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ABSTRACT

DETERMINATION OF MATERIAL CONSTITUTIVE EQUATION OF

A BIOMEDICAL GRADE Ti6Al4V ALLOY FOR CROSS-WEDGE

ROLLING

In the present work, the JC flow stress and damage parameters of a biomedical

grade Ti6Al4V alloy that contained very low levels of interstitial elements were

determined for the modeling its deformation in the CWR process. The JC models were

determined through quasi-static (10
-3

-0.1 s
-1

) and high strain rates (300-1000 s
-1

) within

the temperature range of 25-1150
o
C. High strain rate tests were performed using both

compression and tension SHPB testing devices. The damage model was determined

using notched specimens of different stress triaxiality. The tested alloy flow stresses

were found to increase with increasing strain rate for both compression and tension

tests. This was proved that the alloy has a strain rate sensitive flow stress behavior. At

increasing strain rates the failure strains in tension decreased. The reduced fracture

strain was also confirmed by the microscopic observations. In statically tested samples

the ductile fracture mode was composed of smaller but deeper dimples, while the

dimples were observed to be shallow and larger in dynamically tested samples. The

tensile fracture presumably started in α  region and the β phase microscopically shown

to deform plastically through the tensile axis. The compression failure mode of the alloy

was found to be resulting from the shear band formation followed by the fracture of the

shear band. High temperature test conducted at quasi-static strain rate showed that the

stress values decreased greatly after about 800
o
C due to α −>β transformation. Due to

this two different JC material models valid between 25-600
o
C and 800-1150

o
C were

developed. The determined JC parameters were found to be well agreed with the

literature except the model obtained from the compression tests. �
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ÖZET

B�YOMED�KAL T�6Al4V ALA�IMININ ÇAPRAZ KAMA

HADDELEME ��LEM� �Ç�N MALZEME YAPISAL DENKLEM�N�N

BEL�RLENMES�

Bu çalı�mada, yüksek saflı�a sahip biyomedikal Ti6Al4V ala�ımının çapraz

kama haddeleme sürecinin modellenmesi amacıyla JC akma gerilmeleri ve hasar

parametreleri belirlenmi�tir. Malzeme modelleri dü�ük (10
-3

–0,1 s
-1

) ve yüksek (300-

1000 s
-1

) deformasyon hızlarında ve 25 ve 1150 arasında de�i�en sıcaklıklar için

belirlenmi�tir. Yüksek hız deformasyon testleri basma ve çekme Split Hopkinson basınç

barları kullanılarak yapılmı�tır. Hasar parametrelerinin hesaplanmasında, farklı çapta

çentikli numunelerin üç eksenli gerilme katsayıları kullanılmı�tır.. Test edilen ala�ımın

akma stresinin artan deformasyon hızıyla basma ve çekme testlerinin her ikisinde de

arttı�ı bulunmu�tur. Bu sonuç ala�ımın akma gerilmesinin deformasyon hızına ba�lı

davranı� gösterdi�ini kanıtlamı�tır. Çekme testlerinde deformasyon hızının artması

kırılma gerilmesinde dü�meye neden olmu�tur. Kırılma gerilmesinde bu dü�ü�

mikroskobik incelemeyle de do�rulanmı�tır. Sünek kırılma gösteren malzemenin test

edilmi� numune yüzeyleri incelendi�inde statik deformasyon hızlarında test edilen

numunelerin yüzeyinde küçük ama derin çukurlar, dinamik deformasyon hızlarında test

edilen numunelerin yüzeylerinde sı� ve geni� çukurlar olu�tu�u gözlenmi�tir. Çekme

testi sonucu olu�an kırılmaların alfa fazında ba�ladı�ı ve beta fazının da çekme yönü

do�rultusunda plastik deformasyona u�radı�ı muhtemeldir. Basma testinde ise

kırılmaların kesme bandlarının (shear band) olu�umu ve takip eden kesme bandlarının

kırılmasıyla olu�tu�u bulunmu�tur. Statik deformasyon hızlarında yapılan yüksek

sıcaklık testleri 800
o
C den sonra ��� faz de�i�imine ba�lı olarak gerilme de�erleri

büyük dü�ü� göstermi�tir. Bu nedenle 25-600
o
C için ve 800-1150

o
C arasındaki

sıcaklıklar için iki farklı JC malzeme modeli olu�turulmu�tur. Bulunan parametreler

basma testi modeli hariç literatürdeki di�er model parametreleriyle tutarlıdır.
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INTRODUCTION

1.1. Cross Wedge Rolling

In the metal forming industry, it is important to produce high quality products in

a relatively short time period for the increasing competitiveness arouse by the

technological progress made within the several decades. The growing competitiveness

unavoidably has motivated the researches to develop novel metal processing techniques.

With the recent technological improvements, cross wedge rolling (CWR) metal forming

technique, which was invented a century ago and started to be used industrially in 1949

(Dong, et al. 1998), has been greatly improved and emerged as an innovative metal

forming technique for the manufactures. CWR differs from traditional metal forming

techniques in several fundamental ways as will be elaborated in the next section.

1.1.1. Description of the Cross Wedge Rolling Process

In CWR, a cylindrical billet is deformed plastically into an axially symmetrical

part by the action of wedge-shape dies moving tangentially relative to each other (Dong,

et al. 1998). In this respect, it differs from the classical rolling and forging processes.

Shafts with tapers, steps, shoulders and walls can be formed using CWR. There are

several different types of CWR machines, but typical ones are composed of one to three

rollers on which wedge-shaped tooling is mounted (Figure 1.1.). The most widely used

CWR machines are the two and three-roll and flat wedge type configurations. For each

machine configuration, the deformation process starts with the positioning of the

preheated work-piece into the roller gap in the axial direction of the rollers. Then the

work-piece sequentially deformed through four different zones of the toll; each stage
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corresponds to a part of the deformation step of the work-piece. The stages of the

deformations are the knifing zone, guiding zone, stretching zone and sizing zone and

sequentially shown in Figure 1.2.

Figure 1.1. Typical CWR machine configurations

(Source: Material Processing Technology 1998)

Figure 1.2. The zones of flat cross wedge rolling

(Source: Int. J. Adv. Manufacturing Technology 2007)

The work piece deformation starts with the knifing zone. Knifing zone

comprises a wedge, whose height starts from zero and increases to the desired reduction

of height (�r). The main function of this part is to form a V-shaped slot over the surface

of the work-piece. The angle of this V-shaped slot is determined with the forming angle

(�) of the toll. The height reduction does not change in the following deformation steps.

The other important role of the knifing zone is to drive the work-piece to the following

deformation zones (Li and Lovell 2007). Following the knifing zone, the deformation
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process continues with the guiding zone. In this zone, the cross section and the forming

angle of the tool does not change. V-shaped slot is enlarged and a uniform groove

formed around the work-piece at the end of the guiding zone. The stretching zone is the

most critical part in cross wedge tool geometry. Most of the plastic deformation of the

work-piece takes place in this zone. The inclined surface of the wedge tool stretches the

material to flow to the ends. The elongation and plastic deformation in the stretching

zone are controlled by the stretching angle (�). As a result of this flow shoulders of the

shafts are formed. In this zone, the symmetry of the contact area of the die and the

work-piece is very important. Due to the asymmetric contact area, the problems with the

radial and axial plastic flow of the work-piece may take place. The metal flow in the

stretching zone becomes spiral as the work-piece rotates and this spiral may cause the

failure of the work-piece (Dong, et al. 2000). Sizing zone is the last zone of the die. The

surface quality and the uniform dimension of the work-piece are finely tuned in this

zone. The cross-section of the tolls does not chance in this zone. The last part of the

CWR machine is the side cutter which removes the excessive material from the end of

the product.

1.1.2. Advantages of Cross Wedge Rolling

Some of the advantages CWR process as compared with traditional machining,

forging and the other production methods may include the followings:

• Energy saving process; the process is efficient that it gives change to produce

more parts in a short time.

• Higher productivity; the CWR process speed is 5 to 20 times faster than

machining and forging. This provides higher productivity and also energy saving.

• Better environmental conditions; there are two important fundamental

environmental benefits of CWR. First, the CWR mechanism does not require any oil or

cooling lubricants. The second is the relatively low noise production during operation.
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• Better product quality; in CWR process material achieves the desired shape

by the plastic flow at elevated temperatures. The fabric of metal in CWR process

continues so this also provides finer grain structure and hence stronger products.

• Higher material utilization; CWR reduces the cost of raw material as

compared with the traditional techniques. In CWR, 10% of raw material is wasted but in

other processes this goes up to 40%.

• Automation and lower cost; in CWR, all processes including surface refining,

shape forming and end cutting are finished in a single step. This automation process

provides reductions in the number of workers and the machine and the working area

required for the production. As a result, the overall cost of the production decreases.

1.1.3. Failure Mechanisms in Cross Wedge Rolling

The failures in CWR are divided into three categories (Li and Lovell 2007): (i)

improperly formed work-piece cross section, (ii) surface defects and (iii) internal

defects. Improperly formed work-piece cross section (Figure 1.3(a)) results from the

excessive slip between the work-piece and tools (Mackerle 2005). The tangential and

normal forces acting on the work-piece provide the work-piece rotation between the

tolls. The tangential and normal forces must be in equilibrium for the proper work-piece

deformation. If the tangential force is greater than the normal forces, the rotation of the

work-piece does not occur and the work-piece slips between the tool surfaces. Slip

results in undesirable amount of work-piece deformation in wrong stages or undesired

products can be produced (Li, et al. 2002). Surface defects are the second common

defect types found in CWR process. These are the defects which include spiral groove,

excessive thinning or excessive necking and overlapping of the work-piece (Figure1-

3(b)). Spiral grooves in CWR occur due the formation of the cracks on the surface of the

work-piece or large friction coefficient between the tool and the work-piece. The other

type of surface defect knows as overlapping occurs because of the sharp forming angle

(Li, et al. 2002). Internal defects such as cracks, voids (Figure1.3c) and cavities may

form in CWR. The internal defects can results from large tensile stresses in the central
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portion of the work-piece, excessive shear stress during the knifing process and low

cycle fatigue that develops during rolling process.

(a) (b) (c)

Figure 1.3. Typical defects in CWR process: (a) failed CRW work-piece due to

excessive tool work-piece slip, (b) necking of the work-piece and (c)

internal void formation in work-piece (Source: Journal of material

processing Technology 1998-2002)

1.1.4. Numerical Models of Cross Wedge Rolling

Although CWR has attractive properties, it is not a widely used forming

technique due to the less-known failure mechanisms involved in the production. CWR

process has been recently subjected to experimental and numerical investigations in

order to clarify the underlying mechanisms of the common failure modes of the process.

Due to the complex production route of the CWR including the high strain rate plastic

deformation, variable friction and high temperature, the prediction of the flow behavior

of the work-piece during the process is difficult. The determination of the effects of the

process parameters on the failure would significantly reduce the failure possibility of the

product. For that, numerical models are excellent tools to analyze this complex

production process.

Dong and his co-workers investigated an explicit finite element model of the flat

wedge CWR process (Dong, et al. 1998). The model realistically characterized the
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interfacial slip that occurred during the real process. The important parameters of the

knifing and guiding zones that caused the initial slip of the work-piece were found to

include the friction coefficient, the forming angle, and the work-piece area reduction.

Li and his co-workers studied a finite element model of two roll CWR process (Li, et al.

2001). With this model, the friction coefficient was shown to be the key parameter of

the interfacial slip problem. The variations of global slip with forming angle, stretching

angle, reduction area and forming velocity were also investigated in the same study. The

results showed that the forming angle had the least influence in guiding and sizing zones

and stretching angle was effective for global slip. The increase in the reduction area and

forming velocity was found to increase the global slip. Dong and his co-workers

investigated a finite element model of flat-wedge CWR process using the explicit finite

element method (Dong, et al. 1998). It was shown that the numerical results agreed well

with the experimental results. The slip between tool and work-piece was shown to

increase during the forming process. Li and Lovell determined the void formation and

growth mechanism in CWR process using an explicit finite element method (Li and

Lovell 2004). It was shown that the effective plastic strain could be used as a criterion

for predicting the internal failure in CWR. M. Wang developed a finite CWR model, in

which the distributions of different field variables like strains, temperature and grain

size of the work-piece in CWR were determined. Pater developed a complete model of

the CWR process to determine the effects of process parameters on the process (Pater

2006). Also introduced a new method called wedge–rolls rolling and simulated the

process with finite element method. The experimental and numerical results showed that

it was possible to produce hollow parts using typical CWR toll. Dong and his co-

workers analyzed numerically the stresses developed in CWR process (Dong, et al.

2000). The stress around internal cracks and voids were examined. It was shown that the

central voids and cracks were formed due to the tensile stresses developed at the center

of the work-piece. The results were also supported with experiments. Xuedao and his

co-workers studied the rolling moment of the rolling mill in CWR and showed that the

increase of stretching angle and rolled part size increased rolling moment, while the

increase of the forming angle decreased the rolling moment (Xuedao, et al. 2007). Qiang

and Song analyzed the temperature distribution on the work-piece in CWR using finite

element model (Qiang and Song 2007). The contact heat conduction and plastic

deformation heat determined as the main effects that changed the temperature

distribution of the work-piece in the deformation zone.
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CHAPTER 2

CONSTITUTIVE EQUATIONS

2.1. Applications of Constitutive Equations

Many engineering material applications occur at varying strain rates and

temperatures. Examples included are the car crashes, bird impacts on aeronautic

structures and engine materials exposed to extremely high temperatures. It is important

to note that materials show different mechanical responses to the changing strain rates

and temperatures and therefore they need to be tested at different strain rates and

temperatures in order to predict their mechanical behavior. However, the testing

materials at varying strain rates and temperatures are relatively expensive and time

consuming; therefore, constitutive equations are developed to relate the behavior of

materials as function of strain, strain rate and temperature. Constitutive equations are

also main tools for the modeling of the complicated structures under structural loads.

An ideal constitutive equation should predict the material behavior at quasi-

static (1x10
-3

- 1 s
-1

) and dynamic strain rates (>100 s
-1

) at normal and elevated

temperatures. Table 2.1 lists the widely applied constitutive equations together with the

parameters used in these models. The constitutive equations, developed by Johnson and

Cook (Lesuer 2000) and known as Johnson and Cook (JC) model, is however one of the

widely used models in the simulations of high strain rate deformation. JC model is a

semi empirical model and relatively easy to determine.
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Table 2.1. Types of the constitutive equations

(Source: Encyclopedia of Materials)

Author(s) Equation Parameters

Ludwik

(1909)

� � �� � �	� ��� �� 	 � 
��	
��	�

Holloman

(1945)

� � 
�	� �� 	 � 
��	
��	�

Swift (1952) � � ���� � ��� �� 	 � 
��	
��	�
�� � �������������	
Voce (1948) � � �� � ��� � ������
��	�� ��� ��� 	 � ��	
��	�
Tome et al

(1984)
� � �� � ��� �  ����! � ��� " ���� #� �� � $��%�

���



�� � ���� � ��	
��	�
 �
�	�
 � � &��'(���)

����)

Ludwingson

(1971)

� � ����* � ���
��+ � 	+�� ��� �+� 	�� 	+ � ��	
��	�

Gladman et

al. (1970)

� � �� � �� ,- � � �+� ��� ��� �+ � ��	
��	�

El-Magd and

Troost

(1997)

� � ��� " �.��. #
/ �� 	�����. � ��	
��	�


El-Magd

(1997)
� � 0����+ � ��� � 1�.2���
��3�4 � 4��4/ � ��� �+� 	� 1� 3 � ��	
��	�


Reiff et al.

(1986) � � 5�� � �+ "�.�#
�/ � �67�8 ��� �+� �6� � � ��	
��	�


Johnson and

Cook (1983)
� � 09 � :��2 ;! � < ,- ��.�. = 0! � �4>�/2 A, B, n, C, m=constant

Cowper

Symond
�? � @�� � 3AB�CDDB E F! � "�.GH#

� BI J H� K � ��	
��	�
�? � �	����%
$��%�

���	L�(
AG � �%�
���
(����	�	L
���M%M


Zerilli and

Armstrong

(1987)

� � �� � �� "��.� . #
NOPQ � �+�NORQ �� � �S�N�+ ��� ��� �+� �6� �T� �S� 	� ��. � ��	
�)

�



9

�

2.1.1. Johnson-Cook Model

JC model uses simple forms of empirical relations of stress with strain, strain

rate and temperature in the form of,
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where, A, B, n, C and m are constants,
.

oε is the reference strain rate and T
*

may be

expressed as

)TT(

)TT(
T

rM

r*

−

−
= (2.4)

in which, r and M refer to reference and melting temperatures. The first bracket in

Equation 2.3 gives the isothermal stress as a function of strain for
.

oε =1 s
-1

(reference

strain rate for convenience). The second bracket includes the strain rate effect and the

last bracket accounts for the thermal effects. The constants A, B and n can be extracted

from the stress strain curve obtained at quasi-static strain rates (assuming isothermal

conditions exist) at reference strain rate (usually taken as 1 s
-1

). The determination of the

constants depends on the combination of data in specific conditions and processing it on

the suitable graphics. At least 3 equivalent flow stress-strain curves are needed to form

the model: one quasi-static and isothermal and two at different strain rates. For

temperature term calculation, one more additional curve is needed at a high temperature

(Jutras 2008).

(2.1)

(2.2)
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In high strain rate testing, the effect of heating due to plastic deformation of the

material should be also taken into account. The heating due to high strain rate is also

called thermal softening phenomenon. For most of materials, about 90% of the plastic

deformation is dissipated as heat in the material (Jutras 2008). This increase in

temperature can be calculated using the following equation,

UV � WXYZ[�\�]\ (2.5)

where,
�4
is the temperature increase, ^ is the percentage of the plastic deformation

transformed to heat, c is the heat capacity and _ is the density .

2.1.2. Johnson-Cook Damage Model

JC damage model relates the fracture strain with strain rate, temperature and

pressure. The model takes into account the loading history which is represented by the strain

to fracture. The derivation of the JC damage law starts with the following fracture law;

` � a Ubbc (2.6)

where, U� is the increment in plastic strain and �D is the strain to fracture under current

conditions. Fracture occurs when D
1.0 and for an element �D is

�D � 0H� � H+�d�H6�>20! � HT ,- �>. 20! � HS4>2 (2.7)
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This general expression is valid for constant values of �>,4>and where �> i !)j.
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At least three tests are needed to determine the parameters of JC damage model.

Specimens having different notch radius were used to determine the fracture strain (Bao

2004). For the determination of D1, D2 and D3, tests must be done under quasi-static and

isothermal conditions. Data gathered from the test are used to draw the strain to failure

as a function of triaxial state of stress (Jutras 2008, Johnson 1991). The evolution of

state of stress during a tensile test should be determined because the notch radius

changes during the test also. It is difficult to measure it during the test or analytically

calculate. One way is to record the test specimen deformation and calculate the notch

radius using an image system. The image system must be able to make precise

measurements on the images and can compute the deformation of the specimen during

the test (Jutras 2008). After obtaining the triaxial state of stress for each test, the fracture

strain versus triaxial ratio graph is used to determine parameters D1, D2 and D3.

However, high strain rate tests at different strain rates are needed to obtain D4 (strain

rate parameter). Data from high strain rate tests are combined with the quasi-static test

results and the strain rate versus strain to fracture graph are drawn in natural semi-log

graph. Then the equation fitted to the curve to determine the value of D4 (Jutras 2008).

With the same strategy the parameter D5 was obtained with result of the tests done at

different temperatures. In this case, strain to fracture vs. temperature graph gives the

value of D5 (Jutras 2008).

�
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CHAPTER 3

TESTING METHODS FOR CONSTITUTIVE RELATIONS

3.1. Testing Methods

The types of the tests chosen for mechanical testing depend on the desired

response of the tested material. Testing methods commonly used at different strain rate

regimes to determine mechanical properties. Creep and quasi-static tests are usually

conducted with the constant cross-head speed testing machines in the strain rate regime

of 10
-5

s
-1

. At increasing strain rates, >100 s
-1

various types of testing methods can be

used to test the materials; however, among them only Split Hopkinson Bar (SHB)

method gives material stress-strain and strain behavior in a single test. This method is

also based on the equilibrium deformation of the material and therefore the inertial

effects are excluded in the test.

3.1.1. Quasi-static tests

3.1.1.1. Tension test

Tension test is one of the most widely used methods of testing materials at quasi-

static strain rates. It is a simple test and provides important information about the tested

material mechanical properties. The dimensions and the shape of the test specimen and

the testing procedure are defined by the ASTM (American Society for Testing and

Materials) standards. In tension test, the specimen is mounted on the grips of the tension

test machine and elongated at a constant rate. During the test the applied load and the

elongation of the specimen are recorded concurrently. The elongation measurements
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may also be made using video or mechanical extensometers. At the end of the test force

versus elongation data are obtained and using the following formulations, engineering

stress-strain response of the material can be calculated.

�-kl-��ml-k
nom�nn � [p�q � rst (3.1)

and

�-kl-��ml-k
nomul- � \p�q � vcNvtvt (3.2)

where, P is the load, 9� is the initial cross section, %D
��

is the final gage length and %� is is

the initial length. The true stress and strain are calculated using

omw�
nom�nn � [xyzp � rs{ (3.3)

and.

omw�
nomul- � ,- vcvt (3.4)

where, 
9| is the instantenous cross section area. True stress-strain can be further related

with engineering stress-strain by considering the plastic deformation as a constant

volume process as

9�%� � 9+%+ � ��	
��	�
where, 9�and 9+ are the initial and final cross sections and %� and %+ are the initial and final

length respectively. By using the constant volume relation the following true stress-strain

relations can be easily obtained as,

[xyzp � [p�q�! � }p�q� (3.5)

and

~���C � ,-
�~C�� � !� (3.6)
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Above equations are valid until ultimate tensile strength (UTS) at which the

inhomogeneous deformation of the sample starts (necking) (Figure 3.1.).

Figure 3.1. Comparison of true and engineering stress-strain curve of a material

Engineering stress-strain curves are divided/considered in two regions: elastic

and plastic region. In elastic region, the stress and strain is linearly proportional to each

other. The deformation in this part is irreversible in that when the load is removed, the

specimen turns into its original dimensions. Elastic modulus (Young's modulus: E) of

the material is determined from the slope of the stress-strain curve in the elastic region

as

E
σ

=
ε

(3.7)

The point at which the plastic deformation ends is called the yielding point and the

stress corresponding to the point is called yield strength. Alternative way of determining

the yield strength is to draw a straight line parallel to the curve which starts from 0.2%

strain. The point at which the straight line intersects the stress-strain curve is called

Engineering stress-strain
True stress-strain

Strain

S
tr

e
s
s

UTS
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yield strength. Ultimate tensile strength is the maximum stress that engineering stress-

strain curve reaches.

3.1.2. Bridgman Correction

The data obtained in the stress-strain curve just after the necking in a tension test

cannot be used to calculate true stress and true strain values using Equation 3.5 and 3.6

due to the stress localization resulting in deterioration of the uniaxial state of stress. That

is, with the formation of necking, the uniaxial state of stress turns into triaxial state of

stress. In order to obtain the uniaxial true strain-stress data after necking the stress

values are corrected with a factor known as Bridgman Correction factor.

The equivalent stress which is also called as von Misses stress can be defined for

any given stress state as;

[p� � �7+ ��[� � [��+ � �[� � [��+ � �[� � [��+ � ����+ � ���+ � ���+��� +I
(3.8)

During the development of Bridgman correction, it is assumed that the strain

distribution in the minimum section (see Figure 3.2.) is,

}y � }x � � ��+ (3.9)

where, ~� is the radial strain, ~� is the hoop strain and ~� is the axial strain as shown in

Figure 3.2. The deformation in the grid line after necking is given as;

�X � y�� (3.10)

where, � is the grid line curvature, r is the radius of actual cross section, a is the radius

of smallest cross section and R is the radius of curvature at the neck (Figure 3.2.).



16

�

�

Figure 3.2. Rod specimen after necking

(Source: AMP Journal of Technology 1996)

Bridgman assumed the ratios of the principal stresses remained constant during loading

for the calculation of the correction factor. Based on this assumption the equivalent

uniaxial strain is defined as;

~C � Z ����t ~� � ~� � ,- �t� (3.11)

Equation 3.11 relates the equivalent strain with instantaneous dimension measurements

of minimum cross section. The average axial stress at the smallest cross section is,

�[���� � �s (3.12)

Note that due to the stress triaxility at the neck the hoop and the radial stresses are not

zero. As a result, the stress at the neck is different from the equivalent uniaxial stress.

By using Bridgman assumptions and the stress equilibrium equation, we defined stress

distribution at the smallest cross section as;

�� � �� � �e���������� � �
v�"������������ #

v�������   (3.13)
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and

[� � �¡���¢����£� � �
��v�"�����£�¤���£ #

v���� ��£�   (3.14)

Then, the equivalent uniaxial stress is,

�C � �e���������� � v���� ���� (3.15)

In Equation 3.15., the correction factor (k) is defined as

' � ��! � +¥� � ,- �! � �+¥��N� (3.16)

Due to the difficulty in stress measurement after necking, the correction factor with the

experimental results cannot be verified directly. But the correction factor can be

confirmed by verifying the assumptions that it depends on. With the measured a and R

values, Bridgman correction formulation gives the consistent results (Ling 1996). The

values of a and R are usually measured during the test by stopping and measuring

manually or using a camera system that gives opportunity to measure it from the

photographs.

The notched specimens such as shown in Figure 2.4 are usually used to

determine the relation between stress triaxility and failure strain. By increasing the

variety of notch radius the triaxiality dependency of the failure strain can also be

determined. Stress triaxiality is important in damage models and given by the following

normalized form,

¡¦¡§¨ � �6 � ,- �! � �+�� (3.17)

The mean stress is

[© � �¡*�¡��¡P6 � (3.18)
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and equivalent stress in terms of principle stresses is,

[p� � ª�+ �[� � [+�+ � �[+ � [6�+ � �[6 � [��+ (3.19)

where ��,
�+ and �6 are the principal stresses.

Figure 3.3. Notch tension test specimen

3.1.3. Compression Test

Compression tests are preferred in large permanent deformations such as forging

and extrusion (Callister 2003). In compression test, the applied force is in the opposite

direction of the force in tensile test and the length of the specimen decreases with an

increase in diameter. The stress-strain curves of the tension and compression tests are

very much similar until about the yield point for the ductile materials. After yielding

stress strain curves of the same material show different behaviors due to the flattening of

the compression specimen. Flattening increases the resistance of the material to stress

and causes an increase on the stress-strain curve. When ductile materials compressed a

barrel shape of the specimen occurs (Liechti 2003). Barreling is an important problem in

compression and occurs as result of the friction between specimen and the surface of the

dies. Lubricant usage between the specimen-die surfaces can decrease the friction.
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3.2. High Strain Rate Testing

3.2.1. Split Hopkinson Bar: Historical Review

High strain rate tests are essential for the modeling and analyzing material

behavior at increasing strain rates. High strain rate data for the constitutive equations

are further needed particularly in applications where the deformation rates are far

greater than quasi-static strain rates. SHB is one the most widely used methods of

testing materials at increasingly high strain rates within the strain rate regime of 100-

10000s
-1

(Bariani, et al. 2001).

In 1913, Bertram Hopkinson introduced a technique to measure the peak

pressure developed during a high strain rate deformation event. This technique was

shortly based on the measuring the momentum trapped by a specimen which flied as a

result of tension wave passage on a steel rod. The testing system was composed of a

long steel rod, a steel specimen and a ballistic pendulum. A compression wave was

created from one side of the rod. This wave passed through the rod and reached the

specimen-bar interface. The specimen was fixed to the bar by grease and therefore

sustained compressive loads. The tension wave reflected from the end of the specimen

however flied off the specimen from the end. The specimen momentum was measured

by means of a pendulum. The time of the momentum acting was equal to the time at

which the wave passed through the specimen. The peak pressure was measured by the

momentum measurement. Hopkinson made series of tests with using different

specimens and was able to measure the peak pressures developed and the wave

velocities of different specimens. However, the pressure time relations could not be

determined in these experiments at those times.

Pochhammer developed wave speed dependencies on frequency in solids

(Pochhammer 1876). Later, in 1941, these equations were solved by Dennisson Bancroft

(Bancroft 1941). Although, Bancroft did not study directly Hopkinson Pressure Bar

testing apparatus, his solutions of wave velocity of longitudinal waves in cylindrical bar

were considered as the basis of the Hopkinson Pressure Bar experiments. In 1948,

Davies developed a novel technique for measuring the strain on the bars using
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condensers. With this new method, the displacement-time and pressure-time relations

were precisely determined. A further development occurred in 1949 when Kolsky

added a second pressure bar to the original Hopkinson Pressure Bar testing system. In

Kolsky’s new design the specimen was sandwiched between two bars and the

compressive wave passed through the second bar, while the specimen deformed

between the bars. With this improvement, Kolsky was able to calculate the strain, stress

and strain rate for the deformed specimen. This new version of Hopkinson Pressure Bar

was called Split Hopkinson Pressure Bar (SHPB) or Kolsky’s bar. Since, the strain,

stress and strain rate are measured directly from the bars or calculated using the related

equations, Split Hopkinson Pressure Bar has become a popular testing method for high

strain rate testing. Following Kolsky, Lindholm and Yeakly, Gorham and Wu and

Bertholf and Karnes made further contributions for the improvement of the SHPB

technique (Lindholm and Yeakley 1968, Gorham 1996, Bertholf 1975). In 1954, Krafft

for the first times used mounted strain gages to measure the strains from the bars of

SHPB test device (Tasneem 2002). Novel improvements has also made in SHPB with

the recent technological improvements. The use of the digital oscilloscopes and

computers has improved the SHPB test technique significantly. Technological

progresses have provided more accurate and precise measurements in SHPB technique

(Tasneem 2002).

3.2.2. SHPB Apparatus

The SHPB testing apparatus shown in the Figure 3-3 consists of 3 parts

• Gun Assemble

• Bars (striker, incident, transmitted bars)

• Electronic measurement system
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Figure 3.4. Schematic view of the Split Hopkinson Pressure Bar

Pressure gun is the part which fires the striker bar to incident bar with a initial

velocity, vo. Striker bar impact to end of the incident bar forms a compressive wave in

the incident bar. The amplitude of the wave created is directly related with the speed of

the striker bar. This wave propagates through the incident bar until the specimen bar

interface. At the specimen bar interface, a part of the wave transmitted to the specimen

and other part is reflected back. Incident and reflected strains are measured by the gage

on the incident bar, transmitted strain is measured by the gage on the transmitter bar.

These gages are connected to the strain gage conditioner in which the voltage signal is

amplified. Oscilloscope in the measurement system is used to monitor and store the

strain data.

3.2.3. SHPB Apparatus principles

When a long bar having a velocity of vo strikes another long bar at rest and

having the same elastic modulus and diameter as the impact bar, a rectangular elastic

stress pulse is produced in the impacted bar. The magnitude of stress and strain in the

impacted bar are direct functions of the velocity of the striking bar, modulus (E) and

elastic wave velocity (c) of the impacted bar. The maximum stress (�) and the

maximum strain (�) in the bar are given as follows:

[« �
¬­®t

+¯­

(3.20)

Gas GunGas Gun

TimerTimer

OsciloscopeOsciloscope

Computer

Strain-gage
conditioner

Striker barStriker bar Incident barIncident bar Transmitter barTransmitter bar

Strain-gage 1Strain-gage2
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and

\« � ¡­
¬­ �

®t
+¯­ (3.21)

The total time period in which the incident pulse operates is called the time

window (4°) and given as

V± � +²³´
¯­ (3.22)

where, µ¶· is the striker bar length. The displacements of the incident and transmitter

bars, �̧
and u2 shown in Figure 2 can be found using the following equations,

¹� � º«» ��\¼ � \y�]�
x

�

¹+ � �º« Z \x]�x
� (3.23)

where i, r and t refer to incident, reflected and transmitted waves, respectively. The

strain in the specimen is then,

\½ � ¾�N¾*
²¿ � ¯t

²¿ Z �\x � \¼ � \y�
x
� ]� (3.24)

where, L is the length and s refers to the specimen. The loads on each interface,

incident bar/specimen (1) and specimen/transmitter bar (2), are

À� � Á«Â«�\¼ � \y�
À+ � Á«Â«\x (3.25)

It is assumed that the wave propagation effect in the small sample may be neglected, so

that P1 = P2. Therefore, strain and strain rate equations can be written as

\½ � N+¯­
²¿ Z \y]�x

�
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\½. � N+¯­
²¿ \y (3.26)

Accordingly, the stress in the specimen is

[½ � r*
s¿ �

r�
s¿ �

s­
s¿ Â«\x �

s­
s¿ Â«�\¼ � \y� (3.27)

Typical strain gage readings from SHPB test and the resultant stress-strain and

strain rate curves are shown in Figure 3.6 (a) and (b), respectively.

Figure 3.5. Incident-transmitter bar

(a) (b)

Figure 3.6. (a) Strain readings from a SHPB testing and (b) Calculated stress and strain

rate variation with strain in the specimen
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3.2.4. Split Hopkinson Tension bar

In 1968 Lindholm & Yeakley used a hollow tube output bar at the end of

incident bar and developed the tensional SHPB as shown in Figure 2.4. (Tasneem 2002).

In tensional SHPB, gas gun fires the hollow impactor which has the same inner diameter

with input bar. As a result of impactor hit to the bolt head, a compressive wave created

on the bolt head. This compressive wave turns in to tensile wave as it reflected from the

free end of the bolt head. This tensile wave created on the input bar travels and reach the

specimen bar interface. At the interface a part of the wave pass to the specimen and the

other part reflected back from the interface due to the cross section difference of

incident and specimen. The reflected part of the wave turns into compressive wave,

transmitted wave continue as tensile wave and pass to the transmitter bar. Strain, stress

and strain rate can be calculated with the same formulation that are used in compression

SHPB.

Figure 3.7. Schematic view of SHTB

�
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CHAPTER 4

TITANIUM AND IT IS ALLOYS

4.1. Historical review

Titanium is the fourth most abundant element on the earth’s crust. The most

important two mineral sources are ilmenite (FeTiO3) and rutile (TiO2) (Lütjering 2003).

The first discovery of the titanium was done in 1791 by Gregor who was an amateur

mineralogist in Cornwall (UK); he reported titanium as unknown element in ilmenite

(FeTiO3). In 1795, Klaproth found out the same unknown element with Gregor in rutile

and named this element as titanium. The name of titanium comes from the Greek

mythology. After the discovery of the titanium studies continue with production of high

purity titanium.

Production of high purity titanium is difficult due to its tendency to react with

oxygen. The first process to produce pure titanium was discovered by Kroll in

Luxembourg (1937-1940) (Lütjering 2003). His process involved the reduction of

titanium tetrachloride with magnesium in an inert gas atmosphere. This process still

preserves its importance and it’s still an important production process.

4.2. Crystal Structure and Deformation Modes

Titanium indicates allotropic phase transformation at 882
o
C, its structures

changes from body centered cubic crystal structure (� phase) to hexagonal closed

packed structure (� phase). The transformation temperature is influenced by the

interstitial and substitutional elements. The percentages of alpha and beta phases have

important effects on the elastic properties of titanium and its alloys. Alpha phase has an

important effect on the elastic property due to its crystal structure. Hexagonal closed
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packed crystal structure of alpha phase titanium has an anisotropic elastic property, its

elastic modulus and shear modulus changes due to the axis of the unit cell and the stress

axis. The alpha phase titanium exhibits strain rate sensitivity behavior in dynamic

testing. The variation of the elastic and shear modulus decreases as the polycrystalline

alpha titanium with crystallographic texture.

The mechanical properties of the beta phase cannot be measured directly

because of its unstable phase. Its properties can only be measured from titanium alloys

which contain large percentage of beta phase. But in general beta phase has lower

elastic modulus than alpha phase (Lütjering 2003). The deformation mechanisms of

pure titanium show variation with the phases. High purity alpha phase titanium deforms

by twinning in addition to slip by dislocations. The major deformation mode in alpha

phase is twinning at low temperatures and the density of the twining depends on the

strain rate. Density of the twining increases with the strain rate at low temperatures. In

beta phase rich titanium twinning and slip can be observed. But the twining is limited

due to its single phase state (Lütjering 2003).

4.3. Basic Properties and Application Areas

Titanium has important application areas due to its excellent properties. Some of

its important properties can be listed as;

• High Strength

• Low Density

• Excellent Corrosion Resistance

• Good Creep Resistance

• Good compatibility with human body (for implants)

Due to the requirements for industrial usage some important properties of the

titanium can be changed by addition of alloying elements. Adding alloying elements to

titanium provides a wide range of physical and mechanical properties. Alloying

elements can be classified in to two groups � or � stabilizing addition (Figure 4.1.). The
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classification depends on the increase or decrease of the �/� stabilizing. Alpha

stabilizers are Al, O, N, C, B, Ga and Ge. Aluminum is the most widely used �

stabilizer. Beta stabilizers are divided into two; � isomorphous elements; V, Mo, Nb, Ta

and Re are � eutectoid forming elements; Cr, Fe, Si, Ni, Cu, Mn, W, Pd and Bi.

Figure 4.1. Effect of alloying elements on the phase diagrams of titanium alloy

(Source: Engineering Materials and Processes)

Alpha titanium alloys are based on the low temperature, hexagonal allotropic

form of titanium. The important application of the alpha alloy is the process equipment

in chemical and petrochemical industries. The most important properties that make

alpha alloy titanium suitable for this usage is high corrosion resistance, formability and

weldability. Alpha-beta titanium alloys contain both two phases. This two phase system

can be obtained as result of adding controlled amount of beta-stabilizing element, which

causes the beta phase to persist below the beta transformation temperature. Cooling

down to room temperature results in a two-phase system. The most important and

commonly used alpha-beta titanium alloy is Ti6Al4V. Figure 4.2 shows a part of Ti-Al-

V phase diagram. At 4 wt % of vanadium the evaluation of the alpha and beta phases

can be predicted on the dotted line in Figure 4.2. As the temperature decreases from

1066
o
C, type and percentage of the phases change.



28

�

Figure 4.2. Phase diagram of Ti6Al alloy with vanadium addition

(Source:�Proc. National Seminar on NonDestructive Evaluation 2006)

The most important application areas of alpha-beta titanium alloy are; aircraft structural

parts, rotating and non rotating parts in aero-engines, armor component, biomedical

field, sporting equipments and automobiles. Beta titanium alloys can be produce by

recrystallization in the beta phase and aging in the alpha and beta phase to precipitate

the alpha phase. Beta phase titanium has the highest strength of any titanium alloy.

Because of the high strength the usage of beta phase titanium alloys replace with alpha

beta alloys in aero space industry.

In the present study, the material and damage model of a biomedical grade Ti6Al4V

alloy was determined in order to model its deformation and failure in CWR process. The

material contains a low level of interstitial element and therefore, it is anticipated that

the mechanical behavior would be different from conventional Ti6Al4V alloy. The lack

of damage model for Ti6Al4V in the literature also is also another motivation for the

present thesis. Dynamic and quasi-static tests were performed for these purposes. In

addition, the microstructure and failure mechanism of Ti6Al4V alloy under quasi-static

and high strain rates were examined.
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CHAPTER 5

MATERIAL AND TESTING

5.1. Sample Preparation

Tension and compression Ti6Al4V test samples were machined from the

biomedical grade Ti6Al4V bars. The bars were supplied from Era Medikal ve Kaynak

Ürünleri San. Tic. Ltd. �ti. The bar in 10 mm diameter was used to prepare compression

and tension tests specimens, while 19 mm diameter bar was cut into pieces and used for

the trial deformations in a CWR machine to determine its formability.

The technical drawing and the picture of a 6 mm diameter compression test

sample is shown in Figure 5.1(a) and (b), respectively. The compression test samples,

length/diameter ratio of 1, were machined in two different diameters, 6 and 9 mm.

These samples were tested in quasi-static and dynamic strain rates. The static and

dynamic tension test samples technical drawings and pictures are sequentially shown in

Figure 5.2(a-d). The same sample geometries and sizes were used both in quasi-static

and dynamic tests, except dynamic test samples had treats at the ends which were used

to fix the samples to the tensional SHPB. The gage length of the samples was 10 mm

and the diameter 4 mm. Both, compression and tension test specimen sizes are non-

standard, which is dictated by the specimen size limitation in SHPB testing. The stress

equilibrium is lost when long and small diameter samples are used in SHPB.
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5.2. Testing

Quasi-static compression and tension tests were performed using a Shimadzu

Autograph AG-X 300 test machine within a strain rate regime ranging between 10-3 and 10-1

s-1. In compression tests, the samples end surfaces were lubricated with grease before each

test. The compression test specimen size and the strain rates are further tabulated in Table

5.1. In order reduce the extent of specimen heating effect at increasing strain rates larger

specimens (9 mm in diameter) were tested. At the lowest strain rate, 6 mm and 9 mm

samples were initially tested in order to check if the specimen size had an effect on the

measured stress values. These test showed that the difference between the stress values of 6

mm and 9 mm diameter sample was insignificant.

Table 5.1. Quasi-static compression test samples and the compression strain rates

No Specimen Dimensions Strain Rate(s-1)
1 Diameter:6mm

Height:6mm
0.001

2 Diameter:6mm
Height:6mm

0.01

3 Diameter:6mm
Height:6mm

0.1

4 Diameter:9mm
Height:9mm

0.001

5 Diameter:9mm
Height:9mm

0.01

6 Diameter:9mm
Height:9mm

0.1

For each strain rate, the tests were repeated five times. Engineering stress-strain

curves were then converted into true stress-strain curves as depicted in Figure 5.4.

Finally the plastic strain and plastic strain rate were calculated using following relations;

\Ã � \x �
¡

¬
(5.1)

and

\Ã. �
ÄbÅ

Äx
(5.2)
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where, εt is the total strain. As in the compression tests, tension tests were repeated five

times for each strain rate. Similar to compression tests, engineering stress-strain curves

were converted into true stress-strain curves using the same relations (Figure 5.4.).

Figure 5.3. Engineering and true stress-strain curve of a compression test

As in the compression tests, tension tests were repeated five times for each strain

rate to provide accurate results. Similar to compression tests, engineering stress-strain

curves were converted into true stress-strain curves using the same relations (Figure

5.4.).

Figure 5.4. Example of a true and engineering stress-strain graph obtained from tension test
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Dynamic compression and tension tests were performed using compression and

tensional SHPB testing apparatus, respectively. The used SHPB test apparatus consists

of three major parts; gas gun assembly (Figure 5.5(a)), bars (Figure 5.5(b)) and

electronic measurement devices (Figure 5.5(c)). The gas gun assembly consists of

pressure chambers which facilitate the impact of striker bar on to the incident bar. For

that purpose, the inner and outer pressure chambers of the gas gun assembly are

pressurized with nitrogen from a high pressure gas cylinder before each test. When the

inner gas chamber pressure is released with a valve, the outer chamber pressure is

emptied into the barrel. This moves the striker bar horizontally until it impacts the

incident bar end. This impact initiates a constant amplitude compressive elastic wave in

the incident bar. In each test, vo, can be measured just before impact of the striker bar

on to the incident bar by the help of two infrared beams (speed measurement sensors) as

seen in (Figure 5.5(a)). The used compression type SHPB bars are made from CPM

Rex76 alloy. The mechanical properties of the bar alloy are tabulated in Table 5.2. The

lengths of the available striker bars are 362 and 724 mm and the lengths of the incident

and transmitter bars are 3658 and 1440 mm. All bars diameters are the same, 20 mm.

The electronic measuring system consists of strain gage conditioner and oscilloscope.

The strain gage conditioner is used to form a full bridge strain gage circuit on the bars in

order to measure the longitudinal strain involved in each test. An oscilloscope

connected to the strain gage conditioner is used to monitor and record the strain gage

bridge circuit voltages during each experiment. Besides these devices, a micro-computer

is used to conduct data reduction (calculation of stress and strain). In SHPB testing,

specimen surfaces in intimate contact with the bar ends are lubricated in order to reduce

frictional effects because the presence of any constraining effect on the specimen

surfaces forms a multiaxial stress-state which invalidates one of the most important

assumption of the SHPB analysis, namely, that of a uniaxial stress state. The samples

surfaces were lubricated using grease.
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Table 5.2. Compression bars properties

Material Elastic Module Density Hardness

CPM Rex76 214 GPa 8255 kg/m3 40 HRC

The strain in the specimen was calculated using the following relation developed

for full bridge,

�Æ � � +ÇÈ
�É �

+Z Ê��Ë�Ì�
ÍÎOÎËg���Ï�� (5.3)

where, Gg, Kg, Ve and ϕ are the strain gage conditioner gain, strain gage factor,

excitation voltage of the strain gage bridge and Poisson's ratio of the bar material,

respectively. The stress in the specimen was calculated using

�Æ � �È
�É AÐ "

+ÊÑ�Ë�
ÍÎOÎËg���Ï�# (5.4)

The values of Gg, Kg, and Ve were 20, 2.08 and 10 V, respectively.

Typical SHPB compression strain readings of a tested Ti6Al4V sample are

shown in Figure 5.6. Typical engineering stress-strain and strain rate-strain curves of

the same sample are shown in Figure 5.7.

Figure 5.6. Typical compression test voltage vs. time graph
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Figure 5.7. Typical compression, engineering stress-strain and strain rate-strain curves
of Ti6Al4V

The used tension SHPB apparatus pictures are shown in Figure 5.8.(a) and (b).

Similar to compression SHPB, tensional SHPB consists of three parts: gas gun

assembly, bars and electronic measurement devices. The bars of tension SHPB are made

of 316 L stainless steel. The properties of the bar material is tabulated in Table 5.3.

Typical tensional SHPB strain readings of a tested Ti6Al4V sample are shown in Figure

5.9. Engineering and true stress-strain curves were calculated using the same relations

used in compression test.
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(a)

(b)

Figure 5.8. Tension SHPB apparatus; (a) gas gun assembly and (b) bars
�

�

Table 5.3. Properties of the tension bars

Material Elastic Modulus Density

316 L 193GPa 8gg/cc



38
�

Figure 5.9. Typical voltage vs. time graph of SHPB tension test

Elevated temperature tests (300 oC) in compression SHPB were conducted using

a small split-tube furnace covering the specimen and only a small portion of the bars.

The length of the bars remaining in the furnace was 20 cm. The furnace was insulated

in order to heat only the specimen and the bars sections remaining in the furnace. The

furnace, together with the bars and sample, was heated to the desired temperature.

Temperature measurement was conducted using a thermocouple. The thermocouple was

suspended from the top of the split furnace until it just touched the specimen. The

heating was achieved in 10 minutes and then the test was conducted.

Notch specimens were further tested to determine JC damage parameters.

Specimen with notch radius 2, 3 and 6 mm were prepared and tested (Figure 5.10.). The

geometrical parameters and stress triaxiallity of the tested specimens are listed in Table

5.4. Unnotched specimens had stress triaxiality of 0.33 and as the radius of curvature

decreases the stress triaxility increases.
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Figure 5.10. Picture of the notched specimen with different radius

Table 5.4. The geometrical parameters of unotched and notched tension specimens

Material Unotched
Radius of curvature
(R) (mm)

- 6 3 2

Minimum radius
(mm)

6 4 4 4

Stress triaxility 0.33 0.486 0.621 0.738

Notched specimens were tested quasi-statically within the strain rate regime of

1x10-3- 1x10-1 s-1 using static test machine. While the load-displacement data were

recorded, the sample deformation was recorded using a high speed camera. The camera

zoomed to the specimen gage length and the test was recorded with 50 fps (frame per

second) and 320x832 pixel format. The variation of the specimen minimum diameter

and radius of curvature were measured using the video camera records. For each

sample tested the effective fracture strain was measured. Figure 5.11(a) shows a typical

stress-strain curve of a notched specimen and Figure 5.11(b) the corresponding video

record pictures at various strain levels. Although the starting values of stress triaxility, R

and a changed during a test near the fracture, this change was not taken into account.

For example stress triaxility in a typical experiment changed only 15% near the fracture.



�

1 2 3

Figure 5.11. (a) Typical
pictures of t

�

�

�

0

200

400

600

800

1000

1200

S
tr

e
s
s

(M
P

a
)

(a)

3 4 5

(b)

cal stress-strain curve of notched specimen (R=
of the notched section at various strains.

0 0.1 0.2 0.3 0.4

Strain

1

2

3

4

5

40

� �

(R=6 mm) and (b) the

0.5



41
�

5.3. Microscopy

Microscopic analysis of untested and tested specimens was performed using an

optical microscope and a Philips XL30-SFEG scanning electron microscope (SEM) with

an Energy Dispersive X-ray (EDX) analyzer. Deformed samples were cut using a slow

speed diamond saw and then epoxy mounted. The mounted samples were then grinded

and polished down to 1 micron. The polished cross-sections of samples were etched

with Kroll’s reagent (3 cm3 of HF and 6 cm3 of HNO3 in 100 ml of H2O).

�
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CHAPTER 6

RESULTS AND DISCUSSION

6.1. Quasi-Static Tests and Dynamic Tests

Representative compression true stress-true strain curves of 6 mm diameter

specimen at quasi-static strain rates of 1x10-3, 1x10-2 and 1x10-1 s-1 are shown in Figures

6.1(a-c), respectively. In each graph shown in this figure, includes at least three true

stress-true strain curves. As noted in Figure 6.1(a-c), there is an insignificant variation

between each test at a specific strain rate. It is further noted that as the strain rate

increases from 1x10-3 to 1x10-1 s-1 the yield strength increases, showing the strain rate

sensitive flow stress behavior of the tested Ti alloy. The yield stress of the 6 mm

diameter specimen at 1x10-3 s-1 is about 927 MPa and it increases to 1000 MPa when the

strain rate increases to 1x10-1 s-1. In Figure 6.2, the true stress-true strain curves of 6 and

9 mm diameter samples tested at 1x10-3 s-1 are shown together for comparison. Both

specimens show essentially similar stress values until about 0.1 strain, while 9 mm

diameter samples show higher stress after this true strain. This signifies the dominance

of the frictional forces at increasing strain levels in larger diameter samples. Although 6

mm specimens fail at about 0.4 strain, 9 mm diameter samples fail about 0.3 strain was

about %30.
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(a)

(b)

(c)

Figure 6.1. Compression true stress-true strain graph of 6 mm diameter Ti6Al4V alloy
at (a) 1x10-3 s-1, (b) 1x10-2 s-1 and (c) 1x10-1 s-1
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Figure 6.2. True Stress- true strain curves of 6 and 9 mm Ti6Al4V samples at
1x10-3 s-1

The tension true stress- true strain curves of 4mm diameter Ti6Al4V alloy

specimens at quasi-static strain rates of 1x10-3, 1x10-2 and 1x10-1 s-1 are shown in Figure

6.3(a-c). Again each graph shows at least three tension test curves. The stress values

increases above the yield stress until the necking starts and with the necking the stress

values decreases and the sample fails with a ductile fracture mode. Yield strength at

1x10-3 s-1 is about 930 MPa which is consistent with compression yield strength (927

MPa). Similar to compression tests, yield stress increases with increasing strain rate in

tension. The measured percentage of elongations are about 18%, which is consistent

with the elongation (%15) provided by the manufacture. The effect of quasi-static strain

rate on the stress-strain curves is shown in Figure 6.4. As the strain rate increases the

yield and flow stress increases (Figure 6.4.) while the failure strain decreases.
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Figure 6.3. Tension true stress-true strain graph of 4mm diameter Ti6Al4V alloy at (a)
1x10-3 s-1, (b) 1x10-2 s-1 and (c) 1x10-1 s-1
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Figure 6.4. Tension true stress-true strain curve at quasi-static strain rates

The high strain rate compression tests were conducted in the strain rate range

between 495 and 950 s-1. Typical high strain rate compression tests performed at 495 s-1

and 550 s-1 are shown in Figure 6.5 and Figure 6.6, respectively. The similar stress-

strain behavior obtained for each group of tests proves the consistency of the high strain

rate tests. Figures 6.7 and 6.8 show the compression and tension plastic stress-strain

curves of samples tested at quasi-static and high strain rates, respectively. These graphs

clearly show that Ti6Al4V alloy has strain rate sensitive flow stress behavior. The

decrease in stress values of the compression tests at increasing strain rates (Figure 6.7.)

is due to the thermal softening effect of the adiabatic heating. At increasing strain rates

the heat generated in the specimen is accumulated in the sample due short duration time

of the deformation. The effect of adiabatic heating is neglected in this study since the

flow stresses used to construct the constitutive equations are determined at relatively

low strain levels at which the effect of adiabatic heating is not significant. In tension

tests similar to compression tests, as the strain rate increases the yield and flow stress

increases (Figure 6.8.), while the failure strain decreases.
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Figure 6.5. Typical high strain rate tests performed under compression at 495 s-1

�

�

�
�

Figure 6.6. Typical high strain rate tests performed under compression at 550 s-1

�

�
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Figure 6.7. Compression plastic true stress-strain curves at different strain rates
�

�

Figure 6.8. Tension plastic true stress-strain curves at different strain rates
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6.2. Johnson-Cook Material and Damage Model

6.2.1. JC Material Model Parameter Determination For Compression

Tests

As stated earlier, JC equation consists of three brackets which defines the effect

of the strain, strain rate and temperature on the flow curve of the tested material. The

first bracket includes the parameters related with the flow curve at the reference strain

rate. The first bracket (A+B	n) is determined from the quasi-static compression test at

the� reference strain rate of 1x10-3 s-1. For this purpose, true plastic stress-strain curves

are calculated for each test performed. The plastic strain is calculated by subtracting the

elastic strain from the total strain as depicted in Figure 6.9. For the reference strain rate,

average stress-strain curves are calculated and this average stress values are fitted with

n(A B )+ ε as shown in Figure 6.10. The fitting parameters for the compression, A, B

and n are shown in the same graph: A=927 MPa, B=1150 MPa and n=0.8744.

Figure 6.9. True stress-strain curve of compression test at reference strain rate
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Figure 6.10. True plastic stress versus true plastic strain

Figure 6.11. shows typical compression high strain rate stress-strain rate-strain

curve of the studied alloy. As noted in Figure 6.11., the strain rate in a dynamic test is

not constant and varies with strain. The variance is about ±100 s-1 for each test and

therefore an average strain rate is calculated for the each dynamic test performed. For

the second parentheses which show the strain rate effect on the deformation, the yield

stress values are drawn as function strain rate as shown in Figure 6.12. The data in

Figure 6.12 is then witted with the following relation

��������������������������������������������������������
n 0.87448(A B ) (927 1150 )+ ε = + ε

���������������������������������������������(6.1)

JC compression model parameters of Ti6Al4V are further tabulated in Table 6.1. Figure

6.13. shows the model and experimental stress-strain curves at different strain rates. If one

ignores the softening due to adiabatic heating at large strains, the experimental and model stress-

strain curves are essentially very much similar. Figure 6.13 compares experimental and

model stress-strain curves at different strain rates. At last to check the reliability of the

model parameters we compared with the real tests result with the model results as in

Figure 6.13 model and experimental stress values are very much similar particularly at

relatively low strains. At increasing strain levels, the model stress values deviates from

the experimental stress values, resulted from the material softening due to adiabatic

heating.
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Figure 6.11. True stress-strain rate versus true strain graphics for dynamic test at strain
rate 495 s-1

Figure 6.12. True plastic stress versus true plastic strain rate curve for compression

Table 6.1. JC Model parameter defined for compression tests of Ti6Al4V

A (MPa) B(MPa) c n ÒÓ (s
-1

)

927 1150 0.008674 0.8674 1x10-3
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Figure 6.13. Comparison of true stress versus true plastic strain results of model
and experiments

6.2.2. JC Material Model Parameter Determination For Tension Tests

The same strategy as with compression tests is applied to tension test stress-

strain curves to obtain JC material model parameters. The first bracket, �9 � :���, of

JC model is determined using the average true stress-strain curve at the reference strain

rate (Figure 6.13.). The fitting is performed until about 0.035 strain since above this

strain level necking starts and the stress values gradually decreases. The first bracket of

the JC equation for tension is found as,

�9 � :��� � �ÔÕÖ)× � !!jØ��)ÙÚÛT� �����������������������������	
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Similar to dynamic compression strain rates, the tension dynamic strain rates vary with

strain (±50 s-1). Therefore, an average strain rate is calculated for the each dynamic test

performed. In addition, the adiabatic heating effect is considered negligible for the

tension tests as the material necks down at relatively low strains before any significant

adiabatic heating. For the determination the parameters of the second bracket of JC
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Then the parameters determined for the tension test listed in Table 6.2.

Table 6.2. JC parameters determined for tension tests

A (MPa) B(MPa) c n εεεεo (s
-1

)

927.88 1062.5 0.0167 0.6214 1x10-3

�

�

�

Figure 6.16. Comparison of true stress versus true plastic strain results of model
and experiments

6.2.3. High Temperature Tests

The third bracket of the JC material model relates the temperature effect with the

flow curve of the material. Quasi-static (1x10-3 s-1) high temperature tests were

performed at temperatures of 500 oC, 950 oC, 1050 oC and 1100 oC. The stress-strain

curves of the alloy at the tested temperatures are shown in Figure 6.16. and 6.17.
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Figure 6.17. True stress-true strain graph of high temperature tension test at
reference strain rate (10-3 s-1)

�

Figure 6.18. True stress-true strain graph of high temperature tension test at
������������������������reference strain rate (10-3 s-1)

�

�

�In high temperature tests, SHPB incident and transmitter bar heated up with the

specimen. The temperature increase affects the strain and stress values at high strain

rates. Since the strain measurements are taken some distance from the specimen, the

strain values should be corrected for the correct values. The following formulations are

used to correct stress and strain values;
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where, α is the thermal diffusivity, T is sample temperature and To is the room

temperature. The correction factors for the used SHPB are shown in Figure 6.18 as

function of temperature.

���

�

Figure 6.19. Correction factors-temperature curve for inconel bars

�

Figure 6.19 shows the variation of the yield strength with T*. In Figure 6.19, also the

yield strength data of the similar alloy taken from Vanderhasten study are also shown

(M. Vanderhasten, et al. 2005). Important stress decreased with increasing temperature

determined from quasi-static tests results is especially seen after 600 oC. The reason of

this decrease after 600 oC is related with the change of the microstructure as a result of

recrystalization process. In addition, after 800 oC phase transformation and dislocation

climb take place. Due to these facts, the third bracket of the JC model equation is fitted

to yield strength data between 25-600 oC and 800-1100 oC separately. For the later the

reference temperature is taken 800 oC as seen in Figure 6.20. The JC model parameters

between 25-600 oC and 800-1100 oC are tabulated in Table 6.3 and 6.4, respectively.
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The model stress-strain curve at high strain rate and high temperature is verified by the

high temperature stress-strain curve obtained from SHPB as shown in Figure 6.21.

Model and experiment give similar stress values as depicted in this figure, showing the

consistency between model and experiments.

�

Figure 6.20. True stress-temperature graphs of this study and literature

����� �

Figure 6.21. True stress-temperature graphs of this study and literature
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Table 6.3. JC model parameters between 25 oC to 600 oC
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Table 6.4. JC model parameters between 800 oC to 1100 oC
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Figure 6.22. True stress-strain rate-true strain graph of high strain rate test
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6.2.4. JC Damage Model Parameter Determination

The first bracket in the JC fracture model defines the relation between strain to

fracture and hydrostatic tension. As the hydrostatic tension increases, strain to fracture

decreases. The second bracket represent the strain rate effect on the failure strain of the

material. The third bracket defines the effect of thermal softening on the failure strain.

The stress triaxilities, fracture strain, and strain rates of the tested notched samples with

different notch radius listed in Table 5.3. Parameters D1, D2 and D3 in the first bracket of

the JC damage model are determined from the tension tests of the specimens with notch

radius of 6 mm, 3 mm and 2 mm at reference strain rate (10-3 s-1). The Stress triaxility

versus fracture strain graph shown in Figure 6.22 is fitted with @H� � H+���
�H6��. E
(Figure 6.22.). The value of D4 in the second bracket is determined by fitting the

fracture strain-strain curve (Figure 6.22.). The determined value of D4 is the average of

the three notched samples. Thermal softening parameter D5 is further determined by

fitting tests at various temperatures. The determined JC model parameters are listed in

Table 6.23.

Table 6.5. Fracture strains, strain rates and dimensions of the test samples

Strain

Rate

Fracture Strain

(Notch Radius 6 mm)

Fracture Strain

(Notch Radius 3 mm)

Fracture Strain

(Notch Radius 2 mm)

10-3s-1 0.43779 0.34510 0.30994

10-2s-1 0.36341 0.32075 0.29746

10-1s-1 0.33143 0.31145 0.27793
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�

�

Figure 6.23. Fracture stress versus stress triaxility
�

�

Figure 6.24. Fracture versus strain rate graph for specimen with 3mm notch radius
�

�

Table 6.6. JC damage parameters

D1 D2 D3 D4 D5 �o (s
-1

)

0.294 8.63 -8.4 -0.0213 4.22 1x10-3

�
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6.3. Metallographic Examination

Figure 6.22 shows SEM micrograph of tested Ti6Al4V alloy. The structure

consists of α and β phases. The EDX result shown in Figure 6.22 confirms that the

white phase is β phase as it contains higher V content. Titanium alloy used in this study

was reported to be annealed at below β transus temperature. As a result β phase

precipitated in α phase.

�
�

Figure 6.25. Micro-structure of Ti6Al4V alloy with 5000X magnification

�
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�

Figure 6.26. EDX of the precipitate in Ti6Al4V alloy

�

�

The fracture surfaces of the quasi-statically and dynamically tested tensile test

specimens are shown in Figure 6.23 and 6.24, respectively. The failure is a cup and cone

type of fracture, which is a characteristic fracture type of ductile metals. The dimpled

central area of the pictures shows the region of the ductile failure. The voids initiate in

the center and progress through ductile failure to the end of the specimen. The flat

region around the ductile fracture region is the region of the brittle fracture. The ductile

fracture area in quasi-statically tested sample is seen to be larger, proving a more ductile

failure at quasi-static strain rates. This also agreed with the measured decline in fracture

strain at increasing strain rates. Both crack surfaces contain dimples in the ductile

region but the size of the dimples on dynamic test specimen fracture surface are large

and distinctive than the static test specimen (Figure 6.25 and 6.26). This also prove a

excessive plastic deformation of the static test specimen than dynamic one. When the

photos in above figures examined. It can be seen that number of the dimples on the

fracture surface of the static tested specimen were more than dynamic one. But the size

of the dimles in dynamic specimen greater than static tested specimen. Also dimples in

static specimen surface are shallow and smaller than dynamically tested specimen.

Deeper dimples would have a direct relationship with the higher values obtained for the

reduction area in the sample. SEM micrographs of the quasi-statically and dynamically

tested samples are shown sequentially in Figure 6.27 and 6.28, respectively. The side
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view photographs of dynamic and quasi-static tension test specimens prove that fracture

occurs in α phase. β phase is soft and deforms along the applied stress direction. All the

side view photographs include bubble like structures and numbers of these structures are

more in dynamic tested specimen structure then static. These structures are the point

where the dislocations reunite. Also small black points called voids are observable in the

photographs.

Figure 6.27. Crack surface of quasi-static tension test specimen

Figure 6.28. Crack surface of dynamic tension test specimen
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Figure 6.29. Quasi-static tension test specimen fracture surface at 5000X magnification

Figure 6.30. Dynamic tension test specimen fracture surface at 5000X magnification
�
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Figure 6.31. Quasi Static test specimen side view at 2500X magnification�

�

�

Figure 6.32. Dynamic tension test specimen side view at 2500X magnification�

�

Figures 6.29 and Figure 6.30 show the cracks in the tested static and dynamic

compression test specimens, respectively. In general the failure mechanisms of metals

prove that shear banding is one the major fracture mode. The large strains cause the

formation of bands where the shear is localized intensively. These bands are important

for the fracture mechanism because in the zone cracks and voids initiate and propagate.

The thickness of the shear band in dynamically tested samples is about 15µm (Figure

6.31). After metallographic examination Vickers hardness tests are applied to determine
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Figure 6.35. Crack inside the dynamic compression test specimen

Table 6.7. The hardness test results of three regions

STATIC SPECIMEN DYNAMIC SPECIMEN

A.S.B. NEAR FAR A.S.B. NEAR FAR

1 244 324 351 287 349 361

2 230 316 341 281 353 362

3 263 335 344 276 349 356

MEAN 246 325 345 281 351 360

STD.
DEV. (%)

12.52 9.54 5.13 5.51 4.04 3.21

COEFF.
OF VAR.

3.65 2.94 1.49 1.96 1.15 0.89
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6.4. JC Model Analysis and Comparison with the Literature

Such important properties including high strength to weight ratio, low density

and corrosion resistance tend to increases the use of Ti6Al4V alloy gradually, especially

in the biomedical and aerospace industry. For the design purposes of this alloy in the

structural applications, to define the mechanical behavior in terms of constitutive

relations is needed. Studies were previously performed on Ti6Al4V alloy to understand

its behavior under quasi-static and dynamic loading conditions at different strain rates

and temperatures. Nasser (Nemat-Nasser, et al. 2001) investigated the effect of strain

rate, temperature and microstructure on the mechanical properties Ti6Al4V alloy

produced by three different processes. These alloys were commercial Ti6Al4V (MIL-T-

9047G), RS-MIL-HIP (hot isostatic pressed) and RS-HIP. Commercial alloy specimens

annealed at 748 oC for one hour in a vacuum approximately at 10-5 Torr, and air-cooled

to room temperature. The other two alloys were produced with powder metallurgy.

Experimental results showed that RS-MIL-HIP Ti6Al4V alloy had higher flow strength.

The flow stresses of the alloys tested were found to be, however, more sensitive to the

temperature than the strain rate. The microscopical examinations also showed that the

microstructure differences affected the initial yield stress and the athermal part of the

flow stress. Adiabatic shear bands and associated fractures were found as the main

failure characteristics of the Ti6Al4V alloy at low temperatures and high strain rates,

which was fully agreed with the present work. Khan (Khan, et al. 2004) also developed

the J-C parameters of the commercial Ti6Al4V alloy using the test results of Nasser.

Lee (Lee and Lin 1998) investigated the flow properties of Ti6Al4V alloy at high

temperature and high strain rate. The titanium alloy used in this study was extruded

below the transition temperature and annealed for 1 hour at 760 oC. The results of

experiments proved that the flow behavior of Ti6Al4V alloy was sensitive to the

temperature and temperature sensitivity increased with increasing true strain. The results

of the failure analysis also proved that shear bands were the sites where the fracture

occurred. The microstructural examination of the deformed specimens indicated that the

dislocation density linearly decreased with temperature. The dislocation cell size

increased with temperature and decreased with dislocation density. As a result of

microscopic examinations, an inverse relation between flow stress and dislocation cell

size was obtained. Lastly, the JC material model parameters were determined. Seo (Seo,
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et al. 2005) investigated high temperature and strain rate deformation behavior of a

Ti6Al4V alloy (AMS 4928N HEAT 579L) used as airplane turbine blade. Specimen

with dimensions of 8mm in length and 8mm in diameter were used for tests. Dynamic

tests were performed with high temperature Split Hopkinson pressure bar. The true

stress-strain relations at a strain rate of 1400 s-1 were determined from room temperature

to 1000 oC at intervals of 200 oC. As the temperature increased the flow stress and strain

hardening parameter decreased. JC material model was determined. Similar study

performed by Khan et al. with Ti6Al4V alloy. The chemical composition of the alloy

used in this study shown in the table. The alloy used in this study has hexagonal close

packed crystalline structure. Macdougall and Harding (Khan, et al. 2004) determined JC

parameters of a Ti6Al4V alloy using . torsion stress data extracted and converted to von

Mises effective stress and plastic strain. Lawrence Livermore National Laboratory

reported the deformation and failure behavior of a Ti6Al4V alloy. The Ti6Al4V alloy

investigated was annealed at 790 oC for one hour and cooled in a furnace. Both

compression and tension tests were applied at high strain rate tests. The data from the

existent literature were used for the determination and verification of the JC model. The

relation between shear band, shear localization and failure of the sample was explained.

The parameters of the JC material and damage model were defined.

Based on the above literature survey, JC flow stress and damage model

parameters of the previous studied are listed sequentially in Tables 7.1 and 7.2 together

with present study results. For comparison, the reference strain rate of the studies listed

in Table 7.1 converted into 1 s-1 and JC parameters recalculated. The JC parameters

listed in these tables differ from each other. The difference is attributed to the

differences in the microstructure of the same alloy tested. However, the strain rate

sensitivity parameter of the JC model, c, is found to be very similar. The values of c

range between 0.013-0.028. The values c in the present study is lower in compression

and this is basically a result of large strain involved in compression which hides the

effect of strain rate. While the c parameter obtained in tension show good agreement

with values obtained in previous studies. It should also be noted that the tested Ti6Al4V

alloy is a biomedical grade alloy as it contains very low level of interstitial elements.

This result in an increased ductility when compared with commercial alloys tested in the

literature.
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Table 6.8. JC material model parameters defined as a result of different studies

� A(MPa) B(MPa) n c m

Khan, et al. (with
optimization)

1104 1036 0.6349 0.01390 0.7794

Khan, et al. (without
optimization)

1080 1007 0.5975 0.01304 0.7701

Nasser, et al. 1119 838.6 0.4734 0.01921 0.6437

Macdougall and Harding 984.0 520.3 0.5102 0.015 0.8242

Lee, et al. 782.7 498.4 0.28 0.028 1.0

Seo, et al. 997.9 653.1 0.45 0.0198 0.7

Lawrence Livermore
National Laboratory

1098 1092 0.93 0.014 1.1

Present study, tension 1062 1317.3 0.7392 0.015 0.965

Present study, compression 982.5 1218.9 0.8674 0.00824 0.965

Table 6.9. JC damage parameters defined as a result of different studies

Study D1 D2 D3 D4 D5

Lawrence Livermore National
Laboratory

-0.09 0.25 -0.50 0.014 3.87

Our study 0.294 8.63 -8.4 -0.0213 4.22
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CHAPTER 7

CONCLUSION

In the present work, the JC flow stress and damage parameters of a biomedical

grade Ti6Al4V alloy that contained very low levels of interstitial elements were

determined for the modeling its deformation in the CWR process. Despite the existence

of the material parameters of the alloy in the literature, this study provided the material

property data for the first time for a biomedical grade alloy. The JC models were

determined through quasi-static (10-3- 0.1 s-1) and high strain rates (300-1000 s-1) within

the temperature range of 25-1150 oC. High strain rate tests were performed using both

compression and tension SHPB testing devices. The damage model was determined

using notched specimens of different stress triaxiality. Based on the results the

followings may be concluded.

1. The tested alloy flow stresses were found to increase with increasing strain rate

for both compression and tension tests. This was proved that the alloy has a

strain rate sensitive flow stress behavior.

2. At increasing strain rates the failure strains in tension decreased. The reduced

fracture strain was also confirmed by the microscopic observations. In statically

tested samples the ductile fracture mode was composed of smaller but deeper

dimples, while the dimples were observed to be shallow and larger in

dynamically tested samples. The cup region of the cup-cone type fracture was

also wider in statically tested samples.

3. The tensile fracture presumably started in α  region and the β phase

microscopically shown to deform plastically through the tensile axis.

4. The compression failure mode of the alloy was found to be resulting from the

shear band formation followed by the fracture of the shear band. This failure

mode was also found to be valid both statically and dynamically tested samples.

The size of the shear band was measured to be 15 µm in the samples tested

dynamically. The material in the shear band was also shown to be softer.
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5. High temperature test conducted at quasi-static strain rate showed that the stress

values decreased greatly after about 800 oC due to α −>β transformation. Due to

this two differ tent JC material models valid between 25-600 oC and 800-1150
oC were developed.

	
 The determined JC parameters were found to be well agreed with the literature

except the model obtained from the compression tests. The reduced strain rate

sensitivity parameter of the model in compression was attribute to adiabatic

heating of the samples which hided the strain rate sensitivity.�
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