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ABSTRACT

FREQUENCY SPLITTING WITH TWO DIMENSIONAL

TRIANGULAR PHOTONIC CRYSTAL

Photonic crystals are periodically arranged dielectric materials. If the periodicity

is broken along a line, i.e. a line defect is formed, then the line defect can behave like

a waveguide. In this thesis, a frequency splitting device for electromagnetic waves is

designed and tested theoretically using line defect waveguides. The theoretical design of

the waveguides is accomplished using the plane wave expansion and the supercell method.

The testing is done by the finite difference time domain method.

Frequency mixing and splitting, or multiplexers and demultiplexers as they are

known in industry, for electromagnetic waves are important since they lead to a multipli-

cation in capacity for optical communications. Multiplexers and demultiplexers have been

in use for a long time. However, designing photonic crystal multiplexers has a history of

about ten years. In this thesis, a new photonic crystal demultiplexer design is suggested

using photonic crystal line defect waveguides.
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ÖZET

İKİ BOYUTLU ÜÇGEN ÖRGÜLÜ FOTONİK KRİSTAL İLE

FREKANS AYIRMA

Fotonik kristaller periyodik olarak dizilmiş dielektrik malzemelerdir. Bu periy-

odiklik bir doğru boyunca bozulunca, yani çizgisel bir kusur meydana getirilince,

bu çizgisel kusur dalga kılavuzu gibi davranabilir. Bu tezde, çizgisel kusurlu dalga

kılavuzları kullanılarak, elektromagnetik dalgalar için frekans ayırma aygıtı teorik olarak

tasarlandı ve sınandı. Bu dalga kılavuzlarını teorik olarak tasarlama düzlem dalga açılım

ve süperhücre yöntemleriyle yapıldı. Teorik sınamada ise sonlu farklar zaman alanı

yöntemi kullanıldı.

Elektromagnetik dalgalar için frekansları birleştirme ve ayırma aygıtları önemliler

çünkü bunlar optik haberleşmede bilgi aktarım kapasitesini katlamayı sağlarlar. Bu

aygıtlar uzun zamandır kullanılıyorlar. Ama fotonik kristallerle tasarımları on senelik

bir geçmişe sahip. Bu tezde, fotonik kristal çizgisel kusurlu dalga kılavuzlarıyla yapılan

yeni bir fotonik kristal frekans ayırma aygıtı öneriliyor.
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CHAPTER 1

INTRODUCTION

The title of the thesis immediately brings up two questions to the mind of the

reader unfamiliar with the subject matter. The first question: What is a photonic crystal?

The question will be answered in the first chapter. We will also briefly mention some

applications of photonic crystals in general.

The second question is, What does “frequency splitting” mean? We will attempt

to answer this question in Section 1.3 and in Chapter 3 The heart of the thesis is Chapter 3,

where our device for frequency splitting is discussed in detail.

How do we study photonic crystals? We used two methods for studying photonic

crystals. One of them is the finite difference time domain (FDTD) method widely used in

a variety of problems in computational electrodynamics. The other one is the plane wave

expansion method and supercell method for theoretical prediction, before computational

modeling. These methods will be explained in Chapter 2.

To understand the material in this thesis, the reader needs to be familiar with basic

electromagnetic theory (Griffiths 1999), basic solid state physics (Kittel 1996) and a

little mathematics, especially Fourier analysis and eigenvalue problems (Arfken and

Weber 2005). What about quantum mechanics? As we will see in Section 3.6, the scale

of the problem we are studying is ∼ 1.5µm, so we remain in the classical region. So

we don’t take into account any quantum mechanical effect in this thesis. All quantum

mechanical effects are implicitly taken into account through the dielectric constant of the

material of which the photonic crystal is made.

1.1. Photonic Crystals

What are photonic crystals? As is well-known, a crystal is a material whose com-

ponents (atoms, molecules, or ions) are arranged in an orderly repeating pattern extending

in one, two, or three dimensions. Similarly, a photonic crystal (PhC) is a structure which
1



(a) (b)

(c)

Figure 1.1. (a) A 1D photonic crystal, (b) a 2D photonic crystal, (c) a 3D photonic crystal.

is formed by periodically arranging materials with different dielectric constants, ε. A one-

dimensional (1D) PhC is shown in Figure 1.1a. It is actually a multilayer film. The white

and blue layers represent materials with different dielectric constants. Its periodicity is

only along the z-axis, which is why this kind of PhCs is called one-dimensional PhCs.

An example of a second kind of PhC is shown in Figure 1.1b. This is a two-

dimensional (2D) PhC, because it is periodic in the xy-plane only, with no variation of

the dielectric constant along the z-axis. The rods and space represent materials with

different dielectric constants. We will be concerned with only 2D PhCs in this thesis.

Finally, if the periodicity of the PhC extends in all three dimensions, this kind

of PhCs are called three-dimensional (3D) PhCs. An example of a 3D PhC is shown in

Figure 1.1c. The spheres and space stand for materials with different dielectric constant

again.

Which properties of PhCs make them desirable for optical device applications?

The most important property of PhCs is the electromagnetic, or photonic band gap. A

2



photonic band gap is a region in the frequency spectrum, in which the propagation of EM

waves with frequencies within the gap is strictly forbidden. The possibility of creating a

photonic band gap with 3D periodic dielectric structures was suggested by (Yablonovitch

1987).

Another most important property is strong localization of EM waves in certain

disordered dielectric superlattices. A disordered dielectric superlattice is a lattice with

weak disordering of a periodic dielectric structure. Strong localization of EM waves may

be achieved in defect regions. This idea was suggested by (John 1987). These properties

make PhCs powerful tools for manipulation of EM waves.

1.2. Applications of Photonic Crystals

PhCs are powerful tools for manipulation of EM waves. Then what are applica-

tions of PhCs with these significant properties? One of the most researched applications

is photonic crystal fibers which are a new class of optical waveguides. It is known that

optical fibers play an important role in modern communications. A traditional optical

fiber consists of a central core and a cladding which surrounds the core. Light is guided in

the core along the optical fiber by total internal reflection since the core refractive index

is higher than the cladding refractive index.

This next generation PhC fiber has a core and a cladding like conventional optical

fiber, and it is made of a 2D periodic dielectric structure perpendicular to its axis. PhC

fibers can be divided into two types. One is the index-guided PhC fibers first reported by

(Knight, et al. 1996). Index-guided PhC fibers are similar to conventional optical fibers

because the core effective refractive index is higher than the cladding effective refractive

index. They can have a much higher dielectric contrast between the core and the cladding

than conventional optical fibers leading to a greater strength of optical confinement. And

they are useful for enhancing nonlinear effects and creating unusual dispersion phenom-

ena (Joannopoulos, et al. 2008). In addition it is important that index-guided PhC fibers

can remain single mode for a sufficiently large fiber lengths. This ability is known as

endlessly single mode (Birks, et al. 1997).

The other type is photonic-bandgap fibers reported by (Knight, et al. 1998) and

3



(Cregan, et al. 1999). Photonic-bandgap fibers are different from traditional optical fibers.

The core is air and the cladding effective refractive index is higher than that of air. So

light guidance is explained by photonic band gap phenomena instead of total internal

reflection. This minimizes the effects of losses, undesired nonlinearities and any other

unwanted properties of the bulk materials (Joannopoulos, et al. 2008).

PhC fibers can be superior to classical fibers because they can have less attenua-

tion, can transmit light with much higher optical power, have lower bending losses and

can be used in an increasing number of applications in a broad range of areas (Russell

2006).

A challenge application: Photonic integrated circuits. It is known that electronic

integrated circuits (IC) are made of transistors and transmission lines for electrons. In ICs

information is transfered by electrons between transistors with transmission lines. In pho-

tonic ICs, information will be transfered by photons instead of electrons. However there

are some difficulties for photonic ICs. The first problem in constructing photonic ICs is

to guide EM waves without bending loss in waveguides. High transmission of EM waves

through sharp bends was demonstrated theoretically by (Mekis, et al. 1996) and experi-

mentally by (Lin, et al. 1998). Since the transmission lines have branches (or splitters) in

ICs, the waveguides will have branches in photonic ICs as well. A branch for photonic

ICs was simulated (Fan, et al. 2001) and another branch was realized experimentally

(Lin, et al. 2002). The second problem in the way of a practical realization of photonic

ICs is to make optical (or photonic) transistors. An all optical transistor is demonstrated

by (Yanık, et al. 2003) theoretically with nonlinear PhCs. All optical bistable switch

which is equivalent to optical transistor action is demonstrated by (Notomi, et al. 2005)

experimentally. However combining all of those with low power requirements and high

speed is still difficult for photonic ICs. More time is needed for realization of photonic

ICs.

Other interesting topics with PhCs are microcavities (Villeneuve, et al. 1996,

Foresi, et al. 1997), modification of spontaneous emission (Fan, et al. 1997), superprism

phenomena (Hosaka, et al. 1998), reflector (Fink, et al. 1998), channel drop (Fan, et

al. 1998), self-collimating phenomena (Kosaka, et al. 1999), negative refraction (Notomi

2000, Luo, et al. 2002), photonic crystal laser (Loncar, et al. 2002, Park, et al. 2004).
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1.3. Wavelength Division Multiplexing

In fiber-optic communications, wavelength-division multiplexing is a technology

which enables transmission of multiple optical signals on the same optical fiber simul-

taneously. The technology uses different wavelengths of laser light to carry different

signals. This leads to a multiplication in capacity for communications. In this technol-

ogy multiplexers are used for joining the signals together and demultiplexers are used for

splitting the signals apart. What does “frequency splitting” in the title of the thesis mean?

Frequency splitting means demultiplexing actually and our frequency splitting device is

a demultiplexer.

Using a photonic crystal superprism, PhC demultiplexers were theoretically

shown to be possible (Chung and Hong 2002, Momeni and Adibi 2003, Matsumoto, et al.

2005) and were experimentally realized (Momeni, et al. 2006). Multiplexing and demul-

tiplexing using PhC waveguides were also theoretically shown to be possible (Chien, et

al. 1999, Centeno, et al. 1999, Nelson, et al. 2000, Koshiba 2001, Sharkawy, et al. 2001,

Smajic, et al. 2003). In this thesis we suggest a new PhC demultiplexer design using PhC

waveguides.
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CHAPTER 2

METHODOLOGY

2.1. Finite Difference Time Domain Method

Finite-difference time-domain (FDTD) is a popular computational electrodynam-

ics modeling method (Yee 1966, Taflove and Brodwin 1975). How does FDTD method

work? In this section we will answer this question.

Our starting point is Maxwell’s equations. They are in Heaviside-Lorentz units

∇ ·D = ρ (2.1)

∇ ·B = 0 (2.2)

∇× E = −1

c

∂B

∂t
(2.3)

∇×H =
J

c
+

1

c

∂D

∂t
(2.4)

We assume that there is no charge density in a 2D PhC. However current density exists,

because it is EM wave source for this modeling method. So

∇ ·D = 0 (2.5)

∇ ·B = 0 (2.6)

∇× E = −1

c

∂B

∂t
(2.7)

∇×H =
J

c
+

1

c

∂D

∂t
(2.8)

In scalar form Equation 2.7 is
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∂Ey

∂z
− ∂Ez

∂y
=

1

c

∂Bx

∂t
(2.9)

∂Ez

∂x
− ∂Ex

∂z
=

1

c

∂By

∂t
(2.10)

∂Ex

∂y
− ∂Ey

∂x
=

1

c

∂Bz

∂t
(2.11)

and Equation 2.8 is

∂Hz

∂y
− ∂Hy

∂z
=

Jx

c
+

1

c

∂Dx

∂t
(2.12)

∂Hx

∂z
− ∂Hz

∂x
=

Jy

c
+

1

c

∂Dy

∂t
(2.13)

∂Hy

∂x
− ∂Hx

∂y
=

Jz

c
+

1

c

∂Dz

∂t
(2.14)

For simplicity, we focus our analysis on two dimension. So let’s take

Dx = Dy = Hz = Jx = Jy = 0 (2.15)

Then Equation 2.7-2.8 can be written

−∂Ez

∂y
=

1

c

∂Bx

∂t
(2.16)

∂Ez

∂x
=

1

c

∂By

∂t
(2.17)

∂Hy

∂x
− ∂Hx

∂y
=

Jz

c
+

1

c

∂Dz

∂t
(2.18)

Using D = εE and B = µH equations in Heaviside-Lorentz units again, Equation 2.16-

2.18 can be written
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Figure 2.1. A Yee lattice in 2D. An exercise for FDTD method.

−∂Ez

∂y
=

µ

c

∂Hx

∂t
(2.19)

∂Ez

∂x
=

µ

c

∂Hy

∂t
(2.20)

∂Hy

∂x
− ∂Hx

∂y
=

Jz

c
+

ε

c

∂Ez

∂t
(2.21)

∂x, ∂y and ∂t are infinitesimal differences in Eqs. 2.19-2.21. If these infinitesimal dif-

ferences are changed to finite differences, Eqs. 2.19-2.21 can are written

−∆Ez

∆y
≈ µ

c

∆Hx

∆t
(2.22)

∆Ez

∆x
≈ µ

c

∆Hy

∆t
(2.23)

∆Hy

∆x
− ∆Hx

∆y
≈ Jz

c
+

ε

c

∆Ez

∆t
(2.24)

In Figure 2.1 there is a two dimensional discretized space. The space is diveded to

18 equal parts. This scheme is known as a Yee lattice (Yee 1966). Using the Yee lattice,

Eqs. 2.22-2.24 can be written
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− E
k+ 1

2
z (i + 1

2
, j + 1

2
)− E

k+ 1
2

z (i + 1
2
, j − 1

2
)

∆y

≈ µ(i + 1
2
, j)

c

Hk+1
x (i + 1

2
, j)−Hk

x(i + 1
2
, j)

∆t
(2.25)

E
k+ 1

2
z (i + 1

2
, j + 1

2
)− E

k+ 1
2

z (i− 1
2
, j + 1

2
)

∆x

≈ µ(i, j + 1
2
)

c

Hk+1
y (i, j + 1

2
)−Hk

y (i, j + 1
2
)

∆t
(2.26)

Hk
y (i + 1, j + 1

2
)−Hk

y (i, j + 1
2
)

∆x
− Hk

x(i + 1
2
, j + 1)−Hk

x(i + 1
2
, j)

∆y

≈ Jk
z (i + 1

2
, j + 1

2
)

c
+

ε(i + 1
2
, j + 1

2
)

c

E
k+ 1

2
z (i + 1

2
, j + 1

2
)− E

k− 1
2

z (i + 1
2
, j + 1

2
)

∆t

(2.27)

where we take Ak(i, j) = A(i∆x, j∆y, k∆t) and i, j, k ∈ Z. These equations can be

written as a recursion equations form for the FDTD method

E
k+ 1

2
z (i +

1

2
, j +

1

2
) ≈ E

k− 1
2

z (i +
1

2
, j +

1

2
)− ∆tJk

z (i + 1
2
, j + 1

2
)

ε(i + 1
2
, j + 1

2
)

+
c∆t

∆x

Hk
y (i + 1, j + 1

2
)−Hk

y (i, j + 1
2
)

ε(i + 1
2
, j + 1

2
)

− c∆t

∆y

Hk
x(i + 1

2
, j + 1)−Hk

x(i + 1
2
, j)

ε(i + 1
2
, j + 1

2
)

(2.28)

Hk+1
x (i +

1

2
, j) ≈ Hk

x(i +
1

2
, j)

− c∆t

∆y

E
k+ 1

2
z (i + 1

2
, j + 1

2
)− E

k+ 1
2

z (i + 1
2
, j − 1

2
)

µ(i + 1
2
, j)

(2.29)

Hk+1
y (i, j +

1

2
) ≈ Hk

y (i, j +
1

2
)

+
c∆t

∆x

E
k+ 1

2
z (i + 1

2
, j + 1

2
)− E

k+ 1
2

z (i− 1
2
, j + 1

2
)

µ(i, j + 1
2
)

(2.30)

With Eqs. 2.28-2.30, values of vector field components (Ez, Bx or By) at any lattice point

and at any time can be found depending on their initial or previous values.
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2.1.1. An Exercise for FDTD Method

How do we use Eqs. 2.28-2.30? To understand how to use Eqs. 2.28-2.30 for

finding the values of the vector field components at any lattice point and any time, let’s

make a simple example.

In Figure 2.1 at (i = 3/2, j = 3/2) Yee lattice point there is a current density Jz.

When k < 0 which means t = k∆t < 0, the initial condition is

Jk<0
z (3/2, 3/2) = 0 (2.31)

and when k ≤ 0,

Ek≤0
z (i, j) = Bk≤0

x (i, j) = Bk≤0
y (i, j) = 0. (2.32)

When k ≥ 0, let’s take

J0
z (3/2, 3/2) = Jk>0

z (3/2, 3/2) 6= 0. (2.33)

Jz changes with time at k = 0. As a result EM wave is created. Using Equation 2.30, one

can find

E
1
2
z (

3

2
,
3

2
) ≈ − ∆t

ε(3
2
, 3

2
)
J0

z (
3

2
,
3

2
) (2.34)

Using Equation 2.28-2.29, one can achieve
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H1
y (2,

3

2
) ≈ − c∆t

µ(2, 3
2
)∆x

E
1
2
z (

3

2
,
3

2
) (2.35)

H1
y (1,

3

2
) ≈ c∆t

µ(1, 3
2
)∆x

E
1
2
z (

3

2
,
3

2
) (2.36)

H1
x(

3

2
, 2) ≈ − c∆t

µ(3
2
, 2)∆y

E
1
2
z (

3

2
,
3

2
) (2.37)

H1
x(

3

2
, 1) ≈ c∆t

µ(3
2
, 1)∆y

E
1
2
z (

3

2
,
3

2
) (2.38)

When one continues the calculation with same way, the computation of the vector fields

can be proceeded easily

2.1.2. Geometric Structures in a Yee lattice

It is understood that a Yee lattice consists of several square parts. Then how can

we insert any sort of geometric structure into a Yee lattice? Actually rule is very easy.

Each part of a Yee lattice are given an avarage dielectric constant value according to the

shape of the geometric object. To understand very well, let’s insert a triangular object into

the Yee lattice in Figure 2.2.

The triangular structure is on six Yee lattice parts. Three of them consist of air

and dielectric material (εdiel = 9) fairly. According to the rule, their dielectric constant

values are taken 5. So our triangular object looks in Figure 2.2. With this rule any kind of

structure which we study can be inserted in a simulation space (see Figure 2.3.

To close more real results, the Yee lattice should be divided more that 18 parts.

However it cannot be an enormous number because of computer technology limits. Before

starting a computation for any kind of structure, we have to find an ideal number. This

point is called resolution in programmer language.

In Figure 2.3 PML means perfectly matched layer (Berenger 1994). It absorbs

EM waves at simulation boundaries without reflections. It provide us studying small
11



Figure 2.2. A triangular object in a Yee lattice in 2D.

Figure 2.3. FDTD simulation space with PML which absorbs EM waves at simulation
boundaries without reflections. Any kind of structure can be inserted in the
simulation space.
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simulation space without reflection effects from simulation boundaries. So we gain times

during a computation.

In this thesis, we use MEEP1 (MIT Electromagnetic Equation Propagation) soft-

ware for FDTD simulations. MEEP is a free software package developed at MIT to model

EM systems. It works on Linux OS.

2.2. Plane Wave Expansion Method

In Chapter 1 we said that most important properties of PhCs are the photonic band

gap and strong localization of EM waves in disordered PhCs. Plane wave expansion

(PWE) method is a useful tool for calculating electromagnetic band gaps and localized

frequencies (Satpathy, et al. 1990, Ho, et al. 1990, Zhang and Satpathy 1990, Plihal

and Maradudin 1991, Meade, et al. 1992, Sözüer 2009). What is the origin of the PWE

method? We try to answer the question in this section. As we mentioned in Chapter 1, we

studied a line defect waveguide based on 2D PhCs in this thesis, so our derivation will be

for 2D PhCs.

Our starting point is again Maxwell’s equations.

∇ ·D = ρ (2.39)

∇ ·B = 0 (2.40)

∇× E = −∂B

∂t
(2.41)

∇×H = J +
∂D

∂t
(2.42)

We assume that there are no charge density and current density in a 2D PhC.

1http://ab-initio.mit.edu/wiki/index.php/Meep
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∇ · E = 0 (2.43)

∇ ·H = 0 (2.44)

∇× E = −µµ0
∂H

∂t
(2.45)

∇×H = εε0
∂E

∂t
(2.46)

where D = εε0E and B = µµ0H. With Eqs. 2.45-2.46

∇× η∇×H +
µ

c2

∂2H

∂t2
= 0 (2.47)

where η =
1

ε
and c =

1√
µ0ε0

. Mathematically H(r, t) can be written as an inverse Fourier

transform in time and space

H(r, t) =

∫∫
H(k′, w)ei(k′·r−wt)dk′dw. (2.48)

On the other hand a plane wave of frequency w is written by

E(r, t) = E0e
i(k·r−wt) (2.49)

So Equation2.48 can be thought a summation of plane waves with infinite numbers of

different frequencies and wave vectors. This is the origin of the expression plane wave

expansion. When Equation2.48 is used in Equation2.47, one obtains

∇× η∇×H(r, w)− w2µ

c2
H(r, w) = 0 (2.50)
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Figure 2.4. White represents air (εair = 1), black represents dielectric material (εdiel =

13). The lattice of the PhC is triangular. So it is a 2D triangular PhC. R =

0.48a is the radius of the holes. a is lattice parameter (or constant). a1 and a2

are basis vectors of the lattice. The blue parallelepiped is the unit cell of the
PhC.

where

H(r, w) =

∫
H(k′, w)eik′·rdk′. (2.51)

Since our derivation is for 2D PhCs, k′ and r are both in the yz plane.

In Figure 2.4, a 2D PhC is shown. White represents air, black represents dielectric

material. The lattice of the PhC is triangular (or hexagonal). So the PhC is called 2D

triangular PhC. a1 and a2 are basis vectors of the lattice. The parallelepiped defined by

the basis vectors is called a unit (or primitive) cell. The translation vector is in the lattice

R = n1a1 + n2a2 (2.52)

where n1, n2 ∈ Z. Because of the periodicity
15



η(r) = η(r + R) ; µ(r) = µ(r + R) (2.53)

η(r) and µ(r) can be written as a Fourier series

η(r) =
∑

G′
η(G′)eiG′·r ; µ(r) =

∑

G′′
µ(G′′)eiG′′·r (2.54)

G is reciprocal lattice vector given by

G = m1b1 + m2b2 ; m1,m2 ∈ Z (2.55)

where b1 and b2 are the basis vectors of the reciprocal lattice (see Figure 2.5 for the

reciprocal lattice of a triangular PhC lattice). They are given by

b1 = 2π
a2 × x̂

a1 · a2 × x̂
; b2 = 2π

x̂× a1

a1 · a2 × x̂
; ai · bj = 2πδij (2.56)

In addition Equation 2.51 can be written with k′ → k + G

H(r, w) =
∑
G

∫

BZ

H(k + G, w)ei(k+G)·rdk (2.57)

similar to Bloch’s theorem in solid state physics, where BZ means Brillouin zone, which

is a primitive cell in the reciprocal lattice (see Figure 2.5).

When Equation 2.54-2.57 are used in Equation 2.51, we get

16



∑
G

η(G′ −G)(k + G′)× [(k + G)×H(k + G, w)]

+
w2

c2
µ(G′ −G)H(k + G, w) = 0 (2.58)

which is a generalized eigenvalue problem. This method is called H method. The

derivation of the generalized eigenvalue equation can be done in terms of electric field E.

Since Maxwell’s Eqs. 2.43-2.46 are invariant under these transformation

H ¿ E ; µ ¿ ε ; µ0 ¿ −ε0 (2.59)

the generalized eigenvalue equation for electric field E is

∑
G

ζ(G′ −G)(k + G′)× [(k + G)× E(k + G, w)]

+
w2

c2
ε(G′ −G)E(k + G, w) = 0 (2.60)

where we take ζ =
1

µ
. This method is called E method. We use E method in this thesis,

since E method converges more rapidly than H method for our interested PhCs (Sözüer,

et al. 1991).

2.2.1. A Comprehensible Form of the Eigenvalue Equation

The eigenvalue equation is a compact form in Equation 2.60. Then let’s go on the

derivation to see more clearly it. With a vector identity

A× (B×C) = B(A ·C)−C(A ·B) (2.61)
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Equation 2.60 becomes

∑
G

ζ(G′ −G)

{(k + G) · [(k + G′) · E(k + G, w)]− E(k + G, w) · [(k + G′) · (k + G)]}

+
w2

c2
ε(G′ −G)E(k + G, w) = 0 (2.62)

or in terms of x, y and z components of E, k and G

∑
G

ζ(G′ −G) {−(k + G) · (k + G′)Ex(k + G, w)}

+
w2

c2
ε(G′ −G)Ex(k + G, w) = 0 (2.63)

∑
G

ζ(G′ −G)

{−(k′z + G′
z)(kz + Gz)Ey(k + G, w) + (ky + Gy)(k

′
z + G′

z)Ez(k + G, w)}

+
w2

c2
ε(G′ −G)Ey(k + G, w) = 0 (2.64)

∑
G

ζ(G′ −G)

{
(k′y + G′

y)(kz + Gz)Ey(k + G, w)− (ky + Gy)(k
′
y + G′

y)Ez(k + G, w)
}

+
w2

c2
ε(G′ −G)Ez(k + G, w) = 0 (2.65)

Now we can see the eigenvalue equation more clearly. With
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AG′G = ζ(G′ −G)



(k + G) · (k + G′) 0 0

0 (k′z + G′
z)(kz + Gz) −(ky + Gy)(k

′
z + G′

z)

0 −(k′y + G′
y)(kz + Gz) (ky + Gy)(k

′
y + G′

y)




(2.66)

BG′G =




ε(G′ −G) 0 0

0 ε(G′ −G) 0

0 0 ε(G′ −G)


 (2.67)

and

xG =




Ex(k + G, w)

Ey(k + G, w)

Ez(k + G, w)


 ; λ =

w2

c2
(2.68)

Eqs. 2.63-2.65 can be written

∑
G

AG′GxG − λBG′GxG = 0 (2.69)

Ax = λBx (2.70)

This is a generalized eigenvalue equation.

G in the summation means the numbers of the points in the reciprocal lattice.

Additionally G controls the dimension of the matrices A and B in Equation 2.70. Or it

can be thought from Equation 2.57 that G is the number of the plane waves. Actually the

numbers of the points in the reciprocal lattice is infinite, however in favor of computing

this eigenvalue equation with computers, we have to take it finite. An enormous number

means impossible calculation because of computer technology limits. A small number

means doubtful results due to convergence problem (Sözüer, et al. 1991). So before a

computation, we have to take a finite optimum number N for G.
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2.2.2. TE and TM Modes

How can we make a decision for which EM wave is TE or TM in a 2D system?

According to Poynting’s theorem

S =
1

µ0

(E×B) (2.71)

there are two posibility for that EM waves propagate in yz plane. One of them is

Ex 6= 0 ; Ey = Ez = 0 (2.72)

Hx = 0 ; Hy 6= 0 ; Hz 6= 0 (2.73)

This is TE mode, due to that E is perpendicular to propagation direction of EM wave. The

other one is

Ex = 0 ; Ey 6= 0 ; Ez 6= 0 (2.74)

Hx 6= 0 ; Hy = Hz = 0 (2.75)

This is TM mode, since H is perpendicular to propagation direction of EM wave.

Now let’s look at Equation2.70. The eigenvalue equation is block diagonal. So it

can be written two independent eigenvalue equations. With

A′
G′G = ζ(G′ −G)(k + G) · (k + G′) (2.76)

B′
G′G = ε(G′ −G) (2.77)

x′G = Ex(k + G, w) ; λ =
w2

c2
(2.78)
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one of them is

A′x′ = λB′x′ (2.79)

where Ey = Ez = 0. Consequently Equation 2.79 is N × N generalized eigenvalue

problem for TE modes according to Equation 2.73, where N is the numbers of G.

With

A′′
G′G = ζ(G′ −G)


 (k′z + G′

z)(kz + Gz) −(ky + Gy)(k
′
z + G′

z)

−(k′y + G′
y)(kz + Gz) (ky + Gy)(k

′
y + G′

y)




(2.80)

B′′
G′G =


 ε(G′ −G) 0

0 ε(G′ −G)


 (2.81)

x′′G =


 Ey(k + G, w)

Ez(k + G, w)


 ; λ =

w2

c2
, (2.82)

the other eigenvalue equation is

A′′x′′ = λB′′x′′ (2.83)

where Ex = 0. As a result Equation 2.83 is 2N × 2N generalized eigenvalue problem for

TM modes according to Equation 2.75.

2.2.3. Band Structure

What do we get from these eigenvalue equations? When we look at the generalized

eigenvalue equations, it is understood that we get N frequencies, w, of TE modes (or 2N
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Figure 2.5. The reciprocal lattice of the triangular PhC. Brillouin zone in the reciprocal
lattice. ΓKM path for values of k. w and k are dimensionless values.

frequencies, w, of TM modes) for any value of k in Brillouin zone. As the value of k is

changed, we obtain a new set of N frequencies. When these frequencies are plotted for

each value of k, we achieve a w(k) function. This function is known as band structure

or dispersion relation. To understand clearly this calculation, let’s make an example.

2.2.3.1. An Example for Calculation of Band Structure

In a calculation of a band structure the biggest difficulty is the derivation of ε(G)

for an interested PhC. According to Fourier analysis we can write

ε(G) =
1

Vcell

∫

cell

ε(r)e−i(G·r)dr (2.84)

For the 2D triangular PhC in Figure 2.4, ε(r) is

ε(r) = εdiel + (εair − εdiel)Θ(R− |r|) (2.85)
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Figure 2.6. The band structure for the photonic crystal. There is a complete (TE or TM)
photonic band gap between 0.42 < w < 0.53. k values are taken on ΓKM

path.

where Θ(x) is a step function and r is defined in unit cell. Once Equation 2.85 is used in

Equation 2.84, one gets

ε(G) =
1

Vcell

∫

cell

εdiele
−i(G·r)dr +

(εair − εdiel)

Vcell

∫

cell

Θ(R− |r|)e−i(G·r)dr

=
1

Vcell

∫∫

cell

εdiele
−i(Gxx+Gyy)dxdy +

(εair − εdiel)

Vcell

∫ R

0

∫ 2π

0

e−iGrcosθdθrdr

= εdielδGx0δGy0 +
(εair − εdiel)

Vcell

∫ R

0

2πJ0(Gr)rdr

= εdielδG0 + (εair − εdiel)

(
πR2

Vcell

)
2J1(GR)

GR

(2.86)

where J1(x) is Bessel function. So

ε(G′ −G) = εdielδG′G + (εair − εdiel)

(
πR2

Vcell

)
2J1(|G′ −G|R)

|G′ −G|R (2.87)
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(a) (b)

(c) (d)

Figure 2.7. Testing the band structure with FDTD. TE modes for (a) w = 0.45 and (b)
w = 0.20 frequencies. Red and blue represent the positive and negative values
Ex respectively, and white regions are where the field is zero. A plot of Hx

for TM modes for (c) w = 0.45 and (d) w = 0.20. The color coding is similar
to that of Ex. EM waves can propagate through the PhC for w = 0.20. FDTD
test results are consistent with the band structure.

and

ζ(G′ −G) = ζdielδG′G + (ζair − ζdiel)

(
πR2

Vcell

)
2J1(|G′ −G|R)

|G′ −G|R (2.88)

Because of µair = µdiel = 1 or ζair = ζdiel = 1, Equation 2.88 can be written

ζ(G′ −G) = δG′G (2.89)

Which values of k in Brillouin zone are used to get band structure? The reciprocal

lattice for the triangular PhC structure is in Figure 2.5. ΓKM triangle repeats itself in
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BZ, and it is known as the irreducible region of the BZ, meaning that any point in the

BZ is equivalent to some point in the irreducible BZ. So it is enough to use ΓKM path

for values of k. Now let’s calculate the band structure of the PhC.

The calculated2 band structure of the PhC for R = 0.48a and εdiel = 13 is in

Figure 2.6. The number of plane waves used in the calculation is 361. There is a complete

photonic band gap between 0.42 < w < 0.53. Compelete means that it is for TE and TM

modes. w and k can be normalized so we can use the dimensionless quantities

wa

2πc
→ w ;

ka

2π
→ k (2.90)

The transformation is for simplicity and so the calculated band structure can be used for

any value of the lattice constant a.

2.2.3.2. Testing the Band Structure with FDTD

We expect no propagation in the PhC for w = 0.45, which is in the complete

band gap. We expect propagation in the PhC for w = 0.20, which is in the PhC band.

So is our prediction right? We test the predictions for TE and TM modes in Figure 2.7

with FDTD. We use a monochromatic TE point source in Figure 2.7a-2.7b and we use a

similar TM source in Figure 2.7c-2.7d. EM waves cannot propagate through the PhC in

Figure 2.7a-2.7c for w = 0.45 frequencies and EM waves can propagate through the PhC

in Figure 2.7b-2.7d for w = 0.20 consistent with the band structure. As a result FDTD

test results are suitable with the theoretical prediction.

2We use FORTRAN to calculate the band structure with LAPACK (Anderson, et al. 1999) routine

dsygv. LAPACK (Linear Algebra PACKage) is a software library for numerical linear algebra which can

be obtained free of charge from http://www.netlib.org/lapack.
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Figure 2.8. 2D triangular PhC where white represents air (εair = 1) and black repre-
sents dielectric material (εdiel = 13). The blue parallelepiped is the chosen
supercell of the PhC. A = 9a is supercell size. R = 0.48a is the radius of the
holes. a is lattice parameter. a1 and a2 are basis vectors of the lattice. rij is
the displacement of the holes.

2.3. Supercell Method

Supercell method is actually a plane wave expansion (PWE) method. What is the

difference then? While a periodic part of a PhC is a unit cell in PWE method, the periodic

part is chosen bigger than a unit cell in supercell method. This new periodic part instead

of a unit cell is known as supercell and this new method is called supercell method

(Meade, et al. 1991, Meade, et al. 1993, Sözüer 2009).

There is a 2D triangular PhC in Figure 2.8. In a calculation of a band structure

with supercell method the first difficulty is again the derivation of ε(G) for an interested

PhC similar to PWE method. ε(r) is for the PhC

ε(r) = εdiel + (εair − εdiel)
∑
i,j

Θ(R− |r− rij|) (2.91)

where Θ(x) is a step function and r is defined in supercell (SC). So we obtain
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(a)

(b)

Figure 2.9. The band structure of TE modes for the PhC with (a) supercell and (b) plane
wave expansion method. We achieve same photonic band gap, which is be-
tween 0.43 < w < 0.52, with the two method.
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Figure 2.10. A 2D triangular PhC with point defect where white represents air (εair = 1)
and black represents dielectric material (εdiel = 13). The blue parallelepiped
is the chosen supercell of the PhC. A = 9a is supercell size. R = 0.48a is
the radius of the holes. Rd = 0.30a is the radius of the point defect hole. a is
lattice parameter. rij is the displacement of the holes.

ε(G) =
1

VSC

∫

SC

ε(r)e−i(G·r)dr

= εdielδG0 + (εair − εdiel)
∑
i,j

cos(G · rij)(
πR2

VSC

)
2J1(GR)

GR
(2.92)

where J1(x) is Bessel function.

By using generalized eigenvalue equation for TE modes (see Equation 2.79), the

band structure of the PhC for R = 0.48a and εdiel = 13 with supercell method is in

Figure 2.9a. Supecell size A = 9a. We use 8281 plane waves. There is a photonic band

gap between 0.43 < w < 0.52. w and k in the band structure are dimensionless with

these transformation

wa

2πc
→ w ;

kA

2π
→ k (2.93)

In Figure 2.9b, same structure is calculated with PWE method by using general-

ized eigenvalue equation for TE modes (see Equation 2.79). We use 361 plane waves.
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And we achieve same photonic band gap, which is between 0.43 < w < 0.52. When we

compare two method, we can think that PWE method is more easy than supercell method,

since we use 361 plane waves instead of 8281 plane waves. Then why do we use supercell

method?

There is a 2D hexagonal PhC with point defect in Figure 2.10. ε(G) can be easily

seen from Equation 2.92 for the PhC with point defect

ε(G) = εdielδG0 + (εair − εdiel)(
πR2

d

VSC

)
2J1(GRd)

GRd

+ (εair − εdiel)
∑

i,j 6=0

cos(G · rij)(
πR2

VSC

)
2J1(GR)

GR
(2.94)

By using Equation 2.79 the band structure of the PhC with point defect for R =

0.48a, Rd = 0.30a and εdiel = 13 with supercell method is in Figure 2.11a. The band

structure is for TE modes. Supecell size A = 9a. And we use 8281 plane waves. There is

a defect frequency near w = 0.46. Now let’s calculate Ex from Equation 2.79 for a band

defect frequency w = 0.4643. Equation 2.51 can be written for electric field

E(r, w) =
∑
G

∫

BZ

E(k + G, w)ei(k+G)·rdk (2.95)

=

∫

BZ

[∑
G

E(k + G, w)eiG·r
]

eik·rdk (2.96)

=

∫

BZ

E(k, r, w)eik·rdk (2.97)

where

E(k, r, w) =
∑
G

E(k + G, w)eiG·r (2.98)

According to Equation 2.98, Ex component of electric field is in Figure 2.11b

at defect frequency w = 0.4643. FDTD result is for defect frequency w = 0.4643 in
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(a)

(b) (c)

Figure 2.11. (a) The band structure of TE modes for the PhC with point defect. The
band structure is calculated by supercell method. (b) Ex component of
electric field, which is computed by supercell method, at defect frequency
w = 0.4643. (c) FDTD result for defect frequency w = 0.4643. The FDTD
result is same with supercell method.
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Figure 2.11c. The FDTD result is same with supercell method. It is understood that

supercell method is used for computing band structures of certain disordered PhCs.

On the other hand strongly localized EM waves has been achieved in the disorder

(the point defect for this example), which is one the most important properties of PhCs as

we mentioned in Chapter 1.
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CHAPTER 3

THE FREQUENCY SPLITTING DEVICE

As we mentioned briefly in Section 1.3, our frequency splitting device, or demul-

tiplexer, is used for separating signals with different frequencies. How does it work? We

will answer the question in this chapter.

We will build our demultiplexer using a 2D triangular PhC, shown in Figure 3.1.

The band structure of the PhC is shown in Figure 3.2. The band structre is calculated by

PWE method for TE modes. There is a band gap between 0.410 < w < 0.456.

To make a frequency splitting device out of this PhC, we will use two different line

defect PhC waveguides, each supporting propagation at a different frequency. The line

defect is formed by changing the radii of a line of air holes. As mentioned in Section 2.3,

we use the supercell method for calculating the band structure of the PhCs with line

defects. The supercell is shown in Figure 3.3a, and the band structure of the PhC with

supercell method for TE modes is in Figure 3.3b. For purposes of comparison, we first

take Rd = R = 0.455a to obtain the waveguide dispersion for the perfect superlattice,

with A = 30
√

3a. There is a band gap between 0.410 < w < 0.456, which is same with

the band structure calculated by PWE method. Now let’s calculate the band structure of

the PhC waveguides with actual line defects, i.e. with Rd 6= R, to observe the differences

between the two cases.

3.1. The Photonic Crystal Waveguide with the Line Defect-1

In Figure 3.4a, there is the PhC waveguide with line defect-1 where the radius of

the holes on the line defect is Rd = 0.423a. The band structure for the PhC waveguide

is in Figure 3.4b. The defect band (or guided mode) is in 0.433 < w < 0.456. For

0.442 < w < 0.456, there are single guided modes. For 0.433 < w < 0.442, there are

double guided modes whose grup velocities are different (vg = dw
dk

).

Ez component of electric field, which is calculated by supercell method, is for
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Figure 3.1. A 2D hexagonal PhC where black and white represent εdiel = 11.7 and
εair = 1 respectively. The hole radius is R = 0.455a. a is lattice parameter.
Blue arrows represent ΓK and ΓM directions

Figure 3.2. The band structure of the perfect PhC with PWE method for TE modes. There
is a band gap between 0.410 < w < 0.456. w and k are dimensionless values.
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(a)

(b)

Figure 3.3. (a) A 2D triangular PhC where white represents air (εair = 1) and black
represents dielectric material (εdiel = 11.7). The blue rectangle is the chosen
supercell of the PhC. The supercell size is a × A, where A is roughly 8a in
the graph, although in the actual calculations, we used a much larger value,
A = 30

√
3a. For a perfect lattice with no line defects, Rd = R = 0.455a is

the radius of the holes, and a is the lattice constant. (b) The band structure
of the perfect PhC for TE modes with supercell method. There is a band gap
between 0.410 < w < 0.456, which is same at the band structure calculated
by PWE method.
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(a)

(b)

Figure 3.4. (a) The PhC waveguide with line defect-1 where white represents air (εair = 1)
and black represents dielectric material (εdiel = 11.7). The blue rectangle
is the chosen supercell of the PhC. R = 0.455a is the radius of the holes.
Rd = 0.423a is the radius of the holes on the line defect. a is lattice parameter.
(b) The band structure of the PhC waveguide with line defect-1 for TE modes
with supercell method. The defect band is in 0.433 < w < 0.456. For
0.442 < w < 0.456, there is a single guided mode. For 0.433 < w < 0.442,
there are double guided modes whose grup velocities are different.
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(a) Odd function (b) Even function

(c)

Figure 3.5. (a) and (b) Ez component of electric field, which is calculated by super-
cell method, is for a guided mode frequency w = 0.450 for the PhC waveg-
uide with line defect-1. (c) FDTD simulation for a guided mode frequency
w = 0.450. Red and blue represent the positive and negative values Ez res-
pectively, and white regions are where the field is zero. The FDTD simula-
tion is very similar to the calculated Ez. λ ≈ 9a is found from the FDTD
simulation.
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(a)

(b)

(c)

Figure 3.6. FDTD simulation at (a) w = 0.454, (b) w = 0.447,(c) w = 0.437 for the PhC
waveguide with line defect-1. At w = 0.454 and w = 0.447 frequencies, there
is a single mode guidance consistent with the band structure. For w = 0.454

frequency, λ ≈ 13a is found. For w = 0.447 frequency, λ ≈ 7.5a is found.
There is a double mode guidance for w = 0.437 frequency. So superposition
takes place and λ cannot be found.
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(a)

(b)

Figure 3.7. (a) The PhC waveguide with line defect-2 where white represents air (εair = 1)
and black represents dielectric material (εdiel = 11.7). The blue rectangle
is the chosen supercell of the PhC. R = 0.455a is the radius of the holes.
Rd = 0.500a is the radius of the holes on the line defect. a is lattice parameter.
(b) The band structure of the PhC waveguide with line defect-2 for TE modes
with supercell method. The defect band is in 0.410 < w < 0.433. There is a
single guided mode.
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(a) Odd function (b) Even function

(c)

Figure 3.8. (a) and (b) Ez component of electric field, calculated by supercell method,
is for a guided mode frequency w = 0.423 for the PhC waveguide with line
defect-2. (c) FDTD simulation for a guided mode frequency w = 0.423. The
FDTD simulation is very similar to the calculated Ez. λ ≈ 8a is found from
the FDTD simulation.
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(a)

(b)

(c)

Figure 3.9. FDTD simulation at (a) w = 0.428, (b) w = 0.418,(c) w = 0.413 for the
PhC waveguide with line defect-2. At all frequencies, there is a single mode
guidance consistent with the band structure. For w = 0.428, w = 0.418 and
w = 0.413 frequencies, λ ≈ 12a, λ ≈ 6a and λ ≈ 5a are found respectively.
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a guided mode frequency w = 0.450 in Figure 3.5a-3.5b for the PhC waveguide. In

Figure 3.5c, there is a FDTD simulation result for the guided mode frequency w = 0.450.

The simulation picture is very similar to the calculated one in Figure 3.5a-3.5b. EM wave

is guided in the line defect. λ ≈ 9a is found from the FDTD simulation. According to

Figure 3.4b, λ . 10a for w = 0.450 frequency 1. λ can be calculated with two different

way.

FDTD simulations are for w = 0.454 and w = 0.447 in Figure 3.6a-3.6b. At

w = 0.454 and w = 0.447 frequencies, there is a single mode guidance. For w = 0.454

frequency, λ ≈ 13a is found. For w = 0.447 frequency, λ ≈ 7.5a is found. The values of

λ are appropriate with the band structure.

FDTD simulation is for w = 0.437 in Figure 3.6c. There is a double mode guid-

ance for w = 0.437 frequency. So superposition takes place in Figure 3.6c. And λ cannot

be found. Double mode guidance is a problem for long length PhC waveguide, because of

different group velocities. However as we will see later, our PhC demultiplexer is made

of short length PhC waveguides. So the problem is not important very much for us.

3.2. The Photonic Crystal Waveguide with the Line Defect 2

In Figure 3.7a, there is the PhC waveguide with line defect-2 where the radius of

the holes on the line defect is Rd = 0.500a. The band structure for the PhC waveguide is

in Figure 3.7b. There is single guided modes between 0.410 < w < 0.433.

Ez component of electric field, which is calculated by supercell method, is for

a guided mode frequency w = 0.423 in Figure 3.8a-3.8b for the PhC waveguide. In

Figure 3.8c, there is a FDTD simulation result for the guided mode frequency w = 0.423.

The simulation picture is very similar to the calculated one. EM wave is guided in the line

defect. λ ≈ 8a is found from the FDTD simulation. According to Figure 3.7b, λ & 5a

for w = 0.423 frequency 2. λ can be calculated with two different way.

FDTD simulations are for w = 0.428, w = 0.418 and w = 0.413 in Figure 3.9.

At all frequencies, there is a single mode guidance. For w = 0.428, w = 0.418 and

1Because of ka
2π = a

λ & 0.1 for w = 0.450 frequency in Figure 3.4b, we find λ . 10a.
2Because of ka

2π = a
λ . 0.2 for w = 0.423 frequency in Figure 3.7b, we find λ & 5a.
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Figure 3.10. The frequency splitting device. The waveguide-1, the radius of the holes on
the line defect is Rd = 0.423a, is at the upper half part of the device. The
waveguide-2, the radius of the holes on the line defect is Rd = 0.500a, is at
the lower half part of the device.

w = 0.413 frequencies, λ ≈ 12a, λ ≈ 6a and λ ≈ 5a are found respectively. The values

of λ are appropriate with the band structure.

3.3. The PhC Demultiplexer

Our frequency splitting device (or PhC demultiplexer) is in Figure 3.10. The

waveguide-1, the radius of the holes on the line defect is Rd = 0.423a, is at the upper

half part of the device. The waveguide-2, the radius of the holes on the line defect is

Rd = 0.500a, is at the lower half part of the device. The testing results for guided mode

frequencies (w = 0.445 and w = 0.415) are in Figure 3.11a and Figure 3.11b respectively.

EM waves are guided in the PhC waveguides. The output signal is good at the end of the
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(a)

(b)

Figure 3.11. (a) The testing result for a guided mode frequency w = 0.445. EM waves
are guided in the PhC waveguide-1. The output signal is good at the end of
the PhC waveguide-1. (b) The testing result for a guided mode frequency
w = 0.415. EM waves are guided in the PhC waveguide-2. However there
is no propagation of EM waves through Λ direction at the end of the PhC
waveguide-2
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Figure 3.12. The end of the PhC waveguide-2. It can be thought two point source with
a phase difference of π. There is no propagation through Λ direction because
of destructive interference.

PhC waveguide-1. However there is no propagation of EM waves through Λ direction at

the end of the PhC waveguide-2.

When we look at the FDTD result for w = 0.415 in Figure 3.12, we ask a question.

Why there isn’t a propagation through Λ direction? The end of the PhC waveguide-2 can

be thought two point source with a phase difference of π. So two EM waves involve in

destructive interference through Λ direction.

To solve the problem, let’s destroy one of the two sources (see Figure 3.13). FDTD

result is in Figure 3.14 for the modified end of the PhC waveguide-2 for w = 0.415

frequency. The output signal can go through Λ direction anymore. FDTD results are for

other guided mode frequencies in the Figure 3.15-3.16-3.17-3.18.

3.4. Flux Measurement Results

As we know that Poynting’s vector is

S =
1

µ0

(E×B) (3.1)
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Figure 3.13. The modified end of the waveguide-2.

Figure 3.14. FDTD result for the modified end of the PhC waveguide-2 for w = 0.415

frequency. There is a propagation through Λ direction anymore.
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(a)

(b)

Figure 3.15. FDTD simulation for (a) w = 0.455, (b) w = 0.450. EM waves are splitted
very well with the PhC waveguide-1.
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(a)

(b)

Figure 3.16. FDTD simulation for (a) w = 0.440 and (b) w = 0.435. EM waves are
splitted very well with the PhC waveguide-1.
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(a)

(b)

Figure 3.17. FDTD simulation for (a) w = 0.430, (b) w = 0.425. EM waves are splitted
very well with the PhC waveguide-2.
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(a)

(b)

Figure 3.18. FDTD simulation for (a) w = 0.420 and (b) w = 0.410. EM waves are
splitted very well with the PhC waveguide-2.
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(a)

(b)

Figure 3.19. (a) The flux regions for flux measurements. The flux region-1 is for incident
EM waves. The flux region-2 and the flux region-3 are for transmitted EM
waves. (b) A flux measurement for a Gaussian source w = 0.433 with a
Gaussian width ∆w = 0.040. The PhC demultiplexer splits the Gaussian
signal in frequency axis into two Gaussian signals, which are roughly w =

0.442 with ∆w = 0.025 for the flux region-2 and w = 0.422 with ∆w =

0.025 for the flux region-3.
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(a)

(b)

Figure 3.20. (a) A flux measurement for the PhC waveguide-1, where the Gaussian source
is w = 0.447 with a Gaussian width ∆w = 0.015. (b) By using mean value
theorem, we calculate a transmission of %26 for the PhC waveguide-1.
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(a)

(b)

Figure 3.21. (a) A flux measurement for the PhC waveguide-2, where the Gaussian source
is w = 0.419 with a Gaussian width ∆w = ∆w = 0.015. (b) With mean value
theorem, we calculate a transmission of %42 for the PhC waveguide-2.
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(a) (b)

Figure 3.22. FDTD simulation for (a) w = 0.453, (b) w = 0.448. TM modes are reflected
by the splitting device.

(a) (b)

Figure 3.23. FDTD simulation for (a) w = 0.443 and (b) w = 0.438. TM modes are
reflected by the splitting device.
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(a) (b)

Figure 3.24. FDTD simulation for (a) w = 0.428, (b) w = 0.423. TM modes are reflected
by the splitting device.

(a) (b)

Figure 3.25. FDTD simulation for (a) w = 0.417 and (b) w = 0.412. TM modes are
reflected by the splitting device.
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Figure 3.26. The band structure of TM modes for the used PhC. There is a band gap
between 0.31 < w < 0.49.

The flux, which we mean in the title, is

Φ =

∫

flux region

S · da (3.2)

There are 3 flux regions for flux measurements in Figure 3.19a. The flux region-1 is for

incident EM waves. The flux region-2 and region-3 are for transmitted EM waves. A flux

measurement for a Gaussian source w = 0.433 with a Gaussian width ∆w = 0.040 is in

Figure 3.19b. The PhC demultiplexer splits the Gaussian signal in frequency axis into two

Gaussian signals, which are roughly w = 0.442 with ∆w = 0.025 for the flux region-2

and w = 0.422 with ∆w = 0.025 for the flux region-3.

A flux measurement for the PhC waveguide-1 in the PhC demultiplexer in Fig-

ure 3.20a, where we use a Gaussian source w = 0.447 with a Gaussian width ∆w =

0.015. By using mean value theorem, we calculate a transmission of %26 (see Fig-

ure 3.20b).

A flux measurement for the PhC waveguide-2 in the PhC demultiplexer in Fig-

ure 3.21a, where we use a Gaussian source w = 0.419 with a Gaussian width ∆w =

0.015. With mean value theorem, we calculate a transmission of %42 in Figure 3.21b.

The transmission of the PhC waveguide-1 is higher than the transmission of the PhC

waveguide-2.
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3.5. TM modes

Our calculations are for only TE modes. Then how does our PhC demultiplexer

behave for TM modes? FDTD results for TM modes in Figure 3.22-3.24. Our frequency

splitting device behaves like a reflector for TM modes at all frequencies between 0.412 ≤
w ≤ 0.453.

The band structure of TM modes for the used PhC (see Figure 3.1) is in Fig-

ure 3.26. The photonic band gap (0.31 < w < 0.49) for TM modes covers the photonic

band gap (0.410 < w < 0.456) for TE modes.
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CHAPTER 4

CONCLUSION

According to the results we say that our frequency splitting device can separate

different frequencies for TE modes. However the device behaves like a reflector for TM

modes. We have used the dimensionless frequency range 0.410 < w < 0.456. In addition

our calculations are for visible light range of EM spectrum since we have taken εdiel =

11.7 for visible spectrum. So we can take that the middle frequency w = 0.433 of the used

range is orange light 496 THz, where the orange range is 484 THz < w′ < 508 THz. Then

the used range becomes 469 THz < w′ < 522 THz in EM wave spectrum. The red and

yellow ranges are 400 THz < w′ < 484 THz and 508 THz < w′ < 526 THz. Therefore the

used range contains red, orange and yellow light. If a source, which contains red, orange

and yellow light, comes the frequency splitting device, what will happen? According to

our estimation in the thesis, red and yellow light will be splitted apart (see Figure 4.1a).

What is the size of the PhC demultiplexer? When w = 0.433 and w′ = 496 THz

are used in

w′a
2πc

= w (4.1)

we find a = 1.646µm. So our device size equals to 28a = 46µm. Its input size is

2a = 3.3µm.

Where is the PhC demultiplexer used? As we said in Section 1.3, (de)multiplexers

are used for splitting the signals apart to deals with a multiplication in capacity for com-

munications. With our device, the capacity in optical fiber technology can be made double

or more. A core diameter, which carries signals, is 8µm for a typical fiber. So the input

size of our device is appropriate with the core size (see Figure 4.1b).
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(a)

(b)

Figure 4.1. (a) A source, which contains red, orange and yellow light, comes the fre-
quency splitting device. Red and yellow light are splitted apart. (b) A sym-
bolic illustration for an optical communication application of our PhC demul-
tiplexer. The PhC demultiplexer makes the capacity of the fiber optic double.
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