, e.g.

tracking an interval from which a variable may take its value.

For instance, instead of computing with the integers it may be computed with

values that describe some property of the integers; may as a simple example replace

the domain of integers with the finite domain {Ө, 0,⊕ ,?} where Ө designates a

negative integer (i.e. the interval]-∞ ,-1]), 0 designates the integer 0 (the interval[0,

0]), ⊕ designates a positive integer (the interval [1,∞ [) and ? designates any integer

(the interval]- ∞, ∞ [). Operations, such as addition, which normally operate on the

integers, must be redefined over the new domain and in such a way that the abstract

 4

operation mimics the concrete one in a faithful way. The abstract operation of addition

can be defined as in Figure 2.1 (Emanuelsson and Nilsson, 2008).

Figure 2.1. The abstract operation of addition
(Source: Emanuelsson and Nilsson, 2008)

Such abstractions leads to loss of information which influences the precision of the

analysis; if it is known that x = 4 and y = -3 then x + y is positive, but if it is only

known that x = ⊕ and y = Ө then it is inferred that x + y is an integer.

2.2. Types of Static Analysis

2.2.1. Secure Information Flow

Conventional security mechanisms such as access control and encryption do

not directly address the enforcement of information-flow policies. Recently, a

promising new approach has been developed: the use of programming-language

techniques for specifying and enforcing information-flow policies (Sabelfelt and

Myers, 2003). Security mechanisms of most computer systems make no attempt to

guarantee secure information flow. "Secure information flow," or simply "security,"

means here that no unauthorized flow of information is possible. In the common

example of a government or military system, security requires that processes be unable

to transfer data from files of higher security classifications to files (or users) of lower

ones: not only must a user be prevented from directly reading a file whose security

classification exceeds his own, but he must be inhibited from indirectly accessing such

information by collaborating in arbitrarily ingenious ways with other users who have

authority to access the information Most access control mechanisms are designed to

control immediate access to objects without taking into account information flow

 5

paths implied by given, outstanding collection of access rights. Contemporary access

control mechanisms, have demonstrated their abilities to enforce the isolation of

processes essential to the success of a multitask system. These systems rely primarily

on assumptions of "trustworthiness" of processes for secure information flow among

cooperating processes (Denning, 1976).

The most important objectives of information security systems are to protect

confidentiality, integrity, and availability. It is obvious that compromises in integrity

are the main causes of compromises in confidentiality and availability. Therefore,

mechanism that specifies and enforces secure information flow policies is needed

within application programs (Huang et al., 2004).

Information flow is a way of modelling data flow within a program usually

meaning that values can flow in one direction (in security this is from safe to unsafe).

This is usually looked at regarding security policies (England, 2008).

Type systems have proven useful for specifying and checking program safety

properties and also used to verify program security. By means of programmer-supplied

annotations, both proof-carrying codes (PCC) (Necula, 1997) and typed assembly

languages (TAL) (Morrisett et al., 1999) are designed to provide safety proofs for low-

level compiler-generated programs.

Many security verification efforts have focused on temporal safety properties

related to control flow.

2.2.1.1. Type-Based Analysis

Since vulnerabilities in Web applications are primarily associated with insecure

information flow, the use of proper information flow rather than control flow is

generally accepted. The first widely accepted model for secure information flow was

given by Bell and La Padula (McLeen, 1990). They stated two axioms: a) a subject

cannot access information classified above its clearance, and b) a subject cannot write

to objects classified below its clearance. Their original model only dealt with

confidentiality. Denning (1976) established a lattice model for analyzing secure

information flow in imperative programming languages based on a program

abstraction derived from an instrumented semantics of a language. Orbaek (1995)

proposed a similar treatment, but addressed the secure information flow problem in

 6

terms of data integrity instead of confidentiality. To base directly on standard language

semantics, Volpano et al. showed that Denning’s axioms can be enforced using a type

system in which program variables are associated with security classes that allow inter-

variable information flow to be statically checked for correctness. Soundness was

proven by showing that well-typed programs ensure confidentiality in terms of non-

interference. Recently, fully functional type systems designed to ensure secure

information flow have been offered for high-level, strong-typed languages such as ML

(Pottier and Simonet, 2003) and Java (Myers, 1999).

Type-based approaches to static program analysis are attractive because they

prove program correctness without unreasonable computation efforts. Their main

drawback is their high false positive rate, which often makes them impractical for real-

world use. Regardless of whether security classes are assigned through manual

annotations or through inference rules, they are statically bound to program variables

in conventional type systems. It is important to keep in mind that the security class of a

variable is a property of its state, and therefore varies at different points or call sites in

a program. In JIF and similar type-based systems, variable labels become increasingly

restrictive during computation, resulting in high false positive rates. JIF addresses this

problem by giving programmers the power to declassify variables—that is, to

explicitly relax variable labels.

Type analysis started with the syntax tree of a program and defined constraints

over variables assigned to nodes. Analyses that work in this manner are flow

insensitive, in the sense that the results remain the same if a statement sequence S1S2 is

permuted into S2S1. Analyses that are flow sensitive use a control flow graph, which is

a different representation of the program source. A control flow graph (CFG) is a

directed graph, in which nodes correspond to program points and edges represent

possible flow of control. A CFG always has a single point of entry, denoted entry, and

a single point of exit, denoted exit. If v is a node in a CFG then pred(v) denotes the set

of predecessor nodes and succ(v) the set of successor nodes. The CFGs for

assignments, output, return statements, and declarations are given in Figure 2.2.

 7

Figure 2.2. CFGs for assignments, output, return statements, and declarations.

For the sequence S1 S2, the exit node of S1 and the entry node of S2 are eliminated and

combined the statements together as shown in Figure 2.3.

Figure 2.3. Sequence of S1 S2.

Similarly, the other control structures are modelled by inductive graph constructions as

given in Figure 2.4.

Figure 2.4. Inductive graph constructions.

 8

Using this systematic approach, CFG of the iterative factorial function is given in

Figure 2.5.

Figure 2.5. CFG of the iterative factorial function.

2.2.2. Data Flow Analysis

The purpose of data flow analysis is to statically compute certain information

for every single program point (or for coarser units such as functions). For instance,

the classical constant analysis computes, for each program point, the literal values that

variables may hold. Classical dataflow analysis, also called the monotone framework,

starts with a Control Flow Graph (CFG) and a lattice L with finite height. The lattice

may be fixed for all programs, or it may be parameterized with the given program. To

every node v in the CFG, it can be assigned a variable [v] ranging over the elements of

L. For each construction in the programming language, a dataflow constraint that

relates the value of the variable of the corresponding node to those of other nodes

 9

(typically the neighbours) is defined. As for type inference, it will be ambiguously

used the notation [S] for [v] if S is the syntax associated with v.

For a complete CFG, a collection of constraints can be systematically extracted

over the variables. If all the constraints happen to be equations or inequations with

monotone right-hand sides, then it can be used the fixed-point algorithm to compute

the unique least solution. The dataflow constraints are sound if all solutions correspond

to correct information about the program. The analysis is conservative since the

solutions may be more or less imprecise, but computing the least solution will give the

highest degree of precision.

2.2.2.1 Fixed Point Algorithm

If the CFG has nodes V = {v1, v2, . . . , vn}, with lattice Ln. Assuming that node

vi generates the dataflow equation [vi] = Fi([v1], . . . , [vn]), and combined function F :

Ln → Ln described as:

F(x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn))

The naive algorithm is then to proceed as follows:

x = (⊥, . . . , ⊥);

do { t = x; x = F(x); }

while (x ≠ t);

to compute the fixed-point x. A better algorithm, called chaotic iteration, exploits the

fact that lattice has the structure Ln:

x1 = ⊥; . . . xn = ⊥;

do {

t1 = x1; . . . tn = xn;

x1 = F1(x1, . . . , xn);

. . .

xn = Fn(x1, . . . , xn);

} while (x1≠t1 V . . . V xn≠ tn);

to compute the fixed-point (x1, . . . , xn).

 10

2.2.2.2. Forwards-Backwards-May-Must

Four classical analyses can be compared in various ways. They are all just

instances of general monotone framework, but their constraints have a particular

structure. A forwards analysis is one that for each program point computes information

about the past behaviour. Examples of this are available expressions and reaching

definitions. They can be characterized by the right-hand sides of constraints only

depending on predecessors of the CFG node. Thus, the analysis starts at the entry node

and moves forwards in the CFG.

A backwards analysis is one that for each program point computes information

about the future behaviour. Liveness and very busy expressions are the examples. They

can be characterized by the right-hand sides of constraints only depending on

successors of the CFG node. Thus, the analysis starts at the exit node and moves

backwards in the CFG.

A may analysis is one that describes information that may possibly be true and,

thus, computes an upper approximation. Examples of this are liveness and reaching

definitions. They can be characterized by the right-hand sides of constraints using a

union operator to combine information.

A must analysis is one that describes information that must definitely be true

and, thus, computes a lower approximation. Examples of this are available expressions

and very busy expressions. They can be characterized by the right-hand sides of

constraints using an intersection operator to combine information. All possible

combination is given in Table 2.1.

Table 2.1. The classic data flow analyses.

 Forward Backward

May Reaching definitions
The assignments that
produced current
variable values

Live variables
Variables whose current
values may be used later

Must Available expressions

Computed expressions
whose values have not
Changed

Very busy expressions

Expressions that are
always evaluated (in a
loop)

 11

2.2.3. Mutability Analysis

A mutability analysis determines which fields and objects are mutable, and

which methods may mutate them. Knowing which method parameters may be mutated

during a method’s execution is useful for many software engineering tasks such as

modelling, verification, compiler optimizations, and program transformations such as

refactoring, test input generation, and regression oracle creation as well as

specification mining. Both static and dynamic analysis techniques have been employed

to detect immutable parameters (Artzi et al., 2007). Computing accurate static analysis

approximations threatens scalability, and imprecise approximations can lead to weak

results. Dynamic analyses offer an attractive complement to static approaches, both in

not using approximations and in detecting mutable parameters.

The goal of parameter mutability analysis is the classification of each method

parameter (including the receiver) as either reference mutable or reference-immutable.

Informally, reference immutability guarantees that a given reference is not used to

modify its referent. Parameter p of method m is reference-mutable if there exists an

execution of m in which p is used to mutate the state of the object pointed to by p.

Parameter p is said to be used in a mutation, if the left hand side of the mutating

assignment was obtained during the given execution via a series of field accesses and

copy operations from p. If no such execution exists, the parameter p is reference-

immutable.

Static mutability analysis consists of two phases: S, an intraprocedural analysis

that classifies as (im)mutable parameters (never) affected by field writes within the

procedure itself, and P, an interprocedural analysis that propagates mutability

information between method parameters. P may be executed at any point in an analysis

pipeline after S has been run, and may be run multiple times (interleaving with other

analyses). S and P both rely on an intraprocedural pointer analysis that calculates the

parameters pointed to by each local variable.

An intraprocedural, context-insensitive, flow-insensitive, 1-level field-

sensitive, and points-to analysis are used to determine which parameters can be pointed

to by each expression. As a special case, the analysis is flow-sensitive on the code

from the beginning of a method through the first backwards jump target, which

includes the entire body of methods without loops. The points-to analysis calculates,

 12

for each local variable l, a set P0(l) of parameters whose state l can point to directly

and a set P(l) of parameters whose state l can point to directly or transitively. The

points-to analysis has “overestimate” and “underestimate” varieties; they differ in how

method calls are treated.

The static analysis S works in four steps.

(1) S performs the “overestimate” points-to analysis.

(2) The analysis marks as mutable some parameters that are currently marked

as unknown: For each mutation l1. f = l2, the analysis marks all elements of P0(l1) as

mutable.

(3) The analysis computes a “leaked set” L of locals, consisting of all

arguments (including receivers) in all method invocations and any local assigned to a

static field (in a statement of the form Global.field = local).

(4) The analysis marks as immutable all unknown parameters that are not in the

set ∪l∈L P(l) only if all method’s parameters can be marked immutable.

S is i-sound and m-unsound. To avoid over-conservatism, S assumes that on

the entry to the analyzed method all parameters are fully un-aliased, i.e., point to

disjoint parts of the heap. This assumption may cause S to miss possible mutations due

to aliased parameters; to maintain i-soundness, S never classifies a parameter as

immutable unless all other parameters to the method can be classified as immutable.

The m-unsoundness of S is due to infeasible paths (e.g., unreachable code), flow-

insensitivity, and the overestimation of the points-to analysis.

The interprocedural propagation phase P refines the current parameter

classification by propagating both mutability and immutability information through the

call graph. Given an i-sound input classification, propagation is i-sound and m-

unsound.

Because propagation ignores the bodies of methods, the P phase is i-sound only

if the method bodies have already been analyzed.

2.2.4. Points to Analysis

The most important information that must be obtained is the set of possible

targets of pointers. There are infinitely many possible targets during execution, so it

must be selected some finite representatives. The canonical choice is to introduce a

 13

target &id for every variable named id and a target malloc-i, where i is a unique index,

for each different allocation site (program point that performs a malloc operation).

Targets are used to denote the set of pointer targets for a given program.

Points-to analysis takes place on the syntax tree, since it will happen before or

simultaneously with the control flow analysis. The end result of points-to analysis is a

function pt that for each (pointer) variable p returns the set pt (p) of possible pointer

targets to which it may evaluate. A conservative analysis could be performed, so these

sets will in general be too large. Given this information, many other facts can be

approximated. If it is determined whether pointer variables p and q may be aliases,

then a safe answer is obtained by checking whether pt(p)∩pt(q) is non-empty. The

simplest analysis possible, called address taken, is to use all possible targets, except

that &id is only included if this construction occurs in the given program. This only

works for very simple applications, so more ambitious approaches are usually

preferred. If there is any restriction in typable programs, then any points-to analysis

could be improved by removing those targets whose types are not equal to that of the

pointer variable.

2.2.5. Dependence Analysis

Fundamental analysis step in an advanced optimizing compiler (as well as

many other software tools) is data dependence analysis for arrays. This means deciding

if two references to an array can refer to the same element and if so, under what

conditions. This information is used to determine allowable program transformations

and optimizations.

Dependence analysis is a very important part of any vectorizing or

concurrentizing compiler. Data dependence analysis has great importance for the

automatic detection and exploitation of implicit parallelism. Therefore, experimental

evaluation to determine the accuracy of dependence analysis techniques is very

important. Such evaluation is necessary to guide research and to help compiler writers

in the selection of a dependence analysis strategy. Constant test, the GCD (Greatest

Common Divisor) test, three variants of Banerjee’s inequalities, and integer-

programming based tests such as the Omega test are the techniques that included in

dependence analysis.

 14

Dependence analyses generally focus on statements with array references and

assume that the two statements to be analyzed are both inside the same, possibly

multiply-nested, DO loop. The generic loop test can be summarized as (Petersen and

Padua, 1993);

 DO I1=L1,U1

. . .
DO Id = Ld,Ud

Sv ; X(f1 (Il,...,Id),………. fn (Il,...,Id)) =
Sw ; ….= X(g1 (Il,...,Id),………. gn (Il,...,Id)) =

END DO
. . .

 END DO

Where X is an n-dimensional array and fi and gi are the functions from Zd to Z.

The constant test is the only approximate method that not only can break

dependence but can also conclusively prove dependence. If all the subscripts in the two

array references are loop invariant and have the same value, then there will be data

dependence for all potential direction vectors. If any pair of corresponding subscripts is

constant and different, then there is no data dependence regardless of the values of any

other subscript. Loop invariant expressions that are common to both subscripts in the

potential dependence are cancelled before the comparison is made.

The greatest common divisor (GCD) test establishes an existence criterion for

the solution to the equation Fi(I’) = gi(I”). This test is based on the fact that when both

fi and gi are linear, a solution to the equation exists if the greatest common divisor of

the coefficients of I’ and I“ also divides the constant term. Conversely, if it does not

divide the constant term, then no solution can exist. When the GCD method breaks a

potential dependence, it breaks all the direction vectors simultaneously. The GCD

method cannot prove dependence because it does not take into account the value of the

loop limits.

The Omega test combines new methods for eliminating equality constraints

with an extension of Fourier-Motzkin variable elimination to integer programming.

The Omega test determines whether there is an integer solution to an arbitrary set of

linear equalities and inequalities, referred to as a problem. In addition to supporting the

full capabilities of integer-programming, the Omega test also permits the systematic

 15

handling of unknown additive terms. Consider the subscripts X(l+N) and X(I’) where

1 ≤ I , I’≤ N (N is the loop upper limit). The Omega test is capable of analyzing such

expressions involving unknown additive constrained variables. After the addition of

the loop limit, it can be found that the system of equations is inconsistent since I + N ≠

I’ for all I’ in [1... N]. Pugh (1992) found that the time required by the Omega test to

analyze a problem is rarely more than twice the time required to scan the array

subscripts and loop bounds. This would indicate that the Omega test is suitable for use

in production compilers.

2.2.6. Escape Analysis

Escape analysis is a static analysis that determines whether the lifetime of data

may exceed its static scope. The main originality of escape analysis is that it

determines precisely the effect of assignments, which is necessary to apply it to object

oriented languages with promising results.

Object-oriented languages such as C++ and Java often use a garbage collector

(GC) to make memory management easier for the programmer. A GC is even

necessary for the Java programming language, since Java has been designed to be safe,

so it cannot rely on the programmer to deallocate objects when they are useless.

However, garbage collecting data is time consuming, especially with a mark and

sweep collector as in the JDK (Java Development Kid). Therefore stack allocation may

be an interesting alternative. However, it is only possible to stack allocate data if its

lifetime does not exceed its static scope. The goal of escape analysis is precisely to

determine which objects can be stack allocated.

Escape analysis is an abstract interpretation-based analysis which has been already

applied to functional languages. However, object-oriented languages have specific

features, which make the analysis completely different from the functional version:

• Object-oriented languages use dynamic calls, so before analyzing the code, it must

be first determined which methods may actually be called at each call point;

• Object-oriented languages make an intensive use of assignments, which must

therefore be precisely analyzed, which much complicates our task;

• Object-oriented languages use sub-typing, which must be taken into account for the

representation of escape information, since it is computed from the types.

 16

Escape analysis has two applications: an object o that does not escape from

method m (whose lifetime is limited to the execution of m) can be stack allocated in m.

Moreover, when analysis claims that o does not escape from m, o is also local to the

current thread, so it did not needed do synchronizations when calling a synchronized

method on object o. This second optimization is important, because synchronization is

a costly operation in the JDK. Moreover, there is much synchronization even in single-

threaded programs since libraries use synchronization to ensure thread-safety in all

cases. Synchronization elimination could also be applied to other multithreaded

languages.

2.2.7. Alias Control and Confinement

Confinement properties impose a structure on object graphs which can be used

to enforce encapsulation properties. From a practical point of view, encapsulation is

essential for building secure object-oriented systems as security requires that the

interface between trusted and untrusted components of a system be clearly delineated

and restricted to the smallest possible set of operations and data structures. One of the

main benefits of object-oriented programming is information hiding and encapsulation:

classes and visibility controls offer encapsulation without sacrificing extensibility and

flexibility. But it is well known that the unfettered use of shared references to mutable

objects is error-prone and can violate intended encapsulation. Quite a few proposals

have been made for confinement (alias control).

One useful confinement property is unique (unshared, references). These have

strong properties but for many purposes sharing is needed. Sharing can often be

confined to the scope of a module (a sealed or closed package). This facilitates a

coarse form of encapsulation that is quite useful, e.g., in debugging and security.

Stronger and more fine-grained confinement is needed for reasoning about

specifications using “modified clauses” and for justifying program transformations.

Banerji et al., defined the confinement as a property of program syntax that is a

static analysis of instance-based confinement. The definition was syntax-directed and

did not require any code annotations or flow analysis.

The syntax is based on that of Java, with some restrictions for ease of

formalization; for example, “return” statements appear only at the end of a method,

 17

and heap effects (new and field update) occur in commands rather than expressions.

There are a couple of minor deviations from Java, e.g., the keyword var marks local

variable declarations. A program consists of a collection of class declarations like the

following one.

class Boolean extends Object {

bool f;

unit set(bool x){ this.f := x; return unit }

bool get() { skip; return this.f } }

Instances of class Boolean has a private field f with the primitive type bool. There is no

constructor; fields of new objects are given their Java defaults (null, false). Fields are

considered to be private to their class and methods public: fields are only visible to

methods declared in this class, but methods are visible to all classes. Fields are

accessed in expressions of the form this.f, using “this” to refer to the current object.

The unit value; the singleton type, unit, corresponds to Java's “void". Object types are

implicitly references: assignment creates aliases and == compares references.

The primary challenge in building and evolving large object-oriented systems

is understanding aliasing between objects. Unexpected aliasing can lead to broken

invariants, mistaken assumptions, security holes, and surprising side effects, all of

which may lead to software defects and complicate software evolution (Aldrich et al.,

2002). Aldrich defined three major challenges in order to bring alias control into

practice (Clark et al., 2008);

1. The community has to identify applications where the benefit of making program

structure explicit has a significant and immediate benefit. Two promising

candidates are concurrency and verification. For both applications it will be

necessary to improve the expressiveness in order to common program styles and

idioms.

2. The community has to increase the adoptability of alias control by reducing the

annotation burden through inference and by providing support for existing

languages and programs.

3. The community has to increase the applicability of alias control to be able to

handle more programs. He mainly stated that the community has focused too much

on restricting aliasing rather that documenting the aliasing programs and using

information for reasoning.

 18

Understanding and evolving large software systems is one of the most pressing

challenges confronting software engineers today. When evolving a complex system in

the face of changing requirements, developers need to understand how the system is

organized in order to work effectively. For example, to avoid introducing program

defects, programmers need to be able to predict the effect of making a software

change. Also, while fixing defects, programmers need to be able to track value flow

within a program in order to understand how an erroneous value was produced. In an

object-oriented program, all of these tasks require understanding the data sharing

relationships within the program. These relationships may be very complex at worst, a

reference could point to any object of compatible type and current languages do not

provide much help in understanding them.

Data sharing problems can also compromise the security of a system. For

example, in version 1.1 of the Java standard library, the security system function

Class.getSigners() returned a pointer to an internal array, rather than a copy. Clients

could then modify the array, compromising the security of the “sandbox” that isolates

Java applets and potentially allowing malicious applets to pose as trusted code.

Existing languages provide poor support for preventing security problems that arise

from improper data sharing. Aldrich et al., described the AliasJava annotation system

to understand the data sharing patterns in Java programs. The annotations bound

aliasing on the heap structurally: unique describes an unshared reference, owned

objects are assigned an owner that controls who may access that object, and shared

indicates the worst case of a globally-aliased reference. It is also provided a lent

annotation expressing sharing that is temporally bounded by the length of a method

call.

2.3. Static Analysis Tools

 Static analyzers are used to discover difficult to find programming errors before

run time when they may be more difficult or impossible to find. This class of tool can

discover many logical and security errors in an application without executing the

compiled application. Unlike dynamic analysis tools which look at the application state

while it is being executed, static analysis tools do not require the application to be

compiled or executed; bugs can be found by analyzing the source code directly.

 19

Moreover, static techniques can explore abstractions of all possible program

behaviours, and thus are not limited by the quality of test cases in order to be effective.

Using static analysis to find bugs has some advantages over the traditional quality

assurance techniques of testing and manual code inspections. Unlike testing, static

analysis can easily check hard-to-execute code paths such as error-handling code.

Compared to manual code inspection, static analysis is less easily confused by what

code appears to do, and is relatively inexpensive to apply. For these reasons, static

analysis to find bugs is a very active research area, and increasingly is becoming a

standard part of the quality assurance toolbox in development of projects.

Static techniques range in their complexity and their ability to identify or

eliminate bugs. The most effective (and complex) static technique for eliminating bugs

is a formal proof of correctness. While the existence of a correctness proof is perhaps

the best guarantee that the program does not contain bugs, the difficulty in constructing

such a proof is prohibitive for most programs. Partial verification techniques have

been proposed. These techniques prove that some desired property of a program holds

for all possible executions. Such techniques may be complete or incomplete; if

incomplete, then the analysis may be unable to prove that the desired property holds

for some correct programs. Finally, unsound techniques can identify “probable” bugs,

but may miss some real bugs and also may emit some inaccurate warnings

(Hovemeyer and Pugh, 2004).

 Static analysis tools have been used in a rudimentary form for the majority of

the history of modern programming languages. Early versions of simple pattern

matching static analysis tools have been used to enforce coding styles within a

company, or to discover simple programming errors. As more research in the subject

was completed, developers of static analysis tools found more programmatic errors

that could be discovered. Today tools can scan C, C++ and Java code for many

common coding problems within many different categories (Ware and Fox, 2008).

 Static analysis tools have gone through many stages of sophistication. In their

infancy the tools were little more than a pattern matching command such as grep. The

programmer could search for a list of functions that were known to be dangerous and

which should be avoided. In this early stage the tools were difficult to use, tedious, and

limited in their ability to find real bugs (Hovemeyer and Pugh, 2004).

 20

 The next attempt at finding bugs using static analysis techniques came by

looking at code metrics, such as lines of code, ratio of lines of code to lines of

comments, cyclomatic complexity and others. Using these techniques the developer

could gain a greater understanding of the complexity of the code. Complexity metrics

such as lines of code per function could help a developer break the code into smaller

parts for greater readability or lesser complexity. Cyclomatic complexity is one of the

more widely used software quality metrics. It allows a developer or tester to measure

the potential for bugs in a program, by mapping the number of independent paths

through each module. The more paths that can be taken, the more complex the code is,

and the more likely that there will be bugs waiting to be found (McCabe, 1976;

Shepperd, 1988).

 The next step in the evolution of static code analysis was to use more

sophisticated searching algorithms. By adding some context to the search it became

possible to find bugs that required interaction between multiple function calls, such as

usage of alloc without a matching free, failing to close an open network connection

and many others. Tables could be employed to ensure each memory allocation was

being properly de-allocated and that it was the same memory reference allocated in the

beginning.

 Static analysis tools then began adding Semantic Analysis techniques (Barbuti

et al., 1993) that enabled discovery of the basic structure and relation of each function

within the application. This additional contextual information helps the analyzer

understand and report bugs that require knowledge of specific code paths through the

application. The most advanced static analyzers use abstract syntax trees to provide the

best possible bug finding capabilities. Crew (1997) describes a language for specifying

patterns to match the abstract syntax trees of C and C++ programs (ASTLOG).

ASTLOG has been used successfully to find bugs and performance problems, and is

the basis of the PREfast tool used extensively within Microsoft to find bugs. ASTLOG

is an interesting data point in the space of static analysis techniques to find bugs,

because it shows that simple pattern-matching approaches can be very effective at

finding interesting program features, such as probable bugs. Unlike dataflow analysis

and abstract interpretation, this kind of analysis does not directly model the semantics

of program operations, focusing entirely on syntactic structures. Even given this

limitation, ASTLOG has been used successfully to find bugs. Using the knowledge

 21

gained by building an abstract syntax tree, a static analysis tool can run detailed

simulations of suspicious code fragments to better predict how the code will react at

runtime.

 Some static analysis tools allow developers to mark their code with special

comments or some other form of metadata to describe rules and inter-function

dependencies. This additional information allows the analyzer to understand under

what conditions a bug may occur as well as expectations each function has for

parameters passed in and values returned. The use of metadata keeps the number of

false positives down and helps the analyzer follow code paths more closely.

 Recently static analysis tools have allowed developers or testers to create their

own rules or modify existing rules or plug-ins. These customizations can help tailor the

static analyzer specifically to the target application. This customization enables a

developer to look for bugs specific to their operating environment, application needs,

and coding standards.

2.3.1. How Static Analysis Tools Find Flaws

The first thing a static analysis tool must do is identify the code to be analyzed.

The source files that must be compiled to create a program may be scattered across

many directories, and may be mixed in with other source code that is not used for that

program. Static analysis tools operate much like compilers so they must be able to

identify exactly which source files contribute and should ignore those that do not. The

scripts or build system that builds the executable obviously know which files to use, so

the best static analysis tools can extract this information by reading those scripts

directly or by observing the build system in action. This way the tool gets to see not

only the source files but also which compiler is being used and any command-line

flags that were passed in. The parser that the static analysis tool uses must interpret the

source code in the same way that the real compiler does. It does this by modeling how

the real compile works as closely as possible. The command-line flags are an essential

input to that.

As the build system progresses, each invocation of the compiler is used to

create a whole program model of the program. This model consists of a set of abstract

representations of the source, and is similar to what a compiler might generate as an

 22

intermediate representation. It includes the control-flow graph, the call graph, and

information about symbols such as variables and type names.

Once the model has been created, the analysis performs a symbolic execution

on it. This can be thought of as a simulation of a real execution. Whereas a real

execution would use concrete values in variables, the symbolic execution uses abstract

values instead. This execution explores paths and, as it proceeds, if any anomalies are

observed, they are reported as warnings. This approach is based on abstract

interpretation (Cousot and Cousot, 1977) and model checking (Cousot and Cousot

1999; Clarke et al., 2002). Abstract interpretation, introduced was developed to

provide a firmer theoretical foundation for dataflow analysis. An abstraction function

maps the infinite domain of program objects into a finite domain of abstract objects.

The effects of program operations are modeled using the abstract domain. A

concretization function maps the abstract objects back into the program domain (with

some loss of precision). Dataflow analysis can be considered a special case of abstract

interpretation. Model checking is a technique for exploring reachable states in a

concurrent system for errors. It was initially developed for verification of hardware

systems; recent research has applied it to software systems. The SLAM project (Ball

and Rajamani, 2002) applies model checking to boolean abstractions of programs. For

predicates in a C program, boolean predicates are abstracted such that if a property is

true of the Boolean program, it will also be true of the original C program. The

boolean abstraction of the original program is done incrementally; if the desired

property cannot be proved, new predicates are added and the boolean program checked

again.

The analysis is path-sensitive, which means that it can compute properties of

individual paths through the program. This is important because it means that when a

warning is reported, the tool can tell the user the path along which execution must

proceed in order for the flaw to be manifest. Tools also usually indicate the points

along that path where relevant transformations occur and conditions on the data values

that must hold. These help users understand the result and how to correct the problem

should it be confirmed.

Once a set of warnings have been issued, these tools offer features to help the

user manage the results, including allowing the user to manually label individual

warnings. Warnings that correspond to real flaws can be labeled as true positives.

 23

Warnings that are false alarms can be labeled as false positives. Warnings that are

technically true positives but which are benign can be labeled as don’t care. Most tools

offer features that allow the user to suppress reporting of such warnings in subsequent

analyses.

2.3.2. Limitations of Static Analysis

The obvious limitation of static analysis is that most nontrivial program

properties are undecidable. As a result, any static analysis technique must approximate

the behaviour of the input program. For this reason, no static analysis technique can be

both complete and sound. In the literature on using program analysis to find bugs,

sound generally means “finds every real bug”, and complete generally means “reports

only real bugs.”

Deciding how to approximate in a static analysis has important consequences.

Both soundness and completeness are desirable properties. In theory, a sound analysis

is able to find every real instance of the kind of bugs the analysis is designed to detect.

However, it might do this by reporting 1,000 false positives for every accurate

warning, making use of the analysis unproductive. Similarly, a complete analysis

would only report definite bugs. However, it might find only a very small number of

bugs, leaving a large number of false negatives. For these reasons, tools which are

neither complete nor sound can serve a valuable role in the software quality assurance

process as long as they find a significant number of real bugs without emitting too

many false positives.

In order to understand the limitations of the techniques that these tools use, it is

important to understand the metrics used to assess their performance. The first

metric, recall, is a measure of the ability of the tool to find real problems. Recall is

measured as the number of flaws found divided by all flaws present. The second metric

is precision, which measures the ability of the tool to exclude false positives. It is the

ratio of true positives to all warnings reported. The third metric is performance.

Although not formally defined, this is a measure of the computing resources needed to

generate the results.

These three metrics usually operate in opposition to each other. It is easy to

create a tool that has perfect precision and excellent performance, one that reports no

 24

lines contain flaws will satisfy because it reports no false positives. Similarly, it is easy

to create a tool with perfect recall and excellent performance, one that reports that all

lines have errors will answer because it reports no false negatives. Clearly, however,

neither tool is of any use whatsoever.

Finally, it is at least theoretically possible to write an analyzer that would have

excellent precision and excellent recall given enough time and access to enough

processing power. Whether such a tool would be as useless as the previous two

example tools is debatable and would depend on just how much time it would take.

What is clear is that no such tools currently exist and to create them would be very

difficult.

As a result, all tools occupy a middle ground around a sweet spot that

developers find most useful. Developers expect analyses to complete in time roughly

proportional to the size of their code base and within hours rather than days. Tools that

take longer simply do not get used because they take too long. Low precision means

more false positives, which has an insidious effect on users. As precision goes down,

even true positive warnings are more likely to be erroneously judged as false positives

because the users lose trust in the tool.

For most classes of flaws, precision less than 80 percent is unacceptable. For

more serious flaws however, precision as low as five percent may be acceptable if the

code is to be deployed in very risky environments. It is difficult to quantify acceptable

values for recall as it is impossible to measure accurately in practice, but clearly users

would not bother using these tools at all if they did not find serious flaws that escape

detection by other means.

Each of these constraints introduces its own set of limitations, however they are

all interrelated. The reasons that lead to low recall are explained in more detail in the

following sections.

2.3.2.1. Path Limitations

These analyses are path sensitive and this improves both recall and precision

and is probably the key aspect of these products that makes them most useful. A full

exploration of all paths through the program would be very expensive. If there are n

branch points in a procedure, and there are no loops in that procedure, then the number

 25

of intraprocedural paths through that procedure can be as many as 2 n. In practice, this

is fewer because some branches are correlated, but the asymptotic behavior remains. If

procedure calls and returns are taken into account, the number of paths is doubly

exponential, and if loops are taken into account then the number of paths is

unbounded. Clearly it is not possible for a tool to explore all of these paths. The tools

restrict their exploration in two ways. First, loops are handled by exploring a small

fixed number of iterations: often, the first time around the loop is singled out as

special, and all other iterations are considered en masse and represented by an

approximation. Second, not all paths are explored. It is typical for an analysis to place

an upper bound on the number of paths explored in a particular procedure or on the

amount of time available, and a selection of those remaining paths are explored.

If asynchronous paths occur (such as those caused by interrupts or exceptions)

or if the program uses concurrency, then the number of possible paths to consider can

increase further. Many tools simply ignore these possibilities. Finally, most tools also

ignore recursive function calls, and function calls that are made through function

pointers (or make very coarse approximations) as considering these also contributes to

poor performance and poor precision.

2.3.2.2. Abstract Domain

As previously mentioned, these tools work by exploring paths and looking for

anomalies in the abstract state of the program. The appeal of the symbolic execution is

that each abstract state represents potentially many possible concrete states. For

example, given an 8-bit variable x, there are 28 possible concrete values: 0, 1, …, 255.

The symbolic execution, however, might represent the value as two abstract

states: x=0, and x>0. So where a concrete execution has 256 states to explore, the

symbolic execution has only two.

As such, the expressivity of this abstract domain is an important factor that

determines the effectiveness of the analysis. Again, there is a trade-off here: better

precision and recall can be achieved by more sophisticated abstract domains, but more

resources will then be required to complete an analysis. Values in the abstract domain

are equations that represent constraints on values, i.e., x=0, or y>10. As the analysis

progresses, a constraint solver is used to combine and simplify these equations. A key

 26

characteristic of these abstract domains is that there is a special value, usually

named bottom, which indicates that the analysis knows no useful information about the

actual value. Bottom is the abstract value that corresponds to all possible concrete

values. Reaching bottom is impossible to avoid for any non-trivial abstraction in

general as this would require solving the halting problem. Once bottom is reached, the

analysis has a choice of treating it as a potentially dangerous value, which would

increase recall, or as a probably safe value, which would increase precision. Most tools

opt for the latter as the former also has the effect of decreasing precision enormously.

If there are program constructs that step outside the bounds of what can be

expressed in the abstract domain, this causes the analysis to lose track of variables and

their relationships. For example, an abstract domain that allows the expression of

affine relationships between no more than two variables admits expressions such

as x=2y. However, something such as x=y+z is out of bounds because it involves three

variables and the analysis would be forced to conclude x=bottom instead.

The consequence of this is the abstract domain that a tool uses determine a

great deal about the kind of flaws that it is capable of detecting. For example, if the

tool uses an abstract domain of affine relations between two variables, then it may fail

to find flaws that depend on three variables. Similarly, most tools choose a domain that

allows them to reason about the values of integers and addresses but not floating-point

values, so they will fail to find flaws in floating-point arithmetic (such as divide by

zero).

2.3.2.3. Missing Source Code

If the source code to a part of a program is not available, as is almost always

the case because of operating system and third-party libraries, or if the code is written

in a language not recognized by the analysis tool, then the analysis must make some

assumptions about how that missing code operates. Take, for example, a call to a

function in a third-party library that takes a single pointer-typed parameter and returns

an integer. In the absence of any other information, most analyses will assume that the

function does nothing and returns an unknown value. This clearly is not realistic, but it

is not practical to do better in general. The function may de-reference its pointer

parameter, it may read or write any global variable that is in scope, it may return an

 27

integer from a particular range, or it may even abort execution. If the analysis knew

this, it would have better precision and recall but it is forced to make the simple

assumption unless told otherwise.

There are two approaches around this. First, if source is not available but object

code is, then the analysis could be extended into the object code. This is a highly

attractive solution but no products are available yet. The technological basis for such a

tool exists, however (Balakrihnan et al., 2005), and it is expected that products capable

of analyzing object code as well as C/C++ will appear.

A second approach to the problem is to specify stubs, or models, that

summarize key aspects of the missing source code. The popular analysis tools provide

models for commonly used libraries such as the C library. These models only have to

approximate the behavior of the code. Users can write these themselves for their own

libraries but it can be a tricky and time-consuming effort.

2.3.2.4. Out of Scope

There are entire classes of flaws that static analysis is unlikely ever to be able

to detect. Static analysis excels at finding places where the fundamental rules of the

language are being violated such as buffer overruns, or where commonly used libraries

are being used incorrectly, or where there are inconsistencies in the code that indicate

misunderstanding. If the code does the wrong thing for some other reason, but does not

then terminate abnormally, then static analysis is unlikely to be able to help because it

is unable to divine the intent of the author. For example, if a function is intended to

sort in ascending order, but perfectly sorts in descending order instead, then static

analysis will not help much. This kind of functionality testing is what traditional

dynamic testing is good for.

2.3.3. Open Source Tools

Open source software development is based on a relatively simple idea: the

core of the system is developed locally by a single programmer or a team of

programmers. A prototype system is released on the Internet, which other

 28

programmers can freely read, modify and redistribute the system’s source code. The

evolution of the system happens in an extremely rapid way; much faster than the

typical rate of a ‘closed’ project. It appears that open source is presenting the

traditional software development industry with an important challenge (Stamelos et al.,

2002). SourceForge.net, the world’s largest open source development website, hosts

over 70,000 open-source projects for more than 700,000 registered developers (Huang

et al., 2004).

It is often claimed that open source software is intrinsically more secure than

closed source or commercial software. Others argue that it is not, and it is expected this

debate will continue for some time to come. The availability of source code provides

both attackers and defenders opportunities to study code in detail and identify software

vulnerabilities. On the other hand, closed source software forces users to accept only

the level of security diligence that the vendor chooses to provide (Covan, 2003).

According to the Open Source Initiative (opensource.org, 2010), the terms for the

distribution of open source software must also comply with 10 criteria specified in the

Open Source Definition (opensource.org, 2010). The top 3 items out of the 10 criteria

include:

1. software should be freely redistributable,

2. software must allow for distribution as source code as well as in a compiled

form,

3. licences must allow modifications and for derivatives generated from the

source code.

In Appendix B, several open source static analysis tools included in Multi-language,

NET (C#, VB.NET and all .NET compatible languages), Java, C, C++, Objective-C,

Perl and ActionScript are explained.

2.3.4. Commercial Tools

One distinct difference between open source and commercial software is the

availability of source code for review. Commercial software is mostly closed source

where the source code is not publicly available. Because the source code is not

available, there is a barrier against access to the code that attackers have to cross,

resulting in less likelihood of vulnerabilities in the source code being exploited even

 29

though vulnerabilities do exist (Covan, 2003). In Appendix C, commercial static

analysis tools are summarized.

2.3.5. Comparison of Static Analysis Tools for Java

Static analysis tools for Java analysis code are compared in Table 2.2. Table

2.2 indicates the defect types with their categories and the corresponding positives

found by each tool. The number before the slash denotes the number of true positives,

the number after the slash the number of all positives.

Most of the true positives can be assigned to the category (maintainability of

the code). It is noticeable that the different tools predominantly find different positives.

Only a single defect type was found from all tools, four types from two tools each.

Considering the categories, FindBugs finds in the different systems positives from all

categories and PMD only from the categories Failure of the application, Insufficient

error handling, and Maintainability of the code. QJ Pro only reveals positives from the

categories Logical failure of the application, Insufficient error handling, and Violation

of structured programming. The number of faults found in each category from each

tool is graphically illustrated in Figure 2.6. Also the number of types of defects varies

from tool to tool. FindBugs detects defects of 13 different types, PMD of 10 types, and

QJ Pro only of 4 types.

Table 2.2. Comparison of static analysis tools
(Source: Wagner et al., 2005)

 30

Figure 2.6. A graphical comparison of number of true positives for each tool
(Source: Wagner et al., 2005)

The accuracy of the tools is also diverse. Using the defect type “Exception is

caught but not handled” that can be found by all three tools as an example. While

FindBugs only finds 4 true positives, PMD reveals 29 and QJ Pro even 30. For this, the

result from QJ Pro contains the true positives from PMD which in turn contain the

ones from FindBugs. A reason for this is that QJ Pro is also able to recognize a single

semicolon as a non-existent error handling, whereas the other two interpret that as a

proper handling. This defect type is also representative in the way that FindBugs finds

the least true positives. This may be the case because it uses the compiled class-files

while PMD and QJ Pro analyse the source code.

 31

CHAPTER 3

PMD

3.1. Overview of PMD

PMD is an open-source, rule based, static source code analyzer that analyzes

Java source code based on the evaluative rules that have been enabled during a given

execution. It finds potential problems in Java source code, unused variables, empty

catch blocks, wasteful object creation. Unlike a runtime analysis tool such as a

memory profiler, a “static” code analysis tool such as PMD finds problems without

actually executing code. PMD comes with more than 140 built-in rules to check source

code. It also contains a framework that allows writing rules, so it can be checked

project’s source code for problems specific to environment (Copeland, 2005). The tool

comes with a default set of rules which can be used to unearth common development

mistakes such as having empty try-catch blocks, variables that are never used, objects

that are unnecessary etc. Additionally, PMD also allows users to execute custom

analyses by allowing them to develop new evaluative rules in a convenient manner.

The tool comes with a relatively easy to user command line interface and at the same

time, can also be integrated with popular development environments such as Eclipse. It

is also a fact that PMD is quite popular in the Java development community and has

also achieved substantial industry acceptance. Currently it only supports Java and as

can be ascertained from the second section of this document, while there is room for

improvement, the tool is generally quite effective and has proven itself as a useful

static analysis tool for both large and small code bases.

PMD operates in a manner that is very similar to conventional static analysis

tools. This naturally means that the tool involves the generation and traversal of an

abstract syntax tree. In summary, based on the information obtained from PMD

project’s official website at sourceforge.com, PMD’s internal operation can be

summarized as follows (Hsu et al., 2007):

(1) User supplies the location of the source code that has to be analyzed along

with the rule or rules that it would be to execute;

 32

(2) The tool opens a data read stream to read in the source code and supplies it

to a Java based code parser which in turn generates an Abstract Syntax Tree (AST)

(SourceForge.net-a,2010);

(3) The AST is then returned to PMD which in turn gives it to the “symbol

table layer” that identifies scopes, declarations, and various usages;

(4) If a particular rule involves data flow analysis, the AST is given by PMD to

the deterministic finite automaton (DFA) layer that in turn generates control flow

graphs and data flow nodes;

(5) With all this data obtained, each rule traverses the abstract syntax tree as

needed and detects issues based on this traversal, rules can also utilize symbol tables

and nodes within the generated DFA;

(6) The issues identified in step 5 are then printed out to the console or an

associated file in a number of different formats.

3.2. Rulesets of PMD

PMD uses rulesets to evaluate code. A rule property is similar to a parameter. It

allows changing the rule’s behaviour without changing the rule itself. The applied

rulesets and the results observed are listed in Appendix C (SourceForge.net-a, 2010).

3.3. Writing Rules

PMD has two general mechanisms for creating rules (SourceForge.net-a,

2010); XPath and creating a Java class. XPath (for XML Path Language) is a domain-

specific language used for locating parts of an XML document. It’s also a World Wide

Web Consortium (W3C®).

When using XPath to write a PMD rule, specify an XPath expression to select

the code that it is wanted to flag as a violation. XPath rules can be quick and easy to

write, but it is limited to built-in XPath functionality, no have access to the full power

of the Java programming language. Even with this limitation, however, XPath is an

excellent prototyping mechanism and, for many rules, may be powerful enough to do

the trick.

 33

When using Java to write a rule, write a Java class that extends the

net.sourceforge.pmd.AbstractRule abstract base class and then fill in code to detect

problems. Writing rules in Java requires a compilation step between writing the rule

and running the code, so it takes a bit more labour. But Java rules are very flexible and

powerful, and can execute much faster than XPath rules.

3.3.1. Writing XPath Rules

PMD doesn't use the source code directly; it uses a JavaCC generated parser to

parse the source code and produce an AST (Abstract Syntax Tree). For example, if the

code is:

class Example {

 void bar() {

 while (baz)

 buz.doSomething();

 }

}

the AST for the code above looks like this:

CompilationUnit

 TypeDeclaration

 ClassDeclaration:(package private)

 UnmodifiedClassDeclaration(Example)

 ClassBody

 ClassBodyDeclaration

 MethodDeclaration:(package private)

 ResultType

 MethodDeclarator(bar)

 FormalParameters

 Block

 BlockStatement

 Statement

 WhileStatement

 Expression

 34

 PrimaryExpression

 PrimaryPrefix

 Name:baz

 Statement

 StatementExpression:null

 PrimaryExpression

 PrimaryPrefix

 Name:buz.doSomething

 PrimarySuffix

 Arguments

 It can be also generated the AST by using PMD’s Designer Utility which is

included in PMD software as shown in Figure 3.1.

Figure 3.1. PMD Rule Designer.

 35

Recently Daniel Sheppard enhanced PMD to allow rules to be written using XPath.

XPath is a way of querying an XML document. It can be written an XPath query to get

a list of nodes that fit a certain pattern. Daniel Sheppard downloaded the Jaxen XPath

engine (Codehous.org, 2010) and wrote a class called a DocumentNavigator that

allows Jaxen to traverse the AST. Jaxen gets the XPath expression, evaluates it, applies

it to the AST, and returns a list of matching nodes to PMD. PMD

creates RuleViolation objects from the matching nodes and moves along to the next

source file.

 For example, the XPath expression for “While Loops Must Use Braces Rule”

looks like this:

//WhileStatement[not(Statement/Block)]

 It is needed that XPath rules are set the class attribute in the rule definition

to net.sourceforge.pmd.rules.XPathRule. The example of complete XPath rule looks as

follows:

<rule name=" WhileLoopsMustUseBracesRule"

 message="Avoid while loops without braces"

 class="net.sourceforge.pmd.rules.XPathRule">

 <description>

 etc., etc.

<rule name=" WhileLoopsMustUseBracesRule "

 message="Don't Avoid while loops without braces"

 class="net.sourceforge.pmd.rules.XPathRule">

 <description>

 …

 </description>

 <properties>

 <property name="xpath">

 <value>

 <![CDATA[

 //WhileStatement[not(Statement/Block)]

]]>

 </value>

 </property>

 36

 </properties>

 <example>

<![CDATA[

 While(..)

 Code line // don't do this!

]]>

 </example>

 </rule>

3.3.2. Writing Java Rules

Writing rules using XPath expressions is quick and straightforward. It can be

used the Designer to experiment with various XPath expressions. Writing rules in Java

has some real advantages:

1. Having full power of the Java programming language at disposal. It is not

limited to the built-in XPath functions; it can be used StringTokenizer,

collection classes, regular expressions, or anything else.

2. Java rules run faster. This is an unavoidable result of using a domain specific

language like XPath; before the XPath rule can be used it needs to be parsed

and interpreted by the XPath engine. This extra layer of indirection doesn’t

come free.

There is plenty of common ground between writing rules in XPath and rules in

Java. Usually it can be spot the problem in the AST, whether it’s a simple sequence of

nodes or a particular node attribute. Once the Java rule is written, it is needed to

package it inside a ruleset just as in the XPath rule (although the XML specification is

a bit different).

Generally, a Java rule consists of a Java class that extends the

net.sourceforge.pmd.AbstractRule. When PMD is run, it will traverse the AST and

notify rule when it finds a node type for which rule implements a callback method. For

example, if to check field names, it can be written the rule to receive a callback

whenever the AST traversal finds a FieldDeclaration node. Design pattern aficionados

will recognize this as a classic Visitor pattern; it’s also known as “double dispatch”.

 37

A series of node type imports. These could be reduced to one line since they all

come from the same package,

import net.sourceforge.pmd.ast.ASTIfStatement;

import net.sourceforge.pmd.ast.ASTStatement;

import net.sourceforge.pmd.ast.ASTBlock;

import net.sourceforge.pmd.ast.ASTEmptyStatement;

import net.sourceforge.pmd.ast.Node;

To bring in imports of PMD infrastructure classes; AbstractRule is extended

and RuleContext can be used to store the rule violations:

import net.sourceforge.pmd.AbstractRule;

import net.sourceforge.pmd.RuleContext;

Now the rule class itself:

public class EmptyIf extends AbstractRule {

Callback method will be invoked every time an IfStatement node occurs in a

source file having PMD check. The first parameter, ASTIfStatement, identifies the

node that’s being visited. The second parameter, the Object, is really an instance of

RuleContext. Notice that the node class names are preceded with “AST”, so instead of

an IfStatement class name it’s ASTIfStatement.

public Object visit(ASTIfStatement node, Object data) {

An IfStatement node is guaranteed to have a Statement node as its second child

node. Since node indexes are zero based, it can be get a handle to it by invoking

jjtGetChild(1) on the IfStatement node. Note that some methods have a ‘jjt’ prefix;

that’s because they are methods generated by the JJTree utility that comes with

JavaCC. Since jjtGetChild returns a generic Node interface type,

ASTStatement stmt = (ASTStatement)node.jjtGetChild(1);

It can be either a Block or an EmptyStatement. So to leave it as a Node type:

Node stmtChild = stmt.jjtGetChild(0);

Analyze the node to see what it is. In the XPath expression, [EmptyStatement] is used

to check for an EmptyStatement child; here the node type will be checked with an

instanceof keyword:

if (stmtChild instanceof ASTEmptyStatement) {

 38

If it is found an EmptyStatement, it is needed to flag this IfStatement node as a

problem. Since it is extended AbstractRule, it can be used a utility method,

addViolation, to add a new rule violation. Data parameter that is really a RuleContext

object reference is passed;

addViolation(data, node);

That is the EmptyStatement case. The other case is a bit more complicated, if the child

node is a Block, it is needed to ensure that it has no children by using the instanceof

keyword and the jjtGetNumChildren function. This function returns the number of

children that are attached to the node. In the following, a rule violation occurs if the

child node is a block and the block has children:

} else if (stmtChild instanceof ASTBlock

 && stmtChild.jjtGetNumChildren() == 0) {

addViolation(data, node);

}

After checking two possibilities, it can be continued the traversal. Invoking

super.visit(node, data) will do the trick:

return super.visit (node, data);

the entire source file for this rule as follows:

package net.sourceforge.pmd.rules;

import net.sourceforge.pmd.ast.ASTIfStatement;

import net.sourceforge.pmd.ast.ASTStatement;

import net.sourceforge.pmd.ast.ASTBlock;

import net.sourceforge.pmd.ast.ASTEmptyStatement;

import net.sourceforge.pmd.ast.Node;

import net.sourceforge.pmd.AbstractRule;

import net.sourceforge.pmd.RuleContext;

public class EmptyIf extends AbstractRule {

public Object visit(ASTIfStatement node, Object data) {

 ASTStatement stmt = (ASTStatement)node.jjtGetChild(1);

 Node stmtChild = stmt.jjtGetChild(0);

 if (stmtChild instanceof ASTEmptyStatement) {

 addViolation(data, node);

 } else if (stmtChild instanceof ASTBlock &&

 39

stmtChild.jjtGetNumChildren() == 0) {

 addViolation(data, node);

 }

 return super.visit(node, data);

 }

 }

As with the XPath rule, it is needed to wrap the rule in a new ruleset file. There

are two differences between XPath and Java rules. First, an XPath rule has a class

attribute in the rule element that point to net.sourceforge.pmd.rules.XPathRule. For a

Java rule, that attributes points to the new class. Second, XPath requires a properties

element; Java does not, which makes for a shorter rulesets.

 40

CHAPTER 4

PMD RULES FOR SECURITY VULNERABILITIES

4.1. Overview of Security Vulnerabilities

Vulnerability is a set of conditions that allows violation of an explicit or

implicit security policy. Programs, systems, and networks exhibit vulnerabilities

(Secord and Householder, 2005). Vulnerability is also defined as a state of the system

from which it is possible to transition to an incorrect system state. In other words,

vulnerability is a software system defect which, when exercised, can produce

undesirable or incorrect behaviour. In contrast, an exploit is the process by which one

or more vulnerabilities are exercised to attack a system (Bazaz et al., 2006).

Because vulnerabilities are central to exploiting a software application, one can

prevent an exploit by identifying, and subsequently eliminating, vulnerabilities present

in a software application. However, identifying if and which vulnerabilities are present

have been affected several difficulties including;

1. The complexity of software applications: Modern software applications are often

large, complex, and contain thousands of lines of code. Furthermore, application

complexity increases with the number of services it uses which are provided by the

other applications.

2. The number of potential vulnerabilities: Because numerous vulnerabilities exist,

attempting to identify the specific one(s) present in a software application from a list of

possibilities is impractical.

3. The complexity of vulnerabilities: Some vulnerabilities, such as those used in the

“time of check, time of use” exploit, involve multiple software components interacting

together to produce the vulnerable system state. This introduces additional layers of

complexity. Table 4.1 shows the properties of vulnerabilities with associated values.

 41

Table 4.1. Properties of vulnerabilities
(Source: Secord and Householder, 2005)

Vulnerabilities have been classified into broad categories such as buffer

overflows, format string vulnerabilities, and integer type range errors (including

integer overflows). These broad categories however have two major failings. First, it is

not always possible to assign a vulnerability to a single category. Second, the

distinctions are too general to be useful in any detailed engineering analysis.

For example, the following function:

bool func(char *s1, int len1,

char *s2, int len2) {

char buf[128];

if (1 + len1 + len2 > 128) return false;

if (buf) {

strncpy(buf, s1, len1);

strncat(buf, s2, len2);

}

return true;

}

contains a vulnerability in that len1 or len2 could be a negative number, allowing the

length check to be bypassed but still causing a buffer overflow in the strncpy() or

strncat() functions. Is this integer range value vulnerability because the integer range

check was bypassed, or is this simply a buffer overflow? Either categorization would

be a disservice to understanding the issues.

 42

Understanding vulnerabilities is critical to understanding the threats they

represent. Classification of vulnerabilities allows collection of frequency data and

trend analysis of vulnerabilities but has not been regularly or consistently applied.

Better and more comprehensive classification of vulnerabilities can lead to better

correlation with incidents, exploits, and artifacts and can be used to determine the

effectiveness of countermeasures. Understanding the characteristics of vulnerabilities

and exploits is also essential to the development of a predictive model that can predict

threats with a high correlation and significance. Table 4.2 shows the classification of

vulnerabilities. The first column lists a general class of bugs, and the second column

gives one common example from that class. The last columns indicate whether each

tool finds bugs in that category, and whether the tools find the specific example.

Table 4.2. Types of vulnerabilities for each tool finds

(Source: Rutar et al., 2004)

4.2. PMD Rules for Security Vulnerabilities

PMD includes checks for some common bug patterns, such as the well-known

double-checked locking bug in Java. Like PMD, FindBugs also checks for uses of

double checked locking. PMD does not check for null pointer dereferences, but it does

warn about setting certain objects to null. PMD does not check for array bounds errors,

though FindBugs does warn about returning null from a method that returns an array.

ESC/Java includes support for automatically checking for race conditions and

potential deadlocks. ESC/Java reports synchronized blocks that are involved in

potential deadlocks but not the sets of locks in each particular deadlock. ESC/Java

 43

reports the most null pointer dereferences because it often assumes objects might be

null. In Java, indexing outside the bounds of an array results is a run-time exception.

While a bounds error in Java may not be the catastrophic error that it can be for C and

C++ (where bounds errors overwrite unexpected parts of memory), they still indicate a

bug in the program. JLint and ESC/Java, include checks for array bounds errors, either

creating an array with a negative size, or accessing an array with an index that is

negative or greater than the size of the array. ESC/Java mainly reports warnings

because parameters that are later used in array accesses may not be within range.

FindBugs warns about the presence of other concurrency bug patterns, such as

not putting a monitor wait() call in a while loop. The warnings FindBugs reports

indicate the presence of the bug pattern in the code. What is less clear is how many of

the patterns detected correspond to actual errors. For example, since FindBugs does

not perform interprocedural analysis (it analyzes a single method at a time), if a

method with a wait() is itself called in a loop, FindBugs will still report a warning.

FindBugs discovers a very small set of potential null dereferences compared to both

ESC/Java and JLint. This is because FindBugs uses several heuristics to avoid

reporting null-pointer dereference warnings in certain cases when its dataflow analysis

loses precision.

JLint generates many warnings about potential deadlocks. In some cases, JLint

produces many warnings for the same underlying bug. For instance, JLint checks for

deadlock by producing a lock graph and looking for cycles. JLint iterates over the lock

graph repeatedly. Among the four tools, ESC/Java, FindBugs, and JLint check for null

dereferences. JLint finds many potential null dereferences. In order to reduce the

number of warnings, JLint tries to only identify inconsistent assumptions about null.

For example, JLint warns if an object is sometimes compared against null before it is

dereferenced. JLint has several false positives and some false negatives in array

bounds errors, because it does not track certain information interprocedurally in its

dataflow analysis.

 44

4.3. Boundary Overflow Vulnerabilities

Boundary overflows are caused by violation of constraints, mostly limiting the

range of internal values of program, and can be provoked by an intruder to gain control

of or access to stored data (Tuglular et al., 2009a). Boundary overflow vulnerability is

characterized as a boundary overflow when the input being received by a system,

whether human or machine-generated, causes the system to exceed an assumed

boundary, thereby causing vulnerability. For example, the system may run out of

memory, disk space, or network bandwidth. Another example is that a variable might

reach its maximum value and roll over to its minimum value and variables in an

equation might be set such that a division by zero error occurs is the third example.

Boundary overflow errors are a subset of the class of input validation errors (Mell and

Tracy, 2002).

Boundaries cause overflow vulnerabilities are not related to the maximum

length of the variables; however, they are predefined values that are related to the

semantics of the graphical user interface (GUI) elements. For example, consider port

scanners where the start and end port values are entered to the program to scan the

range of these values. Even if the input values that are entered from the GUI elements

for the start and end port values don’t exceed the maximum length of the unsigned

integer type, there are semantically predefined boundary values. The start port value

can not be lower than 0 and the end port value can not be higher than 65535. Checking

these input values with respect to the redefined boundaries is critical for the program to

behave as intended. Otherwise, boundary overflow occurs and the program works in an

unexpected way (Muftuoglu, 2009).

 45

CHAPTER 5

TOOL SUPPORT AND CASE STUDY

5.1. Boundary Overflow Vulnerability Checker Tool

In this thesis, a detection algorithm which is based on the notion of static

analysis by using PMD is implemented to check the overflow vulnerabilities. The

implemented detection algorithm is capable of finding any type of vulnerability which

can be represented as Boolean expressions.

Boundary Overflow Vulnerability Checker is a tool developed in Java by using

Eclipse Version 3.4.2 IDE on Intel machine with 32bit architecture. It uses PMD

structure for static analysis in background. It allows users to choose a target source

codes folder and define input contracts to analyse for boundary overflow vulnerability.

It scans for defined input contracts in selected folder and writes results to the screen.

5.1.1. Design and Implementation

 The algorithm scans the source code statically, finds and shows local variables,

method/constructor parameters to define input contracts easily. Once input contracts

are defined, it searches and writes occurrences of the input contracts if exists. It also

warns that if the input contact was not found.

 Boundary overflow checker algorithm consists of four steps. In step 1, target

folder which contains java source codes is selected. Java file chooser (JFileChooser)

component was used for the folder selection process. File chooser provides a GUI for

navigating the file system, and then choosing a directory from a list, or entering the

name of a directory.

 In step 2, the local variable and method/constructor parameter definitions along

with their specified types are tracked from the source codes (which are in selected

folder in step 1) and displayed in separated lists. The type of variables was limited by

integer type. It is possible to show all type of variables but displaying all the variables

 46

in a program makes no sense if only some specified types are needed. A PMD java rule

was written and integrated to find local variables and method/constructor parameters.

In this step that rule was used internally.

 In step 3, it is expected that user should define input contracts either by using

local variables and method/constructor parameters which are mentioned in step 2.

Input contracts are formed of:

• left operand: specifies the name of the variable/parameter or a numerical

value

• operator: is the Boolean operator

• right operand: specifies the name of the variable/parameter or a numerical

value

Left and right operands can be selected from the dropdown lists which contains

all the name of found variables/parameters in step 2 or can be written by hand for

numerical values.

Step 4 scans the source code(s) to check all input contracts separately. Input

contracts are compared with the conditions of the variable written in the source

code(s). If the condition of the variables matches with any of the input contracts, the

input contract is satisfied by the source code and prints the occurrence of the condition

to the bottom part of the tool.

5.1.2. Usage of the Tool

 Figure 5.1 shows GUI of the boundary overflow vulnerability checker tool that

allows to input source directory of the software to be checked, shows the lists of local

variables and parameters, enables to write input contracts and displays the outputs.

 As can be seen in the GUI of the boundary overflow vulnerability checker tool,

the tool takes the source directory of the program. After selection of source directory,

local variables and method/constructor parameters are loaded to the lists that are

located on the left side of the GUI by clicking “Find Variables” button. After that at

least one input contract has to be defined via left operand, operator, right operand

dropdown lists. Adding new input contract updates the input contract table and inserts

the new contract to the end of the table as a row. After definitions of the input

contracts “Find Occurrences” button allows to start checking source code(s). The

 47

occurrences with file name, class name, method name, package name, line number

information are printed to the bottom of the GUI as results. It is also printed that even

if input contract does not found.

Figure 5.1. Boundary overflow vulnerability checker tool.

5.2. Case Study

The implementation and the tool introduced in Section 5.1.1 are evaluated in

this section by using port scanner software. A port scan function scans a single port or

a range of ports, i.e., ports between a given start and end, to check whether they are

open or not. Test cases are generated for start and end port. Boundary overflow

vulnerability analysis tool analyzed the source directory to detect the vulnerabilities

related to boundary overflow.

The case study is performed on the basis of the port scanner part of open source

port scanner software, i.e., JMAP Java Port Scanner (TomSalmon.com, 2010) and its

 48

GUI is shown in Figure 5.2. Faltron Java Port Scanner (FaltronSoft.org, 2010) is also

given in Figure 5.3. And a port scanner (Planet-Sourcecode.com, 2010), is shown in

Figure 5.4.

Figure 5.2. JMAP Java Port Scanner.

 49

Figure 5.3. Faltron Java Port Scanner.

Figure 5.4. A port scanner.

 50

5.2.1. JMAP Java Port Scanner

JMAP is a Java network port scanner, a security tool to identify open ports on

any host or network subnet. It features the ability to scan every host in a given network

segment for a range of ports or a specific service. Both TCP and UDP are supported.

Boundary overflow vulnerability checker tool is evaluated for JMAP. Local

variables, method/constructor parameters and input contracts are given in Table 5.1

and Table 5.2. Five input contracts have been used and one of them has been found as

shown in Table 5.3.

Table 5.1. JMAP Local Variables and Method/Constructor Parameters.

Variables Parameters
i (int) port (int)
selectedPortNumber (int) lowestPort (int)
partOne (int) highestPort (int)
partTwo (int) status (int)
partThree (int) proto (int)
partFour (int)
port (int)
p (int)

Table 5.2. JMAP Input Contracts.

No Left Operand Operator Right Operand
1 lowestPort > 0
2 lowestPort <= 65535
3 highestPort > 0
4 highestPort <= 65535
5 lowestPort < highestPort

 51

Table 5.3. JMAP Output.

Input Contract
(lowestPort > 0) HAS BEEN FOUND

File Name : null
Class Name : Scan
Method Name :
Package Name :
Line Number : 171

(lowestPort <= 65535) NOT FOUND
(highestPort > 0) NOT FOUND
(highestPort <= 65535) NOT FOUND
(lowestPort < highestPort) NOT FOUND

5.2.2. Faltron Java Port Scanner

Faltron Java Port Scanner is an open source and very simple port scanner

written in Java. It maximize the use of multi-threading by creating as much threads as

possible, thus speeding up the scanning process.

Boundary overflow vulnerability checker tool is also evaluated for Faltron.

Local variables, method/constructor parameters and input contracts are given in Table

5.4 and Table 5.5. Five input contracts have been used and none of them has been

found as shown in Table 5.6.

Table 5.4. Faltron Local Variables and Method/Constructor Parameters.

Variables Parameters
i (int) port (int)
priority (int) startPort (int)
appheight (int) endPort (int)
appwidth (int)

 52

Table 5.5. Faltron Input Contracts.

No Left Operand Operator Right Operand
1 startPort > 0
2 startPort <= 65535
3 endPort > 0
4 endPort <= 65535
5 startPort < endPort

Table 5.6. Faltron Output.

Input Contract
(startPort > 0) NOT FOUND
(startPort <= 65535) NOT FOUND
(endPort > 0) NOT FOUND
(endPort <= 65535) NOT FOUND
(startPort < endPort) NOT FOUND

5.2.3. A Java Port Scanner

Boundary overflow vulnerability checker tool is finally evaluated for “A Java

Port Scanner”. Local variables, method/constructor parameters and input contracts are

given in Table 5.7 and Table 5.8. Five input contracts have been used and none of

them has been found as shown in Table 5.9.

Table 5.7. A Java Port Scanner Local Variables and Method/Constructor Parameters.

Variables Parameters
fp (int)
tp (int)
i (int)

 53

Table 5.8. A Java Port Scanner Input Contracts.

No Left Operand Operator Right Operand
1 Fp > 0
2 Fp <= 65535
3 Tp > 0
4 Tp <= 65535
5 Fp < tp

Table 5.9. A Java Port Scanner Output.

Input Contract
(fp > 0) NOT FOUND
(fp <= 65535) NOT FOUND
(tp > 0) NOT FOUND
(tp <= 65535) NOT FOUND
(fp < tp) NOT FOUND

An overview of three test runs is given in Table 5.10. It is evident that only

JMap has a control mechanism on startPort>0 and the other tools do not have any

control mechanisms for the out of boundary input values causing boundary overflow.

Table 5.10. Comparison of the three test runs.

Software Input Contracts

 startPort
>0

startPort
<=65535

endPort
>0

endPort
<=65535

startPort
< endPort

JMap √ - - - -

Faltron - - - - -

A Java

Port

Scanner

- - - - -

Tuglular et al. (2009b) have developed a numerical input validation analysis

tool in Java that enables a semi automatically detection of boundary overflow errors.

The class of “Assertions” and the function of “Require” have been used for exception

handling and numerical input validation, respectively. The developed tool has

 54

displayed the conditions of variables as well as whether or not condition checks exist

in the source code related to numerical input relation. Three port scanners have been

used to evaluate their approach that combines input validation with static analysis for

evaluating given constraints. The user interface behaviour of port scan function has

been modelled by using decision table augmented event sequence graphs. Test cases

were generated for minimum and maximum port from the decision table and test of the

port scan function has been evaluated in a real network environment. The boundary

overflow related vulnerabilities have been detected and corrected by analyzing the

source directory. The comparison has been also made between the faults detected

before and after applying the boundary overflow detection algorithm.

Netfender Firewall (version 1.5) was used to the evaluation and test pair has

been generated based on equivalence class testing and boundary value approach. The

algorithm has created a list of each of constraint containing the conditions of the

variables and has generated the min and max test case pairs. They concluded that the

cases with out of boundary input pairs cause problems in the network environment. It

was analysed that faulty input pairs that are out of boundary values but the program

behaves as they are not faulty because it does not abandon processing the related task.

They also stated that the original software does not have control mechanism for the out

of boundary input values causing boundary overflow.

Multiscan (version 0.8.5) and Pscan were also utilized which are again open

source port scanners coded in C++ with scan a range of IP addresses and ports. They

observed that these evaluations also have no exception handling mechanisms. They

found that the control mechanisms against out of boundary values are deficient for the

three port scanners. On the other hand, after the insertation of their control statements

related to boundary constraints, the software has outputted the right error message and

aborted sending the packets. Therefore, tool developed by Tuglular et al. (2009b) has

been successfully implemented for detection and correction operations for finding

deficiencies in the exception handling mechanism concerning boundary overflow

problems in software development.

They also claimed that JMap has no error or exception raising mechanisms.

The control mechanisms for pre- and post-conditions were deficient for this port

scanner as well. They reported that Faltron has control mechanisms for pre-conditions

but no mechanism has been found for post-conditions. It can be observed in Table 5.11

 55

three port outputs considerably differ after the application of corrections into all three

port scanners with respect to input contract.

Table 5.11. Comparison of the three port scanners
(Source: Tuglular et al., 2009b)

 56

CHAPTER 6

CONCLUSIONS

In this work, we have made progress toward characterizing the software defects

that can be found using static analysis techniques in programs written in Java. This

study also dealt with the comparison of the output of different static analysis tools.

Based on the literature review, it is obvious that PMD is a useful tool to apply to

projects to analyze code and catch errors which otherwise can be missed with code

reviews and inspections. Since it is flexible allowing customizations, it is

advantageous to apply specific rules to projects that make PMD a valuable tool to use.

A new tool that uses PMD has been implemented to find boundary overflow

vulnerability. The overflow vulnerability checker tool has successfully carried out

detection operations in the source code related to overflow vulnerabilities. It is

observed that the boundary overflow vulnerabilities are not considered and neglected

throughout the software development. Therefore, the overflow vulnerability checker

tool that is introduced in this thesis might contribute to prevent the undesirable

situation that may occur as a result of the deficiencies in the software related to

overflow vulnerabilities. For future work, extension of the approach is planned by

considering input labels as elements of contracts and evaluating these contracts.

 57

REFERENCES

Aldrich J.; Kostadinov V.; Chambers C. Alias Annotations for Program

Understanding. ACM SIGPLAN Notices 2002, 37 (11), 311-330.

Artzi S.; Kiezun A.; Glasser D.; Ernst M.D. Combined Static and Dynamic Mutability

Analysis, Proceedings of the Twenty-Second IEEE/ACM International Conference
on Automated Software Engineering, November 5–9, 2007, Atlanta, Georgia,
USA.

Ball T.; Rajamani S.K. The SLAM Project: Debugging System Software via Static

Analysis, Proceedings of the 29th ACM SIGPLAN, 2002, Oregon.

Balakrishnan, G., R.; Gruian, T. R.; Teitelbaum T. CodeSurfer/x86 – A Platform for
Analyzing x86 Executables. International Conference on Compiler Construction.
2005.

Banerjee A.; Naumann D.A., A Static Analysis for Instance-based Confinement in
Java. ACM SIGPLAN Notices, 2002.

Barbuti R.; Giacobazzi R.; Levi G. A General Framework for Semantics-Based

Bottom-up Abstract Interpretation of Logic Programs. ACM Transactions on
Programming Languages and Systems 1993, 15(1), 133-181.

Clark D.; Drossopoulou S.; Müller P.; Noble J.; Wrigstad T. Aliasing, Confinement

and Ownership in Object-Oriented Programming, ECOOP 2008, Workshops,
Paphos, Cyprus.

Clarke E.M.; Jha S.; Lu Y.; Weith H. Tree-Like Counterexamples in Model Checking.

Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science
(LICS’02), 2002.

Codehous.org

http://jaxen.codehaus.org/ (accessed April 4, 2010).

Copeland T. PMD Applied, Centennial Books, 2005.

Cousot, P.; Cousot R. Abstract Interpretation: A Unified Lattice Model for Static

Analysis of Programs by Construction or Approximation of Fixpoints. ACM
Symposium on Principles of Programming Languages. 1977, Los Angeles, CA.

Cousot P.; Cousot R. Refining Model Checking by Abstract Interpretation. Automated

Software Engineering 1999, 6, 69–95.

Cowan, C. Software Security for Open-Source Systems. IEEE Security and Privacy

Magazine 2003, 1(1), 38-45.

 58

Crew R.F., ASTLOG: A Language for Examining Abstract Syntax Trees. Proceedings
of the Conference on Domain-Specific Languages, October 1997, Santa Barbara,
California, USA.

Denning, D. E. A Lattice Model of Secure Information Flow. Communications of the

ACM 1976, 19(5), 236-243.

England M. Paper Evaluation: Securing Web Application Code by Static Analysis and

Runtime Protection. 2008.

Emanuelsson P.; Nilsson U. A Comparative Study of Industrial Static Analysis Tools,

Technical reports in Computer and Information Science, Department of Computer
and Information Science, Linkoping University, Sweden, 2008.

FaltronSoft.org

http://faltronsoft.org/index.php?option=com_content&task=view&id=23&Itemid=
29) (accessed April 4, 2010).

Foster, J. S.; Fähndrich, M.; Aiken, A. A Theory of Type Qualifiers. Proceeding of

ACM SIGPLAN 1999 Conf. Programming Language Design and Implementation
(PLDI’99), pp 192-203, 34(5) of ACM SIGPLAN Notices, Atlanta, Georgia, May
1- 4, 1999.

Hsu A.., Jagannathan S.; Mustehsan S., Mwamufiya S.; Novakouski M. Analysis Tool

Evaluation:PMD, Final Report, School of Computer Science Carnegie Mellon
University, 2007.

Hovemeyer D.; Pugh W. Finding Bugs is Easy. ACM SIGPLAN Notices, 2004 39 (12),
92-106.

Huang Y-W; Yu F.; Hang C.; Tsai C-H. ; Lee D-T. ; Kuo S-Y. Securing Web
Application Code by Static Analysis and Runtime Protection. Proceedings of the
13th International Conference on World Wide Web, May 17–22, 2004, New York,
New York, USA.

McCabe T.J. A Complexity Measure. IEEE Transactions on Software Engineering,

1976, 2(4), 308-320.

Mc Leen, J. A Comment on the "Basic Security Theorem" of Bell and LaPadula

Information Processing Letters 1985, 20, 67-70.

Mc Leen, J., Information Flow Is a Way of Modelling Data Flow,1990.

Mell P.; Tracy M.C. Procedures for Handling Security Patches, NIST Special

Publication, 800-40, 2002.

Morrisett, G.; Walker, D.; Crary, K.; Glew, N. From System F to Typed Assembly

Language. ACM Transactions on Programming Languages and Systems, 1999,
21(3), 528-569.

 59

Muftuoglu C.A., “A Detection and Correction Approach for Overflow Vulnerabilities
in Graphical User Interfaces”, M.S. Thesis, İzmir Institute of Technology, İzmir,
2009.

Myers, A. C. JFlow: Practical Mostly-Static Information Flow Control. Proceedings of

26th ACM SIGPLAN-SIGACT Symp. Principles of Programming Languages
(POPL’99), p. 228-241, 1999, San Antonio, Texas.

Necula, G. C. Proof-Carrying Code. Conference Record of the 24th Annual ACM

SIGPLAN-SIGACT Symp. Principles of Programming Languages (POPL’97), p.
106-119, Jan 1997, Paris, France.

OpenSource.org

http://opensource.org (accessed April 4, 2010).

Orbaek, P. Can You Trust Your Data? Proceddings of 1995 TAPSOFT/FASE

Conference, p.575-590, LNCS 915, May 1995, Aarhus, Denmark, Springer-Verlag.

Petersen P.M.; Padua D.A., Static and Dynamic Evaluation of Data Dependence

Analysis. Proceedings of the 7th International Conference on Supercomputing,
1993, Tokyo, Japan.

Planet-Sourcecode.com

http://www.planet-sourcecode.com/vb/scripts/ShowCode.asp?txtCodeId=2735&lngWId=2
(accessed April 4, 2010).

Pottier, F.; Simonet, V. Information Flow Inference for ML. ACM Transactions on

Programming Languages and Systems, 2003, 25(1), 117-158,

Pugh W., A Practical Algorithm for Exact Array Dependence Analysis,

Communications of ACM, 1992, 35 (8), 102-114.

Rutar N.; Almazan C.B.; Foster J.S. A Comparison of Bug Finding Tools for Java,

Symposium on Software Reliability Eng. (ISSRE'04), 2004, France.

Sabelfeld A.; Andrew C. M. Language-Based Information-Flow Security IEEE

Journal on Selected Areas in Communications, 2003, 21 (1).

Security Innovation.com

http://www.securityinnovation.com/security-report/november/staticAnalysis1.htm
(accessed April 4, 2010).

Shepperd M., A Critique of Cyclomatic Complexity as a Software Metric, Software

Engineering Journal, March 1988, 30-36.

Software Technology Support Center

http://www.stsc.hill.af.mil/crossTalk/2008/06/0806Anderson.html (accessed April
4, 2010).

 60

SourceForge.net (a)
http://pmd.sourceforge.net (accessed April 4, 2010).

SourceForge.net (b)
http://checkstyle.sourceforge.net (accessed April 4, 2010).

SourceForge.net (c)
http://jlint.sourceforge.net (accessed April 4, 2010).

SourceForge.net (d)
http://qjpro.sourceforge.net (accessed April 4, 2010).

Stamelos I.; Angelis L.; Oikonomou A.; Bleris G.L. Code Quality Analysis in Open

Source Software Development, Info Systems J. 2002, 12, 43–60.

TomSalmon.com

http://tomsalmon.com/jmap.php (accessed April 4, 2010).

Tuglular T.; Müftüoğlu C.A.; Kaya O.; Belli F.; Linschulte M. GUI-Based Testing of
Boundary Overflow Vulnerability, 33rd Annual IEEE International Computer
Software and Applications Conference, 2009a, Seattle, Washington, USA.

Tuglular T., Muftuoglu C. A., F. Belli, Linschulte M., "Event-Based Input Validation

Using Design-by-Contract Patterns", 20th Annual International Symposium on
Software Reliability Engineering (ISSRE 2009), 2009b, Mysuru, India.

Volpano D.; Smith G.; Irvine C. A Sound Type System for Secure Flow Analysis, CS

711: Language-Based Security and Information Flow, September 2003.

Wagner S.; Jurjens J.; Koller C.; Trischberger P. Comparing Bug Finding Tools with

Reviews and Tests, TestCom 2005, 2005, LNCS 3502, 40–55.

Ware M.S.; Fox C.J. Securing Java Code: Heuristics and an Evaluation of Static

Analysis Tools SAW ’08 June 12, 2008, Tucson, Arizona, USA.

 61

APPENDIX A

OPEN SOURCE TOOLS

A.1. Multi-language

 RATS — Rough Auditing Tool for Security, which can scan C, C++, Perl, PHP

and Python source code.

 YASCA — Yet Another Source Code Analyzer, a plugin-based framework for

scanning arbitrary file types, with plugins for scanning C/C++, Java, JavaScript,

ASP, PHP, HTML/CSS, ColdFusion, COBOL, and other file types. It integrates

with other scanners, including FindBugs, JLint, PMD, and Pixy.

 CPD — The Copy/Paste Detector (CPD) is an add-on to PMD tat finds

duplicated code. CPD works with Java, JSP, C, C++, Fortran and PHP code.

A.2. . NET (C#, VB.NET and all .NET Compatible Languages)

 FxCop — Free static analysis for Microsoft .NET programs that compile

to CIL. Standalone and integrated in some Microsoft Visual Studio editions. From

Microsoft.

 StyleCop — Analyzes C# source code to enforce a set of style and consistency

rules. It can be run from inside of Microsoft Visual Studio or integrated into

an MSBuild project. Free download from Microsoft.

A.3. Java

 Checkstyle — Checkstyle is a development tool to help programmers write

Java code that adheres to a coding standard. It automates the process of checking

Java code to spare humans of this boring (but important) task. This makes it ideal

for projects that want to enforce a coding standard. This tool that analyzes source

code to find layout issues, class design problems, duplicate code and bugs. Besides

 62

some static code analysis, it can be used to show violations of a configured coding

standard (sourceforge.net (b), 2010).

 FindBugs — an open-source static bytecode analyzer for Java (based

on Jakarta BCEL) from to find occurrences of “bug patterns”, which are code

idioms that are likely to be errors (Hovemeyer and Pugh 2004). The tool FindBugs

was developed at the University of Maryland and can detect potentially

problematic code fragments by using a list of bug patterns. It can find faults such as

dereferencing null-pointers or unused variables. To some extent, it also uses

dataflow analysis for this.

 PMD — a static rule set based Java source code analyzer that identifies

potential problems. This tool concentrates on the source code and is therefore

especially suitable to enforce coding standards. It finds, for example, empty

try/catch blocks, overly complex expressions, and classes with high cyclomatic

complexity. It can be customised by using XPath expressions on the parser tree.

This tool that scans source code to detect potential bugs, dead code, suboptimal

code, overcomplicate expressions, and duplicate code (sourceforge.net (a), 2010).

In addition to some detection of clearly erroneous code, many of the “bugs” PMD

looks for are stylistic conventions whose violation might be suspicious under some

circumstances. For example, having a try statement with an empty catch block

might indicate that the caught error is incorrectly discarded. Because PMD includes

many detectors for bugs that depend on programming style, PMD includes support

for selecting which detectors or groups of detectors should be run (Rutar et al.,

2004).

 Jlint — a tool that analyzes Java source code and bytecode to detect bugs,

inconsistencies, and problems with synchronization by performing “data flow

analysis and building the lock graph. JLint also includes an interprocedural, inter-

file component to find deadlocks by building a lock graph and ensuring that there

are never any cycles in the graph (sourceforge.net (c), 2010).

 QJ Pro. — a tool that analyses the source code. It supports over 200 rules

including ignored return values, too long variable names, or a disproportion

between code and commentary lines. It is also possible to define additional rules.

Furthermore, checks based on code metrics can be used. The possibility to use

various filters is especially helpful in this tool (sourceforge.net (d), 2010).

 63

 Hammurapi — (Free for non-commercial use only) versatile code review

solution. Hammurapi is an open source code inspection tool. Its release comes with

more than 100 inspectors which inspect different aspects of code: Compliance with

EJB specification, threading issues, coding standards.

 Sonar — a platform to manage source code quality. Sonar is a continuous

quality control tool for Java applications. Its basic purpose is to join your existing

continuous integration tools to place all your development projects under quality

control.

 Soot — a language manipulation and optimization framework consisting of

intermediate languages for Java

 Squale — a platform to manage software quality (also available for other

languages, using commercial analysis tools though)

A.4. C

 BLAST (Berkeley Lazy Abstraction Software verification Tool) — a software

model checker for C programs based on lazy abstraction.

 Clang — A compiler that includes a static analyzer.

 Frama-C — A static analysis framework for C.

 Sparse — A tool designed to find faults in the Linux kernel.

 Splint — An open source evolved version of Lint (C language).

 Uno — A tool designed to find most common type of programming errors

without generating too much output.

A.5. C++

 Cppcheck — can find memory leaks, buffer overruns and many other common

errors.

 compass - project of rose compiler framework.

 64

A.6. Objective-C

 Clang — the free Clang project includes a static analyzer. As of version 3.2,

this analyzer is included in Xcode.

A.7. Perl

 Perl::Critic — module and program to help find deviations from commonly

accepted best practices

A.8. ActionScript

 Apparat — a language manipulation and optimization framework consisting of

intermediate representations for ActionScript.

 AS3V — a static ruleset based analyzer focussing on performance leaks.

 FlexPMD — a static ruleset based ActionScript source code analyzer that

identifies potential problems; based on PMD.

 65

APPENDIX B

COMMERCIAL TOOLS

B.1. Multi-language

 Axivion Bauhaus Suite — a tool for C, C++, C#, Java and Ada code that

comprises various analyses such as architecture checking, interface analyses, and

clone detection.

 Checkmarx - a tool to identify, track and fix technical and logical security

flaws from the root: the source code. Analyzes .Net, Java, Classic ASP, C/C++

and Salesforce.com's Apex and Visual Force.

 CodeSecure — Appliance with Web interface and built-in language parsers for

analyzing ASP.NET, VB.NET, C#, Java/J2EE, JSP, EJB, PHP, Classic ASP and

VBScript.

 CAST Application Intelligence Platform — Detailed, audience-specific

dashboards to measure quality and productivity. 30+ languages, SAP, Oracle,

PeopleSoft, .NET, Java, C/C++, Struts, and all major databases.

 CodeScan Labs CodeScan Developer — identifies security vulnerabilities and

issues in ASP classic, PHP, ASP.Net, C#.Net source code

 Coverity Prevent — identifies security vulnerabilities and code defects in C,

C++, C# and Java code.

 DMS Software Reengineering Toolkit — supports custom analysis of C, C++,

Java, COBOL, and many other languages.

 Compuware DevEnterprise — analysis of COBOL, PL/I, JCL, CICS, DB2,

IMS and others.

 Fortify — helps developers identify software security vulnerabilities in C/C++,

.NET, Java, JSP, ASP.NET, ColdFusion, "Classic" ASP, PHP, VB6, VBScript,

JavaScript, PL/SQL, T-SQL and COBOL as well as configuration files.

 GrammaTech CodeSonar — Analyzes C,C++. Ada-Assured -Analyzes Ada

 66

 Klocwork Insight and Klocwork Developer for Java — provides security

vulnerability and defect detection as well as architectural and build-over-build

trend analysis for C, C++, C# and Java

 Lattix, Inc. LDM — Architecture and dependency analysis tool for Ada,

C/C++, Java, .NET software systems.

 LDRA Testbed — A software analysis and testing tool suite for C, C++,

Ada83, Ada95 and Assembler (Intel, Freescale, Texas Instruments).

 Ounce Labs — automated source code analysis that enables organizations to

identify and eliminate software security vulnerabilities in languages including Java,

JSP, C/C++, C#, ASP.NET, and VB.Net.

 Parasoft — Security, reliability, performance, and maintainability analysis of

Java, JSP, C, C++, .NET (C#, ASP.NET, VB.Net, etc.), WSDL, XML, HTML,

CSS, JavaScript, VBScript/ASP, and configuration files.

 SofCheck Inspector — provides static detection of logic errors, race conditions,

and redundant code for Java and Ada.

 Sotoarc/Sotograph — Architecture and quality in-depth analysis and

monitoring for Java, C#, C and C++

 Structure101 — For understanding, analyzing, measuring and controlling the

quality of Software Architecture as it evolves over time. Available for Java and

Ada, with support for C/C++ via Coverity and Programming Research.

 Understand — analyzes C,C++, Java, Ada, Fortran, Jovial, Delphi — reverse

engineering of source, code navigation, and metrics tool.

 Visual Studio Team System — analyzes C++,C# source codes. only available

in team suite and development edition.

B.2. .NET

 ReSharper — Add-on for Visual Studio 2003/2005 from the creators of IntelliJ

IDEA, which also provides static code analysis for C#.

 NDepend — Simplifies managing a complex .NET code base by analyzing

code dependencies, by defining design rules, by doing impact analysis, and by

comparing different versions of the code (all .NET languages supported).

 67

 CodeIt.Right — combines Static Code Analysis and automatic Refactoring to

best practices which allows automatically correct code errors and violations.

Supports both C# and VB.NET.

 Gendarme — extensible rule-based tool to find problems in .NET applications

and libraries, particularly those that contain code in ECMA CIL format.

B.3. C/C++

 Abraxas Software CodeCheck — programmable static analysis and style

checker for C and C++ code.

 Astrée — Run-time error analyzer for C

 Green Hills Software DoubleCheck — static analysis for C and C++ code.

 HP Code Advisor — A static analysis tool for C and C++ programs

 LDRA Testbed — A software analysis and testing tool suite for C & C++.

 Microsoft PREfast — The "Analyze Tool" included with Microsoft Visual

Studio Team Editions.

 Microsoft PREfast for Drivers (PFD) — An extension to PREfast to allow

better analysis of Windows device drivers.

 Microsoft Static Driver Verifier (SDV) — Performs detailed code path analysis

for Windows device drivers.

 PAG — The Program Analyzer Generator.

 PC-Lint — A software analysis tool for C & C++.

 QA-C (and QA-C++) — deep static analysis of C for quality assurance and

guideline enforcement.

 Red Lizard's Goanna — Static analysis for C/C++ in Eclipse and Visual Studio.

 Viva64 — analyzes C, C++ code to detect 64-bit portability issues.

 CppDepend — Simplifies managing a complex C++ code base by analyzing

code dependencies, by defining design rules, by doing impact analysis, and by

comparing different versions of the code.

 68

B.4. Java

 checKing — monitors the quality of software development process, including

violations of coding rules for Java, JSP, Javascript, XML and HTML.

 IntelliJ IDEA — IDE for Java that also provides static code analysis.

 Swat4j — a model based, goal oriented source code auditing tool for Java.

B.5. Visual Basic

 Project Analyzer — static analysis tool for Visual Basic, Visual Basic .NET

and Visual Basic for Applications.

 69

APPENDIX C

RULESETS OF PMD

C.1. Basic (rulesets/basic.xml)

These are basic rules which need to be followed. Across BIRT, Nomad PIM,

jLibrary and PaperDog the following conditions were observe:

1. Catch blocks shouldn't be empty,

2. Override hashCode() anytime equals() is overridden

3. Nested if statements should be avoided

4. If statements evaluating to only true or only false should be avoided

5. Avoid temporary variables when converting from primitive datatype to String

6. Empty statements in loops should be avoided

7. Avoid instantiating data type values which have existing constants defined for

ex. instantiating Boolean type with constructor, instead of using Boolean.true,

instantiating BigDecimal (0) instead of using BigDecimal.ZERO.

8. Final modifier in a final class is redundant

9. Overridden methods contain only call to super() and nothing else.

10. Avoid unnecessary return statements

11. Do not start a literal by 0 unless it's an octal value

There are some false positives in the above cases. In many cases, catch blocks were

known to the developer and contained comments explaining why the exception was

applicable or not. For final modifiers, the code had final modifiers for all the methods

inside the final class and each line was shown as a warning. This though can be

avoided is not an error. Some methods in classes were overridden but did not have any

special task so it just had a call to super. This was flagged as error in the PMD results

but this again does not cause erroneous behaviour. 0 was used to denote octal values,

so that also turned out to be a false positive. Overall this ruleset is useful and because it

catches basic errors which will be missed during reviews, inspection or testing.

 70

C.2. Naming (rulesets/naming.xml)

This ruleset tests for the standard Java naming conventions. Some typical errors

which were observed during this analysis were:

1. Abstract classes should have the name AbstractXXX

2. Variable names should not be too short

3. Field names matching class names lead to confusion

4. Variable names and method names should not be too long or too short

5. Variable names which are not constant should not contain “_” (underscore)

6. Class names should begin with an uppercase letter, method and field names

should

7. Begin with a lowercase letter

8. The field name indicates a constant but its modifiers do not

The code is strictly checked against Java naming conventions. This resulted in a lot of

false positives. The results for all the four projects were filled with the entries about

variable names being too short or method names being too short or too long. The one

error message which said “The field name indicates a constant but its modifiers do

not” sounded to be a valid error situation but on analyzing the code it was found that a

variable name was completely in uppercase and had a underscore character which

according to Java naming convention is to be used only for constants. Hence it was not

an error in code but an error in naming.

C.3. Unused Code (rulesets/unusedcode.xml)

This ruleset checks for unused code in the project. The following are typical

error messages which occurred for the projects considered:

1. Private fields and local variables that are never read,

2. Private methods that are never called,

3. Unused method parameters and constructor parameters,

4. Unreachable statements.

With the widespread use of IDEs for Java like Eclipse and JBuilder, this ruleset is not

very useful. For example in Eclipse, unused fields, variables and private methods are

automatically highlighted with warning messages. Unused method parameters and

 71

constructor parameters are not enabled by default in Eclipse but settings can be

changed to ensure that this check is included. Unreachable statements are treated as

errors in Eclipse and the editor will not allow compilation till the error has been fixed.

Hence this ruleset is not necessary.

C.4. Design (rulesets/design.xml)

This ruleset covered various good design principles. The errors observed in this

case were many. Few important ones are listed below:

1. Switch statements should have default blocks,

2. If conditions of the form a!=b should be avoided

3. Private fields which are initialized only in the constructor and are not modified

anywhere else should be made constant (final)

4. Deeply nested if blocks should be avoided

5. Parameters should not be reassigned

6. Replace calls like size() == 0 with isEmpty()

7. Overridable methods should not be called in the constructor

8. If all methods in a class are static then the class can be converted to Singleton

9. Caught exceptions should not be rethrown as the stack trace may be lost.

10. Unnecessary comparisons in Boolean expressions should be avoided

11. Equals() should be used for object comparison

12. It is better to use block level synchronization than method level

synchronization

13. Literals should be used first in string comparisons

14. Values can be returned directly instead of assigning them to temporary

variables and

15. Resources like connections should be closed after use

This rulesets identifies many conditions which need to be cleared in the code. This

cannot be covered exhaustively using manual reviews or inspection. There is one

suggestion for conversion to Singleton when static methods are used, this may or may

not be used based on the architecture. Other than this, all conditions highlighted by the

ruleset needs to be corrected. Design rulesets based on the data gathered on all the

projects do not have instances of false positives. This ruleset is useful for analysis.

 72

C.5. Import Statements (rulesets/imports.xml)

This ruleset checks for minor issues with import statements. The following

were the three conditions observed across all packages:

1. Avoid duplicate imports

2. There is no need to import a class which resides in the same package

3. Avoid unused imports

Using IDEs makes this ruleset redundant. Eclipse has an option to reorganize imports.

This automatically corrects imports, removes duplicate and unused imports, removes

imports of the type java.io.* and includes individual classes. Hence this ruleset need

not be used.

C.6. JUnit Tests (rulesets/junit.xml)

This ruleset looks for specific issues in the test cases and test methods. The

issues observed were:

1. Assertions should have a message

2. Correct spelling of method names, especially JUnit keywords like setUp() and

tearDown()

3. JUnit tests should contain an assert or fail

4. Classes which contain JUnit test cases should end with Test

5. Use assertSame(x, y) instead of assertTrue(x==y)

There were two main problems observed with this ruleset. This ruleset should be run

only on the JUnit source files. If it is run on the main project, then each java file is

considered as a JUnit test and the report contains a higher percentage of false positives.

Especially the messages “Assertions should have a message” and “Incorrect method

names setUp() and tearDown()” occur when method names setup() is used in a normal

class file or assert statement is used within non-JUnit code. There is another false

positive while running the code on JUnit test cases. If a test method calls another

method which does the assert() or fail() and does not have assert or fail in the method

body then the ruleset is not able to recognize it and generates errors. The ruleset does

not verify if the test case is valid or not. It checks for syntax errors. Hence it does not

 73

add any value. Code review for test cases should help in verifying errors. This ruleset

need not be used.

C.7. Strings (rulesets/string.xml)

This ruleset identifies problems that occur while using String and StringBuffer.

The common errors observed are:

1. Avoid duplicating string literals

2. Appending characters to StringBuffer should be avoided

3. Calling String.valueOf() to append to a string is not necessary

4. String.trim().length() == 0 is inefficient to check if string is empty

5. Constructor for StringBuffer is initialized with a smaller number and more

characters

6. Are appended (buffer overflow)

7. Using equalsIgnoreCase() is efficient instead of converting strings to upper or

lower

8. Case and then comparing.

9. IndexOf(char) is faster then indexOf(String)

10. Calling the String constructor, and calling toString() on String objects is

unnecessary

This ruleset covers various conditions for String and StringBuffer usage. Since String

objects are used heavily, it is beneficial to run this test case and correct the related

errors. Almost all errors are relevant and there were no false positives observed. This

helps in avoiding buffer overflows and improving performance and memory usage by

proper allocation of strings and calling appropriate methods.

C.8. Braces (rulesets/braces.xml)

This ruleset checks for, if, while, and else statements and the usage of braces.

All the results were of the same type, which is

1. Avoid using if and else without curly braces

 74

IDEs like Eclipse create templates for if-else-elseif statements which include the curly

braces using the auto complete option (this is not a default option and needs to be

enabled). Hence this ruleset need not be used.

C.9. Javabeans (rulesets/javabeans.xml)

This ruleset inspects JavaBeans components. The typical errors observed are:

1. Non-transient and non-static members need to be marked as transient or

accessors should be provided

2. Classes which implement Serializable should have a serialVersionUID

The first error indicates non compliance with JavaBean coding standard. This can be

caught during reviews. The second error is usually shown as a warning in Eclipse IDE.

This ruleset can be used if JavaBeans is used for coding. If not this does not add any

value.

C.10. Finalizers

This ruleset identifies two types of errors overall:

1. If finalize is used it should be protected

2. Last call in finalize should be a call to super.finalize

Since finalize is being used very rarely in current implementations it is not necessary

to use this ruleset. For the few situations where it is used, it is easy to remember the

two conditions and can be checked during reviews.

C.11. Clone (rulesets/clone.xml)

There are only a few rules for clone() methods. They are:

1. Classes that override clone() must implement Cloneable,

2. Clone() methods should call super.clone()

3. Clone() methods should be declared to throw

The main problem with clone() method is in the case of deep copy and shallow copy.

This ruleset does not verify if that is achieved. Since there are only three rules, it is fair

 75

to assume that it should be included as a part of coding standard and should be an item

in the review checklist. This ruleset can be run once at the end to verify if the standard

is met and need not be run always.

C.12. Coupling (rulesets/coupling.xml)

The errors which are generated with this ruleset are:

1. Too many imports or too many different objects indicate coupling

2. Avoid usage of subclass types like Vector, ArrayList and HashMap and use the

supertype or interface instead

There are false positives when this ruleset is run. In projects which use various other

projects for functionality like using Tomcat, log4j, JBoss, Hibernate, Eclipse RCP,

Struts 2 and BIRT which are typical for any web applications, there are usually too

many imports and too many different objects. Since the report is full of such warnings

it is difficult to find the useful messages. Usage of subclasses again should be a coding

convention and should be included in code reviews. This ruleset does not add value.

C.13. Strict Exceptions (rulesets/strictexception.xml)

The errors generated with this ruleset are:

1. Raw exception types should not be thrown

2. Methods should not be declared to throw java.lang.Exception,

3. Avoid throwing null pointer exceptions

4. Catch should not throw the exception caught (this is also found in design

ruleset)

5. Throwable should not be caught

This ruleset is helpful because exception handling is something which needs to be

done well, else the code may crash due to unforeseen errors. Since PMD generates

exhaustive analysis it is easy to not miss out conditions. The analysis results observed

did not contain any false positives.

 76

C.14. Controversial (rulesets/controversial.xml)

This ruleset has some conditions which cannot be followed in practice. The

typically observed warnings are as follows:

1. Each class should have at least one constructor

2. A method should have only one exit point

3. Avoid unnecessary constructors

4. It is good practice to call super() in constructors

5. Captures data flow anomalies

6. Use explicit scoping rather than default package private scope

7. Don’t assign null to an object

It is not possible to always have one exit point. It is often considered that assigning an

object to null as initial state is a good practice. Some of PMD's rules are valid and

some are arguable hence the name controversial ruleset. This does not add value to the

code analysis because it does not catch errors which might break the system or might

cause the system to be insecure. Hence the ruleset need not be used.

C.15. Logging (rulesets/logging-java.xml, rulesets/ logging-jakarta-

commons.xml)

This ruleset checks for usage of logging. The errors identified are as follows:

1. Logger variables should be static and final

2. System.out.print and println, and printStackTrace should be replaced with calls

to logging

This ruleset is not very helpful. There are too many false positives which are

generated. In most cases System.out.println and printStackTrace are used reliably.

Moreover print messages are easily observable during unit testing or integration testing

and hence can be corrected.

 77

C.16. J2EE (rulesets/j2ee.xml)

This ruleset checks for compliance with J2EE architecture. Since none of the

projects used for this report followed a J2EE architecture there was only one error

which was produced throughout which was usage of getClassLoader(). This ruleset is

not applicable for non-J2EE projects.

C.17. Optimizations (rulesets/optimizations.xml)

This ruleset covers certain optimization conditions. The typical conditions are:

1. Parameters, fields or variables not assigned should be declared as final

2. ArrayList can be used instead of Vector

3. Use StringBuffer instead of += for concatenating strings

C.18. Type Resolution (rulesets/typeresolution.xml)

This ruleset captured only two types of error conditions

1. Classes that override clone() must implement Cloneable,

2. Avoid usage of subclass types like Vector, ArrayList and HashMap and use the

supertype or interface instead

This ruleset covers conditions which are already covered in Cloning and Coupling

rulesets. These conditions do not add specific value and they can be covered as a part

of coding standards and review checklists.

C.19. Unsecure Code (rulesets/sunsecure.xml)

This ruleset checks for array assignments. In particular it generates the

following conditions:

1. Internal arrays being stored directly

2. Return variables which expose internal arrays

These are conditions which need to be checked to ensure that arrays are handled

correctly. Hence this ruleset needs to be executed.

	title-page-bertan.pdf
	ABSTRACT.pdf
	içindekiler figür tablo.pdf
	düzenlenen.pdf

