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ABSTRACT 

 

IMPACTS OF FREQUENT ITEMSET HIDING ALGORITHMS ON 
PRIVACY PRESERVING DATA MINING 

 

The invincible growing of computer capabilities and collection of large amounts 

of data in recent years, make data mining a popular analysis tool. Association rules 

(frequent itemsets), classification and clustering are main methods used in data mining 

research. The first part of this thesis is implementation and comparison of two frequent 

itemset mining algorithms that work without candidate itemset generation: Matrix 

Apriori and FP-Growth. Comparison of these algorithms revealed that Matrix Apriori 

has higher performance with its faster data structure  

One of the great challenges of data mining is finding hidden patterns without 

violating data owners’ privacy. Privacy preserving data mining came into prominence 

as a solution. In the second study of the thesis, Matrix Apriori algorithm is modified and 

a frequent itemset hiding framework is developed. Four frequent itemset hiding 

algorithms are proposed such that: i) all versions work without pre-mining so privacy 

breech caused by the knowledge obtained by finding frequent itemsets is prevented in 

advance, ii) efficiency is increased since no pre-mining is required, iii) supports are 

found during hiding process and at the end sanitized dataset and frequent itemsets of 

this dataset are given as outputs so no post-mining is required, iv) the heuristics use 

pattern lengths rather than transaction lengths eliminating the possibility of distorting 

more valuable data.  
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ÖZET  

 

SIK KÜMELERİ GİZLEME ALGORİTMALARININ G İZLİLİĞİ 
KORUYAN VERİ MADENCİLİĞİ ÜZERİNE ETKİLERİ 

 

Son yıllarda bilgisayar yeteneklerinin önlenemez büyümesi ve büyük miktarda 

verinin toplanması, veri madenciliğini gözde bir analiz aracı yapmıştır. Birliktelik 

kuralları (sık kümeler), sınıflandırma ve kümeleme veri madenciliğinin temel 

yöntemleridir. Bu tezin ilk çalışması aday küme üretmeyen iki algoritma Matrix Apriori 

ve FP-Growth sık küme bulma algoritmalarının uygulanması ve değerlendirilmesidir.  

Bu iki algoritmanın karşılaştırılması hızlı matris veri yapısıyla Matrix Apriori’nin daha 

yüksek başarıma sahip olduğunu açığa çıkarmıştır. 

Veri madenciliğinin artan gücünün ortaya çıkardığı sorunlardan bir tanesi 

kişilerin ve şirketlerin gizliliğini ihlal etmeden saklı örüntülerin bulunmasıdır. Bu tezin 

ikinci bölümünde gözde veri madenciliği tekniklerinden biri olan sık kümelerin 

bulunması için gizliği koruyan bir yaklaşım önerilmiştir. İkinci olarak, Matrix Apriori 

algoritması üzerinde değişlik yapılmış ve sık küme gizleme çerçevesi geliştirilmi ştir. 

Dört sık küme gizleme algoritması önerilmiştir, öyle ki: i) bütün sürümler ön 

madencilik olmadan çalışmakta ve sık kümelerin önceden bulunmasının neden olduğu 

gizlilik açığı önlenmektedir, ii) ön madencilik gerekmediğinden verimlilik artmıştır, iii) 

destek değerleri gizleme sürecinde bulunmaktadır ve sonunda temizlenmiş veri kümesi 

ve bu veri kümesinin sık kümeleri çıktı olarak verilmektedir yani sonradan madenciliğe 

gerek yoktur, iv) sezgiseller işlem uzunluğundansa örüntü uzunluğunu kullanarak daha 

değerli veri üzerinde bozma yapma olasılığını elemektedir. 
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CHAPTER 1 

 

INTRODUCTION 

 

Data mining, defined as the process of discovering knowledge or patterns from 

massive amounts of data (Liu 2009), has become a popular way to discover strategic 

knowledge. Direct mail marketing, web site personalization, bioinformatics, credit card 

fraud detection, text analysis and market basket analysis are some examples where data 

mining techniques are commonly used.  

Data mining models are divided into two as predictive and descriptive. Predictive 

models include tasks regression, classification, time series analysis and prediction. 

Descriptive models include tasks clustering, summarization, association rules and 

sequence discovery (Dunham 2002).  

Association rule mining reveals relationships among set of items in a database in 

two steps frequent itemset mining and producing association rules from these itemsets. 

It was firstly introduced by (Agrawal 1993), followed by popular Apriori algorithm 

(Agrawal 1994) which listed in top ten data mining algorithms (Wu 2008). Although it 

boosted data mining research, Apriori algorithm has a bottleneck of multiple database 

scan for candidate itemset generation. In (Han 2000) FP-Growth algorithm proposed for 

frequent itemset mining without candidate generation.  It stores information of database 

in tree structure called FP-tree and scans database only twice. Later in (Pavon 2006), 

Matrix Apriori algorithm is proposed. It is similar to FP-Growth in the way of database 

scanning and storing information of database in a compact data structure but matrix data 

structure is used instead of tree. 

Data mining is efficiently applied to many fields like clustering in bioinformatics, 

association rules in market basket analysis, classification in credit scoring, time series 

analysis in financial decision supporting. However, the increasing power of computers 

handling huge amount data and malicious usage made data mining a risk to privacy of 

individuals and companies. In Figure 1.1 a simple example of privacy problem caused 

by combining information from different sites is given. Zip codes of medical records are 

anonymized to protect disclosure of patient and information in personal website and 

address in yellow pages do not cause a privacy problem solely. However, a macilious 
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internal human and hacker may combine the information in different sites and label 

medical record of patient. 

 

 

Figure 1.1. Privacy problem example 

 

Public sensitivity against data mining increased because it is seen a threat to 

individuals private information as shown in the example above. On the other hand, data 

mining is important for efficiently discovering knowledge. Privacy preserving data 

mining arise from the need for continue performing data mining efficiently but 

preserving private data or knowledge of individuals and companies. It is defined as data 

mining techniques that use specialized approaches to protect against the disclosure of 

private information may involve anonymizing private data, distorting sensitive values, 

encrypting data, or other means to ensure that sensitive data is protected (Liu 2009). 

Privacy preserving data mining is divided into two major categories: data hiding 

and rule hiding. Data hiding aims to design new protocols to perturb, anonymize or 

encrypt raw data while sensitive private data is protected and underlying patterns can 

still be discovered (Subramanian 2008). Rule hiding refers to design algorithms is such 

a way that sensitive rules or patterns stay unrevealed while remaining rules or patterns 

can still be mined. The original data is distorted or blocked by rule hiding algorithms.  

Privacy, the new direction of data mining research is the main motivation for start 

point of this thesis study. It is decided to apply privacy preserving data mining 

techniques for frequent itemset mining. Surveying literature, it has been seen that many 

algorithms for association rule or frequent itemset hiding are Apriori based and as it is 

mentioned above it has a disadvantage of multiple database scanning. Therefore, 
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algorithms without candidate generation are studied firstly. Matrix Apriori and FP-

Growth algorithms are compared and a paper prepared (Yıldız 2010) from this first 

phase of thesis. Since results showed that Matrix Apriori performed better and its matrix 

data structure is easy to handle, thesis study is directed to proposing a frequent itemset 

hiding algorithm based on Matrix Apriori. As its matrix data structure gives pattern 

information, the algorithm is modified to have itemset hiding capabilities. In addition, 

innovative heuristics for selection of item distortion are proposed which use pattern 

length rather transaction length proposed by past studies on frequent itemset hiding. 

These algorithms are compared for different cases and results discussed. A new paper 

for the second phase of the thesis has been prepared and submitted. All the progress is 

depicted in this thesis. The goal and the structure of this thesis study are given in next 

subsections. 

 

1.1. Thesis Aim and Objectives 

 

Data mining is a growing area of study in computer science and it is applied to 

many fields. However, malicious usage may cause privacy problems. It is a challenge to 

perform data mining without violating privacy of data or knowledge. This necessity 

emerged privacy preserving data mining. It is a recently grown aspect of data mining 

and there is much work to do. Attracted by these and popularity of frequent itemset 

mining in data mining, frequent itemset hiding of privacy preserving data mining is 

studied in this thesis.  

The objectives of this thesis are: 

• To understand frequent itemset mining and compare two of algorithms 

Matrix Apriori and FP-Growth working without candidate generation. 

• To understand privacy preserving data mining and frequent itemset hiding 

and propose frequent itemset hiding algorithm.  

• To observe impacts of proposed frequent itemset hiding algorithms as side 

effects, runtimes and distortion for different cases and databases. 
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1.2. Organization of Thesis 

 

The organization of this thesis is as follows: 

• Chapter 2 presents related work giving general information about data 

mining and more detailed of frequent itemset mining. Following, 

introduction to privacy preserving data mining and information about 

techniques are given. Afterwards, more detailed past work of frequent 

itemset hiding. 

• Chapter 3 presents frequent itemset mining and detailed explanation of two 

frequent itemset mining algorithms working without candidate generation. 

FP-Growth and Matrix Apriori algorithms are introduced and discussed with 

examples. Next, general information on frequent itemset hiding is given. 

Lastly, Matrix Apriori based frequent itemset hiding approach is explained in 

detail and four versions of proposed algorithms are discussed.      

• Chapter 4 present performance evaluations of Matrix Apriori and FP-Growth 

algorithms followed by performance evaluation of Matrix Apriori based 

frequent itemset hiding algorithms. Comparison of Matrix Apriori and FP-

Growth is done for total and for two phases as building data structure and 

finding frequent itemset. Two databases of different characteristics are used 

for evaluations. Afterwards, comparison of proposed Matrix Apriori based 

frequent itemset hiding algorithms given for increasing number of sensitive 

itemsets and increasing support of sensitive itemsets. Side effects as lost 

itemsets and runtimes are shown. To understand the effect of database size, 

two databases of different number of transactions are used for evaluations. 

• Chapter 5 presents conclusion. A summary and the contribution of thesis is 

given and following future work is stated. 
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CHAPTER 2 

 

RELATED WORK 

 

2.1. Introduction 

 

 Data mining has attracted a great deal of attention in the information society in 

recent years, due to the wide availability of huge amounts of data and the need for 

turning such data into useful information and knowledge (Han 2005). It is applied to 

many fields ranging from bioinformatics, market analysis and fraud detection to earth 

sciences. However, there is a problem of keeping sensitive data private while continue 

data mining. As we cannot set aside the benefits of data mining, privacy preserving data 

mining has been introduced to take privacy into consideration of data mining research. 

In next sections of this chapter, related work about firstly data mining in general, 

followed by frequent itemet mining in detail, then privacy preserving data mining in 

general and lastly frequent itemset hiding in detail are given. 

 

2.2. Overview of Data Mining 

 

 Data mining is a recently emerging field, connecting the three worlds of 

databases, artificial intelligence and statistics (Lindell 2002). It involves the use of data 

analysis tools to discover previously unknown, valid patterns and relationships in large 

datasets (Seifert 2004). Model created for data mining can be predictive or descriptive. 

Predictive models make a prediction about values of data using known results found 

from different data. Descriptive models identify patterns of relationships in data. 

Common tasks of predictive models are classification, regression, time series analysis 

and prediction. Clustering, summarization, association rules and sequence discovery are 

common tasks of predictive data mining models (Dunham 2002). These are depicted in 

Figure 2.1. 
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Figure 2.1. Data mining models and tasks  
(Source: Dunham 2002) 

 

 There are mainly three data mining techniques: classification, clustering and 

association rule mining. Classification uses a training set and builds a classifier to 

predict the classes of new instances. Clustering divides dataset into clusters of which 

members are similar to each other and different from members of other clusters. 

Association rule mining finds patterns and relationships among dataset. These 

techniques are briefly introduced in following subsections. 

 

2.2.1. Classification  

 

Classification maps data into predefined groups or classes. Simply classifies data 

based on training set and uses it classifying new data (Han 2005). Classification 

algorithms can be divided into five as statistical-based, distance-based, decision tree-

based, neural network-based and rule based algorithms (Dunham 2002). It is formally 

defined as  

 

Given a database D = {t1, …, tn} of tuples (items, records) and a set of classes 

C={C1,… Cm}, the classification problem is to define a mapping f: D→C where 

each ti is assigned to one class. A class, Cj, contains precisely those tuples 

mapped to it; that is, Cj={t i|f(ti)=Cj, 1 ≤ i ≤ n, and ti Є D} 

 

A simple example for classification is teachers’ grading students as A, B, C, D, 

or F. Using boundaries we can classify grades as A if grade ≥ 90, B if 90 > grade ≥ 80, 
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C if 80 > grade ≥ 70, D if 70 > grade ≥ 60, F if 60 > grade. Some popular classification 

algorithms are C4.5 (Quinlan 1993), CART (Breiman 1984), Naïve Bayes (Domingos 

1997).  

 

2.2.2. Clustering 

 

 The process of grouping a set of physical or abstract objects into classes of 

similar objects is called clustering.  A cluster is a collection of data objects that are 

similar to one another within the same cluster and are dissimilar to the objects in other 

clusters (Han 2005). Unlike classification the groups are not pre defined. Clustering 

algorithms can be divided into three as hierarchical, partitional, categorical algorithms 

(Dunham 2002). Formal definition of clustering is   

 

Given a database D={t1, t2,…,tn} of tuples and an integer value k, the clustering 

problem is to define a mapping f: D→ {1,…,k} where each ti is assigned to one 

cluster Kj, 1 ≤ j≤ k. A cluster, Kj, contains precisely those tuples mapped to it; 

that is, Kj={t i|f(ti)=K j, 1 ≤ I ≤ n, and ti Є D}. 

 

 A simple example for clustering is catalog design for targeted demographic 

groups based on attributes such as income, location, physical characteristics of potential 

customers. New specific catalogs design using results of clustering may be distributed 

to targeted population to attract customers. Some popular clustering algorithms are 

DBSCAN (Ester 1996) and k-means (Lylod 1982).   

 

2.2.3. Association Rule Mining 

 

 Association rule miming finds relationships and patterns between items in a 

database. It is a two step process. Firstly, frequent itemsets are found and secondly from 

these itemsets, rules are produced. Formal definition of association rule mining is 

 

Given a set of items I={I1, I2, …, Im} and a database of transactions 

D={t 1,t2,…,tn} where ti={I i1, Ii2, …,Iik} and Iij Є I and X,Y are set of items, the 

association rule problem is to identify all association rules X → Y with a 
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minimum support and confidence where support of association rule X → Y is the 

percentage of transactions in the database that contain X U Y and confidence is 

the ratio of support of X U Y to support of X.  

 

Simply the purchasing of one product when another product is purchased in the 

market basket data represents an association rule. A well known illustrative example of 

association rules is ‘‘Diaper! Beer’’ which can be explained by the fact that, when dads 

buy diapers for their babies, they also buy beer at the same time for their weekend’s 

game watching (Liu 2008). Some popular association rule mining algorithms Apriori 

(Agrawal 1994), ECLAT (Zaki 1997) and FP-Growth (Han 2000).  

 

2.3. Frequent Itemset Mining 

 

The progress in bar-code and computer technology has made it possible to 

collect data about sales and store as transactions which is called basket data. This stored 

data attracted researches to apply data mining to basket data. As a result association 

rules mining came into prominence which is mentioned as synonymous to market 

basket analysis. As stated before association rule mining is a two step process. Firstly, 

frequent itemsets are found using minimum support value, and this step is the main 

concentration of association rule mining algorithms. Later from these itemsets using 

minimum confidence value rules are produced. As the differing part of the algorithms 

are frequent itemset finding part, association rule mining, frequent itemset mining or 

frequent pattern mining terms are used interchangeably. Association rule mining which 

was first mentioned in (Agrawal 1993) is one of the most popular data mining 

approaches. Not only in market business but also in variety of areas association rule 

mining is used efficiently. In (Duru 2005), Apriori algorithm is used on a diabetic 

database and developed application is used to discover social status of diabetics and 

(Alves 2009) represents a survey of frequent pattern mining from gene expression data. 

In a report (Grossman 1998), association rules are listed in the success stories part and 

in a survey (Wu 2008) the Apriori algorithm is listed in top 10 data mining algorithms. 

The proposed algorithm in (Agrawal 1993) makes multiple passes over database. 

In each pass, beginning from one element itemsets, the support values of itemsets are 

counted. These itemsets are called candidate itemsets which are extended from the 
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frontier sets delivered from previous pass. If a candidate itemset is measured as frequent 

then it is added to frontier sets for the next pass.  

The Apriori algorithm proposed in (Agrawal 1994) boosted data mining research 

with its simple way of implementation. The algorithm generates candidate itemsets to 

be counted in a pass by using only the itemsets found large in previous pass – without 

considering all of the transactions in the database. So too many unnecessary candidate 

generation and support counting is avoided. Apriori is characterized as a level-wise 

complete search algorithm using anti-monotonicity of itemsets, “if an itemset is not 

frequent, any of its superset is never frequent” (Han 2005 and Wu 2008). 

There have been many improvements for Apriori algorithm. Partitioning 

approach proposed in (Savasere 1995). Sampling approach is proposed in (Toivonen 

1996). (Zaki 1997) proposed vertical data format for clustering transactions and 

producing frequent itemsets from these clusters. Although these algorithms are showed 

to perform better than Apriori, most significant improvement is lately proposed FP-

Growth algorithm in (Han 2000). The main objective is to skip candidate generation and 

test step which is the bottleneck of the Apriori like methods. The algorithm uses a 

compact data structure called FP-tree and pattern fragment growth mining method is 

developed based on this tree. FP-growth algorithm scans database only twice. It uses a 

divide and conquer strategy. Algorithm relies on Depth First Search scans while in 

Apriori Breath First Search scan is used (Hipp 2000). It is stated in (Han 2000) that FP-

growth is at least an order of magnitude faster than Apriori. 

In several extensions for both Apriori and FP-growth accuracy of results is 

sacrificed for better speed. Matrix Apriori proposed in (Pavon 2006), combines positive 

properties of these two algorithms. Algorithm employs two simple structures: A matrix 

of frequent items called MFI and a vector storing the support of candidates called STE. 

Matrix Apriori consists of three procedures. First builds matrix MFI and populates 

vector STE. Second modifies matrix MFI to speed up frequent pattern search. Third 

identifies frequent patterns using matrix MFI and vector STE.  

Detailed studies for comparing performances of Apriori and FP-Growth 

algorithms can be found in (Han 2000, Hipp 2000 and Zheng 2001). These studies 

reveal out that FP-Growth perform better than Apriori when minimum support value is 

decreased. Matrix Apriori algorithm combining the advantages of Apriori and FP-

Growth was proposed as a faster and simpler alternative to these algorithms but there is 

no work showing its performance and this motivated first step of this thesis.  



 

2.4. Overview of Privacy Preserving Data Mining

 

In today’s informa

recorded somewhere. This increase in data collection with the tools capable of 

analyzing this huge volume of information, has led to privacy concerns. For the society 

protecting private data 

consent prior to analysis of an individuals’ data (Vaidya 2004)

concern is not limited to the individuals. Companies may be willing to share their 

information for their common benefits; however, they may also be aware of sharing 

private information.  

The trade-off between using private information for data mining and keeping it 

secret is a growing challenge. On the other hand privacy preservation in data mining is a 

rising field of research. Many researchers are studying on this topic and many 

techniques have been proposed. 

two as data hiding and rule hiding. Data hiding techniques aim to preserve individual

sensitive data private and modify data mining algorithms in such a way that sensitive 

data cannot be inferred from results of data minig algorithm

privacy is preserved. Rule hiding techniques aim to preserve 

private patterns and modify original data in such a way that all sensitive patterns or 

rules stay unrevealed while remaining ones can still be discovered.

known as to preserve output privacy.

 

Data Hiding

Perturbation Anonymization

2.4. Overview of Privacy Preserving Data Mining 

In today’s information age, data collection is ubiquitous, and every transaction is 
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 Taxonomy of PPDM techniques is given in Figure 2.2. These techniques are 

briefly introduced in following subsections. 

 

2.4.1. Data Hiding 

 

 The main objective of data hiding is to design new protocols to perturb, 

anonymize or encrypt raw data so that sensitive data remains sensitive during and after 

the mining operation while underlying data patterns can still be discovered 

(Subramanian 2008). In the following subsections, techniques used in data hiding are 

introduced. 

 

2.4.1.1. Perturbation 

 

 One approach to privacy-preserving data mining is based on perturbing the 

original data, then providing the perturbed dataset as input to the data mining algorithm. 

The privacy-preserving properties are a result of the perturbation. Data values for 

individual entities are distorted, and thus individually identifiable (private) values are 

not revealed (Vaidya 2006). 

 The randomization technique uses data distortion methods in order to create 

private representations of the records. In most cases, the individual records cannot be 

recovered, but only aggregate distributions can be recovered. These aggregate 

distributions can be used for data mining purposes. Two kinds of perturbation are 

possible with the randomization method (Aggarwal 2008): 

 

Additive Perturbation: In this case, randomized noise is added to the data 

records. The overall data distributions can be recovered from the randomized 

records. Data mining and management algorithms redesigned to work with these 

data distributions.  

 

Multiplicative Perturbation: In this case, the random projection or random 

rotation techniques are used in order to perturb the records.  
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In (Agrawal 2000), randomization technique is applied. Noise is added to the 

original data and the attribute values of records are masked. Decision tree classification 

is evaluated over perturbed data. 

 

2.4.1.2. Anonymization 

 

 Data anonymization aims at preventing an adversary from mapping sensitive 

information to an individual with the help of information provided in attributes known 

as quasi-identifiers. Information is routinely made public by removing primary 

identifiers such as names and SSNs. However, by combining records attributes 

individual records can be exactly identified (Aggarwal 2008 and Subramanian 2008). 

Anonymization, simply reduces granularity of data representation and k-anonymity and 

l-diversity are approaches for anonymization.  

 

In k-anonymity quasi-identifers are generalized or suppressed in such a way that 

they become identical for k records, where k > 1. 

 

L-diversity in addition to k-anonymity ensures that all tuples with similar values 

of quasi-identifiers have diverse values for their sensitive attributes. 

 

 In (Sweeney 1998), two algorithms Datafly and µ-Argus are proposed for k-

anonymity. Later in (Machanavajjhala 2007), l-diversity approach proposed which 

overcomes weaknesses of k-anonymity. 

 

2.4.1.3. Encryption 

 

In many cases, multiple parties may wish to share aggregate private data, 

without leaking any sensitive information at their end. For example, different 

superstores with sensitive sales data may wish to coordinate among themselves in 

knowing aggregate trends without leaking the trends of their individual stores. This 

requires secure and cryptographic protocols for sharing the information across the 

different parties. The data may be distributed in two ways across different sites 

(Aggarwal 2008): 
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Horizontal Partitioning: In this case, the different sites may have different sets of 

records containing the same attributes. 

 

Vertical Partitioning: In this case, the different sites may have different attributes 

of the same sets of records. 

 

 In (Kantarcioglu 2004),  secure mining of association rules over horizontally 

partitioned data and in (Vaidya 2002) secure mining of association rules over vertically 

portioned data approaches are proposed. The methods incorporate cryptographic 

techniques to continue data mining without revealing individual transactions at each 

distributed site. (Lindell 2002 and Pinkas 2002) proposed protocols for privacy 

preserving distributed classification by decision tree learning.   

 

2.4.2. Rule Hiding 

 

The main focus of rule hiding is association rules and frequent patterns. 

Association rule hiding refers to the process of modifying the original database in such 

a way that certain sensitive association rules disappear without seriously affecting the 

data and the non-sensitive rules (Aggarwal 2008). The main goal here is to hide as 

many sensitive rules as possible, while keeping preserved as many non-sensitive rules 

as possible.  

To make the necessity of hiding association rules clear here is a scenario. Let us 

suppose that we are negotiating with Dedtrees Paper Company, as purchasing directors 

of BigMart, a large supermarket chain. They offer their products in reduced prices, 

provided that we agree to give them access to our database of customer purchases. We 

accept the deal and Dedtrees starts mining our data. By using an association rule mining 

tool, it can be found that people who purchase skim milk also purchase Green Paper. 

Dedtrees now runs a coupon marketing campaign offering a 50 cents discount on skim 

milk with every purchase of a Dedtrees product. The campaign cuts heavily into the 

sales of Green Paper, which increases the prices to us, based on the lower sales. During 

our next negotiation with Dedtrees, we found out that with reduced competition they are 

unwilling to offer to us a low price. Finally, we start losing business to our competitors, 
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who were able to negotiate a better deal with Green Paper. In other words, the 

aforementioned scenario indicates that BigMart should sanitize competitive information 

(and other important corporate secrets of course) before delivering their database to 

Dedtrees, so that Dedtrees does not monopolize the paper market (Verykios 2004b). 

As seen in the example above hiding association rules which are sensitive is a 

should be considered subject in information sharing for data mining. Distortion and 

blocking are techniques used in rule hiding and introduced in following subsections. 

 

2.4.2.1. Distortion 

 

 Distortion based association rule hiding algorithms run on the strategy that is 

based on reducing the support and confidence of rules. Remember that these two 

specify how significant the rules are. The transactions are modified by removing some 

items or inserting new items. On the other hand we should ensure that the information 

loss incurred by the process is minimal. 

We will use the bitmap notation to represent transactions in the database. If an 

item exists in a transaction then it is represented with “1” and “0” if it does not exist. 

For instance, consider a database with items A, B, C and D. A transaction T with items 

A and C is represented as T (1010) using the bitmap notation. The distortion approach 

simply changes these bit values of items in transactions (Verykios 2004b). A simple 

example is shown in Figure 2.3. Each row represents a transaction. A, B, C, and D are 

the items in the database. We simply change the bit values representing item C of 

second and fifth transactions. It is clear that support and confidence for the rule A→C is 

decreased. If the new support and confidence values are lower than our thresholds 

defined then the rule is hidden.   

 



 

 
2.4.2.2. Blocking 
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Heuristic approaches uses heuristics for modifications in the database. These 

techniques are efficient, scalable and fast algorithms however they do not give optimal 

solution and may have side effects. These techniques based on support and confidence 

decreasing. There are two types of techniques: distortion and blocking. Distortion 

techniques select transactions which hold sensitive itemsets and then selected items are 

deleted from transaction and database is modified. Blocking techniques replaces items 

with unknown values instead of deletion of items to modify database. The first 

algorithm is based on support reduction (Atallah 1999). In (Veykios 2004b) five 

algorithms are proposed based on hiding strategies. Not only itemsets but also rules are 

considered through hiding in the algorithms.  

A framework for frequent itemset hiding is proposed in (Oliveira 2002). 

Algorithms require two database scans. At first scan the inverted file index is created 

and at second scan items are deleted from selected transactions. In (Saygin 2001) 

blocking is used instead of distortion of items in the database. The idea behind this 

approach is that sometimes replacing false values may have bad consequences. The aim 

in the algorithms is hide given sensitive rules by replacing unknown values and 

minimize side effects on non-sensitive rules. 

Many association rule hiding algorithms are Apriori (Agrawal 1994) based and 

needs multiple database scans to find support of sensitive itemsets because these 

techniques require data mining done prior to the hiding process. In (Wang 2008) a tree 

structure P-tree (Huang 2002) which is similar to FP tree (Han 2000) is used to store 

information about database. This algorithm gets predictive item and sanitize informative 

rule set which is the smallest set of association rules that makes the same prediction as 

the entire rule set. The algorithm does not need data mining to be done before hiding 

process and does not scan database many times. 

  



18 
 

CHAPTER 3 

 

FREQUENT ITEMSET MINING AND FREQUENT 
ITEMSET HIDING 

 

 

3.1. Introduction 

 

Among many techniques in data mining association rule mining is one of the 

most important and well researched one. It aims to extract interesting correlations, 

frequent patterns, associations or casual structures among sets of items in the 

transactional databases or other data repositories (Kotsiantis 2006). Association rule 

mining process consists of two steps: finding frequent itemsets and generating rules. 

The main concentration of most association rule mining algorithms is to find frequent 

itemsets in an efficient way to reduce the overall cost of the process. The rules are 

generated from frequent itemsets. Therefore, usually frequent itemset or pattern mining 

term is used instead of association rule mining. If you consider market basket data, the 

purchasing of product(X) and product(Y) frequently together represents a frequent 

itemset. An itemset is a set of items in the database. Frequent itemset is an itemset of 

which support value (percentage of transactions in the database that contain both X and 

Y) is above the threshold defined as minimum support. From found itemsets association 

rules can be produced. 

Data mining became popular in last decades by the help of increase in abilities 

of computers and collection of large amount of data however; it is a challenge to extract 

knowledge without violating data owner’s privacy (Grossman 1998, Kantardzic 2002, 

Dunham 2002, Han 2005, Yang 2006 and Zhang 2007). Privacy preserving data mining 

(PPDM) come up with the need for protecting sensitive data or knowledge to conserve 

privacy while data mining techniques can still be applied efficiently. 

PPDM has two aspects as input and output privacy. To protect input privacy, 

data hiding techniques are applied such that data mining can still be done without 

violating private individual data. To protect output privacy, rule or knowledge hiding 

techniques are applied. These techniques ensure that private rules or patterns which can 

be extracted from given data are hidden while remaining ones can still be mined. Rule 



19 
 

hiding is concentrated on association rules and frequent itemsets. Algorithms operate to 

distort items in transactions of database in such a way that as many as sensitive itemsets 

or association rules hidden and as many as non-sensitive itemsets or association rules 

extracted. 

Many approaches for frequent itemset hiding are Apriori based and needs 

multiple database scans. Besides, these techniques require pre-mining to calculate 

support of sensitive itemsets. Therefore, it is decided to propose such algorithm that it 

avoids multiple database scans and pre-mining of frequent patterns. Matrix Apriori, a 

two database scan frequent itemset mining algorithm, is used for proposed itemset 

hiding algorithm. The approach does not require pre-mining and supports are calculated 

during hiding process. In addition, four distortion strategies are proposed which use 

pattern lengths instead of transaction lengths for item selection. 

In this chapter, firstly, frequent itemset mining is introduced and two algorithms 

FP-Growth and Matrix Apriori are explained and demonstrated to be self contained for 

itemset hiding section. Following, proposed Matrix Apriori based frequent itemset 

hiding algorithms are explained and an example hiding case is given. 

 

3.2. Frequent Itemset Mining 

  

Association rule mining was first introduced by (Agrawal 1993), and in 

(Agrawal 1994) the popular Apriori algorithm was proposed. It computes the frequent 

itemsets in the database through several iterations. Each iteration has two steps: 

candidate generation and candidate selection (Kantardzic 2002). Database is scanned at 

each iteration. Apriori algorithm uses large itemset property: any subset of a large 

itemset must be large. Candidate itemsets are generated as supersets of only large 

itemsets found at previous iteration. This reduces the candidate itemset number. Among 

many versions of Apriori (Savasere 1995 and Toivonen 1996), FP-Growth has been 

proposed in association rule mining research with the idea of finding frequent itemsets 

without candidate generation (Han 2000). FP-Growth uses tree data structure and scans 

database only twice showing notable impact on the efficiency of itemset generation 

phase. Lately an approach named Matrix Apriori is introduced with the claim of 

combining positive properties of Apriori and FP-Growth algorithms (Pavon 2006). In 

this approach, database is scanned twice as in the case of FP-Growth and matrix 
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structure used is simpler to maintain. Although it is claimed to perform better than FP-

Growth, performance comparison of both algorithms are lately shown in (Yıldız 2010) 

which is the first step of this thesis. Next two subsections explains and demonstrates FP-

Growth and Matrix Apriori algorithms. 

 

3.2.1. FP-Growth Algorithm 

 

The FP-Growth method adopts a divide and conquer strategy as follows: 

compress the database representing frequent items into a frequent-pattern tree, but retain 

the itemset association information, and then divide such a compressed database into a 

set of condition databases, each associated with one frequent item, and mine each such 

database (Han 2000). 

The algorithm is given in Figure 3.1. Firstly database is read and frequent items 

are found which are the items are occurring in transactions less than minimum support. 

Secondly database is read again to build FP-tree. After creating the root, every 

transaction is read in an ordered way and pattern of frequent items in the transaction is 

added to FP-tree and nodes are connected to frequent items list and each other. This 

interconnection makes frequent pattern search faster avoiding the traversing of the 

entire tree. When considering the branch to be added for a transaction, the count of each 

node along a common prefix is incremented by 1. Nodes of same items are 

interconnected where most left one is connected to item in frequent items list. If the 

prefix of branch to be added does not exists then it is added as a new branch to root. 

After constructing the tree the mining proceeds as follows. Start from each frequent 

length-1 pattern (frequent item), construct its conditional pattern base, then construct its 

conditional FP-tree and perform mining recursively on such a tree. The support of a 

candidate (conditional) itemset is counted traversing the tree. The sum of count values 

at least frequent item’s nodes (base node) gives the support value. 
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Figure 3.1. FP-Growth algorithm 

 

In Figure 3.2 FP-Growth algorithm is visualized for an example database with 

minimum support value 2 (50%). First, a scan of database derives a list of frequent 

items in descending order (see Figure 3.2a). Then in second step FP-tree is constructed 

(see Figure 3.2b). Step by step creation of FP-tree is given in Appendix B Figure B.1. In 

Figure 3.2b, we can see the transactions and the tree constructed. The frequent pattern 

generation process is demonstrated in Figure 3.2c. Details of pattern finding for item 

“A” is given in Appendix B Figure B.2. 
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Figure 3.2. FP-Growth example 

 

3.2.2. Matrix Apriori Algorithm 

 

Matrix Apriori (Pavon 2006) is similar to FP-Growth in the database scan step. 

However, the data structure build for Matrix Apriori is a matrix representing frequent 

items (MFI) and a vector holding support of candidates (STE). The search for frequent 

patterns is executed on this two structures, which are easier to build and use compared 

to FP-tree. 

 In Figure 3.3 Matrix Apriori algorithm is given. Firstly database is read and 

frequent items are found which are the items are occurring in transactions less than 

minimum support. Secondly database is read again to build MFI and STE. Following 

this, a second scan on database is executed. During the scan the MFI and STE is built as 

follows. Each transaction is read. If the transaction has any item that is in the frequent 

item list then it is represented as “1” and otherwise “0”. This pattern is added as a row 

to MFI matrix and its occurrence is set to 1 in STE vector. While reading remaining 

transactions if the transaction is already included in MFI then in STE its occurrence is 

incremented. Otherwise it is added to MFI and its occurrence in STE is set to 1. After 
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reading transactions, the MFI matrix is modified to speed up frequent pattern search. 

For each column of MFI, beginning from the first row, the value of a cell is set to the 

row number in which the item is “1”. If there is not any “1” in remaining rows then the 

value of the cell is set to “1” which means down to the bottom of the matrix, no row 

contains this item. After constructing the MFI matrix, finding patterns is simple. 

Beginning from the least frequent item, create candidate itemsets and count its support 

value. The support value of an itemset is the sum of the items at STE of which index are 

rows where all the items of the candidate itemset are included in MFI’s related row. 

 

 

Figure 3.3. Matrix Apriori algorithm 
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In Figure 3.4, Matrix Apriori algorithm is demonstrated. The example database 

is the same database used in previous section and minimum support value is again 2 

(%50). Firstly, a database scan to determine frequent items is executed and a frequent 

items list is obtained. The list is in descending order (see Figure 3.4a). A second scan is 

done to build MFI and STE. Following MFI is modified to make frequent pattern search 

faster (see Figure 3.4b). Details of constructing MFI and STE are given in Appendix B 

Figure B.3. Frequent itemsets found as explained before and can be seen in Figure 3.4c. 

An example support counting for itemset “CA” is given in Appendix B Figure B.4. 

 

 

Figure 3.4. Matrix Apriori example 

 

3.2.3. Discussion on FP-Growth and Matrix Apriori Algorithms 

 

It will be beneficial to give a short comparison of given algorithms with an 

example to show the execution of the algorithms. First scans of both algorithms are 

carried out in the same way. Frequent items are found and listed in order.  During 

second scan, FP-Growth adds transactions to tree structure and Matrix Apriori to matrix 
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structure. Addition of a transaction to the tree structure needs less control compared to 

matrix structure. For example, consider 2nd and 3rd transactions. Second transaction is 

added as a branch to the tree and as a row to the matrix. But addition of third transaction 

shows the difference. For tree structure we need to control only the branch that has the 

same prefix with our transaction. So addition of a new branch to node E is enough. On 

the other hand, for the matrix structure we need to control all the items of rows. If we 

find the same pattern then we increase the related item of STE. Otherwise we need to 

scan matrix till we find the same pattern. If we cannot find then a new row is added to 

matrix. It seems that building matrix needs more control and time, however, 

management of matrix structure is easier compared to tree structure. 

Finding patterns for both algorithms need producing candidate itemsets and 

control. This is called conditional pattern base in FP-Growth and there is no specific 

name for Matrix Apriori. Counting support value is easy to handle in Matrix Apriori by 

sequentially top down sum of related rows of STE. However, in FP-Growth counting 

support is complex by traversing the tree, selecting related nodes and sum values in 

selected nodes. 

 

3.3. Frequent Itemset Hiding 

  

One of the prominence techniques in data mining is frequent itemset or 

association rule mining however; obtained outputs may cause violation of knowledge 

privacy. There may be some situations where knowledge extracted by rule mining 

algorithms includes rules or itemsets that should stay unrevealed. These itemsets are 

called sensitive itemsets. Itemset hiding intends to modify database in such a way that 

sensitive itemsets are hidden with minimum side effects on non-sensitive ones. The first 

study on rule hiding shows that sanitization of the database is NP-Hard and heuristic 

approaches are needed (Atallah 1999). Heuristic approaches are based on support and 

confidence reduction. Following studies propose algorithms for itemset hiding and 

association rule hiding respectively (Oliveira 2002 and Verykios 2004b). These 

algorithms distort items in the database. However, there may be such conditions that 

writing false values may cause problems. The approach used in (Saygin 2001) use 

unknown values instead of writing false values on the database. 
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Many itemset or rule hiding approaches are based on Apriori algorithm which 

needs multiple database scans and pre-mining of association rules. On the other hand 

FP-Growth algorithm, which has a better performance compared to Apriori, makes two 

database scans for finding frequent itemsets (Han 2000). The work presented in (Wang 

2008) uses hiding algorithm based on P-tree (Huang 2002) similar to FP-tree of FP-

Growth algorithm. They sanitize informative rules and eliminate need for pre-mining of 

association rules. Another, frequent itemset mining algorithm with two database scans is 

Matrix-Apirori explained in section 3.2.2. It is simpler than FP-Growth in terms of 

maintenance of the compact data structure and performs better (Yıldız 2010) which 

leads to propose itemset hiding algorithms. Proposed algorithms for frequent itemset 

hiding are explained and demonstrated in following subsections. 

 

3.3.1. Matrix Apriori Based Frequent Itemset Hiding Algorithms 

 

As displayed in Figure 3.5, proposed privacy preserving frequent itemset mining 

approach gets dataset D, sensitive itemsets Ls and minimum support minsup as input 

and returns sanitized dataset Ds with frequent itemsets which can be found from Ds as 

FIs. Sensitive itemsets are given without any knowledge if those itemsets are frequent 

or not. If any itemset given as sensitive is frequent in original database then it is hidden 

through itemset hiding process. Most hiding approaches first do mining and calculate 

support of all frequent itemsets then start hiding process. This has two disadvantages i) 

it might cause a privacy breech if the one performing hiding process is not trusted 

because all frequent itemsets are required to be known before the hiding process and ii) 

it requires pre-mining causing decrease in efficiency. Proposed approach ensures that 

user does not know whether given sensitive itemset was frequent in original dataset 

because frequent itemsets are found during hiding process and eliminates the need for 

pre-mining process. 

 



 

Itemset hiding process is based on the Matrix Apriori algorithm given in 

2006). Matrix Apriori is a frequent itemset mining algorithm without candidate 

generation and scans database only twice. At first scan

support frequent items are found. At second scan, matrix data structure called MFI and 

support holder vector STE is build. For every transaction in database, the pattern 

consists of frequent items is read and added to MFI matrix

on STE vector. Frequent itemset mining is done on this compact data structure which 
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pattern is used instead of length of the transaction. This approach also eliminates the 

need for database access in choosing decision.  

When transaction is selected we need to select an item of the transaction for 

distortion (line 8). There are two strategies for selection of item to distort: maxFI and 

minFI. Using maxFI, most frequent item of sensitive itemset is distorted on transaction. 

If minFI is used then least frequent item of sensitive itemset is distorted on transaction. 

Selected item is distorted in transaction (line 9), the distortion technique is replacing “1” 

with “0” in related cell. Matrix structure MFI is updated after distortion (line 10). We 

decrease the value of related row in STE (line 11) and delete transaction modified in that 

row of TList (line 12). By this way it is ensured that we have compact mirror of semi-

sanitized dataset in MFI, STE and TList throughout the hiding process.  

The selection and distortion process is repeated until the support of sensitive 

itemset Is is below minsupport. After sanitization of a Is the next itemset is read from Ls 

and sanitized. At final step (line 16) frequent itemsets FIs of sanitized dataset Ds are 

found using up-to-date MFI and STE. 

 

 

Figure 3.6. Itemset hiding algorithm 

 

Now, let us explain an itemset hiding process using an example. Shortest pattern 

and most frequent item maxFI stragety is applied and itemset of BA is sensitive (Is). In 
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Figure 3.7 sample database is given with MFI, STE and TList found in line 1. For 

minsupport value 3 (50%) 4 frequent itemsets (length 1 itemsets are not included) are 

found. These are CB, CA, CBA, BA. But remember that proposed approach does not 

need frequent itemset mining to be performed before hiding process. 

 

 

Figure 3.7. Database D and MFI, STE and TList for D 

 

As in line 3, using MFI and STE support of BA is calculated to be 4 (66%). 

Since the minsupport value is 3 (50%), number of iterations to sanitize BA can be 

calculated as 2 (line 4). At first iteration shortest pattern that holds BA is found as third 

row of MFI and related transaction is T4 from TList. Most frequent item of sensitive 

itemset BA is A so it will be deleted from selected transaction (Figure 3.8). Meanwhile 

STE value of selected row is decreased and modified transaction id is deleted from the 

list. After deletion the new pattern B is added to matrix and T4 is added to transaction 

list which is now the sixth row of the matrix. At second iteration second row is selected 

as shortest and T3 is selected for modification. In Figure 3.8 sanitized database Ds and 

shows MFI, STE, TList after sanitization process is shown. Steps of execution are 

demonstrated in Appendix B Figure B.5. 

 

 

Figure 3.8. Sanitized database Ds and MFI, STE and TList after itemset hiding process 
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After sanitization process we are able to find frequent itemsets for sanitized 

database using up-to-date matrix structure. Support values of itemsets are calculated as 

CB(50%), CA(33%), CBA(33%) and BA(33%). Support of itemset BA is now under 

minsupport and it is hidden. CBA is also hidden because it is a superset of BA. 

However, CA is now under minimum support and cannot be find as frequent although it 

was not sensitive. This is the side effect and CA is called lost itemset. 

 

3.3.2. Discussion on Matrix Apriori Based Frequent Itemset Hiding 
Algorithms 

 

In previous subsection, an example for hiding an itemset was given. spmaxFI 

algorithm was used. Now, spmaxFI and other three algorithms will be compared for the 

same case. Minimum support is 3 (50%) and itemsets can be found from the database 

are CB, CA, CBA, BA. Sensitive itemset is again BA.  

Firstly, discuss results of spminFI algorithm. Shortest pattern is selected as third 

row of MFI and T4 is the transaction. B is the minimum of frequent items of sensitive 

itemset BA so it is deleted from transaction T4. Following new pattern of T4 is 

appended to MFI. Later second row is selected as it contains shortest pattern for BA. T3 

is our transaction and again B is deleted. In Figure 3.9 sanitized database Ds and MFI, 

STE and Tlist after itemset hiding process are given. If we calculate new support for 

itemsets we will obtain CB(33%), CA(50%), CBA(33%) and BA(33%). BA and its 

superset CBA is hidden. However, CB is also hidden which was not sensitive itemset. It 

is lost itemset rather than CA in spmaxFI example.  

 

 

Figure 3.9. Ds and MFI, STE and TList after itemset hiding with spminFI 
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Secondly, discuss results of lpmaxFI algorithm. Longest pattern is selected as 

second row of MFI and T3 is the transaction. A is the maximum of frequent items of 

sensitive itemset BA so it is deleted from transaction T3. Following new pattern of T3 is 

appended to MFI. In next iteration second row is selected as it contains longest pattern 

for BA. T2 is our transaction and again A is deleted. In Figure 3.10 sanitized database 

Ds and MFI, STE and TList after itemset hiding process are given. If we calculate new 

support for itemsets we will obtain CB(50%), CA(17%), CBA(17%) and BA(33%). BA 

and its superset CBA are hidden. However, CA is lost itemset since it is hidden 

although it was not sensitive itemset. 

 

 

Figure 3.10. Ds and MFI, STE and TList after itemset hiding with lpmaxFI 

 

Lastly, discuss results of lpminFI algorithm. Longest pattern is selected as 

second row of MFI and T3 is the transaction. B is the minimum of frequent items of 

sensitive itemset BA so it is deleted from transaction T3. Following new pattern of T3 is 

appended to MFI. In next iteration second row is selected as it contains longest pattern 

for BA. T2 is our transaction and again B is deleted. In Figure 3.11 sanitized database 

Ds and MFI, STE and TList after itemset hiding process are given. If we calculate new 

support for itemsets we will obtain CB(17%), CA(50%), CBA(17%) and BA(33%). BA 

and its superset CBA are hidden. However, CB is lost itemset since it is hidden although 

it was not sensitive itemset. 
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Figure 3.11. Ds and MFI, STE and TList after itemset hiding with lpminFI 

 

 Results of itemset hiding using different algorithms are given in order to 

compare strategies and side effects encountered. All algorithms hide sensitive itemset 

successfully. Superset of sensitive itemset is also hidden by all algorithms. There are 

one lost itemset for all simulations however the lost itemset differs from algorithm to 

algorithm.  Although side effects as number of lost itemset are same for all simulations 

there are dramatic decreases in support value of some itemsets for lpmaxFI and lpminFI 

algorithms.  However, spmaxFI and spminFI algorithms seem to distribute this effect 

we do not have any support value under 33% for itemsets found previously frequent. In 

next chapter comparison of these algorithms is given and performance differences are 

clearly seen. 
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CHAPTER 4 

 

PERFORMANCE EVALUATION 

 

4.1. Introduction 

 
Association rule and frequent itemset mining is popular technique in data 

mining. It was firstly introduced in (Agrawal 1993) and following it Apriori algorithm 

was proposed in (Agrawal 1994). The large itemset property saying “any subset of large 

itemset must be large” made Apriori so popular that it boosted data mining research. 

However, it has a bottleneck that for generating candidate itemsets Apriori scans 

database several times. FP-Growth (Han 2000) come up with the idea of eliminating 

database scan for candidate itemset generation and testing. It uses a compact data 

structure called FP-tree which can be thought as a summary of original database. FP-

Growth scans database only twice and Matrix Apriori (Pavon 2006) is another 

algorithm that scans database only twice. Instead of tree Matrix Apriori deploys a 

matrix structure which speeds up the search for frequent itemsets. Although it is 

claimed to be faster than FP-Growth there is no work showing performances. This is 

done as the first part of thesis study. 

Knowledge extracted by frequent itemset mining may cause privacy problems if 

some itemsets are sensitive which means they must be remain unrevealed. Privacy 

preserving data mining techniques for itemset mining are developed to come over this 

problem. They simply distort items in transactions of database and prevent sensitive 

itemsets to be exracted. Many hiding techniques are Apriori based. Therefore, multiple 

database scan is required as mentioned above. In (Wang 2008), a sanitization approach 

is proposed using P-tree which is similar to FP-tree. This technique eliminates pre-

mining needed for sensitive itemset support calculation. Being inspired from this study, 

a frequent itemset hiding approach based on Matrix Apriori is proposed. Matrix Apriori 

is a two database scan frequent itemset algorithm using a compact data structure. With 

four different strategies algorithm is varied. The strategies differ from existing 

approaches in the way of selecting distorted item. Pattern length information obtained 

from matrix data structure is used instead of transaction length. 



34 
 

This chapter presents the results and discussions of performance evaluations. All 

applications are developed using Lazarus IDE (9.28.2). Firstly, two frequent itemset 

mining algorithms working without candidate generation FP-Growth and Matrix Apriori 

are compared. This study formed the basis for proposing frequent itemset hiding 

algorithms using Matrix Apriori. Secondly, four algorithms proposed for itemset hiding 

are compared. This study gives not only comparison of proposed algorithms but also 

effects of hiding process for different cases. 

 
4.2. Comparison of Two Frequent Itemset Mining Algorithms 

 
In this section, Matrix Apriori and FP-Growth algorithms which were discussed 

in previous chapter are compared. ARTool dataset generator (Cristofor 2002) is used for 

our synthetic datasets. Two case studies analyzing the algorithms are carried out step by 

step using two synthetic datasets generated in order i) to see their performance on 

datasets having different characteristics, ii) to understand the causes of performance 

differences in different phases. In order to keep the system state similar for all test runs, 

we assured all back-ground jobs which consume system resources were inactive. It is 

also ensured that test runs give close results when repeated. 

 

4.2.1. Simulation Environment for Frequent Itemset Mining 
Evaluations 

 

The test runs are performed on a computer with 2.4 GHz dual core processor and 

3 GB memory. At each run, both programs give results about data mining process (see 

Appendix C for Figure C.1 and Figure C.2). These are  

• time cost for first scan of database,  

• number of frequent items found at first scan of database, 

• time cost for second scan of database and building the data structure, 

• time cost for finding frequent itemsets, 

• number of frequent itemsets found after mining process, 

• total time cost for whole data mining process. 

Although real life data has different characteristics from synthetically generated 

data as mentioned in (Zheng 2001), synthetic data is used since the control of 

parameters were easily manageable. In (Omari 2008), the drawbacks of using real world 



35 
 

data and synthetic data and comparison of some dataset generators are given. The 

reason of using synthetic data was to have datasets with different characteristics as 

representing different domain needs. Synthetic databases are generated using ARtool 

software (Cristofor 2002). 

In the following subsections, performance analysis on the algorithms for two 

case studies is given. For the generated data sets, it is aimed to observe how change of 

minimum support affects the performance of algorithms. The algorithms are compared 

for six minimum support values in the range of 15% and 2,5%. 

 
4.2.2. Case 1: Database of Long Patterns with Low Diversity of Items 

 
A database is generated for having long patterns and low diversity of items 

where number of items=10000, number of transactions=30000, average size of 

transactions=20, average size of patterns=10. Number of frequent items is given in 

Figure 4.1 decrease in minimum support increases the number of frequent items from 

16 to 240.  

 

 

Figure 4.1. Number of frequent items for Case 1 

 

Number of frequent itemsets is given in Figure 4.2 while minimum support 

value is varied. It is clear that decrease in minimum support increases the number of 

frequent itemsets from 1014 to 198048. 
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Figure 4.2. Number of frequent itemsets for Case 1 

 

The total performance of Matrix Apriori and FP-Growth is demonstrated in 

Figure 4.3. It is seen that their performance is identical for minimum support values 

above 7,5%. On the other hand below 7,5% minimum support value Matrix Apriori 

performs clearly better such that at 2,5% threshold it is 230% faster.  

 

 

Figure 4.3. Total performance for Case 1 
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performances of algorithms demonstrated in Figure 4.4 showed that building matrix 
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Figure 4.4. First phase performance for Case 1 

 

The second phase of evaluation is finding frequent itemsets. As displayed in 

Figure 4.5 Matrix Apriori is faster at minimum support values below 10%. Although at 

10% threshold, FP-Growth is 20% faster, Matrix Apriori is 240% faster at 2,5% 

threshold. As its expected, performance of second phases are related to number of 

frequent itemsets (see Figure 4.2). 

 

 

Figure 4.5. Second phase performance for Case 1 

 

Our first case study showed that Marix Apriori performed better with decreasing 

threshold values for given database. 
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4.2.3. Case 2: Database of Short Patterns with High Diversity of Items 

 
A database is generated for short patterns and high diversity of items using the 

parameters where number of items=30000, number of transaction=30000, average size 

of transactions=20, average size of patterns=5. The change of frequent items is given in 

Figure 4.6. Frequent items found changes from 58 to 127 with decreasing minimum 

support values. 

 

 

Figure 4.6. Number of frequent items for Case 2 

 

The change of frequent itemsets count is given in Figure 4.7. While minimum 

support increases, frequent itemsets found changes from 254 to 71553. 

 

 

Figure 4.7. Number of frequent itemsets for Case 2 

 

0

20

40

60

80

100

120

140

co
un

t

minimum support (%)

item count

0

10000

20000

30000

40000

50000

60000

70000

80000

co
un

t

minimum support (%)

itemset count



39 
 

The total performance of both algorithms is given in Figure 4.8. Increase in 

minimum support decreases runtime for both algorithms. For minimum support values 

12,5% and 15% FP-Growth performed faster by up to 56%. However, for lower 

minimum support values Matrix Apriori performed better up to 150%.  

 

 

Figure 4.8. Total performance for Case 2 

 

First phase performance of algorithms is demonstrated in Figure 4.9. FP-Growth 

is observed to have better first phase performance. 

 

 

Figure 4.9. First phase performance for Case 2 

 

The second phase evaluation of algorithms as it is given in Figure 4.10 shows 
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Second phase performances of algorithms are related to number of frequent itemsets 

found like it was in first case study. 

 

 

Figure 4.10. Second phase performance for Case 2 
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impacts of having more items and less average pattern length caused both algorithms to 

have more runtime values compared to first case study. At 15% at first case study 1014 

itemsets are found in 1031-1078 ms however at second case study 254 itemsets are 

found in 12172-19030 ms. In addition, for all threshold values first phase runtime 

values are higher in second case study. 

Common points in both case studies are i) Matrix Apriori is faster at finding 

itemset phase compared to FP-Growth and slower at building data structure phase, ii) 

for threshold values below 10% Matrix Apriori is more efficient by up to 230%, iii) first 

phase performance of Matrix Apriori is correlated with number of frequent items, iv) 

second phase performance of FP-Growth is correlated with number of frequent itemsets. 

 

4.3. Comparison of Matrix Apriori Based Frequent Itemset Hiding 
Algorithms 

 

In this section, performance evaluation of four versions of our itemset hiding 

algorithms is given. These are spmaxFI (select shortest pattern and maximum of 

frequent items in the itemset), spminFI (select shortest pattern and minimum of frequent 

items in the itemset), lpmaxFI (select longest pattern and maximum of frequent items in 

the itemset) and lpminFI (select longest pattern and minimum of frequent items in the 

itemset). Two synthetic databases are used to see effect of different database size. The 

algorithms are executed on databases  i) to see effect of increasing number of sensitive 

itemsets, ii) to see effect of increasing support of sensitive itemset. The effects observed 

are number of lost itemsets as side effect, time cost for hiding process and number of 

items distorted for hiding itemsets. During evaluations, it is ensured that the system 

state is similar for all test runs and results are checked for consistency. 

 

4.3.1. Simulation Environment for Frequent Itemset Hiding 
Evaluations 

 

Test runs are performed on a computer with 2.7 GHz dual core processor and 1 

GB memory. At each run inputs are original database and sensitive itemsets where the 

outputs are sanitized database and frequent itemsets which can be mined from this 

sanitized database (see Appendix C for Figure C.3). Synthetic databases used in the 

evaluations are generated using ARtool software (Cristofor 2002). Two databases are 
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used for evaluations are different in the number of transactions since the effects of the 

size of database on hiding process wanted to be compared. One database has 5000 

transactions while number of items is 50 and average length of transactions is 5. Other 

database has 10000 transactions while number of items is 50 and average length of 

transactions is 5. Minimum support is defined as 2.5% for all evaluations and if no 

hiding is applied then 2714 frequent itemsets from 5k database and 5527 frequent 

itemsets from 10k database can be found. 

 

4.3.2. Case 1: Increasing Number of Sensitive Itemsets 

 

For both databases five of length three itemsets which are closest to 3.0% 

support are selected as sensitive itemsets. These itemsets are given in Table 4.1 below. 

Selected itemsets are mutual exclusive to ensure that one is not hidden by hiding 

process of previous itemsets. The aim of this study is to understand the effect of 

increasing the number of sensitive itemsets on itemset hiding. For each run next itemset 

in the table is added to the sensitive itemsets given to program. At first run itemset no 1 

is given as sensitive, at second run itemset no 1 and itemset no 2 are given as sensitive 

and so on. 

 

Table 4.1. Sensitive itemsets for Case 1 

Itemset 
no 

Itemsets for 
5k database 

Support 
(%) 

Itemsets for 
10k database 

Support 
(%) 

1 37 31 32 2.96% 36 20 6 3.00% 
2 7 47 41 3.06% 50 13 10 3.01% 
3 5 6 4 2.92% 33 49 42 2.93% 
4 24 13 46 3.08% 29 14 11 3.07% 
5 45 34 20 2.94% 39 41 18 2.95% 

 

The side effect which is the number of lost itemsets for increasing number of 

sensitive itemsets is given in Figure 4.11 for 5k database and in Figure 4.12 for 10k 

database. In both databases number of lost itemsets is increased for all hiding 

algorithms while number of sensitive itemsets is increased. It is clear that spmaxFI 

(select shortest pattern and maximum frequent item of itemset) algorithm has least side 

effects. The difference reaches up to 100% at five sensitive itemsets case. What more 
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can be inferred from this figure is that side effect is related to the characteristics of 

sensitive itemsets, not to the database size. Even for the best algorithm we come across 

higher number of lost itemsets for 5k database such that for 5 itemset hiding point 29 

itemsets are lost in 5k database while 22 itemsets are lost in 10k database. 

 

 

Figure 4.11. Side effect while increasing number of sensitive itemsets for 5k database 

 

 

Figure 4.12. Side effect while increasing number of sensitive itemsets for 10k database 

 

Time cost for itemset hiding is given in Figure 4.13 and Figure 4.14 for 5k 

database and 10k database respectively. Selecting shortest pattern seems as a better 
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method no matter maximum or minimum frequent item is selected for distortion. 

Selecting longest pattern needs 20% to 100% more time compared to selecting shortest 

pattern method. It is clear from the figure that database size effects time to hide itemsets 

for same cases. The database size is doubled and time needed for hiding itemsets is 

increased more than 100%. The reason behind this is the cost of travelling on matrix to 

select pattern. It is clear that matrix size is bigger for 10k database compared to 5k 

database. 

 

 

Figure 4.13. Time to hide itemsets while increasing number of sensitive itemsets for 5k 
database 
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Figure 4.14. Time to hide itemsets while increasing number of sensitive itemsets for 10k 
database 
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Figure 4.15. Number of items to distort while increasing number of sensitive itemsets 
for 5k database 

 

 

Figure 4.16. Number of items to distort while increasing number of sensitive itemsets 
for 10k database 
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the support value of sensitive itemsets on itemset hiding. For each run next itemset in 
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the table is selected as the sensitive itemsets given to program. At first run itemset no 1 

is given as sensitive, at second run itemset no 2 is given as sensitive and so on. 

 

Table 4.2. Sensitive itemsets for Case 2 

Itemset  
no 

Itemsets for  
5k database 

Support  
(%) 

Itemsets for  
10k database 

Support  
(%) 

1 37 31 32 2.96% 36 20 6 3.00% 
2 18 28 47 3.50% 4 49 42 3.54% 
3 14 17 24 4.00% 9 8 3 4.23% 
4 28 47 4 4.50% 7 33 18 4.47% 
5 46 20 4 5.00% 24 39 13 5.03% 

 

The side effect of increasing support value for sensitive itemset is given in 

Figure 4.17 and Figure 4.18 for 5k and 10k databases. Like it was in first case study 

selecting shortest pattern has better performance. Selecting shortest pattern and 

maximum frequent item (spmaxFI) for distortion is the best algorithm to have less 

number of lost itemsets. The statement “side effect is related to characteristics of 

selected itemsets” which was written in the first case study is approved in this study. 

For example, in the 5k database using the strategy spmaxFI, for itemset no 2 the number 

of lost itemsets is 4 however, for itemset no 4 the number of lost itemsets is 57. One 

interesting point in the figure is the itemset no 3 for 10k database. This is a good 

example how pattern selection has effect on the results. Selecting shortest pattern results 

about 10 lost itemsets while selecting longest pattern results about 300 lost itemsets. 
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Figure 4.17. Side effect while increasing support of sensitive itemsets for 5k database 

 

 

Figure 4.18. Side effect while increasing support of sensitive itemsets for 10k database 

 

Time cost for itemset hiding is given in Figure 4.19 and Figure 4.20 for 5k and 

10k databases. Selecting shortest pattern seems as a better method. In addition, spminFI 

algorithm is slightly faster than spmaxFI algorithm. It is clear from the figure that 

database size effects time to hide itemsets for same cases. The database size is doubled 

and like in the first case study time needed for hiding itemsets is increased more than 

100%. 
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Figure 4.19. Time to hide itemsets while increasing support of sensitive itemsets for 5k 
database 

 

 

Figure 4.20. Time to hide itemsets while increasing support of sensitive itemsets for 10k 
database 

 

The number of distortions is related to support count of sensitive itemsets as it 

was stated in previous part and so we will have increasing number of distorted items 

with increasing support. 
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4.3.4. Discussion on Matrix Apriori Based Frequent Itemset Hiding 

Algorithms 

 
In this section, effects of spmaxFI, spminFI, lpmaxFI and lpminFI algorithms on 

number of lost itemsets, time for hiding process and number of distortions needed for 

hiding itemsets are analyzed. Two different databases are used to understand the effect 

of database size and two different set of sensitive itemsets to understand the effects of 

number of sensitive items and support of sensitive items. Simply comparing the 

algorithms, it is clear that spmaxFI algorithm has least side effects at any case. Another 

point is that selecting shortest pattern causes fewer side effects compared to selecting 

longest pattern and selecting shortest pattern needs less time for hiding. Number of 

distorted items is the same for all algorithms because items are distorted upon difference 

between support count of sensitive itemsets and minimum support count no matter 

which algorithm is used. The most important result from these studies is that side effect 

is related to characteristics of selected sensitive itemsets because subsets or supersets of 

that itemset are affected too. 
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CHAPTER 5 

 

CONCLUSION 

 

The rapid development in computer technology made it possible to collect, store 

huge amount of data and apply data mining. Data mining aims to discover knowledge or 

patterns from the data especially large databases. However, there may be such situations 

that private data may be under violation because of gained knowledge or extracted 

knowledge by itself contains some private knowledge. Privacy preserving data mining 

arise from the need for do data mining without violating privacy of data or knowledge. 

Data hiding and rule hiding are two branches of PPDM. Data hiding techniques 

preserve the private data while rule hiding techniques preserve the private rules or 

patterns. The aim of this thesis is to propose algorithms for privacy preserving frequent 

pattern mining. To achieve this, master study is divided into two steps.  

In the first step, we benchmark and explain the FP-Growth and the Matrix 

Apriori frequent itemset mining algorithms that work without candidate generation. 

Since the characteristics of data repositories of different domains vary, each algorithm is 

analyzed using two different synthetic databases consisting of different characteristics, 

i.e., one database has long patterns with a low diversity of items and the other database 

has short patterns with a high diversity of items.  

Our case studies indicate that the performances of the algorithms are related to 

the characteristics of the given data set and the minimum support threshold applied.  

When the performances of the various algorithms are considered, we noticed that in 

constructing a matrix data structure, the Matrix Apriori takes more time in comparison 

to constructing the tree structure for the FP-Growth.  On the other hand, during finding 

itemsets phase we discovered that the matrix data structure is considerably faster than 

the FP-Growth at finding frequent itemsets--thus retrieving and presenting the results in 

a more efficient manner.   

In the second step, by the help of gained knowledge of frequent itemset mining 

algorithms and benefits of Matrix Apriori a new algorithm for frequent itemset hiding is 

proposed with four different versions. The algorithm is based on Matrix-Aprirori which 

is an efficient algorithm since it eliminates multiple database scans by using a compact 
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matrix structure as a summary of the original database. Each version uses different 

heuristic in selecting the transaction and the item in itemset for distortion;   spmaxFI 

(select shortest pattern and maximum of frequent items in the itemset), spminFI (select 

shortest pattern and minimum of frequent items in the itemset), lpmaxFI (select longest 

pattern and maximum of frequent items in the itemset) and lpminFI (select longest 

pattern and minimum of frequent items in the itemset).   

Main strengths of the algorithm are i) all versions work without pre-mining so 

privacy breech caused by the knowledge obtained by finding frequent itemsets in 

advance is prevented, ii) efficiency is increased since no pre-mining is required, iii) 

supports are found during hiding process and at the end sanitized database and frequent 

itemsets of this database are given as outputs so no post-mining is required, iv) the 

heuristics used transaction selection for distortion is from matrix data structure rather 

than transaction lengths eliminating the possibility of distorting more valuable data.  

Performance evaluation study is done on different databases to show the 

efficiency of the versions of the algorithms while the size of the original database, the 

number of itemsets and the itemset supports change. The efficiency of four versions are 

observed as side effects (lost itemsets), time to hide itemsets and amount of distortion 

caused on the original database. Our findings are as follows.  Among four versions, 

spmaxFI has better overall performance. The algorithms spmaxFI and spminFI are 

better in any case than lpmaxFI and lpminFI algorithms. Results show that side effect is 

related to given sensitive itemset. Neither support count nor database size is directly 

related to the number of lost itemsets. Time to hide sensitive itemset is a function of 

distortion and database size where distortion is related to support count.  

In conclusion, this master thesis study shows that Matrix Apriori is a better 

performer compared to FP-Growth algorithm and it is an efficient way to use it for 

frequent itemset hiding. The main contributions of the study are i) sanitization 

framework eliminating the need for pre-mining and the database scan for post-mining 

after sanitization, ii) four versions of Matrix Apriori based frequent itemset hiding 

algorithms, iii)  the idea of using pattern lengths for distortion strategy. 

As a future study, the efficiency of Matrix Apriori algorithm can be increased 

and may be parallelized. In addition, for Matrix Apriori based frequent itemset mining 

algorithms we plan to carry out further evaluations on different databases, especially 

those having bigger average transaction lengths, to see the impact of having multiple 

sensitive itemsets in a single transaction on distortion. Secondly, the effect of the 
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sensitive itemset sanitization order can be observed since in this work we chose 

mutually exclusive sensitive itemsets.  
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APPENDIX A 

 

INPUT FILE STRUCTURE 

 

 All of the implementations use “asc” file format. These files are created by 

ARtool software depending on parameters given. A simple file is displayed in Figure 

A.1. File includes items and numbers that represent these items until “BEGIN_DATA” 

phrase. Between “BEGIN_DATA” and “END_DATA” transactions are listed. 

Transactions are consists of representing numbers for related transaction. 

 

 

Figure A.1. Structure of a simple input file  
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APPENDIX B 

 

STEPS OF ALGORITHMS 

 

 In Figure B.1 below the creation of FP-tree is given step by step to make it clear. 

FP-tree is constructed in second scan of the database. Every transaction in the database 

is read in frequency order of the items excluding the ones below minimum support 

threshold. 
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Figure B.1. FP-tree generation 
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From the FP-tree generated frequent itemsets can be found. In Figure B.2 for the 

item A conditional pattern bases extracted (branch from leaf to root), conditional FP-

trees (only C for this example), frequent patterns found are given. 

 In Figure B.3 below the creation of MFI and STE is given step by step to make it 

clear. Every transaction in the database is read in frequency order of the items excluding 

the ones below minimum support threshold (see Figure 3.4 for frequent items list). 

root 

C,1 

A,1 

B,3 

C,2 

E,2 

A,1 

E,1 

Frequent item: A 

Conditional pattern base: C:1, BCE:1 

Conditional FP-tree: C:2 

Frequent itemsets: CA:2 

Figure B.2. Frequent pattern generation 
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Figure B.3. MFI and STE generation 

 

MFI and STE is constructed in second scan of the database and in Figure B.4 

STE and MFI after modification is given which will speed up the frequent itemset 

finding. From the MFI and STE generated frequent itemsets can be found. For the 

candidate itemset CA counting support is given in Figure B.4 below. 
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Figure B.4. Itemset support counting example on MFI and STE 

 

In Figure B.5 below the steps of frequent itemset hiding is given for the example 

in chapter 3. SpmaxFI algorithm is used in the example. Firstly shortest pattern in the 

MFI is selected and last transaction in the TList is picked. Later from the database most 

frequent item of sensitive itemset is deleted that is “A”. And MFI is updated. This is 

repeated until support of sensitive itemset is below minimum support. 
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Figure B.5. Steps of itemset hiding by spmaxFI algorithm 

  



 

 

GUI OF IMPLEMENTATIONS 

  

In Figure C.1 below a simple execution of FP
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APPENDIX C 

GUI OF IMPLEMENTATIONS  

below a simple execution of FP-Growth implementation is given. 

Firstly, “Load File” button is clicked and from open file dialog a file is selected. Here 

the file of 5k transactions used for frequent itemset hiding is selected. Given the 

minimum support count 125 (2.5%), “Run” button is clicked and program executed.

Monitor” frequent itemsets and their supports are displayed

itemsets are appended until no frequent itemsets are left. In “

information for performance evaluation is given: time to read file in ms, number of 

frequent items found, time to build FP-tree in ms, time to find frequent itemsets in ms, 

number of frequent itemsets and total time of execution. 

Figure C.1. FP-Growth implementation 
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Growth implementation is given. 

Firstly, “Load File” button is clicked and from open file dialog a file is selected. Here 

ed for frequent itemset hiding is selected. Given the 

, “Run” button is clicked and program executed. In 

Monitor” frequent itemsets and their supports are displayed where found 

In “Process Monitor” 

information for performance evaluation is given: time to read file in ms, number of 

tree in ms, time to find frequent itemsets in ms, 

 



 

In Figure C.2 below a simple execution of Matrix Apriori implementation is 

given. Firstly, “Load File” button is clicked and from open file dialog a file is selected. 

Here again the file of 5k transactions used for frequent itemset hiding is selected. Given 

the minimum support count 125 (2.5%), “Run” button is clicked and program executed. 

In “Results Monitor” frequent itemsets and their supports are displayed where found 

itemsets are appended until no frequent itemsets are left. In “

information for performance evaluation is given: time to read file in ms, number of 

frequent items found, time to 

find frequent itemsets in ms, number of frequent itemsets and total time of execution. 

Row number of MFI matrix is also given as “MFI length”, however; it is not used for 

evaluation. 

 

Figure C.

In Figure C.3 below a simple execution of proposed algorithm

based frequent itemset hiding using spmaxFI strateg

below a simple execution of Matrix Apriori implementation is 

given. Firstly, “Load File” button is clicked and from open file dialog a file is selected. 

again the file of 5k transactions used for frequent itemset hiding is selected. Given 

the minimum support count 125 (2.5%), “Run” button is clicked and program executed. 

” frequent itemsets and their supports are displayed where found 

emsets are appended until no frequent itemsets are left. In “

information for performance evaluation is given: time to read file in ms, number of 

frequent items found, time to build MFI matrix and modify MFI matrix in ms, time to 

ent itemsets in ms, number of frequent itemsets and total time of execution. 

Row number of MFI matrix is also given as “MFI length”, however; it is not used for 

Figure C.2. Matrix Apriori implementation 
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below a simple execution of Matrix Apriori implementation is 

given. Firstly, “Load File” button is clicked and from open file dialog a file is selected. 

again the file of 5k transactions used for frequent itemset hiding is selected. Given 

the minimum support count 125 (2.5%), “Run” button is clicked and program executed. 

” frequent itemsets and their supports are displayed where found 

emsets are appended until no frequent itemsets are left. In “Process Monitor” 

information for performance evaluation is given: time to read file in ms, number of 

MFI matrix and modify MFI matrix in ms, time to 

ent itemsets in ms, number of frequent itemsets and total time of execution. 

Row number of MFI matrix is also given as “MFI length”, however; it is not used for 

 

below a simple execution of proposed algorithm Matrix Apriori 

is displayed. Like frequent 
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itemset mining implementations 5k database file is selected and minimum support count 

125 (2.5%) is given. Sensitive itemsets can be entered in “Sensitive Itemsets” text box, 

each line representing an itemset. At this time we enter sensitive itemsets without the 

information if they are frequent or not. As mentioned in thesis this protects privacy 

against probable malicious user of itemset hider. Following, we click “Run” button and 

see two save file dialogs: first for saving frequent itemsets of sanitized database and 

second for saving sanitized database. The itemset file is used for finding supersets of 

sensitive itemsets to calculate number of lost itemsets after sanitization for comparison. 

“Results Monitor” gives found frequent itemsets after sanitization with support counts. 

This eliminates post-mining of new sanitized database. “Process Monitor” gives time to 

read file in ms, number of frequent items found, time to build MFI matrix and modify 

MFI matrix in ms, time to find frequent itemsets in ms, number of frequent itemsets and 

total time of execution. Row number of MFI matrix is also given as “MFI length” 

before and after sanitization to calculate distorted items. And in addition to Matrix 

Apriori implementation time for hiding process is given in ms. 

 



 

Figure C.3. Matrix Apriori Based Frequent Itemset Hider for spmaxFI implement. Matrix Apriori Based Frequent Itemset Hider for spmaxFI implement
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. Matrix Apriori Based Frequent Itemset Hider for spmaxFI implementation 


