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İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Mathematics

by
Yılmaz DURĞUN
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Prof. Dr. Oǧuz YILMAZ Assoc. Prof. Dr. Talat YALÇIN
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ABSTRACT

THE LEAST PROPER CLASS CONTAINING WEAK SUPPLEMENTS

The main purpose of this thesis is to investigate the least proper class containing

the classWS of R-modules determined by weak supplement submodules over a ring R, in

particular, over hereditary rings. A submodule A of a module B has(is) weak supplement

if and only if there exist a submodule V in B such that A + V = B and the intersection

of submodules of A and V is small in B. The classWS does not form a proper class, in

general. By extending the class WS, we obtained the least proper class containing the

class WS of R-modules over hereditary rings. We investigate the homological objects

of the least proper class. We determine the structure of elements of the proper class by

submodules.

iv



ÖZET

ZAYIF TÜMLEYENLERİ İÇEREN EN KÜÇÜK ÖZ SINIF

Bu tezde temel olarak, zayıf tümleyenler aracılığıyla tanımlanan WS sınıfını

içeren en küçük öz sınıfın bir R halkası üzerinde, özel olarak, kalıtsal halkalar üzerinde

incelenmesi amaçlanmıştır. Bir B modülünün A alt modülü, B’de zayıf tümleyendir ancak

ve ancak B’nin bir V alt modülü için, A + V = B ve, A ve V alt modüllerinin kesişimi B’de

küçüktür. Genelde,WS sınıfı bir öz sınıf oluşturmaz. WS sınıfını genişleterek, kalıtsal

halkalar üzerindeWS sınıfını içeren en küçük öz sınıfı elde ettik. Bu en küçük öz sınıfın

homolojik nesneleri incelendi. Alt modüller yardımıyla bu öz sınıfın elemanların yapısı

belirlendi.
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LIST of SYMBOLS AND ABBREVIATIONS

R an associative ring with unit unless otherwise stated
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R-module left R-module
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HomR(M,N) all R-module homomorphisms from M to N

M ⊗R N the tensor product of the right R-module M and the left R-

module N

Ker f the kernel of the map f

Im f the image of the map f

T (M) the torsion submodule of the module M: T (M) = {m ∈ M |
rm = 0 for some 0 , r ∈ R}

Soc M the socle of the R-module M

Rad M the radical of the R-module M

TR the category of torsion R-modules

B the class of bounded R-modules

〈E〉 the smallest proper class containing the class E of short exact

sequences

P a proper class of R-modules

P̂ the set {E | rE ∈ P for some 0 , r ∈ R} for a proper class P
π(P) all P-projective modules
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π−1(M) the proper class of R-modules projectively generated by a

classM of R-modules

ι(P) all P-injective modules

ι−1(M) the proper class of R-modules injectively generated by a class

M of R-modules

τ(P) all P-flat right R-modules

τ−1(M) the proper class of R-modules flatly generated by a classM
of right R-modules

k(M) the proper class coprojectively generated by a classM of R-

modules

k(M) the proper class coinjectively generated by a class M of R-

modules

ExtR(C, A) = Ext1
R(C, A) the set of all equivalence classes of short exact sequences-

starting with the R-module A and ending with the R-module

C

TextR(C, A) the set {E ∈ Ext(C, A) | rE ≡ 0 for some 0 , r ∈ R} of

equivalence classes of short exact sequences of R-modules

Pext(C, A) the set of all equivalence classes of pure-exact sequences-

starting with the group A and ending with the group C

Next(C, A) the set of all equivalence classes of neat-exact sequences-

starting with the group A and ending with the group C

PureZ-Mod the proper class of pure-exact sequences of abelian groups

NeatZ-Mod the proper class of neat-exact sequences of abelian groups

A an abelian category (like R-Mod or Z-Mod = Ab)

For a suitable abelian categoryA like R-Mod or Z-Mod, the

following classes are defined:
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SplitA the smallest proper class consisting of only splitting short ex-

act sequences in the abelian categoryA
AbsA the largest proper class consisting of all short exact se-

quences in the abelian categoryA
ComplA the proper class of complements in the abelian categoryA
SupplA the proper class of supplements in the abelian categoryA
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E essential submodule

≤C complement submodule (=closed submodule)

≤S supplement submodule
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CHAPTER 1

INTRODUCTION

In module theory, the problem of decomposition of a module into a direct sum of

its submodules is a fundamental one, and a wide area of module theory is related with this

problem. It is well known that a submodule of a module need not be a direct summand.

Moreover, we can not state that a for every submodule U of M there is a submodule V

satisfying U + V = M that is minimal with respect to this property. If this is the case

(that is there is no submodule Ṽ of V such that Ṽ $ V but still U + Ṽ = M), V is called a

supplement of U. Minimality of V is equivalent to U∩V � V . Reducing the last condition

to U ∩ V � M, we get the definition of a weak supplement. Supplement submodules and

weak supplement submodules are well-studied in the literature. For the definitions and

related properties see (Wisbauer 1991). In series of papers from 1974, H. Zöschinger

interested with supplement submodules (Zöschinger 1974a, 1974b, 1974c, 1978, 1980,

1981).

This thesis deals with the classes Small, S and WS of short exact se-

quence of R-modules determined by small, supplement and weak supplement sub-

modules respectively, and the class WS which is the least proper class contain all

of them over a hereditary ring R. Small is the class of all short exact sequences

0 // A α // B // C // 0 where Im(α) � B, WS is the class of all short ex-

act sequences 0 // A α // B // C // 0 where Im(α) has(is) a weak supplement

in B. S is the class of all short exact sequence 0 // A α // B // C // 0 where

Im(α) has a supplement in B defined by Zöschinger may not form proper classes. The

classes are different from other in general. On the other hand the proper classes generated

by these classes, that is the least proper classes containing these classes are equivalent:

〈Small〉 = 〈S〉 = 〈WS〉 (The least proper class containing a classA is denoted by 〈A 〉 ).

WS-elements are preserved under Ext(g, f ) : Ext(C, A) −→ Ext(C′, A′) with respect to

the second variable, they are not preserved with respect to the first variable. We extend the

classWS to the classWS, which consists of all images ofWS-elements of Ext(C, A′)
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under Ext( f , 1A) : Ext(C′, A) −→ Ext(C, A) for all homomorphism f : C −→ C′.

In this chapter, we give a short summary about content of this thesis. In Section

2.1, we give some theoretical properties of Ext(C, A), its dependence upon the module

A and C, its relation with known constructions. In Section 2.2, we give some properties

and definitions about supplement submodules. In Section 2.3, we give some information

about Dedekind domains and modules over Dedekind domains. In Section 2.4, we give

some properties about neat, coneat and complement submodules. The definition and the

properties of a proper class will be given in Chapter 3. The class PureZ-Mod of pure-exact

sequences of abelian groups is an important example of a proper class in the category of

abelian groups. After, in Section 3.1, we deal with the structure of ExtP with respect to

a proper class P and common methods to define a proper class. It is shown here that,

if M is a given class of R-Mod for an additive functor T (M, ·) : R-Mod −→ Ab, the

class of exact triples E such that T (M,E) is exact form a proper class. This result is

helpful in the definition of projectively, injectively generated proper classes. Finally, we

give some theorems about coprojectively and coinjectively generated proper classes. In

Chapter 4, we define the classWS as the union ofWS-elements and the image ofWS-

elements by with respect to the first variable and then we prove thatWS is a proper class

and it is a least proper class which containing Small, S and WS. In the last chapter,

we investigate injective, projective, coinjective and coprojective modules with respect to

WS. We also give all characterization of coinjective modules related withWS. Finally,

we give structure of elements of the proper classWS and some results related with this

structure.
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CHAPTER 2

PRELIMINARIES

This Chapter consists of a short summary of Chapter 3 from (Mac Lane 1963),

some preliminary information about supplements in module theory and hereditary ring

from (Wisbauer 1991) and (Cohn 2002). For further informations and missing proofs we

refer to in (Fuchs 1970), (Vermani 2003) and (Mac Lane 1963) about group of extensions,

in (Wisbauer 1991) about supplements, supplemented modules and in (Cohn 2002) about

hereditary ring.

2.1. Module Extensions

Let A and C be modules over a fixed ring R. A short exact sequence

0 // A
µ // B ν // C // 0 , (2.1)

of R-modules and R-module homomorphisms is an extension of A by C, where µ is an R-

module monomorphism and ν is an R-module epimorphism with kernel µ(A). A morphism

Γ = E → E′ of extensions is a triple Γ = (α, β, γ) of module homomorphisms such that

the diagram

E : 0
Γ

²²

// A
µ //

α

²²

B ν //

β

²²

C //

γ

²²

0

E ′ : 0 // A′
µ ′ // B′

ν ′ // C ′ // 0

(2.2)

is commutative. In particular, take A = A ′ and C = C ′; two extensions E and E ′ of A by C

are said to be equivalent, denoted by E ≡ E ′, if there is a morphism (1A, β, 1C) : E→ E′.

In this case, β : B → B ′ is an isomorphism by the short Five Lemma. The set of all

equivalence classes of extensions of A by C denoted by ExtR(C, A).

Lemma 2.1 ((Mac Lane 1963),Lemma 1.2) If E is an extension of an R-module A by

an R-module C and if γ : C ′ → C is a module homomorphism, there exist an extension
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E′ of A by C′ a morphism Γ = (1A, β, γ) : E′ → E. The pair (Γ,E ′) is unique up to a

equivalence of E ′.

Lemma 2.2 ((Mac Lane 1963),Lemma 1.3) Under the hypotheses of Lemma 2.1 each

morphism Γ1 = (α1, β1, γ1) : E1 → E of extension with γ1 = γ can be written uniquely as

a composite

E1
(α1,β

′,1)// Eγ
(1,β,γ) // E . (2.3)

More briefly, Γ1 can be ”factored through” Γ : Eγ → E.

Lemma 2.3 ((Mac Lane 1963),Lemma 1.4) For E ∈ Ext(C, A) and α : A→ A ′ there is

an extension E ′ of A ′ by C and a morphism Γ = (α, β, 1C) : E → E′. The pair (Γ,E ′) is

unique up to a equivalence of E ′.

Lemma 2.4 ((Mac Lane 1963),Lemma 1.5) Under the hypotheses of Lemma 2.3, any

morphism Γ1 = (α1, β1, γ1) : E→ E1 of extension with α1 = α can be written uniquely as

a composite

E
(α,β,1)// αE

(1,β′,γ1)// E1 . (2.4)

More briefly, Γ1 can be ”factored through” E→ αE.

Lemma 2.5 ((Mac Lane 1963),Lemma 1.6) For α, γ and E as in Lemma 2.1 and 2.3

there is a equivalence of extensions α(Eγ) ≡ (αE)γ.

Proposition 2.1 ((Mac Lane 1963),Proposition 1.8) Any morphism Γ1 = (α, β, γ) :

E→ E′ of extensions implies a equivalence αE ≡ E′γ .

The equivalence classes of extensions of A by C form a group.

Thus to portray the group operation of short exact sequence, we benefit from the

diagonal map ∆G : g 7→ (g, g) and the codiagonal map ∇G : (g1, g2) 7→ g1 + g2 of a

module G. The maps ∆ and ∇may be used to rewrite the usual definition of the sum f + g

of two homomorphism f , g : C → A as

f + g = ∇A( f ⊕ g)∆C. (2.5)

4



Given two extensions

Ei : 0 // Ai
µi // Bi

νi // Ci
// 0 (2.6)

for i = 1, 2, we define their direct sum to be the extension

E1 ⊕ E2 : 0 // A1 ⊕ A2
µ1⊕µ2 // B1 ⊕ B2

ν1⊕ν2 // C1 ⊕C2 // 0 . (2.7)

Theorem 2.1 ((Mac Lane 1963), Theorem 2.1) For given R-modules A and C, the set

ExtR(C, A) of all equivalence classes of extensions of A by C is an abelian group under

the binary operation which assigns to the equivalence classes of extensions E1 and E2, the

equivalence class of the extension

E1 + E2 = ∇A(E1 ⊕ E2)∆C. (2.8)

The class of the split extension 0 //A //A ⊕C //C //0 is the zero element of

this group, while the inverse of any E is the extension (−1A)E. For homomorphisms α :

A −→ A′ and γ : C′ −→ C one has

α(E1 + E2) ≡ αE1 + αE2, (E1 + E2)γ ≡ E1γ + E2γ, (2.9)

(α1 + α2)E ≡ α1E + α2E, E(γ1 + γ2) ≡ Eγ1 + Eγ2. (2.10)

2.8 is known as Baer sum; and the equivalences in 2.9 and 2.10 express that the

maps α∗ : Ext(C, A) → Ext(C, A′) and γ∗ : Ext(C, A) → Ext(C′, A) are group homomor-

phisms and that (α1+α2)∗ = (α1)∗+(α2)∗ and (γ1+γ2)∗ = (γ1)∗+(γ2)∗ for α1, α2 : A −→ A′

and γ1, γ2 : C′ −→ C.

Theorem 2.2 ((Mac Lane and Eilenberg 1942), Lemma 1.6) ExtR is an additive bi-

functor on R-Mod × R-Mod to Ab which is contravariant in the first and covariant in

the second variable.

In order to be consistent with the functorial notation for homomorphisms, we shall use

the notation

ExtR(γ, α) : ExtR(C, A)→ ExtR(C ′, A ′) (2.11)

5



instead of γ∗α∗ = α∗γ∗; that is, ExtR(γ, α) acts as shown by

ExtR(γ, α) : E 7→ αEγ. (2.12)

Given an extension

G
ξ

²²
E : 0 // A

η

²²

α // B
β // C // 0

G

(2.13)

representing an element of ExtR(C, A), and homomorphisms η : A → G and ξ : G → C,

we know that ηE is an extension of G by C and Eξ is an extension of A by G, i.e., ηE

represents an element of ExtR(C,G) and Eξ represents an element of ExtR(G, A). In this

way we obtain the maps

E∗ : Hom(A,G)→ ExtR(C,G)

E∗ : Hom(G,C)→ ExtR(G, A)

(2.14)

defined as

E∗ : η 7→ ηE and E∗ : ξ 7→ Eξ.

From 4.2 we can show that E∗ and E∗ are homomorphisms. If φ : G → H is any

homomorphism, as we have (φη)E ≡ φ(ηE) and E(ξφ) ≡ (Eξ)φ, the diagrams

Hom(A,G) //

²²

ExtR(C,G)

²²

Hom(H,C) //

²²

ExtR(H, A)

²²
Hom(A,H) // ExtR(C,H) Hom(G,C) // ExtR(G, A)

(2.15)

with the obvious maps commute. E∗ and E∗ are called connecting homomorphisms for

the short exact sequence 2.13.

6



Lemma 2.6 ((Mac Lane 1963), Proposition 1.7) Given a diagram

E : 0 // A α //

η

²²

B
β //

ξÄÄÄ
Ä

Ä
Ä

C // 0

G

(2.16)

with exact row, there exists a ξ : B → G making the triangle commute if and only if ηE

splits.

Lemma 2.7 ((Mac Lane 1963), Proposition 1.7) If the diagram

G
η

²²

ξ

ÄÄÄ
Ä

Ä
Ä

E : 0 // A α // B
β // C // 0

(2.17)

has exact row, then there is a ξ : G → B such that βξ = η if and only if Eη splits.

With the aid of these lemmas, we have the following theorem which establishes a

close connection between Hom and ExtR.

Theorem 2.3 ((Mac Lane 1963), Theorem 3.4) If : 0 //A α // B
β //C //0 is an

exact sequence, then the sequences

0 // Hom(C,G) // Hom(B,G) // Hom(A,G) //

E∗ // ExtR(C,G)
β∗ // ExtR(B,G) α∗ // ExtR(A,G) // · · · ,

(2.18)

and

0 // Hom(G, A) // Hom(G, B) // Hom(G,C) //

E∗ // ExtR(G, A)
β∗ // ExtR(G, B) α∗ // ExtR(G,C) // · · ·

(2.19)

are exact for every module G.

If E : 0 // A
µ // B ν // C // 0 is an extension of A by C, and if α : A→

A, γ : C → C are endomorphisms of A and C, respectively, then αE and Eγ will be

extensions of A by C. The correspondences

7



α∗ : E 7→ αE and γ∗ : E 7→ Eγ

are endomorphisms of ExtR(C, A), which are called induced endomorphisms of ExtR. The

formulas (α1 + α2)∗ = (α1)∗ + (α2)∗ and (γ1 + γ2)∗ = (γ1)∗ + (γ2)∗ show that the endo-

morphism ring of A acts on ExtR(C, A) and similarly the dual of the endomorphism ring C

operates on ExtR(C, A). These commute as is shown by α∗γ∗ = γ∗α∗; hence ExtR(C, A) is

a (unital) bimodule over endomorphism rings of A and C, acting from the left and right,

respectively.

2.2. Supplement Submodules

In this section, there are some definitions and some results about supplement sub-

modules. See (Wisbauer 1991) and (Clark 2006) for more information about supplements

and supplemented modules.

A submodule A of a module M is called small (superfluous) in M, written A � M,

if for every U ⊆ M, the equality A + U = M implies U = M. A submodule A of a module

M is called large (essential) in M, written A E M, if for every submodule U ⊆ M, the

equality A ∩ U = 0 implies U = 0.

Let A be a submodule of an R-module M. If there exists a submodule U which is

minimal element in the set {U | U ⊆ M and A + U = M} then U is called a supplement of

A in M.

Lemma 2.8 ((Wisbauer 1991), §41.1) V is a supplement of U in M if and only if U+V =

M and U ∩ V � V.

Some properties of supplements are given in the following proposition.

Proposition 2.2 ((Wisbauer 1991), §41.1) Let U, V ⊆ M and V be a supplement of U

in M.

1. If W + V = M for some W ⊆ U, then V is a supplement of W.

2. If M is finitely generated, then V is also finitely generated.

3. If U is a maximal submodule of M, then V is cyclic and U∩V = Rad V is a (the unique)

maximal submodule of V.

4. If K � M, then V is a supplement of U + K.

8



5. If K � M, then V ∩ K � V and Rad V = V ∩ Rad M.

6. If Rad M � M, then U is contained in a maximal submodule of M.

7. If L ⊆ U, V + L/L is a supplement of U/L in M/L.

8. If Rad M � M or Rad M ⊆ U and p : M −→ M/Rad M is the canonical epimorphism,

then M/Rad M = p(U) ⊕ p(V).

Let M be a module. If every submodule of M has a supplement in M, then M is

called a supplemented module. Artinian modules and semisimple modules are examples

of supplemented modules while the ring Z of integers as a module over itself is an example

which is not supplemented module.

Let U be a submodule of an R-module M. If there exists a submodule V of M such

that M = U + V and U ∩ V � M then U is called a weak supplement of V in M.

2.3. Hereditary Ring

A ring R is called hereditary if all submodules of projective modules over R are

again projective. If all finitely generated submodules of projective modules over R are

again projective, it is called semihereditary.

Principal ideal domains (PID) are hereditary. A commutative hereditary integral

domain is called a Dedekind domain. A commutative semihereditary integral domain is

called a Prüfer domain.

A Dedekind domain or Dedekind ring, is an integral domain in which every

nonzero proper ideal factors into a product of prime ideals. A commutative ring which is

not a field is a valuation ring, if its ideals are totally ordered by inclusion. Additionally,

if R is an integral domain it is called a valuation domain. A PID with only one nonzero

maximal ideals is called a discrete valuation ring, or DVR, and every discrete valuation

ring is a valuation ring. A valuation ring is a PID if and only if it is a DVR or a field.

Let R be an integral domain and K be its field of fractions. An element of K is

said to be integral over R if it is a root of a monic polynomial in R[X]. A commutative

domain R is integrally closed if the elements of K which are integral over R are exactly

the elements of R.

For an integral domain R which is not field, all of the following are equivalent:

9



1. Every nonzero proper ideal factors into prime ideals.

2. R is Noetherian, and the localization at each maximal ideal is DVR.

3. Every fractional ideal of R is invertible.

4. R is integrally closed , Noetherian domain with Krull dimension 1(i.e., all non-zero

prime ideals of R are maximal).

So a Dedekind domain is a domain which satisfies any one, and hence all four, of (1)

through (4).

The following lemma is well-known, we include it for completeness.

Lemma 2.9 Let R be a commutative ring and Ω be the set of all maximal ideals of R.

Then for an R-module M, Rad M =
⋂
p∈Ω

pM.

Proof 2.1 For a maximal ideal p, we can consider M/pM as a module over R/p, so

M/pM is semisimple and therefore Rad M ⊆ pM. Then we obtain Rad M ⊆ ⋂
p∈Ω

pM.

Conversely, let x ∈ M be such that x < Rad M. Then there is a maximal submodule K in

M such that x < K. M/K is a simple module, so qM ⊆ K for some q ∈ Ω. Then we obtain

x < qM, hence x <
⋂
p∈Ω

pM. This implies
⋂
p∈Ω

pM ⊆ Rad M.

Theorem 2.4 ((Cohn 2002), Propositions 10.5.1, 10.5.4, 10.5.6) For a commutative

domain R, the following are equivalent.

(i) R is a Dedekind domain.

(ii) Every ideal of R is projective.

(iii) R is Noetherian and the localization Rp of R at p is a DVR for all maximal ideals p

of R.

(iv) Every ideal of R can be expressed uniquely as a finite product of prime ideals.

Proposition 2.3 ((Sharpe and Vamos 1972), Proposition 2.10) Every divisible module

over a Dedekind domain is injective.

Over a Dedekind domain R, by the use of Proposition 2.3 together with Lemma

2.9 we have that the conditions for an R-module M being divisible, injective and radical,

i.e. Rad M = M, are equivalent. For torsion R-modules, we have the following important

result.
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Proposition 2.4 ((Cohn 2002), Proposition 10.6.9) Any torsion module M over a

Dedekind domain is a direct sum of its primary parts, in a unique way:

M = ⊕Tp(M)

and when M is finitely generated, only finitely many terms on the right are different from

zero.

For more information about Dedekind domains and modules over a Dedekind do-

main see (Hazewinkel 2004) and (Sharpe and Vamos 1972).
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CHAPTER 3

PROPER CLASSES

We will not see the general definition of proper classes in an abelian category as in

Maclane (1963,Ch.12) since our main investigations are in the proper classes of modules.

In Section 3.3., we review the definitions, which have been given in Section 3.1., for

projectives, injectives, coprojectives, coinjectives with respect to a proper class, using

diagrams and ExtP with respect to a proper class Pmentioned in Section 3.2.. In the other

sections of this chapter, we have summarized the results that we refer frequently for proper

classes of R-modules which are projectively generated or injectively generated. In Section

3.6., coinjective and coprojective modules with respect to a projectively or injectively

generated proper class is described. Our summary is from the survey (Sklyarenko 1978).

3.1. Proper Class

Let P be a class of short exact sequences of R-modules and R-module homomor-

phisms. If a short exact sequence

E : 0 // A
f // B

g // C // 0 (3.1)

belongs to P, then f is said to be a P-monomorphism and g is a P-epimorphism (both

are said to be P-proper and the short exact sequence is said to be a P-proper short exact

sequence.). A short exact sequence E is determined by each of the monomorphism f and

epimorphism g uniquely up to isomorphism.

Definition 3.1 The class P is said to be proper (in the sense of Buchsbaum) if it satisfies

the following conditions ((Buchsbaum 1959), (Mac Lane 1963), (Sklyarenko 1978)):

P-1) If a short exact sequence E is in P, then P contains every short exact sequence

isomorphic to E .

P-2) P contains all splitting short exact sequences.

12



P-3) The composite of two P-monomorphisms is a P-monomorphism if this composite is

defined.

P-3’) The composite of two P-epimorphisms is a P-epimorphism if this composite is de-

fined.

P-4) If g and f are monomorphisms, and g ◦ f is a P-monomorphism, then f is a P-

monomorphism.

P-4’) If g and f are epimorphisms, and g ◦ f is a P-epimorphism, then g is a P-

epimorphism.

The set ExtP(C, A) of all short exact sequence of Ext(C, A) that belongs to P is a

subgroup of the group of the extensions Ext1
R(C, A).

PureZ-Mod which is the proper class of all short exact sequence 3.1 of abelian

group homomorphism such that Im( f ) is a pure subgroup of B, where a subgroup A of

a group B is pure in B if A ∩ nB = nA for all integers n is an important example for

proper classes in abelian groups (see (Fuchs 1970, §26-30) for the important notion of

purity in abelian groups). The short exact sequences in PureZ-Mod are called pure-exact

sequences of abelian groups. The proper class PureZ-Mod forms one of the origins of

relative homological algebra; it is the reason why a proper class is also called purity (as in

(Misina and Skornjakov 1960), (Generalov 1972), (Generalov 1972), (Generalov 1983)).

The smallest proper class of R-modules consists of only splitting short exact se-

quences of R-modules which we denote by SplitR-Mod.The largest proper class of R-

modules consists of all short exact sequences of R-modules which we denote byAbsR-Mod

(absolute purity). Another example is the class SupplR-Mod, consisting of all short exact

sequences 3.1 such that Im f is a supplement of some submodule K of B, is a proper class

(see (Erdoğan 2004) or (Clark 2006) for a proof).

For a proper class P of R-modules, call a submodule A of a module B a P-

submodule of B, if the inclusion monomorphism iA : A → B, iA(a) = a, a ∈ A, is a

P-monomorphism. We denote this by A ⊆P B.
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3.2. ExtP With Respect to a Proper Class P

The functor Extn
R, n ∈ Z+ ∪ {0}: In the proper class AbsR-Mod, there are enough

injectives and enough projectives. So every module has a projective resolution and an

injective resolution. Thus for given R-modules A,C we can take an injective resolution

0 //A δ //E0
d0 //E1

d1 //E2 // · · · (3.2)

which is an exact sequence with all E0, E1, E2, . . . injective and define for each n ∈ Z+∪{0},
Extn(C, A) = Ker(Hom(C, dn))/ Im(Hom(C, dn−1)), that is Extn(C,−) is the nth-right de-

rived functor of the functor Hom(C,−) : R-Mod −→ Ab (we set d−1 = 0, so that

Ext0(C, A) � Hom(C, A)). This group Extn(C, A) is well-defined, it is, up to isomor-

phism, independent of the choice of the injective resolution and in fact can also be de-

fined using projective resolutions. The functor Ext remedies the inexactness of the func-

tor Hom. See for example (Alizade and Pancar 1999), ( Rotman 1979), (Mac Lane 1963)

and (Cartan and Eilenberg 1956).

The functor Ext1
R: There is an alternative definition of Ext1

R using the so called

Baer sum. Let A and C be R-modules. Two short exact sequences

E : 0 //A
f // B

g //C //0 and E′ : 0 //A
f ′ // B′

g′ //C //0 (3.3)

of R-modules and R-module homomorphisms starting with A and ending with C are said

to be equivalent if we have a commutative diagram

0 // A
f //

1A
²²

B
g //

ψ

²²

C //

1C
²²

0

0 // A
f ′ // B′

g′ // C // 0

(3.4)

with some R-module homomorphism ψ : B −→ B′, where 1A : A −→ A and 1C : C −→ C

are identity maps. Denote by [E] the equivalence class of the short exact sequence E.

Ext1
R(C, A) consists of all equivalence classes of short exact sequences of R-modules and

R-module homomorphisms starting with A and ending with C. The addition in Ext1
R(C, A)

is given by Baer sum. A bifunctor Ext1
R : R-Mod×R-Mod −→ Ab is obtained along these
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lines. Denote Ext1
R shortly by ExtR. For more information see Mac Lane(1963) Chapter

III.

Let A,C be R-modules. E ∈∈ ExtR(C, A) means that E is an element of an element

of the group ExtR(C, A), that is the equivalence class [E] ∈ ExtR(C, A), so it just means

that E is a short exact sequence of R-modules starting with A and ending with C. If the

underlying ring R is fixed, we just write Ext(C, A) instead of ExtR(C, A) when there is no

ambiguity.

Note that when the ring R is commutative, ExtR(C, A) has a natural R-module

structure for R-modules A,C. So, we have in this case a bifunctor Ext1
R : R-Mod ×

R-Mod −→ R-Mod.

The functor Ext1
P: In a proper class P, we may not have enough injectives and

enough projectives, so it is not possible in this case to use derived functors to give relative

versions of Ext. But the alternative definition of Ext1
R may be used in this case.

For a proper class P and R-modules A,C, denote by Ext1
P(C, A) or shortly by

ExtP(C, A), the equivalence classes of all short exact sequences in P which start with A

and end with C. This turns out to be a subgroup of ExtR(C, A) and a bifunctor Ext1
P :

R-Mod×R-Mod −→ Ab is obtained which is a subfunctor of Ext1
R. See (Mac Lane 1963,

Ch. 12, §4-5). Alternatively, using such a subfunctor will help to define a proper class.

The functor Extn
P, n ∈ Z+ ∪ {0}: Similar to the construction for Ext1

P, by consid-

ering long extensions

0 //A // B1 // B2 // · · · // Bn //C //0 (3.5)

with a suitable equivalence relation and addition gives us a bifunctor Extn
P : R-Mod ×

R-Mod −→ Ab. See (Mac Lane 1963, Ch.12, §4-5).

Furthermore, the functor Ext1
P is a subfunctor of Ext1

R and it is called an E-functor

see (Butler and Horrocks 1961). By (Nunke 1963, Theorem 1.1), an E-functor Ext1
P of

Ext1
R gives a proper class if it satisfies one of the properties P-3) and P-3’). This result

enables us to define a proper class in terms of subfunctors of Ext1
R.

Let T (M, B) be an additive functor in the argument B (covariant or contravariant),

left or right exact and depending on an R-module M from R-Mod. IfM is a given class
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of modules of this category, we denote by t−1(M) the class P of short exact sequences E

such that T (M, E) is exact for all M ∈ M.

Lemma 3.1 ((Sklyarenko 1978), Lemma 0.1) P = t−1(M) is a proper class.

Let t(P) be the class of all objects M for which the triples T (M,E), E ∈ P are exact (we

assume that for object 0 the functor T (0, B) is exact).

Lemma 3.2 ((Sklyarenko 1978), Lemma 0.2) We have the relations P ⊆ t−1(t(P)),

M ⊆ t(t−1(M)), t(P) = t(t−1(t(P))) and t−1(M) = t−1(t(t−1(M))), and also a bijection

between the classes of the form t−1(M) and t(P).

For a proper class P over an integral domain R, we denote by P̂ the class of the

short exact sequences E : 0 //A // B //C //0 of R-modules such that rE ∈ P
for some 0 , r ∈ R where r also denotes the multiplication homomorphism by r ∈ R.

Thus

P̂ = {E | rE ∈ P for some 0 , r ∈ R}.

In case of abelian groups the class P̂ is studied in (Walker 1964), (Alizade 1986)

and (Alizade and Pancar 1999) for P = Split where it was denoted by Text since

Ext1
ˆSplit

(C, A) = T (Ext(C, A)) the torsion part of Ext(C, A).

Theorem 3.1 ((Alizade 1986)) In case of abelian groups, P̂ is proper class for every

proper class P.

Let E be a class of short exact sequences. The smallest proper class containing E is said

to be generated by E and denoted by < E > see (Pancar 1997).

Since the intersection of any family of proper classes is proper, for a class E of

short exact sequences

< E >=
⋂{P : E ⊆ P ;P is a proper class }.

For more information about proper classes generated by a class of short exact

sequences see (Pancar 1997).
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3.3. Projectives, Injectives, Coprojectives and Coinjectives with

Respect to a Proper Class

Take a short exact sequence

E : 0 //A
f // B

g //C //0

of R-modules and R-module homomorphisms.

An R-module M is said to be projective with respect to the short exact sequence E,

or with respect to the epimorphism g if any of the following equivalent conditions holds:

1. Every diagram

E : 0 // A
f // B

g // C // 0

M
γ̃

``@
@

@
@

γ

OO (3.6)

where the first row is E and γ : M −→ C is an R-module homomorphism can

be embedded in a commutative diagram by choosing an R-module homomorphism

γ̃ : M −→ B; that is, for every homomorphism γ : M −→ C, there exits a homo-

morphism γ̃ : M −→ B such that g ◦ γ̃ = γ.

2. The sequence

Hom(M,E) : 0 // Hom(M, A)
f∗ // Hom(M, B)

g∗ // Hom(M,C) //0

(3.7)

is exact.

Dually, an R-module M is said to be injective with respect to the short exact se-

quence E, or with respect to the monomorphism f if any of the following equivalent con-

ditions holds:

1. Every diagram
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E : 0 // A
f //

α

²²

B
g //

α̃~~~
~

~
~

C // 0

M

(3.8)

where the first row is E and α : A −→ M is an R-module homomorphism can

be embedded in a commutative diagram by choosing an R-module homomorphism

α̃ : B −→ M; that is, for every homomorphism α : A −→ M, there exists a

homomorphism α̃ : B −→ M such that α̃ ◦ f = α.

2. The sequence

Hom(E, M) : 0 // Hom(C, M)
g∗ // Hom(B, M)

f ∗ // Hom(A, M) //0

(3.9)

is exact.

Denote by P a proper class of R-modules.

The following definitions have been given in Section 3.1.. An R-module M is

said to be P-projective [P-injective] if it is projective [injective] with respect to all short

exact sequences in P. Denote all P-projective [P-injective] modules by π(P) [ι(P)]. An

R-module C is said to be P-coprojective if every short exact sequence of R-modules and

R-module homomorphisms of the form

E : 0 //A
f // B

g //C //0

ending with C is in the proper class P. An R-module A is said to be P-coinjective if every

short exact sequence of R-modules and R-module homomorphisms of the form

E : 0 //A
f // B

g //C //0

starting with A is in the proper class P.

Using the functor ExtP, the P-projectives, P-injectives, P-coprojectives, P-

coinjectives are simply described as extreme ends for the subgroup ExtP(C, A) ≤
ExtR(C, A) being 0 or the whole of ExtR(C, A):
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1. An R -module C is P-projective if and only if

ExtP(C, A) = 0 for all R-modules A.

2. An R -module C is P-coprojective if and only if

ExtP(C, A) = ExtR(C, A) for all R-modules A.

3. An R -module A is P-injective if and only if

ExtP(C, A) = 0 for all R-modules C.

4. An R -module A is P-coinjective if and only if

ExtP(C, A) = ExtR(C, A) for all R-modules C.

A class P of R-modules is said to have enough projectives if for every module A we can

find a P-epimorhism from some P-projective module P to A. A class P of R-modules is

said to have enough injectives if for every module B we can find a P-monomorphism from

B to some P-injective module J. A proper class P of R-modules with enough projectives

[enough injectives] is also said to be a projective proper class [resp. injective proper

class].

The following propositions give the relation between projective (resp. injective)

modules with respect to a class E of short exact sequences and with respect to the proper

class < E > generated by E.

Proposition 3.1 ((Pancar 1997), Propositions 2.3 and 2.4)

(a) π(E) = π(< E >)

(b) ι(E) = ι(< E >).

Proposition 3.2 ((Misina and Skornjakov 1960), Propositions 1.9 and 1.14) If in the

short exact sequence 0 // M //N //K //0 , the modules M and K are P-

coprojective (P-coinjective), then N is P-coprojective (P-coinjective).

Proof Let A be an R-module. Suppose that M and K are P-coprojective. Then

0 // M //N //K //0 ∈ P. We have the following exact sequences;
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0 // Hom(K, A) // Hom(N, A) // Hom(M, A) //

// Ext1
P(K, A) // Ext1

P(N, A) // Ext1
P(M, A) // · · ·

0 // Hom(K, A) // Hom(N, A) // Hom(M, A) //

// Ext1
R(K, A) // Ext1

R(N, A) // Ext1
R(M, A) // · · · .

(3.10)

Since M and K are P-coprojective, we have the equalities and an inclusion map α

in the following diagram.

Ext1
P(K, A) // Ext1

P(N, A) //

α

²²

Ext1
P(M, A)

Ext1
R(K, A) // Ext1

R(N, A) // Ext1
R(M, A)

(3.11)

Then Ext1
P(N, A) = Ext1

R(N, A) for every R-module A, which shows that N is P-

coprojective.

For P-coinjectives, the proof can be done by using the functor Hom(B, ·) for an R-module

B. �

Proposition 3.3 ((Misina and Skornjakov 1960), Proposition 1.12) An R-module M is

P-coprojective if and only if there is a P-epimorphism from a projective R-module P to

M.

Proof (⇒) Take any epimorphism γ : P −→ M from a projective R-module P to M.

Since M is P-coprojective, γ is a P-epimorphism.

(⇐) Let γ : P −→ M be a P-epimorphism and K = Ker γ. Then the short exact sequence

0 //K //P
γ // M //0 is in P. For every R-module A, we have the following
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commutative diagram with exact rows and inclusion map α:

· · · // Hom(K, A) // Ext1
P(M, A) //

α

²²

Ext1
P(P, A) // · · ·

· · · // Hom(K, A) // Ext1
R(M, A) // Ext1

R(P, A) // · · ·

(3.12)

where the equality Ext1
P(P, A) = Ext1

R(P, A) = 0 holds, since P is projective. Then

Ext1
P(M, A) = Ext1

R(M, A), hence M is P-coprojective. �

Corollary 3.1 ((Misina and Skornjakov 1960), Proposition 1.13)

If 0 //A // B //C //0 is a short exact sequence in a proper class P and

B is P-coprojective, then C is also P-coprojective.

Proof Take any epimorphism γ : P → C from a projective R-module P to C. We have

the following diagram with the exact columns and rows:

0

²²

0

²²
Kerγ

²²

Kerγ

²²
0 // A // B′

α′ //

γ′

²²

P //

γ

²²

0

0 // A // B α //

²²

C

²²

// 0

0 0

Since B is P-coprojective, γ′ is P-epimorphism. Since α is P-epimorphism, γ◦α′ = α◦γ′

is P-epimorphism by (P − 3′). By (P − 4′), γ is P-epimorphism. Therefore C is P-

coprojective by Proposition 3.3. �

Dually, for P-coinjective modules we have the following proposition:

Proposition 3.4 ((Misina and Skornjakov 1960), Proposition 1.7) An R-module N is

P-coinjective if and only if there is P-monomorphism from N to an injective module I.

Proof (⇒) Take any monomorphism α : N −→ I from N to an injective R-module I.

Since N is P-coinjective, α is a P-monomorphism.
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(⇐) Let α : N −→ I be a P-monomorphism and L = I/ Imα. Then the short exact

sequence 0 //N α // I //L //0 is in P. For every R-module B, we have the fol-

lowing exact sequences:

· · · // Hom(B, L) // Ext1
P(B,N) //

²²

Ext1
P(B, I) // · · ·

· · · // Hom(B, L) // Ext1
R(B,N) // Ext1

R(B, I) // · · ·

(3.13)

where the equality Ext1
P(B, I) = Ext1

R(B, I)=0 holds, since I is injective. Then

Ext1
P(B,N) = Ext1

R(B,N), i.e. N is P-coinjective. �

Corollary 3.2 ((Misina and Skornjakov 1960), Proposition 1.8)

If 0 //A // B //C //0 is a short exact sequence in a proper class P and

B is P-coinjective, then A is also P-coinjective.

3.4. Projectively Generated Proper Classes

For a given class M of modules, denote by π−1(M) the class of all short exact

sequences E of R-modules and R-module homomorphisms such that Hom(M,E) is exact

for all M ∈ M, that is,

π−1(M) = {E ∈ AbsR-Mod|Hom(M,E) is exact for all M ∈ M}.

π−1(M) is a proper class by Lemma 3.1 if we take T (M, ·) = Hom(M, ·). In fact π−1(M)

is the largest proper class P for which each M ∈ M is P-projective and it is called the

proper class projectively generated byM.

Taking T (M, ·) = Hom(M, ·), we obtain also the following consequence of Lemma

3.2.

Proposition 3.5 Let P be a proper class andM be a class of modules. Then we have

1. P ⊆ π−1(π(P)),

2. M ⊆ π(π−1(M)),
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3. π(P) = π(π−1(π(P))),

4. π−1(M) = π−1(π(π−1(M))).

For a proper class P, the projective closure of P is the proper class π−1(π(P)) which con-

tains P. If the projective closure of P is equal to P itself, then it is said to be projectively

closed, and that occurs if and only if it is projectively generated.

Proposition 3.6 ((Sklyarenko 1978),Proposition 1.1) Every projective proper class is

projectively generated.

Let P be a proper class of R-modules. Direct sums of P-projective modules are

P-projective. Direct summand of an P-projective module is P-projective.

A proper classP is called
∏

-closed if for every collection {Eλ}λ∈Λ inP, the product

E =
∏

λ∈Λ
Eλ is in P, too.

Proposition 3.7 ((Sklyarenko 1978),Proposition 1.2) Every projectively generated

proper class is
∏

-closed.

A subclassM of a classM of modules is called a projective basis forM if every

module inM is a direct summand of a direct sum of modules inM and of free modules.

Proposition 3.8 ((Sklyarenko 1978),Proposition 2.1) If M is a set, then the proper

class π−1(M) is projective, and M is a projective basis for the class of all P-projective

modules.

There are some criteria for π−1(M) to be projective even whenM is not a set.

Proposition 3.9 ((Sklyarenko 1978),Proposition 2.3) IfM is a class of modules closed

under passage to factor modules, then the proper class π−1(M) is projective, andM is a

projective basis for the class of all P-projective modules.

Theorem 3.2 ((Sklyarenko 1978), Theorem 1.2) Let M be a class of modules. Con-

sider the class R, defined as:

Ext1
R(C, A) =

⋂

M, f

Ker{ f 1 : Ext1
R(C, A)→ Ext1

R(M, A)}
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over all M ∈ M and all homomorphisms f : M −→ C. Then exact triples

0 //A //X //C //0 belonging to ExtR(C, A), form a proper class and R co-

incides with π−1(M).

3.5. Injectively Generated Proper Classes

For a given class M of modules, denote by ι−1(M) the class of all short exact

sequences E of R-modules and R-module homomorphisms such that Hom(E, M) is exact

for all M ∈ M, that is,

ι−1(M) = {E ∈ AbsR-Mod|Hom(E,M) is exact for all M ∈ M}. (3.14)

ι−1(M) is a proper class by Lemma 3.1 if we take T (M, ·) = Hom(·, M). In fact ι−1(M) is

the largest proper class P for which each M ∈ M is P-injective which is called the proper

class injectively generated byM.

For a proper class P, the injective closure of P is the proper class ι−1(ι(P)) which

contains P. If the injective closure of P is equal to P itself, then it is said to be injectively

closed, and that occurs if and only if it is injectively generated.

Proposition 3.10 ((Sklyarenko 1978),Proposition 3.1) Every injective proper class is

injectively generated.

Let P be a proper class of R-modules. Direct product of P-injective modules is

P-injective. Direct summand of an P-injective module is P-injective.

A proper class P is called ⊕-closed if for every collection {Eλ}λ∈Λ in P, the direct

sum E =
⊕

λ∈Λ
Eλ is in P, too.

Proposition 3.11 ((Sklyarenko 1978),Proposition 1.2) Every injectively generated

proper class is ⊕-closed.

An injective module is called elementary if it coincides with the injective envelope

of some cyclic submodule. Such modules form a set and every injective module can be

embedded in a direct product of elementary injective modules (Sklyarenko 1978, Lemma

3.1).
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A subclassM of a classM of modules is called an injective basis forM if every

module in M is a direct summand of a direct product of modules in M and of certain

elementary injective modules.

Proposition 3.12 ((Sklyarenko 1978),Proposition 3.3) If M is a set, then the proper

class ι−1(M) is injective, andM is an injective basis for the class of all P-injective mod-

ules.

Even whenM is not a set but:

Proposition 3.13 ((Sklyarenko 1978), Proposition 3.4) If M is a class of modules

closed under taking submodules, then the proper class ι−1(M) is injective, and M is an

injective basis for the class of all P-injective modules.

Theorem 3.3 ((Sklyarenko 1978), Theorem 3.2) Let M be a class of modules. Con-

sider the class R, defined as:

Ext1
R(C, A) =

⋂

M, f

Ker{ f1 : Ext1
R(C, A)→ Ext1

R(C, M)}

over all M ∈ M and all homomorphisms f : A −→ M. Then exact triples

0 //A //X //C //0 belonging to ExtR(C, A), form a proper class and R co-

incides with ι−1(M).

3.6. Coinjective and Coprojective Modules with Respect to a Projec-

tively or Injectively Generated Proper Class

Throughout this section let P be a proper class of R-modules.

Proposition 3.14 ((Sklyarenko 1978),Proposition 9.1) The intersection of the classes

of all P-projective modules and P-coprojective modules coincides with the class of all

projective R-modules.

Proposition 3.15 ((Sklyarenko 1978),Proposition 9.2) The intersection of the classes

of all P-injective modules and P-coinjective modules is the class of all injective R-

modules.
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Proposition 3.16 ((Sklyarenko 1978),Proposition 9.3)

1. If P is injectively closed, then every direct sum of P-coinjective modules is P-

coinjective.

2. If P is
∏

-closed, then every product of P-coinjective modules is P-coinjective.

3. If P is ⊕-closed, then every direct sum of P-coprojective modules is P-coprojective.

Proposition 3.17 ((Sklyarenko 1978), Proposition 9.4) If P is injectively generated,

then for an R-module C, the condition Ext1
R(C, J) = 0 for all P-injective J is equivalent to

C being P-coprojective.

Moreover:

Proposition 3.18 If P = ι−1(M) for a classM of modules, then for an R-module C, the

condition Ext1
R(C, M) = 0 for all M ∈ M is equivalent to C being P-coprojective.

Proof Suppose C is a P-coprojective module. Let M ∈ M. Take an element [E] ∈
Ext1

R(C, M):

E : 0 // M // B //C //0

Since C is P-coprojective, E ∈ P. Then E splits because M, being an element ofM, is

P-injective as P = ι−1(M). Hence [E] = 0 as required. Thus Ext1
R(C, M) = 0.

Conversely, suppose for an R-module C, Ext1
R(C, M) = 0 for all M ∈ M. Take any

short exact sequence E of R-modules ending with C:

E : 0 //A // B //C //0

Applying Hom(−,M), we obtain the following exact sequence by the long exact sequence

connecting Hom and Ext:

0 // Hom(C, M) // Hom(B, M) // Hom(A, M) // Ext1
R(C, M) = 0

So Hom(E, M) is exact for every M ∈ M. This means E ∈ ι−1(M) = P. �

26



Proposition 3.19 ((Sklyarenko 1978), Proposition 9.5) If P is projectively generated,

then for an R-module A, the condition Ext1
R(P, A) = 0 for all P-projective P is equivalent

to A being P-coinjective.

Moreover:

Proposition 3.20 If P = π−1(M) for a classM of modules, then for an R-module A, the

condition Ext1
R(M, A) = 0 for all M ∈ M is equivalent to A being P-coinjective.

Proof Suppose A is a P-coinjective module. Let M ∈ M. Take an element [E] ∈
Ext1

R(M, A):

E : 0 //A // B // M //0

Since A is P-coinjective, E ∈ P. Then E splits because M, being an element of M, is

P-projective as P = π−1(M). Hence [E] = 0 as required. Thus Ext1
R(M, A) = 0.

Conversely, suppose for an R-module A, Ext1
R(M, A) = 0 for all M ∈ M. Take any

short exact sequence E of R-modules starting with A:

E : 0 //A // B //C //0

Applying Hom(M,−), we obtain the following exact sequence by the long exact sequence

connecting Hom and Ext:

0 // Hom(M, A) // Hom(M, B) // Hom(M,C) // Ext1
R(M, A) = 0

So Hom(M,E) is exact for every M ∈ M. This means E ∈ π−1(M) = P. �

3.7. Coprojectively and Coinjectively Generated Proper Classes

LetM and J be classes of modules over some ring R. The smallest proper class

k(M) (resp. k(J)) for which all modules inM (resp. J) are coprojective (resp. coinjec-

tive) is said to be coprojectively (resp. coinjectively) generated byM (resp. J).

Theorem 3.4 ((Alizade 1985a), Theorem 2) Let J be a class of modules closed under
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extensions. Consider the class R of exact triples, defined as:

ExtR(C, A) =
⋃

I, α

Im{Ext(C, I)
α∗−→ Ext(C, A)}

over all I ∈ J and all homomorphisms α : I −→ A. Then exact triples

0 //A //X //C //0 belonging to ExtR(C, A), form a proper class and R co-

incides with k(J).

Theorem 3.5 ((Alizade 1985a), Theorem 2) LetM be a class of modules closed under

extensions. Consider the class R of exact triples, defined as:

ExtR(C, A) =
⋃

M, α

Im{Ext(M, A)
α∗−→ Ext(C, A)}

over all M ∈ M and all homomorphisms α : C −→ M. R is a proper class and coincides

with k(M).

Definition 3.2 For a proper class P of short exact sequences of R-modules, the global

dimension of P is defined as

gl.dimP = in f {n : Extn+1(C, A) = 0for all A and C in R-modules}.

If there is no such n, then gl.dimP = ∞.

Definition 3.3 For a proper class P of short exact sequences of R-modules, the injective

dimension of a module A with respect to P is defined by the formula

in j.dimA = in f {n : Extn+1(C, A) = 0for all C in R-modules}.

Proposition 3.21 ((Alizade 1985b)) If R is a hereditary ring, then in j.dimA ≤ 1 for

every proper class P and P-coinjective module A.

Proposition 3.22 ((Alizade 1985b)) If k(J) is closed under extensions, then

gl.dimk(J) ≤ gl.dimR for every coinjectively generated class k(J).

Corollary 3.3 ((Alizade 1985b)) If R is a hereditary ring, then in j.dimk(J) ≤ 1 for

every coinjectively generated class k(J).
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For more information about coprojectively and coinjectively generated proper classes see

(Alizade 1985a),(Alizade 1985b) and (Alizade 1986).
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CHAPTER 4

THE LEAST PROPER CLASS CONTAININGWS

In this chapter, we investigate the class of short exact sequences related to weak

supplements and the least proper class containing this class. In Section 4.1.,we give some

definitions about some classes of short exact sequences and some relations about these

classes. We give an example in order to show that the class of short exact sequences

related to weak supplements need not be a proper class. In Section 4.2. , we define a

new class of short exact sequences and then we show that it is a proper class and also

it is the least proper class containing the class of short exact sequences related to weak

supplements.

4.1. TheWS-Elements of Ext(C, A)

A short exact sequence

E : 0 //A
f // B

g //C //0 (4.1)

is called κ-exact if Im f has a supplement in B, i.e. a minimal element in the set {V ⊂ B |
V + Im f = B}. In this case we say that E ∈ Ext(C, A) is a κ-element and the class of all

κ-exact short exact sequences will be denoted by S.

We denote by WS the class of short exact sequences 4.1, where Im f has (is)

a weak supplement in B, i.e. there is a submodule K of B such that Im f + K = B

and Im f ∩ K � B. We denote by Small the class of short exact sequences 4.1 where

Im f � B.

WS need not be a proper class in general.

Example 4.1 Let R = Z and consider the composition β ◦ α of the monomor-

phisms α : 2Z −→ Z and β : Z −→ Q where α and β are the corresponding

inclusions. Then we have 0 //2Z
β◦α //Q //Q/2Z //0 is a WS-element, but
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0 //2Z α //Z //Z/2Z //0 is not a WS-element as 2Z have not a weak supple-

ment in Z.

If X is a Small-submodule of an R-module Y , then Y is a supplement of X in Y , so X is

S-submodule of Y . If U is a S-submodule of an R-module Z, then a supplement V of U

in Z is also a weak supplement, therefore U is aWS-submodule of Z. These arguments

give us the relation Small ⊆ S ⊆ WS for any ring R.

4.2. TheWS-Elements of Ext(C, A)

The main problem with the investigation of theWS-elements in Ext(C, A) is that

they do not form a subgroup. The reason is the fact that whileWS-elements are preserved

under Ext(g, f ) : Ext(C, A) −→ Ext(C′, A′) with respect to the second variable, they are

not preserved with respect to the first variable. We extend the class WS to the class

WS, which consists of all images of WS-elements of Ext(C′, A) under Ext( f , 1A) :

Ext(C′, A) −→ Ext(C, A) for all homomorphism f : C −→ C′. We will prove in this

chapter thatWS is the least proper class containingWS. To prove thatWS is a proper

class we will use the result of (Nunke 1963, Theorem 1.1) that states that a classP of short

exact sequences is proper if ExtP(C, A) is a subfunctor of ExtR(C, A), then ExtP(C, A)

is a subgroup of ExtR(C, A) for every R-modules A,C and the composition of two P-

monomorphism(epimorphism) is a P-monomorphism(epimorphism).

Definition 4.1 A short exact sequence E : 0 // A // B // C // 0

is said to be extended weak supplement if there is a short exact sequence

E′ : 0
f // A // B′ // C′ // 0 such that Im( f ) has(is) a weak supplement

and there is a homomorphism g : C −→ C′ such that E = g∗(E′), that is, there is a

commutative diagram:

0 // A // B

²²

// C
g

²²

// 0 : E

0 // A
f // B′ // C′ // 0 : E′

The class of all extended weak supplement short exact sequences will be denoted by
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WS. So ExtWS(C, A) = { E : 0 // A // B // C // 0 | E = g∗(E′) for some

E′ : 0 // A // B // C′ // 0 ∈ WS and g : C → C′ }.

Lemma 4.1 If f : A −→ A′, then f∗ : Ext(C, A) −→ Ext(C, A′) preservesWS-elements.

Proof Let E : 0 //A // B //C //0 be a short exact sequence in the classWS
and f : A −→ A′ be an arbitrary homomorphism. We have the following diagram with

exact rows:

0 // A
f

²²

α // B
f ′

²²

//

²²

C // 0 : E

0 // A′ α′ // B′ // C // 0 : E1

where E1 = f∗(E).

If V is a weak supplement of Imα in B, then Imα+V = B and Imα∩V � B. Then

f ′(V) + Imα′ = B′ by push out diagram and f ′(V) ∩ Imα′ = f ′(Imα ∩ V) � f ′(B) ⊆ B′.

So E1 ∈ WS. �

Lemma 4.2 If f : A −→ A′, then f∗ : Ext(C, A) −→ Ext(C, A′) preservesWS-elements.

Proof Let E : 0 //A // B //C //0 be a short exact sequence in the class

WS and f : A −→ A′ be an arbitrary homomorphism. Then there is

E′ : 0 // A // B1 // C1 // 0 ∈ WS and a homomorphism g : C −→ C1 such

that E = g∗(E′). We have the following commutative diagram with exact rows:

0 // A
f

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

// B

~~}}
}}

}}
}}

//

²²

C //

{{
{{

{{
{{

{{
{{

{{
{{

g

²²

0 : E

0 // A′ // B′

²²

// C

g

²²

// 0 : E1

0 // A
f

¡¡¡¡
¡¡

¡¡
¡¡

α
// B1

f ′~~~~
~~

~~
~~

// C1

}}
}}

}}
}}

}}
}}

}}
}}

// 0 : E′

0 // A′
α′ // B2 // C1 // 0 : E′1

where E′1 = f∗(E′).

Then E1 = f∗(E) = f∗ ◦ g∗(E′) = g∗ ◦ f∗(E′) = g∗(E′1). Since E′ ∈ WS, E′1 =

f∗(E′) ∈ WS, and so g∗(E′1) = E1 ∈ WS. �
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Lemma 4.3 If g : C′ −→ C, then g∗ : Ext(C, A) −→ Ext(C′, A) preserves WS-

elements.

Proof Let E : 0 //A // B //C //0 be a short exact sequence in the

class WS and g : C′ −→ C be an arbitrary homomorphism.Then there is

E1 : 0 // A // B1 // C1 // 0 ∈ WS and a homomorphism f : C −→ C1

such that E = f ∗(E1). We have the following commutative diagram with exact rows:

0 // A // B′

²²

// C′

g
²²

// 0 : E′

0 // A // B

²²

// C
f

²²

// 0 : E

0 // A // B1 // C1 // 0 : E1

where E′ = g∗(E).

E′ = g∗ ◦ f ∗(E1) = ( f ◦ g)∗(E1). Since E1 ∈ WS, E′ ∈ WS. �

Corollary 4.1 Every multiple of aWS-element of Ext(C, A) is again aWS-element.

Proposition 4.1 If E1,E2 ∈ ExtWS(C, A), then E1 ⊕ E2 ∈ ExtWS(C ⊕C, A ⊕ A).

Proof Let E1,E2 ∈ ExtWS(C, A), then there exist a submodule Vi in Bi such that Vi+A =

Bi and Vi ∩ A � Bi, i = 1, 2. Then

E1 ⊕ E2 : 0 // A ⊕ A // B1 ⊕ B2 // C ⊕C // 0 ∈ WS

since (A⊕A)+(V1⊕V2) = B1⊕B2 and (A⊕A)∩(V1⊕V2) = (V1∩A)⊕(V2∩A) � B1⊕B2. �

Corollary 4.2 TheWS-elements of Ext(C, A) form a subgroup.

Proof Let E1,E2 ∈ ExtWS(C, A). We have the following commutative diagram with

exact rows:

E1 ⊕ E2 : 0 // A ⊕ A // B1 ⊕ B2
//

²²

C ⊕C //

²²

0

E′1 ⊕ E′2 : 0 // A ⊕ A // B′1 ⊕ B′2 // C′1 ⊕C′2 // 0
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where E1 and E2 are the image of short exact sequences E′1 and E′2 fromWS respectively.

E′1 ⊕ E′2 isWS-element by Proposition 4.1 and so E1 ⊕ E2 isWS-element. By Theorem

2.1, E1 + E2 = ∇A(E1⊕E2)∆C where the diagonal map ∆C : c 7→ (c, c) and the codiagonal

map ∇A : (a1, a2) 7→ a1 + a2. So we have the following commutative diagram with exact

rows:

0 // A ⊕ A

∇A

²²

// B1 ⊕ B2

²²

// C ⊕C // 0 : E1 ⊕ E2

0 // A // X // C ⊕C // 0 : E

0 // A // Y

OO

// C //

∆C

OO

0 : E1 + E2

Then E is inWS by Lemma 4.2, E1 + E2 is inWS by Lemma 4.3. �

Now by (Nunke 1963, Theorem 1.1) to prove thatWS class is a proper class it re-

mains only to show that the composition of twoWS-monomorphisms(or epimorphisms)

isWS-monomorphisms(or epimorphisms). Firstly we prove some useful results.

Lemma 4.4 Let A ⊆ B ⊆ C be R-modules. If A is direct summand in B and B has a

weak supplement in C, then the short exact sequence 0 //A //C //C/A //0 is

inWS.
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Proof Let B = A ⊕ B′. We have the following commutative diagram with exact rows

and columns:

0

²²

0

²²
E1 : 0 // A // A ⊕ B′ //

f
²²

B′ //

²²

0

E2 : 0 // A // C //

²²

B1 //

²²

0

C′

²²

C′

²²
0 0

E3

By the codiagonal map ∇C : (c1, c2) 7→ c1 + c2 and the monomorphism fA ⊕ fB′ :

(a, b′) 7→ ( f (a), f (b′)), we have the following commutative diagram with exact rows:

E′1 : 0 // A ⊕ B′
fA⊕ fB′ // C ⊕C //

∇C

²²

B1 ⊕ D //

²²

0

E3 : 0 // A ⊕ B′
f // C // C′ // 0

Since E3 is inWS, E′1 is inWS. By the monomorphisms fA ⊕ 1B′ : (a, b′) 7→ ( f (a), b′)

and 1C ⊕ fB′ : (c, b′) 7→ (c, f (b′)), we have the following commutative diagram with exact

rows:

E′2 : 0 // A ⊕ B′
fA⊕1B′ // C ⊕ B′ //

1C⊕ fB′
²²

B1 //

²²

0

E′1 : 0 // A ⊕ B′
fA⊕ fB′ // C ⊕C // B1 ⊕ D // 0
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E′2 is inWS, by Lemma 4.3. Finally, the following diagram is commutative with exact

rows and by Lemma 4.2, E2 is inWS.

E′2 : 0 // A ⊕ B′
fA⊕1B′ //

1A⊕0B′
²²

C ⊕ B′ //

²²

B1 // 0

E2 : 0 // A // C // B1 // 0 �

Lemma 4.5 The composition of an S mall-epimorphism and a WS-epimorphism is a

WS-epimorphism.

Proof Let f : B→ B′ be a small epimorphism and h : B′ → C be aWS-epimorphism;

i.e. we have a commutative exact diagram:

0

²²

0

²²
K

²²

K

²²
0 // A

²²

// B
f

²²

h◦ f // C // 0 : E

0 // A′

²²

// B′

²²

h // C // 0 : E1

0 0

E2

with E2 ∈ S mall and E1 ∈ WS. Then without of loss generality we can assume that

K � B and A/K has a weak supplement in B/K. So there is a submodule D/K of B/K

such that D/K + A/K = B/K and (D ∩ A)/K � B/K. Therefore we have A + D = B and

A ∩ D � B, i.e. A has a weak supplement in B. �

Lemma 4.6 Let R be hereditary ring. For a WS class of short exact sequences of R

modules, the composition of an S mall-epimorphism and aWS-epimorphism is aWS-

epimorphism.

Proof Let f : B→ B′ be a small epimorphism and h : B′ → C be aWS-epimorphism;

i.e. we have a commutative exact diagram:
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0

²²

0

²²
K

²²

K

²²
0 // A

g
²²

// B
f

²²

h◦ f // C // 0 : E

0 // A′

²²

// B′

²²

h // C // 0 : E1

0 0

E2

with E2 ∈ S mall and E1 ∈ WS. Then there is a commutative diagram with exact rows

and with E3 ∈ WS:

0 // A′ // B′

²²

h // C

²²²²

// 0 : E1

0 // A′ // B1 // C1 // 0 : E3

Since R is hereditary the homomorphism

Ext1(1C1 , g) : Ext1(C1, A)→ Ext1(C1, A′)

is an epimorphism therefore

E3 = Ext1(1C1 , g)(E4)
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for some E4 : 0 //A // B2 //C1 //0. Then we have the following commutative

exact diagram:

0

²²

0

²²

0

²²

0

²²

K

yyyyyyyy

yyyyyyyy

²²

K

²²

xxxxxxxx

xxxxxxxx

Ker f

²²

Ker f

²²

0 // A

g

²²

//

yyyyyyyyy

yyyyyyyyy B

f

²²

//

||xx
xx

xx
xx

x C //

~~~~
~~

~~
~~

0 : E

0 // A

²²

// B2

u

²²

// C1
// 0 : E4

0 // A′

²²

//

yy
yy

yy
yy

y

yy
yy

yy
yy

y
B′

²²

δ //

||yy
yy

yy
yy

y
C //

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

0 : E1

0 // A′

²²

// B1

²²

v // C1
// 0 : E3

0 0

0 0 E2

E′

Since K = Ker f � B, u is S mall epimorphism. Therefore v ◦ u is aWS-epimorphism

by Lemma 4.5, i.e. E4 ∈ WS. Then E ∈ WS. �

Theorem 4.1 If R is a hereditary ring,WS is a proper class.

Proof By Lemma 4.2, Lemma 4.3, Corollary 4.2, ExtWS(C, A) is an E-functor in

the sense Buttler and Horrocks (1961). By (Nunke 1963, Theorem 1.1), it is sufficient

to show that the composition of two WS monomorphism is a WS monomorphism.

Let f : A → B and g : B → C be WS-monomorphisms. Then for the short ex-

act sequence E2 : 0 // B
g //C //F //0 ∈ WS we have E2 = h∗(E′2) for some
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E′2 : 0 // B //C′ //F′ //0 ∈ WS and homomorphism h : F → F′. Therefore

we have a commutative diagram with exact rows and columns:

0

²²

0

²²

0

²²

0

²²

0 // A //

¡¡
¡¡

¡¡
¡¡

¡¡
¡¡

¡¡
¡¡

//// B

}}
}}

}}
}}

}}
}}

}}
}}

//

²²

D

}}
}}

}}
}}

}}
}}

}}
}}

//

²²

0 : E1

0 // A
f //// B

g

²²

// D

²²

// 0 : E1

0 // A //

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

C′ //

²²

D1
//

²²

0 : E′

0 // A // C

>>||||||||
//

²²

D′

x
>>||||||||

²²

// 0 : E

F′

²²

F′

²²

F

h
==||||||||

²²

F

h
=={{{{{{{{

²²

0 0

0 E′2 0 E′3

E2 E3

where E2 and E3 are images of E′2 and E′3 respectively under the first variable. Now for

the short exact sequence E1 : 0 //A
f // B //D //0 ∈ WS we have E1 = u∗(E′1)

for some E′1 : 0 //A // B1 //D2 //0 ∈ WS and homomorphism u : D → D2.
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Therefore we have a commutative diagram with exact rows and columns:

0

²²

0

²²

0

²²

0

²²

0 // A //

¡¡
¡¡

¡¡
¡¡

¡¡
¡¡

¡¡
¡¡

//// B1 //

²²

D2 //

²²

0 : E′1

0 // A //// B

²²

//

v
>>}}}}}}}}

D

²²

//

u
>>}}}}}}}}

0 : E1

0 // A //

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

C1 //

²²

D3 //

²²

0 : E′′

0 // A // C′

>>||||||||
//

²²

D1

y

==||||||||

²²

// 0 : E′

F′

²²

F′

²²

F′

{{{{{{{{

{{{{{{{{

²²

F′

{{{{{{{{

{{{{{{{{

²²

0 0

0 E′′2 0 E′′3

E′2 E′3

where E′′2 = v∗(E′2), E′′3 = u∗(E′3). Without lost of generality we can assume that A ≤ B1 ≤
C1. Since E′1 ∈ WS, there is a submodule K of B1 such that A + K = B1 and A∩K � B1.

Then A/(A ∩ K) ⊕ K/(A ∩ K) = B1/A ∩ K, that is, A/(A ∩ K) is direct summand in
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B1/(A ∩ K). Then we have the following diagram with exact rows and columns:

0

²²

0

²²

0

²²

0

²²

0 // A
A∩K

////// B1
A∩K

//

²²

D2 //

²²

0 : E′′1

0 // A

σ1
??ÄÄÄÄÄÄÄÄ

//// B1

²²

σ2
>>}}}}}}}}

// D2

²²

//

ÄÄÄÄÄÄÄÄ

ÄÄÄÄÄÄÄÄ
0 : E′1

0 // A
A∩K

// E //

²²

D3 //

²²

0 : E′′′

0 // A

??~~~~~~~~
// C1

w
==|||||||||

//

²²

D3

~~~~~~~~

~~~~~~~~

²²

// 0 : E′′

F′

²²

F′

²²

F′

yyyyyyyy

yyyyyyyy

²²

F′

{{{{{{{{

{{{{{{{{

²²

0 0

0 E′′′2 0

E′′2

where σ1 : A → A/(A ∩ K) and σ2 : B1 → B1/(A ∩ K) are canonical epimorphisms,

E′′1 = σ1
∗(E

′
1), E′′′2 = σ2

∗(E
′′
2 ). Since E′2 ∈ WS, E′′2 and E′′′2 are inWS. By Lemma 4.4,

E′′′ ∈ WS. By 3 × 3 Lemma Kerw = Kerσ2 = A ∩ K � C1. Therefore by Lemma 4.6

E′′ ∈ WS. Now E = (y ◦ x)∗(E′′′) ∈ WS by Lemma 4.3. �

Corollary 4.3 If R is hereditary, then 〈Small〉 = 〈S〉 = 〈WS〉 =WS.

Proof The equivalence 〈Small〉 = 〈S〉 = 〈WS〉 had been proved in (Demirci 2008).

Since 〈WS〉 is the least proper class containingWS andWS is contained in the proper

classWS, 〈WS〉 ⊆ WS. Conversely, let E : 0 // A // B // C // 0 ∈ WS.

Then there exists a short exact sequence E′ in WS such that the following diagram is
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commutative.

0 // A // B

²²

// C

²²²²

// 0 : E

0 // A // B′ // C′ // 0 : E′

Then E′ ∈ 〈WS〉 and since 〈WS〉 is proper class, E ∈ 〈WS〉 and we have thatWS ⊆
〈WS〉. This completes the proof. �
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CHAPTER 5

HOMOLOGICAL OBJECTS OFWS

In this Chapter, R denotes a Dedekind domain which is not a field and K denotes

its field of fractions, we will denote the set of maximal ideals of R by Ω.

5.1. Coinjective Submodules with Respect toWS

Lemma 5.1 Let R be a Dedekind ring. For an R-module M the following are equivalent:

(i) A isWS-coinjective.

(ii) There is a submodule N of A such that N is small in the injective hull Â of A and

A/N is injective.

(iii) A has a weak supplement in its injective hull Â.

Proof (i ⇒ ii) Let E beWS-element. By definition ofWS, E is an image of aWS-

element, say E4, such that g∗(E4) = E. Then, there exist a submodule V of B such that

A + V = B and A ∩ V � B. Since epimorphic image of a injective module is injective,

A/A ∩ V which is direct summand of a epimorphic image of Â is injective. And since A

is essential in its injective hull Â, α is a monomorphism. So Â is an injective submodule

of B′ and, Â is a direct summand of B′, and so A ∩ V � Â. Then we obtain the following
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commutative diagram where E′, E2 ∈ S mall and E1, E3 ∈ Split.

0

²²

0

²²

0

²²

0

²²

A ∩ V

ttttttttt

ttttttttt

²²

A ∩ V

²²

ttttttttt

ttttttttt

A ∩ V

²²

A ∩ V

²²

0 // A

²²

//

uuuuuuuuuuuu

uuuuuuuuuuuu Â

γ

²²

f //

α

zzuuuuuuuuuuuu C //

g
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
0 : E

0 // A

²²

// B

²²

// C1 // 0 : E4

0 // A′

²²

//

uuuuuuuuuu

uuuuuuuuuu B′

²²

δ //

zzuuu
uuu

uuu
uu

C //

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

0 : E1

0 // A′

²²

// B1

²²

// C1 // 0 : E3

0 0

0 0 E2

E′
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(ii ⇒ iii) By the hypothesis, we obtain the following diagram where E ∈ S mall and

E1 ∈ Split.

0

²²

0

²²
N

²²

N

²²
0 // A

²²

// Â
γ

²²

f // C // 0

0 // A′

²²

// B′

²²

δ // C // 0 : E1

0 0

E

Then γ is a S mall-epimorphism and δ is a Split-epimorphism. So f = δ ◦ γ is WS-

epimorphism by Lemma 4.5.

(iii⇒ i) By Proposition 3.4, since everyWS-element is anWS-element. �

Definition 5.1 A module M is said to be coatomic if Rad(M/U) , M/U for every proper

submodule U of M or equivalently every proper submodule of M is contained in a maxi-

mal submodule of M.

Lemma 5.2 ((Zöschinger 1978b), Lemma 2.1 ) For an R-module M the following are

equivalent:

(i) M has a weak supplement in its injective hull M̂.

(ii) There is an injective module I containing M such that M has a supplement in I.

(iii) There is an extension N of M, such that M is a direct summand in N and N has a

supplement in its injective hull N̂.

(iv) M has a dense coatomic submodule.

Proposition 5.1 ((Zöschinger 1974c),Proof of Lemma 3.3) Let A, B be R-modules and

A ⊆ B. Then A � B if and only if A is coatomic and A ⊆ Rad B.
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Proposition 5.2 If there is a S mall-monomorphism from a module A to any module A′,

then A is aWS-coinjective module.

Proof Without of loss generality we can assume that A � A′. Then A is small in

injective hull A′. Thus A isWS-coinjective by Proposition 3.4. �

Corollary 5.1 Every coatomic module is aWS-coinjective.

Proof Every coatomic submodule is small in its injective hull by Proposition 5.1. Then

by Proposition 5.2, every coatomic module is aWS-coinjective. �

The converse of Corollary 5.1 is not true in general. For example the Z-module Q

is a weakly supplemented module and every submodule of Q is WS-coinjective. If we

assume that every proper submodule of Q is coatomic, then we come to the conclusion

that Q is hollow. But Q is not hollow and so Q has aWS-coinjective proper submodule

which is not coataomic. And also the group of p-adic numbers, Jp, isWS-coinjective but

not coatomic.

Proposition 5.3 Let R be a domain. Then every bounded R-module isWS-coinjective.

Proof Let B be a bounded R-module and I be an injective hull of B. We will show that

B � I. Suppose B + X = I for some X ⊂ I. Since B is bounded, there exists 0 , r ∈ R

such that rB = 0. Then I = rI = rB + rX = rX, since I is divisible. Therefore X = I and

so B � I. I is 〈Small〉-coinjective, since it is injective. Then B is 〈Small〉-coinjective by

Corollary 3.2. �

Lemma 5.3 ((Demirci 2008), Lemma 4.5 ) Let S be a DVR, A be a reduced torsion S -

module and B be a bounded submodule of A. If A/B is divisible, then A is also bounded.

Lemma 5.4 Let M is torsion and reduced module over a Discrete Valuation Ring . Then

M isWS-coinjective iff M is coatomic.

Proof (⇒)Since M is WS-coinjective, M has a dense coatomic submodule N by

Lemma 5.2. Since M is torsion , N is torsion. Since N is coatomic, N = B + Rn with

pmB = 0 for some n ∈ N (Zöschinger 1974b). Since N is torsion Rn = 0 and N is

bounded. By Lemma 5.3, M is bounded and so it is coatomic.

(⇐)Since any coatomic module is small in its injective hull, it is 〈Small〉-coinjective and

also it isWS-coinjective. �
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Definition 5.2 A module M is called radical-supplemented, if Rad(M) has a supplement

in M.

Zöschinger proved that If M has a weak supplement in its injective hull, then T (M) is

radical-supplemented and there exists n ≥ 0 with p − Rank(M/T (M)) ≤ n for all max-

imal ideals p in (Zöschinger 1978b). From this we obtain the following Corollary by

Proposition 3.4.

Corollary 5.2 If M is aWS-coinjective, then T (M) is radical-supplemented and there

exists n ≥ 0 with p − Rank(M/T (M)) ≤ n for all maximal ideals p .

Zöschinger proved that the class of R-modules, which have a weak supplement in their

injective hull is closed under factor modules and group extensions. This class contains

all torsion-free modules with finite rank in (Zöschinger 1978b). From this we obtain the

following Corollary by Proposition 3.4.

Corollary 5.3 The class of R-modules, which WS-coinjective is closed under factor

modules and group extensions. This class contains torsion-free modules with finite rank.

Corollary 5.4 Every finitely generated module isWS-coinjective.

Proof Every finitely generated module is small in its injective hull. �

Theorem 5.1 Let J be a class of modules whichWS-coinjective. Then, k(J) =WS.

Proof (⊇) Let E1 be a WS-element. Then, there is a WS-element E2 such that the

following diagram is commutative.

0 // A // B

²²

// C
g

²²

// 0 : E1

0 // A // B1
// C1

// 0 : E2
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There exist a submodule V of B1 such that A + V = B1 and A ∩ V � B1. So, we obtain

the following diagram.

0

²²

0

²²
A ∩ V

f
²²

A ∩ V

²²
0 // A

f ′

²²

// B1

²²

// C1 // 0 : E2

0 // A/A ∩ V //

²²

B1/A ∩ V //

²²

C1
// 0 ∈ Split

0 0

If we apply the functor Hom(C1, ), we obtain the following

0 // Hom(C1, A ∩ V) // Hom(C1, A) // Hom(C1, A/A ∩ V) //

// Ext(C1, A ∩ V)
f∗ // Ext(C1, A)

f ′∗// Ext(C1, A/A ∩ V) = 0

Then, f∗ is epimorphism and so there exist E3 ∈ Ext(C1, A ∩ V) such that f∗(E3) = E2.

Since the following square is commutative:

Ext(C1, A ∩ V)

f∗

²²

g∗ // Ext(C, A ∩ V)

f∗

²²
Ext(C1, A)

g∗ // Ext(C, A)
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g∗ ◦ f∗(E3) = E1 = f∗ ◦ g∗(E3). Hence, we obtain the following diagram.

0 // A ∩ V

f

²²

//

ttt
ttt

ttt
t

ttt
ttt

ttt
t B

²²

//

ÄÄ~~
~~

~~
~

C //

g~~~~
~~

~~
~~

0 : E

0 // A ∩ V

f

²²

// B2

²²

// C1
// 0 : E3

0 // A //

uuuuuuuuuuu

uuuuuuuuuuu B //

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

C //

g
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
0 : E1

0 // A // B1
// C1

// 0 : E2

Since A∩V � B1, A∩V isWS-coinjective by Proposition 5.2. Then E ∈ k(J) and since

k(J) is subfunctor, E1 ∈ k(J).

(⊆) k(J) ⊆ WS is trival. �

By the Propositions 3.21 and 3.22, we obtain that the following Corollaries:

Corollary 5.5 The global dimensionofWS is gl.dimWS ≤ 1.

Corollary 5.6 in j.dimA ≤ 1 for everyWS-coinjective module A.

5.2. Injective Submodules with Respect toWS

Corollary 5.7 Over a Dedekind domain which R, WS-injective modules are only the

injective R-modules.

Proof Let M be a WS-injective module and I be any ideal of Dedekind domain

R. Since R is Dedekind domain, R is noetherian ring and so I is finitely gener-

ated. E : 0 // I
f // R // R/I // 0 inWS by Corollary 5.4. Since M isWS-

injective module; for every homomorphism α : I −→ M, there exists a homomorphism

α̃ : R −→ M such that α̃ ◦ f = α. We have the following commutative diagram,

E : 0 // I
f //

α

²²

R //

α̃ÄÄÄ
Ä

Ä
Ä

R/I // 0

M

(5.1)
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Since for any left ideal I of R-homomorphism: I → M can be extended to an R-

homomorphism: R → M, then M is injective R-module by Baer’s criterion (??, Theorem

3.3.5). �

We obtain the following Corollary by using Proposition 3.1 from Corollary 5.7.

Corollary 5.8 WS-injective modules are only the injective R-modules.

5.3. Projective and Coprojective Submodules with Respect toWS

ForWS-projective modules, we obtain the following criteria:

Lemma 5.5 If C is any module such that ExtR(C, A′) = 0 for every coatomic module A′,

then C is anWS-projective module.

Proof An R -module C is P-projective if and only if ExtP(C, A) = 0 for all R-modules

A. Let E : 0 //A // B //C //0 be a short exact sequence in the class WS. In

Proof of Theorem 5.1, it was shown that every elements of WS is an image of a short

exact sequence with starting a coatomic module such as

0 // A′

f
²²

// B1

²²

// C // 0 : E1

0 // A // B // C // 0 : E

where f is a monomorphism from a coatomic module A′ to A.

Since A′ is coatomic module, E1 is in Split with respect to our assumption. Then

E = f∗(E1) = 0. This completes the proof. �

Corollary 5.9 Every finitely presented module isWS-coprojective.

Proof Let a finitely presented module F. There is a epimorphism from a projective

module P to F, f : P → F. Since F is finitely presented, P and Ker f is finitely gen-

erated. Thus Ker f isWS-coinjective by Corollary 5.4. Then F isWS-coprojective by

Proposition 3.3. �
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5.4. Coinjective Submodules with Respect toWS over DVR

In the following part R is always a discrete valuation ring with quotient field K , R

and the maximal ideal (p).

Corollary 5.10 If M/Rad(M) is simple, M isWS-coinjective.

Proof Zöschinger proved that if M/Rad(M) is simple, then M has a supplement in

every extension N with N/M is torsion in (Zöschinger 1974c). Since every module is

essential in its injective hull, M is essential in E(M) and also E(M)/M is torsion. So M

has a supplement in its injective hull. Then M isWS-coinjective by Proposition 3.4. �

Theorem 5.2 ((Zöschinger 1974c), Theorem 3.1) For an R-module M the following

are equivalent:

(a) M is radical-supplemented.

(b) Radn(M) = Radn+1(M) is finitely generated for some n ≥ 0.

(c) The basic-submodule of M is coatomic.

(d) M = T (M)⊕X where the reduced part of T (M) is bounded and X/Rad(X) is finitely

generated.

Lemma 5.6 ((Zöschinger 1974c), Lemma 3.2) (a) The class of radical-

supplemented R-modules is closed under factor modules, pure submodules

and extensions.

(b) If M is radical-supplemented and M/U is reduced, then U is also radical-

supplemented.

(c) Every submodule of M is radical-supplemented if and only if T (M) is supplemented

and M/T (M) has finite rank.

By Lemma 5.2, Theorem 5.2 and Lemma 5.6, we obtain the following Corollary.

Corollary 5.11 For an R-module M the following are equivalent:
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(a) M isWS-coinjective.

(b) M is radical-supplemented.

(c) M = T (M)⊕X where the reduced part of T (M) is bounded and X/Rad(X) is finitely

generated.

(d) The class ofWS-coinjective R-modules is closed under factor modules, pure sub-

modules and extensions.

(e) Every submodule of M isWS-coinjective if and only if T (M) is supplemented and

M/T (M) has finite rank.
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CHAPTER 6

COATOMİC SUPPLEMENT SUBMODULES

Throughout this chapter all rings are hereditary rings, unless otherwise stated. In

this chapter, we define the notion ”coatomic supplement” and give some results about the

relation between coatomic supplement and supplement submodules.

6.1. Coatomic Supplement Submodules

Let U be a submodule of an R-module M. If there exists a submodule V of M such

that M = U + V and U ∩V is coatomic then U is called a coatomic supplement of V in M.

We study the class Σ of σ-exact sequences where an element

E : 0 //A α // B //C //0 of ExtR(C, A) is called σ-exact if Imα has a coatomic

supplement in B.

Lemma 6.1 If f : A −→ A′, then f∗ : Ext(C, A) −→ Ext(C, A′) preserves σ -element.

Proof Let E : 0 // A // B // C // 0 is a short exact sequence in Ext(C, A)

and f : A −→ A′ be an arbitrary homomorphism. The following diagram is commutative

with exact rows.

0 // A
f

²²

α
// B

f ′

²²

// C // 0 : E

0 // A′
α′

// B′ // C // 0 : E1

where f∗(E) = E1. If V is a coatomic supplement of Imα in B, then Imα + V = B and

V ∩ Imα is coatomic. Then f ′(V) + Imα′ = B′ by pushout diagram and f ′(V) ∩ Imα′ =

f ′(V∩Imα) is coatomic, since V∩Imα is coatomic and homomorphic image of a coatomic

module is coatomic. �

Lemma 6.2 If g : C′ −→ C, then g∗ : Ext(C, A) −→ Ext(C′, A) preserves σ-elements.
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Proof Let E : 0 // A // B // C // 0 is a short exact sequence in Ext(C, A)

and g : C′ −→ C be an arbitrary homomorphism. The following diagram is commutative

with exact rows,

0 // A
α′

// B′

g′

²²

β′
// C′

g
²²

// 0 : E1

0 // A α
// B

β
// C // 0 : E

where g∗(E) = E1.

Let V be a coatomic supplement of Kerβ in B, i.e. Kerβ + V = B and V ∩
Kerβ is coatomic. Then g′−1(V) + Kerβ′ = B′ by pullback diagram. Since g′ induces an

isomorphism between D′ = g′−1(V) ∩ Kerβ′ and D = V ∩ Kerβ and epimorphic image of

coatomic module coatomic, D′ is coatomic. �

Corollary 6.1 Every multiple of a σ-element of Ext(C, A) is again a σ-element.

Theorem 6.1 The class Σ of σ-elements coincide with the classWS ofWS-elements.

Proof Assume that A has a coatomic supplement in B, then there exists a submodule V

of B such that B = A+V and A∩V is coatomic. So, the following diagram is commutative

with exact columns and rows:

0

²²

0

²²
A ∩ V

²²

A ∩ V

²²
0 // A

²²

// B
γ

²²

// C // 0 : E

0 // A/A ∩ V //

²²

B/A ∩ V α //

²²

C // 0 : E1

0 0

Clearly α is Split-epimorphism and since coatomic module isWS-coinjective, γ isWS-

epimorphism. Then, the composition α ◦ γ is an WS-epimorphism. So, E is a WS-

element. To prove the converse, let E ∈ WS, then there is E1 in the classWS such that

54



the following diagram is commutative with exact rows:

0 // A α // B

²²

// C //

²²

0 : E

0 // A α′ // B′ // C′ // 0 : E1

If V is weak supplement of Imα′ in B′, then Imα′ + V = B′ and Imα′ ∩ V � B′ and so

Imα′ ∩ V is coatomic by Proposition 5.1. By Lemma 6.2, E is σ-element. �

Let R be a discrete valuation ring with quotient field K , R and the maximal ideal

(p). If A is a coatomic submodule of B, then it does not need to be small in B, but, since

B/Rad(B) semisimple, from

X/Rad(B) ⊕ (A + Rad(B))/Rad(B) = B/Rad(B)

nevertheless follows that X + A = B with X∩A small in B. So, every coatomic submodule

has a weak supplement in every extension.

Lemma 6.3 WS form a proper class over the Discrete Valuation Ring .

Proof Assume that A has a coatomic supplement in B, then there exists a submodule V

of B such that B = A+V and A∩V is coatomic. So, the following diagram is commutative

with exact column and rows:

0

²²

0

²²
A ∩ V

²²

A ∩ V

²²
0 // A

²²

// B
γ

²²

// C // 0 : E

0 // A/A ∩ V //

²²

B/A ∩ V α //

²²

C // 0 : E1

0 0

Since A ∩ V is coatomic, γ isWS-epimorphism. Then, the composition α ◦ γ isWS-

epimorphism. So, E isWS-element. �
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Let us consider the short exact sequence

E : 0 //A α // B //C //0

in which V + Imα = B for some V ⊂ B, where V ∩ Imα � V and V ∩ Imα is bounded,

i.e. V is a supplement of Imα in B with V ∩ Imα is bounded.We will call such sequences

β-exact and denote Imα ⊂β B as in Zöschinger. In this case we say that E ∈ Ext(C, A) is a

β-element. Over a Dedekind domain, any β-element of ExtR(C, A) is a κ-element as well

as a torsion element (Zöschinger 1978a). Let us denote the β-elements of ExtR(C, A) by

SB. In order to show that every κ-element need not be a β-element, we give an example

over R = Z.

Example 6.1 Consider the inclusion homomorphism f :
⊕

p
Zp −→

⊕
p
Zp∞ where p

ranges over all prime numbers in Z. Then Im f =
⊕

p
Zp is small in

⊕
p
Zp∞ , so f is a

S-monomorphism.
⊕

p
Zp∞ itself is the only supplement of Im f in

⊕
p
Zp∞ . Im f =

⊕
p
Zp

is not bounded, hence f is not an SB-monomorphism.

Lemma 6.4 ((Zöschinger 1978a), Lemma 1.2) If A,C are torsion, then

Extβ(C, A) = Ext(C, A)κ ∩ T (Ext(C, A)).

If A,C are torsion, Ext(C, A)WS = Ext(C, A)κ and so the following corollary obtained

from Lemma 6.4.

Corollary 6.2 If A,C are torsion, then

Ext(C, A)β = Ext(C, A)WS ∩ T (Ext(C, A)).
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6.2. The Relations Between the Class WS and the Related Other

Classes

In this section, we deal with complements (closed submodules) and supplements

in unital R-modules for an associative ring R with unity using relative homological algebra

via the known two dual proper classes of short exact sequences of R-modules and R-

module homomorphisms, ComplR-Mod and SupplR-Mod, and related other proper classes

like NeatR-Mod and Co-NeatR-Mod.

If A is a submodule of B such that K ∩ A = 0 (that is the above second condition

for direct sum holds) and A is maximal with respect to this property (that is there is no

submodule Ã of B such that Ã ' A but still K ∩ Ã = 0), then A is called a complement

of K in B and K is said to have a complement in B. By Zorn’s Lemma, it is seen that

K always has a complement in B (unlike the case for supplements). In fact, by Zorn’s

Lemma, we know that if we have a submodule A′ of B such that A′ ∩ K = 0, then there

exists a complement A of K in B such that A ⊇ A′.

A subgroup A of a group B is said to be neat in B if A ∩ pB = pA for all prime

numbers p. The criterion for being a coneat submodule is like being a supplement in the

following weaker sense:

Proposition 6.1 ((Mermut 2004), Propositions 3.4.2) For a submodule A of a module

B, the following are equivalent:

1. A is coneat in B,

2. There exists a submodule K ≤ B such that (K ≥ Rad A and,)

A + K = B and A ∩ K = Rad A.

3. There exists a submodule K ≤ B such that

A + K = B and A ∩ K ≤ Rad A.
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The class ComplR-Mod [SupplR-Mod] consists of all short exact sequences

0 //A
f // B

g //C //0 (6.1)

of R-modules and R-module homomorphisms such that Im( f ) is a complement [resp.

supplement] in B. NeatR-Mod [Co-NeatR-Mod] consists of all short exact sequences 6.1 of

R-modules and R-module homomorphisms such that Im( f ) is a neat [resp. coneat] in B.

The proper class Co-NeatR-Mod is an injectively generated proper class containing

SupplR-Mod

Proposition 6.2 ((Mermut 2004), Proposition 3.4.1) For any ring R,

SupplR-Mod ⊆ Co-NeatR-Mod ⊆ ι−1({all (semi-)simple R-modules})

We have,

NeatR-Mod = π−1({all semisimple R-modules})
= π−1({M|Soc M = M, M an R-module}),

where Soc M is the socle of M, that is the sum of all simple submodules of M. Dualizing

this,

Co-NeatR-Mod = ι−1({all R-modules with zero radical})
= ι−1({M|Rad M = 0, M an R-module}).

If A is a Co-NeatR-Mod-submodule of an R-module B, denote this by A ≤cNB and say that

A is a coneat submodule of B, or that the submodule A of the module B is coneat in B.

Proposition 6.3 ((Mermut 2004), Proposition 5.2.6) For a Dedekind domain W,

SupplW-Mod ⊆ Co-NeatW-Mod ⊆ NeatW-Mod = ComplW-Mod.

Theorem 6.2 ((Mermut 2004), Theorem 5.4.6) Let W be a Dedekind domain which is

not a field.
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1. If Rad W = 0, then

SupplW-Mod & Co-NeatW-Mod & NeatW-Mod = ComplW-Mod.

2. If Rad W , 0, then

SupplW-Mod & Co-NeatW-Mod = NeatW-Mod = ComplW-Mod.

Theorem 6.3 ((Mermut 2004), Theorem 5.2.3) For a Dedekind domain W, and W-

modules A,C,

ExtComplW-Mod (C, A) = ExtNeatW-Mod (C, A) = Rad(ExtW-Mod(C, A)).

Lemma 6.5 For a Discrete Valuation Ring R,

SupplR-Mod =WS∩ Co-NeatR-Mod =WS∩NeatR-Mod =WS∩ ComplR-Mod.

Proof We have the relation SupplR-Mod ⊆ Co-NeatR-Mod ⊆ NeatR-Mod = ComplR-Mod

by Proposition 6.3. Hence, SupplR-Mod ⊆ ComplR-Mod ∩ WS. Conversely, let E1 ∈∈
ExtCompl(C, A) ∩ ExtWS(C, A):

E1 : 0 //A
f // B

g //C //0

For simplicity, suppose A is a submodule of B and f is the inclusion homomorphism. A

has a weak supplement in B by Lemma 6.3 and so there exits a submodule K of B such

that

A + K = B and A ∩ K � B.

Since the classes of complements and coclosed submodules are the same, A is closed in B

and so A ∩ K � A. Then, ComplR-Mod ∩WS ⊆ SupplR-Mod. �
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Lemma 6.6 Let R be a Discrete Valuation Ring which is not a field, then

SupplR-Mod =WS∩ Rad(ExtR(C, A)).

Proof It follows from Theorem 6.2, Theorem 6.3 and Lemma 6.5. �
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ments.MSc Thesis, İzmir Institute of Technology.
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