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ABSTRACT 
 

DEVELOPMENT OF A STATIC ANALYSIS TOOL TO FIND 
SECURITY VULNERABILITIES IN JAVA APPLICATIONS 

 
 The scope of this thesis is to enhance a static analysis tool in order to find 

security limitations in java applications. This will contribute to the removal of some of 

the existing limitations related with the lack of java source codes. 

 The generally used tools for a static analysis are FindBugs, Jlint, PMD, 

ESC/Java2, Checkstyle. In this study, it is aimed to utilize PMD static analysis tool 

which already has been developed to find defects Possible bugs (empty 

try/catch/finally/switch statements), Dead code (unused local variables, parameters and 

private methods), Suboptimal code (wasteful String/StringBuffer usage), 

Overcomplicated expressions (unnecessary if statements for loops that could be while 

loops), Duplicate code (copied/pasted code means copied/pasted bugs). On the other 

hand, faults possible unexpected exception, length may be less than zero, division by 

zero, stream not closed on all paths and should be a static inner class cases were not 

implemented by PMD static analysis tool. 

 PMD performs syntactic checks and dataflow analysis on program source code. 

In addition to some detection of clearly erroneous code, many of the “bugs” PMD 

looks for are stylistic conventions whose violation might be suspicious under some 

circumstances. For example, having a try statement with an empty catch block might 

indicate that the caught error is incorrectly discarded. Because PMD includes many 

detectors for bugs that depend on programming style, PMD includes support for 

selecting which detectors or groups of detectors should be run. While PMD’s main 

structure was conserved, boundary overflow vulnerability rules have been 

implemented to PMD. 
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ÖZET 
 

JAVA UYGULAMALARINDA GÜVENLİĞE İLİŞKİN 
ZAYIFLIKLARIN BULUNMASINA YÖNELİK BİR STATİK 

ANALİZİNİN GELİŞTİRİLMESİ 
 
 Bu tez java uygulamalarinda bulunan güvenlik sınırlamaları saptanmasına 

yönelik statik analiz araçlarını geliştirmeyi amaçlamaktadır. Bu amaçla, java kaynaklı 

kodlarla ilgili varolan açıkların ortadan kaldırılmasına katkıda bulunacaktır. 

 FindBugs, Jlint, PMD, Checkstyle ve ESC/Java2 yaygın olarak kullanılan statik 

analiz araçlarıdır. Bu çalışmada, Possible bugs (olası hatalar),  Dead code 

(kullanılmayan kod),  Suboptimal code (yetersiz kod),  Overcomplicated expressions 

(karmaşık ifadeler) ve  Duplicate code (ikinci kod) gibi hataların saptanmasına yönelik 

geliştirilmiş olan PMD statik analiz aracının kullanımı amaçlanmaktadır. Buna karşılık 

PMD’nin faults possible unexpected exception (olası beklenmeyen kural dışı durum), 

length may be less than zero(yapı boyutu sıfırdan küçük olabilir), division by zero 

(sıfıra bölünme), stream not closed on all paths (I/O için açılan katarın kapatılmaması) 

gibi açıkları bulamadığı saptanmıştır. 

Bazı hatalı kodları saptamasının yanında PMD’nin bulmaya çalıştığı hataların 

çoğu, biçimsel hatalara dayanmaktadır. Örnek olarak, try catch yapısındaki boş catch 

bloğunu gösterebilmektedir. PMD, programlama stiline bağlı olarak birçok algılayıcı 

kural içermektedir ve bu kuralları isteğe göre seçebilme özelliğine sahiptir. PMD’nin 

ana yapısı korunarak taşma zayıflıkları için yeni kurallar geliştirilmiştir.  
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CHAPTER 1 

 

INTRODUCTION 

 
Static analysis is the automatic method to reason about runtime properties of 

program code without actually executing it. Properties that will be considered include 

those which lead to premature termination or ill-defined results of the program, but 

preclude for instance purely syntactic properties such as syntax errors or simple type 

errors. Nor does static analysis address errors involving the functional correctness of 

the software. Hence, static analysis can be used to check that the program execution is 

not prematurely aborted due to unexpected runtime events, but it does not guarantee 

that the program computes the correct result. While static analysis can be used to check 

for e.g. deadlock, timeliness or non-termination there are other, more specialized, 

techniques for checking such properties; although relying on similar principles. 

Static analysis should be contrasted with dynamic analysis which concerns 

analysis of programs based on their execution, and includes e.g. testing, performance 

monitoring, fault isolation and debugging. 

Static analysis is useful in several respects. It can be used to detect certain types 

of software runtime errors e.g. division by zero, arithmetic overflows, array indices out 

of bounds, buffer overflows etc without actually executing the code. However, static 

analysis does not in general guarantee the absence of runtime errors. While static 

analysis can reduce the need for testing or even detect errors that in practice cannot be 

found by testing, it is not meant to replace testing. 

In addition to finding errors, static analysis can also be used to produce more 

efficient code; in particular for safe languages like Java, where efficiency was not the 

primary goal of the language designers. Many runtime tests carried out in Java 

programs can in practice be avoided given certain information about the runtime 

behavior. For instance, tests that array indices are not out-of-bounds can be omitted if 

it is known that the value of the indices is limited to values in-bounds. Static analysis 

can provide such information. 

Static analysis can also be used for type inference in untyped or weakly typed 

languages or type checking in languages with non-static type systems. Finally static 
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analysis can be used for debugging purposes, automatic test case generation, impact 

analysis, and intrusion detection and for software metrics.  

  In this thesis, we will focus on to find security vulnerabilities in java 

applications. 
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CHAPTER 2 

 

STATIC ANALYSIS 

 
2.1. Principles of Static Analysis 

 
Some properties checked by static analysis tools can be carried out by 

relatively straightforward pattern matching techniques. However, most properties are 

more challenging and require much more sophisticated analysis techniques. It is often 

claimed that static analysis is done without executing the program, but for nontrivial 

properties this is only partially true. Static analysis usually implies executing the 

program not in a standard way, but on an abstract machine and with a set of abstract 

non-standard values replacing the standard ones. The underlying concept is that of a 

state; a state is a collection of program variables and the association of values to those 

variables. State information is crucial to determine if a statement such as x=x/y may 

result in division by zero (it may do so if y may have the value zero at the time when 

the division is made). In the case of an intra-procedural analysis the state takes account 

only of local variables while a context-sensitive analysis must take account also of 

global variables plus the contents of the stack and the heap. The program statements 

are state transformers and the aim of static analysis is to associate the set of all possible 

states with all program points. Such sets of states are typically infinite or at least very 

large and the analysis must therefore resort to some simplified description of the sets 

representing only some of the relationships between the program variables, e.g. 

tracking an interval from which a variable may take its value. 

For instance, instead of computing with the integers it may be computed with 

values that describe some property of the integers; may as a simple example replace 

the domain of integers with the finite domain {Ө, 0,⊕ ,?} where Ө designates a 

negative integer (i.e. the interval ]-∞ ,-1]), 0 designates the integer 0 (the interval[0, 

0]), ⊕ designates a positive integer (the interval [1,∞ [) and ? designates any integer 

(the interval ]- ∞, ∞ [). Operations, such as addition, which normally operate on the 

integers, must be redefined over the new domain and in such a way that the abstract 
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operation mimics the concrete one in a faithful way. The abstract operation of addition 

can be defined as in Figure 2.1 (Emanuelsson and Nilsson, 2008). 

 

 

Figure 2.1. The abstract operation of addition  
(Source: Emanuelsson and Nilsson, 2008) 

 
Such abstractions leads to loss of information which influences the precision of the 

analysis; if it is known that x = 4 and y = -3 then x + y is positive, but if it is only 

known that x = ⊕  and y = Ө then it is inferred that x + y is an integer. 

  

2.2. Types of Static Analysis 

 

2.2.1. Secure Information Flow 

 
Conventional security mechanisms such as access control and encryption do 

not directly address the enforcement of information-flow policies. Recently, a 

promising new approach has been developed: the use of programming-language 

techniques for specifying and enforcing information-flow policies (Sabelfelt and 

Myers, 2003). Security mechanisms of most computer systems make no attempt to 

guarantee secure information flow. "Secure information flow," or simply "security," 

means here that no unauthorized flow of information is possible. In the common 

example of a government or military system, security requires that processes be unable 

to transfer data from files of higher security classifications to files (or users) of lower 

ones: not only must a user be prevented from directly reading a file whose security 

classification exceeds his own, but he must be inhibited from indirectly accessing such 

information by collaborating in arbitrarily ingenious ways with other users who have 

authority to access the information Most access control mechanisms are designed to 

control immediate access to objects without taking into account information flow 
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paths implied by given, outstanding collection of access rights. Contemporary access 

control mechanisms, have demonstrated their abilities to enforce the isolation of 

processes essential to the success of a multitask system. These systems rely primarily 

on assumptions of "trustworthiness" of processes for secure information flow among 

cooperating processes (Denning, 1976). 

The most important objectives of information security systems are to protect 

confidentiality, integrity, and availability. It is obvious that compromises in integrity 

are the main causes of compromises in confidentiality and availability. Therefore, 

mechanism that specifies and enforces secure information flow policies is needed 

within application programs (Huang et al., 2004). 

Information flow is a way of modelling data flow within a program usually 

meaning that values can flow in one direction (in security this is from safe to unsafe). 

This is usually looked at regarding security policies (England, 2008). 

Type systems have proven useful for specifying and checking program safety 

properties and also used to verify program security. By means of programmer-supplied 

annotations, both proof-carrying codes (PCC) (Necula, 1997) and typed assembly 

languages (TAL) (Morrisett et al., 1999) are designed to provide safety proofs for low-

level compiler-generated programs. 

Many security verification efforts have focused on temporal safety properties 

related to control flow.  

 

2.2.1.1. Type-Based Analysis 

 
Since vulnerabilities in Web applications are primarily associated with insecure 

information flow, the use of proper information flow rather than control flow is 

generally accepted. The first widely accepted model for secure information flow was 

given by Bell and La Padula (McLeen, 1990). They stated two axioms: a) a subject 

cannot access information classified above its clearance, and b) a subject cannot write 

to objects classified below its clearance. Their original model only dealt with 

confidentiality. Denning (1976) established a lattice model for analyzing secure 

information flow in imperative programming languages based on a program 

abstraction derived from an instrumented semantics of a language. Orbaek (1995) 

proposed a similar treatment, but addressed the secure information flow problem in 
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terms of data integrity instead of confidentiality. To base directly on standard language 

semantics, Volpano et al. showed that Denning’s axioms can be enforced using a type 

system in which program variables are associated with security classes that allow inter-

variable information flow to be statically checked for correctness. Soundness was 

proven by showing that well-typed programs ensure confidentiality in terms of non-

interference. Recently, fully functional type systems designed to ensure secure 

information flow have been offered for high-level, strong-typed languages such as ML 

(Pottier and Simonet, 2003) and Java (Myers, 1999).  

Type-based approaches to static program analysis are attractive because they 

prove program correctness without unreasonable computation efforts. Their main 

drawback is their high false positive rate, which often makes them impractical for real-

world use. Regardless of whether security classes are assigned through manual 

annotations or through inference rules, they are statically bound to program variables 

in conventional type systems. It is important to keep in mind that the security class of a 

variable is a property of its state, and therefore varies at different points or call sites in 

a program. In JIF and similar type-based systems, variable labels become increasingly 

restrictive during computation, resulting in high false positive rates. JIF addresses this 

problem by giving programmers the power to declassify variables—that is, to 

explicitly relax variable labels. 

Type analysis started with the syntax tree of a program and defined constraints 

over variables assigned to nodes. Analyses that work in this manner are flow 

insensitive, in the sense that the results remain the same if a statement sequence S1S2 is 

permuted into S2S1. Analyses that are flow sensitive use a control flow graph, which is 

a different representation of the program source. A control flow graph (CFG) is a 

directed graph, in which nodes correspond to program points and edges represent 

possible flow of control. A CFG always has a single point of entry, denoted entry, and 

a single point of exit, denoted exit. If v is a node in a CFG then pred(v) denotes the set 

of predecessor nodes and succ(v) the set of successor nodes. The CFGs for 

assignments, output, return statements, and declarations are given in Figure 2.2. 
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Figure 2.2. CFGs for assignments, output, return statements, and declarations. 

 

For the sequence S1 S2, the exit node of S1 and the entry node of S2 are eliminated and 

combined the statements together as shown in Figure 2.3. 

 

Figure 2.3. Sequence of S1 S2. 
 

Similarly, the other control structures are modelled by inductive graph constructions as 

given in Figure 2.4. 

 

 

Figure 2.4. Inductive graph constructions. 
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Using this systematic approach, CFG of the iterative factorial function is given in 

Figure 2.5. 

 
Figure 2.5. CFG of the iterative factorial function. 

 

2.2.2. Data Flow Analysis 

 
The purpose of data flow analysis is to statically compute certain information 

for every single program point (or for coarser units such as functions). For instance, 

the classical constant analysis computes, for each program point, the literal values that 

variables may hold. Classical dataflow analysis, also called the monotone framework, 

starts with a Control Flow Graph (CFG) and a lattice L with finite height. The lattice 

may be fixed for all programs, or it may be parameterized with the given program. To 

every node v in the CFG, it can be assigned a variable [v] ranging over the elements of 

L. For each construction in the programming language, a dataflow constraint that 

relates the value of the variable of the corresponding node to those of other nodes 
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(typically the neighbours) is defined. As for type inference, it will be ambiguously 

used the notation [S] for [v] if S is the syntax associated with v. 

For a complete CFG, a collection of constraints can be systematically extracted 

over the variables. If all the constraints happen to be equations or inequations with 

monotone right-hand sides, then it can be used the fixed-point algorithm to compute 

the unique least solution. The dataflow constraints are sound if all solutions correspond 

to correct information about the program. The analysis is conservative since the 

solutions may be more or less imprecise, but computing the least solution will give the 

highest degree of precision. 

 

2.2.2.1 Fixed Point Algorithm 

 
If the CFG has nodes V = {v1, v2, . . . , vn}, with lattice Ln. Assuming that node 

vi generates the dataflow equation [vi] = Fi([v1], . . . , [vn]), and  combined function F : 

Ln → Ln  described as: 

F(x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn)) 

The naive algorithm is then to proceed as follows: 

x = (⊥, . . . , ⊥); 

do { t = x; x = F(x); } 

while (x ≠ t); 

to compute the fixed-point x. A better algorithm, called chaotic iteration, exploits the 

fact that lattice has the structure Ln: 

x1 = ⊥; . . . xn = ⊥; 

do { 

t1 = x1; . . . tn = xn; 

x1 = F1(x1, . . . , xn); 

. . . 

xn = Fn(x1, . . . , xn); 

} while (x1≠t1 V . . . V xn≠ tn); 

to compute the fixed-point (x1, . . . , xn). 
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2.2.2.2. Forwards-Backwards-May-Must 

 
Four classical analyses can be compared in various ways. They are all just 

instances of general monotone framework, but their constraints have a particular 

structure. A forwards analysis is one that for each program point computes information 

about the past behaviour. Examples of this are available expressions and reaching 

definitions. They can be characterized by the right-hand sides of constraints only 

depending on predecessors of the CFG node. Thus, the analysis starts at the entry node 

and moves forwards in the CFG. 

A backwards analysis is one that for each program point computes information 

about the future behaviour. Liveness and very busy expressions are the examples. They 

can be characterized by the right-hand sides of constraints only depending on 

successors of the CFG node. Thus, the analysis starts at the exit node and moves 

backwards in the CFG. 

A may analysis is one that describes information that may possibly be true and, 

thus, computes an upper approximation. Examples of this are liveness and reaching 

definitions. They can be characterized by the right-hand sides of constraints using a 

union operator to combine information. 

A must analysis is one that describes information that must definitely be true 

and, thus, computes a lower approximation. Examples of this are available expressions 

and very busy expressions. They can be characterized by the right-hand sides of 

constraints using an intersection operator to combine information. All possible 

combination is given in Table 2.1. 

 

Table 2.1. The classic data flow analyses. 

 Forward Backward 

May Reaching definitions  
The assignments that 
produced current 
variable values 

Live variables 
Variables whose current 
values may be used later 

 

Must Available expressions 

Computed expressions 
whose values have not 
Changed 

Very busy expressions 

Expressions that are 
always evaluated (in a 
loop) 
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2.2.3. Mutability Analysis 

 
A mutability analysis determines which fields and objects are mutable, and 

which methods may mutate them. Knowing which method parameters may be mutated 

during a method’s execution is useful for many software engineering tasks such as 

modelling, verification, compiler optimizations, and program transformations such as 

refactoring, test input generation, and regression oracle creation as well as 

specification mining. Both static and dynamic analysis techniques have been employed 

to detect immutable parameters (Artzi et al., 2007). Computing accurate static analysis 

approximations threatens scalability, and imprecise approximations can lead to weak 

results. Dynamic analyses offer an attractive complement to static approaches, both in 

not using approximations and in detecting mutable parameters.  

The goal of parameter mutability analysis is the classification of each method 

parameter (including the receiver) as either reference mutable or reference-immutable. 

Informally, reference immutability guarantees that a given reference is not used to 

modify its referent. Parameter p of method m is reference-mutable if there exists an 

execution of m in which p is used to mutate the state of the object pointed to by p. 

Parameter p is said to be used in a mutation, if the left hand side of the mutating 

assignment was obtained during the given execution via a series of field accesses and 

copy operations from p. If no such execution exists, the parameter p is reference-

immutable. 

Static mutability analysis consists of two phases: S, an intraprocedural analysis 

that classifies as (im)mutable parameters (never) affected by field writes within the 

procedure itself, and P, an interprocedural analysis that propagates mutability 

information between method parameters. P may be executed at any point in an analysis 

pipeline after S has been run, and may be run multiple times (interleaving with other 

analyses). S and P both rely on an intraprocedural pointer analysis that calculates the 

parameters pointed to by each local variable.  

An intraprocedural, context-insensitive, flow-insensitive, 1-level field-

sensitive, and points-to analysis are used to determine which parameters can be pointed 

to by each expression. As a special case, the analysis is flow-sensitive on the code 

from the beginning of a method through the first backwards jump target, which 

includes the entire body of methods without loops. The points-to analysis calculates, 
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for each local variable l, a set P0(l) of parameters whose state l can point to directly 

and a set P(l) of parameters whose state l can point to directly or transitively. The 

points-to analysis has “overestimate” and “underestimate” varieties; they differ in how 

method calls are treated. 

The static analysis S works in four steps.  

(1) S performs the “overestimate” points-to analysis.  

(2) The analysis marks as mutable some parameters that are currently marked 

as unknown: For each mutation l1. f = l2, the analysis marks all elements of P0(l1) as 

mutable.  

(3) The analysis computes a “leaked set” L of locals, consisting of all 

arguments (including receivers) in all method invocations and any local assigned to a 

static field (in a statement of the form Global.field = local).  

(4) The analysis marks as immutable all unknown parameters that are not in the 

set ∪l∈L P(l) only if all method’s parameters can be marked immutable.  

S is i-sound and m-unsound. To avoid over-conservatism, S assumes that on 

the entry to the analyzed method all parameters are fully un-aliased, i.e., point to 

disjoint parts of the heap. This assumption may cause S to miss possible mutations due 

to aliased parameters; to maintain i-soundness, S never classifies a parameter as 

immutable unless all other parameters to the method can be classified as immutable. 

The m-unsoundness of S is due to infeasible paths (e.g., unreachable code), flow-

insensitivity, and the overestimation of the points-to analysis. 

The interprocedural propagation phase P refines the current parameter 

classification by propagating both mutability and immutability information through the 

call graph. Given an i-sound input classification, propagation is i-sound and m-

unsound. 

Because propagation ignores the bodies of methods, the P phase is i-sound only 

if the method bodies have already been analyzed.  

 

2.2.4. Points to Analysis 

 
The most important information that must be obtained is the set of possible 

targets of pointers. There are infinitely many possible targets during execution, so it 

must be selected some finite representatives. The canonical choice is to introduce a 
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target &id for every variable named id and a target malloc-i, where i is a unique index, 

for each different allocation site (program point that performs a malloc operation). 

Targets are used to denote the set of pointer targets for a given program. 

Points-to analysis takes place on the syntax tree, since it will happen before or 

simultaneously with the control flow analysis. The end result of points-to analysis is a 

function pt that for each (pointer) variable p returns the set pt (p) of possible pointer 

targets to which it may evaluate. A conservative analysis could be performed, so these 

sets will in general be too large. Given this information, many other facts can be 

approximated. If it is determined whether pointer variables p and q may be aliases, 

then a safe answer is obtained by checking whether pt(p)∩pt(q) is non-empty. The 

simplest analysis possible, called address taken, is to use all possible targets, except 

that &id is only included if this construction occurs in the given program. This only 

works for very simple applications, so more ambitious approaches are usually 

preferred. If there is any restriction in typable programs, then any points-to analysis 

could be improved by removing those targets whose types are not equal to that of the 

pointer variable. 

 

2.2.5. Dependence Analysis 

 
Fundamental analysis step in an advanced optimizing compiler (as well as 

many other software tools) is data dependence analysis for arrays. This means deciding 

if two references to an array can refer to the same element and if so, under what 

conditions. This information is used to determine allowable program transformations 

and optimizations. 

Dependence analysis is a very important part of any vectorizing or 

concurrentizing compiler. Data dependence analysis has great importance for the 

automatic detection and exploitation of implicit parallelism. Therefore, experimental 

evaluation to determine the accuracy of dependence analysis techniques is very 

important. Such evaluation is necessary to guide research and to help compiler writers 

in the selection of a dependence analysis strategy. Constant test, the GCD (Greatest 

Common Divisor) test, three variants of Banerjee’s inequalities, and integer-

programming based tests such as the Omega test are the techniques that included in 

dependence analysis. 
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Dependence analyses generally focus on statements with array references and 

assume that the two statements to be analyzed are both inside the same, possibly 

multiply-nested, DO loop. The generic loop test can be summarized as (Petersen and 

Padua, 1993); 

       
 DO I1=L1,U1 

. . . 
DO Id = Ld,Ud 
 

Sv ;  X(f1 (Il,...,Id),………. fn (Il,...,Id)) = 
Sw ;      ….= X(g1 (Il,...,Id),………. gn (Il,...,Id)) = 
 

 
END DO 
. . . 

      END DO 

Where X is an n-dimensional array and fi and gi are the functions from Zd to Z. 
 

The constant test is the only approximate method that not only can break 

dependence but can also conclusively prove dependence. If all the subscripts in the two 

array references are loop invariant and have the same value, then there will be data 

dependence for all potential direction vectors. If any pair of corresponding subscripts is 

constant and different, then there is no data dependence regardless of the values of any 

other subscript. Loop invariant expressions that are common to both subscripts in the 

potential dependence are cancelled before the comparison is made. 

The greatest common divisor (GCD) test establishes an existence criterion for 

the solution to the equation Fi(I’) = gi(I”). This test is based on the fact that when both 

fi and gi are linear, a solution to the equation exists if the greatest common divisor of 

the coefficients of I’ and I“ also divides the constant term. Conversely, if it does not 

divide the constant term, then no solution can exist.  When the GCD method breaks a 

potential dependence, it breaks all the direction vectors simultaneously. The GCD 

method cannot prove dependence because it does not take into account the value of the 

loop limits. 

The Omega test combines new methods for eliminating equality constraints 

with an extension of Fourier-Motzkin variable elimination to integer programming. 

The Omega test determines whether there is an integer solution to an arbitrary set of 

linear equalities and inequalities, referred to as a problem. In addition to supporting the 

full capabilities of integer-programming, the Omega test also permits the systematic 
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handling of unknown additive terms. Consider the subscripts X(l+N) and X(I’ ) where  

1 ≤ I , I’≤ N ( N is the loop upper limit ). The Omega test is capable of analyzing such 

expressions involving unknown additive constrained variables. After the addition of 

the loop limit, it can be found that the system of equations is inconsistent since I + N ≠ 

I’ for all I’ in [1... N]. Pugh (1992) found that the time required by the Omega test to 

analyze a problem is rarely more than twice the time required to scan the array 

subscripts and loop bounds. This would indicate that the Omega test is suitable for use 

in production compilers. 

 

2.2.6. Escape Analysis 

 
Escape analysis is a static analysis that determines whether the lifetime of data 

may exceed its static scope. The main originality of escape analysis is that it 

determines precisely the effect of assignments, which is necessary to apply it to object 

oriented languages with promising results.  

Object-oriented languages such as C++ and Java often use a garbage collector 

(GC) to make memory management easier for the programmer. A GC is even 

necessary for the Java programming language, since Java has been designed to be safe, 

so it cannot rely on the programmer to deallocate objects when they are useless. 

However, garbage collecting data is time consuming, especially with a mark and 

sweep collector as in the JDK (Java Development Kid). Therefore stack allocation may 

be an interesting alternative. However, it is only possible to stack allocate data if its 

lifetime does not exceed its static scope. The goal of escape analysis is precisely to 

determine which objects can be stack allocated. 

Escape analysis is an abstract interpretation-based analysis which has been already 

applied to functional languages.  However, object-oriented languages have specific 

features, which make the analysis completely different from the functional version: 

•  Object-oriented languages use dynamic calls, so before analyzing the code, it must 

be first determined which methods may actually be called at each call point; 

•  Object-oriented languages make an intensive use of assignments, which must 

therefore be precisely analyzed, which much complicates our task; 

•  Object-oriented languages use sub-typing, which must be taken into account for the 

representation of escape information, since it is computed from the types. 
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Escape analysis has two applications: an object o that does not escape from 

method m (whose lifetime is limited to the execution of m) can be stack allocated in m. 

Moreover, when analysis claims that o does not escape from m, o is also local to the 

current thread, so it did not needed do synchronizations when calling a synchronized 

method on object o. This second optimization is important, because synchronization is 

a costly operation in the JDK. Moreover, there is much synchronization even in single-

threaded programs since libraries use synchronization to ensure thread-safety in all 

cases. Synchronization elimination could also be applied to other multithreaded 

languages. 

 

2.2.7. Alias Control and Confinement 

 
Confinement properties impose a structure on object graphs which can be used 

to enforce encapsulation properties. From a practical point of view, encapsulation is 

essential for building secure object-oriented systems as security requires that the 

interface between trusted and untrusted components of a system be clearly delineated 

and restricted to the smallest possible set of operations and data structures. One of the 

main benefits of object-oriented programming is information hiding and encapsulation: 

classes and visibility controls offer encapsulation without sacrificing extensibility and 

flexibility. But it is well known that the unfettered use of shared references to mutable 

objects is error-prone and can violate intended encapsulation. Quite a few proposals 

have been made for confinement (alias control).  

One useful confinement property is unique (unshared, references). These have 

strong properties but for many purposes sharing is needed. Sharing can often be 

confined to the scope of a module (a sealed or closed package). This facilitates a 

coarse form of encapsulation that is quite useful, e.g., in debugging and security. 

Stronger and more fine-grained confinement is needed for reasoning about 

specifications using “modified clauses” and for justifying program transformations.  

Banerji et al., defined the confinement as a property of program syntax that is a 

static analysis of instance-based confinement. The definition was syntax-directed and 

did not require any code annotations or flow analysis. 

The syntax is based on that of Java, with some restrictions for ease of 

formalization; for example, “return” statements appear only at the end of a method, 
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and heap effects (new and field update) occur in commands rather than expressions. 

There are a couple of minor deviations from Java, e.g., the keyword var marks local 

variable declarations. A program consists of a collection of class declarations like the 

following one. 

class Boolean extends Object       { 

bool f; 

unit set(bool x){ this.f := x; return unit } 

bool get()  { skip; return this.f } } 

Instances of class Boolean has a private field f with the primitive type bool. There is no 

constructor; fields of new objects are given their Java defaults (null, false). Fields are 

considered to be private to their class and methods public: fields are only visible to 

methods declared in this class, but methods are visible to all classes. Fields are 

accessed in expressions of the form this.f, using “this” to refer to the current object. 

The unit value; the singleton type, unit, corresponds to Java's “void". Object types are 

implicitly references: assignment creates aliases and == compares references. 

The primary challenge in building and evolving large object-oriented systems 

is understanding aliasing between objects. Unexpected aliasing can lead to broken 

invariants, mistaken assumptions, security holes, and surprising side effects, all of 

which may lead to software defects and complicate software evolution (Aldrich et al., 

2002). Aldrich defined three major challenges in order to bring alias control into 

practice (Clark et al., 2008); 

1. The community has to identify applications where the benefit of making program 

structure explicit has a significant and immediate benefit. Two promising 

candidates are concurrency and verification. For both applications it will be 

necessary to improve the expressiveness in order to common program styles and 

idioms. 

2. The community has to increase the adoptability of alias control by reducing the 

annotation burden through inference and by providing support for existing 

languages and programs. 

3. The community has to increase the applicability of alias control to be able to 

handle more programs. He mainly stated that the community has focused too much 

on restricting aliasing rather that documenting the aliasing programs and using 

information for reasoning. 
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Understanding and evolving large software systems is one of the most pressing 

challenges confronting software engineers today. When evolving a complex system in 

the face of changing requirements, developers need to understand how the system is 

organized in order to work effectively. For example, to avoid introducing program 

defects, programmers need to be able to predict the effect of making a software 

change. Also, while fixing defects, programmers need to be able to track value flow 

within a program in order to understand how an erroneous value was produced. In an 

object-oriented program, all of these tasks require understanding the data sharing 

relationships within the program. These relationships may be very complex at worst, a 

reference could point to any object of compatible type and current languages do not 

provide much help in understanding them. 

Data sharing problems can also compromise the security of a system. For 

example, in version 1.1 of the Java standard library, the security system function 

Class.getSigners() returned a pointer to an internal array, rather than a copy. Clients 

could then modify the array, compromising the security of the “sandbox” that isolates 

Java applets and potentially allowing malicious applets to pose as trusted code. 

Existing languages provide poor support for preventing security problems that arise 

from improper data sharing. Aldrich et al., described the AliasJava annotation system 

to understand the data sharing patterns in Java programs. The annotations bound 

aliasing on the heap structurally: unique describes an unshared reference, owned 

objects are assigned an owner that controls who may access that object, and shared 

indicates the worst case of a globally-aliased reference. It is also provided a lent 

annotation expressing sharing that is temporally bounded by the length of a method 

call. 

 

2.3. Static Analysis Tools 

 
 Static analyzers are used to discover difficult to find programming errors before 

run time when they may be more difficult or impossible to find. This class of tool can 

discover many logical and security errors in an application without executing the 

compiled application. Unlike dynamic analysis tools which look at the application state 

while it is being executed, static analysis tools do not require the application to be 

compiled or executed; bugs can be found by analyzing the source code directly. 
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Moreover, static techniques can explore abstractions of all possible program 

behaviours, and thus are not limited by the quality of test cases in order to be effective. 

Using static analysis to find bugs has some advantages over the traditional quality 

assurance techniques of testing and manual code inspections. Unlike testing, static 

analysis can easily check hard-to-execute code paths such as error-handling code. 

Compared to manual code inspection, static analysis is less easily confused by what 

code appears to do, and is relatively inexpensive to apply. For these reasons, static 

analysis to find bugs is a very active research area, and increasingly is becoming a 

standard part of the quality assurance toolbox in development of projects.  

Static techniques range in their complexity and their ability to identify or 

eliminate bugs. The most effective (and complex) static technique for eliminating bugs 

is a formal proof of correctness. While the existence of a correctness proof is perhaps 

the best guarantee that the program does not contain bugs, the difficulty in constructing 

such a proof is prohibitive for most programs. Partial verification techniques have 

been proposed. These techniques prove that some desired property of a program holds 

for all possible executions. Such techniques may be complete or incomplete; if 

incomplete, then the analysis may be unable to prove that the desired property holds 

for some correct programs. Finally, unsound techniques can identify “probable” bugs, 

but may miss some real bugs and also may emit some inaccurate warnings 

(Hovemeyer and Pugh, 2004). 

 Static analysis tools have been used in a rudimentary form for the majority of 

the history of modern programming languages. Early versions of simple pattern 

matching static analysis tools have been used to enforce coding styles within a 

company, or to discover simple programming errors. As more research in the subject 

was completed, developers of static analysis tools found more programmatic errors 

that could be discovered. Today tools can scan C, C++ and Java code for many 

common coding problems within many different categories (Ware and Fox, 2008). 

 Static analysis tools have gone through many stages of sophistication. In their 

infancy the tools were little more than a pattern matching command such as grep. The 

programmer could search for a list of functions that were known to be dangerous and 

which should be avoided. In this early stage the tools were difficult to use, tedious, and 

limited in their ability to find real bugs (Hovemeyer and Pugh, 2004). 
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 The next attempt at finding bugs using static analysis techniques came by 

looking at code metrics, such as lines of code, ratio of lines of code to lines of 

comments, cyclomatic complexity and others. Using these techniques the developer 

could gain a greater understanding of the complexity of the code. Complexity metrics 

such as lines of code per function could help a developer break the code into smaller 

parts for greater readability or lesser complexity. Cyclomatic complexity is one of the 

more widely used software quality metrics. It allows a developer or tester to measure 

the potential for bugs in a program, by mapping the number of independent paths 

through each module. The more paths that can be taken, the more complex the code is, 

and the more likely that there will be bugs waiting to be found (McCabe, 1976; 

Shepperd, 1988). 

 The next step in the evolution of static code analysis was to use more 

sophisticated searching algorithms. By adding some context to the search it became 

possible to find bugs that required interaction between multiple function calls, such as 

usage of alloc without a matching free, failing to close an open network connection 

and many others. Tables could be employed to ensure each memory allocation was 

being properly de-allocated and that it was the same memory reference allocated in the 

beginning. 

 Static analysis tools then began adding Semantic Analysis techniques (Barbuti 

et al., 1993) that enabled discovery of the basic structure and relation of each function 

within the application. This additional contextual information helps the analyzer 

understand and report bugs that require knowledge of specific code paths through the 

application. The most advanced static analyzers use abstract syntax trees to provide the 

best possible bug finding capabilities. Crew (1997) describes a language for specifying 

patterns to match the abstract syntax trees of C and C++ programs (ASTLOG). 

ASTLOG has been used successfully to find bugs and performance problems, and is 

the basis of the PREfast tool used extensively within Microsoft to find bugs. ASTLOG 

is an interesting data point in the space of static analysis techniques to find bugs, 

because it shows that simple pattern-matching approaches can be very effective at 

finding interesting program features, such as probable bugs. Unlike dataflow analysis 

and abstract interpretation, this kind of analysis does not directly model the semantics 

of program operations, focusing entirely on syntactic structures. Even given this 

limitation, ASTLOG has been used successfully to find bugs. Using the knowledge 
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gained by building an abstract syntax tree, a static analysis tool can run detailed 

simulations of suspicious code fragments to better predict how the code will react at 

runtime. 

 Some static analysis tools allow developers to mark their code with special 

comments or some other form of metadata to describe rules and inter-function 

dependencies. This additional information allows the analyzer to understand under 

what conditions a bug may occur as well as expectations each function has for 

parameters passed in and values returned. The use of metadata keeps the number of 

false positives down and helps the analyzer follow code paths more closely. 

 Recently static analysis tools have allowed developers or testers to create their 

own rules or modify existing rules or plug-ins. These customizations can help tailor the 

static analyzer specifically to the target application. This customization enables a 

developer to look for bugs specific to their operating environment, application needs, 

and coding standards. 

 

2.3.1. How Static Analysis Tools Find Flaws 

 
The first thing a static analysis tool must do is identify the code to be analyzed. 

The source files that must be compiled to create a program may be scattered across 

many directories, and may be mixed in with other source code that is not used for that 

program. Static analysis tools operate much like compilers so they must be able to 

identify exactly which source files contribute and should ignore those that do not. The 

scripts or build system that builds the executable obviously know which files to use, so 

the best static analysis tools can extract this information by reading those scripts 

directly or by observing the build system in action. This way the tool gets to see not 

only the source files but also which compiler is being used and any command-line 

flags that were passed in. The parser that the static analysis tool uses must interpret the 

source code in the same way that the real compiler does. It does this by modeling how 

the real compile works as closely as possible. The command-line flags are an essential 

input to that. 

As the build system progresses, each invocation of the compiler is used to 

create a whole program model of the program. This model consists of a set of abstract 

representations of the source, and is similar to what a compiler might generate as an 
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intermediate representation. It includes the control-flow graph, the call graph, and 

information about symbols such as variables and type names. 

Once the model has been created, the analysis performs a symbolic execution 

on it. This can be thought of as a simulation of a real execution. Whereas a real 

execution would use concrete values in variables, the symbolic execution uses abstract 

values instead. This execution explores paths and, as it proceeds, if any anomalies are 

observed, they are reported as warnings. This approach is based on abstract 

interpretation (Cousot and Cousot, 1977) and model checking (Cousot and Cousot 

1999; Clarke et al., 2002). Abstract interpretation, introduced was developed to 

provide a firmer theoretical foundation for dataflow analysis. An abstraction function 

maps the infinite domain of program objects into a finite domain of abstract objects. 

The effects of program operations are modeled using the abstract domain. A 

concretization function maps the abstract objects back into the program domain (with 

some loss of precision). Dataflow analysis can be considered a special case of abstract 

interpretation. Model checking is a technique for exploring reachable states in a 

concurrent system for errors. It was initially developed for verification of hardware 

systems; recent research has applied it to software systems. The SLAM project (Ball 

and Rajamani, 2002) applies model checking to boolean abstractions of programs. For 

predicates in a C program, boolean predicates are abstracted such that if a property is 

true of the Boolean program, it will also be true of the original C program. The 

boolean abstraction of the original program is done incrementally; if the desired 

property cannot be proved, new predicates are added and the boolean program checked 

again. 

The analysis is path-sensitive, which means that it can compute properties of 

individual paths through the program. This is important because it means that when a 

warning is reported, the tool can tell the user the path along which execution must 

proceed in order for the flaw to be manifest. Tools also usually indicate the points 

along that path where relevant transformations occur and conditions on the data values 

that must hold. These help users understand the result and how to correct the problem 

should it be confirmed. 

Once a set of warnings have been issued, these tools offer features to help the 

user manage the results, including allowing the user to manually label individual 

warnings. Warnings that correspond to real flaws can be labeled as true positives. 
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Warnings that are false alarms can be labeled as false positives. Warnings that are 

technically true positives but which are benign can be labeled as don’t care. Most tools 

offer features that allow the user to suppress reporting of such warnings in subsequent 

analyses. 

 

2.3.2. Limitations of Static Analysis 

 
The obvious limitation of static analysis is that most nontrivial program 

properties are undecidable. As a result, any static analysis technique must approximate 

the behaviour of the input program. For this reason, no static analysis technique can be 

both complete and sound. In the literature on using program analysis to find bugs, 

sound generally means “finds every real bug”, and complete generally means “reports 

only real bugs.”  

Deciding how to approximate in a static analysis has important consequences. 

Both soundness and completeness are desirable properties. In theory, a sound analysis 

is able to find every real instance of the kind of bugs the analysis is designed to detect. 

However, it might do this by reporting 1,000 false positives for every accurate 

warning, making use of the analysis unproductive. Similarly, a complete analysis 

would only report definite bugs. However, it might find only a very small number of 

bugs, leaving a large number of false negatives. For these reasons, tools which are 

neither complete nor sound can serve a valuable role in the software quality assurance 

process as long as they find a significant number of real bugs without emitting too 

many false positives. 

In order to understand the limitations of the techniques that these tools use, it is 

important to understand the metrics used to assess their performance. The first 

metric, recall, is a measure of the ability of the tool to find real problems. Recall is 

measured as the number of flaws found divided by all flaws present. The second metric 

is precision, which measures the ability of the tool to exclude false positives. It is the 

ratio of true positives to all warnings reported. The third metric is performance. 

Although not formally defined, this is a measure of the computing resources needed to 

generate the results. 

These three metrics usually operate in opposition to each other. It is easy to 

create a tool that has perfect precision and excellent performance, one that reports no 
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lines contain flaws will satisfy because it reports no false positives. Similarly, it is easy 

to create a tool with perfect recall and excellent performance, one that reports that all 

lines have errors will answer because it reports no false negatives. Clearly, however, 

neither tool is of any use whatsoever. 

Finally, it is at least theoretically possible to write an analyzer that would have 

excellent precision and excellent recall given enough time and access to enough 

processing power. Whether such a tool would be as useless as the previous two 

example tools is debatable and would depend on just how much time it would take. 

What is clear is that no such tools currently exist and to create them would be very 

difficult. 

As a result, all tools occupy a middle ground around a sweet spot that 

developers find most useful. Developers expect analyses to complete in time roughly 

proportional to the size of their code base and within hours rather than days. Tools that 

take longer simply do not get used because they take too long. Low precision means 

more false positives, which has an insidious effect on users. As precision goes down, 

even true positive warnings are more likely to be erroneously judged as false positives 

because the users lose trust in the tool. 

For most classes of flaws, precision less than 80 percent is unacceptable. For 

more serious flaws however, precision as low as five percent may be acceptable if the 

code is to be deployed in very risky environments. It is difficult to quantify acceptable 

values for recall as it is impossible to measure accurately in practice, but clearly users 

would not bother using these tools at all if they did not find serious flaws that escape 

detection by other means. 

Each of these constraints introduces its own set of limitations, however they are 

all interrelated. The reasons that lead to low recall are explained in more detail in the 

following sections. 

 

2.3.2.1. Path Limitations  

 
These analyses are path sensitive and this improves both recall and precision 

and is probably the key aspect of these products that makes them most useful. A full 

exploration of all paths through the program would be very expensive. If there are n 

branch points in a procedure, and there are no loops in that procedure, then the number 
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of intraprocedural paths through that procedure can be as many as 2 n. In practice, this 

is fewer because some branches are correlated, but the asymptotic behavior remains. If 

procedure calls and returns are taken into account, the number of paths is doubly 

exponential, and if loops are taken into account then the number of paths is 

unbounded. Clearly it is not possible for a tool to explore all of these paths. The tools 

restrict their exploration in two ways. First, loops are handled by exploring a small 

fixed number of iterations: often, the first time around the loop is singled out as 

special, and all other iterations are considered en masse and represented by an 

approximation. Second, not all paths are explored. It is typical for an analysis to place 

an upper bound on the number of paths explored in a particular procedure or on the 

amount of time available, and a selection of those remaining paths are explored. 

If asynchronous paths occur (such as those caused by interrupts or exceptions) 

or if the program uses concurrency, then the number of possible paths to consider can 

increase further. Many tools simply ignore these possibilities. Finally, most tools also 

ignore recursive function calls, and function calls that are made through function 

pointers (or make very coarse approximations) as considering these also contributes to 

poor performance and poor precision. 

 

2.3.2.2. Abstract Domain  

 
As previously mentioned, these tools work by exploring paths and looking for 

anomalies in the abstract state of the program. The appeal of the symbolic execution is 

that each abstract state represents potentially many possible concrete states. For 

example, given an 8-bit variable x, there are 28 possible concrete values: 0, 1, …, 255. 

The symbolic execution, however, might represent the value as two abstract 

states: x=0, and x>0. So where a concrete execution has 256 states to explore, the 

symbolic execution has only two. 

As such, the expressivity of this abstract domain is an important factor that 

determines the effectiveness of the analysis. Again, there is a trade-off here: better 

precision and recall can be achieved by more sophisticated abstract domains, but more 

resources will then be required to complete an analysis. Values in the abstract domain 

are equations that represent constraints on values, i.e., x=0, or y>10. As the analysis 

progresses, a constraint solver is used to combine and simplify these equations. A key 
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characteristic of these abstract domains is that there is a special value, usually 

named bottom, which indicates that the analysis knows no useful information about the 

actual value. Bottom is the abstract value that corresponds to all possible concrete 

values. Reaching bottom is impossible to avoid for any non-trivial abstraction in 

general as this would require solving the halting problem. Once bottom is reached, the 

analysis has a choice of treating it as a potentially dangerous value, which would 

increase recall, or as a probably safe value, which would increase precision. Most tools 

opt for the latter as the former also has the effect of decreasing precision enormously. 

If there are program constructs that step outside the bounds of what can be 

expressed in the abstract domain, this causes the analysis to lose track of variables and 

their relationships. For example, an abstract domain that allows the expression of 

affine relationships between no more than two variables admits expressions such 

as x=2y. However, something such as x=y+z is out of bounds because it involves three 

variables and the analysis would be forced to conclude x=bottom instead. 

The consequence of this is the abstract domain that a tool uses determine a 

great deal about the kind of flaws that it is capable of detecting. For example, if the 

tool uses an abstract domain of affine relations between two variables, then it may fail 

to find flaws that depend on three variables. Similarly, most tools choose a domain that 

allows them to reason about the values of integers and addresses but not floating-point 

values, so they will fail to find flaws in floating-point arithmetic (such as divide by 

zero). 

 

2.3.2.3. Missing Source Code  

 
If the source code to a part of a program is not available, as is almost always 

the case because of operating system and third-party libraries, or if the code is written 

in a language not recognized by the analysis tool, then the analysis must make some 

assumptions about how that missing code operates. Take, for example, a call to a 

function in a third-party library that takes a single pointer-typed parameter and returns 

an integer. In the absence of any other information, most analyses will assume that the 

function does nothing and returns an unknown value. This clearly is not realistic, but it 

is not practical to do better in general. The function may de-reference its pointer 

parameter, it may read or write any global variable that is in scope, it may return an 
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integer from a particular range, or it may even abort execution. If the analysis knew 

this, it would have better precision and recall but it is forced to make the simple 

assumption unless told otherwise. 

There are two approaches around this. First, if source is not available but object 

code is, then the analysis could be extended into the object code. This is a highly 

attractive solution but no products are available yet. The technological basis for such a 

tool exists, however (Balakrihnan et al., 2005), and it is expected that products capable 

of analyzing object code as well as C/C++ will appear. 

A second approach to the problem is to specify stubs, or models, that 

summarize key aspects of the missing source code. The popular analysis tools provide 

models for commonly used libraries such as the C library. These models only have to 

approximate the behavior of the code. Users can write these themselves for their own 

libraries but it can be a tricky and time-consuming effort. 

 

2.3.2.4. Out of Scope  

 
There are entire classes of flaws that static analysis is unlikely ever to be able 

to detect. Static analysis excels at finding places where the fundamental rules of the 

language are being violated such as buffer overruns, or where commonly used libraries 

are being used incorrectly, or where there are inconsistencies in the code that indicate 

misunderstanding. If the code does the wrong thing for some other reason, but does not 

then terminate abnormally, then static analysis is unlikely to be able to help because it 

is unable to divine the intent of the author. For example, if a function is intended to 

sort in ascending order, but perfectly sorts in descending order instead, then static 

analysis will not help much. This kind of functionality testing is what traditional 

dynamic testing is good for. 

 

2.3.3. Open Source Tools 

 
Open source software development is based on a relatively simple idea: the 

core of the system is developed locally by a single programmer or a team of 

programmers. A prototype system is released on the Internet, which other 
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programmers can freely read, modify and redistribute the system’s source code. The 

evolution of the system happens in an extremely rapid way; much faster than the 

typical rate of a ‘closed’ project.  It appears that open source is presenting the 

traditional software development industry with an important challenge (Stamelos et al., 

2002). SourceForge.net, the world’s largest open source development website, hosts 

over 70,000 open-source projects for more than 700,000 registered developers (Huang 

et al., 2004).  

It is often claimed that open source software is intrinsically more secure than 

closed source or commercial software. Others argue that it is not, and it is expected this 

debate will continue for some time to come. The availability of source code provides 

both attackers and defenders opportunities to study code in detail and identify software 

vulnerabilities. On the other hand, closed source software forces users to accept only 

the level of security diligence that the vendor chooses to provide (Covan, 2003). 

According to the Open Source Initiative (opensource.org, 2010), the terms for the 

distribution of open source software must also comply with 10 criteria specified in the 

Open Source Definition (opensource.org, 2010). The top 3 items out of the 10 criteria 

include:   

1. software should be freely redistributable,  

2. software must allow for distribution as source code as well as in a compiled 

form,  

3. licences must allow modifications and for derivatives generated from the 

source code.  

In Appendix B, several open source static analysis tools included in Multi-language, 

NET (C#, VB.NET and all .NET compatible languages), Java, C, C++, Objective-C, 

Perl and ActionScript are explained. 

 

2.3.4. Commercial Tools 

 
One distinct difference between open source and commercial software is the 

availability of source code for review. Commercial software is mostly closed source 

where the source code is not publicly available. Because the source code is not 

available, there is a barrier against access to the code that attackers have to cross, 

resulting in less likelihood of vulnerabilities in the source code being exploited even 
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though vulnerabilities do exist (Covan, 2003). In Appendix C, commercial static 

analysis tools are summarized. 

 

2.3.5. Comparison of Static Analysis Tools for Java 

 
Static analysis tools for Java analysis code are compared in Table 2.2. Table 

2.2 indicates the defect types with their categories and the corresponding positives 

found by each tool. The number before the slash denotes the number of true positives, 

the number after the slash the number of all positives. 

Most of the true positives can be assigned to the category (maintainability of 

the code). It is noticeable that the different tools predominantly find different positives. 

Only a single defect type was found from all tools, four types from two tools each. 

Considering the categories, FindBugs finds in the different systems positives from all 

categories and PMD only from the categories Failure of the application, Insufficient 

error handling, and Maintainability of the code. QJ Pro only reveals positives from the 

categories Logical failure of the application, Insufficient error handling, and Violation 

of structured programming. The number of faults found in each category from each 

tool is graphically illustrated in Figure 2.6. Also the number of types of defects varies 

from tool to tool. FindBugs detects defects of 13 different types, PMD of 10 types, and 

QJ Pro only of 4 types. 

 

Table 2.2. Comparison of static analysis tools  
(Source: Wagner et al., 2005) 
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Figure 2.6. A graphical comparison of number of true positives for each tool 
(Source: Wagner et al., 2005) 

 

The accuracy of the tools is also diverse. Using the defect type “Exception is 

caught but not handled” that can be found by all three tools as an example. While 

FindBugs only finds 4 true positives, PMD reveals 29 and QJ Pro even 30. For this, the 

result from QJ Pro contains the true positives from PMD which in turn contain the 

ones from FindBugs. A reason for this is that QJ Pro is also able to recognize a single 

semicolon as a non-existent error handling, whereas the other two interpret that as a 

proper handling. This defect type is also representative in the way that FindBugs finds 

the least true positives. This may be the case because it uses the compiled class-files 

while PMD and QJ Pro analyse the source code. 
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CHAPTER 3 

 

PMD 

 
3.1. Overview of PMD 

 
PMD is an open-source, rule based, static source code analyzer that analyzes 

Java source code based on the evaluative rules that have been enabled during a given 

execution. It finds potential problems in Java source code, unused variables, empty 

catch blocks, wasteful object creation. Unlike a runtime analysis tool such as a 

memory profiler, a “static” code analysis tool such as PMD finds problems without 

actually executing code. PMD comes with more than 140 built-in rules to check source 

code. It also contains a framework that allows writing rules, so it can be checked 

project’s source code for problems specific to environment (Copeland, 2005). The tool 

comes with a default set of rules which can be used to unearth common development 

mistakes such as having empty try-catch blocks, variables that are never used, objects 

that are unnecessary etc. Additionally, PMD also allows users to execute custom 

analyses by allowing them to develop new evaluative rules in a convenient manner. 

The tool comes with a relatively easy to user command line interface and at the same 

time, can also be integrated with popular development environments such as Eclipse. It 

is also a fact that PMD is quite popular in the Java development community and has 

also achieved substantial industry acceptance. Currently it only supports Java and as 

can be ascertained from the second section of this document, while there is room for 

improvement, the tool is generally quite effective and has proven itself as a useful 

static analysis tool for both large and small code bases. 

PMD operates in a manner that is very similar to conventional static analysis 

tools. This naturally means that the tool involves the generation and traversal of an 

abstract syntax tree. In summary, based on the information obtained from PMD 

project’s official website at sourceforge.com, PMD’s internal operation can be 

summarized as follows (Hsu et al., 2007):  

(1) User supplies the location of the source code that has to be analyzed along 

with the rule or rules that it would be to execute;  
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(2) The tool opens a data read stream to read in the source code and supplies it 

to a Java based code parser which in turn generates an Abstract Syntax Tree (AST) 

(SourceForge.net-a,2010);  

(3) The AST is then returned to PMD which in turn gives it to the “symbol 

table layer” that identifies scopes, declarations, and various usages;  

(4) If a particular rule involves data flow analysis, the AST is given by PMD to 

the deterministic finite automaton (DFA) layer that in turn generates control flow 

graphs and data flow nodes;  

(5) With all this data obtained, each rule traverses the abstract syntax tree as 

needed and detects issues based on this traversal, rules can also utilize symbol tables 

and nodes within the generated DFA;  

(6) The issues identified in step 5 are then printed out to the console or an 

associated file in a number of different formats. 

 

3.2. Rulesets of PMD 

 
PMD uses rulesets to evaluate code. A rule property is similar to a parameter. It 

allows changing the rule’s behaviour without changing the rule itself. The applied 

rulesets and the results observed are listed in Appendix C (SourceForge.net-a, 2010). 

 

3.3. Writing Rules 

 
PMD has two general mechanisms for creating rules (SourceForge.net-a, 

2010); XPath and creating a Java class. XPath (for XML Path Language) is a domain-

specific language used for locating parts of an XML document. It’s also a World Wide 

Web Consortium (W3C®).  

When using XPath to write a PMD rule, specify an XPath expression to select 

the code that it is wanted to flag as a violation. XPath rules can be quick and easy to 

write, but it is limited to built-in XPath functionality, no have access to the full power 

of the Java programming language. Even with this limitation, however, XPath is an 

excellent prototyping mechanism and, for many rules, may be powerful enough to do 

the trick. 
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When using Java to write a rule, write a Java class that extends the 

net.sourceforge.pmd.AbstractRule abstract base class and then fill in code to detect 

problems. Writing rules in Java requires a compilation step between writing the rule 

and running the code, so it takes a bit more labour. But Java rules are very flexible and 

powerful, and can execute much faster than XPath rules. 

 

3.3.1. Writing XPath Rules 

 
PMD doesn't use the source code directly; it uses a JavaCC generated parser to 

parse the source code and produce an AST (Abstract Syntax Tree). For example, if the 

code is: 

class Example { 

 void bar() { 

  while (baz) 

   buz.doSomething(); 

 } 

} 

the AST for the code above looks like this: 

CompilationUnit 

 TypeDeclaration 

  ClassDeclaration:(package private) 

   UnmodifiedClassDeclaration(Example) 

    ClassBody 

     ClassBodyDeclaration 

      MethodDeclaration:(package private) 

       ResultType 

       MethodDeclarator(bar) 

        FormalParameters 

       Block 

        BlockStatement 

         Statement 

          WhileStatement 

           Expression 
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            PrimaryExpression 

             PrimaryPrefix 

              Name:baz 

           Statement 

            StatementExpression:null 

             PrimaryExpression 

              PrimaryPrefix 

               Name:buz.doSomething 

              PrimarySuffix 

               Arguments 

 It can be also generated the AST by using PMD’s Designer Utility which is 

included in PMD software as shown in Figure 3.1. 

 

Figure 3.1. PMD Rule Designer.  
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Recently Daniel Sheppard enhanced PMD to allow rules to be written using XPath. 

XPath is a way of querying an XML document. It can be written an XPath query to get 

a list of nodes that fit a certain pattern. Daniel Sheppard downloaded the Jaxen XPath 

engine (Codehous.org, 2010) and wrote a class called a DocumentNavigator that 

allows Jaxen to traverse the AST. Jaxen gets the XPath expression, evaluates it, applies 

it to the AST, and returns a list of matching nodes to PMD. PMD 

creates RuleViolation objects from the matching nodes and moves along to the next 

source file. 

 For example, the XPath expression for “While Loops Must Use Braces Rule” 

looks like this: 

//WhileStatement[not(Statement/Block)] 

 It is needed that XPath rules are set the class attribute in the rule definition 

to net.sourceforge.pmd.rules.XPathRule. The example of complete XPath rule looks as 

follows: 

<rule name=" WhileLoopsMustUseBracesRule" 

 message="Avoid while loops without braces" 

        class="net.sourceforge.pmd.rules.XPathRule"> 

        <description> 

        etc., etc.  

<rule name=" WhileLoopsMustUseBracesRule " 

        message="Don't Avoid while loops without braces" 

        class="net.sourceforge.pmd.rules.XPathRule"> 

    <description> 

 … 

    </description> 

    <properties> 

    <property name="xpath"> 

        <value> 

        <![CDATA[ 

            //WhileStatement[not(Statement/Block)] 

        ]]> 

        </value> 

    </property> 
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    </properties> 

    <example> 

<![CDATA[ 

   While(..) 

   Code line // don't do this! 

]]> 

    </example> 

  </rule> 

 

3.3.2. Writing Java Rules 

 
Writing rules using XPath expressions is quick and straightforward. It can be 

used the Designer to experiment with various XPath expressions. Writing rules in Java 

has some real advantages: 

1. Having full power of the Java programming language at disposal. It is not 

limited to the built-in XPath functions; it can be used StringTokenizer, 

collection classes, regular expressions, or anything else. 

2. Java rules run faster. This is an unavoidable result of using a domain specific 

language like XPath; before the XPath rule can be used it needs to be parsed 

and interpreted by the XPath engine. This extra layer of indirection doesn’t 

come free. 

There is plenty of common ground between writing rules in XPath and rules in 

Java. Usually it can be spot the problem in the AST, whether it’s a simple sequence of 

nodes or a particular node attribute. Once the Java rule is written, it is needed to 

package it inside a ruleset just as in the XPath rule (although the XML specification is 

a bit different).  

Generally, a Java rule consists of a Java class that extends the 

net.sourceforge.pmd.AbstractRule. When PMD is run, it will traverse the AST and 

notify rule when it finds a node type for which rule implements a callback method. For 

example, if to check field names, it can be written the rule to receive a callback 

whenever the AST traversal finds a FieldDeclaration node. Design pattern aficionados 

will recognize this as a classic Visitor pattern; it’s also known as “double dispatch”. 
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A series of node type imports. These could be reduced to one line since they all 

come from the same package, 

import net.sourceforge.pmd.ast.ASTIfStatement; 

import net.sourceforge.pmd.ast.ASTStatement; 

import net.sourceforge.pmd.ast.ASTBlock; 

import net.sourceforge.pmd.ast.ASTEmptyStatement; 

import net.sourceforge.pmd.ast.Node; 

To bring in imports of PMD infrastructure classes; AbstractRule is extended 

and RuleContext can be used to store the rule violations: 

import net.sourceforge.pmd.AbstractRule; 

import net.sourceforge.pmd.RuleContext; 

Now the rule class itself: 

public class EmptyIf extends AbstractRule { 

Callback method will be invoked every time an IfStatement node occurs in a 

source file having PMD check. The first parameter, ASTIfStatement, identifies the 

node that’s being visited. The second parameter, the Object, is really an instance of 

RuleContext. Notice that the node class names are preceded with “AST”, so instead of 

an IfStatement class name it’s ASTIfStatement. 

public Object visit(ASTIfStatement node, Object data) { 

An IfStatement node is guaranteed to have a Statement node as its second child 

node. Since node indexes are zero based, it can be get a handle to it by invoking 

jjtGetChild(1) on the IfStatement node. Note that some methods have a ‘jjt’ prefix; 

that’s because they are methods generated by the JJTree utility that comes with 

JavaCC. Since jjtGetChild returns a generic Node interface type,  

ASTStatement stmt = (ASTStatement)node.jjtGetChild(1); 

It can be either a Block or an EmptyStatement. So to leave it as a Node type: 

Node stmtChild = stmt.jjtGetChild(0); 

Analyze the node to see what it is. In the XPath expression, [EmptyStatement] is used  

to check for an EmptyStatement child; here the node type will be checked with an 

instanceof keyword: 

if (stmtChild instanceof ASTEmptyStatement) { 
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If it is found an EmptyStatement, it is needed to flag this IfStatement node as a 

problem. Since it is extended AbstractRule, it can be used a utility method, 

addViolation, to add a new rule violation. Data parameter that is really a RuleContext 

object reference is passed;  

addViolation(data, node); 

That is the EmptyStatement case. The other case is a bit more complicated, if the child 

node is a Block, it is needed to ensure that it has no children by using the instanceof 

keyword and the jjtGetNumChildren function. This function returns the number of 

children that are attached to the node. In the following, a rule violation occurs if the 

child node is a block and the block has children: 

} else if (stmtChild instanceof ASTBlock 

  && stmtChild.jjtGetNumChildren() == 0) { 

addViolation(data, node); 

} 

After checking two possibilities, it can be continued the traversal. Invoking 

super.visit(node, data) will do the trick: 

return super.visit (node, data); 

the entire source file for this rule as follows: 

package net.sourceforge.pmd.rules; 

import net.sourceforge.pmd.ast.ASTIfStatement; 

import net.sourceforge.pmd.ast.ASTStatement; 

import net.sourceforge.pmd.ast.ASTBlock; 

import net.sourceforge.pmd.ast.ASTEmptyStatement; 

import net.sourceforge.pmd.ast.Node; 

import net.sourceforge.pmd.AbstractRule; 

import net.sourceforge.pmd.RuleContext; 

public class EmptyIf extends AbstractRule { 

public Object visit(ASTIfStatement node, Object data) { 

  ASTStatement stmt = (ASTStatement)node.jjtGetChild(1); 

  Node stmtChild = stmt.jjtGetChild(0); 

  if (stmtChild instanceof ASTEmptyStatement) { 

   addViolation(data, node); 

   } else if (stmtChild instanceof ASTBlock && 
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stmtChild.jjtGetNumChildren() == 0) { 

    addViolation(data, node); 

   } 

   return super.visit(node, data); 

   } 

   } 

As with the XPath rule, it is needed to wrap the rule in a new ruleset file. There 

are two differences between XPath and Java rules. First, an XPath rule has a class 

attribute in the rule element that point to net.sourceforge.pmd.rules.XPathRule. For a 

Java rule, that attributes points to the new class. Second, XPath requires a properties 

element; Java does not, which makes for a shorter rulesets. 
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CHAPTER 4 

 

PMD RULES FOR SECURITY VULNERABILITIES 

 
4.1. Overview of Security Vulnerabilities  

 
Vulnerability is a set of conditions that allows violation of an explicit or 

implicit security policy. Programs, systems, and networks exhibit vulnerabilities 

(Secord and Householder, 2005). Vulnerability is also defined as a state of the system 

from which it is possible to transition to an incorrect system state. In other words, 

vulnerability is a software system defect which, when exercised, can produce 

undesirable or incorrect behaviour. In contrast, an exploit is the process by which one 

or more vulnerabilities are exercised to attack a system (Bazaz et al., 2006). 

Because vulnerabilities are central to exploiting a software application, one can 

prevent an exploit by identifying, and subsequently eliminating, vulnerabilities present 

in a software application. However, identifying if and which vulnerabilities are present 

have been affected several difficulties including; 

1. The complexity of software applications: Modern software applications are often 

large, complex, and contain thousands of lines of code. Furthermore, application 

complexity increases with the number of services it uses which are provided by the 

other applications. 

2. The number of potential vulnerabilities: Because numerous vulnerabilities exist, 

attempting to identify the specific one(s) present in a software application from a list of 

possibilities is impractical. 

3. The complexity of vulnerabilities: Some vulnerabilities, such as those used in the 

“time of check, time of use” exploit, involve multiple software components interacting 

together to produce the vulnerable system state. This introduces additional layers of 

complexity. Table 4.1 shows the properties of vulnerabilities with associated values. 
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Table 4.1. Properties of vulnerabilities  
(Source: Secord and Householder, 2005) 

 
Vulnerabilities have been classified into broad categories such as buffer 

overflows, format string vulnerabilities, and integer type range errors (including 

integer overflows). These broad categories however have two major failings. First, it is 

not always possible to assign a vulnerability to a single category. Second, the 

distinctions are too general to be useful in any detailed engineering analysis. 

For example, the following function: 

bool func(char *s1, int len1, 

char *s2, int len2) { 

char buf[128]; 

if (1 + len1 + len2 > 128) return false; 

if (buf) { 

strncpy(buf, s1, len1); 

strncat(buf, s2, len2); 

} 

return true; 

} 

contains a vulnerability in that len1 or len2 could be a negative number, allowing the 

length check to be bypassed but still causing a buffer overflow in the strncpy() or 

strncat() functions. Is this integer range value vulnerability because the integer range 

check was bypassed, or is this simply a buffer overflow? Either categorization would 

be a disservice to understanding the issues. 



 42

Understanding vulnerabilities is critical to understanding the threats they 

represent. Classification of vulnerabilities allows collection of frequency data and 

trend analysis of vulnerabilities but has not been regularly or consistently applied. 

Better and more comprehensive classification of vulnerabilities can lead to better 

correlation with incidents, exploits, and artifacts and can be used to determine the 

effectiveness of countermeasures. Understanding the characteristics of vulnerabilities 

and exploits is also essential to the development of a predictive model that can predict 

threats with a high correlation and significance. Table 4.2 shows the classification of 

vulnerabilities. The first column lists a general class of bugs, and the second column 

gives one common example from that class. The last columns indicate whether each 

tool finds bugs in that category, and whether the tools find the specific example.   

 
Table 4.2. Types of vulnerabilities for each tool finds 

(Source: Rutar et al., 2004) 

 

4.2. PMD Rules for Security Vulnerabilities 

 
PMD includes checks for some common bug patterns, such as the well-known 

double-checked locking bug in Java.  Like PMD, FindBugs also checks for uses of 

double checked locking. PMD does not check for null pointer dereferences, but it does 

warn about setting certain objects to null. PMD does not check for array bounds errors, 

though FindBugs does warn about returning null from a method that returns an array. 

ESC/Java includes support for automatically checking for race conditions and 

potential deadlocks. ESC/Java reports synchronized blocks that are involved in 

potential deadlocks but not the sets of locks in each particular deadlock. ESC/Java 
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reports the most null pointer dereferences because it often assumes objects might be 

null. In Java, indexing outside the bounds of an array results is a run-time exception. 

While a bounds error in Java may not be the catastrophic error that it can be for C and 

C++ (where bounds errors overwrite unexpected parts of memory), they still indicate a 

bug in the program. JLint and ESC/Java, include checks for array bounds errors, either 

creating an array with a negative size, or accessing an array with an index that is 

negative or greater than the size of the array. ESC/Java mainly reports warnings 

because parameters that are later used in array accesses may not be within range. 

FindBugs warns about the presence of other concurrency bug patterns, such as 

not putting a monitor wait() call in a while loop. The warnings FindBugs reports 

indicate the presence of the bug pattern in the code. What is less clear is how many of 

the patterns detected correspond to actual errors. For example, since FindBugs does 

not perform interprocedural analysis (it analyzes a single method at a time), if a 

method with a wait() is itself called in a loop, FindBugs will still report a warning. 

FindBugs discovers a very small set of potential null dereferences compared to both 

ESC/Java and JLint. This is because FindBugs uses several heuristics to avoid 

reporting null-pointer dereference warnings in certain cases when its dataflow analysis 

loses precision. 

JLint generates many warnings about potential deadlocks. In some cases, JLint 

produces many warnings for the same underlying bug. For instance, JLint checks for 

deadlock by producing a lock graph and looking for cycles. JLint iterates over the lock 

graph repeatedly. Among the four tools, ESC/Java, FindBugs, and JLint check for null 

dereferences.  JLint finds many potential null dereferences. In order to reduce the 

number of warnings, JLint tries to only identify inconsistent assumptions about null. 

For example, JLint warns if an object is sometimes compared against null before it is 

dereferenced. JLint has several false positives and some false negatives in array 

bounds errors, because it does not track certain information interprocedurally in its 

dataflow analysis.  
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4.3. Boundary Overflow Vulnerabilities 

 
Boundary overflows are caused by violation of constraints, mostly limiting the 

range of internal values of program, and can be provoked by an intruder to gain control 

of or access to stored data (Tuglular et al., 2009a). Boundary overflow vulnerability is 

characterized as a boundary overflow when the input being received by a system, 

whether human or machine-generated, causes the system to exceed an assumed 

boundary, thereby causing vulnerability. For example, the system may run out of 

memory, disk space, or network bandwidth. Another example is that a variable might 

reach its maximum value and roll over to its minimum value and variables in an 

equation might be set such that a division by zero error occurs is the third example. 

Boundary overflow errors are a subset of the class of input validation errors (Mell and 

Tracy, 2002). 

Boundaries cause overflow vulnerabilities are not related to the maximum 

length of the variables; however, they are predefined values that are related to the 

semantics of the graphical user interface (GUI) elements. For example, consider port 

scanners where the start and end port values are entered to the program to scan the 

range of these values. Even if the input values that are entered from the GUI elements 

for the start and end port values don’t exceed the maximum length of the unsigned 

integer type, there are semantically predefined boundary values. The start port value 

can not be lower than 0 and the end port value can not be higher than 65535. Checking 

these input values with respect to the redefined boundaries is critical for the program to 

behave as intended. Otherwise, boundary overflow occurs and the program works in an 

unexpected way (Muftuoglu, 2009). 
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CHAPTER 5 

 

TOOL SUPPORT AND CASE STUDY 

 
5.1. Boundary Overflow Vulnerability Checker Tool 

 
In this thesis, a detection algorithm which is based on the notion of static 

analysis by using PMD is implemented to check the overflow vulnerabilities. The 

implemented detection algorithm is capable of finding any type of vulnerability which 

can be represented as Boolean expressions. 

Boundary Overflow Vulnerability Checker is a tool developed in Java by using 

Eclipse Version 3.4.2 IDE on Intel machine with 32bit architecture. It uses PMD 

structure for static analysis in background. It allows users to choose a target source 

codes folder and define input contracts to analyse for boundary overflow vulnerability. 

It scans for defined input contracts in selected folder and writes results to the screen.  

 

5.1.1. Design and Implementation 

 
 The algorithm scans the source code statically, finds and shows local variables, 

method/constructor parameters to define input contracts easily. Once input contracts 

are defined, it searches and writes occurrences of the input contracts if exists. It also 

warns that if the input contact was not found. 

 Boundary overflow checker algorithm consists of four steps. In step 1, target 

folder which contains java source codes is selected. Java file chooser (JFileChooser) 

component was used for the folder selection process. File chooser provides a GUI for 

navigating the file system, and then choosing a directory from a list, or entering the 

name of a directory. 

 In step 2, the local variable and method/constructor parameter definitions along 

with their specified types are tracked from the source codes (which are in selected 

folder in step 1) and displayed in separated lists. The type of variables was limited by 

integer type. It is possible to show all type of variables but displaying all the variables 
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in a program makes no sense if only some specified types are needed. A PMD java rule 

was written and integrated to find local variables and method/constructor parameters. 

In this step that rule was used internally. 

 In step 3, it is expected that user should define input contracts either by using 

local variables and method/constructor parameters which are mentioned in step 2. 

Input contracts are formed of: 

• left operand: specifies the name of the variable/parameter or a numerical 

value 

• operator: is the Boolean operator 

• right operand: specifies the name of the variable/parameter or a numerical 

value 

Left and right operands can be selected from the dropdown lists which contains 

all the name of found variables/parameters in step 2 or can be written by hand for 

numerical values. 

Step 4 scans the source code(s) to check all input contracts separately. Input 

contracts are compared with the conditions of the variable written in the source 

code(s). If the condition of the variables matches with any of the input contracts, the 

input contract is satisfied by the source code and prints the occurrence of the condition 

to the bottom part of the tool. 

 

5.1.2. Usage of the Tool 

 
 Figure 5.1 shows GUI of the boundary overflow vulnerability checker tool that 

allows to input source directory of the software to be checked, shows the lists of local 

variables and parameters, enables to write input contracts and displays the outputs.  

 As can be seen in the GUI of the boundary overflow vulnerability checker tool, 

the tool takes the source directory of the program. After selection of source directory, 

local variables and method/constructor parameters are loaded to the lists that are 

located on the left side of the GUI by clicking “Find Variables” button. After that at 

least one input contract has to be defined via left operand, operator, right operand 

dropdown lists. Adding new input contract updates the input contract table and inserts 

the new contract to the end of the table as a row. After definitions of the input 

contracts “Find Occurrences” button allows to start checking source code(s). The 
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occurrences with file name, class name, method name, package name, line number 

information are printed to the bottom of the GUI as results. It is also printed that even 

if input contract does not found. 

 

Figure 5.1. Boundary overflow vulnerability checker tool. 
 

5.2. Case Study 

 
The implementation and the tool introduced in Section 5.1.1 are evaluated in 

this section by using port scanner software. A port scan function scans a single port or 

a range of ports, i.e., ports between a given start and end, to check whether they are 

open or not. Test cases are generated for start and end port. Boundary overflow 

vulnerability analysis tool analyzed the source directory to detect the vulnerabilities 

related to boundary overflow. 

The case study is performed on the basis of the port scanner part of open source 

port scanner software, i.e., JMAP Java Port Scanner (TomSalmon.com, 2010) and its 
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GUI is shown in Figure 5.2. Faltron Java Port Scanner (FaltronSoft.org, 2010) is also 

given in Figure 5.3. And a port scanner (Planet-Sourcecode.com, 2010), is shown in 

Figure 5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. JMAP Java Port Scanner. 
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Figure 5.3. Faltron Java Port Scanner. 

 

 

 
Figure 5.4. A port scanner. 
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5.2.1. JMAP Java Port Scanner 

 
JMAP is a Java network port scanner, a security tool to identify open ports on 

any host or network subnet. It features the ability to scan every host in a given network 

segment for a range of ports or a specific service. Both TCP and UDP are supported. 

Boundary overflow vulnerability checker tool is evaluated for JMAP. Local 

variables, method/constructor parameters and input contracts are given in Table 5.1 

and Table 5.2. Five input contracts have been used and one of them has been found as 

shown in Table 5.3. 

 

Table 5.1. JMAP Local Variables and Method/Constructor Parameters. 

Variables Parameters 
i (int)  port (int)  
selectedPortNumber (int) lowestPort (int) 
partOne (int) highestPort (int) 
partTwo (int) status (int) 
partThree (int) proto (int) 
partFour (int)  
port (int)  
p (int)  

 

 

Table 5.2. JMAP Input Contracts. 

No Left Operand Operator Right Operand 
1 lowestPort > 0 
2 lowestPort <= 65535 
3 highestPort > 0 
4 highestPort <= 65535 
5 lowestPort < highestPort 
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Table 5.3. JMAP Output. 

Input Contract  
(lowestPort > 0) HAS BEEN FOUND 

File Name    : null 
Class Name   : Scan 
Method Name  :  
Package Name :  
Line Number  : 171 

(lowestPort <= 65535) NOT FOUND 
(highestPort > 0) NOT FOUND 
(highestPort <= 65535) NOT FOUND 
(lowestPort < highestPort) NOT FOUND 

 

5.2.2. Faltron Java Port Scanner 

 
Faltron Java Port Scanner is an open source and very simple port scanner 

written in Java. It maximize the use of multi-threading by creating as much threads as 

possible, thus speeding up the scanning process. 

Boundary overflow vulnerability checker tool is also evaluated for Faltron. 

Local variables, method/constructor parameters and input contracts are given in Table 

5.4 and Table 5.5. Five input contracts have been used and none of them has been 

found as shown in Table 5.6. 

 

Table 5.4. Faltron Local Variables and Method/Constructor Parameters. 

Variables Parameters 
i (int)  port (int)  
priority (int)  startPort (int)  
appheight (int)  endPort (int)  
appwidth (int)  
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Table 5.5. Faltron Input Contracts. 

No Left Operand Operator Right Operand 
1 startPort > 0 
2 startPort <= 65535 
3 endPort > 0 
4 endPort <= 65535 
5 startPort < endPort 

 

 

Table 5.6. Faltron Output. 

Input Contract  
(startPort > 0) NOT FOUND 
(startPort <= 65535) NOT FOUND 
(endPort > 0) NOT FOUND 
(endPort <= 65535) NOT FOUND 
(startPort < endPort) NOT FOUND 

 

5.2.3. A Java Port Scanner 

 
Boundary overflow vulnerability checker tool is finally evaluated for “A Java 

Port Scanner”. Local variables, method/constructor parameters and input contracts are 

given in Table 5.7 and Table 5.8. Five input contracts have been used and none of 

them has been found as shown in Table 5.9. 

 

Table 5.7. A Java Port Scanner  Local Variables and Method/Constructor Parameters. 

Variables Parameters 
fp (int)   
tp (int)   
i (int)   

 

 



 53

Table 5.8. A Java Port Scanner Input Contracts. 

No Left Operand Operator Right Operand 
1 Fp > 0 
2 Fp <= 65535 
3 Tp > 0 
4 Tp <= 65535 
5 Fp < tp 

 

 

Table 5.9. A Java Port Scanner Output. 

Input Contract  
(fp > 0) NOT FOUND 
(fp <= 65535) NOT FOUND 
(tp > 0) NOT FOUND 
(tp <= 65535) NOT FOUND 
(fp < tp) NOT FOUND 

 

An overview of three test runs is given in Table 5.10. It is evident that only 

JMap has a control mechanism on startPort>0 and the other tools do not have any 

control mechanisms for the out of boundary input values causing boundary overflow. 

 

Table 5.10. Comparison of the three test runs. 

Software Input Contracts 

 startPort 
>0 

startPort 
<=65535 

endPort 
>0 

endPort 
<=65535 

startPort 
< endPort 

JMap √ - - - - 

Faltron - - - - - 

A Java 

Port 

Scanner 

- - - - - 

 

 

Tuglular et al. (2009b) have developed a numerical input validation analysis 

tool in Java that enables a semi automatically detection of boundary overflow errors. 

The class of “Assertions” and the function of “Require” have been used for exception 

handling and numerical input validation, respectively. The developed tool has 
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displayed the conditions of variables as well as whether or not condition checks exist 

in the source code related to numerical input relation. Three port scanners have been 

used to evaluate their approach that combines input validation with static analysis for 

evaluating given constraints. The user interface behaviour of port scan function has 

been modelled by using decision table augmented event sequence graphs. Test cases 

were generated for minimum and maximum port from the decision table and test of the 

port scan function has been evaluated in a real network environment. The boundary 

overflow related vulnerabilities have been detected and corrected by analyzing the 

source directory. The comparison has been also made between the faults detected 

before and after applying the boundary overflow detection algorithm.  

Netfender Firewall (version 1.5) was used to the evaluation and test pair has 

been generated based on equivalence class testing and boundary value approach. The 

algorithm has created a list of each of constraint containing the conditions of the 

variables and has generated the min and max test case pairs. They concluded that the 

cases with out of boundary input pairs cause problems in the network environment. It 

was analysed that faulty input pairs that are out of boundary values but the program 

behaves as they are not faulty because it does not abandon processing the related task. 

They also stated that the original software does not have control mechanism for the out 

of boundary input values causing boundary overflow. 

Multiscan (version 0.8.5) and Pscan were also utilized which are again open 

source port scanners coded in C++ with scan a range of IP addresses and ports. They 

observed that these evaluations also have no exception handling mechanisms. They 

found that the control mechanisms against out of boundary values are deficient for the 

three port scanners. On the other hand, after the insertation of their control statements 

related to boundary constraints, the software has outputted the right error message and 

aborted sending the packets. Therefore, tool developed by Tuglular et al. (2009b) has 

been successfully implemented for detection and correction operations for finding 

deficiencies in the exception handling mechanism concerning boundary overflow 

problems in software development. 

They also claimed that JMap has no error or exception raising mechanisms. 

The control mechanisms for pre- and post-conditions were deficient for this port 

scanner as well. They reported that Faltron has control mechanisms for pre-conditions 

but no mechanism has been found for post-conditions. It can be observed in Table 5.11 
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three port outputs considerably differ after the application of corrections into all three 

port scanners with respect to input contract. 

 

Table 5.11. Comparison of the three port scanners  
(Source: Tuglular et al., 2009b) 
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CHAPTER 6 

 

CONCLUSIONS 

 
In this work, we have made progress toward characterizing the software defects 

that can be found using static analysis techniques in programs written in Java. This 

study also dealt with the comparison of the output of different static analysis tools. 

Based on the literature review, it is obvious that PMD is a useful tool to apply to 

projects to analyze code and catch errors which otherwise can be missed with code 

reviews and inspections. Since it is flexible allowing customizations, it is 

advantageous to apply specific rules to projects that make PMD a valuable tool to use. 

A new tool that uses PMD has been implemented to find boundary overflow 

vulnerability. The overflow vulnerability checker tool has successfully carried out 

detection operations in the source code related to overflow vulnerabilities. It is 

observed that the boundary overflow vulnerabilities are not considered and neglected 

throughout the software development. Therefore, the overflow vulnerability checker 

tool that is introduced in this thesis might contribute to prevent the undesirable 

situation that may occur as a result of the deficiencies in the software related to 

overflow vulnerabilities. For future work, extension of the approach is planned by 

considering input labels as elements of contracts and evaluating these contracts. 
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APPENDIX A 

 

OPEN SOURCE TOOLS 

 
A.1. Multi-language 

 
 RATS — Rough Auditing Tool for Security, which can scan C, C++, Perl, PHP 

and Python source code. 

 YASCA — Yet Another Source Code Analyzer, a plugin-based framework for 

scanning arbitrary file types, with plugins for scanning C/C++, Java, JavaScript, 

ASP, PHP, HTML/CSS, ColdFusion, COBOL, and other file types. It integrates 

with other scanners, including FindBugs, JLint, PMD, and Pixy. 

 CPD — The Copy/Paste Detector (CPD) is an add-on to PMD tat finds 

duplicated code. CPD works with Java, JSP, C, C++, Fortran and PHP code. 

 

A.2. . NET (C#, VB.NET and all .NET Compatible Languages) 

 
 FxCop — Free static analysis for Microsoft .NET programs that compile 

to CIL. Standalone and integrated in some Microsoft Visual Studio editions. From 

Microsoft. 

 StyleCop — Analyzes C# source code to enforce a set of style and consistency 

rules. It can be run from inside of Microsoft Visual Studio or integrated into 

an MSBuild project. Free download from Microsoft. 

 

A.3. Java 

 
 Checkstyle — Checkstyle is a development tool to help programmers write 

Java code that adheres to a coding standard. It automates the process of checking 

Java code to spare humans of this boring (but important) task. This makes it ideal 

for projects that want to enforce a coding standard. This tool that analyzes source 

code to find layout issues, class design problems, duplicate code and bugs. Besides 
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some static code analysis, it can be used to show violations of a configured coding 

standard (sourceforge.net (b), 2010).  

 FindBugs — an open-source static bytecode analyzer for Java (based 

on Jakarta BCEL) from to find occurrences of “bug patterns”, which are code 

idioms that are likely to be errors (Hovemeyer and Pugh 2004). The tool FindBugs 

was developed at the University of Maryland and can detect potentially 

problematic code fragments by using a list of bug patterns. It can find faults such as 

dereferencing null-pointers or unused variables. To some extent, it also uses 

dataflow analysis for this.  

 PMD — a static rule set based Java source code analyzer that identifies 

potential problems. This tool concentrates on the source code and is therefore 

especially suitable to enforce coding standards. It finds, for example, empty 

try/catch blocks, overly complex expressions, and classes with high cyclomatic 

complexity. It can be customised by using XPath expressions on the parser tree. 

This tool that scans source code to detect potential bugs, dead code, suboptimal 

code, overcomplicate expressions, and duplicate code (sourceforge.net (a), 2010). 

In addition to some detection of clearly erroneous code, many of the “bugs” PMD 

looks for are stylistic conventions whose violation might be suspicious under some 

circumstances. For example, having a try statement with an empty catch block 

might indicate that the caught error is incorrectly discarded. Because PMD includes 

many detectors for bugs that depend on programming style, PMD includes support 

for selecting which detectors or groups of detectors should be run (Rutar et al., 

2004). 

 Jlint — a tool that analyzes Java source code and bytecode to detect bugs, 

inconsistencies, and problems with synchronization by performing “data flow 

analysis and building the lock graph. JLint also includes an interprocedural, inter-

file component to find deadlocks by building a lock graph and ensuring that there 

are never any cycles in the graph (sourceforge.net (c), 2010). 

 QJ Pro. — a tool that analyses the source code. It supports over 200 rules 

including ignored return values, too long variable names, or a disproportion 

between code and commentary lines. It is also possible to define additional rules. 

Furthermore, checks based on code metrics can be used. The possibility to use 

various filters is especially helpful in this tool (sourceforge.net (d), 2010).  
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 Hammurapi — (Free for non-commercial use only) versatile code review 

solution. Hammurapi is an open source code inspection tool. Its release comes with 

more than 100 inspectors which inspect different aspects of code: Compliance with 

EJB specification, threading issues, coding standards. 

 Sonar — a platform to manage source code quality. Sonar is a continuous 

quality control tool for Java applications. Its basic purpose is to join your existing 

continuous integration tools to place all your development projects under quality 

control. 

 Soot — a language manipulation and optimization framework consisting of 

intermediate languages for Java 

 Squale — a platform to manage software quality (also available for other 

languages, using commercial analysis tools though) 

 

A.4. C 

 
 BLAST (Berkeley Lazy Abstraction Software verification Tool) — a software 

model checker for C programs based on lazy abstraction. 

 Clang — A compiler that includes a static analyzer. 

 Frama-C — A static analysis framework for C. 

 Sparse — A tool designed to find faults in the Linux kernel. 

 Splint — An open source evolved version of Lint (C language). 

 Uno — A tool designed to find most common type of programming errors 

without generating too much output. 

 

A.5. C++ 

 
 Cppcheck — can find memory leaks, buffer overruns and many other common 

errors. 

 compass - project of rose compiler framework. 
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A.6. Objective-C 

 
 Clang — the free Clang project includes a static analyzer. As of version 3.2, 

this analyzer is included in Xcode. 

 

A.7. Perl 

 
 Perl::Critic — module and program to help find deviations from commonly 

accepted best practices 

 

A.8. ActionScript 

 
 Apparat — a language manipulation and optimization framework consisting of 

intermediate representations for ActionScript. 

 AS3V — a static ruleset based analyzer focussing on performance leaks. 

 FlexPMD — a static ruleset based ActionScript source code analyzer that 

identifies potential problems; based on PMD. 
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APPENDIX B 

 

COMMERCIAL TOOLS 

 
B.1. Multi-language 

 
 Axivion Bauhaus Suite — a tool for C, C++, C#, Java and Ada code that 

comprises various analyses such as architecture checking, interface analyses, and 

clone detection. 

 Checkmarx - a tool to identify, track and fix technical and logical security 

flaws from the root: the source code. Analyzes .Net, Java, Classic ASP, C/C++ 

and Salesforce.com's Apex and Visual Force. 

 CodeSecure — Appliance with Web interface and built-in language parsers for 

analyzing ASP.NET, VB.NET, C#, Java/J2EE, JSP, EJB, PHP, Classic ASP and 

VBScript. 

 CAST Application Intelligence Platform — Detailed, audience-specific 

dashboards to measure quality and productivity. 30+ languages, SAP, Oracle, 

PeopleSoft, .NET, Java, C/C++, Struts, and all major databases. 

 CodeScan Labs CodeScan Developer — identifies security vulnerabilities and 

issues in ASP classic, PHP, ASP.Net, C#.Net source code 

 Coverity Prevent — identifies security vulnerabilities and code defects in C, 

C++, C# and Java code. 

 DMS Software Reengineering Toolkit — supports custom analysis of C, C++, 

Java, COBOL, and many other languages. 

 Compuware DevEnterprise — analysis of COBOL, PL/I, JCL, CICS, DB2, 

IMS and others. 

 Fortify — helps developers identify software security vulnerabilities in C/C++, 

.NET, Java, JSP, ASP.NET, ColdFusion, "Classic" ASP, PHP, VB6, VBScript, 

JavaScript, PL/SQL, T-SQL and COBOL as well as configuration files. 

 GrammaTech CodeSonar — Analyzes C,C++. Ada-Assured -Analyzes Ada 
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 Klocwork Insight and Klocwork Developer for Java — provides security 

vulnerability and defect detection as well as architectural and build-over-build 

trend analysis for C, C++, C# and Java 

 Lattix, Inc. LDM — Architecture and dependency analysis tool for Ada, 

C/C++, Java, .NET software systems. 

 LDRA Testbed — A software analysis and testing tool suite for C, C++, 

Ada83, Ada95 and Assembler (Intel, Freescale, Texas Instruments). 

 Ounce Labs — automated source code analysis that enables organizations to 

identify and eliminate software security vulnerabilities in languages including Java, 

JSP, C/C++, C#, ASP.NET, and VB.Net. 

 Parasoft — Security, reliability, performance, and maintainability analysis of 

Java, JSP, C, C++, .NET (C#, ASP.NET, VB.Net, etc.), WSDL, XML, HTML, 

CSS, JavaScript, VBScript/ASP, and configuration files. 

 SofCheck Inspector — provides static detection of logic errors, race conditions, 

and redundant code for Java and Ada. 

 Sotoarc/Sotograph — Architecture and quality in-depth analysis and 

monitoring for Java, C#, C and C++ 

 Structure101 — For understanding, analyzing, measuring and controlling the 

quality of Software Architecture as it evolves over time. Available for Java and 

Ada, with support for C/C++ via Coverity and Programming Research. 

 Understand — analyzes C,C++, Java, Ada, Fortran, Jovial, Delphi — reverse 

engineering of source, code navigation, and metrics tool. 

 Visual Studio Team System — analyzes C++,C# source codes. only available 

in team suite and development edition. 

 

B.2. .NET 

 
 ReSharper — Add-on for Visual Studio 2003/2005 from the creators of IntelliJ 

IDEA, which also provides static code analysis for C#. 

 NDepend — Simplifies managing a complex .NET code base by analyzing 

code dependencies, by defining design rules, by doing impact analysis, and by 

comparing different versions of the code (all .NET languages supported). 
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 CodeIt.Right — combines Static Code Analysis and automatic Refactoring to 

best practices which allows automatically correct code errors and violations. 

Supports both C# and VB.NET. 

 Gendarme — extensible rule-based tool to find problems in .NET applications 

and libraries, particularly those that contain code in ECMA CIL format. 

 

B.3. C/C++ 

 
 Abraxas Software CodeCheck — programmable static analysis and style 

checker for C and C++ code. 

 Astrée — Run-time error analyzer for C 

 Green Hills Software DoubleCheck — static analysis for C and C++ code. 

 HP Code Advisor — A static analysis tool for C and C++ programs 

 LDRA Testbed — A software analysis and testing tool suite for C & C++. 

 Microsoft PREfast — The "Analyze Tool" included with Microsoft Visual 

Studio Team Editions. 

 Microsoft PREfast for Drivers (PFD) — An extension to PREfast to allow 

better analysis of Windows device drivers. 

 Microsoft Static Driver Verifier (SDV) — Performs detailed code path analysis 

for Windows device drivers. 

 PAG — The Program Analyzer Generator. 

 PC-Lint — A software analysis tool for C & C++. 

 QA-C (and QA-C++) — deep static analysis of C for quality assurance and 

guideline enforcement. 

 Red Lizard's Goanna — Static analysis for C/C++ in Eclipse and Visual Studio. 

 Viva64 — analyzes C, C++ code to detect 64-bit portability issues. 

 CppDepend — Simplifies managing a complex C++ code base by analyzing 

code dependencies, by defining design rules, by doing impact analysis, and by 

comparing different versions of the code. 
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B.4. Java 

 
 checKing — monitors the quality of software development process, including 

violations of coding rules for Java, JSP, Javascript, XML and HTML. 

 IntelliJ IDEA — IDE for Java that also provides static code analysis. 

 Swat4j — a model based, goal oriented source code auditing tool for Java. 

 

B.5. Visual Basic 

 
 Project Analyzer — static analysis tool for Visual Basic, Visual Basic .NET 

and Visual Basic for Applications. 
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APPENDIX C 

 

RULESETS OF PMD 

 
C.1. Basic (rulesets/basic.xml)  

 
These are basic rules which need to be followed. Across BIRT, Nomad PIM, 

jLibrary and PaperDog the following conditions were observe:  

1. Catch blocks shouldn't be empty, 

2. Override hashCode() anytime equals() is overridden 

3. Nested if statements should be avoided 

4. If statements evaluating to only true or only false should be avoided 

5. Avoid temporary variables when converting from primitive datatype to String 

6. Empty statements in loops should be avoided 

7. Avoid instantiating data type values which have existing constants defined for    

ex. instantiating Boolean type with constructor, instead of using Boolean.true, 

instantiating BigDecimal ( 0 ) instead of using BigDecimal.ZERO. 

8. Final modifier in a final class is redundant 

9. Overridden methods contain only call to super() and nothing else. 

10. Avoid unnecessary return statements 

11. Do not start a literal by 0 unless it's an octal value 

There are some false positives in the above cases. In many cases, catch blocks were 

known to the developer and contained comments explaining why the exception was 

applicable or not. For final modifiers, the code had final modifiers for all the methods 

inside the final class and each line was shown as a warning. This though can be 

avoided is not an error. Some methods in classes were overridden but did not have any 

special task so it just had a call to super. This was flagged as error in the PMD results 

but this again does not cause erroneous behaviour. 0 was used to denote octal values, 

so that also turned out to be a false positive. Overall this ruleset is useful and because it 

catches basic errors which will be missed during reviews, inspection or testing.  
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C.2. Naming (rulesets/naming.xml) 

 
This ruleset tests for the standard Java naming conventions. Some typical errors 

which were observed during this analysis were: 

1. Abstract classes should have the name AbstractXXX 

2. Variable names should not be too short 

3. Field names matching class names lead to confusion 

4. Variable names and method names should not be too long or too short 

5. Variable names which are not constant should not contain “_” (underscore) 

6. Class names should begin with an uppercase letter, method and field names 

should 

7. Begin with a lowercase letter 

8. The field name indicates a constant but its modifiers do not 

The code is strictly checked against Java naming conventions. This resulted in a lot of 

false positives. The results for all the four projects were filled with the entries about 

variable names being too short or method names being too short or too long. The one 

error message which said “The field name indicates a constant but its modifiers do 

not” sounded to be a valid error situation but on analyzing the code it was found that a 

variable name was completely in uppercase and had a underscore character which 

according to Java naming convention is to be used only for constants. Hence it was not 

an error in code but an error in naming. 

 

C.3. Unused Code (rulesets/unusedcode.xml) 

 
This ruleset checks for unused code in the project. The following are typical 

error messages which occurred for the projects considered: 

1. Private fields and local variables that are never read, 

2. Private methods that are never called, 

3. Unused method parameters and constructor parameters, 

4. Unreachable statements. 

With the widespread use of IDEs for Java like Eclipse and JBuilder, this ruleset is not 

very useful. For example in Eclipse, unused fields, variables and private methods are 

automatically highlighted with warning messages. Unused method parameters and 
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constructor parameters are not enabled by default in Eclipse but settings can be 

changed to ensure that this check is included. Unreachable statements are treated as 

errors in Eclipse and the editor will not allow compilation till the error has been fixed. 

Hence this ruleset is not necessary. 

 

C.4. Design (rulesets/design.xml) 

 
This ruleset covered various good design principles. The errors observed in this 

case were many. Few important ones are listed below: 

1. Switch statements should have default blocks, 

2. If conditions of the form a!=b should be avoided 

3. Private fields which are initialized only in the constructor and are not modified 

anywhere else should be made constant (final) 

4. Deeply nested if blocks should be avoided 

5. Parameters should not be reassigned 

6. Replace calls like size() == 0 with isEmpty() 

7. Overridable methods should not be called in the constructor 

8. If all methods in a class are static then the class can be converted to Singleton 

9. Caught exceptions should not be rethrown as the stack trace may be lost. 

10. Unnecessary comparisons in Boolean expressions should be avoided 

11. Equals() should be used for object comparison 

12. It is better to use block level synchronization than method level 

synchronization 

13. Literals should be used first in string comparisons 

14. Values can be returned directly instead of assigning them to temporary 

variables and 

15. Resources like connections should be closed after use 

This rulesets identifies many conditions which need to be cleared in the code. This 

cannot be covered exhaustively using manual reviews or inspection. There is one 

suggestion for conversion to Singleton when static methods are used, this may or may 

not be used based on the architecture. Other than this, all conditions highlighted by the 

ruleset needs to be corrected. Design rulesets based on the data gathered on all the 

projects do not have instances of false positives. This ruleset is useful for analysis. 
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C.5. Import Statements (rulesets/imports.xml) 

 
This ruleset checks for minor issues with import statements. The following 

were the three conditions observed across all packages: 

1. Avoid duplicate imports 

2. There is no need to import a class which resides in the same package 

3. Avoid unused imports 

Using IDEs makes this ruleset redundant. Eclipse has an option to reorganize imports. 

This automatically corrects imports, removes duplicate and unused imports, removes 

imports of the type java.io.* and includes individual classes. Hence this ruleset need 

not be used. 

 

C.6. JUnit Tests (rulesets/junit.xml) 

 
This ruleset looks for specific issues in the test cases and test methods. The 

issues observed were: 

1. Assertions should have a message 

2. Correct spelling of method names, especially JUnit keywords like setUp() and 

tearDown() 

3. JUnit tests should contain an assert or fail 

4. Classes which contain JUnit test cases should end with Test 

5. Use assertSame(x, y) instead of assertTrue(x==y) 

There were two main problems observed with this ruleset. This ruleset should be run 

only on the JUnit source files. If it is run on the main project, then each java file is 

considered as a JUnit test and the report contains a higher percentage of false positives. 

Especially the messages “Assertions should have a message” and “Incorrect method 

names setUp() and tearDown()” occur when method names setup() is used in a normal 

class file or assert statement is used within non-JUnit code. There is another false 

positive while running the code on JUnit test cases. If a test method calls another 

method which does the assert() or fail() and does not have assert or fail in the method 

body then the ruleset is not able to recognize it and generates errors. The ruleset does 

not verify if the test case is valid or not. It checks for syntax errors. Hence it does not 
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add any value. Code review for test cases should help in verifying errors. This ruleset 

need not be used. 

 

C.7. Strings (rulesets/string.xml) 

 
This ruleset identifies problems that occur while using String and StringBuffer. 

The common errors observed are: 

1. Avoid duplicating string literals 

2. Appending characters to StringBuffer should be avoided 

3. Calling String.valueOf() to append to a string is not necessary 

4. String.trim().length() == 0 is inefficient to check if string is empty 

5. Constructor for StringBuffer is initialized with a smaller number and more 

characters 

6. Are appended (buffer overflow) 

7. Using equalsIgnoreCase() is efficient instead of converting strings to upper or 

lower 

8. Case and then comparing. 

9. IndexOf(char) is faster then indexOf(String) 

10. Calling the String constructor, and calling toString() on String objects is 

unnecessary 

This ruleset covers various conditions for String and StringBuffer usage. Since String 

objects are used heavily, it is beneficial to run this test case and correct the related 

errors. Almost all errors are relevant and there were no false positives observed. This 

helps in avoiding buffer overflows and improving performance and memory usage by 

proper allocation of strings and calling appropriate methods. 

 

C.8. Braces (rulesets/braces.xml) 

 
This ruleset checks for, if, while, and else statements and the usage of braces. 

All the results were of the same type, which is 

1. Avoid using if and else without curly braces 
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IDEs like Eclipse create templates for if-else-elseif statements which include the curly 

braces using the auto complete option (this is not a default option and needs to be 

enabled). Hence this ruleset need not be used. 

 

C.9. Javabeans (rulesets/javabeans.xml) 

 
This ruleset inspects JavaBeans components. The typical errors observed are: 

1. Non-transient and non-static members need to be marked as transient or 

accessors should be provided 

2. Classes which implement Serializable should have a serialVersionUID 

The first error indicates non compliance with JavaBean coding standard. This can be 

caught during reviews. The second error is usually shown as a warning in Eclipse IDE. 

This ruleset can be used if JavaBeans is used for coding. If not this does not add any 

value. 

 

C.10. Finalizers  

 
This ruleset identifies two types of errors overall: 

1. If finalize is used it should be protected 

2. Last call in finalize should be a call to super.finalize 

Since finalize is being used very rarely in current implementations it is not necessary 

to use this ruleset. For the few situations where it is used, it is easy to remember the 

two conditions and can be checked during reviews. 

 

C.11. Clone (rulesets/clone.xml) 

 
There are only a few rules for clone() methods. They are: 

1. Classes that override clone() must implement Cloneable, 

2. Clone() methods should call super.clone() 

3. Clone() methods should be declared to throw 

The main problem with clone() method is in the case of deep copy and shallow copy. 

This ruleset does not verify if that is achieved. Since there are only three rules, it is fair 
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to assume that it should be included as a part of coding standard and should be an item 

in the review checklist. This ruleset can be run once at the end to verify if the standard 

is met and need not be run always. 

 

C.12. Coupling (rulesets/coupling.xml) 

 
The errors which are generated with this ruleset are: 

1. Too many imports or too many different objects indicate coupling 

2. Avoid usage of subclass types like Vector, ArrayList and HashMap and use the 

supertype or interface instead 

There are false positives when this ruleset is run. In projects which use various other 

projects for functionality like using Tomcat, log4j, JBoss, Hibernate, Eclipse RCP, 

Struts 2 and BIRT which are typical for any web applications, there are usually too 

many imports and too many different objects. Since the report is full of such warnings 

it is difficult to find the useful messages. Usage of subclasses again should be a coding 

convention and should be included in code reviews. This ruleset does not add value. 

 

C.13. Strict Exceptions (rulesets/strictexception.xml) 

 
The errors generated with this ruleset are: 

1. Raw exception types should not be thrown 

2. Methods should not be declared to throw java.lang.Exception, 

3. Avoid throwing null pointer exceptions 

4. Catch should not throw the exception caught (this is also found in design 

ruleset) 

5. Throwable should not be caught 

This ruleset is helpful because exception handling is something which needs to be 

done well, else the code may crash due to unforeseen errors. Since PMD generates 

exhaustive analysis it is easy to not miss out conditions. The analysis results observed 

did not contain any false positives. 
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C.14. Controversial (rulesets/controversial.xml) 

 
This ruleset has some conditions which cannot be followed in practice. The 

typically observed warnings are as follows: 

1. Each class should have at least one constructor 

2. A method should have only one exit point 

3. Avoid unnecessary constructors 

4. It is good practice to call super() in constructors 

5. Captures data flow anomalies 

6. Use explicit scoping rather than default package private scope 

7. Don’t assign null to an object 

It is not possible to always have one exit point. It is often considered that assigning an 

object to null as initial state is a good practice. Some of PMD's rules are valid and 

some are arguable hence the name controversial ruleset. This does not add value to the 

code analysis because it does not catch errors which might break the system or might 

cause the system to be insecure. Hence the ruleset need not be used. 

 

C.15. Logging (rulesets/logging-java.xml, rulesets/ logging-jakarta- 

commons.xml) 

 
This ruleset checks for usage of logging. The errors identified are as follows: 

1. Logger variables should be static and final 

2. System.out.print and println, and printStackTrace should be replaced with calls 

to logging 

This ruleset is not very helpful. There are too many false positives which are 

generated. In most cases System.out.println and printStackTrace are used reliably. 

Moreover print messages are easily observable during unit testing or integration testing 

and hence can be corrected. 
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C.16. J2EE (rulesets/j2ee.xml) 

 
This ruleset checks for compliance with J2EE architecture. Since none of the 

projects used for this report followed a J2EE architecture there was only one error 

which was produced throughout which was usage of getClassLoader(). This ruleset is 

not applicable for non-J2EE projects. 

 

C.17. Optimizations (rulesets/optimizations.xml) 

 
This ruleset covers certain optimization conditions. The typical conditions are: 

1. Parameters, fields or variables not assigned should be declared as final 

2. ArrayList can be used instead of Vector 

3. Use StringBuffer instead of += for concatenating strings 

 

C.18. Type Resolution (rulesets/typeresolution.xml) 

 
This ruleset captured only two types of error conditions 

1. Classes that override clone() must implement Cloneable, 

2. Avoid usage of subclass types like Vector, ArrayList and HashMap and use the 

supertype or interface instead 

This ruleset covers conditions which are already covered in Cloning and Coupling 

rulesets. These conditions do not add specific value and they can be covered as a part 

of coding standards and review checklists. 

 

C.19. Unsecure Code (rulesets/sunsecure.xml) 

 
This ruleset checks for array assignments. In particular it generates the 

following conditions: 

1. Internal arrays being stored directly 

2. Return variables which expose internal arrays 

These are conditions which need to be checked to ensure that arrays are handled 

correctly. Hence this ruleset needs to be executed. 
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