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ABSTRACT

PHOTONIC CRYSTAL ASSISTED L-SHAPED WAVEGUIDE BEND

Photonic crystals are periodic dielectric structures. sTgeriodicity allow us to
manipulate light in ways that have not been possible befsea result, photonic crystal
waveguide components play a significant role in integrageatal circuit design because
waveguides allow only certain electromagnetic wave mod@sdpagate inside the struc-
ture. There are many corresponding applications that relyotal internal reflection.
However, with total internal reflection, there is a problenguiding light through sharp
corners, large optical losses occur around tight curvels ismall bending radius. A
simple explanation for these losses is that the angle oinitident light too low for total
internal reflection when wave turns through a sharp corneusTan unacceptable frac-
tion of the electromagnetic energy is radiated out of theegaide. To overcome this
difficulty, in this thesis, we demonstrate a novel methodduiding light through sharp
corners, using a 1 photonic crystal slab waveguide for treegtit sections, and assisted
by 2D Line Defect Waveguide at the corners.

Plane Wave Method and Supercell Method are used to Figureparameters
and obtain the guided mode for our proposed structure. Themerical simulations
(FDTD) reveal nearly perfect transmission at certain fesgpy ranges. Also, in this
thesis different corner elements are used to show highlgieffi transmission of light
through sharp corners. Thus, light can be guided through® a&®®er, almost without

loss, by using different corner elements.

“Crystals are like people, it is the defect in them which teladmake them interesting.”

Colin Humphreys



OZET

FOTONK KRISTAL DESTEKLI L SEKLINDEKI| DALGA
KILAVUZU D ONUSU

Fotonik kristaller periyodik dielektrik yapilardir. Bu pgodiklik sayesinde
1ISIgIin yayillmasina, dnceden mumkin olamayan deggntemlerle midahele etmek
mumkin hale gelmistir. Bu yuzden fotonik kristal dalgdavuzlari optik entegre de-
vre uygulamalarinda dnemli rol oynamaktadir ¢clinkigddtilavuzlari belli frekans bant-
larindaki elektromanyetik dalgalarin yayillmasini engyabilirler. Geleneksel dalga
kilavuzlari toplam i¢ yansima prensibi ile calisirlaFakat bu yapilarda problem 1sigi
dondurmek istedigimizde olusmaktadir, ciinkl d§esnasinda kabul edilemeyecek oran-
larda kayiplar olusur. Bunun en basit aciklamasi, goeénasinda gelen 1s1gin agisinin
toplam i¢ yansimanin gerceklesebilmesi icin gerekdnadegerden daha kiicuk olmasidir
ve bu yuzden de donis esnasinda kayiplar artmaktadininBounlardan dolayr donis
esnasinda olusan kayiplari azaltabilmek icin dnggiohiiz modelleme ile tek boyutlu
dalga kilavuzunun donus kismini iki boyutlu cizgiselskirlu dalga kilavuzu ile ay-
nen devam ettirerek farkli yaricaplarla dondurdik.z@in dalga acilim ve stiperhiicre
yontemiyle ongordugumiz yapiya uygun parametrdielirleyip, hangi frekanslarda
kilavuzlanma olucagini elde ettikten sonra sonlu fartamtemiyle belli frekanslar icin
95 Uzerinde iletim elde ettik. Ayni zamanda, farkli kogpilari deneyerek iletimin

90”'lik bir donuise ragmen ne kadar kayipsiz ilerleyeldidi gosterdik.
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CHAPTER 1

INTRODUCTION

PHOTONIC CRYSTALS, also known as photonic band gap (PBG)enmls,
are artificial dielectric or metallic structures in whichethefractive index modulation
gives rise to stop bands for electromagnetic waves (EM)iwdlctertain frequency range
(Yablonovitch 1987, John 1987). Essentially, a photonystal (PhC) contains regularly
repeating internal regions of high and low dielectric canst Photonic crystals affect the
propagation of EM waves in the same way as the periodic patenta semiconductor
crystal affects the electron motion by defining allowed amdbidden electronic energy
bands. As a result, the easiest way to understand the beinafidight in a photonic
crystal is to compare it to the movement of electrons in sendactors.

The Schrodinger equation describes behaviour of elegtiroa space variant po-

tential V (r)

2

5=V V(R = By(r) (1.1)

The periodicity of atoms in a crystal structure is somethimaf is formed natu-
rally. This periodicity, entering the Schrodinger eqaatas a periodic potential explains
what was once a great mystery of physics and plays the md@nrthis century’s most
important development in technology: introduction of semniductor devices. The peri-
odicity resulted in an energy band gap, meaning that elesiaoe forbidden to propagate
with certain energies and certain directions. No electmitie found in an energy range
called the forbidden energy gap or simply band gap. Usingelpeoperties, people were
able to control and manipulate the flow of electric chargesmisonductors.

Now consider photons, which are of course waves, movingutittaa block of
transparent dielectric material. Similarly, propagatadrEM waves can be blocked by
using a periodic structure, in which the periodic poteritiét) in the Schrodinger equa-

1
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Figure 1.1. A one-dimensional PhC: a multilayer film. Thetegsconsists of alternating
layers of materials (gray and white) with different dieteztonstants and its
periodicity along the z-axis. A two-dimensional PhC. Theenal is homo-
geneous along the-direction—we imagine the cylinders are very tall—and
periodic along the: andy directions.

tion is essentially replaced by a periodic dielectric fumetk(r), or equivalently, a peri-
odic index of refractiom(r) (Joannopoulos, et al. 2008). To a photon, this contrast in
refractive index looks very much like the periodic potehtieat an electron experiences
travelling through a silicon crystal.

Simply, in PhCs the electrons are replaced by EM waves antbpl@an be de-
scribed in terms of a band structure, as in the case of efecttomeans that, EM waves
are allowed to propagate through the structure, or not,ripg on their frequency. Prop-
agating wave solutions to Maxwell’s equations with freqeies that are allowed to travel
are known asnodes and groups of allowed modes with contiguous frequencies fo
bands Disallowed bands of frequencies are called photonic bapd.g

Now that we know what PhCs are, the next question that nedus amswered is
what makes PhCs desired materials. This question can beeem part by demonstrat-
ing computationally that certain systems exhibit novelemies made possible by using
PhCs. In Chapter 4, through a combination of theoreticalyaisaand numerical calcu-
lations, we propose optical designs for L-shaped wavedugaels assisted by PhCs. We
demonstrate highly efficient transmission of light arouhdrp corners by using different

corner elements, and the band gap of PhCs.



CHAPTER 2

ONE DIMENSIONAL PERFECT PHOTONIC
CRYSTALS

This chapter presents some theoretical concepts that seated in understand-
ing PhCs. The derivation presented in this chapter closslgvfs the derivation in the
lecture notes of the cour§Bhotonic Structures”given in Spring 2008 at Izmir Institute
of Technology (Sozuier 2008).

It is well known that the perfect Ph@Cg. an infinite medium with a perfectly pe-
riodic dielectric constan(r ), can exhibit forbidden bands, so the first point of reference
is the band structure. Among the different techniques, taad?Wave Method (PWM)
(Meade, et al. 1992, Benisty 1996, Villeneuve, et al. 199&) the Finite Difference
Time Domain Method (FDTD) approach (Taflove 1995, Yee 19@gjliEet al. 2000,
Kafesaki et al. 2002) are probably the most important tegunes to obtain the dispersion
relation.

In this thesis, both time domain and frequency domain tephes have been used
and results from both methods have been compared. The kbybaih methods is to
determine the dispersion diagram. To obtain dispersiogrdia, firstly we have to write

Maxwell’'s equations, because all the theory is built on it.

2.1. Maxwell's Equations and Plane Wave Method

In order to study light propagation in photonic crystals,begin with the Maxwell
equations. But before, firstly we have to understand why veeplane wave expansion
method.

The plane wave method is often used for PhC modelling sireailyield accurate
and reliable results if a sufficiently large number of termes kept in the Fourier expan-
sion. Besides, the programming is relatively straightandy which makes this technique

3



a very popular one in solving electromagnetic problems noplec media (Satpathy, et al.
1990, Ho, etal. 1990, Meade, et al. 1993). With this method,e&xpands the solutions
of Maxwell's equations in a periodic structure into a supsipon of plane waves with
unknown coefficients.

Under this expansion, the characteristic equation obddireen Maxwell’s Equa-
tions can be transformed into an eigenvalue problem. Byimghhis eigenvalue problem,
the frequencies and the modes can be obtained. Furtherthisreyethod is only used for
an infinite perfectly periodic structure.

Now, our starting point Maxwell’s equations in linear medidere the standard

notation are used in SlI

D = Electric Displacement

E = Electric Field

B = Magnetic Induction

H = Magnetic Field

py = Free Charge density

J; = Free Current Density
¢(r) = Dielectric Permittivity

1o = Free Space Magnetic Permeability

V-D=p; (2.1)
V-B=0 (2.2)
OB

E=—— 2.

V x 5 (2.3)
oD

H= — 2.4

V x I+ 5 (2.4)

We will restrict our attention to linear, non-dispersivegnAlossy materials for
which there is a relation betwedhandD, and alsoH andB. They can be written as,
B = ¢e¢(r)E andB = pou(r)H. For simplicity, we can seB = poH because, for

4



most dielectric materials of interest the relative magnpérmeability..(r) is very close

to unity. In that case¢ is the square of the refractive index. Moreover, in a malkteria
medium, in which light propagates but there are no sourcdiglaf, we can sep; = 0
andJ; = 0. With all of these assumptions in place, the Maxwell equeiequation 2.1

to 2.4 become;

V-D=0 (2.5)
V-B=0 (2.6)
B
VxE=-— 2.7)
oD
VxH = (2.8)

Taking the curl of both sides of Equation (2.7), where werttiange the order of time
and space derivatives, and put the equations then we canhignbitowing equivalent

form for E;

Vx(VXE)=-Vx <%—?)

0
——EVXB

0
= —— gV x H
e 1oV~

_ 0 (oD
— g ot

2

9,
= ~Hofo 55 e(r) E (2.9)

As a result we obtain the general formula of the electromigmeave equation in real

space Equation (2.10), where the constangndy., can be combined to yield the vacuum

speed of lighte = 1/, /éoio-

1 0’E



Before solving Equation (2.10), let's look at our periodieldctric functione(r) in more

detail.

2.1.1. Periodic Dielectric Media

The dielectric functior(r) is periodic on a lattice with lattice vectoR; i.e.,
e(r)y=er+R) ; pur)=1 (2.11)

where the vectoR is a linear combination of three non-collinear basis vexapra, and

az
R = nia; + noay + n3as where nqi,ng,ng=0,+1,+2,+3 ... (2.12)

A periodic function in 3D space can be expressed as
f(r)=fr+R)= > fo(r +R) (2.13)
R

We now seek a Fourier basis for a periodic function in 3D rpakse. As a trial
we try the basis functionskp(i G - r) with reciprocal lattice vecto® can be written as
G = myb; + mobs + msbs for some basis vectots to be determined by imposing the

periodicity of f(r) in Equation (2.13).



f(r)y=f(r+R) (2.14)

Zf(G)ei(G-r) _ Z f(G)ez'G-(rJrR) (215)
G G
Zf(G)ez’G-r _ Z f(G)ez’G-r ¢t GR (2.16)
G G
> F(G)eCT1 - R =0 (2.17)
G

Hencel = ¢®R or, equivalentlyG - R = 2N for all G andR with N an integer

like N =0, £1,£2,£3.... Our requirement th& - R = 2N« boils down to

G- R = (na; + nedy + ngag) - (myby + mobe + msbs) = 2N7 (2.18)

For all choices ofn; andn;, the above must hold for some integ&rand this
condition can be satisfied by an infinite number of choicedfoas the set of pointsG }
form another Bravais lattice.

A little thought will reveal that we could satisfy the aboveve construct thé;
sothata; -b; = 279,;,1.e.q;-b,; = 27 if ¢ = 5, and0 if 7 # j. More compactly, given the

set{a;, &, a3}, our task is to find a corresponding gét, b,, b;} such that

G - R = 2m(myny + mong + mang) (2.19)

One can directly verify that the following choice foy does indeed satisfy this condition,

although this choice is clearly not unique:

b, =2 2.20

! ﬂ-al . (ag X ag) ( )
az X ap

by =2 2.21

2 ﬂ-al . (ag X ag) ( )
a; X dg

b; =2 2.22

3 a - (ag X ag) ( )



Since for any vectoraandb, a- (ax b) = 0, we construct the primitive reciprocal
lattice vectors as above. Alsa, - (ay x a3) = Ve, in Which V,q is the volume of the
primitive unit cell and that cell contains only one latticaimt.

To find f(G), we write

F(r) =Y f(G)e'®F (2.23)

G

Multiplying both sides by =R, whereG’ is an arbitrary reciprocal lattice vector, and

integrate over the primitive cell,

cell

fe e dr =3 f(6) / (166N g3 (2.24)
G cell

To evaluate the integral, we consider a primitive cell ofgtlatepiped formed by

the vectors, , a,, andag , a 2D version of which is depicted in Figure 2.1.

wsY \=>
=

Figure 2.1. The primitive lattice cell and the basis vectranda,.



We can set up an oblique coordinate system for this purpbaecbnsists of the
coordinates u, v, w along the , a, , andas directions, respectively. Then a point r can

be written as

r=axX+yy+ z2=ul+ v+ ww (2.25)

wherell = &, v = 2 Ww = & and so the volume of the parallelepiped by the vectors can
al as as

be written as;

d*r = dzdydz = 0 - (V x W)dudvdw = a - (3 x &)

a1a2a3

dudvdw (2.26)

For the argument in Equation 2.24 at the right side of the egptal we have

’ " " " " 81 ag 8.3
G-G)r=G r = b b bs) (u—+v— ) =2
(6-G) (1 by-+ngby-+nby)-(u-t ol b ) = 2m(- =2 2

(2.27)

1" 1" "
n{u NV MNqW
1 2 3

where, in the last step we used the defining relabipna; = 276;;. Then the integral

Equation 2.24 is written as;

’ V ai 2T u az . 2Tnov as . 2Tnqw
. _ 11 1 2 3
/ GG P = = / du et o )/ du ' e )/ du e a)
cell a1a2as3 Jo 0 0

= ce115n1 05n205n30

= cellég”o

= ‘/CGHCSGG’ (228)

where we have introduced the notati@y, to denote the product of three Kronecker-
symbols. WithG" = 0andG—G' = G" soG = G . Puitting this back into Equation 2.24

and dropping the primes, we obtain



f(G) = ! f(re e ddr (2.29)
V::ell cell

We can now tackle any partial differential equation thattaors a periodic func-
tion in it. This could be the Schrodinger equation with pdrc potential, or Maxwell’s
equation in a periodic dielectric medium.

In summary, when we take the FT of a function that is periodi@dattice, we

need only include terms with wave vectors that are recipiatizce vectors.

2.1.2. 1D Electromagnetic Equation in Reciprocal Space

Now, lets go back our problem in Equation 2.10. The simplessible PhC,
shown in Figure 2.2, consists of alternating layers of nialtevith different dielectric

constants: a multilayer film.

€ & & & &; & € & & &, &, &,

Figure 2.2. One dimensional photonic crystal formed ofadigic slabs of alternating
dielectric constant, ande,.

In general, in a 1D structure, the dielectric constant waldgend only on one
10



coordinate so the term one dimensional is used. In this fighwedielectric function
e(r) = ¢(z) varies along one direction (z) only.

We can takeE along x-axisE(r,t) = E,(z,t)z, andH(r,t) = H,(z,t)y so that
E, =E.=0andH, = H, = 0, so the Equation 2.10 becomes;

VxVxE=V(V-E)-V’E (2.30)
V-E=0—-VxVxE=-V%E (2.31)
0*E, 1 0’E,
52 e(z)g BTe (2.32)
E.(z,t) = / dwE,(z,w)e ™ (2.33)
o it PE(z,w)  w?
/;OO dwe t{T -+ C—2€(Z)Em(27w)} =0 (234)

Time FT of the term in curly braces, so the term in curly bracesst be zero for all

possiblev
PE.(z) w?
—— 5 T —5€(2)E.(2) =0 (2.35)

We found 1D wave equation in real space.(Equation 2.35),cmvgidera linear,
isotropic and positive definite mediu/e have expand both,(z) ande(z) in terms of

Bloch plane-waves. Transformation from real space to recigd space;

q=k+G (2.36)

| @ — [ a3 rk+o) (2.37)
all g BZ G

Substitutings(z) and £(z) into Equation 2.35
11



Table 2.1. 1D EM wave equation in reciprocal space

€(z) = 3 €(G)e’®* | = Bloch Plane Waves €(G) = - [ ¢(2)e"®*d>

E.(2) = [dge’E(q) | = Bloch Plane Waves E(q) = o= [ E,(z)e "%dz

Veell

0? ‘ W2 ' |
_ 10z - iGz iz _
022 /an q da E(q) ¢+ 2 Z «(G)e / dq E(q) e 0 (2.38)

G all g

2
/H dq (—¢%) E(q) €% + °CJ—2 > €(G) ' /H dq E(q) €% =0 (2.39)
all q allq

G

and we rewrite the integral over all g as an integral over BZ summation over reciprocal

lattice vectorG;

- / dkY " (k+G)E(k + G )eilk+e)
BZ ,

G

dkS" E(k +G)eik®)7 = (2.40)
G BZ G/

TakingG" =G + G

/ dk eikz
BZ

/ 2 1" ! / .~
—Z(k+G/)2E(k+G')eiGz+i—QZ Y G -G)EK+G)eC | =0
G/ G/ G/lfG/

(2.41)

We can rewrite this equation as;

12



/ dk eikz
BZ

i

G
(2.42)

Now we would like to return firs6 andG. Changing our summation indices@s — G

andG" — G’ in Equation (2.42)

! 2 !
dke™ [~ ST (k + G )2E(k + Ge® = + £ (G —G)E(k +G)e'® ] =0
[, e =Sk 6Bk + ) EPDMCELEEEAS
(2.43)
u)
—(k+G)2Ek+G) E;ee G)E(k +G)| =0

/ dkezkz Z ezG z

(2.44)

or using Equation 2.36 again;

/ dqe (—|k + GPEK+G) + 2 3 (G —G)EK+G)} =0 (245
all q

c2
G

Since the FT of the expression in the parenthesis above (iBqua45) must be zero for

all k it must be zero.

“|k + G]*E(k + G) + ‘;’—226 E(k+G)=0 (2.46)
G’

K+ GP2E(K +G) = %Ze E(k+G) (2.47)
G

13



If the primitive lattice vector isiz then the primitive reciprocal lattice vector is
G = G, = n(2r/a)z with k = k2, and the BZ is—7/a < k, < 7/a. Also G =
G,, = m(2r/a)Xx andE,, = E,(k + G) this defines an infinite-dimensional generalized

eigenvalue value problem of the form;

Ax = A\Bx (2.48)
2
Av = Sl + 0|2 (2.49)
a
T, = Ex(G,) (2.50)
2
A= (2.51)
C

We note that at this poing(r) is real so the matrix B is Hermitian, and also it has inversion
symmetry about the origin, i.e d(r) = e(—r).

For now, Equation 2.47 can be solved numerically using stahtechniques to
give all the allowed frequencies for a given wave vectok. However, before that we
can do one thing which is better due to computer limited reses) both in terms of
memory and in terms of computing time. We can convert gene@keigenvalue equation
to ordinary eigenvalue equation. Let's defifig, = |k + G|d,,,, thenA = 5% and we

have

SSxr = ABx (2.53)
(SB7'9) (Sz) = A (Sx) (2.54)
Af = \7 (2.55)

Multiplying both sides withS B~ we obtain an ordinary eigenvalue equation with;

14



A = (SB719)im

— Z Z K+ G |6, (B™1)j¢lK + G0
j ot

= K + Gp|(B™ )y K + Gy (2.56)
J
€(z)
861
&
I I I I 2
-al? -R R al?

Figure 2.3.¢(z) in one unit cell for the slab structure shown.

The dielectric function has the form
€(2) = e+ (€4 + ) Z@(g —|r=R|)=e+ (e, + &) i@(g — |n — nal) (2.58)
a R 2 a — 2

with r = 2z, R = naz, and©(z) is the step function, it > 0 — ©(z) = 0 or

z <0 — ©O(z) = 1. For 1D structure(G,,) can be calculated using Equation 2.29.

1

€(G,) = / dr e(r)e Cn" (2.59)
‘/0611 cell

In order to simplify, we use Euler's Formula?? = cos + isin 6.

15



1 .
€(G,) = — dz €(z)ei2mz/a

aJ_a/2
1 [? 2mnz . . 27nz

= - dz €(z) |cos + isin
aJ_qpm a a
1 [o? 2

= —/ dz €(z) cos =
a —a/2 a
1 2 R 2

— [/ dz €, cos e +/ dz(e, — €) cos ﬂnz]
a|J a2 a _R a
1 a . 27Nz g 1 a . 2mnz g

_ = (e, — €)—— 2.60
a eb omn o 4 |_“/2 - a<€ ) o a | R} ( )

where the sine term vanishes because the integrand is oddn F00, the first term
evaluates zero. For = 0, we can go back to one step earlier and insesrtz’% =1land

it evaluates to a. Thus we obtain

2R\ sinG,R
€(Gn) = €0no + (€a — &) (7) OR (2.61)

2.1.3. Band Structure

For a giverk, the generalized eigenvalue problem Equation 2.47, ordsary
variant Equation 2.56 can be solved by using a finite basig 6f points. As a result one
finds NV frequenciesv,x, n = 1, ..., N and the hermiticity of the matrices the matrices in
Equations 2.47, 2.56 ensures that the eigenvaljgsvill be real. Furthermore, because
these matrices are positive-definite, we're assured.thawill be non-negative, and hence
thatw,,, will be real. Sincek may assume any value in the Brillouin Zone of the periodic
lattice, we can vark and for each value, find the frequencigs. When these frequencies
are plotted for each value &f we obtain what is known as the band structure for photons,
or the photonic band structure for the periodic materiderred to as a photonic crystal

or as an electromagnetic crystal.
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Figure 2.4. The photonic band structures for two differenttidayer films. In both cases,
each layer has a widtth5a. For 1% band structure layers alternate between
e = 13 ande = 12. And for 2"? one layers alternate between= 13 and
e = 1.

0.8

\
» Airband |

0.6

wa/2nc

0.4
Photonic Band Gap

0.2
— Dielectric
) ) ) band |
-0.4 -0.2 0 0.2 0.4
ka/2m

Figure 2.5. The photonic band structure of a multilayer filithva dielectric constant a.
The width of thee = 13 layer is0.2a and the width of the = 1 layer0.2a.

There is a gap in frequency between the upper and lower bearafHines. There
is no allowed mode in the crystal that has a frequency withismdgap, regardless of k. The
gap between bands= 1 andn = 2 occurs at the edge of the BZ, /at= 7 /a. We called
such a gap a photonic band gap (Joannopoulos, et al. 20083e€Eond plot shows that
the gap widens considerably as the dielectric contrastreased.

The bands above and below the gap can be distinguished byewinerenergy
of their modes is concentrated in the highegions, or in the low= The band above a
photonic band gap as the air band, and the band below a gap dgethctric band. So,
air band means electric field concentrated in air region agleéctric band means electric

field concentrated in dielectric region.
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CHAPTER 3

TWO-DIMENSIONAL PHOTONIC CRYSTALS

In Chapter 2, we have analysed properties of one-dimendrin@s, in this chap-
ter we will see how the situation changes when the crystagigogdic in two directions
and homogeneous in the third (Meade, et al. 1992). No sergiest 2D systems exhibit
most of the important characteristics of PhCs, from novi&tiBrillouin zones to topo-
logical sensitivity to a minimum index contrast, and camdis used to demonstrate most
proposed photonic-crystal devices (Johnson and Joantagpd002). So, the resulting
two-dimensional PhCs are suitable for applications sudiitaess, cavities or microlasers
in photonic integrated circuits. They can either be usederehse the dimensions of
existing components, or they can add new functionalitighécptical circuits (Johnson,
etal. 2000).

The key to understanding PhCs in two dimensions is to re#tiaethe fields in
2D can be divided into two independent polarizations by sytnyn transverse electric

(TE) and transverse magnetic (TM) modes.

3.1. Photonic Crystals with Square Lattice

Considering a 2D PhC with a square or triangular lattice, ibaain easily be
extended to any lattice shape and to 3D structures. We cemfigt the ideal 2D PhC
made by cylinders with square lattice. The rods have theis @arallel to the z direction,
lattice constana and radius R.

A two-dimensional PhC is periodic along two of it axes and bgeneous along
the third axis (Meade, et al. 1992) also for the material progs, such as the dielectric
permittivity depends only on two of the three coordinatée (r) = e(p) = e(x,y),
wherep = zX + yy. PBG appear in the plane of periodicity.

For light propagating in this plane, the harmonic modes Ipassting them into

18



)

Figure 3.1. A two-dimensional photonic crystal is homogrrssalong the z direction (the
cylinders are very tall and their radius R), and periodicmgla and y with
lattice constant a. The rods have a dielectric constaand the background
medium has a dielectric constantepf

two distinct polarizations; TE, in which the electric fieklin the plane and the magnetic
filed is perpendicular; and TM , in which the magnetic fielchighe (xy) plane and electric

field is perpendicular.

Figure 3.2. Two-dimensional photonic crystals formed imqaase lattice. Low-index
holes in high index (Right picture). High index rods surrdad by low index
(Left picture).

Corresponding to the polarizations, there are two basioltges for 2D PhCs:
hole-type structures consisting of cylinders of low di#liecconstant embedded in a
medium of high dielectric constant and rod-type structwessisting of rods of high
dielectric constant surrounded by a low dielectric (Jolnnsbal. 2000).

For these structures, we again start with Maxwell’'s equiatio a macroscopic

medium, purely dielectric (i.eu(r) = 1);
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B0 = Elp.t) = [ du(pw)e ™ (3.1)

/Z dwe™™! {V x [V x E(p,w)] — Cz—;em)E(p,w)} =0 (3.2)
V%V x E(p) — Selp)E(p) = 0 33)

(o)~ | PaE(Q) (3.4)

V x V x Uan qd2q E(q)eiq"’] — “C’—je(p) /au qd2q E(q)e™” =0 (3.5)
V x / L d’q 'V x [¢TPE(q)] - CZ—je(p) / ) quq E(q)e™” =0 (3.6)

To evaluate the curl of the integral containiigp), use the vector identity wher&

operates only op;

Vx (fA)=f(V xE)-E(Vf)
V x [e9PE(q)] = €9? (V x E(q)) — E(q) (Ve'%?) - V xE =0
= E(q) x (ige"”) (3.7)

Rewrite Equation 3.7 into Equation 3.5, we obtain;

V X / d’qiq x E(q)e'"PE(q) — —5¢(p) / d’q E(q)e"” =0 (3.8)
all q all q

Sincee(p) is periodic function, and our purpose is to generalize theafign 3.8 in re-

ciprocal space, for doing this we know that (in the previcuspter);
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g=k+G (3.9

d — dk k+G .
/auq ar@) — [ kY 1k+0) (3.10)

So Equation 3.8 becomes

2
v (/ dq iq x E(q)e® ) = (ZdG)eiG"’) / d*q FUPE(q) = 0 (3.11)
all q G all q

/ d’q [-q x q x E(q)e’"?] — —¢(p) / d’q E(q)e"” =0 (3.12)
11 g all q

C

/ K S 00 (K 1 G) x (K + G) x E(K + G)]

G

2
w iG - ' 2 i(k+G")- "o
L5 Y e )/BZd YK G =0 (319
G

G +G" = G Equation 3.13 becomes;

)
kK+G)x (k+G)xE(k+G)+ ”—Ze Ekk+G")| =0 (3.14)

c2

2k ci(k+G)-p
f, %
[<

c"

or we can writeG" — G’ because it is dummy variable and the F.T of the term in curly
braces vanishes, which is implies that the term itself masish, or Equation 3.14 be-

comes;

(K+G) x (k+G) x E(k +G) + ";—QZE Ek+G)=0 (3.15)
G
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As a result we found the Equation 3.15, which is quite gererdlis valid for any
medium that consists of linear, lossless, locally isotapaterials. It is again infinite-
dimensional generalized eigenvalue problems of the fdnm= \Bz.

The last step is to calculate th€G). In Figure 3.1, the rods have their axes
parallel to the z direction, lattice constamtradius R, and dielectric constant The

dielectric constant of the background materialis

= €(G)e' " (3.16)

G

beingr is the spatial vector position ar@ = n,b, + n,b, with n,, n, arbitrary integer

numbers. The coefficient§G) are calculated as

e(G) = / e(r) e " d’r
cell

1 a/2 ) R _

= - / € € e ! Gr er + / (6 _ eb) —1Gr d2r
a —a/2 R
1 R 27 A

= €p / dx / —127r/a NgT+nyY) (Ea _ Eb) / rdr / do e—zG’r cos
a 70,/2 70,/2 0 0
1 2ng.m/a /2 e 2nym/a /2 R

T2 o —— |- a— dr Jo(GR) 2
a? _eb {(—an;ﬂr/a‘ a/2) (_Zznyﬂ_/a‘ a/2):| + (6 €b)/0 rdar 0( ) 7T:|

1 r eiﬂnw _ e—iﬂnw eiﬂny _ e—iﬂ'ny R
= 2m(e, — Jo(GR) d
2 _eb( i2n,7/a ) ( i2n,m/a ) m(e eb)/o r Jo(GR) 7}

a?
1T o7 GR
= ? -€b a 51110 5ny0 + GQ( — 65) /(; X Jo(gj) dx:|

mR?* 2J,(GR
=t bl ) PR

(3.17)

where, in the last step, we made use of the idertify" J, (z) = 2" J,_:(z)] to evaluate

the integral and/; is the first order Bessel function.
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Figure 3.3. The lattice vectoes = ax anda, = ay and the reciprocal lattice vectors
b; = 27 /ax andb, = 27/ay.

_ €a , if r<R
. e(n= { otherwise}

€b

Figure 3.4. Circular rods have a dielectric constgrand the background medium has a
dielectric constant of;,.

The square lattice has a square Brillouin zone, which istitated in Figure 3.5.
The irreducible Brillouin zone is the triangular wedge ie thpper right corner; the rest
of the Brillouin zone can be related to this wedge by rotal@aymmetry. In fact, the
I', X, M points in Figure 3.5 denot@®, 0), (£2,0) (+£%,+%), respectively. These two
X points, and four M points are equivalent to each other,esithe differences between

them is just a linear combination of the reciprocal lattieetors (Sakoda 2001).

Figure 3.5. Thel* Brillouin zone construction and detail of the irreduciblep The
symmetry pointd” = (0,0), X = (0,7/a), andM = (n/a,7n/a) and the
pathI’-X-M-T" traversed to plot the band structure.
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Figure 3.6 shows the dispersion diagram of a two-dimensisgaare crystal.
Both the TE and the TM band structures are shown for the drgsteisting of dielectric

rodse, = 8.9 in air¢, = 1, with radiusRk = 0.2a.

0.6] T R I,

wa/21c

0.4| ]

r X M r

Figure 3.6. The photonic band structure for a square arrajiedéctric columns with
R = 0.2a. The blue bands represent TE modes and the green bandsergpres
the TM mode.

The frequency is expressed as a dimensionlessuati@rc. The horizontal axis
shows the value of the in-plane wave vedkgr The convention for drawing the band
structure is to traverse the boundary of the irreducible 8iAce this path covers the
critical symmetry points of the BZ. As we move from left toligk moves along the
triangular edge of the irreducible BZ, fromto X to M. Therefore, we have plotted,
only along the edge of the BZ, thus minima and maxima of thel lmost always occur
at the zone edges, and often at a corner. However, the bamtists for the TE and TM
modes are completely different. It is possible that theeeRBGs for one polarization
but not for the other polarization. And, Figure 3.6 showd thare is no gap for TE

polarizations.
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CHAPTER 4

LINE DEFECT WAVEGUIDE

One patrticularly interesting aspect of PhCs is the possilof creating defects
because a defect in a PhC can be a very significant and usefuhtcontrolling the
behaviour of light (Joannopoulos 2001, Wu, et al. 2006)his$ense, a defect is a good
thing in PhCs, and therein lies the exciting potential ostheovel materials.

If we have a band gap, we can introduce a defect inside theatrgstrap or
localize light (Ren, et al. 2004, Joannopoulos, et al. 2008 local defect breaks the
periodicity of the structure, so with proper engineeringfedt modes can be created with
frequencies within the PBG, and which are strongly locaiaeound the defects (John
1987).

4.1. 1D Waveguide

Up to now, plane wave method, which is a frequency-domaimaggt, was used
to find the eigenmodes of PhCs which are perfectly periodidmimite in size. However,
when we introduce a defect into the periodic dielectriccttice, we have to modify our
method to account for the broken periodicity. The theoattamalysis of the localized
defect modes can be carried out by the supercell method @Jeddal. 1993, Sozuer
2008). This method is again a frequency domain method anerjssimilar to the plane
wave method. Basically, the method employs a sufficienttydaupercell which contains
the defect, so one is effectively solving a periodic streetagain, but with a large unit
cell. Thus the single most important parameter for caloujathe band structures with
supercell method is the supercell size. Since the modesterest,i.e. defect modes,
will decay exponentially away from the defects or cavitibg size of the supercell must
be chosen large enough to ensure that the defect mode hagedes#ficiently at the

boundary of the supercell. Thus, coupling between neighbgeells become negligible,
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Figure 4.1. 1D PhC with a defect, one supercell contains éfiectiin several periods of
the WG on either side of it.

and the results can be considered accurate.
The band structure of the 1DWG portion is modeled by assumingve of the

form

E.(z,y,1) = Ep.(y)e' (4.1)

for TE modes {, = E, = 0, E, # 0) propagating in the:-direction with propagation
vector3 = (x. Inserting this into Maxwell's equations, and using a sapkrof size

(2M + 1)a along they-axis, one obtains the generalized eigenvalue equation

(8°+ G*)E.(G) = = ) e(G - G)E.(G') (4.2)

whereG = (QMQ%)QZ and: = 0,+1,+2,.... This can be converted into an ordinary

eigenvalue problem of the forfx = (w?/c?)x with

Acer = /32 + G? [ Yaa /B2 + G2 (4.3)

x¢ = VP + @ E.(G) (4.4)
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wheree! is the inverse of the matrisg: = €(G — G’), with

d  sin(Gd/2)

E<G) = 6béG(] + (€a Eb) (2M—|—1)CL (Gd/Q) (45)
d, sin(Gd,/2)
+ (eqa—€p) oM)a (Gd /2/ [Z 2 cos(Gayj) (4.6)

where the second term is due to the core region at the centbe afaveguide, and the
term in square brackets is the structure factor for the s@fiet, is the dielectric constant
of the defect region, or the core.

The LDWG is formed by removing one row of Si rods and replaeuity a Si slab
of normalized thicknesg = 2 is shown in Fig. 4.1. We use the plane wave method to
calculate the band structure for TE waves. The method ane sbthe pitfalls have been
discussed elsewhere (Sozuer, et al. 1992). We obtasfaettry convergence for about
100 plane waves per unit cell for the LDWG and for 25 plane wawr unit cell for the
1DWG.

4.1.1. 1D Silica Waveguide

As an example we consider a 1D silica-air waveguide.

We conclude from the band diagram Figure 4.2;

e 0 <w < 0.41667 there is no guidance.

e 0.41667 < w < 0.95 just one mode is supported, and the guide is then called

single-moded
e 0.95 < w < 1.5 there is no guidance.

e 1.15 < w < 1.5 a finite number of modes can propagate, so the guideuisi-

moded

Next chapter, the simulations results will be given for thtsucture (for TE

modes), so that we can understand better to effect of frexgsn
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Figure 4.2. Calculated dispersion relation for the TM mo@tep) and the TE modes
(bottom) in a 1D WG in which WG made of silica slabs of thicknds =

1.256637 = 0.1a and with dielectric constant @f, = 2.25 immersed in air
background, = ¢,; = 1, at the center one row is removed.
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4.2. 2D Waveguide

The simplest WG in a 2D PhC is again the one-missing-row selféigure 4.3.
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Figure 4.3. Top view of the 2D square array of circular rodd,ane row remove. When
the regular lattice consists of circular rods, linear defaeans that the cir-
cular rods are not processed along a line. Thus, by using@epexcitation
field whose energy is within the bandgap frequency rangeya wapagating
along this linear defect is produced.

The LDWG is modeled by again using a supercell. We use a seipeicsize
1 x (2M + 1) with M sulfficiently large, to calculate the dispersion relatiorrig. 4.4.
For TE modesk, = E, = 0, E, # 0), propagating along the-axis with propagation
vector3 = (%, the solutions are of the formi,(x,y,t) = Eo.(z,y) expli(fz — wt)].

This yields the generalized eigenvalue equation

B+ GPE(G) =% Y e(G - G)E.(G) (4.7)
=

whereG = 27”71335( + @Aj%)anyy andn,,n, = 0,£1,£2,.... This can be converted into

an ordinary eigenvalue problem of the foAwr = (w?/c?)x with
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Ace = B+ G| e Yge 1B+ G| (4.8)
x6 = |8+ G| E.(G) (4.9)

wheree! is the inverse of the matrisga = ¢(G — G’), with

d sin(Gyd/2)
(2M +1)a (G,d/2)

G(G) = €b5G0 + (Ea — Eb)

7TR2 2J1 GR

Tl ) G e

(4.10)

ZQCOS (Gyaj)

where the second term is due to the core region at the centbe afaveguide, and the
term in square brackets is the structure factor for the dglis.

To model the guided wave propagation inside the LDWG, we bsestipercell
method, with a supercell size df, x A,, whereA, = a andA, = 61a to ensure that the

guided mode is well contained within the supercell.

wa/21c

Ka/2Tt

Figure 4.4. Band Diagram for the 2D LDWG. The circular rodséha radiusk =

2.24 = 0.356a and have a dielectric constant = 2.25 embedded in an air
backgroundd, = 1).
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CHAPTER 5

FINITE DIFFERENCE TIME DOMAIN METHOD

Many applications in science and technology rely on em cdatfmns in either
man-made or natural environments. One of the popular caatipogl electrodynam-
ics modelling technique is the Finite Difference Time Dom@DTD) method (Taflove
1995, Yee 1966). This technique has emerged as a primarysniearomputationally
model many scientific and engineering problems dealing aithwave interactions with
material structure which is based on discretization of Mealkesequations in the time
domain. The time-dependent Maxwell’s equations in paditierential form are dis-
cretized using central-difference approximations to ttece and time partial derivatives.
The electric field vector components in a volume of space @ireed at a given instant;
then the magnetic field vector components in the same voluesaived at the next in-
stant in time; and the process is repeated over and over agtlithe desired transient or
steady-state em field behaviour is fully evolved (Sevgi 2003

Since FDTD is a time-domain technique which finds Hiel fields everywhere
in the computational domain, it lends itself to providingraation displays (movies) of
the E/H field throughout the model(Taflove 1995, Yee 1966). This tgpdisplay is
extremely useful in understanding exactly what is going rorthie model, and to help
insure that the model is working correctly. In this chapte;ll focus on some examples
that illustrate the basic ideas behind the FDTD method leafising the freely available
MEEP software, which is a FDTD simulation software packageetbped at MIT (it can
be accessed from: http://ab-initio.mit.edu/wiki/indexp/Meep).

5.1. Analysis of the FDTD Method

Before looking at the simulation results, we must undesteow the FDTD algo-

rithm works. Indeed, FDTD allows us to solve models that widag difficult or impossi-
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ble to solve with analytical methods. However, it is necestizat one define some basic
elements in an analytical em problems; in the FDTD methodstwelld do the same, too.

These elements are;

e Maxwell’s equations; this item is split to extract basic equations used in the Yee
Cell.

Yee’s Cell is the key to the FDTD algorithm. This method wastfimtroduced in 1966 by
Yee but because of huge memory size and high computatiogaireenents, initially it
had limited application. However, with the rapid developmia technology, FDTD can
now be readily applied to a variety of em problems. As a regsulihe field computation
the regular FDTD algorithm based on Yee’s cell is used.

As shown in Figure 5.1, the electric and magnetic fields aeutzted at different
points, such that every position on the electric field gridusrounded by magnetic field

points. This makes the calculation of curl equations vemypée.

Figure 5.1. A typical schematic Yee cell. The electric angynaic fields are calculated
on separate interspersed grittsfield component is surrounded byEfield
components and vice versa.

Maxwell’s curl equations in free space are;

OE 1
S H 51
ot EOV % ( )
oH 1
- _ = E 5.2
9 MOV X (5.2)
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whereE andH are vectors in 3 dimensions. Equations 5.1 and 5.2 repr8semiations
each. If we consider a one-dimensional system for simplicising only £, (electric
field is oriented in the x-direction) andd, (magnetic field is oriented y-direction), Equa-

tions 5.1 and 5.2 become;

0E,  10H,

ot € Oz (5:3)
0H, 1 OF,

= —— A4
ot fo 0z (54)

These are the equations of a plane wave with the electric digdohted in ther-

direction, the magnetic field oriented in theadirection, and travelling in the-direction.

e Spatial and Temporal Grids; this item is used to separate time and space in order

to interleave Maxwell’s equations in space and time.

After, we have to take the central difference approximakgunation 5.3 and 5.4 for both

temporal () and spatial £) derivatives gives;

A Central Difference of
/ ax - f(x,)=slope of curve

Central difference formula:

fa+1 - f}-]
= ="

— .
X -Ax X X; + Ax

Figure 5.2. Approximation of the derivative by a centrafeliénce.

33



Ey(2,t) = E.(k,n) = E7(k) (5.5)
Hy(z,t) = Hy(k,n) = H"(k) (5.6)

0H,(2) N H}(z+ Az[2) — H}(z — Az/2)

0z Az (5.7)
H"k+1/2)— H*k—1/2
oH, (k) _ Hy(k+1/2) = Hy(k—1/2) 59
0z Az
OE,  EyT'(k)— EFVA(k)
5 = 7 (5.9)

where time is specified by the superscriptaneans a timeé = nAt andn + 1 means
one time step laterAz is space increments in thedirection, andk means the distance

z = kAz. And we obtain;

EQH/Q(]“)A_tE?_U2<k) = —eolAz [H(k +1/2) — H'(k — 1/2)] (5.10)

Hy 7k 1/2)A; Hy(k+1/2) = —@[EQH/Q(IC +1) — EMT2(k)] (5.11)
or, rearranging

EMHV2 (k) = Er12(k) — eoAAtZ [H(k+1/2) — H}'(k — 1/2)] (5.12)

Hy ' (k+1/2) = H)(k +1/2) — %[E;L“/Q(k +1) — EM2(k)] (5.13)

Thus, using the first equation, the value of the E field at the ti@e step, £/

can be calculated using the values of the H fields in the pusvime H;. In the next
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equation, the value of H in the next time stéﬁ}+1 is calculated usin(j;?;”“l/2 calculated

in the first equation. Thus all the fields can be calculatecchiag in time by a time step
At.

As aresult, both Equations 5.10 and 5.11 showEhahdH fields are interleaved
in both space and timeH uses the arguments+ 1/2 andk — 1/2 to indicate that the
H field values are assumed to be located betweetk tfield values. Similarlyp + 1/2
orn — 1/2 superscripts indicates that it occurs slightly after oobef., respectively. For
instance, to calculaté/}(k + 1/2), the neighbouring values af, atk andk + 1 are
needed. Similarly, the values of electric field are cal@ddtom the previous values of
the electric field and the neighbouring values of the magrfegid. Thus, to calculate
the electric field at any point in space, we need to know theosading magnetic field
values. This is the fundamental paradigm of the FDTD metisadligan 2000).

These can be extended to full three dimensional form usiagéime approach.
The important point in these equations is thgt and Az cannot be arbitrary, instead,
they are linked by the Courant stability condition. EssaihtiAz cannot be greater than
the distance that light can propagate in tidig in the appropriate medium. In other
words,At can at most bé\t = Az/(c/n) wheren is the smallest refractive index in the
computational domain. For a one dimensional problem indpsece, Courant stability is

determined by\t < Az/ec.

e Constitutive parameters which include permittivity, permeability, conductiv-

ity ; this item defines the medium and boundary conditions.

In order to use this method a computational domain must labkstied. In general, due
to limited computational resources, the simulations caddse for a limited region and
in limited time. No matter how fast our computers are, the potational domain has to
be finite.

Because of the finite computational domain, the values ofi¢fes on the bound-
aries must be defined so that the solution region appearddacifinitely in all direc-
tions.

For example, to do in FDTD simulation at a specified point, wedto know the
values of the fields at the right and left sides (seen in Eqondiil2 and 5.13). It means

that, if we want to calculate electric field or magnetic fietdca= 2, we need to use the
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Figure 5.3. Space has been truncated to some computatemia@hrand PML is used for
ignoring the reflections.

values adjacent points= 1 andk = 3. This causes a problem at the boundaries, because
there are no available values before the initial and finah{goi

As a result, with no truncation conditions, the scatteredesawill be artificially
reflected at the boundaries leading to inaccurate resuttsivdid this problem what we
must done? The answer to this question lies in the applicatiboundary conditions.

If space has been truncated to some computational regioapsorbing layer
is placed adjacent to the edges of the computational reghkbsorbing boundaries in
FDTD are handled by Perfectly Matched Layers (PML), whigh ot really a boundary
condition at all, but rather an artificial absorbing mateadded around the edges of the
computational domain (Berenger 1994)(Johnson 2003, Meep)

When a wave enters the PML, it is attenuated by the absorptidndecays ex-
ponentially; even if it reflects off the boundary, the retaghwave after one trip through
the absorbing layer is exponentially tiny. The PML layerdesthe cell, overlaps what-
ever objects we have. So that, it properly absorbs WG modegstoper choise for the
thickness of the PML is thus important reducing numericiéotions (Johnson 2008).

FDTD is a very versatile modelling technique. Calculatioas be set up quickly,
and changing systems is easy. Furthermore, this methodliswited for studying unfa-

miliar irregular geometries, such as PhCs with complicéd#dte defects.
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e Sources;the last item is used to simulate a physical source or exa@teuature to

obtain the desired response.

The computational domain is simply the physical region ewleich the simulation
will be performed. In general, the modelling scheme can besicered as a "virtual
measurement setup”. There must be a source, that is, a fieldteon, for which time

and spatial dependency is properly chosen.

Choosing the Excitation Field

There are different kinds of sources that can be used. Howewaur simulations,
we paid special attention to choose an appropriate souree theat will excite only a

particular guided mode of the structure.

N DA

Object

Figure 5.4. FDTD simulation space. A current source crdaké$ields which then propa-
gate in the space. The boundary region is PML to avoid nuraleeflections.

The source class is used to specify the current sourcesh@isorces input vari-
able), and only the real part of the current source is used HERI Furthermore, all

sources in MEEP are separable in time and space, i.e. oftime){x, t) = A(x) - f(¢) for
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some function#\ andf that can be chosen from a predefined set, or can be custoteswrit
in SCHEME, the scripting language used by MEEP for input.

For example f(¢) can be chosen as a continuous sine wave, or a sine wave with
a gaussian time envelope, or some other function dfVhen the temporal part of the
source,f(t), is a sine wave with a Gaussian envelope, then a wide freguamge is
solved with only one simulation. This is extremely usefulpplications where resonant
frequencies are not known exactly, or any time that a broadlbasult is desired.

The important point here is that these are current soursed tierm in Maxwell’s
equations), even though they are labelled by electric/mtgfield components. They do
not specify a particular electric/magnetic field, which Wwbbe what is called a "hard”
source in the FDTD literature. There is no fixed relationdiepveen the current source

and the resulting field amplitudes; it depends on the sudimgngeometry.

1.4 %‘///////////ﬂ

wa/2TIC
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Figure 5.5. 1D WG band structure for TE modes. The red cumeebands for localized
propagation modes, while the black curves are radiationas.od
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Now let’s look at the simulations by using MEEP, for a 1D WG tle previous
chapter we obtained the band structure for TE modes for a 1D Miffaire 5.5, made of
silica slabs of thicknes$, = 1.256637 = 0.1a and with dielectric constant ef, = 2.25
immersed in air backgroung = ¢, = 1. At the center one row is removed to obtain a
line defect to serve as the waveguide.

We conclude from the band diagram Figure 5.5;

0 < w < 0.41667 there is no guidance.

0.41667 < w < 0.95 just one mode is supported, and the guide is then called

single-moded

0.95 < w < 1.5 there is no guidance.

1.15 < w < 1.5 a finite number of modes can propagate, so the guideuisi-

moded

At the frequencyw = 0.6, horizontal green-line cuts the red curve at a single psint,
at this frequency, the waveguide is single-mode. Whesa 1.4, on the other hand, the
horizontal blue-line cuts the red curves at two points, nreathat propagation at this
frequency is multimode. Also, the group velocify; /d3, of the two modes are different.
The dispersion, proportional t8w/d3?, for each mode at this frequency are also different
so each mode spreads at a different rate at this frequency.

In the following FDTD simulations for this structure, pemioed using MEEP, we
used a Gaussian point source for TE modes £ 0). As expected, the waveguide is
single-mode at the lower frequencies, while at higher fesgies it becomes multimode,

with each mode moving with a different velocity and dispengjFigures 5.6-5.8).
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=300

Figure 5.6. Thez-component of the electric fieldy,(x,y) at different times for
w = 0.41 £ 0.1. The group velocity is zero at this frequency, so the ceriter o
the gaussian wave packet does not move, but expands in siaadgeof high
dispersion at this frequency.
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Figure 5.7. Thez-component of the electric fieldE,(z,y) at different times
for w = 0.60 + 0.1. The group velocity is now non-zero, so the center of the
gaussian wave packet moves at the group velocity, and egpaend little in
size because(3) has very little curvature at this frequency.
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Figure 5.8. Thez-component of the electric fieldy.(z,y) at different times for
w = 1.40 + 0.1. The waveguide is now multimode, with each mode moving

at its own group velocity and spreading in size with its owspeision.
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CHAPTER 6

90° PHOTONIC CRYSTAL WAVEGUIDE BEND

The 90° waveguide bend plays an important role in optical circuitswrge op-
tical losses occur around sharp corners and tight curvesolie this problem various
alternative approaches for bend designs have been dometicatly and experimentally
(Charlton, et al. 2000, Leonard, et al. 2000, Xiao and Qui 5200Most of these
studies for WG bend were done by using triangular latticestdithe possibility of cre-
ating bandgap for TE and TM polarizations within the samguency range (Baba, et al.
1999, Oliver, et al. 2002, Notomi, et al. 2005). However, mitegrated circuit one
would eventually want to bend light throughé° angle due to the confined geometry.
Therefore, it is not possible to use a triangular lattice wugiangular lattice symmetry.

Other studies are based on the optimization method for thd$&Chow, et al.
2001, Oliver, et al. 2001, Borel, et al. 2004, Jensen and @@m2004). Adding or
removing some rods in the bending region (Chutinan, et aD220alneau, et al. 2002,
Ntakis, et al. 2004) is an easy way of improving the transionssut it is not suitable
to guide light over long distances because of the high lodseto manufacturing errors.
Moreover, deforming the PhCs lattice near the bend to opéntie WG bends would
make the structure geometry rather complicated.

We propose improved designs in order to increase the trasgmilevel through
90°-bend PhC WGs. We demonstrate a novel method for guiding filgbugh such a
bend, usingl dimensional WG assisted by2adimensional LDWG. The results reveal

very high transmissiorr{ 99%) over a wide range of frequencies.

6.1. Single Slab WG

Before we present our model systems, it is useful to congjdeled modes in a

uniform dielectric waveguide. A schematic 1D waveguidenigven in Figure 6.1.
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If we look at the dispersion relation for a 1D WG in Figure Grigdes above the
light line are radiating modes, with a continuous spectrachthe solid curves below the

light line are guided modes Figure 6.2.

Figure 6.1. Single slab with a thicknegsind has a dielectric constantgf= 13 em-
bedded in a silica backgroung = 2.25. FDTD simulation for a continuous
monochromatic wave travelling through the 1D slab WG.

1
0.8
Radiation
modes
0.6 | i
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g We i
0.4 \;\g‘(\\
02 ™ Guided -
modes
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
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Figure 6.2. Dispersion relation for TE modes in the 1D WGdtrte with Si core and
silica cladding. The shaded regions represent extendeddating modes,
and the solid green curves are guided modes. The light liskasn is red.
The thickness of the slab is takeh= 2rd/a = 2 and with a dielectric
constant, = 13. The dielectric constant of the silica claddingjs= 2.25

Then, we obtain simulation results by using band diagrameasdy see that EM
wave is forced to propagate in the high-index portion of th@ W Figure 6.2. Here, the

guidance relies purely on Total Internal Reflection (TIR).
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Output

Figure 6.3. The single slab with a thicknessith a 90 bend, whereR,..q is the bending
radius.

To bend light in such a WG in a trivial way would lead to unadedfy high
bending losses. There is serious leakage problem for EM sMageelling around sharp
corners and tight curves, because most of the EM field is tedliand lost. The main
reason is that the angle of the incident light is too low foR M/hen the wave impinges

on a sharp corner (Figure 6.4).

Most of the

EM field is

radiated and
lost!

,‘//’f/fi‘ LLLLLLLAL CL R L LR

<eC

eincident

Figure 6.4. When a uniform dielectric WG is bent very tighthending radius is equal to
thickness of the slaR),..,q = d and same frequency is used/2r = 0.2667),
light escapes at the bend.

So, we can solve this problem by increasing the bending sadhut to obtain a

sufficiently low bending loss, the bending radius would hvbe unacceptably large.
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6.2. 1D Photonic Crystal Waveguide

One can instead consider a 1D photonic crystal waveguideeagutiding mecha-

nism with a circular bend again. Since the photonic crystadance is different from in-

dex guidance based on total internal reflection, this ilhytegppears to hold some promise.

t=10

t=14

t=16

t=18

t=20

Figure 6.5. 1D silica/air photonic crystal WG with a ciraulbeend. Nearly all of the ra-
diation is lost at the bend.
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We have done simulations of a 1D PhC waveguide made of silicsituctures
with one row of silica slab removed to guide the light. Theckimess of the slabs were
chosen the same as those of the quarter wavelength staatt) wtknown to posses the
maximum bandgap for a given index contrast. However, tis tf a corner element fails
to guide the light around the corner as well, with virtuallyad the radiation escaping at
the bend as can be seen in Figure 6.5.

To overcome this difficulty, a 2D LDWG can be used, both fordiyug the light
for the straight segment and for steering it around the cdiMekis, et al. 1996, Chuti-
nan, et al. 2002, Roh, et al. 2003, Malkova, et al. 2003, Kitrgle 2004, Lee, et
al. 2006). The problem with these structures, however,as élien small defects dur-
ing manufacturing can greatly increase attenuation thogifig the usefulness to guide
light over long distances. Furthermore, the high disparsioc2D LDWGs also limits the
bandwidth over which they can be used.

Instead, Notomi et. al. proposed using a 1D Slab WG which tgpeaodic in
the direction of propagation, to reduce dispersion andchatteon. This WG has a much
simpler geometry and has a much flatter dispersion. Moredaves much less lossy
because of the simpler geometry, manufacturing errors eamdde smaller, resulting
in significantly reduced attenuation (Notomi, et al. 200Hpwever, this 1D structure
would be unable to properly guide light around sharp cormesulting in high bending
loss.

As a result an effective way of bending light througt? 9@th little loss can be
achieved by using a 1D slab WG for straight sections, but 2 LDWG as the corner
element.

To accomplish this, light enters a 1D slab WG and passes fram slab WG to
the corner element 2D LDWG, turns sharp corners with reguarggle and then, reenters
the 1D slab WG region to travel for another long straight segim So, the EM wave
would travel with little loss through the straight sectipaad can be bent through sharp

turns with little bending loss as well.
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6.3. Why use a 2D Square Photonic Crystal at the Corner?

For a 2D PhC as the corner element, one has several choictsef@b lattice,
the most appealing being the hexagonal lattice, since ggsses a common bandgap for
both the TE and the TM modes. This lattice is most convenmr@({ and120° turns but
for a90° turn, the hexagonal lattice and its variant, the honeycatilcé, are not suitable

by virtue of the geometry of the crystal as can be seen in EigL6.

line defect

D

6.

(o2}

.60°, 120°, and90° bends in the hexagonal lattice. Notice how th
geometry changes after the bend for e case.

® )

Figur

Thus, the most convenient geometry for & 8@rn would be that of a square lat-
tice. After turning through 99 the line defect waveguide would be the same as before.
Because one would want to switch to a 2D PhC LDWG, bend the tlglough the re-
quired angle, and then switch back to the 1D slab WG againc@oraplish this, we use
two-dimensional photonic crystal (2D PhC) for our corn@meént, because we can turn
the waveguide and preserve the line defect waveguide geprifahe PhC has a triangu-

lar lattice the bend could only be 66r 120 due to the triangular lattice symmetry.

6.4. Corner Element

In light of the previous discussion, there are many posshledidates for the corner

element, some of which we tabulate below:
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Hexagonal Lattice Not suitable

( ( - L With Core
Silicarods in Si
Without Core
Circular Rods
. o With Core
Silica rods in Silic
\ Without Core
Square Lattice
.
. . With Core
Silicarods in Si
Without Core
Square Rods
. o With Core
Silica rods in Silic
\ \ Without Core
( ( . . With Core
Silicarodsin Si
Without Core
Circular Rods
. o With Core
Silica rods in Silic
\ Without Core

Checkerboard Lattice

N o With Core
Silica rods in Si

Without Core
Square Rods
With Core

\ \ a{ Without Core

Silica rods in Silic

6.5. Silica Rods in Silicon

Due to the large set of possibilities for the corner elemienthis study, we tried

only some of the several corner elements to create a lineidef/eguide, and looked
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for the structure with the highest transmission.

The first 2D lattice we investigated was the square latti¢h gilica rods embed-
ded in Si background. The largest bandgaps for this streictuobtained for TE modes
when the silica rods have the largest possible radis, = 7. For practical limitations

we chooseR, . = 3.
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Figure 6.7. The band structure for TE modes for a 2D squatiedawith silica rods of
radiusR,,; = 3 in a Si background.

The 2D LDWG is formed by removing a row of silica rods. The batdicture
for the LDWG is shown in Figure 6.8. Within the bandgap, the\llG supports guided
modes, but for the most part the guidance is multimode, withreow frequency windows
in which it is single mode. This is where the lowest indexelpai mode and the lowest
gap-guided mode intersect at an “anticrossing” thus argadi small frequency window
where the waveguide is single mode.

The parameters of the 1D PhC WG are obtained by choosing the fiHding
ratio for the Si as the 2D LDWG. The band structure for the 1 RWG is shown in
Figure 6.9. Although the bandgaps of the 1D and the 2D strestdio not match, it’s still

possible for the light to be guided in both structures.
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Figure 6.8. Band structure for the 2D LDWG formed by remo\arrgw of silica rods in a
square latticeR,.,, = 3. The band anticrossing is indicated by the red circle.

The green line and the green dot mark the operating frequenrey.232 and
the wave vector with an unfolded value @ 0.54.

0.4

0.35

0.3

0.25

0.2

wa/2T11Cc

0.15

0.1

0.05

O | | | |
0 0.2 0.4 0.6 0.8 1

Ba/2m
Figure 6.9. Matching 1D PhC WG band structure with variouslesosshown.
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6.5.1. Options for The Corner Geometry

Having chosen the 2D LDWG and the matching 1D PhC WG, the peege-
ometry for the corner still remains to be determined. Pdssibses include the ones in
(Mekis, et al. 1996) with extended diagonal segments. Ailtjiointroducing a diagonal
segment seems, at first, to be a good idea, it actually resuiltcreased bending loss.
The reason can be understood if one takes a close look atrthutasion results in Fig-
ures A.3-A.6. In the diagonal segment, the line defect gepnme altered and the parity
of the modes in that segment are different from those in tteegstt segment: While the
mode in the straight segment is odd, the mode in the diagegahent is even, making
the coupling from the straight portion to the diagonal portrather poor, resulting in

significant bending loss.

—IIIIIIII‘E —_— -“““ﬁ -ll‘l‘ -Illlx
Siiiiiiiiiii St S i

Figure 6.10. Some of the possibilities referred to in the &sxOption 0 to Option 4.
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Figure 6.11. Fluxes for each of the options in Figure 6.10uidd® clearly has the highest
transmission.
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This is quite apparent from Figure 6.11 where the fluxes dfftetbend are pre-
sented for each of the cases, as well as the incident flux fapadson. The best option

seems to be Option 0, for which there is no diagonal segment.

6.6. Silicon Rods in Silica

With less than stellar success with silica rods in silicoe, wext considered the
inverse structure with silicon rods in silica. Our first at®for the lattice was the square
lattice with circular silicon rods embedded in silica. Wekdor the 2D lattice with the
largest gap, because the 2D PhC cornering element yielé#isé hending loss if it has a
large photonic band gap at the range of operating frequenteeobtain this, we vary the
radius of the rods for a given index contrast. Among all guses, this structure has

the largest bandgap for the square lattice as seen in Figl2e 6

T T T

circular Si rods in silica ——
20 square Si rods in silica --—-#-- 4
circular silicarods in Si -0

18

16

% gap

14

12

10 ! ! ! "y N
0.1 0.15 0.2 0.25 0.3 0.35 0.4

Si fill ratio

Figure 6.12. The relative gap width vs the normalized radifisr a 2D photonic crystal
made of silicon rods of dielectric constantepf= 13 inasilica background
with ¢, = 2.25. The maximum bandgap occursfat= 1.5 for circular rods.
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The circular Si rod structure has the highest bandgap witstjuare Si rod struc-
ture coming a close second. Thus the best candidate for thercelement seems to be
the circular rod structure.

The next thing to consider is how to open a line defect in thistpnic crystal to
serve as a waveguide. One could remove one or two rows of §; lkeal/ing the low index
silica as the core. This would yield a purely gap-guided \gavde as the core refractive
index would be less than that of the medium.

Another possibility is to remove a row of Si rods, and insecbee of silicon to
yield a photonic crystassisted. DWG. This choice would also make the coupling to the
1D PhC WG suggested by Notomi much easier, so we take this.réiftire 6.13 shows

our choice for the corner element, together with the 1D ghtasections.

Figure 6.13. The corner geometry (inset) and the geométleils of the interface
between the 1DWG and the LQWG. The \falues jor the vgrious abred
parameters used in this work atg,= 1.125, d = 2, R = 1.5, dg¢, = 5.655.
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Our structure then has three essential elements:
1. 1D PhC WG for the straight sections
2. 2D LDWG with a core for the corner element.
3. 2D PhC to keep the light from escaping at the corner

The geometry of these three elements must be carefully tadjus yield the minimum
bending loss. In what follows, we will consider only TE waygs # 0) and find the

band structure and present FDTD simulations for the optgaametry.

6.6.1. Bands for the 2D Photonic Crystal

Now we can use the plane wave expansion which is quite satisfafor 2D
problems to model the 2D square lattice. For TE modg&s# 0), the solutions are of the
form E,(z,y,t) = Eo.(x,y)expli(k - r —wt)]. This yields the generalized eigenvalue

equation;
K + G|2E.(G :% (G — G')E.(G) (6.1)

2 .2 . . . .
whereG = —anx + —Wnyy (ny,ny, = 0,££2,...)is areciprocal lattice vector arid
a a

is a vector in the first Brillouin zone. This can be convertei® ian ordinary eigenvalue

problem of the formAx = (w?/c?)x with

AGG' = ‘k+G| [E_l]GG/ ‘k+GI‘ (62)
xe = |k + G| E.(G) (6.3)
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wheree~! is the inverse of the matrige = ¢(G — G’). For circular rods,

7R?2J,(GR
E(G) = 6[,5@0 + (Ea — 607% (64)

whereJ; (z) is the Bessel function of order 1.
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Figure 6.14. The band structure for a 2D photonic crystal enaidsilicon rods of ra-
dius R = 1.5 and with a dielectric constant @f = 13 immersed in a silica
background withe, = 2.25. The relative gap width isz 20% centered at
wa/2m = 0.26673 shown with a horizontal dashed line. The inset shows the
Brillouin zone, with the irreducible zone.

After creating the maximum PBG, the second step is to find #redkstructure
diagram for 1D slab WG and 2D LDWG due to the comparison mod#timbetween
the incident lights and the guided modes. Since light era&® LDWG from a 1D slab
WG and, after turning reenters the 1D slab WG, so if the moegiguiency falls inside the
gap then a linear defect in a waveguide can support onlydiynezcalized mode (Meade,
et al. 1991), such as extended modes can not coupled thegatop modes. Light

will be either transmitted or reflected, only back reflectishinder at the entry and exit
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interfaces thus, the spacing between the 1D slab WG and 2iercetement has to be

carefully adjusted.

6.6.2. 2D Line Defect Waveguide

The band structure of the LDWG is modelled by using a supkeaseshown in
Figure 6.15. We use a supercell of siz¢ 2/ + 1) with M sufficiently large, to calculate

dispersion relation in Figure 6.16.

supercell

y
e 0o o0 o /;.. EEREIEEXX
o0 o0 o ...Ia EEEREMEEEE
o0 o0 o oo 0 o EEEREMEEEX
T... o 0 o EEEIMEERXX

=5 el |
i... oo 0 o EEEREMEEEEX
o0 o0 0 oo o0 o EEEREIIEEEXX
oo o0 o oo o0 o EEEREIMEEXEX
R oo o0 0 00000000

Figure 6.15. Top figure shows the supercell geometry foritteedefect waveguide. Here
a supercell of size ax8a is shown. The line defect is formeklnoving one
row of dielectric rods. And the bottom figure shows that 2D Rhade of
silicon rods of dielectric constamf = 13 immersed in a silica background
e, = 2.25. The line defect is formed by removing one row of dielectods
and by placing a dielectric slab of thicknebs: 2rd/a = 1.125.

For TE modes £, = E, = 0,E, # 0), propagating along the-axis

with propagation vector3 = (X, the solutions are of the formf,(z,y,t) =
Eo.(z,y) expli(Bx — wt)]. We calculated before, this yields the generalized eigerva

equation;
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B+GPE.(G) =3 ¢(G - G)E.(G) (6.5)
.

2r N . . . .
whereG = —n, X + n,y. This can be converted into an ordinary eigenvalue
a

2
(2M + 1)a
problem of the formAx = (w?/c?)x with

Ace = |B+G| e oo B+ G| (6.6)
=18+ G|E.(G) 6.7)

wheree! is the inverse of the matrisge: = ¢(G — G’), with

d sin(Gyd/2)

¢(G) = ep0Go + (€a — €) (2M +1)a (G, d/2)
T R? 2Jl GR
+ (Ea_e)(2M+1 Z2COSGb

(6.8)

where the second term is due to the core region at the centbe afaveguide, and the
term in square brackets is the structure factor for the dglia. For a lattice with n basis
vectorsb;, j = 1,2,...,n with identical “atoms” at each side. For n=2, a lattice with a
two-point basis such as the diamond structure, the bastengecan always be chosen
equal and opposité; , = £b (Sozuer, etal. 1992).

Dispersion relation for 2D LDWG supports single localizeddwa at the optimum
frequency of operationa /27 = 0.26673. Now the last thing we have to calculate the
dispersion relation for 1D slab WG. Thus, if we can find siniglealize mode for this
structure at the frequency range of interest, we will prewvide necessary condition for

perfect transmission.
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Figure 6.16. The localized propagation modes of a line def@weguide for a 2D pho-
tonic crystal. Silicon rods of radiu® = 1.5, and dielectric constant of
€. = 13 .The background is silica with dielectric constapt= 2.25. The
line defect is formed by omitting one row of circular dielectrods and re-
placed by a dielectric slab which has thicknédss 2rd/a = 2.

6.6.3. 1D Slab Waveguide

The dispersion relation of the 1D slab WG portion is modetigdssuming a wave
of the form for TE modesK, = E, = 0, E, # 0) propagating in the x-direction with
propagation vectof = gX. Inserting this into Maxwell's equations, and again using a

supercell of siz€ M + 1 along they-axis, one obtains the generalized eigenvalue equation

w ! /
(82 + GNE-(G) = =5 > e(G — G)EL(G) (6.9)
G/
whereG = (2]\/[2+1)ai’ (z = 0,£1,42,...). This can be converted into an ordinary

eigenvalue problem of the forx = (w?/c?)x with

Ace = VB + G? [e Yaa V7 + G? (6.10)
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¢ =\ +GE.(G) (6.11)

wheree! is the inverse of the matrisge = €(G — G7), with

d sin(Gd/2)
(2M + 1)a (Gd/2)

d, sin(Gd, /2)
2M + 1)a (Gdy/2) ZzCOS Gs)

€ = 0G0 + (€a — €p)

+ (€a —€p)

(6.12)

where the second term is due to the core region at the centbe afaveguide, and the

term in square brackets is the structure factor for the satier
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Figure 6.17. The propagation modes for the 1DWG made ofosilglabs of thickness
ds; = 1.125, and with dielectric constant ef = 13 immersed in a silica back-
ground withe, = 2.25. The defect is formed by removing one row of dielec-
tric slabs and by placing a dielectric slab of thicknéss 2rnd/a = 2. The
finely spaced gray bands are those of unguided radiation sndde center-
gap frequencwa /27 = 0.2667 and the corresponding propagation constant
Ba/2m = 0.78 are indicated by the cross-hair. The gray bands corresgond t
non-localized radiation modes. The solid curves are baodthé localized
propagation modes.
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Among the choices we studied, we found that the highestrimesson is obtained
when we omit one row of rods (L-shaped) from a square latticei cods embedded in
a silica background. We also looked for the structure whiethdg only a single guided
mode in the bandgap. For instance when two rows of rods arevenrfrom the 2D PhC
to form a LDWG, the propagation becomes multi-modal instie tDWG at the gap
frequencies, leading to poor transmission because ofaserk scattering due to mode
mismatch at the interface.

Now, the necessary condition is satisfied for perfect trassion because the 2D
LDWG and 1D slab WG be single localized mode in the frequeaoge of interest. We
found a single localized mode for optimum frequency thdsfalithin the 2D bandgap
of 2D PhC. As a result, the guided defect mode passes thrdwegshiarp corner without
being scattered into the 2D PhC.

To sum up,

e 0.240426 < w < 0.293049, EM wave can be guided and not scattered into the 2D

PhC.

e 0.241977 < w < 0.292176, EM wave, is a single localized mode, which travels

without lost around sharp corners.

e 0.210212 < w < 0.23889 and0.295036 < w < 0.32884, EM wave is still single
localized mode for LDWG structures, however the frequeyges out of the 2D

PhC PBG, as a result the mode can not be confined.

6.6.4. Mode Profile Matching

Furthermore, since light enters a 2D LDWG from a 1D slab waiggand, after
turning reenters the 1D slab waveguide, matching the mooeof the LDWG with
that of the 1D slab waveguide is of utmost importance to enkaw reflection/diffraction
at the entry and exit interfaces. Thus the spacing betweetPWG and the 2D corner
element has to be carefully adjusted to ensure minimum tifleat the entry and exit
interfaces.
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We define the relative mode mismatch between the two media as

Ay/2
fAZ/Qdy [Er2(y) — Bz (0, y)]

(5([[’0) =
S, dylBrL ()

(6.13)

whereF . (y) is the mode profile of the 1DWG anf,. (xo, y) is the mode profile of the
LDWG at fixedz,. We search for a value af, that minimizesi(z,). Because of the
periodicity in thez-direction,z, can assume values in the interyala/2, a/2). A plot of
d(z) is shown in Figure 6.18b. The value &fr) is minimum at the point = —a/2, and
a plot of the two modes is shown in Figure 6.18a. So it seems#tang the separation
between the end of the 1DWG and the center of the first columpdsfin the 2DWGd,,
to a/2 would yield the best match, but we can do even better. We mad®Falculations

for various separations and found that the maximum trarsamgs obtained by setting

dsep = 0.9a.

EY [b]

E, (arbitrary units)
Mode Mismatch
o o Bk e
(2} o] [ N = (o))
T T T

°
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o
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Figure 6.18. The relative mode mismatch between the mod#sediD waveguide and
that of 2D LDWG as a function of. The mismatch is smallest at= —a/2.
Maximum coupling is obtained when the spacing between thevaizguide
and the center of the rods in the 2D structureri8.9a.
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6.6.5. FDTD Simulation Results

The band structures calculated so far can be used to gaghtristo the problem
and decide which structures hold promise, but the final stepth be the actual time
domain simulation to prove, without a doubt, that the codesign actually works.

Above, we can figure out parameters for our proposed streieiunl also we know
now which frequencies are guided and which are not. We wakéltb know exactly
how much power makes it around the bend, the rest being eiilected or radiated
away. For that we need to compute the fluxes through a linesegmth the width of the
waveguide. We do this once for the straight 1D PhC WG, and ageé after the bend,
as shown schematically in Figure 1d-eps-2. The FDTD sirariathave been performed

using MEEP, which allows great flexibility in using custonusces.

Flux-Region
Sourcsd
size

Fqu-F{egion W

Figure 6.19. Our reference frame is 1D PhC WG, and our prapssecture photonic
crystal assisted bend. Same source and flux-region is cliaskath simula-
tions.

To obtain accurate transmission results, we made surertiigtgtsections of the

bend are identical to the reference 1D PhC WG. Since we ameapity interested in TE
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modes for which®, # 0, as the source, we use a current source of the form

—(t — tg)?

572 } exp(—iwt) K (6.14)

J(r,t) = 6(x — z5) F1.(y, w) exp {

which is a monochromatic source of frequengylocated atr = x, and enveloped in a
Gaussian packet with widthw = 1/0 in the frequency domain® . (y, w) is the guided
mode of the 1D PhC WG at the center frequendys Fourier coefficients are obtained by
solving the eigenproblem Equation 6.9, and its inverse FERliculated as either a sine or
a cosine series depending on whether the source is even ol bdaturrent source must
be in thez-direction in order to excite TE modes.

It's tempting to instead use a point source for even modeswodntisymmetric
point sources for odd modes, for the sake of simplicity. Havedepending on the
frequency, one could then have to use an unusually longgbtraegment for the 1D PhC
WG before the bend, in order to have all of the unguided moaldiste out of the 1D PhC
WG. Our mode source excites only one mode, just itself, sonitial straight segment
can be made very short, thereby significantly reducing timeiksition time, in addition to
yielding much more accurate results.

The transmission of the bend then can be defined as the rakie tiftal output flux
P, measured after the bend, to the reference total Rufor the corresponding straight
WG, which is given byl = —101og;, 7.

Since the source is Gaussian, in principle it would neved*&md the simulation
would take forever! For the flux calculations, we ran our dations until well after the
fields have decayed to 1/10,000th of their peak values atrthi@tthe waveguide where
the flux-regions have been placed.

Since the imaginary part of the wave vector is maximum near dbnter of
the bandgap, the operating frequency is expected to be dntwencentergap value of
w = 0.2667. However, since the incident wave is along tkiedirection, and confining
light in this direction would require a large imaginary péot the wave vector, an op-
erating frequency near the center of the gap atXthpoint yields a bending loss that is

appreciably less than that at the centergap frequency.

1For TM modes one would use a current source in thairection with £, (y,w) substituted for
E1.(y,w) in Equation 6.14. However we will not be concerned with TM resiéh this thesis.
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In Figure 6.21, we present several snapshots from our sironlaf the corner
structure when the frequenay,= wa/27 = 0.23889 is outsidethe band gap.240426 <
w < 0.293049 of the 2D square lattice. The radiation penetrates the 2xtsire and
there is serious leakage.

By contrast, Figure 6.22 shows snapshots at the same time$-agire 6.21, but
this time the frequency is the centergap frequency 0.23889. This time, there is no
visible penetration into the 2D corner element, and thestrassion is nearly lossless.
Figures 6.21 and 6.22 are in good agreement with what bampladies provide us. We

present the calculated transmission for different bendaadg in Figure 6.23.

Figure 6.20. Photonic crystal assisted bend and singlevgéaleguide bend at the cen-
tergap frequency ab = 0.2667. The bending radius of the core centerline
Is just the width of the core. The wave is a Gaussian with wiith= 0.1,
and the 1D slab waveguide is excited with a current sourdentiagches the
guided mode at the given frequency.
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t=10
i o1

Figure 6.21. FDTD simulations of the photonic crystal assidend at a frequency out
of the photonic band gap, = 0.23889. The bending radius of the core
centerline is equal the width of the colge.q = d. The wave is a Gaussian
with width A@ = 0.1.
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Figure 6.22. FDTD simulations of the photonic crystal assidoend at the centergap
frequent ofw = 0.2667, again Gaussian source with widthw = 0.1 and
the radius of the ben®,..q = d. The pictures are taken same time in Fig-
ure 6.21.
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Figure 6.23 shows that, transmission through the photaystal assisted 30
bend as a function of frequendy,.,a = d (blank squares), and fQR,..a = 2d (blank
circles), where d is the width of the core region. Also showethe transmission curves
for a slab WG without photonic crystal assistance ff,q = d (filled squares) and
for Ryena = 2d (filled circles). The transmission of the photonic crystssiated bend

is largest for frequencies inside the 2D photonic crystaldgap which lies in the range

0.240426 < @w < 0.293049.
In conclusion, for TE modes in a square lattice 2D settinghaee shown that

low-loss occur for 90 corner by using 1D-2D system. Thus, photonic crystal assist
bend system is realizable for consideration in photoniegrdted circuits. Furthermore,

we change corner element and obtain the transmissionsdgudtpplying the same order.
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Figure 6.23. Transmission through the bend as a functioroohalized frequency for
different radii of curvature.

6.6.6. Rods with a Square Cross Section

It might be interesting to modify this structure a bit, foraexple by changing

circular rods with square rods, and observe if any significlianges would occur. So
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the only difference is that in Figure 6.13 circular rods aplaced by square rods, and
we again find that transmission is very high for the frequenlacyge betweef.241977 <
w < 0.292176. This can also be interpreted as evidence of the robustrieks corner

element.

Figure 6.24. Replacing the circular rods with square rodb®fsame cross-section. The
bending radius is equal to normalized thickness of the dlétescore.

OF T T = = T T -
)“<
* ‘f“ K- K %*‘x*xx*x%iﬁf T
2 ***Xéﬁ%xr‘ |\ ¢
- - - K | \
) *-X “A DDDDDDDDDDDDDDDmBDDDBDDDDD
E o Eaa8 glaa8d
= |
S 3 o7 | |
2 |
2 ‘
e « A ‘
2 '4 r /, \/ \ “ i
S / N
= %
= s |
5L | ‘ |
|
|
\d Photonic Crystal Assisted R,.....,=2d — =
v . y . bend
6 r . Photonic Crystal Assisted Ry, ,4=d -
Single Slab Ry,.,q=2d - -
7 ) . . Sllngle Slabl Rbend:Zdl a

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34
wa/2T1c

Figure 6.25. Transmission through the bend as a functioroohalized frequency for
different radius of curvature. The red curve is fy1..q = 2d, the green curve
for Rye.nq = d and the circular rods are replaced by square rods. Alsogthe r
curve and pink curve is a single slab without photonic clystahe corner,
which has bending radiuBpe.q = 2d andRy,enq = d respectively.
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6.7. Alternate Corner Element: The Checkerboard Lattice

An alternate way of carving a line defect out of the squateckatan be to remove
a row along a line that makes4&° angle with the line defect in the previous section.
The square lattice, when rotated £y’ can be viewed as a distinct “checkerboard lattice”

lattice,i.e. a square lattice with a two point basis.

da

dsep

Figure 6.26. The corner geometry (inset) and the geomeuligails of the interface
between the 1DWG and the LDWG. The values for the various abzed
parameters used in this work are,= 1.125,d = 2, R = 1.5, dSep = 5.655.

Considering the success with the square lattice, this type arner element,
depicted in Figure 6.26 seems worth investigating. Agamywl use circular rods in the
2D PhC, and since this is physically the same structure ascphare lattice, only rotated
by 45° to form the line defect, it has the same bandgap and so Si ritkd$he same radius
will be used. However, the line defect is now created by rengwene row of rods and by
placing a silicon slab.

Now the lattice constant of the checkerboard lattiee s v/2a,, S0 the maximum

band gap occurs when the radius of the pillars is taRen Ra/2m = 1.06.
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Figure 6.27. Band structure of circular silicon pillarswit 2 = 1.06 embedded in silica
again, but the 2D square lattice rotated by.45

For a 2D PhC made of silicon pillars of dielectric constant= 13 in a silica
background with dielectric constant = 2.25, the maximum band gap is sti#¥ 19.7%
for TE modes f, # 0).

Because the frequencies are scaled by a different lattiestaota now, the gap
is betweern).170 < @ < 0.207 centered at the frequency = 0.1886. After that, we
should calculate dispersion relation for 2D LDWG to obtamgte localize mode at the
range of band gap. Here, 2D LDWG has different supercell tig differences not only
parameters and als¢G).

Before, we calculated for TE mode&( = E, = 0, E. # 0), propagating
along thez-axis with propagation vectg8 = X, ordinary eigenvalue problem with a

1z(2M + 1) supercell sizeAx = (w?/c*)x with

Ace =18+ G| [ e 1B+ G| (6.15)
x6 = |8 + G| E.(G) (6.16)
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wheree~! is the inverse of the matrigg = ¢(G — G’), with

TR>  2J(GR)
(2M +1)a> GR

E(G) = €b5G0 + (Ea - Gb)

M M—1
X Z 2 Cos(Gybj)JrZ 2 cos(Gbi + Gyby) (6.17)

j=1 k=1

where the second term is due to the core region at the centbe afaveguide, and the

term in square brackets is the structure factor for the dglis.
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Figure 6.28. The localized propagation modes of a line defeweguide for a 2D pho-
tonic crystal. Silicon rods of radiu® = 1.06, and dielectric constant of
€. = 13 . The background is silica with dielectric constapt= 2.25. The
line defect is formed by omitting one row of circular dielectrods and re-
placed by a dielectric slab which has thicknédss 2rd/a = 2.12.

Secondly, we should calculate the dispersion relationbslab WG, using same
supercell size and same parameters in the section 1D slaliW@nly difference is the

thickness of the defect.
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Figure 6.29. The localized propagation modes of a line devageguide for a 1D SWG.
Silicon slabs of thickness = 1.125, and dielectric constant ef = 13 .The
background is silica with dielectric constast = 2.25. The line defect is
formed by omitting one row of dielectric slabs and replacgdaldielectric
slab which has thickness= 27d/a = 4.
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Figure 6.30. Transmission through the photonic crystaktess 90 bend as a function
of frequencyR,..qa = d (blank squares), and fa¢,..q = 2d (blank circles),
where d is the width of the core region. Also shown are thestragsion
curves for a slab WG without photonic crystal assistancéfnry = d (filled
squares) and foRy,.,q = 2d (filled circles). The transmission of the photonic
crystal assisted bend is largest for frequencies insid@Ehphotonic crystal
bandgap which lies in the ran@el 70006 < w < 0.207217.
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A critical and necessary condition for high transmissiosatsfied that the pho-
tonic crystal waveguide be single-mode in the frequencygeanf interest. Now if we look

at the simulation results at the center frequency;

t=10

.. nouonnuu\:‘

t=13

t=17

t=21

Figure 6.31. FDTD simulations of the photonic crystal assidend at the centergap
frequency ofo = 0.188, again gaussian source with widthv = 0.1 and
the radius of the ben®,..q = d. The pictures are taken same time in Fig-
ure 6.21.
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Lastly, transmission is calculated (Figure 6.30) same Wwaysing a reference 1D
slab WG due to the perfect guidance. The transmission oféhd then can be defined as
the ratio of the total output flu¥, for the waveguide bend to the reference total fiejx

for the corresponding straight WG, which is givenDy= 10 log,, %.

6.7.1. Coupling

With the checkerboard lattice, transmission is less thezular rods in a square
lattice. The basic reason is that the reflections occur aribgy and exit interfaces. Thus,
it might be worth varying the spacing between the 1D slab W&2ih LDWG and see if
this improves the coupling efficiency.

Since the separation between the rods of the 2D WG and the sfdbe 1DWG
are different, this might be the reason for the poor effigjei$o we tried extending each

slab so that they would all be at the same distance to the fdtdse @D WG.

Figure 6.32. The separation between 1D slab WG and 2D LDWé&ketequal for every
slab, which is called., = 0.4.

So it seems that the separation between the 1D slab WG and ¥03,Bhanging
dsep has little effect. Second choice, we can take the separaéitween the 1D-2D system
is taken equal. Because, for circular rods in a square ahegistance between the 1D
slab WG and 2D LDWG is same. However, in here, for circulasnoda square array but

rotated 45, the separation between them is not same for every slabsré-i§.26).
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Figure 6.33. Transmitted power for photonic crystal assidiend of bending radius
Ryenda = d. Gaussian source with a frequengy= 0.185 and with width
Aw = 0.1 is used and the spacing between 1D slab WG and 2D LDWG is
changed between4 < d., < 1.5.

Transmission (dB)
o

-5

-6

0.14

Photonic Crystal Assisted and splay Ry.,4=2d .-

Photonic Crystal Assisted R, ;=2d —<— |
Photonic Crystal Assisted Ry, ,4=d

Photonic Crystal Assisted and splay R,.,4=d .

0.15

0.16 017 0.18 0.19 0.2 0.21 0.22

wa/2T1c

Figure 6.34. To compare the separation effect fér®widh different bending radius. The
red curve shows that photonic crystal assisted bend withndibg radius
Ribena = 2d, and the blue curve for photonic crystal assisted bend with a
bending radiusR,cg = 2d but the separation between 1D slab WG and 2D
LDWG is equal for every slabs, which i&., = 0.4. The green curve shows
that photonic crystal assisted bend with a bending raftius; = d, and the
pink curve for photonic crystal assisted bend with a bend#ius Ry, = d
but the separation between 1D-2D system is equal for evabgsl
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If the separation between them is taken equal for every $lase 6.32 and the
other parameters are kept same (like thickness of the dafect and radius of the rods

etc.), transmission is not changed.
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CHAPTER 7

CONCLUSION

In this thesis, &0° waveguide bend based on a hybrid of 1D and 2D photonic crys-
tals is presented. The theoretical modelling and real timellgtions are presented. At
the beginning the background theory, which is necessardenstand photonic crystals
and waveguides is presented. One and two dimensional phatystal waveguides are
investigated by using both time and frequency domain metAda dispersion relation
of the perfect PhCs are obtained by using the PWM. After caimgdhese results, de-
fects are introduced into the photonic crystals, which isedby removing one row at the
center to create line defect waveguide. Supercell methadad to obtain the dispersion
relations for the line defect waveguide, Since the mode w@fr@st will decay exponen-
tially away from waveguides, therefore supercell size isseim large enough for every
calculations.

The finite difference time domain method is used to obtairugations. The focus
of the work is the improvement of the transmission for thedbeBo, in this thesis, a new
type of90° WG bend is proposed by using different corner elements.

We demonstrated a novel method for guiding light througlmsharners by using
a 1D slab WG for straight sections and a 2D LDWG for cornerse @articular structure
with Si rods in a silica background performed exceptionaill, yielding a bending loss

as little as10~*.
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APPENDIX A

SIMULATIONS

This Appendix contains the simulations of the various coelements that we
tried during the course of this study.

A.1l. Corner Element with Silica Rod in Si
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Figure A.1. Some of the failed attempts.
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