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ABSTRACT 

 
RHEOLOGICAL BEHAVIOR OF NANOCRYSTALLINE/SUBMICRON 

CERAMIC POWDER DISPERSIONS 

 
Several rheometric techniques were applied to submicron and nano ceramic 

powder dispersions systematically in this study. The rheological behavior of the 

dispersions was determined by steady shear and dynamic shear rheology. Dynamic 

shear rheological techniques are scarcely used for the characterization of ceramic 

powder dispersions contrary to polymers.  

The flow behaviors of the submicron and nano dispersions were found to be 

dependent on the solids content and fructose concentration. The submicron alumina, 

nano alumina, and nano titania dispersions in fructose solution showed shear thinning 

behavior and were fitted to the Herschel-Bulkley model.  

The dynamic shear rheology measurements showed that the solid part of the 

dispersions was dominant over the liquid part for both submicron and nano powder 

dispersions. The elastic modulus was higher than the viscous modulus in stress and 

frequency sweep measurements. The elastic moduli of the dispersions with solids 

content lower than 40 vol% were dependent on the angular frequency which indicated a 

gel-like behavior. However, the elastic moduli of the dispersions with 40 vol% solids 

were independent of angular frequency which indicated a solid like behavior. Further 

increase in fructose content had significant effects on both steady shear and dynamic 

shear rheological behavior of the dispersions regardless of particle size. The submicron 

and nano ceramic powder dispersions can be prepared by using fructose for the 

regulation of the rheological behavior of ceramic powder dispersions. The 

characterization of powder surfaces is essential for the effective adsorption of fructose. 
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ÖZET 

 
NANOKRİSTAL/MİKRONALTI SERAMİK TOZ DAĞITIMLARININ 

REOLOJİK DAVRANIŞI 

 
Nano ve mikronaltı seramik toz dağıtımlarına çeşitli reometrik teknikler 

sistematik olarak uygulanmıştır. Dağıtımların reolojik davranışı,  kararlı kayma ve 

dinamik kayma reolojisi ile belirlenmiştir. Dinamik kayma reolojik teknikler seramik 

toz dağıtımlarının karakterizasyonunda polimerlerin aksine kullanılmıştır.  

Mikronaltı ve nano dağıtımların akma davranışları katı içeriğine ve früktoz 

konsantrasyonuna bağlı olduğu görülmüştür. Früktoz solüsyonunda mikronaltı ve nano 

alüminyum oksit ve nano titan dağıtımların kayma incelen davranışı göstermiş ve 

Herschel-Bulkley modeline uymuştur.  

Dinamik kayma reolojisi ölçümleri hem mikronaltı hem de nano toz 

dağıtımlarında katı kısmının sıvı kısmına göre daha baskın olduğunu göstermiştir. 

Gerilim ve frekans tarama testlerinde, elastik modül, akma modülünden daha yüksektir. 

Hacimsel katı içeriği %’si 40’dan az olan dağıtımların elastik modülleri açısal frekansa 

bağlıdır, bu da jel gibi bir davranışa işaret etmektedir. Ancak, hacimsel katı içeriği  %40 

olan dağıtımların elastik modülü açısal frekanstan bağımsız olup katı gibi bir davranışa 

işaret etmektedir. Früktoz konsantrasyonun fazla artışı hem yatışkan hem de dinamik 

kayma reolojisinin parçacık boyutuna bağlı olmaksızın önemli ölçüde etkilemiştir. 

Mikronaltı ve nano seramik toz dağıtımlarının hazırlanmasında, seramik toz 

dağıtımlarının reolojik davranışının ayarlanması için früktoz kullanılabilir. Tozlarin 

yüzey karakterizasyonu früktozun etkili adsorpsiyonunda esastır.  
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CHAPTER 1 

 

INTRODUCTION 

 
Colloidal processing of ceramics is a well-known process among various powder 

processing techniques. It offers an improvement of the reliability and strength of the 

ceramics by reducing heterogeneities such as agglomerates, organic and inorganic 

inclusions, etc (Lange, 1998). The basic steps of the colloidal processing can be 

summarized as the preparation of particles and dispersion in a liquid medium, 

consolidation, removal of the liquid phase, and densification (Lewis, 2000). The 

ceramic dispersions are prepared by dispersing solid particles in an aqueous or non-

aqueous medium. Among various alternative liquid mediums, water is preferable due to 

environmental issues (Li and Akınç, 2005).  

The colloidal processing of nanopowders gained attention over the past few 

years, because the production of nanopowders becomes available from various synthesis 

routes and the use of nanopowders in various applications has received a significant 

interest due to their unique and interesting properties (Bowen, 2002). Their mechanical, 

chemical, optical, magnetic, and electrical properties are related with the high density of 

grain boundaries and interfaces which are resulted from their nanoscale microstructure.  

The forming processes of nanopowders such as spin and dip coating, injection 

molding, extrusion and gelcasting are generally necessitate the use of aqueous and 

pseudoplastic dispersions with low viscosity which may lead to the formation of crack 

free and reliable grain/fired structures (Lange, 1998 and Lewis, 2000). Such dispersions 

require an accurate control of its rheological behavior. Controlling rheological behavior 

of the dispersion relies on the understanding of interactions of particles and the liquid 

medium because such multiphase content shows wide variety of behaviors and make 

them difficult to process. As the particle size gets smaller, the specific interactions 

become more important, because the contact area between particles and dispersing 

medium and the number of particles increases significantly so that the dispersion of 

particles becomes more difficult. The observation of the rheological behavior of 

submicron alumina dispersions may constitute a basis for quantifying and comparing 

material properties regarding the particle interactions with dispersant as particle size of 
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the powder approaches to nano size. Therefore, the better understanding of the 

rheological behavior of nanopowders dispersions can be provided.   

Generally, the rheological behavior of nanopowder dispersions is non-

Newtonian and measuring its steady shear rheology would not be sufficient to 

characterize its flow properties. Because, the non-Newtonian dispersions may have both 

liquid like (viscous) and solid like (elastic) properties at the same time. The viscous and 

elastic properties of the dispersions can be differentiated by determining dynamic shear 

rheology. The dynamic shear rheology of nanoparticle dispersions is scarcely studied 

compared to polymers. This thesis addresses the rheological behavior of aqueous 

dispersions having nano and submicron particles and paying more attention to the effect 

of particle size and number of particles in the dispersions on the rheological behavior of 

ceramic powder dispersions.  

The rheological techniques related with steady shear rheology involve the 

determination of flow curves, viscosity and thixotropy. The dynamic experiments are 

stress sweep and frequency sweep tests, which may allow understand the relations 

between particles and the liquid medium more closely. 

The relations between particles and liquid medium are regulated by the use of 

dispersants. The dispersants commonly can be several organic compounds such as 

organic acids (polyacrylic acid, stearic acid glycolic acid, and etc.), organic salts 

(ammomium salt of polyacrylic acid, and etc.) and organic materials (polymers, 

polysaccharides and etc.). The use of the polysaccharides as a dispersant has recently 

gained attention due to environmental concerns. The earlier research have shown that 

the addition of polysaccharides in ceramic powder dispersions can reduce the viscosity 

and provide stable and highly concentrated dispersions. However, the use of 

polysaccharides with high molecular weight has a reverse effect on viscosity of the 

dispersions (Schilling et al., 2002a, Sikora et al., 2004). The use of polysaccharides with 

low molecular weight is preferable. Hence, monosaccharides such as fructose can be 

used for dispersing nano and submicron ceramic powders.  

Addition of fructose in to ceramic powder dispersions caused short range, steric 

repulsion forces. The decrease in viscosity occurred by the removal of water molecules 

adsorbed on the surface of the particles (Li and Akınç, 2004). This enhances the 

mobility of water molecules and their contribution to flow. They mainly focused on the 

steady shear rheology (the determination of viscosity of the dispersions) however; the 

dynamic shear rheology provides more detailed information on the relations between 
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particles and the dispersing medium which are undetectable by steady shear rheology. 

This thesis focuses on the effect of fructose on the rheology of nano and submicron 

ceramic powders considering viscous and elastic parts of the suspensions by 

investigating both steady shear and dynamic shear rheology. 
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CHAPTER 2 

 

CERAMIC POWDER DISPERSIONS 

 
According to the International Union of Pure and Applied Chemistry (IUPAC), 

the term colloid refers to a state of subdivision, implying that the molecules or 

polymolecular particles dispersed in a medium have, at least in one direction, a 

dimension roughly between 1 nm and 1 μm, or that in a system discontinuities are found 

at distances of that order. 

A dispersion is a system in which particle size of any nature (e.g. solid, liquid or 

gas) are dispersed in a continuous phase of a different composition (or state). The 

dispersed phase for the particles refers to particles that have essentially the properties of 

a bulk phase of the same composition. The dispersion of solid-liquid system (the solid 

particles in liquid medium) is the concerned area in this report. This system is described 

as a colloidal suspension by IUPAC in which the size of the particles lies in the 

colloidal range. 

The lower limit for the size of the particles for colloidal dispersions is around 1 

nm because smaller particles would be indistinguishable from the solution. The upper 

limit would be normally set at a radius of 1 μm (Hunter, 2001). The surface area of such 

particles is relatively high with respect to the micron-sized particles. The contact area 

between the dispersed particle and dispersion medium is relatively large and so does the 

energy associated with this interface. Colloidal processing of materials mainly relies on 

this feature.  

Interparticle (or surface) forces between particles become more important in 

processing of colloidal dispersions as the size of the particles becomes smaller. The sum 

of these forces set the stability of the suspension. One of the main issues of colloidal 

processing is the stability of the colloidal suspension. The terms stable and stability are 

used to describe the particles that do not aggregate at a significant rate in this report. 

Generally, an aggregate is a group of particles (which may be atoms or molecules) held 

together in any way. Actually, a colloidal particle itself may be regarded as an aggregate. 

More specifically, aggregate is used to describe the structure formed by the cohesion of 

colloidal particles. This process is also called as aggregation (Hunter, 2001).  
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Colloidal particles in a dispersed state in a liquid medium always undergo 

Brownian motion (due to heat) and they will be continuously colliding with one another. 

The particles will remain as individual particles if those collisions do not result in 

aggregates. The stability of colloids is then determined by the interaction between the 

particles during such a collision. There are two basic interactions: one is attractive and 

the other is repulsive. When attraction dominates, the particles will adhere with each 

other and finally, the entire dispersion may coalesce. When repulsion dominates, the 

system will be stable and remain in a dispersed state for a certain time. 

The stability of the bulk colloidal suspension is determined by the outcome of 

individual particle collisions and is dominated by surface forces acting between the 

particles as they approach each other. According to the classical theory developed by 

Derjaguin, Landau, Verwey and Overbeek, known as DLVO theory, the total 

interparticle force (VT) is the sum of the repulsive electrostatic forces (VR) and attractive 

van der Waals forces (VA) as it is given in equation 2.1. The schematic representation 

for the forces acting on a particle due to DLVO theory is given in Figure 2.1. 

 

    ART VVV +=           (2.1) 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1. Schematic illustration of the forces defined in the DLVO theory with respect 
       to particle separation (Source: Shanefield, 1996). 
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The van der Waals Force between atoms and molecules is the sum of three 

different forces:  

(i) The Keesom force which is the interaction between two permanent dipoles. 

(ii) The Debye force which is the interaction between one permanent dipole and one 

induced dipole. 

(iii) The London or dispersion force which is the interaction between two induced 

dipoles. 

All of these forces are proportional to 1/r6 
(r is the distance between the atoms or 

molecules).  

The van der Waals force is a result of electric and magnetic polarization and 

propagation of the electric field. One possible way of assessing the magnitude of van 

der Waals interaction is to know the value of Hamaker constant which depends on the 

material and medium (see Table 2.1). (Shanefield, 1996). 

 

Table 2.1 Nonretarded Hamaker Constants for Ceramic Materials Interacting under 
Vacuum and across Water at 298 K (Source: Lewis, 2000). 

 
Hamaker Constant (×10-20 J) 

Material Crystal Structure Under Vacuum Across Water 

α-Al2O3 Hexagonal 15.2 3.67 

SiO2 (quartz) Trigonal 8.86 1.02 

SiO2 Amorphous 6.5 0.46 

TiO2 Hexagonal 15.3 5.35 

3Y-ZrO2 Tetragonal 20.3 7.23 

 

 

When a colloid is immersed in water a charge may develop on the surface due to 

either a preferential affinity of ions in solution to the surface, a preferential physical 

restriction of ions within the surface to dissolution, or the ionization of surface groups.  
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Figure 2.2. The schematic representation of the electrical double layer around  
       negatively charged particle. 
 

When a net positive or negative surface charge is present, counter ions in the 

water of opposite charge will accumulate at the surface. Because of thermal motion of 

the water molecules, this layer of counter ions diffuses, with the concentration of 

counter ions decaying exponentially away from the surface. Since the overall balance of 

charge within the solution must be maintained, the net charge on the surface is balanced 

by the net charge in the diffuse layer. The arrangement of charge on the colloid surface, 

and counter ions in the diffuse layer, is known as the electrical double layer as shown in 

Figure 2.2. 

When two charged surfaces in solution come into close proximity, the diffuse 

layers of counter ions projecting from each surface overlap. If the charge on the 

particles is of the same sign, this overlap causes an increase in the concentration of 

counter ions in the intervening gap, and results in an osmotic pressure between the 

surfaces. Due to this repulsive force, energy must be expended to bring the surfaces 

together, and this forms the basis of the electrostatic repulsion energy term. 

 A cloud of counterions around a charged particle renders the particle neutral at 

large distances. The thickness of the counterion cloud is defined as Debye length, and is 
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the measure of the range of repulsion (Franks and Lange, 1999). The repulsion force 

proportional to the inverse of distance squared. 

 Two particles having the same charge will repel each other. However, as the 

particles approach to each other at nanometer distances, the van der Waals forces are 

going to be dominant and there will be a net attraction until contact is made. The contact 

point is called as “primary minimum” (Shanefield, 1996; Franks and Lange, 1999). As 

the particles become slightly farther away from each other, the van der Waals attraction 

decreases sharply and electrostatic repulsion becomes dominant. In other words, this 

phenomenon appears when the counterion concentration is low and thus, when the 

Debye length is large. The suspensions under this condition are defined as “dispersed” 

(Franks and Lange, 1999). Addition of salt causes the reduction in Debye length and an 

increase in counterion concentration so that the separation distance becomes large and 

the surface charge of the particle remains constant. When the separation distance 

becomes large enough, another low potential energy will be reached in some cases and 

this is called as the “secondary minimum” ((Shanefield, 1996; Franks and Lange, 1999). 

Through secondary minimum, the range of repulsive potential will decrease sufficiently 

and van der Waals attraction dominates the system again. The particle network becomes 

weakly attractive and the particles sit apart in the secondary minimum. Figure 2.3. 

shows the DLVO curve for two charged particles approaching each other.  

 

           
 

Figure 2.3. The DLVO curve for two charged particles approaching to each other 
(Source: Shanefield, 1996). 
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This phenomenon associates with the pH of suspension. Knowing pH of a 

suspension will be helpful to describe “the state” of the suspension. The pH at which the 

zeta potential is zero at diffuse layer is known as the isoelectric point (IEP). In other 

words, IEP is the pH value, at which a molecule carries no net electrical charge. An 

oxide can be also characterized by its “point of zero charge”. Point of zero charge (PZC) 

can be defined as the pH at which surface charge density is zero. If there are no ions 

other than H+ and OH-, IEP and PZC will be equal to each other. However, in presence 

of non-potential ions will cause a shift in PZC and IEP relative to each other. At IEP, 

the majority of surface sites are neutral and the net charge on the surface is zero. At pH 

conditions away from the isoelectric point the net surface charge is either positive (at 

lower pH) or negative (at higher pH) reflecting the exchange of protons with the surface 

hydroxyl groups. At IEP, there is no repulsive potential. Instead of this, van der Waals 

attraction pulls the particles together to form a strong touching network, which is called 

as flocculated (Franks and Lange, 1999).  

 As a result, the DLVO theory predicts the stability of the colloidal particles 

suspended in polar liquids (Lewis, 2000) and a careful investigation and fine-tuning 

through interparticle forces can facilitate the preparation of suspensions in dispersed or, 

weakly or strongly flocculated states (see Figure 2.4).  

 

  

   

Figure 2.4.  Schematic illustration between suspension microstructure and interparticle 
forces (Source: Sigmund et al., 2000). 
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 Brownian motion must have been taken under consideration because it has an 

important effect on the stability of dispersion. A suspension of particles having 

relatively small electric charges (hence low repulsion) are going to have enough thermal 

motion kinetic energy after any given time to approach to the primary minimum as 

shown in Figure 2.3. Then, the particles will stay together. When temperature is raised, 

fast agglomeration will occur. 

 For a stable suspension at room temperature, the potential energy peak next to 

the primary minimum must be at least ~25 mV because thermal energy available for 

Brownian motion corresponds to 25 mV at 20oC (Shanefield, 1996). Hence, suspensions 

having high potential energies will be highly dispersed and considered as stable because 

agglomeration rate will be slow. The stability ratio of a suspension would be determined 

which represents valuable information on the assessment of their long-term physical 

stability. 

Due to the random nature of each collision there will be a distribution of 

collision energies for a colloidal system. For a given energy barrier, only a proportion of 

collisions will have sufficient kinetic energy to overcome the energy barrier and form an 

aggregate. The stability ratio is therefore strongly influenced by the height of the energy 

barrier, increasing dramatically with small increases in the height of the barrier.  

The height of the energy barrier is highly sensitive to factors affecting the 

attractive van der Waals and repulsive electrostatic forces. In terms of the van der Waals 

forces, this includes the Hamaker constant of the surfaces and the intervening medium. 

For the electrostatic force, factors such as surface potential, electrolyte concentration 

and electrolyte valency are important. 

An alternative way to prepare a highly dispersed stable suspension would be the 

use of polymeric dispersants. The presence of suitable polymeric dispersants can also be 

helpful for the preparation of dispersed colloidal suspensions. The polymeric additives 

cover the surface of the particles by adsorption. The interpenetration of polymer layer 

results in a repulsive force (or steric stabilization) when two such particles approach 

(see Figure 2.5). 
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Figure 2.5. Schematic illustration of two particles covered by polymer layer resulted in 
       a repulsive force (Source: Lewis, 2000). 

 

Sigmund et al. stated some requirements for steric stabilization (Sigmund et al., 

2000). According to them, the thickness of the adsorbed layers, the affinity of the 

polymer, the adsorbed amount, and the solvency of the polymer in the media are 

strongly interrelated. Lewis (2000) reported that one must consider the adsorbed layers’ 

thickness and density to overcome the van der Waals attraction between particles and to 

prevent bridging flocculation.  

The term of electrosteric stabilization is used when addition of polyelectrolyte 

maintains dispersion (Sigmund et al., 2000). Polyelectrolytes serve a combined effect of 

a pure electrostatic repulsion and a polymeric repulsion (steric stabilization). The origin 

of the electrostatic component may be a net charge on the particle surface (see Figure 

2.6.a) and/or charges associated with the polymer attached to the surface (see Figure 

2.6.b). The dominant effect will be assigned by the segment density profile at the 

interface. Electrosteric effect becomes more important when the polyelectrolyte is 

highly charged and the particle surface oppositely charged (Lewis, 2000; Sigmund, 

2000; Pettersson et al., 2000; Bowen, 2005).  

Solvent conditions (e.g. pH and ionic strength of polyelectrolyte) should be 

taken into consideration because the adsorption behavior and conformation of 

polyelectrolyte will be changed. For an anionic polyelectrolyte, the thickness of 

adsorbed layer will be thinner and massive and the resulted degree of ionization will be 

lower when the pH is set at lower values (Pettersson et al., 2000; Lewis, 2000; Desset et 

al., 2001; Liufu et al., 2005).   
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Figure 2.6. Schematic illustration of electrosteric stabilization: (a) charged particles 

with nonionic polymers; (b) polyelectrolytes attached to uncharged 
particles. 

 

Adsorption process will take place between particle surface and polyelectrolyte 

itself when polyelectrolyte is added into the suspension. The chemical and physical 

properties of the solid surfaces and the solvent medium have important effects on the 

adsorption of polyelectrolytes. When the system consists of oppositely charged 

polyelectrolyte/particle pairs the adsorption is always strong due to the ionic interaction, 

and destabilization of the suspension may occur as a result of polymer bridging or 

charge neutralization of powder particles by the adsorbed polyelectrolytes (Pettersson 

et  al., 2000). At small adsorbed amounts, such species can promote flocculation either 

via surface charge neutralization or bridging mechanisms. One possible reason of this 

result would be the incomplete coverage of the surface. The particles loosely attach to 

each other to minimize the uncovered surface. Liu (1998b) considered that this kind of 

flocculation formation can be used to determine the minimum amount of polyelectrolyte 

required for the stabilization of suspension. At higher adsorbed amounts, particle 
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stability increases because of long-range repulsive forces resulting from electrosteric 

interactions. 

As a summary, the non-DLVO forces (means not expressed in DLVO theory) 

can also facilitate the adjustment of the state of suspension. According to Lewis (2000), 

total interparticle forces which govern the colloidal stability can be expressed as 

 

   structuralstericelectvdWtotal VVVVV +++=         (2.2) 

 

where, VvdW is the is the attractive potential energy due to long-range van der Waals 

interactions between particles, Velect the repulsive potential energy resulting from 

electrostatic interactions between like-charged particle surfaces, Vsteric the repulsive 

potential energy resulting from steric interactions between particle surfaces coated with 

adsorbed polymeric species, and Vstructural the potential energy resulting from the 

presence of nonadsorbed species in solution that may either increase or decrease 

suspension stability (Lewis, 2000).  

Meanwhile, Tari et al. (Tari et al.,1998) studied on the dispersion of alumina 

powders with particles in 0.1-1 μm range. Their aim was to study the influence of 

particle size distribution (PSD) on the colloidal processing of alumina. The total solid 

content of the dispersed alumina slips was maximized and their rheological properties 

were correlated to the packing ability during slip casting. The concentrations of the 

prepared suspensions were varied between 40-70 wt% which were dispersed by using 

polyacrylic acid (PAA) as polyelectrolyte. They reported that the tape-cast green bodies 

reached to 78% of theoretical density. Recently, Liufu et al. (2005) studied with PAA 

for the dispersion of titania nanoparticles (20±5 nm). The solid content was kept 

constant at 10 wt% while the molecular weight of PAA was changed. They observed 

that zeta potential decreases with increase in the adsorption density of PAA. High 

molecular weight PAA (120,000 g/mol) was found to cause flocculation due to the 

bridging of long macromolecular chains. Finally, they concluded that PAA was 

appropriate dispersant under described conditions in the article. 

Pettersson et al. (2000) aimed to investigate the mechanisms of eight anionic 

polyelectrolytes to stabilize single oxide systems of α-Al2O3, ZrO2 and 3Y-ZrO2. The 

Na+ and NH4
+ salts of polyacrylic acid and polymethacrylic acids with different 

molecular weights were used. They focused on the distribution of charges and the 
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resulting potentials around the particles for a better understanding of the influence of 

polyelectrolyte dispersants on the stability, rheology, and many other properties of 

colloidal sized solids dispersed in liquids. They also considered the degree of 

dissociation of polyelectrolytes, which varied with pH of the solutions, by 

potentiometric titrations. The particle sizes of the α-Al2O3, ZrO2 and 3Y-ZrO2 were 2.3, 

0.3 and 0.41 μm respectively. The solid contents were changed between 1-30 wt%.  

They observed that destabilization (or lowering zeta potential) occurs at low pH as a 

result of charge neutralization upon adsorption and then polymer bridging occurred. 

Polyacrylates with Na+ induce relatively higher surface charges and higher adsorption 

with respect to polyacrylates with NH4
+. However, for polymethacrylates the opposite 

was observed. The adsorbed layer was thicker when the particles and polymers have 

equal charge. Finally, the authors concluded that polyacrylates and polymethacrylates 

were efficient polyelectrolytes for the dispersion of α-Al2O3, ZrO2 and 3Y-ZrO2 

suspensions. The zeta potentials of these suspensions were about 40 mV or higher. 

Singh et al. (2005) pointed out that there was a need to study the higher solids 

content carefully because dispersants which provide good dispersion for low solids 

content may not work for high solid contents. They used dibasic ammonium citrate 

(DAC) and albumin (prepared from white portion of fresh egg) to disperse alumina 

powder having 0.72 μm particles in size. The solid contents of the suspensions were 

changed between 1.47-50 wt% and the further pH adjustments were done by HCl and 

NaOH. While the concentrations of dispersants were not clearly stated, the authors 

reported optimum concentrations as 5250 and 150 ppm for albumin and DAC 

respectively. The surface of the alumina particles were negatively charged when 

dispersants were added. Moreover, albumin had more impact on the surface charge. 

They claimed that these dispersants would have similar impact at high solid contents as 

well as low solid contents since the surface charge did not change significantly for all 

conditions described in the article. Later on, Singh et al. (2005) used an anionic 

dispersant, ammonium salt of polycarboxylate, to disperse alumina powder (having 

particles 0.6 μm) for suspensions having 5-12.85 wt-% solid contents. 

Lebrette et al. (2004) used Tiron and a strong base, (C2H5)4NOH, to disperse 

titania particles 0.4 μm for suspensions having 3 and 49 wt% solid contents. The article 

reported the influence of ethanol amount to titania dispersion. The concluded that the 

presence of ethanol may facilitate the preparation of titania suspensions up to 49 wt-% 

solid content.  
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Redispersion of alumina powder was studied by Desset et al. (2001). They used 

five different ligands such as citric acid, polyacrylic acid, 1,2-dihydroxy 3,5-dibenzene 

disulfonic acid, 1,2,3,4-butane-tetra-carboxylic acid, and glycolic acid. Their aim was to 

measure the stabilizing, peptizing, and protecting effects of these ligands for alumina 

suspension (10 wt%) having particles 0.2 μm in size. The pH of the suspensions was 

adjusted by adding NaOH or HNO3. Redispersion studies were performed by dispersing 

of the powder in water by using ultrasound and the addition of a ligand and subsequent 

drying. The authors claimed that the sequence during preparation of suspensions has an 

importance: The addition of ligands into aqueous suspensions will cause stabilizing 

effect while addition of bare powder into water containing ligands will cause peptizing 

effect. When one needs protecting effect then, the suspension can be prepared by the 

addition of powder containing ligand(s) into water. Finally, the authors reported that if 

one considers the redispersion of the powders made of aggregated colloidal particles, 

then careful attention must be given to keep the powder surface hydrated during 

aggregation and drying stages.  

Large colloidal particles can be stabilized by depletion forces as a third 

alternative way (Lewis, 2000; Tohver et al., 2001). These forces occur when colloidal 

particles are introduced to a solution containing nonadsorbing, smaller species, such as 

polymers, polyelectrolytes, or much smaller colloidal particles as see in Figure 2.7. 

These species are defined as depletants which may promote flocculation or stabilization 

of primary colloidal particles. Theoretically, the smaller species may lead to 

flocculation of a stable suspension. However, the following study showed that the 

charged species in solution may influence the stability of the uncharged bigger particles 

by segregating around them. Tohver et al. (2001) studied on stabilization of large 

particles by adding much smaller charged particles into solution and introduced the term 

“nanoparticle haloing”. In their study, charged hydrous zirconia nanoparticles of 

average radius 3 nm was added to a suspension of  (marginally charged) colloidal silica 

spheres of radius 285 nm in deionized water. The concentration of charged particles 

increased and the following behavior was observed:  

• At low nanoparticle concentrations: the silica spheres aggregate, driven 

by the generic van der Waals attractions (Figure 2.8.a).  

• At intermediate nanoparticle concentrations, the dispersion becomes 

stable (Figure 2.8.b). 

• At higher concentrations the silica spheres aggregate again (Figure 2.8.c). 
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Figure 2.7. Representative schematic illustration of nanoparticle haloing behavior 

(Source: Tohver et al., 2001). 
 

The observation made showed that there are two critical values of concentration 

of nanoparticles which are defined as lower and upper critical values by Tohver et al. 

(2001). These two values introduced three regions in phase diagram: (i) a colloidal gel 

composed of silica microspheres at nanoparticle volume fractions below a lower critical 

value, (ii) a homogenous fluid composed of stabilized silica microspheres and 

nanoparticles at intermediate nanoparticle volume fractions, and (iii) a colloidal gel 

composed of silica microspheres at nanoparticle volume fractions above an upper 

critical value. They stated that the system began in non-equilibrium state in the absence 

of nanoparticles. They concluded that nanoparticle haloing could be driven solely by 

highly repulsive interactions between nanoparticles in solution. Hence, this can generate 

a substantial zeta potential on colloidal microspheres suspended near their isoelectric 

point. For highly charged nanoparticles, this type of charge amplification can occur at 

extremely low nanoparticle volume fractions (<10-3). The stabilization of colloidal 

suspensions by using an electrolyte has been widely studied. Lim et al. (1997) studied 

on the stabilization of alumina powders in water by adding HCl and its impact on 

greenbody density and sintered density of the compacts which are consolidated by 

means of centrifugation. Powder suspensions of 7, 15 and 30 vol% of alumina were 

prepared in an HCI solution of optimum pH value of 2.4. Initially the particle size of the 

powders was 0.18±0.034 μm. They concluded that colloidal processing is an efficient 

way to eliminate agglomeration problem (Lim et. al., 1997). 
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Meanwhile, Evanko et al. (1997) studied the effects of pH, electrolyte 

concentration and solids concentration on the surface charge characteristics, viscosity 

and stability of concentrated alumina dispersions (1-10 wt%). The study considered the 

relationships between these properties of the dispersions. The particle size of the 

alumina powder reported as 1 μm.  NaCl is used as electrolyte solution. pH, electrolyte 

concentration, and solids content had a strong influence on the surface charge and 

therefore the viscosity and stability of concentrated dispersions of alumina in water.  

Bae et al. (2003) aimed to investigate the dispersion stability of titania powder, 

which was prepared by homogenous precipitation at low temperature (named as 

HPPLTed in the article), in pure aqueous and organic media by adding different 

electrolytes to consider the effect of valence of cation on titania. The electrolytes were 

CsCl, CaCl2, FeCl3, and ZrCl4.  Commercial powders (MT-5OO HD and P-25) were 

dispersed under same conditions for comparisons. The synthesized titania powder has 

an appearance that the primary particles are acicular or needle-shaped with a thickness 

of 3-7 nm. The authors reported that the surface area of HPPLTed (180 m2/g) was much 

higher than the commercial ones (40-50 m2/g) which lead to higher H+ adsorption on the 

powder surface and thus, much lower isoelectric point (pHIEP= 2.31). Electrolytes 

having higher valence cation led to increase in zeta potential. The addition of 

electrolytes into both aqueous and organic solvents caused to a common charge reversal 

from negative to positive at the surface of TiO2.  

One of the recent studies on the stability of titania particles in high purity water 

was conducted by Snoswell et al. (2005). In their study, the primary particles had a 

diameter of approximately 150 nm and were composed of smaller crystallites with a 

size on the order of 10 nm. They used KCl as electrolyte and set the pH by using KOH. 

The stability ratio was calculated by collecting data of the change in light scattering 

intensity (or turbidity) for fast regime and for slow regime. The fast and slow regimes 

were determined from the initial gradient of the turbidity-time curve. However, they 

reported that the calculation of the halftime of aggregation for non-spherical, porous 

particles would be problematic because the initial number of particles must be estimated 

from the solids content. They assumed that the particles were monodisperse. Finally, 

they reported that an increase in both the gradient and critical coagulation concentration 

of the stability curves were observed as pH increases. Titania particles became 

negatively charged at higher pH and hence, the surface potential increased. 
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2.1. The Use of Saccharides as Dispersant in Ceramic Powder   

 Dispersions 

 
Polysaccharides are naturally occurring biopolymers and are complex 

carbohydrates, made up of multiple sugar molecules. These polymers are used as food 

energy sources and construction materials of livings. The commonly known sugars are 

listed in Table 2.2. The sugar molecules linked together may be glucose, galactose, or 

any of the many other sugar molecules. The most abundant examples of polysaccharides 

are starch and cellulose. Due to their ability to alter the basic properties of water, 

polysaccharides have been used in many industries such as food, textile, paper, adhesive, 

paint, pharmaceuticals, cosmetics, etc. The functions of polysaccharides in these 

applications can be emulsification, stabilization, encapsulation, flocculation, film 

formation, binding and coating (Liu and Laskowski, 2002). 

The structure of polysaccharides can be very complex. Polysaccharides are built 

of many different types of such monomers joined together in different ways by 

glycosidic linkages. A glycosidic bond is a certain type of functional group that joins a 

carbohydrate (sugar) molecule to an alcohol, which may be another carbohydrate. Two 

monosaccharides can form a disaccharide by glycosidic bond. For example, fructose 

and glucose are joined together to form sucrose. More complicated polysaccharides 

such as starch, glycogen, cellulose or chitin consist of numerous monosaccharide units 

joined by glycosidic bonds. Starch and cellulose are formed entirely of glucose 

molecules linked together. 

When all the constituent monosaccharides are of the same type, they are termed 

as homopolysaccharides; when more than one type of monosaccharide is present they 

are termed as heteropolysaccharides. Cellulose, chitin, chitosan, and, glycogen are the 

examples for homopolysaccharides. Glucomannan, galactoglycomannan, hyaluronic 

acid and alginic acid are the examples for heteropolysaccharides.  

Saccharides in aqueous solution can exist commonly in cyclic or rarely in linear 

form and these forms readily interconvert. Only the cyclic forms have an anomeric 

carbon and can form a glycosidic bond; once the bond has formed, the saccharide unit 

can no longer attain the linear form. 
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Table 2.2. General information on commonly known sugars. 

Sugar  Carbohydrate  Monosaccharide or 
disaccharide  

Additional information  

Beet sugar 
(cane sugar)  

Sucrose  Disaccharide (fructose 
and glucose)  

Similar to white and 
powdered sugar, but varied 
degree of purification  

Brown sugar  Sucrose  Disaccharide (fructose 
and glucose)  

Similar to white and 
powdered sugar, but varied 
degree of purification  

Corn syrup  Glucose  Monosaccharide     
Fruit sugar  Fructose  Monosaccharide  Very sweet  
High-fructose 
corn syrup  

Fructose  Monosaccharide  Very sweet and inexpensive
Added to soft drinks and 
canned or frozen fruits  

Honey  Fructose and 
glucose  

Monosaccharides     

Malt sugar  Maltose  Disaccharide (glucose 
and glucose)  

Formed by the hydrolysis of 
starch, but sweeter than 
starch  

Maple syrup  Sucrose  Disaccharide (fructose 
and glucose)  

   

Milk sugar  Lactose  Disaccharide (glucose 
and galactose)  

Made in mammary glands 
of most lactating animals  

Powdered 
sugar  

Sucrose  Disaccharide (fructose 
and glucose)  

Similar to white and brown 
sugar, but varied degree of 
purification  

White sugar 
(Table Sugar) 

Sucrose  Disaccharide (fructose 
and glucose)  

Similar to brown and 
powdered sugar, but varied 
degree of purification  

 

 

2.1.1. Monosaccharides 
 

Monosaccharides are colorless substances and soluble in water, lower alcohols, 

acetic acid and pyridine. They can be also recrystallized by removing the solvents and 

most monosaccharides are obtained in a crystalline form (Stanek et al., 1963 and Colins 

and Ferrier, 1995). The term monosaccharides describes the sugars that on hydrolysis 

yield no further lower sugars (Stanek et al., 1963). Monosaccharides are simple sugars 

and can have different number of carbon atoms. They have free aldehyde or keto groups 

and can be combined to form disaccharides and polysaccharides. In general, 

monosaccharides can be defined as polyhyroxyaldehydes (aldose) or polyhyroxyketones 

(ketose). The simplest monosaccharides according to this definition were 

glyceraldehyde and dihydroxyacetone. These monosaccharides are assigned to trioses 
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group which means that the monosaccharides have three carbon atoms. The 

monosaccharide containing four carbon atoms is named as tetroses, five as pentoses and 

further series are hexoses, heptoses etc.  

The monosaccharides generally have a pair of optical antipodes. If the projection 

formula of a monosaccharide is oriented so that the aldehydic group is on top then in the 

formula, the hydroxyl group at the asymmetric carbon atom on the left side (called as 

laevo rotary) or on the right side (called as dextro rotary). The laevo rotary antipode is 

denoted by L- and the dextro rotary is denoted by D-.  

D-fructose belongs to the series of D-ketoses. The characteristic D-ketose series 

can be derived from dihydroxyacetone by hypothetically added a secondary alcohol 

group between carbonyl and –CH2OH groups. By repeating this procedure, D-Fructose 

is obtained (Stanek et al., 1963) The hypothetical derivation of D-fructose starting from 

Dihydrocyacetone by adding secondary alcohol group is given in see Figure 2.8. 

 

 

 
Figure 2.8. Hypothetical derivation of D-Fructose starting from Dihydroxyacetone by 

       adding secondary alcohol group. 
 

D-Fructose occurs in free state mainly in fruit juices such as apples and tomatoes. 

It can be produced by hydrolysis of sucrose or inulin which is a polysaccharide 

containing D-Fructose and D-glucose.  

The reactivity of the individual hydroxyl groups in the monosaccharide molecule 

and the relative reactivity are not known very much. Aqueous dilute solutions of 

inorganic acids at normal temperatures do not cause a noticeable change in the structure 

of monosaccharides. When D-glucose is subjected to the action of acids, D-mannose 

and D-fructose are formed. The high concentration of organic acids caused 
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decomposition of monosaccharides to furan derivatives (ending up with a cyclic form 

by dehydration). 

 

2.1.2. Adsorption Mechanism of Monosaccharides 
 

The primary adsorption mechanism of polysaccharides to the surfaces may be 

the hydrogen bonding and the other is chemical complexation (Liu and Laskowski, 

2002). Polysaccharides contain large number of –OH groups and these groups are the 

only polar groups. The polar groups interact with surfaces and the hydrophobic radicals 

point towards the aqueous phase, making the surfaces hydrophobic. However, the 

hydrogen bonding mechanism may be postulated due to the –OH groups on the material 

surfaces in aqueous medium. The material and polysaccharides form hydrogen bond 

with water molecules. For the adsorption of polysaccharides through hydrogen bonding, 

the two existing hydrogen bonds must be broken down to form hydrogen bonding 

between material surface and polysaccharide.  

The chemical complexation was detected by FTIR studies. The appearance of  a 

broad O-H stretching band centering at about 3370 cm-1, a weak peak at 957 cm-1, 

minor shifts in the band at 935 cm-1 due to ring formation and a shift of 848 cm-1 

(equatorial C1-H deformation) to 893 cm-1 (axial C1-H deformation) were the indicators 

of polysaccharides attachment on to metal oxide surfaces. (Liu and Laskowski, 2002).  

It is reported that the presence of metallic sites on the mineral surfaces enhance 

the polysaccharide adsorption (Liu and Laskowski, 2002). For example, it was found 

that the quartz sample adsorbed more polysaccharides when it was covered by Pb 

metallic sites with respect to the sample without Pb sites. The pH of the medium 

affected the adsorption of polysaccharides because of the hydroxylation of metallic sites 

on the surfaces is pH dependent. It was observed that the isoelectric point (IEP) of the 

materials can be a good indicator of the adsorption of polysaccharides. High IEP 

indicates a basic surface and a low IEP indicates an acidic surface. It was reported that 

the oxides/hydroxides of lead, nickel and magnesium have high IEPs (between 10 and 

12) and strongly adsorbed polysaccharides such as dextrin, starch or guar gum. 

However, polysaccharides have not been found to interact with metal cations or bare 

metallic surfaces which are known as Lewis acids (electron acceptors). This behavior is 

evaluated as the indication of the acidic characteristic of -OH groups in polysaccharides 
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during their interaction with mineral surfaces. Liu and Laskowski (2002) mention a 

study on the adsorption of glucose onto alumina. Two alumina samples were considered; 

one with high concentrations of surface basic –OH groups and one without. It was 

found that the glucose adsorption was much higher on the alumina sample with high 

basic –OH groups.  
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CHAPTER 3 

 

RHEOLOGICAL BEHAVIOR OF DISPERSIONS 

 
Solid/liquid dispersions (suspensions) are present in many forms: polymers, 

foods, paints, inks, biological materials, pharmaceuticals, agrochemicals, ceramics, 

dyestuffs, paper coatings, cosmetics, etc. These suspensions involve aqueous or non-

aqueous media and organic or inorganic disperse phase. Such multiphase content shows 

wide variety of behaviors and make them difficult to process. As the particle size gets 

smaller, dispersion of particles becomes more difficult and the dispersion of nanometer 

scale particles is quite critical in these emerging technologies. 

Processing of a suspension usually requires identification of flow characteristics 

because its rheological behavior gives important information about the suspension 

properties. These properties can be controlled by manipulating the forces acting on the 

particles.  

 Rheology is described as the science of the deformation and flow of matter and 

is used in the evaluation of the processability of materials to provide information on 

flow and deformation properties. In other words, the utility of materials is assessed due 

to their rheological behavior. In the early 1920’s the behavior of clays and paints 

initially promoted by Bingham to introduce rheology as a new scientific field. However, 

the main developments in this field progressed when polymers have been concerned 

(Barnes, 1989, Cousset, 2005). Besides polymers, there is a vast variety of materials 

composed of emulsions, foam, and suspensions of solid particles. When the 

concentration of suspended material is low, then the rheological response is very close 

to the interstitial liquid which is generally Newtonian. However, when the concentration 

is sufficiently high the suspended materials develop specific interactions. This kind of 

fluids generally display a non-Newtonian behavior. 

To understand non-Newtonian behavior of a suspension, dispersion of particles 

must be taken into consideration, which is mainly based on changing surface 

characteristics. One of the traditional methods is to disperse particles by creating 

electrostatic repulsion. However, much larger surface potential is needed as the particle 

size decreases and solids content increases. The other common method is using 
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polymeric dispersants. Larger polymeric dispersants may lead to an increase in viscosity 

for concentrated suspensions.  Having a compact layer of polymer around a particle 

results in an increase in the effective volume fraction of a suspension and, hence, its 

viscosity. The use of alternative dispersants is necessary due to these limitations. 

Smaller dispersants with controlled adsorption to the surface of particles can provide a 

viable way for dispersing concentrated nanoparticle suspensions. 

Preparation of a suspension having desired flow properties and maintaining 

sufficient stability against sedimentation, aggregation and agglomeration can be 

achieved by understanding its rheological behavior. One of the important issues is to 

establish criteria for controlling rheological properties and physical stability. Therefore, 

it is very important to provide a basis for quantifying and comparing material properties 

during each phase of the manufacturing process (beginning from the raw materials to 

final product) to enhance the reliability of the products. Hence, measurements and 

standards play an important role for manufacturing reliable products. 

In the scope of this thesis work, the ultimate goal is to prepare suspensions 

having a low viscosity which is insensitive to temperature variations with high solids 

content and showing pseudoplastic behavior. However, suspensions involving 

submicron and nano particles can display different rheological properties including 

shear thinning, shear thickening, yielding and thixotropy. These complex rheological 

responses are the result of the magnitude of interparticle forces. 

Many materials can be classified as solids, liquids, and fluids. Each of them has 

different rheological responses. In order to understand rheological behavior of materials, 

intermolecular forces should be taken into account to control material behavior. The 

other important issue is the importance of the time scale of our observations. Hence, it is 

important to consider the time scale of measurements with respect to its characteristic 

time of the material which is given by Deborah number.  

Deborah number (De) was introduced by Maxwell, which is defined as the ratio 

of material’s stress relaxation time,λ , to the characteristic flow time, tc (Goodwin and 

Hughes, 2000). When a material is subjected to an instantaneous deformation, the 

molecules jump to a higher energy state. If the material was hold at this state for a while, 

the molecules diffuse to reach a lower energy state which is equal to the initial state. 

Thus, the original shape of the material has been lost and a viscous flow has occurred. 

Hence, materials can be classified into three categories by considering this number. If 

the Deborah number of a material is higher than unity, the material is defined as a solid 
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like material. If the Deborah number of a material is lower than unity, the material is 

defined as a liquid like material. The materials are classified as viscoelastic materials 

when the Deborah number is in the order of 1.  

 

1<<De   1 oforder ≈De   1>>De    

 

 

It is valuable to note that all liquids show elastic properties under appropriate 

conditions even if these conditions are extreme. The elastic properties for liquids can be 

observed at a short enough time or a high enough frequency. 

The ideal solids and ideal liquids are described by Hooke’s and Newton’s laws, 

respectively. In this chapter, theoretical approach for rheological characterization of 

viscoelastic and liquid-like materials will be given because dilute suspensions behave 

like a liquid, while concentrated suspensions may have viscoelastic properties. 

The ideal case of liquid like materials represented by Newtonian fluids whose 

viscosity is independent of shear rate (Figure 3.1.a). The relation between shear stress (τ) 

and shear rate (γ& ) is represented by the following equation; 

 

γηγητ &==
dt
d      (3.1) 

 

where γ is the deformation, η is the viscosity and t is time. For non-Newtonian materials, 

viscosity is a function of shear rate. Generally, non-Newtonian materials behave as 

Newtonian fluids at low shear rates but then display steadily decreasing viscosity as 

shear rate increases. These materials are known as shear-thinning or pseudoplastic 

(Figure 3.1.b) materials. A few materials show Newtonian behavior at low shear rates 

and then steadily increasing viscosity as shear rate increases. These materials are called 

as shear-thickening or dilatant (Figure 3.1.c) materials. If the relationship (above a 

corresponding yield stress) is linear between shear stress and shear rate, the flow 

behavior is called as Bingham plastic (Figure 3.1.d). Some materials do not flow to any 

practical extent until a certain stress threshold is reached. These materials are described 

as having a yield stress (Figure 3.1.e).  

Liquid-like        Viscoelastic   Solid-like  
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Figure 3.1. Types of rheological behavior exhibited by colloidal dispersions: (a)    

Newtonian flow; (b) shear thinning (pseudoplastic); (c) shear thickening; 
(d) Bingham plastic; and (e) pseudoplastic with a yield stress (Source: 
Lewis, 2000). 

 

Yield stress is defined as the minimum shear stress required initiating flow. It 

can also be defined as the stress below which a material will not exhibit a fluid-like 

behavior. In other words, the material which is subjected to stresses less than its yield 

stress shows a nonpermanent deformation or a slow creeping motion over the time scale 

of the experiment. The higher the yield value, the more readily a medium will maintain 

particles in suspension with minimal sedimentation. Thus, the magnitude of the static 

yield value may be used as one of the criteria for controlling sedimentation during 

storage and the ease of using or processing a product. 

Some systems exhibit a time dependent rheological behavior which is called as 

thixotropic behavior, which is the change over time in shear stress response of a 

material due to structural breakdown or formation.  In this case, viscosity of fluid 

decreases (called as thixotropic material) or increases (called as rheopectic material) 

with time while a constant shear rate is applied. Thixotropic behavior describes 

degradation of structure of the system and viscosity reduction with time. Therefore, a 

thixotropic material shows shear-thinning behavior because the orientation of the 

particles or molecules changes to align flow direction. When the external force is 

removed, the structure recovers in portion or completely in time. The time taken for the 

structure to re-assemble itself may range from seconds to hours. A thixotropic loop 

provides qualitative information about its time dependence, thus the loop area indicates 
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how fast the structure recovers after the force is removed. This type of experiments 

provide valuable information about suspension fluidity and time required for rebuilding 

of disturbed structure upon resting for certain applications like film formation. 

The non-Newtonian rheological behaviors were described with different 

equations. When a material behaves like solid for small applied stress and then flows 

with a constant differential viscosity for higher shear stresses, it is called as Bingham 

plastic material; 

 

γηττ &+= o       (3.2) 

 

where τ is shear stress, τo is yield stress, η  is viscosity and γ&  is shear rate. A 

concentrated coal suspension and some food products exhibit this kind of behavior. The 

deviation from ideality is often negligible for these systems. Power law relation 

represents varying differential viscosity with a negligible yield value.  This model is 

also known as Oswald-de Waele model; 

 
nKγτ &=       (3.3) 

 

The power law equation has two parameters to fit to experimental data: the exponent of 

shear rate, n, which is the slope of logτ versus log γ& . The second parameter is 

consistency index (K) and log K is the y-intercept of the logτ versus logγ&  plot, which is 

related to the magnitude of the viscosity (Morrison, 2000). 

Usually, non-linear relationship between shear stress and shear rate above the yield 

value is observed. The simplest model for this kind of behavior is the Herschel-Bulkley 

model which is given by; 

 
n

o Kγττ &+=        (3.4) 

 

This behavior would be detected by plotting log )( oττ − versus logγ& . This is a linear 

relationship and its slope gives “n” and must be different than unity. This model is an 

empirical model. This model explains the physical behavior of fluids having three 

dimensional structure and a sufficient resistance to flow. When fluid is subjected to 
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shear stress which is high enough, break down of structure progresses non-linearly 

unlike to Bingham plastic flow. The flow units become smaller as the breakdown 

progresses and the aligned streamlines become closer as shear rate increases. Thus, a 

differential viscosity results with increasing shear rate. 

 More detailed studies showed that shear stress-shear rate curves are mostly 

linear at very low and very high shear rates. This is recognized and studied by many 

researchers (see Table 3.1). Ellis, de Haven, and Meter models defined two limiting 

viscosities; 

 

oηγ
τ

γ
=

→ && 0
lim  zero shear viscosity     (3.5) 

 

∞∞→
=η

γ
τ

γ &&
lim  infinite shear viscosity    (3.6) 

 

and the apparent viscosity is between ηo and η∞. For Ellis and Meter models, α is often 

close to 2 and τi can be roughly defined as corresponding shear stress where ηo 

decreases to the half of its final value. The Table 3.1 summarizes the rheological models 

for Newtonian and non-Newtonian fluids. 

If a material is Newtonian, measuring its viscosity would be sufficient to 

characterize its flow properties. However, non-Newtonian materials may have both 

liquid like (viscous) and solid like (elastic) properties at the same time. For this kind of 

materials, Deborah number is in the order of 1. This kind of materials is called as 

viscoelastic materials. In macroscopic point of view, the material is considered as a 

continuum (stores energy). However, its properties are considered as dynamic (losses 

energy) in microscopic point of view. Hence, the properties depends on the balance 

between elastic (storage of energy) and viscous (loss of energy) parts.  

Viscoelastic properties can be determined by applying a constant strain (stress 

relaxation), or a constant stress (creep), or sinusoidal oscillations which are oscillating 

strain (deformation sinusoidally) and oscillating stress (applying stress which varies 

sinusoidally) at a given frequency.  
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Table 3.1. Rheological models relating shear stress and shear rate (Source: Hunter,  
  2001). 
Model Equation Empirical Parameters 

Newton 
γηγητ &==

dt
d  η 

Bingham γηττ &PL+= 0  PLη , τ0 

Power Law, 1926 nKγτ &=  K, n 

Herschel-Bulkley nKγττ &+= 0  τo, K, n 

Ellis 
( )( )1

0

1 −+
== αττ

η
η

γ
τ

i
&

 oη ,τi ,α 

de Haven, 1959 
( )nCτ

η
η

γ
τ

+
==

1
0

&
 0η , C, n 

Prandtl-Eyring, 1926 [ ]BA γτ &arcsinh.=  A, B 

Powell-Eyring, 1936 [ ]AABC γγτ && arcsinh.1−+=  A, B, C 

Meter, 1964 
( ) 1
0

1 −
∞

∞
+

−
+== αττ

ηη
ηη

γ
τ

i
&

 0η , ∞η , α, τi 

Krieger, 1972 1

0

1
−

∞

∞ ⎥
⎦

⎤
⎢
⎣

⎡
+=

−
−

iτ
τ

ηη
ηη

 
0η , ∞η , τi 

Carreau, 1968 ( )[ ] 2/)1(

0

1 −

∞

∞ +=
−
− nγλ
ηη
ηη

&  0η , ∞η , λ, n 

 
 

Stress relaxation is a measure of time dependent response of viscoelasticity. The 

Hookean solid shows no stress relaxation when it is subjected to a constant strain 

(Figure 3.2.a.). However, a Newtonian liquid relaxes instantly to zero as soon as the 

strain becomes constant (Figure 3.2.b.). A viscoelastic solid or liquid shows stress 

relaxation over a significant time. In viscoelastic liquid the stress relaxes to zero, while 

it asymptotically approaches to an equilibrium stress, τe for viscoelastic solid (Figure 

3.2.c.) (Macosko, 1994). 

 

Figure 3.2. Stress response, τ, versus time for a step input in strain of (a) the Hookean 
solid,  (b) the Newtonian fluid, (c) viscoelastic solid or liquid (Source: 
Macosko, 1994). 
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Figure 3.2. Stress response, τ, versus time for a step input in strain of (a) the Hookean 

solid,  (b) the Newtonian fluid, (c) viscoelastic solid or liquid (Source: 
Macosko, 1994). 

 
 

The stress relaxation data can be converted to a relaxation modulus (G) by the 

following equation;  

 

o

ttG
γ
τ )()( =       (3.7) 

 

where oγ  is the applied strain which is constant (Macosko, 1994). 
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Dilute solutions or suspensions show complete stress relaxation in very short 

times. However, concentrated suspensions show short relaxation time followed by a 

constant modulus at very low strain values. 

Creep experiments are done by applying a constant stress and by determining 

strain which increases with time. The ratio of strain per stress defines the compliance (J) 

of the material, 

 

o

ttJ
τ
γ )()( =        (3.8) 

 

where oτ  is the applied stress which is constant. 

A highly compliant material exhibits a large strain for small applied stresses. 

The reverse of the ratio (resulting stress per applied strain) gives rigidity of the material. 

A highly rigid material exhibits high stresses with respect to applied small strain 

(Macosko, 1994). The compliance sometimes is called creep compliance.  

If a constant stress is applied for a while (t1) and then removed, there may be no 

flow and strain maybe recovered completely. If there is a flow, the recovery can not be 

completed. This is another type of experiment often done in conjunction with creep and 

called as creep and recovery test. Creep region ( Cγ ) and recovery region ( Rγ ) are given 

by, 

)(tJoC τγ =        (3.9) 

and 

[ ])()( 11 ttJtJoR −−= τγ     (3.10) 

 

In general, there are three regions present in the creep compliance-time curve as it is 

given in Figure 3.3. The bonds between the primary structural units stretch elastically in 

the region of instantaneous compliance (curve AB). Curve BC represents the time-

dependent retarded elastic region with compliance JR. The linear region with steady-

state compliance J is the curve CD. The time required to reform the ruptured bonds is in 

excess of the test period. After the stress is removed, a recovery occurs, which is 

represented by DF. The magnitude of the instantaneous elastic recovery (DE) is the 

same as AB. It is followed by a retarded elastic recovery which is equivalent to the 

retarded region of the creep curve. The original structure is never recovered completely, 
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since some bonds are irreversibly broken in the creep region. The degree of recovery is 

represented by the recoverable compliance JR, which is equal to AH (Jc). 

 

 

 
Figure 3.3. The creep recovery of a material. 

 

The significance of oscillatory measurements lies on the resulted non-destructive 

measurements that are delivered in terms of discrete components of materials such as 

viscosity or shear modulus. The Figure 3.4. shows the oscillatory movement that 

material experiences. Generally, viscoelastic materials display time and temperature 

dependent properties. By analyzing with oscillatory measurements, the viscosity and 

shear modulus of a viscoelastic material can be resolved into “viscous” and “elastic” 

components (Goodwin and Hughes, 2000). The basic idea is to apply a sine wave 

shaped strain (or stress) and to measure, the response of the material, stress (or strain).  
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Figure 3.4. The schematic diagram for oscillatory movement. 

 

The oscillating stress with time at constant frequency gives a response of 

material as oscillating strain. If strain is being oscillating, the response will be 

oscillating stress. This behavior is approached by combining Hookean spring and 

Newtonian dashpots. Hookean spring obeys the Hooke’s law and the response of the 

spring can be described by shear modulus (G) (see Figure 3.5.a). The Newtonian 

dashpot is composed of a cup filled with Newtonian oil having a viscosity η  and a 

piston placed in the oil (see Figure 3.5.b). 

 

 
Figure 3.5. (a) the Hookean Solid and (b) the Newtonian Liquid. 
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The Hookean solid is perfectly elastic and the deformation is proportional to any 

force applied. This relationship is given in the following equation; 

 

EE Gγτ =        (3.11) 

 

where Eτ  is the shear stress, G is the spring modulus and Eγ  is the strain.  

 The dashpot contains the Newtonian liquid and the relationship between shear 

stress and shear rate is expressed mathematically as; 

 

VV γητ &=        (3.12) 

 

where τV is the shear stress and Vγ&   is the applied shear rate and η is  viscosity. The 

shear rate is derived by taking the derivative of the strain with respect to time, 

 

dtd /γγ =&        (3.13) 

 

a) The Kelvin-Voigt Model 

According to the Kelvin model, the linear stresses are added to visualize 

viscoelastic response due to combination of the Hookean solid and the Newtonian liquid 

by arranging them in parallel as seen in Figure 3.6, 

 
 

Figure 3.6. The schematic diagram of the Kelvin-Voigt model. 

 

Any strain applied to the system is the same strain being applied to the spring and the 

dashpot, 

 

VE γγγ ==       (3.14) 
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The total stress is equal to the spring stress plus the dashpot stress, 

 

VE τττ +=        (3.15) 

 

Hence, the constitutive equation describing the Kelvin-Voigt model becomes, 

 

dt
dGG VE
γηγγηγτ +=+= &       (3.16) 

 

A sinusoidally varying strain (γ ) applied to the material is expressed as, 

 

)sin( to ωγγ =        (3.17) 
 
 

where oγ is the strain amplitude, ω is the radial frequency of strain , and t is time.  

The radial frequency is defined by, 

 

fπω 2=        (3.18) 

 

f is applied frequency measured in Hertz. When the strain expression is inserted to the 

shear stress acting on the spring, the stress equation becomes, 

 

)sin( tG oE ωγτ =      (3.19) 

 

It can be said that the applied strain (γ ) and the resulted shear stress on the spring ( Eτ ) 

are “in-phase” because both of them are sine wave.  

The strain rate is obtained by differentiating the strain equation with respect to 

time,  

 

)cos( t
dt
d

o ωωγγγ
== &      (3.20) 
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The resulted stress acting on the dashpot can be expressed as, 

 

)cos( toV ωηωγτ =       (3.21) 

 

 The applied strain and the resulted shear stress on the dashpot are 90o out-of-

phase, because the strain is a sine wave and the stress is cosine wave. Finally, the total 

stress response (τ ) of material according to the Kelvin-Voigt model can be expressed 

as a sum of in phase and out-of-phase components, 

 

)cos()sin( ttG oo ωηωγωγτ +=      (3.22) 

 

Here, it is seen that the resulted stress consists of two kinds of stresses: the first 

one is “in-phase” which is elastic component, and the second one is “out-of-phase” 

which is the viscous component.  

If a Newtonian liquid is subjected to oscillating strain, the peak stress is out of 

phase because the peak stress is proportional to the rate of strain. For a viscoelastic 

material, some energy is stored and some energy is dissipated, hence, the stored 

contribution is in phase and the dissipated contribution is out of phase. 

 

 b) The Maxwell Model 

The strain rates are added according to the Maxwell model due to combination 

of the Hookean solid and the Newtonian liquid by arranging in series (see Figure 3.7.), 

 

 
Figure 3.7. The schematic diagram of the Maxwell model. 
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The total stress resulted on this system is the same stress resulted on the spring 

and the dashpot, 

 

VE τττ ==        (3.23) 

 

The total strain is equal to the spring strain plus the dashpot strain, 

 

VE γγγ +=        (3.24) 

 

The strain rate is expressed as, 

 

dt
d

dt
d

dt
d VE γγγ

+=       (3.25) 

 

and, the constitutive equation of Maxwell model is, 
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When the equation 3.20 is inserted to the equation 3.26, the Maxwell model becomes, 
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The steady state solution of this first order differential equation is, 
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The term of λ is the relaxation time and is defined as, 

 

Gηλ =       (3.29) 
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Again, the resulted stress consists of two stresses: the first term is “in-phase” 

which is elastic component, and the second term is “out-of-phase” which is the viscous 

component. 

Both of these models describe viscoelastic behavior. More complex 

combinations of the Hookean solid and the Newtonian liquid models may yield more 

complex equations which can better describe more complex rheological profiles. 

When a constant strain is applied to a material, the angular velocity and the 

strain amplitude are assigned parameters (see Figure 3.8).  

 

 

 
 

Figure 3.8. A schematic diagram for an oscillating strain and the stress response of a 
       material which is viscoelastic with respect to time. 

 

The assigned strain and the measured shear stress are given as, 

 

)sin( to ωγγ =      (3.30) 

 

)sin( δωττ += to      (3.31) 

 

where δ is the phase angle, oγ and oτ  is the strain and the shear stress amplitude 

respectively. The shear stress expression can be expanded as, 

 

[ ])cos(.sin)sin(.cos tto ωδωδττ +=     (3.32) 

 

 Both the Kelvin-Voigt and the Maxwell model have two contributions 

corresponding to the elastic (G') and the viscous (G'') components.  

 

oγ oτ  

time δ
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)cos()( δ
γ
τ

ω
o

oG =′       (3.33) 
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oG =′′      (3.34) 

 

where G′ is elastic or storage modulus is the stress that is in phase with the strain and is 

a measure of the solid-like or structured nature (i.e., energy storage) of a material. The 

viscous or loss modulus G ′′ is the stress that is 90o out of phase with the strain. It is a 

measure of the liquid-like nature (i.e., viscous dissipation) of a material. The ratio of 

viscous modulus to elastic modulus gives the phase angle, 

 

G
G
′
′′

=)tan(δ       (3.35) 

 

Thus, G′ and G ′′ provide information on the microstructure of a material by 

decoupling its elastic and viscous properties. The complex modulus is given as, 

 

)()(* ωω GiGG ′′+′=       (3.36) 

 

where i  is equal to )1(− . When the testing material is purely elastic, then the phase 

angle and viscous modulus equal to zero and the complex modulus equals to storage 

modulus. However, for purely viscous material, the phase angle equals to 90o and, the 

storage modulus becomes zero and the complex modulus equals to the viscous modulus. 

The storage viscosity and the dynamic viscosity of the material are defined by 

using following equations, 
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and the complex viscosity is, 
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The stress response of the material, can be written both in terms of moduli and in terms 

of viscosities, 

 

)cos()sin( tGtG oo ωγωγτ ′′+′=     (3.40) 

 

)cos()sin( tt oo ωωγηωωγητ ′+′′=     (3.41) 

 

The aim of oscillating strain sweep test is to measure the point where the 

stiffness or the strength of a material is initially affected by the amount of strain.  This 

test may be used to determine linear viscoelastic region and critical strain. When the 

moduli and phase angle remain constant as a function of strain in a certain range of 

strain, the material classified as linear-viscoelastic in that range and the test considered 

being non-destructive. The critical strain, at which the material becomes non-linear 

viscoelastic, indicates the minimum energy required to disrupt the structure, which is 

dependent on the dispersion quality. The higher the critical strain the better the system 

is dispersed. 

An alternative method of monitoring storage, viscous, and complex modulus, 

and complex viscosity with respect to frequency is to apply a sinusoidally varying stress 

and measure the sinusoidal strain output.   

These components of bulk viscosity or modulus have specific meanings in 

context of bulk properties of material. Each of them is very sensitive to specific events 

happening in the morphology or microstructure or even in nanostructure of the material. 

These structural variations are often invisible when traditional viscometers are used.  

 

3.1. The Types of Rheometers 

 
The most basic and widely used form of rheometers is the steady shear 

viscometer. There are a wide variety of existing devices which have been developed for 
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the measurement of steady shear viscosity specific to certain applications (Figure 3.9). 

The common goal of all these devices is to determine the bulk viscosity of a material as 

it flows in a steady shear or continuous fashion. However, in order to make a 

comparison between materials, simple shear viscosity measurements becomes limited in 

use. 

 

 
 

Figure 3.9. Schematic diagram of different type of rheometers, measurements, and 
       geometries. 
 

The ability of applying small deformations constantly or dynamically may allow 

visualizing dynamic shear testing. In dynamic (oscillatory) measurements, the sample is 

being vibrated between two parallel plates or concentric cylinders as opposite to being 

sheared continuously. Here the controlling oscillation at controlled temperature play 

important role to determine materials behavior. A sinusoidal stress or strain is applied 

and the induced response is determined in the oscillation technique. By this way, the 

sample continuously excites but never exceeds a strain large enough to destroy structure. 

Thus linear viscoelastic region can be observed. When the sample is overstrained the 

elastic structure will be destroyed.  

The common geometries used to observe steady shear rheology and dynamic 

shear rheology are given in Figure 3.10. The appropriate geometry is dictated primarily 
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by the properties of sample material and by the desire to simulate a process or in situ 

application. 

 

 
 

Figure 3.10. Typical testing geometries for rheometers a) concentric cylinder (couette), 
b) cone and plate, and c) parallel plates.  

 

 Different processes and the influence on product properties or changes in 

formulations can be simulated by using rheological studies. These measurements can be 

used to examine material structure for quality control of raw material, and/or process 

control such as consistency, reliability, shear and/or storage stability against 

sedimentation. Since, every application requires its own specialized characterization 

tests, sometimes it is difficult to observe and optimize small differences during process. 

However, rheological measurements can reveal all these small variations. These 

measurements can also be of help in the development of new products, giving better 

understanding of the processes governing the final properties. 

It can be said that rheological behavior can be observed under either extensional 

or shear deformation. Shear deformation take into account due to its relevance to the 

scope of this thesis. Shear rheology can be divided into steady shear or dynamic shear. 

Steady shear rheology experiments can be used to obtain information on viscosity as a 

function of steady shear rate. Dynamic shear rheology experiments can be conducted in 

two different ways. The first one is called as static because a small strain or stress is 

applied to the sample which is stress relaxation and creep and recovery tests, 

respectively. The second one is called as dynamic. The corresponding tests are time, 

amplitude, frequency, temperature sweep tests, in which the measurements are 

performed at low strain amplitudes. The definitions of rheological property 

(a) (b) (c) 
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determination methods in the following part are associated with the capabilities of 

Haake Mars II Advanced Rheometer System. 

 

3.2. Sources of Error in Rheological Experiments 
 

 There are several sources of error which may affect the rheological 

measurements seriously. During application of a rheological technique, one should be 

aware of the sources of error which may be based on instrument, measurement system 

and/or based on sample instabilities.  

Poor calibration and machining or alignment of the instrument might be an 

important source of error. The errors based on measurement system might be caused by 

inertial contribution of fluid (Fluid inertia), by the difference between the measured and 

the calculated shear rate at the edge of measurement system (edge effects), by viscous 

dissipation of heat during flow. The errors based on sample instabilities involve sample 

fracturing, centrifugal expulsion and the material itself (Collyer and Clegg, 1998). 

The inertial contribution of fluid is needed to be neglected for satisfying the 

conservation of linear momentum. The presence of fluid inertia has two effects for 

rheological measurements with cone and plate and parallel plate geometries: 

contribution to pressure gradient to the stress distribution along the measurement gap 

and contribution to actual flow field by creating inner flow towards the apex of cone 

and outflow along the plate. The contribution of the flow inertia can produce shear 

thickening effect. This inertia driven secondary flow can be negligible if the REN <40 

for parallel plate measurement system and if 0.15 REN 2<1 for cone and plate 

measurement system with small cone angles. The Reynolds number is calculated by the 

following equation, 

 

η
ρ 2RN RE
Ω

=       (3.42) 

 

where ρ is density of the material (kg/m3) , Ω is the angular velocity (1/s), R is the 

radius of the measurement apparatus (m) and η is the viscosity (Pa.s). The error in 

measured torque due to flow geometry may be caused by edge effects. The edge effect 

means the difference between measured and calculated (ideal) shear rate at the edge. 



 44

The edge effects become significant for cone and plate measurement system if the cone 

angle is greater than 4o. The edge effect becomes larger if the material has non-

Newtonian rheological behavior. There is a greater tendency to deviate from ideal flow 

at edge for non-Newtonian fluids than Newtonian. If the distance of gap over diameter 

(h/D) is less than 0.075, the error in measured torque becomes less than 2% for parallel 

plate measurement system. 

 The energy generation due to flow can produce changes in temperature and may 

lead deviation in measured viscosity values. Viscous heating effect becomes greater at 

high shear rates and for highly viscous materials.  

 Sample fracturing is an inward propagation of a crack from the edge (sample air 

interface) in cone and plate and parallel plate measurement systems. This is caused by 

secondary normal forces. The centrifugal expulsion arises due to centrifugal forces. 

Sample fracturing and centrifugal expulsion limits the highest shear rate applied. The 

nature of the material may cause severe experimental difficulties. The difficulties may 

be slippage at fluid-solid interface, inhomogeneity of the sample, shear induced particle 

migration, particle bridging across the gap, sedimentation, presence of air bubbles, and 

sample evaporation. The thin layer of liquid at the top of the suspension which has 

lower viscosity may cause the slippage. The serrated surfaces may disrupt this layer. 

Shear induced particle migration may be caused by the non-uniform shear field. The 

particles are accumulate in the center of the sample due to shear forces. The particle 

bridging mostly occurs in the cone and plate geometry. The presence of several particles 

having the similar size with the gap between the apex and the plate may cause 

asymmetric torque measurements. Sedimentation will have a significant effect when the 

density difference between particle and suspending medium is large. The sedimentation 

of the particle may be eliminated or postponed if double cup and bob or concentric 

cylinder geometries is used. The presence of air bubbles may cause phase separation at 

the top. If the samples are subjected to vacuum, the bubbles can be removed. The 

rheological behavior of highly concentrated suspensions or solutions will be easily 

affected by evaporation of medium or solute, even in small amounts. One method to 

control evaporation is to coat the sample-air interface with a layer of a low volatility, 

relatively non-viscous oil. Humidifying the sample environment and/or eliminating the 

direct air-flow through the measurement space may be helpful methods to prevent 

evaporation.  
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3.3. Recent Studies on the Rheological Behavior of Ceramic 

Dispersions 
 

The use of rheometric techniques to characterize ceramic suspensions was 

scarcely investigated when compared with molten polymeric materials. The use of 

rheometric techniques could allow us to observe and understand the regarding materials 

and the interactions with additives such as dispersants and binders. The understanding 

of rheology of ceramic suspensions is fundamental in applications and optimization of 

products and properties.  

The rheological behavior of suspensions prepared with sub-micron or micron 

sized particles were investigated widely. Cesarano and Aksay (1988) investigated the 

stability and rheology of α-alumina suspensions with polyacrylic acid and Na+ salt of 

polymethacrylic acid as a function of pH, solids loading, and molecular weight. They 

used high purity, sub-micron size α-alumina powders (0.2 and 1.0 μm in size) whose 

surface areas were 4.5 and 6.8 m2/g. The suspension pH was varied between 4.5 and 

10.0. They found that as the volume percent of solids increases, the viscosity increases 

with narrower pH intervals where the lowest viscosity is obtained. The polyelectrolyte 

became fully charged at pH 8.8 and the viscosity had the lowest value for all cases. 

Above pH 9, adsorption of polyelectrolyte did not occur. The amount of water was 

small and the concentration of excess polyelectrolyte in solution became appreciable 

which led to an increase in viscosity. Excess amount of polyelectrolyte led to depletion 

flocculation. Below pH 9, the repulsive barrier decreases because of a decrease in the 

negative charge characteristics and led to an increase in viscosity. They reported that 62 

vol % alumina suspensions with 0.42 μm particles in size had viscosities below 0.5 Pa.s. 

Ferrira and Olhero (2004) investigated the effect of particle size and distribution 

on the rheological behavior of silica suspensions which were prepared by mixing 

powders having different particle sizes (2.2, 6.5, and 19 μm) with finer powder (fumed 

silica) having a particle size of 0.07 μm. They reported that the presence of fine powder 

(0.07 μm) caused shear thinning behavior for slurries prepared with 2.2 μm sized 

powder. In contrast, shear thickening behavior was observed for slurries prepared with 

10 μm sized powder. 

Liu (1998c) investigated the stability and rheological behavior of 3Y-ZrO2 

having 95 nm powders with the addition of polyacrylic acid. The suspensions were 
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formed by slip casting and densities of greenbodies were taken into account. 

Suspensions having 45-55 vol% solids content were prepared and it was observed that 

yield stress of suspensions increased with the increase of solid content. 

Schilling and his colleagues (Kim et al., 2000; Schilling et al., 2002a; Schilling 

et al., 2002b) worked on the rheological behavior of suspensions having sub-micron and 

nano sized alumina particles with addition of mono and polysaccharides. Generally, the 

addition of saccharides having different molecular weights led to a decrease in the 

viscosity and the yield stress of suspensions. In one of their studies, they prepared a 

suspension of sub-micron α-alumina powder with and without the addition of 

polysaccharides. The addition of high molecular weight polysaccharides led to 

thixotropic behavior. However, the authors observed that suspensions showed a 

Newtonian like rheological behavior with the addition of polysaccharides in general. 

However results of another study conducted by the authors revealed that the presence of 

nano sized particles, the rheological behavior of suspensions fitted to Herschel-Bulkley 

model. 

A similar powder-medium was investigated by Tseng and Wu (2003). They 

investigated the rheological behavior of aqueous suspensions having sub-micron sized 

α-alumina powder. In contrast to other referred studies, they prepared suspensions with 

1-15 vol% solids content without addition of dispersants. They considered the 

microstructure of sintered thick sheets which were prepared by electrophoretic 

deposition method. They observed more porous structure from concentrated suspension 

with respect to lower ones. In another study (Tseng and Lin, 2003), nano titania 

particles (7-20 nm) were suspended in water without addition of any dispersants. The 

rheological behavior was observed. To determine the yield stress, they investigated the 

aggregation of the particles. They stated that the formation of agglomerates would be 

taking place which was related to the diffusion limited cluster-cluster model. 

Tari et al. (1998) investigated the flow characteristics of several alumina 

suspensions with a particle size ranging from submicron (0.1 μm) to micron range        

(1 μm). They observed that suspension of high solids content exhibited shear thinning 

behavior. The shear thinning is attributed to the release of immobilized water present in 

the flocculates. They stated that as the shear rate increased the network of flocculates 

were broken and the “entrapped” water was released and hence, lower viscosity was 

observed. Moreover, as the particle size decreased, the effect of the entrapped water 

might be more significant.  
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Li and Akınç (2005) reported the study on the nature (and hence the mobility) of 

water in aqueous suspensions of nanometric alumina particles and the rheological 

properties. The suspensions have various solids contents and fructose concentrations. 

They set their primary purpose as the understanding of the role of mono- and di-

saccharides for altering the rheology of nanoparticle suspensions. They stated that the 

influence of water adsorption on rheology of suspensions was twofold: it restricts the 

mobility of water molecules and reduces the fraction of free water contributing to the 

flow and the overlap of the bound water layers leads to dipole interaction between 

particles, hence increased resistance to flow. They concluded that as the particle size 

approaches nanoscale, the role of adsorbed layers becomes quite significant.  

In the last ten years, the rheometric techniques rather than the determination of 

flow behavior and viscosity such as dynamic measurements were used to understand 

suspension behavior. Kirby et al. (2005) worked on the effect of polyethyleneimine 

(PEI) on the rheological behavior of aqueous mullite and barium strontium 

aluminosilicate (BSAS) suspensions to optimize a dip-coating process.  The suspensions 

having 20-45 vol% of particles were subjected to ultrasonic treatment for 5 min, 

presheared at a stress of 200 Pa and allowed to equilibrate prior to measurement for 15 

minutes. Furthermore, a specially designed solvent trap was used to minimize the 

evaporation of water. In this way, variations in sample handling were minimized to 

ensure reproducibility of the data. Stress viscometer measurements were carried out on 

concentrated mullite and BSAS suspensions (45 vol% solids loading at pH 7) of varying 

PEI concentration. They found that the critical PEI concentrations to minimize linear 

elastic moduli and yield stress were 0.2 mg/mm2 of mullite and 0.4 mg/mm2 of BSAS, 

respectively. Above the critical PEI concentration of each system, the apparent viscosity 

increased and shear-thinning flow behavior intensified with increasing PEI 

concentration. Such effects typically stem from an increasing fraction of polymer that 

does not adsorb to the ceramic particles, but is dissolved in the solution medium. 

Wolthers et al. (1996) investigated on the rheological behavior of depletion 

flocculated dispersion of silica particles by using two different rheometers, a controlled 

stress and a harmonic rheometer. The authors divided the viscoelastic measurements 

into three sections: retardation, relaxation and harmonic experiments. They defined 

retardation experiments as application of small amount of stress and observation of 

deformation with respect to time. In contrast to retardation experiments, relaxation 

experiments involve application of small amount of deformation and observation of 
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stress with respect to time. Harmonic experiments were described as the measure of the 

frequency dependency of the material. The suspensions were characterized by 

retardation and harmonic experiments. The solids content of the suspensions differed 

from 8 to 16.1 vol%. The particles were coated with stearyl and dispersed in 

cyclohexane. When adequate polystyrene was added to the system depletion 

flocculation occurred. Aggregating systems are notorious for their experimental 

problems, they had often strongly shear thinning behavior and in addition their 

rheological properties can be a function of the shear history. The experiments were 

repeated three times with fresh samples. However, the errors of the repeated 

measurements were within 50% systematic error. Increase in volume fraction increases 

the error. The authors ascribe these systematic errors to differences in shear history, 

which may occur during the filling of the rheometer. 

One of the main problems in rheological measurements of the suspensions was 

to reset the shear history. Schmidt and Münstedt (2002) worked on the concentrated 

monodisperse suspensions as a function of preshear conditions and temperature. They 

used two different glass spheres (0.27 and 1.18 μm in size) which were dispersed in 

polyisobutylenes having different molecular weights. The volume fractions of the 

suspensions were ranging between 0.20 and 0.35. The study focused on the 

microstructural changes during preshearing. The preshear experiments were done at 

constant shear stress (0.19 Pa) and only the time period of preshear was differed. The 

viscosity and dynamic-mechanical experiments (dynamic shear experiments) of the 

suspensions were conducted after preshearing. They found that the influence of preshear 

time on the stress dependence of the shear viscosity was less pronounced at low volume 

fractions. They observed an increase in shear viscosity at small stresses during 

preshearing which was attributed to the formation of a particle network due to particle 

diffusion. The viscosity reached to η∞ which were not affected by the preshear history. 

The dynamic experiments showed that viscous modulus was dominant over storage 

modulus. Both the G′ and the G′′ values increased as the frequency (ω) increased. The 

suspensions transformed from viscoelastic liquid to viscoelastic solid as frequency was 

decreased. There were decrease of the G′′ with ω  and the G′ with ω2 at high 

frequencies and decrease of both G′ and G′′ with ω at low frequencies. The 

measurement temperature has an effect on the behavior of the G′. When the experiment 

was done at 31.3oC the G′ increased with frequency and reached a plateau. However, 



 49

increasing the temperature to 40oC caused the G′ have a shoulder between high and low 

frequency or a plateau at intermediate frequencies. 

Aoki et al. (2003) worked on the rheology of carbon black suspensions. The 

carbon black suspensions were used as an additive for pigmentation, UV protection, and 

in plastics, inks and coatings to control rheological behavior. The average particle and 

the aggregate size of the carbon black particles were 76 nm and 230 nm, respectively. 

The suspending mediums were 20 wt% polystyrene in dibutyl phthalate (PS-DBP) and 

two varnishes: a rosin-modified phenol resin (Varnish-1) and an alkyld resin (Varnish-

2). The solids loading of the suspensions were between 0 and 35 wt%. They found that 

three different rheological behaviors were observed for these three different suspending 

media. When the carbon black particles were mixed with PS-DBP, the affinity of the 

suspending medium towards carbon black particles was described as low and the 

polystyrene partially was adsorbed onto particles. The frequency sweep tests have 

shown that the G′ was dominant over the G′′. The G′ and the G′′ were increased with 

the increase of solids loading and were insensitive to angular frequency. This behavior 

was explained as the reflection of the solid like character of agglomerated network 

under small strain. When Varnish-1 was used as a suspending medium, the affinity of 

the suspending medium was described as moderate. The G′ was dominant over the G′′ 

and the G′ and the G′′ were increased with the increase of solids loading and angular 

frequency. This behavior denoted a gel-like, self-similarly branched fractal network. 

The dependency of the G′ and the G′′ on angular frequency was power law type 

(G′=G′′(ω)/tanδ ∝ωn). The critical gelation point was observed at n=0.71 at tan(nπ/2) 

for the suspension having 35 vol% carbon black. The affinity of the Varnish-2 was the 

highest among the other mediums. The particles were randomly dispersed to form no 

large agglomerates.  

Lu and Kessler (2006) worked on the effects of polyacrylic acid (PAA) and 

ammonium-poly (methacrylic acid) (PMAA) on dispersion and rheology of nano-

alumina suspensions. First of all, 10 wt% glycerol solution was prepared and ball-milled 

for 5 min. The particles were added incrementally (10 g) and homogenized by ball-

milling for 12 hours after each addition. The pH of the suspension was kept at 1.5 by 

HCl addition to promote the adsorption PAA or ammonium PMAA. Then, the pH of the 

suspension was adjusted to 9.5 by NH4OH addition. The final suspension was mixed for 

24 hours. They found that when particle size decreased from 0.2 μm to 38 nm, the 
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required amount of PAA became 20 times higher. They stated that more PAA was 

needed and the efficiency of PAA adsorption became lower when the particle size 

approaches to nano. The increase in viscosity of the nano-Al2O3 suspensions with 

respect to the Al2O3 suspensions having 0.2 μm particles under the same conditions 

might be due to the increase of the overlapping areas between the particles. The 

presence of PMAA-NH4 suspension instead of PAA caused higher viscosity and shear 

stress at all shear rates compared to the PAA suspension due to longer chains which 

resulted in thicker electrical double layer and larger overlapping area. 

Lu (2007) worked on the rheological behavior of carbon nano tube (CNT) and 

alumina particle dispersion system. The average particle size of the alumina particles 

was found as 27.5 nm. The CNTs were multi-walled with 1-30 nm in diameter and 0.5-

40 μm in length. The surface areas of alumina and CNTs were 45 and 40-300 m2/g, 

respectively. The disperse medium was aqueous glycerol solution (10 wt%) and 

polyacrylic acid was used as a dispersant. The suspensions were prepared by following 

the same procedure described in Lu and Kessler’s study (Lu and Kessler 2006). The 

volume fractions of pure nano-alumina suspensions were ranging between 20 and 45 

vol%. The solids loading of the nano-alumina-CNT co-dispersions were 40 vol% and 

contained 0- 2.6 vol% of CNTs. The CNTs were added in small amounts and the 

suspension was ball-milled for 1 hour after each addition. The samples were presheared 

at 0.6 Pa for 60 s and then, dynamic measurements were done for three times. The 

viscosities of pure nano-alumina suspensions having 20-45 vol% solids loading were 

between 0.03 and 4.35 Pa.s at a shear rate of 30 1/s. The flow behaviors of the 

suspensions were described by Herschel-Bulkley model. The dynamic steady shear 

measurements showed that the G′ was dominant at higher angular frequencies and there 

was a crossover point of G′ and G′′ as the angular frequency decreased. This behavior 

denoted the transition of the suspension structure from more elastic (at high angular 

frequencies) to more viscoplastic (at low angular frequencies). The interaction of 

adsorbed PAA layers arises as the solids loading increases. When the angular frequency 

ω approaches zero, G′ represents the energy storage capability of a suspension under 

“undisturbed conditions”. The G′′ became negligible at angular frequency close to zero 

for 20 vol% nano-alumina suspensions, which means the suspension has a little 

viscoplastic behavior under static conditions. The G′ and the G′′ moduli became higher 

(150 and 120 Pa respectively) as angular frequency approaches to zero when the solids 
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loading was increased to 40 vol%. It was considered as the experienced fundamental 

structural reorganization during the oscillatory test of the suspension having 40 vol% 

solids. The structural change was not restored after the oscillatory shear. The addition of 

CNTs in small amounts (below 1.3 vol%) did not change the rheological behavior of 

nano-alumina suspensions. The CNTs may be far apart and may not be in contact with 

each other. However, when the solids contents of CNTs were above 1.3 vol%, yield 

stress of the suspensions increased and the G′ became higher than the G′′ at all angular 

frequencies.  
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CHAPTER 4 

 

EXPERIMENTAL STUDY 
 

4.1. Powder Preparation 
 

The preparation of titania particles was performed by the hydrolysis of titanium 

isopropoxide by introducing into ethanol-water mixture at room temperature. The 

schematic illustration of the experimental set-up was given in Figure 4.1. Ttitanium (IV) 

isopropoxide was diluted by ethanol (TiISP/EtOH=0.45) in a glass bottle and led to be 

mixed for an hour by a magnetic stirrer to reach to equilibrium. An ethanol-water 

mixture (EtOH/H2O=1) was prepared in a beaker and placed in an ultrasonic bath. 

Mixing was provided by a laboratory-type mixer. While the ethanol-water mixture (400 

mL) was mixed and subjected to the sonification at the same time, titanium (IV) 

isopropoxide-ethanol mixture (100 mL) was added drop-wise by using a peristaltic 

pump (6 mL/min). The white precipitates were seen immediately as the titanium (IV) 

isopropoxide was introduced to the ethanol-water mixture. The precipitates were 

collected by using centrifuge (at 3500 rpm for 30 min) and led to dry at 70oC in an oven 

for 12 hours. The dried precipitates were ground in a mortar and screened. The powder 

was heated to different temperatures (90-800oC). The heating rate, soaking time and 

cooling rate were 10 oC/min, 120 min and 15oC/min respectively. The powder was 

calcined at 425oC for 2 hours and ballmilled with zirconia balls for 12 hours in ethanol 

medium. The ball milled powder was dried in an oven at 70 oC for 12 hour.  

                              

 
            

Figure 4.1. The schematic illustration of the experimental set-up for the preparation of 
nano-TiO2 particles. 

 

B 

A
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4.2. Specifications of Materials 

 

The submicron alumina powder coded as AC (99.99% purity) was supplied from 

Sumitomo Chemicals Co., Ltd., Japan. The nano alumina powder coded as NA (99.95% 

purity) was supplied from Alfa Aesar GmbH & Co, Germany. The nano titania powder 

coded as NT was prepared via chemical precipitation method by using Titanium (IV) 

isopropoxide. The specifications of the powders used in this thesis were tabulated in 

Table 4.1. D-fructose (99% purity) and polyacrylic acid (99% purity) were used as 

dispersant in this thesis and were supplied from Fluka and Merck, respectively. The 

average particle size of the powders were calculated from surface area by assuming that 

the particles were monodisperse and spherical. 

 

Table 4.1. The specification of the powders used in the thesis. 

Code Name 
Density 

(g/cm3) 

Surface Area 

(BET, m2/g) 

Average Particle 

Size calculated 

from BET (nm) 

Crystal Phase 

AC Alumina 3.98 12.3 122 alpha 

NA Alumina 3.65 36.2 45 
70:30 

Delta:Gamma 

NT* Titania 3.61 146.6 11 anatase 
(*) The given values were based on the measurements on the powder which was heat treated at 425oC 
 

4.3. Preparation of Dispersions 

 

The dispersions were prepared as follows: the predetermined amount of water 

was placed in a plastic bottle and fructose was added and dissolved in water. The 

predetermined amount of powder was added in small amounts to fructose solution while 

the dispersion was mixed by hand in an ultrasonic bath for an hour. The dispersions 

were let to reach equilibrium at room temperature for three days.  Dispersions had paste 

like appearance at the beginning of the resting period. After three days, the dispersions 

became much more fluid like. The samples were subjected to ultrasonic treatment for 10 

minutes before placing the sample onto the measuring space for rheological experiments. 
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The dispersions prepared by submicron alumina, nano alumina and nano titania 

were coded as AC, NA, and NT, respectively. The number of the code of the powder 

indicated the volume percent of the solids content in the dispersion. The dispersants 

used were fructose and polyacrylic acid and were coded as F and PAA, respectively. 

The number next to dispersant code indicated the weight percent of the dispersant 

present in the dispersion. 

The solids content of the dispersions having submicron alumina and nano 

alumina was varied between 5 and 40 vol%. The powders were dispersed in fructose 

solutions whose concentration was varied between 1 and 40 wt%. The solids content of 

the dispersions having nano titania were varied between 5 and 20 vol%.  The 

dispersions at higher solids content were paste like and did not flow. The pH adjustment 

of the suspensions was done by adding required amounts fructose and the powder into 

nitric acid solution which was previously adjusted to pH∼3. 

 

4.4. Characterization Methods 

 
The powders were characterized by X-Ray diffraction Analyzer (XRD-Philips 

Expert Pro), Scanning Electron Microscope (SEM-Philips XL-30S FEG), Accelerated 

Surface Area and Porosimeter (ASAP-Micromeritics 2000), Sedigraph (PSA-

Micromeritics Instruments Corp.), ZetaSizer 3000 HSA (Malvern Instruments) Thermal 

Gravimetric Analyzer, (TGA- Shimadzu, TG-51), and Helium Picnometer. The 

rheological behaviors of the dispersions were determined by using a rotational 

rheometer (Haake Mars II, Advanced rheometer System).  

The XRD patterns of the materials were measured between 20-60o of 2θ. The 

samples for SEM micrographs were prepared by dispersing the material in ethanol by 

using sonification. The dispersed material was dropped onto stamp and led to dry at 

70oC. The BET surface area of the powders was determined by N2 adsorption. The 

surface analysis has two steps: first degassing and second N2 adsorption at -196oC. The 

degassing can be done at temperatures ranging between room temperature and 300oC. 

The degassing of samples of nano titania powder which were heat treated at 70 and 

200oC were done at 50oC and 150oC. The other nano titania samples which were heated 

to the temperature above 200oC were degassed at 250oC. The particle size distribution 

of the sub micron alumina was determined by using Sedigraph. The sample for 
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measurement was prepared by adding 1 g of submicron alumina into 50 mL ultrapure 

water and the pH was adjusted to about 4 by addition of nitric acid solution. The 

dispersion was subjected to ultrasonic treatment for half of hour before measurement. 

The particle size distributions of nano alumina and nano titania powders were 

determined by using ZetaSizer. The sample for the measurement was prepared by 

adding about 0.5 mg of powder into UV cuvette and necessary amount of ultrapure 

water. The dilution was done if the sample was too blurry. The dispersion was subjected 

to ultrasonic treatment for half of hour and ultrasonic treatment was repeated if 

necessary. The zeta potentials of the powders at different pH values were measured by 

using ZetaSizer. The pH adjustments were done by adding dilute nitric acid or ammonia 

solution. The TGA curves of the powders (AC, NA, NT and DT) and D-fructose were 

obtained by heating to 600 and 1000 oC under N2 atmosphere with a heating rate of 10 
oC/min. The density measurements were done at 25oC and about 3-6 g of the sample 

was used. All rheological measurements were performed by using parallel plate 

measurement apparatus with a diameter of 35 mm and 1 mL of the dispersion was used 

for each experiment.  

 

4.4.1. Rheological Methods 
 

The rheological behavior of the dispersions was determined by steady shear and 

dynamic shear rheology measurements. The measurements were done at 20oC and 

repeated for three times. The average of these three measurements was reported. Before 

applying dynamic rheology tests, the samples were sheared at 0.1 Pa for 30 s and rested 

for 300 s. The rheological methods were tabulated in Table 4.2. The rheological 

behavior of the fructose solutions was determined. The fructose solutions were prepared 

by mixing predetermined amount of fructose and water by a magnetic stirrer in a plastic 

bottle.  

 

 

 

 

 

 



 56

Table 4.2. The conditions of the rheological tests. 

Rheological Method Preshear Details 

Flow Curve - 
γ& =0-500 1/s in 100 s 

(ramp) 

Viscosity - γ& =0-500 1/s, (stepwise) 

Thixotropy - 

γ& =0-400 1/s in 100 s 

γ& =400 1/s for 30 s 

γ& =400-0 1/s in 100 s 

Stress Sweep 
τ =0.1 Pa for 30 s 

τ =0.1 Pa for 300 s 
τ=0.003-30.0 Pa, , f=1 Hz 

Frequency sweep 
τ =0.1 Pa for 30 s 

τ =0.1 Pa for 300 s 

f=0.01-100.0 Hz, τ due to stress sweep 

test. 

 

 
4.4.2. Consolidation of Submicron Alumina and Nano Alumina  

          Dispersions 
 

 The dispersions were consolidated by using a freeze dryer. The dispersions were 

placed in hollow tubes as it is shown in Figure 4.2.  

 

 
 
Figure 4.2. The schematic diagram for the preparation of consolidated bodies from 

dispersions. 
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Liquid nitrogen was placed around the hollow tubes to freeze them for 

approximately ten minutes. The bodies were placed in freeze dryer and dried for 4 hours. 

The dried bodies were kept at 70oC until the sintering was done.  

The heating rate, soaking time and cooling rate were 10 oC/min, 120 minutes and 

10oC/min, respectively. The sintering of submicron alumina and nano alumina were 

conducted 1400 and 1200oC, respectively. In order to compare the densities of the 

sintered bodies, powders were dry pressed in stainless steel die having a diameter of 10 

mm. The pressure of dry pressing was 37.5 MPa. 

The densities of the bodies before sintering were calculated by using dimensions 

of the bodies. The density of the sintered bodies was measured by using Archimedes’ 

Principle. Sortorius Density measurement kit was used for the density measurements. 

The samples were weighed first (WA) and then placed in beaker filled with ultrapure 

water and heated on a heater. The sample in water was boiled for 5 hours. Then, the 

sample was let to cool down to room temperature. The excess water on the sintered 

body was removed by a wet tissue. The sintered body was weighed again (WS) and the 

weight in water (WSS) by using density measurement kit. The collected data was used to 

calculate density of the sintered body by using the following equation, 

 

SSS

OHA

WW
W

−

×
= 2

ρ
ρ      (4.1) 

 

The measurements were done at 20oC and the density of water ( OH2
ρ ) was taken as 

0.9982 g/cm3.  
 
 

4.4.3. The FTIR study of Submicron Alumina, Nano Alumina and Nano 

Titania Dispersions 
 

 The FTIR spectra of the D-fructose and powders were obtained by using 

Shimadzu FTIR spectrophotometer (8400S). KBr was used in the sample preparation 

for the analysis. The pellets for samples were prepared by following the steps of mixing 

with KBr in certain amounts (3 mg sample in 150 mg KBr-sample mixture), keeping at 

120oC overnight, ground in a mortar and pressing. The dispersions of submicron 

alumina, nano alumina and nano titania having 5 vol% solids in 10 wt% fructose 
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solution were prepared for FTIR analyses. The dispersions were centrifuged at 7500 

rpm for 15 minutes in order to recover the powders. The supernatants were removed and 

the powder was dried at 80oC for 12 hours. After FTIR analyses of the powders were 

done, water was added and the powder dispersed again by ultrasonic treatment. The 

powder was recovered again by centrifugation and the powder was dried at 80oC. 
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CHAPTER 5 

 

RESULTS AND DISCUSSION 
 

5.1. The Characterization of the Materials 
  

 The materials used in experimental study were characterized by different 

characterization methods. The weight loss of the materials was calculated from TGA. 

The IEP of the powders was determined by measuring zeta potential. The crystal size 

and crystal structure of the materials were observed by XRD patterns. The He 

Picnometer was used to measure density of the powders. N2 adsorption data was used to 

calculate surface area of the powders by using Brunauer-Emmett-Teller (BET) 

approximation. The pore size distribution was determined from desorption data by using 

Barrett-Joiner-Halenda (BJH) approximation. The particle sizes of the powders were 

determined by using Sedigraph and Zeta Sizer. The particle morphology was observed 

from SEM micrographs. 

 D-Fructose was used as received and the TGA curve is given in Figure 5.1. D-

fructose lost 98.5% of its weight and decomposes completely when it is heated to 650oC.  

The TGA curves of the submicron alumina, nano alumina and nano titania 

powders are given in Figure 5.2. The submicron alumina powders were used as received. 

The powder lost 0.2% of its weight when it was heated to 600 oC. Nano alumina 

particles were ball milled for 12 hours with zirconia balls in ethanol medium. The nano 

alumina powder lost 2.1% of its weight when it was heated to 800oC. The TGA curve of 

the titania precipitate which was previously dried at 70 oC is given in Figure 5.2. The 

powder lost 12.5% of its weight when it was heated to about 425 oC. No further 

significant weight loss was detected after 425oC. The weight loss may occur due to 

desorption of physical adsorbed water, loss of hydroxyl groups, removal of chemically 

adsorbed water, decomposition of remaining ethanol.  The calcination temperature of 

the titania powder was chosen as 425oC. The calcined powder was ball-milled for 12 

hours with zirconia balls in ethanol media.  
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Figure 5.1. The TGA curve of D-fructose. 
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Figure 5.2. The TGA curves of submicron alumina, nano alumina, and nano titania           

powders. 
 

Zeta potentials of the submicron alumina, nano alumina, and nano titania 

powders with respect to pH are given in Figure 5.3. The point of zero charge of 

submicron alumina was located at pH of about 8.2. Small changes in pH changed zeta 

submicron alumina 

nano alumina

nano titania
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potential of submicron alumina significantly. The zeta potential rapidly 

increased/decreased to about +20/-20 mV as the pH was adjusted to 8.1/8.5. Further 

increase or decrease in pH made the zeta potential increase to +30 mV or -30 mV. It can 

be concluded that the dispersion of submicron alumina was quite stable for a wide range 

of pH. For nano alumina powder, the powder had zero zeta potential at pH of 8.8. Small 

increase/decrease in pH did not affect the zeta potential significantly. However, zeta 

potential reached much higher values (45 mV) as the pH was about 7.1 compared to 

submicron alumina. Zeta potential was about -31 when the pH was equal to 10.1. This 

indicated that the system will be more stable in acidic media. The IEP of the nano 

titania powder was at about pH of 5. The system can be considered as unstable in the 

range of pH=4 to pH=6 due to small values of zeta potential. Zeta potential reached 

much higher values when the pH was increased to about 7 or decreased about 3. The 

zeta potential of nano titania at a pH of 2.9 and 8.1was about 23 and -30 mV, 

respectively.  
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Figure 5.3. The variation of zeta potential of submicron alumina, nano alumina, and     

nano titania with pH.  
 

The XRD pattern of D-Fructose is given in Figure 5.4. The XRD pattern of D-

fructose showed its typical peaks related with its crystalline form. The pattern was 

similar to standard XRD diffraction pattern of D-fructose as published by JCPDS (39-
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1839). The main peaks were located at 12.84, 13.90, 16.88, 19.11, 19.89, 20.45, 20.65, 

28.12, 29.80, 34.18, 34.70, 35.62, 38.95, 39.81, and 40.91 of 2θ. 
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Figure 5.4. The XRD pattern of D-Fructose. 

 

The XRD pattern of submicron alumina is given in Figure 5.5 and has same 

diffraction pattern of standard α-alumina whose diffraction pattern number published by 

JCPDS was 11-0661. The main diffraction peaks were located at 25.51, 35.04, 37.74, 

52.43, 57.39, 66.37, 68.13, 76.73 and 77.01 of 2θ. The crystallite size of the powder 

was calculated as 50 nm at 24.48 of 2θ by Scherer equation. 

The XRD pattern of nano alumina is given in Figure 5.6. The manufacturer 

stated that the powder is in delta and gamma phase of alumina in (70:30) ratio and it 

was confirmed by the XRD pattern. The standard diffraction pattern numbers for 

gamma and delta alumina published by JCPDS are 50-0741 and 04-0877, respectively. 

Most of the peaks overlaid with each other due to the complex crystal structure. The 

crystallite size of the powder was calculated by using the peak located at 33.32 of 2θ 

because it was the only peak without overlay. The crystallite size was calculated as 20 

nm by Scherer equation. 
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Figure 5.5. The XRD patterns of submicron alumina powder. 
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Figure 5.6. The XRD pattern of nano alumina. 

 
 The XRD patterns of the titania powders which were heated to different 

temperatures are shown in Figure 5.7 and Figure 5.8. The powder dried at 70oC has 

broad anatase peaks which are located at about 24.8, 37.5, 47.1, 53.9 and 54.8 of 2θo. 

The anatase peaks became sharper, reach to higher intensities, and were shifted in small 
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amounts at higher temperatures. The anatase peaks were denoted with “A” on Figure 

5.7. and located at 25.1, 37.7, 48.1, 54.9 and 56.1 of o2θ for the sample heated to 400oC. 

The peaks related with rutile phase were denoted by “R” on Figure 5.8. and located at 

27.2, 35.8, 41.0, 43.8, 54.1, and 56.4 of 2θo. The numbers of the standard XRD patterns 

for anatase and rutile crystal phases published by JCPDS are 84-1286 and 88-1175, 

respectively. 
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Figure 5.7. The XRD patterns of the titania powders heated to 70, 90, 200, 225, 250, 
 300, 350, 400. 
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Figure 5.8. The XRD patterns of the titania powders heated to 425-450, 475, 500, 550, 

600, 650, 700, and 800 oC. 
 

The weight percent of rutile to anatase during phase transformation of nano 

titania were calculated by Spurr-Myers equation (Spurr and Myers, 1957) which follows 

as, 

 

)(8.01
100%

RA
R II

w
+

=          (5.1) 

 

where wR is weight percent of rutile in the sample, IA is the peak intensity of 

strongest anatase peak (the reflection of (101) plane) and IR is the peak intensity of 

strongest rutile peak (the reflection of (110) plane). The anatase to rutile phase 

transformation detected when the nano titania was heated to 550oC. The range of 

temperatures for the anatase-rutile phase transformation was observed between 550 and 

700oC and completed between 700 and 800oC. The strongest peak of anatase and rutile 

phases appeared at 25.1 and 27.2 of 2θ, respectively. The weight percent of rutile in the 

samples heated at 550, 600, 650 and 700oC was calculated as 2.6, 59.9, 93.2 and 94.6 

wt%, respectively. The density of the titania powder at 70, 425 and 800oC was 

measured as 3.19, 3.61 and 4.13 g/cm3, respectively. The variation of density of nano 

titania powder and the weight percent of rutile is given in Figure 5.9. 
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Figure 5.9. The variation of density of nano titania (♦) and wR, % rutile, (�) with respect 

to temperature.  
 

The crystal size of the titania powder heated at different temperatures were 

calculated from strongest peaks of anatase and rutile phases by using Scherer Equation 

which follows as, 

 

θ
λ

cos
9.0

B
D =       (5.2) 

 

where D, λ, B, and θ are crystal size in nm, xray wavelength (1.5405 Å for CuKα), the 

full width at half maximum of the diffraction peak, and Bragg diffraction angle, 

respectively. The crystal size of the titania powder heated at 70oC was calculated as 5.1 

nm. The crystal size increased to 9.7 nm and 40.5 at 425 and 800 oC, respectively. The 

crystal size increased at temperatures where phase transformation occurred. The other 

particle size calculation was done based on surface area. The particles were assumed as 

spherical and the equation 5.3. was used. 
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where D, R, ρ and SA are diameter of particle in nm, radius of particle in nm, density of 

the particles at that temperature and BET surface area of the powder at that temperature, 

respectively.  

 The N2 physisorption isotherms of submicron alumina, nano alumina and nano 

titania are given in Figures 5.10-12. The submicron alumina and nano alumina showed 

Type II isotherms which indicates characteristics of non-porous or macroporous 

structures. The mesoporous structures was showed the Type IV isotherm for the nano 

titania powder with H3 hysteresis loop which is given by the aggregates of platy 

particles or adsorbents containing slit shaped pores (Rouquerol et al., 1999). 
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Figure 5.10. The N2 physisorption isotherm of submicron alumina. 
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Figure 5.11. The N2 physisorption isotherm of nano alumina. 
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Figure 5.12. The N2 physisorption isotherm of nano titania. 
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The calculated particle size from BET surface area was very close to the 

calculated crystal size based on Scherer Equation. The variation of crystal size based on 

Scherer Equation and the calculated particle size based on BET surface area with 

respect to temperature is given in Figure 5.13. 
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Figure 5.13. The variation of crystal size calculated from Scherer Equation (♦) and the 

particle size calculated from BET surface area (�) with respect to 
temperature. 

 

 The variation of BET surface area and BJH desorption pore size with respect to 

temperature is given in Figure 5.14. The BET surface area of the titania powder 

decreased as the temperature was increased. The surface area of the titania powder dried 

at 200oC was measured as 287 m2/g. The surface area was almost linearly decreased 

with increasing temperature. The surface area of the powder was 82 m2/g at 500oC. The 

pore size based on BJH desorption data increased as the temperature was increased.  

The pore size increased from 5.2 to 5.4 nm as temperature was increased from 200 to 

500oC.  
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Figure 5.14. The variation of BET surface area (•) and pore size based on BJH 

desorption (�) with respect to temperature. 
 

The particle size distribution (PSD) of submicron alumina is given in Figure 

5.15. About 94 wt% of the alumina particles were below 1 μm and an important part of 

the particles (90 wt%) were below 0.5 μm. About 18 wt % of the particles were below 

0.1 μm and the D50 (median) particle size of the alumina was 0.185 μm. The average 

particle size of the powder was also calculated from its surface area as 0.122 μm. These 

two results were comparable and the difference would be based on the assumption of 

being monodisperse and spherical particles which was made during calculation. 
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Figure 5.15. The particle size distribution of submicron alumina powder. 

 

The PSDs of nano alumina and nano titania powder were determined by using 

static light scattering measurement technique. The PSD of nano alumina is given in 

Figure 5.16. The PSD was narrow and the particle size of the powder was about 20 nm 

which is indicated by a sharp peak when the distribution by number was taken into 

consideration. The same result was determined from XRD pattern. The crystallite size 

was 20 nm. The PSD is much broader regarding the volumetric distribution. The 

average particle sizes calculated from surface area and the particle size measurement 

were comparable with the reported value by manufacturer. The average particle size by 

number and by volume was about 26 nm and 50 nm, respectively. The surface area of 

the powder determined from N2 adsorption data was 36.2 m2/g. The reported average 

particle size and surface area by manufacturer are 45 nm and 35 m2/g, respectively.  

The PSD of nano titania is given in Figure 5.17. The peaks located at 90 and 280 

nm represented the particle size of the powder determined from number and volumetric 

based distributions, respectively. However, the particle size calculated from surface area 

and X-Ray peaks were much lower than these values. The particle size of the powder 

observed from SEM micrograph supported these calculated particle sizes. The reason 

behind this difference in measured and calculated average particle size may rely on the 

assumptions and the operating principle of the static light scattering instrument. 
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Figure 5.16. The particle size distribution of nano alumina powder. 
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Figure 5.17. The particle size distribution of nano titania powder. 

 

It is assumed in particle size measurement by light scattering that the particles 

are homogenous, non absorbing spherical particles in a dilute suspension. The operating 

principle of the instrument was based on the difference in the reflective indices of the 
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colloid and the solvent. The electric field of an incident light beam induces an 

oscillating dipole in the colloid, which causes scattering of light in all directions. The 

electric vector of the incident light with wavelength is polarized perpandicular to the 

scattering plane, and the scattered photons were detected with the same polarization at 

an angle (Lyklema, 2005). The static light scattering measurement uses the time 

averaged scattering. The presence of aggregates, adsorbing species, and contaminants 

such as dust and bubble changes the scattering intensity, so does the particle size.  

The particles of nano titania were not perfectly spherical like the nano alumina 

particles which were determined from the SEM micrographs. It was observed that the 

sequential particle size measurements were different from each other for the nano titania 

powder. The large surface area may favor the agglomeration during measurement. The 

violation of the assumptions for the PSD measurement by static light scattering may 

result in much bigger average particle size than expected. 

The SEM micrograph of the submicron alumina is given in Figure 5.18. The 

smallest and biggest sizes of the particles observed from the micrograph were 80 and 

450 nm.  The particles were irregularly shaped and nonporous.  

 

 
 

Figure 5.18. The SEM micrograph of submicron alumina powder. 
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The nano alumina particles were spherical and in various particle sizes. The 

biggest and smallest particle size in Figure 5.19.a. was about 120 nm and 10 nm, 

respectively. The SEM micrograph given in Figure 5.19.b. was taken after ball milling 

for 12 hours. Ball milling process did not change the morphology of the powder. 

 

 
 

 
 

Figure 5.19. The SEM micrographs of nano alumina powder (a) before and (b) after 
ballmilling.  

 

The SEM micrographs of nano titania powder are given in Figure 5.20. It was 

seen that titania particles as precipitated were irregularly shaped and agglomerated. The 

(a) 

(b) 
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titania particles became slightly greater than the precipitated particles after heat 

treatment at 425oC. 

 

 
 

 
 

Figure 5.20. The SEM micrographs of nano titania powder (a) as precipitated and (b) 
after heat treatment at 425oC for 2 hours.  

(a) 

(b) 
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The chemical formula of D-fructose is C6H12O6 and contains 4 carbon atoms 

between two methyl groups CH2OH. The schematic representation of D-fructose is 

given in Figure 5.21. The second carbon atom has a double bond with oxygen. The 

carbon atoms except the second carbon atom are carrying hydrogen atoms and hydroxyl 

groups. The FT-IR spectrum of D-fructose is given in Figure 5.22. The strong IR peaks 

of D-fructose were a broad peak related with –OH vibrational stretching located in the 

range of 3876 and 3005 1/cm and a sharp peak related with CHx-OH, C-O stretching 

located at 1058 1/cm. The functional groups related with peaks observed from FT-IR 

spectrum of D-fructose are given Table 5.1. 

 

 
Figure 5.21. The schematic representation of D-fructose (Source: Stanek et al., 1963). 
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Figure 5.22. The FT-IR spectrum of D-fructose. 
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Table 5.1. The location of the IR peaks of D-fructose and related functional groups 
(Source: Ibrahim et al. 2006). 

 
Peak  (cm-1) Group Peak Assignment 

990 CH=CH2 CH2 out-of-plane deformation 

1058.68 CHx-O-H in alcohols C-O stretch 

from 1191 to 995  
A band of C-O and C-C 

stretching 

1225 
C-O-C in vinyl ethers 

or esters 
C-O-C antisymmetric stretch 

from 1362 to 1191  C-H and O-H deformation 

from 1526 to 1347 O-C-H, C-O-H 

combination band of OCH and 

COH deformation 

 

from 1849 to 1634 C=O  C=O stretching 

2950-2850 C-H C-H stretching in aliphatics 

from 3876 to 3005 O-H OH vibrational stretching 
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Figure 5.23. The FT-IR spectra of (a) submicron alumina, (b) nano alumina, and (c) 

nano titania powders. 
 

 
(a) 
 
(b) 
 
(c) 
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The IR peaks of the submicron alumina, nano alumina and nano titania are given 

in Figure 5.23. The FT-IR spectra of the powders shows broad peak which is –OH 

vibrational stretching located in the range of 3876 and 3005 1/cm and a broad peak 

located in the range of 900 and 400 1/cm. The peak located at about 2350 1/cm was 

related with the chemisorbed CO2 on powder’s surface at 25oC. 

In order to observe the adsorbed D-fructose onto powder surfaces, the 

dispersions of submicron alumina, nano alumina and nano titania having 5 vol% solids 

in 10 wt% fructose solution were prepared and kept at room temperature for 3 days to 

reach equilibrium. Then the dispersion was centrifuged, the recovered powder was dried. 

The FT-IR spectra of the recovered powders are given in Figure 5.24. The IR peaks of 

O-H vibrations at about 3450 1/cm and C-O stretching at 1058 1/cm were seen which 

were related with D-fructose. 
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Figure 5.24. The FTIR spectra of (a) submicron alumina, (b) nano alumina, and (c) nano 

titania powders which were recovered from 5 vol% dispersions in 10 wt% 
fructose solutions by centrifugation. 

 

The recovered powders were re-dispersed, centrifuged and dried at 80oC. The 

FT-IR spectra of the powders are given in Figure 5.25. The washed submicron alumina 

and nano alumina powders did not show the peaks related with O-H and C-H vibrations 

and C-O stretching which were observed for the recovered powders. This indicated that 

there was no D-fructose on the surface detectable by IR. However, IR spectrum of nano 

titania showed peaks at 2925, 2855 and a broad peak at about 1053 1/cm. These peaks 

 
 
(a) 
 
 
 
(b) 
 
 
(c) 
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can be evaluated as the chemisorbed species related with D-fructose on nano titania or 

the D-fructose molecules entrapped in the pores of the titania powder which has 

mesoporous pore sturcture. 
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Figure 5.25. The FTIR spectra of (a) submicron alumina, (b) nano alumina, and (c) nano 
titania powders which were obtained by washing recovered powders with 
water and centrifuged second time. 

 

5.2. The Techniques for Rheological Measurements of the Dispersions 
 

One of the most important problems on rheological measurements of the 

dispersions was the evaporation of the dispersed medium from the edge of the 

measurement space. The solids content at edges increased rapidly during measurement 

and led to inaccurate measurements. As the measurement time extended, the problem 

 
(a) 
 
(b) 
 
(c) 

(c) 
 
(b) 
 
(a) 
 

(c) 
 
 
(b) 
 
(a) 



 80

became more serious. Drying problem was avoided by using several protection tools. A 

circular shaped wet tissue was placed around the measurement space. After sample was 

loaded on the measurement space, a hemisphere cup made of a plastic material was 

placed to cover the measurement space. The water vapor from wet tissue provided a 

water-saturated environment. Therefore, the rate of evaporation from sample was so 

slow that at least two of the steady shear experiments can be done. The schematic 

diagram of the described drying protection tool is given in Figure 5.26.  

 

 

 

 

 

 

 

 

Figure 5.26. Schematic diagram of protection tool used for steady shear experiments. 

 

The dynamic experiments prolonged much longer time than the steady shear 

experiments. The use of protection tool described in Figure 5.26 became inadequate. 

Figure 5.27 shows the stress sweep test results of polyacrylic acid stabilized submicron 

alumina dispersions. The successive stress sweep experiments showed that a significant 

change in the linear viscoelastic region. The magnitude and the shear stress range of G′ 

shifted to much higher values. This may be caused by irreversible changes in structure 

of dispersion due to drying. This can be avoided by using fresh sample for each 

experiment. However, a frequency sweep test prolongs about 50 minutes and the sample 

is not stable in that time range. The use of non-volatile oil around sample became more 

appropriate way to make accurate measurements.  
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Tissue 
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Figure 5.27. The results of stress sweep tests of 40 vol% α-Al2O3 dispersion with 3 wt% 

polyacrylic acid based on dry weight of submicron alumina. 
 

The evaporation of water from sample can be eliminated by using the following 

protection tool. A hollow plastic cylinder which is 40 mm in diameter and 20 mm height 

was placed around the measurement space (see Figure 5.28). After the sample was 

loaded, annular volume between measurement space and the hollow cylinder was filled 

with non-volatile vegetable oil. The volume of vegetable oil filled was 3 mL. The 

enough amount of oil was filled in order to not to cover the upper part of measurement 

apparatus.  

 

 

 

 

 

 

 

 

 

Figure 5.28. Schematic diagram of protection tool used for steady shear experiments. 
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The effect of drying and the performance of protection tool were observed by a 

time sweep dynamic experiment. In the time sweep experiment, the frequency and stress 

were kept constant and G′ was monitored with respect to time. The variations in the G′ 

of the dispersions having 35 and 45 vol% solids in fructose solutions which were 

determined from time sweep tests are given in Figure 5.29. 
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Figure 5.29. The variations in G′ of the dispersions having (a) 35 vol%  α-Al2O3 and in 

10wt% fructose solution and (b) 45 vol% α-Al2O3 in 14 wt% fructose 
solution. 
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An increase in G′ will show the beginning of the drying. It was noted that time 

passed for stress and frequency sweep tests were 15 and 50 minutes, respectively. As it 

is shown in the Figure 5.29, G′ was monitored versus time for the samples without any 

protection tool, with cup and wet tissue and with oil. This experiment was performed to 

highly loaded dispersions (35 vol% α-Al2O3 and in 10wt% fructose solution and 45 

vol% α-Al2O3 in 14 wt% fructose solution) because the drying became more serious 

when the dispersions have high solids content.  

The G′ significantly increased when no protection tool was used. The use of 

hemisphere and wet tissue did not provide enough time to complete one stress sweep 

test. When oil was used as a protection tool, the dispersion did not contact with air 

hence, evaporation was eliminated.  

It was observed that the steady shear experiments were influenced by the 

presence of oil around the sample. Figure 5.30 showed the viscosity measurements on 

the dispersion having 40 vol% solids in 2.6 wt% fructose solution. The viscosity of the 

dispersion shifted above (0.938 to 1.133 Pa.s at 100 1/s) and the difference became 

more obvious when high shear rates reached. It was observed that oil mixed with the 

sample at shear rates higher than 200 1/s. The use of oil in the steady shear experiments 

was found to be inappropriate. This protection tool was used for only dynamic shear 

rheological experiments. 
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Figure 5.30. The influence of oil around sample on viscosity measurement of 40 vol% 

α-Al2O3 in 2.6 wt% fructose solution. 
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5.2.1. The Effect of Successive Experiments on Thixotropy of the      

Dispersions 
 

 Thixotropy is defined as decrease of viscosity (in time) under constant shear 

stress or shear rate, followed by a gradual recovery when the stress or shear rate is 

removed (Barnes, 1997). Thixotropic behavior is observed by shearing the material 

from zero to a certain shear rate (ramp up), holding at that shear rate for a certain time 

and taking back to zero (ramp down) in the same time interval of ramp up. The area of 

the thixotropic loop is a measure of time dependency of the dispersions under the state 

of motion.  

All liquids with microstructure can show thixotropic behavior, because 

thixotropy reflects the change of the microstructure in flow by moving from one state to 

another and successively taking back. The driving force in microstructural change in 

flow is the competition between the breakdown of structure due to flow stresses and the 

structural built-up due to inflow collisions and Brownian motion. The particles move to 

a favorable position where they can attach themselves to other parts of microstructure 

by Brownian motion during structural built-up. Generally, thixotropic and any other 

time dependent behaviors are undesired because the rheological behavior of the liquid 

would be dependent on the pretreatment. Barnes (1997) stated that the measurement of 

thixotropy needs to be repeated until a constant loop is observed. Figure 5.32 shows 

typical thixotropic measurements which were done successively. The area of the 

thixotropy hysteresis is a measure of thixotropy. The thixotropy measurement was 

repeated for three times and the last measurement was taken into account based on the 

knowledge given by Barnes (1997). 

 

 
Figure 5.31. A typical thixotropic loop test (source: Barnes, 1997) 
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It was observed that when the thixotropic measurements were done successively 

on the same sample, the rheological behavior had changed. The thixotropic 

measurements of the 25 vol% α-Al2O3 dispersion in 1.3 wt% fructose solution showed 

that successive experiments on the same sample had an effect on the thixotropic areas 

(Figure 5.31). As the measurements were done successively, the thixotropic area 

decreased. The thixotropic areas are given in Table 5.2. 
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Figure 5.32. The effect of successive measurements on (a) the same sample and on (b) 

fresh samples on the thixotropic behavior of 25 vol% α-Al2O3 in 1.3 wt% 
fructose solution. 

(a) 

(b) 
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Table 5.2. The calculated thixotropic areas of 25 vol% α-Al2O3 in 1.3 wt% fructose 
solution. 

 
# of measurement 

 
Sample 

1st 
Measurement 

(Pa.s) 

2nd 
Measurement 

(Pa.s) 

3rd 
Measurement 

(Pa.s) 

Average 
(Pa.s) 

Same Sample 12.58 8.24 17.39±12.28

Fresh Sample 
31.35 

22.24 24.76 26.28±4.50 

  

 

5.3. Rheological Measurements of the Fructose Solutions 
 

The rheological behavior of fructose solutions having different fructose 

concentrations was investigated. The fructose concentration was changed between 0.1 

and 80 wt%. The viscosity and flow curves of the fructose solutions are given in Figure 

5.33 and Figure 5.34. The flow curve of the fructose solutions showed Newtonian 

behavior. The viscosities of the fructose solutions were between 8x10-4 and 4.005 Pa.s 

and very similar to the values given in Telis et al. (2007). The viscosities and the 

consistency of the data to Newtonian model were tabulated in Table 5.3. 
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Figure 5.33. The viscosities of fructose solutions at 100 1/s. 
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Table 5.3. The viscosities, Reynolds Number at 100 and 200 1/s, and the data 
consistency of Newtonian model of Fructose Solutions.  

 
Fructose 

Concentration 
(wt%) 

Viscosity 
(Pa.s) 

Reynolds No 
@100 1/s 

Reynolds No 
@200 1/s 

Consistency  to 
Newtonian Model 

[ γητ &= ] (R2) 
0.1 0.0008 43.50 98.75 0.95 

1 0.0017 30.49 51.02 0.98 

4 0.0008 43.50 76.28 0.98 

10 0.0011 29.08 55.22 0.98 

15 0.0013 22.96 47.32 0.98 

20 0.0016 19.70 38.20 0.99 

30 0.0145 11.03 21.57 0.99 

40 0.0296 5.58 11.02 0.99 

50 0.0597 2.24 4.48 0.99 

60 0.4297 0.35 0.67 0.98 

70 2.1593 0.12 0.26 0.98 

80 28.12 0.01 0.01 0.99 
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Figure 5.34. The flow curves of (a) 4, 10, 15 and 20 wt%, (b) 30, 40, 50 and 60 wt%, (c) 

70, 80 wt% fructose solutions. 
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The fructose solutions having 0.1 and 1 wt% fructose had higher viscosity than 

4 wt% fructose solution. The contribution of the flow inertia can produce shear 

thickening effect. It became more significant if the fluid showed non-Newtonian 

behavior. This inertia driven by secondary flow can be negligible if the NRE<40 for 

parallel plate measurement system (Collyer and Clegg, 1998). The calculated Reynolds 

Numbers of the solutions are given in the Table 5.3. The Reynolds Number of fructose 

solutions having 0.1 and 1 wt% fructose was beyond the critical value when the shear 

rate reached to 100 1/s. The measurements at high shear rate may increase the error 

contribution to the calculated viscosities. The edge effect is negligible if the distance of 

gap over diameter (h/R) is below 0.075. The error in measured torque becomes less than 

2% for parallel plate measurement system. In this work, h/R was equal to 5.71x10-4 and 

the edge effect was negligible. 

 

5.4. The Rheological Behavior of Submicron Alumina Dispersions 
 

 The rheological behavior of submicron alumina dispersions were determined by 

steady shear and dynamic shear rheology techniques. The rheological techniques for 

steady shear rheology used in this thesis involved the determination of flow curves, 

viscosity and thixotropy. The rheological techniques for the determination of dynamic 

shear rheology were stress sweep and frequency sweep tests. The more detailed 

information for the measurement techniques are given in Appendix-A. 

 

5.4.1. The Effect of Solids Content and Fructose Concentration on the 

Steady Shear Rheology of the Submicron Alumina Dispersions 
 

 The effect of solids content and fructose concentration on the steady shear 

rheology of submicron alumina dispersions were investigated. The dispersions having 

40 vol% solids content without fructose and in 1 wt% fructose solution had paste-like 

appearance and did not flow. The steady and dynamic shear measurements can not be 

done. The flow curves of the fructose solutions are given previously and all of them 

were Newtonian. The presence of submicron alumina particles and their concentration 

changed the flow characteristics significantly.  
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Figure 5.35. The flow and viscosity curves of 5 vol% submicron alumina dispersion in 

1  wt% fructose solution. 
 

The flow and viscosity curves of 5 vol% submicron alumina dispersion in 

1  wt% fructose solution is given in Figure 5.35. The flow curves of the submicron 

alumina dispersions in different fructose concentrations (1-40 wt%) are given in 

Appendix B.1. The flow curves of all the submicron alumina dispersions in fructose 

solution were fitted to the Herschel-Bulkley (HB) model which is given as, 

 
n

o Kγττ &+=       (5.4) 

 

where, oτ   is the Herschel-Bulkley yield stress (HB yield stress), K is a model 

parameter, consistency coefficient, and n is flow index. If oτ =0 and n=1, the model 

degenerate into the Newtonian model with a viscosity of K. The HB model describes the 

shear thinning behavior and the model parameters have dependence on solids 

concentration, particle size distribution and the properties of the interface between 

solids and liquid (Crowe, 2006). The parameter K represents the resistance to 

deformation. K is dependent on the magnitude of particle interactions under shear. As 

the magnitude of the attractive forces increases the consistency increases. The flow 

index, n, shows the easiness of the destruction of the microstructure. If n is greater than 

1 the dispersion is described as shear thinning. If not, the dispersion is described as 
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shear thickening fluid (Peker and Helvacı, 2008). The response of a HB fluid to a stress 

is a slow shear flow provided a shear stress which is slightly greater than its actual yield 

stress. The model parameters of the HB model were tabulated in Table 5.4. The model 

parameters were determined by using the software of the rheometer (Haake, Rheowin, 

3.61.00). 

 However, the flow behavior of the suspension having 5 vol% submicron alumina 

in 20 wt% fructose solution which is marked with superscripted star (*) was better 

explained by Newtonian behavior ( γητ &= ) than HB ( n
o Kγττ &+= ) and Bingham 

Plastic flow ( γηττ &+= o ) behaviors. The regression coefficient is 0.99 and the 

viscosity is 0.0024 Pa.s. This viscosity value was very similar to the viscosity values at 

50 and 100 1/s which are 0.0025 and 0.0023 Pa.s. 

 The correlation coefficient was varied between 0.95 and 0.99. The model 

parameter, K, and flow index, n, were system dependent constants. The n value was 

varied between 0.23 and 1.88. The yield stresses of the dispersions were calculated by 

HB model. Yield stress of dispersion represents the shear stress threshold that breaks the 

connection between particles and initiates motion in the dispersion. The HB yield stress 

varied with the solids content and fructose concentration and it is given in Figure 5.36. 
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Table 5.4. The model parameters of Herschel-Bulkley Model ( n
o Kγττ &+= ) calculated 

for the submicron alumina dispersions. 
 

wt% of 
fructose 
solution 

vol% 
solids 

content 
τo (Pa) K n R2 

5 0.33 0.36 0.26 0.96 
10 0.04 0.68 0.23 0.98 
20 0.27 0.11 0.59 0.99 

1 

30 3.12 0.53 0.53 0.99 
5 0.37 0.14 0.57 0.99 
10 0.61 0.0037 1.01 0.98 
20 0.37 0.15 0.56 0.99 
30 2.74 0.64 0.48 0.99 

4 

40 12.81 3.53 0.48 0.99 
5 0.45 0.01 0.86 0.99 
10 0.11 0.47 0.26 0.98 
20 0.13 0.45 0.28 0.98 
30 0.16 0.15 0.66 0.99 

10 

40 1.40 1.56 0.47 0.99 
5* 0.21 0.0001 1.88 0.95 
10 0.51 0.003 1.05 0.99 
20 0.21 0.04 0.79 0.99 
30 1.46 0.54 0.58 0.99 

20 

40 11.08 3.83 0.45 0.99 
5 0.77 0.06 0.63 0.99 
10 0.23 0.006 0.98 0.99 
20 1.03 0.30 0.67 0.99 
30 1.81 0.14 0.66 0.99 

30 

40 16.03 0.42 0.84 0.99 
5 0.04 0.05 0.75 0.99 
10 0.48 0.01 0.90 0.99 
20 1.21 0.04 0.86 0.99 
30 1.85 0.38 0.81 0.99 

40 

40 2.18 10.98 0.28 0.99 
 (*) Newtonian behavior 
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The HB yield stress of the dispersion having 20 vol% solids decreased from 0.27 

to 0.13 Pa when the fructose concentration was increased from 1 to 10 wt%. Further 

increase in fructose increased the HB yield stress. It increased approximately six times 

(0.21 to 1.20 Pa) for the dispersion having 20 vol% submicron alumina when the 

fructose concentration was increased two times (20 to 40 wt%). The reduction of the 

HB yield stress became more significant at higher solids content. Generally, the 

dispersions in 10 wt% fructose solution had the lowest HB yield stress.  
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Figure 5.36. The variation of HB yield stress of the submicron alumina dispersions with 
solids content in semi-logarithmic distribution.  

 

 The variation of the consistency coefficient of the submicron alumina 

dispersions is given in Figure 5.37. The consistency coefficient was varied between 

0.0001 and 10.97. It was more sensitive to the fructose concentration at low solids 

content than higher ones and had the lowest value for the dispersion having 5 vol % 

solids content in 20 wt% fructose concentration. The consistency coefficient of the 

dispersions having 10, 20 and 30 vol% solids in 20 and 30 wt% fructose solutions were 

comparable with each other. High solids content (40 vol%) and high fructose 

concentration (40 wt%) resulted in more resistance to flow under shear.  The dispersion 

having 40 vol% solids had the lowest resistance to flow when it was prepared in 30 wt% 

fructose solution. Regarding the consistency coefficient, the dispersions in 20 wt% 
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fructose concentration can be considered as less resistant to flow due to particle 

interactions under shear.  
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Figure 5.37. The variation of consistency coefficient, K, of submicron alumina 

dispersions with solids content in semi-logarithmic distribution. 
 

The variation of flow index, n, of submicron alumina dispersions with solids 

content is given in Figure 5.38.  The flow index of most of the dispersions was lower 

than 1 which described shear thinning behavior. Only the dispersions having 5 vol% 

solids in 4 and 20 wt% fructose solutions had flow index greater than 1. This may be 

caused due to instrumental or sample based errors. The Reynolds numbers were 

calculated for each suspension and all of them were lower than 40 which eliminated the 

possibility of error based on the secondary flow. The presence of air bubbles or 

inhomogeneity in the samples may caused the flow index to be higher than 1. Regarding 

the flow index of the dispersions, preparation of the submicron alumina dispersions in 

10 wt% fructose solution made the suspensions more shear thinning. Increase in 

fructose concentration decreased the level of shear thinning behavior.  



 95

1.E-01

1.E+00

1.E+01

0 10 20 30 40 50

Solids Content (vol%)

Fl
ow

 In
de

x,
n

1 wt% fructose
4 wt% fructose
10 wt% fructose
20 wt% fructose
30 wt% fructose
40 wt% fructose

 
Figure 5.38. The variation of flow index, n, of submicron alumina dispersions with in 

semi-logarithmic distribution. 
 

The viscosities of the dispersions at shear rates of 50 and 100 1/s are given in 

Figure 5.39. The viscosity increased at all shear rates with increasing solids content. The 

viscosity reduction was observed as the fructose concentration increased. As the shear 

rate was increased from 50 to 100 1/s, the viscosity of the dispersion having 20 vol% 

solids in 1 wt% fructose solution became approximately 1.5 times lower and decreased 

from 0.031 to 0.02 Pa.s. At 20 vol% solids content, the viscosity decreased from 0.031 

to 0.0051 Pa.s at 50 1/s, as the fructose concentration was increased from 1 to 4 wt%. 

The viscosity of the dispersion having 40 vol% solids in 20 wt% fructose solution had 

its lowest value (0.034 Pa.s) at a shear rate of 50 1/s. The viscosities in concentrated 

fructose solutions were similar to each other.  
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Figure 5.39.  The viscosities of the submicron alumina dispersions at a shear rate of (a) 

50 1/s and (b) 100 1/s. 
 

However, the dispersion having 40 vol% submicron alumina particles has much 

lower viscosity when polyelectrolytes were used. Cesarano and Aksay (1988) reported 

that the dispersions having 40 vol% submicron alumina particles dispersed by Na+ salt 

of polymethacrylic acid (PMMA) at pH about 6.8 was reported as 0.05 Pa.s at a shear 

rate of 9.3. The viscosity of the 40 vol% submicron alumina dispersion in 10 wt% 

fructose solution at a shear rate of 9.5 1/s was 0.75 Pa.s and 15 times higher than the 

(a) 

(b) 
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value which was reported by Cesarano and Aksay (1988). It was noted that the further 

pH adjustment was not done in our study as they did.  

The preshearing and shearing conditions have a significant effect on the 

viscosity. The viscosity determination was done as follows in the study of Cesarano and 

Aksay (1988): The dispersions were presheared at 93 1/s to disperse particle clusters. 

The viscosity data was recorded while the shear rate was decreased stepwisely to 0.46 

1/s. Then, the dispersion was hold undisturbed for 10 min for the nucleation and growth 

of particle clusters. The viscosity data was collected while the shear rate was increased 

to 93 1/s. There will be difference in viscosity when the measurements were done by 

increasing shear rate and by decreasing shear rate. The authors assumed that the 

dependence of viscosity on increasing and decreasing sweep was due to flocculation. 

Preshearing at high shear rates may cause particle migration especially for unstable 

dispersions. Generally, the viscosity determined by decreasing shear rate will be lower 

for dispersions having shear thinning behavior. A particle concentration gradient may 

occur in radial axis. Time required for the nucleation and growth of particle cluster 

maybe longer or shorter than 10 minutes. It can be determined by monitoring viscosity 

with respect to time after shearing and observing whether viscosity reaches its initial 

value or not. 

 The thixotropic behavior of the submicron alumina dispersions were observed by 

ramp up to 400 1/s, hold and ramp down and the thixotropic behavior of 5 vol% 

submicron alumina dispersion in 1 wt% fructose solution is given in Figure 5.40. The 

thixotropic behaviors of the dispersions are given in Appendix B.2. The thixotropic area 

of the dispersions was calculated by the software of the rheometer (Haake Rheowin 

3.61.00). The variation of thixotropic area of the submicron alumina dispersions with 

solids content is given in Figure 5.41. The thixotropic loop area was decreased as the 

fructose concentration was increased. However, the fructose concentration maintaining 

the lowest or the highest thixotropic area was different for different solids content. The 

variation in thixotropic area became more significant as the solids content was increased. 
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Figure 5.40. The thixotropic behavior of 5 vol% submicron alumina dispersion in 1 wt% 

fructose solution.  
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Figure 5.41. The variation of thixotropic loop areas of the submicron alumina 

dispersions with solids content.  
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5.4.2. The Effect of Solids Content and Fructose on the Dynamic Shear 

Rheology of the Submicron Alumina Dispersions 
 

 The dynamic shear rheology of the submicron alumina dispersions was 

investigated by stress and frequency sweep tests. The stress sweep tests were used for 

determination of the linear viscoelastic region (LVER) of the dispersion. Then, a stress 

value was picked in the LVER and used in frequency sweep test.  

 

5.4.2.1. The Effect of Preshear on the Determination of LVER of the 

Submicron Alumina Dispersions 
 

 The shear history of the dispersions in the determination of dynamic shear 

rheology is very important because, a infinitesimal amount of stress naturally occurs 

even the preparation and the handling of the dispersions. The shear history dependency 

becomes more significant for highly concentrated dispersions because the particle 

network development and the interactions between the components of the system are 

remarkable (Wolthers et. al, 1996, Schmidt and Münstedt, 2002). Preshearing of the 

dispersions is used to eliminate shear history effect especially for highly concentrated 

dispersions. 

 The preshearing of the dispersions was done to eliminate the dependency of 

rheological behavior of dispersions on the shear history. First of all, 20 vol% α-Al2O3 

dispersion in 1 wt% fructose solution without preshearing was subjected to stress sweep 

test. When three stress sweep tests were subsequently done, the elastic moduli (G′) of 

dispersions were decreased significantly. The viscous moduli (G′′) of the dispersions 

didn’t change significantly. The linear viscoelastic region of the dispersion appeared in 

the same shear stress range as it is shown in Figure 5.42. The G′ and the G′′ moduli of 

the dispersion had a crossover at 1.5 Pa. After that point, the three dimensional network 

of the dispersion was broken down and the dispersion flowed at higher shear stress. This 

means that dispersion’s structure has been changed. If there was not enough time to 

recover its three dimensional structure before the next experiment, the G′ and G′′ 

became smaller.  
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 Figure 5.42. The results of stress sweep tests done for three times successively to 20 

vol% submicron alumina with 1 wt% fructose solution without preshearing.  
 

Different shear rates (50, 100, 200 1/s) were applied to eliminate shear history 

effect and hold undisturbed for different periods of time (300, 600, 900 s) for the 

dispersion having 20 vol% submicron alumina in 1 wt% fructose solution.  The 

preshearing time was kept constant as 60 s.  

The stress sweep tests of 20 vol% submicron alumina in 1 wt% fructose solution 

are shown in Figure 5.43. Since the G′′ modulus of the dispersion was not significantly 

changed due to preshear and/or shear history, only the G′ are given. It is seen that the 

range of shear stress where the LVER was observed was shifted to lower shear stresses 

and G′ decreased as the holding time was increased.  

The stress sweep test result of the dispersion which was presheared at 100 1/s is 

given in Figure 5.44. It was observed that the LVER of the dispersion was slightly 

related to preshear rate by increasing the holding time. The error of G′ became smallest 

when the holding time equal to 600 s. However, increase of holding time to 900 s 

increased the error.  

 



 101

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

0.001 0.1 10 1000

Shear Stress (Pa)

G
' (

Pa
) 50 1/s-0 s

50 1/s-300
501/s-600 s
50 1/s-900 s

 
Figure 5.43. The results of stress sweep tests done for three times subsequently to 20 

vol% submicron alumina in 1 wt% fructose solution which was presheared 
at 50 1/s and hold undisturbed for 0, 300, 600, and 900 s.  
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Figure 5.44. The results of stress sweep tests done for three times subsequently to 20 

vol% submicron alumina in 1 wt% fructose solution which was presheared 
at 100 1/s and hold undisturbed for 0, 300, 600, and 900 s.  
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The stress sweep test results of presheared dispersions at a shear rate of 200 1/s 

are given in Figure 5.45. The G′ and the LVER of the dispersion were independent of 

shear rate and holding time.  The error in G′ became very small for all measurements. 

The G′ of dispersion (92.88 Pa at a shear stress of 0.03 Pa) was very close to the G′ 

value of the first measurement without preshearing which was 93.06 Pa at shear stress 

of 0.03 Pa. 

 The stress sweep results of dispersion which was presheared at a shear rate of 

300 1/s  is given in Figure 5.46. The dispersion was mixed with the oil around the 

sample during preshearing and the G′ values became inconsistent. It was decided that 

preshearing above 200 1/s was not suitable with this measurement apparatus. The use of 

cup and bob system may allow shearing at much higher shear rates. For example, the 

dispersions were subjected to preshearing at 200 Pa in the study of Kirby et. al. (2005). 

The highest possible shear rate was thought to be chosen, regarding Kirby’s study. 

Since the G′ value is much closer to the value without preshear and the error is smaller, 

preshearing at 200 1/s for 60 s followed by 600 s undisturbed hold were chosen for the 

dynamic measurements.  
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Figure 5.45. The results of stress sweep tests done for three times subsequently to 20 

vol% submicron alumina in 1 wt% fructose solution which was presheared 
at 200 1/s and hold undisturbed for 0, 300, 600, and 900 s. 
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Figure 5.46. The results of stress sweep tests done for three times subsequently to 20 

vol% submicron alumina in 1 wt% fructose solution which was presheared 
at 300 1/s and hold undisturbed for 0, 300, 600, and 900 s. 

 

The studies on preshearing showed that it has more important influence on the 

viscoelastic properties of the dispersion as the solids content is increased (Wolthers et. 

al, 1996, Schmidt and Münstedt, 2002). Preshearing at high shear rates may create high 

shear stress on the particles and result in diffusion of the particles. The diffusion of 

particles can lead to a collective migration of particles if gradients are present either in 

the particle volume fraction or in the shear rate distribution. High shear stresses on the 

particles made them to migrate to where the shear stress approaches to zero. Hence, 

there will be particle concentration gradient through the radian axes (Collyer and Clegg, 

1998).  

The particle migration was visually observed especially for the dispersions 

having low solids content in this study. When the preshearing were done at constant 

shear rate (200 1/s) the shear stresses were 2.33, 2.91, 20.93, 62.36 Pa for the 

dispersions having 10, 20, 30 and 40 vol% solids content in 1wt% fructose solution, 

respectively. This wide range of shear stress may cause particle migration and shear 

history in different extents. Keeping the shear stress constant to eliminate shear history 

may be more appropriate. In the study of Kirby et. al. (2005) the preshearing was done 

at 200 Pa without giving any reason. Lu (2006) and Schmidt and Münstedt (2002) did 

preshearing at low shear stresses at 0.6 Pa for 60 s and at 0.19 Pa for different periods of 
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time but they didn’t give any information about keeping the shear stress constant and 

low. As a result, the dispersions need to be presheared at constant and low shear stress 

for longer period of time to eliminate particle migration due to high shear stresses.  

 The stress sweep tests give valuable information the stress amplitude 

dependence of the dispersion structure. The test was performed at constant temperature 

and frequency (20oC±1 and 6.28 rad/s, respectively in this work). The oscillating stress 

was increased in small steps.  The response is G′ and G′′ and they are almost parallel in 

the lower stress range. This linear range is called as linear viscoelastic region (LVER). 

The further dynamic rheology measurements such as frequency, temperature and time 

sweeps are done in the LVER because; comparing two measurements can be accurate 

only if the boundary conditions are the same for both measurements and the relations 

between elastic and viscous moduli, frequency and shear stress etc. are well-defined. 

The stress sweep test result of 5 vol% submicron alumina dispersion is given in 

Figure 5.47 and the stress sweep test results for the submicron alumina dispersions are 

given in Appendix B.3. 
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Figure 5.47. The stress sweep of 5 vol% submicron alumina dispersion in 1 wt% 

fructose solution. 
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 The LVER of the dispersions at low solids content and fructose concentrations 

was relatively short. Generally, increase in the fructose concentration and solids content 

extended the LVER. As the solids content increased, the effect of the fructose content 

on the extension of LVER became more obvious.  

The G′ values at 0.01 Pa for the dispersions were collected and given in Figure 

5.48. The LVER of the dispersions without fructose and having 40 vol% solids were 

located at much higher shear stress ranges. Hence, the G′ and G′′ values of these 

dispersions were not taken into account. The fructose addition to the dispersions having 

5 vol% solids resulted in higher G′ and G′′ values. Both G′ and G′′ were ten times 

higher when the fructose concentration was increased from 1 to 30 wt%. The G′ value 

for 20 vol% solids decreased from 9.5 to 7.4 at 0.01 Pa as the fructose concentration 

was increased from 1 to 4 wt%.  Further increase in fructose concentration made G′ to 

reach higher values. The G′ was 25.7 Pa at 0.01 Pa when the dispersion having 20 vol% 

solids was prepared in 40 wt% fructose solution. It was observed that increasing 

fructose concentration lowers both G′ and G′′ in LVER. Both of them were reduced to 

lower values as the fructose concentration was increased to 4 wt%. However, further 

increase in fructose concentration showed an ascending G′ and G′′. The reason behind 

this behavior may be non-adsorbed fructose molecules and their contribution to elastic 

part of the dispersion. The excess amount of fructose increased the G′ more 

significantly than the G′′. 
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Figure 5.48. The variation of (a) G′ and (b) G′′ of the submicron alumina dispersions at 
a shear stress of 0.01 Pa.  
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In the frequency sweep, the material is subjected to a sinusoidal constant 

deformation while frequency is changing. The response is the complex modulus and can 

be separated in real and imaginary parts. This separation provides a measure of the 

stored (G′) and lost energy (G′′). The G′ is defined as the stress in phase with the strain 

in sinusoidal shear deformation divided by strain. It is a measure of stored and 

recovered energy per cycle when different systems are compared at the same strain 

amplitude. The G′′ is defined as the stress 90o out of phase with the strain divided by 

strain and it is a measure of the energy dissipated or lost as heat per cycle of sinusoidal 

deformation when different systems are compared at the same strain. The frequency 

sweep test is nearly a non-destructive test when it is done in the LVER (Ferry, 1980, 

Brummer, 2006).   

The viscoelastic properties of the polymeric materials were extensively 

investigated (Ferry, 1980). The frequency dependence of G′ for such materials has four 

regions when it is plotted against frequency. At high frequencies, the mobility of chain 

segments is highly restricted. The vibrational energy is stored by deformation of bond 

angle and distances. This region is called as glassy region. With decreasing frequencies, 

the mobility of the chain segments slowly increase. Hence, the G′ value decreases with 

decreasing frequency. This region is rubbery-elastic region and called as transition 

region. The G′ reaches to a plateau with decreasing frequency. The mobility of the 

polymer chains increases but still do not slip and past each other. This region is called 

as plateau region. At lower frequency, the G′ decreases further because the deformation 

energy can no longer be stored. The material tends to dissipate more of the input energy 

through viscous flow and results in decreasing the G′ and increasing the G′′. This region 

is called as flow region. The crosslinked polymers have no flow region and the G′ 

exhibits a continuous plateau in the flow region. However, linear and branched 

polymers show a decreasing G′.  

The frequency sweep test result of 5 vol% submicron alumina dispersion is 

given in Figure 5.49. The dependence of G′ on angular frequency of the submicron 

alumina dispersions is given in Appendix-B.4. It was observed that there was no glassy 

region for the all dispersions in the frequency sweep tests regardless of solids content 

and fructose concentration. The G′ of the dispersions rapidly decreased as the angular 

frequency was decreased from 628 rad/ (the upper limit of the angular frequency) to 

approximately 100 rad/s. Then, the G′ and G′′ continued to decrease or reached to 
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plateau region. The G′ was dominant over the G′′ at all frequencies. This behavior was 

attributed to a gel-like and more elastic structure.  

 

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0.01 0.1 1 10 100 1000

Angular Frequency (rad/s)

G
', 

G
'' 

(P
a)

G'
G''

 
Figure 5.49. The frequency sweep of 5 vol% submicron alumina dispersion in 1 wt% 

fructose solution.  
 

The G′ and G′′ of submicron alumina dispersions in fructose solutions at angular 

frequencies of 628, 6.28 and 0.0628 rad/s were collected to observe the variations at 

rubbery-elastic, plateau and flow regions. Figure 5.50 shows the variations of the G′ and 

G′′ with solids content in rubbery-elastic region. It was observed that the G′ was 

dominant over the G′′ and both G′ and G′′of the dispersions without fructose had an 

ascending behavior as the solids content was increased. The G′ of the dispersions 

without fructose varied between 7.4×103 and 5×106 Pa. When the dispersions were 

prepared in fructose solutions, the G′ decreased and was almost constant regardless the 

solids content and the fructose concentration. The G′ varied between 2.6×104 and 

3.8×104 Pa. However, the G′′ of the dispersions in fructose solutions slightly decreased 

with solids content and varied with fructose concentration. When the solids content was 

increased from 5 to 40 vol% in 40 wt% fructose solution the G′′ decreased from 6.2×103 

to 860 Pa. When the angular frequency was decreased to 6.28 rad/s, both G′ and G′′ 

reduced about a 100 times (Figure 5.51). The G′ was more sensitive to solids content 

and fructose concentration. The variation of the G′ was almost the same with the 
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behavior at 628 rad/s. The G′ and G′′ of the dispersions at 0.0628 rad/s is given with 

respect to solids content (Figure 5.52). The G′ of the dispersion having 5 vol% solids 

decreased from 0.5 to 0.09 Pa when the fructose concentration was increased from 1 to 

10 wt% and it was increased to 3.5 Pa when it was prepared in 40 wt% fructose solution. 

This indicated the reverse effect of fructose on the G′. The same behavior was observed 

regardless the solids content. Increasing the solids content had a significant effect on the 

G′ at 0.0628 rad/s. As solids content was increased from 5 to 40 vol% in 10 wt% 

fructose solution, the G′ increased from 0.095 to 67.34 Pa while the G′′ were 0.32 and 

18.85 Pa. The G′ has a plateau starting from 100 rad/s at 40 vol% solids content. The G′ 

became five times higher as the fructose concentration was increased from 10 to 40 wt%. 

The G′′ values of the dispersions were reduced significantly by fructose addition but the 

concentration of fructose had the effect on G′′ in the flow region as it was observed for 

G′. The G′ values at 0.0628 rad/s was evaluated as the portion of energy stored in the 

dispersion (Lu, 2007). The amount of energy became higher as the solids content was 

increased but decreased with the presence of fructose.  
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Figure 5.50.  The variation of (a) G′ and (b) G′′ of the submicron alumina dispersions at 
an angular frequency of 628 rad/s. 

 

 

(a) 

(b) 



 111

 

 

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

0 10 20 30 40 50

Solids Content (vol%)

G
' a

t 6
.2

8 
ra

d/
s-

-

No Fructose
1 wt% Fructose
4 wt% Fructose
10 wt% Fructose
20 wt% Fructose
30 wt% Fructose
40 wt% Fructose

 
 

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 10 20 30 40 50

Solids Content (vol%)

G
'' 

at
 6

.2
8 

ra
d/

s-
-

No Fructose
1 wt% Fructose
4 wt% Fructose
10 wt% Fructose
20 wt% Fructose
30 wt% Fructose
40 wt% Fructose

 
 

Figure 5.51.  The variation of (a) G′ and (b) G′′ of the submicron alumina dispersions at 
an angular frequency of 6.28 rad/s. 
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Figure 5.52.  The variation of (a) G′ and (b) G′′ of the submicron alumina dispersions at 
an angular frequency of 0.0628 rad/s. 
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5.5. The Rheological Behavior of Nano Alumina Dispersions 
 

5.5.1. The Effect of Solids Content and Fructose Concentration on the 

Steady Shear Rheology of the Nano Alumina Dispersions 
 

The effect of solids content and fructose concentration on the steady shear 

rheology of nano alumina dispersions were investigated. The contribution of the nano 

particles to the flow was more significant than the submicron particles. The flow and 

viscosity curves of 5 vol% nano alumina dispersion in 1 wt% fructose solution are given 

in Figure 5.53. The flow curves of the nano alumina dispersions are given in Appendix 

C-1. 
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Figure 5.53. The flow and viscosity curves of 5 vol% nano alumina dispersion in 1 wt% 

fructose solution.  
 

The flow curves of the nano alumina dispersions were fitted to the Herschel-

Bulkley model. The model parameters of the Herschel-Bulkley model were tabulated in 

Table 5.5. The regression coefficients were varied between 0.95 and 0.99. Regarding 

the parameters of the HB model, the flow behavior of the dispersion having 20 vol% 

solids in 4 wt% fructose solution (marked superscripted *) was thought to be better 

explained by Newtonian or Bingham plastic models. The correlation coefficient was 



 114

0.998 for both models. The viscosities calculated from the models of Newtonian and 

Bingham plastic were 0.0065 and 0.0067 Pa.s. However, the actual viscosities at 50 and 

100 1/s were 0.0913 and 0.0786 Pa.s, respectively. Since, the viscosity values calculated 

from the models were not comparable, it was concluded that the flow behavior was of 

the dispersion was better explained by the HB model.  

The HB yield stresses of the dispersions varied between 0.002 and 35.24 Pa and 

its variation with solids content is further  given in Figure 5.54. The presence of fructose 

decreased the HB yields stress, however, further increase in fructose made an ascending 

behavior of the HB yields stress. Generally, the dispersions prepared in 30 wt% fructose 

solution had the highest HB yields stress except the dispersions having 40 vol% solids. 

The dispersion having 40 vol% solids had the lowest HB yield stress in 30 wt% fructose 

solution.  

The consistency index of the dispersions were varied between 0.0001 and 174.3 

(Figure 5.55). It was either lower or higher than unity for the all nano alumina 

dispersions. The presence of fructose significantly lowered the particle interactions 

under shear which is indicated by low K values. The dispersions having 5, 10 and 20 

vol% solids had smaller K values than the equivalent dispersions of submicron alumina. 

However, the K values of nano alumina dispersions with 30 and 40 vol% solids were 

much greater than the equivalent submicron K values which indicated that the particle-

particle interactions under shear were much more dominant.  
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Table 5.5. The model parameters of Herschel-Bulkley Model ( n
o Kγττ &+= ) calculated 

for the nano alumina dispersions. 
 

wt% of 
fructose 
solution 

vol% 
solids 

content 
τo (Pa) K n R2 

5 0.64 0.06 0.54 0.96 
10 0.22 0.009 0.87 0.98 
20 0.002 0.007 0.98 0.99 

1 

30 0.32 0.56 0.63 0.99 
5 0.33 0.29 0.31 0.95 
10 0.22 0.01 0.85 0.98 
20* 0.002 0.007 0.99 0.99 
30 0.20 0.32 0.70 0.99 

4 

40 42.42 24.10 0.45 0.99 
5 0.03 0.0001 1.58 0.99 
10 0.03 0.0002 1.45 0.99 
20 0.56 0.027 0.86 0.99 
30 1.07 4.95 0.41 0.99 

10 

40 64.66 174.3 0.17 0.98 
5 0.35 0.02 0.72 0.97 
10 0.02 0.087 0.58 0.97 
20 0.29 0.05 0.88 0.99 
30 1.95 2.757 0.5 0.99 

20 

40 46.40 83.63 0.22 0.99 
5 1.02 0.03 0.75 0.99 
10 1.06 0.02 0.86 0.99 
20 0.29 0.04 0.87 0.99 
30 2.18 3.90 0.47 0.99 

30 

40 30.90 17.60 0.35 0.99 
5 0.24 0.001 1.22 0.99 
10 0.13 0.02 0.89 0.99 
20 0.48 0.21 0.76 0.99 
30 0.40 1.43 0.61 0.99 

40 

40 35.24 21.98 0.47 0.99 
(*) Newtonian behavior 
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Figure 5.54. The variation of HB yield stress of the nano alumina dispersions with 

solids content in semi-logarithmic distribution. 
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Figure 5.55. The variation of consistency coefficient, K, of nano alumina dispersions 

with solids content in semi-logarithmic distribution. 
 

The flow index of the nano alumina dispersions varied between 0.17 and 1.58. 

The range of flow index was shifted to lower values when it was compared to the flow 

index values (0.23-1.88) for the dispersion having submicron alumina particles. The 
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variation of the flow index of the nano alumina dispersions is given in Figure 5.56. The 

more solids and fructose, the lower the flow index was. The dispersions became more 

shear thinning. The flow index of several dispersions (5 and 10 vol% nano alumina 

dispersions in 10 wt% fructose solution and 5 vol% nano alumina dispersion in 40 wt% 

fructose solution) were greater than 1. The consistency coefficients of these dispersions 

were very low. These dispersions were checked whether the flow behaviors were fitted 

to any model rather than HB model. The viscosities of the dispersions having 5 and 10 

vol% in 10 wt% fructose solution which was calculated from Newtonian model were 

the same (0.0022 Pa.s) and comparable with the actual viscosities (0.0017 and 0.0022 

Pa.s, respectively). When Bingham plastic model was applied to the dispersions, the 

Bingham plastic yield stress was 0.021 and 0.02 Pa and viscosities were 0.0022 and 

0.0027 Pa.s, respectively. The correlation coefficients for Bingham plastic model were 

bigger than those for Newtonian model, but lower than the values for HB model. The 

HB model explained the flow behavior of these dispersions more accurately. The flow 

behavior of the dispersion having 5 vol% nano alumina in 40 wt% fructose solution was 

also checked and it was found that the viscosities calculated from Newtonian (0.0077 

Pa.s) and Bingham plastic (0.0076 Pa.s) models were much lower than the actual (3.56 

Pa.s at a shear rate of 50 1/s and 2.28 Pa.s at a shear rate of 100 1/s). Even though the 

correlation coefficients for these models were 0.99, the HB model was fitted to the data 

of flow behavior better regarding the viscosity of the dispersion. The Reynolds numbers 

of these dispersions were calculated and were not bigger than 40. There was no inertial 

contribution due to secondary flow. The use of a measuring apparatus with a bigger 

diameter may eliminate this problem. 
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Figure 5.56.  The variation of flow index, n, of nano alumina dispersions with in semi-

logarithmic distribution. 
 

 The viscosity of the nano alumina dispersions  at shear rates of 50 and 100 1/s 

are given in Figure 5.57. The viscosity increased at all shear rates with increasing solids 

content. Increasing fructose concentration for the dispersions having low solids content 

had a reverse effect on viscosity. Increasing fructose concentration at high solids 

content decreased the viscosity. The effect of fructose on the viscosity was more 

obviously seen for the dispersion having 40 vol% solids content. The viscosity at 50 1/s 

was decreased from 4.77 to 2.09 Pa.s. The viscosity of the dispersion with 40 vol% 

submicron alumina in 40 wt% fructose solution was 0.71 Pa.s.  

 

 

 

 

 

 

 

 

 



 119

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0 10 20 30 40 50

Solids Content (vol%)

V
is

co
si

ty
 a

t 5
0 

1/
s (

Pa
.s)

--
No Fructose
1 wt% Fructose
4 wt% Fructose
10 wt% Fructose
20 wt% Fructose
30 wt% Fructose
40 wt% Fructose

 
 

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0 10 20 30 40 50

Solids Content (vol%)

V
is

co
si

ty
 a

t 1
00

 1
/s

 (P
a.

s)
--

No Fructose
1 wt% Fructose
4 wt% Fructose
10 wt% Fructose
20 wt% Fructose
30 wt% Fructose
40 wt% Fructose

 
 

Figure 5.57. The viscosities of the nano alumina dispersions at a shear rate of (a) 50 1/s 
and (b) 100 1/s. 
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The thixotropic behavior of 5 vol% nano alumina dispersion in 1 wt% fructose 

solution is given in Figure 5.58. The thixotropic behavior the nano alumina dispersions 

are given in Appendix C-2. The variation of thixotropic area of the nano alumina 

dispersions versus solids content is given in Figure 5.59. The thixotropic area gives the 

idea on the time dependency of the dispersions. The thixotropic area increased with 

increasing solids content. The thixotropic area generally was at its lowest value when 

the dispersion was prepared in 20 wt% fructose. However, the relation of thixotropic 

area and fructose concentration was complicated. The fructose concentration necessary 

to maintain for the lowest and/or the highest thixotropic area of the nano alumina 

dispersions was different as the solids content was changed. 
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Figure 5.58. The thixotropic behavior of 5 vol% nano alumina dispersion in 1 wt% 

fructose solution 
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Figure 5.59. The variation of thixotropic loop areas of the nano alumina dispersions 

with solids content. 
  

5.5.2. The Effect of Solids Content and Fructose on the Dynamic Shear 

Rheology of the Nano Alumina Dispersions 

 
 The stress amplitude dependence of nano alumina dispersions was investigated 

by applying stress sweep test and the stress sweep of 5 vol% nano alumina dispersion in 

1 wt% fructose solution is given in Figure 5.60. The LVER of the dispersions with low 

solids content most likely located at smaller stresses than our instrument can measure. 

The LVER of the 5 and 10 vol% nano alumina dispersions in 20, 30, and 40 wt% 

fructose solution was probably ended before 0.001 Pa. Since the beginning and the end 

of the LVER can not be determined the stress value for frequency sweep test was 

chosen as 0.001 Pa. The LVER was more clearly seen when the solids content was 

increased to 20 vol% in 20 wt% fructose solution. When the fructose concentration was 

increased to 30 wt% the LVER shifted to lower shear stress range. However, further 

addition of fructose extended the LVER. The higher solids content extended the range 

of the LVER and increased the G′ and G′′ values.  For most of the dispersions, the 

LVER ended before or after 0.01 Pa. Hence, the variation of the G′ and G′′ with solids 

content at 0.01 Pa is not given. The stress sweeps of the nano alumina dispersions are 

given in Appendix C-3. 
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Figure 5.60. The stress sweep of 5 vol% nano alumina dispersion in 1 wt% fructose 

solution. 
 

 

  The frequency sweep of 5 vol% nano alumina dispersion is given in Figure 5.61. 

Similar to the behavior of submicron alumina dispersions, the nano alumina dispersions 

did not show glassy region which is observed at high frequencies regardless of solids 

content and fructose concentration. The G′ rapidly decreased with decreasing angular 

frequency up to about 50 rad/s. While the G′ and G′′ continued to decrease after 50 rad/s 

for the dispersions with low solids content (5 and 10 vol%), the G′ and G′′ reached to a 

plateau for the dispersions with higher solids content. This means that a portion of the 

given energy was stored in the dispersion. The G′ of the nano alumina dispersions with 

40 vol% solids content without fructose and in fructose solutions of 1-20 wt% was not a 

function of angular frequency. This kind of behavior was attributed to a solid like 

behavior. The viscoelastic behavior became more angular frequency dependent as 

fructose content was increased. The frequency sweeps of the nano alumina dispersions 

are given in Appendix C-4. 
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Figure 5.61. The frequency sweep of 5 vol% nano alumina dispersion in 1 wt% fructose 

solution. 
 

 

The G′ and G′′ of nano alumina dispersions in fructose solutions at angular 

frequencies of 628, 6.28 and 0.0628 rad/s were collected to investigate the variations at 

rubbery-elastic, plateau and flow regions. The variations of the G′ and G′′ of the nano 

alumina dispersions in rubbery-elastic region with solids content is given in Figure 5.62. 

It was observed that the G′ did not change with respect to solids content regardless of 

fructose concentration. The dispersions without fructose showed the same behavior and 

in the same order of magnitude. The G′ of the dispersion having 5 vol% solids varied 

between 3.1×103 and 2.9×103. The G′′ of the dispersions was slightly increased with 

both solids content and fructose concentration. As the angular frequency was decreased 

to 6.28 rad/s, the G′ became more sensitive to solids content and fructose concentration 

as seen in Figure 5.63. Both G′ and G′′ decreased about 104 times. The G′ of the 

dispersion with 10 vol% nano alumina at an angular frequency of 628 rad/s was 2.9×104 

which was decreased to 2.9 at 6.28 rad/s. The G′′ at 6.28 rad/s increased with solids 

content and fructose concentration. At high solids content, the G′′ became higher with 

increasing fructose concentration. The variations of the G′ and G′′ values at an angular 

frequency of 0.0628 rad/s with solids content are given in Figure 5.64. The G′ and G′′ 

were exponentially increased as the solids content was increased. The effect of fructose 
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on both G′ and G′′ was significant. About a ten fold decrease in G′ was observed by 

increasing the fructose concentration from 10 to 20 wt% for the dispersion having 20 

vol% solids. The more significant decrease was observed when the fructose 

concentration was increased to 40 wt% and the G′ was decreased from 3.9 to 0.013 Pa. 

Despite the decrease in the G′ for the dispersions with 10, 20 30 vol% solids in 40 wt% 

fructose solutions, the G′ was the lowest when the dispersion having 40 vol% solids was 

prepared in 10 wt% fructose solution. The same behavior was observed for the G′′ 

values. This indicated that the 40 vol% dispersion did not store the given energy as 

much as it did in dispersions with higher fructose concentrations.  
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Figure 5.62. The variation of (a) G′ and (b) G′′ of the nano alumina dispersions at an 
angular frequency of 628 rad/s. 
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Figure 5.63. The variation of (a) G′ and (b) G′′ of the nano alumina dispersions at an 
angular frequency of 6.28 rad/s. 
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Figure 5.64. The variation of (a) G′ and (b) G′′ of the nano alumina dispersions at an 
angular frequency of 0.0628 rad/s. 
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5.6. The Rheological Behavior of Nano Titania Dispersions 
 

The titania dispersions were prepared in two different ways: the first one is the 

same with the preparation of submicron and nano alumina dispersions. However, the 

same effect of fructose on nano titania powder was not observed. The time of mixing 

and repetition of ultrasonic treatment did not make any difference on the fluidity of the 

samples. It was thought that one reasonable way to enhance the flow properties of the 

nano titania dispersions was the adjustment of pH. The interactions of D-fructose and 

D- glucose with acids and bases were reviewed in a study on the chromatographic 

separation of fructose and glucose (Kuptsevich et al., 1987). It mentioned that 

monosaccharides (D-fructose and D-glucose) undergo isomeric interconversions under 

influence of bases. It was noted that sugar forms a complex with the aqueous alkaline 

solutions at high pH (pH≥9) which is followed by alkaline transformation and 

decomposition. The color of the fructose solution at pH of about 9 turned into yellow 

when the solution was kept at 80oC. The further increase in pH increased the intensity of 

color. The change in color was evaluated as decomposition of fructose. A fructose 

solution (10 wt%) was prepared by adjusting the pH at about 3 to observe any changes 

of color. The color of the solution was clear and same as the fructose solution without 

pH adjustment. The pH adjustment of the nano titania dispersions was done in acidic 

medium in order to keep the stability of fructose. The stability of the nano titania 

dispersion with respect to pH was evaluated by regarding the zeta potential curve of 

nano titania. The zeta potential of titania was highest at pH of 3 and IEP of titania was 

at a pH of 5. As a result, the pH of the nano titania dispersions was adjusted about 

to  pH = 3.  

It was observed that the color of the nano titania dispersions without pH 

adjustment turned into yellowish brown during mixing. When the sample was avoided 

from exposure to light, the change in color was postponed. The dispersions with pH 

adjustment were also avoided from exposure of light and the color of the dispersions 

were light yellow and remained the same for at least one week. Then, the color turned 

into yellow but not brown. 
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5.6.1. The Effect of Solids Content and Fructose Concentration on the 

Steady Shear Rheology of the Nano Titania Dispersions 

 
The steady shear rheology of nano titania dispersions in fructose solutions were 

observed. The flow curve of 5 vol% nano titania dispersion in 10 wt% fructose solution 

without pH adjustment is given in Figure 5.65. The dispersion with high solids contents 

(higher than 20 vol%) were paste like and did not have enough fluidity to observe 

steady shear rheological measurements. The flow curves of the dispersions are given in 

Appendix D.1. 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500

Shear Rate (1/s)

Sh
ea

r S
tre

ss
 (P

a)

0.001

0.1

10

V
iscosity 
(Pa.s)Flow

Viscosity

 
 

Figure 5.65. The flow curve of 5 vol% nano titania dispersion in 10 wt% fructose 
solution without pH adjustment. 

 

The flow curves of nano titania dispersions were fitted to the HB model. The 

parameters of the model for the dispersions without and with pH adjustment were 

tabulated in Table 5.6 and Table 5.7, respectively. The correlation coefficients of the 

flow curves varied between 0.97 and 0.99 for the dispersions without pH regulation and 

between 0.81 and 0.99 for pH regulated dispersions. The flow index of the dispersion 

having 10 vol% nano titania in 10 wt% fructose was higher than 1. This indicated shear 

thickening behavior. However, the flow curve of the dispersion did not show a shear 

thickening behavior. Therefore, Newtonian and Bingham plastic models were applied. It 
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was determined that the flow behavior of the dispersion also fitted to Newtonian model 

(η was 0.0165 Pa.s) and Bingham plastic model (τo and η were 0.0042 Pa and 0.01652 

Pa.s, respectively). The correlation coefficients of the models were both 0.999. The 

viscosities of the dispersion at 50 1/s and 100 1/s were 0.0202 and 0.0185 Pa.s. The 

viscosities of the dispersion determined from the models were comparable. The flow 

behavior of the dispersion can be also explained by these models.  

The flow indexes of the pH adjusted dispersions with 5 vol% solids without 

fructose and in 4 wt% fructose solution were bigger than 1. The flow curve of pH 

adjusted dispersion with 5 vol% solids was also explained by Bingham plastic model.  

The correlation coefficient and the yield stress of the model were 0.99 and 0.28 Pa. The 

values were very similar when they were determined from HB model. The viscosity 

determined from Bingham plastic model was 0.0034 Pa.s which was much lower than 

viscosity determined at shear rates of 50 1/s and 100 1/s. The flow curve of the 

dispersion with 5 vol% solids in 4 wt% fructose solution were checked for its fit to both 

Newtonian and Bingham plastic models. The correlation coefficient of both Newtonian 

and Bingham plastic models was 0.98. The viscosity determined form Newtonian model 

was 0.0028 Pa.s. The yield stress and the viscosity determined from Bingham plastic 

model was 0.023 Pa and 0.0027 Pa.s, respectively. The viscosities determined from the 

models were very close to the viscosity value at a shear rate of 100 1/s but the viscosity 

at a shear rate of 50 1/s was 0.0032 Pa.s. Newtonian and Bingham plastic models did 

not explain the flow curve of the dispersion better than HB model. 
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Table 5.6. The model parameters of Herschel-Bulkley Model ( n
o Kγττ &+= ) calculated 

for the nano titania dispersions without pH adjustment. 
 

wt% of 
fructose 
solution 

vol% 
solids 

content 
τo (Pa) K n R2 

5 5.33 0.34 0.52 0.99 
10 0.73 0.13 0.62 0.99 No Fructose 

20 3.83 0.74 0.56 0.98 
5 0.69 0.01 0.86 0.99 
10 10.21 0.78 0.45 0.99 10 

20 71.02 83.93 0.25 0.98 
5 0.62 0.07 0.65 0.99 
10 9.96 0.51 0.53 0.99 20 

20 27.16 150 0.19 0.95 
5 0.56 0.02 0.84 0.99 
10 7.15 0.12 0.73 0.99 30 

20 25.41 86.48 0.19 0.97 
5 0.47 0.05 0.78 0.99 
10 0.09 0.13 1.04 0.99 40 

20 39.15 50.98 0.35 0.99 
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Table 5.7. The model parameters of Herschel-Bulkley Model ( n
o Kγττ &+= ) calculated 

for the nano titania dispersions with pH adjustment. 
 

wt% of 
fructose 
solution 

vol% 
solids 

content 
τo (Pa) K n R2 

5 0.29 0.003 1.02 0.99 
10 18.83 96.39 0.22 0.81 ∼pH3 

20 0.14 0.34 0.60 0.99 
5 1.43 0.01 0.88 0.99 

1 and ∼pH3 
20 30.04 77.88 0.25 0.96 
5 0.08 0.0002 1.48 0.99 
10 25.24 0.09 0.38 0.98 4 and ∼pH3 
20 26.12 121.9 0.23 0.98 
5 0.28 0.08 0.57 0.99 
10 3.17 3.72 0.23 0.98 10 and ∼pH3 
20 34.48 235.8 0.19 0.94 
5 0.365 0.063 0.63 0.99 
10 45.06 158.6 0.26 0.94 20 and ∼pH3 
20 36.37 67.95 0.20 0.99 
5 0.45 0.02 0.84 0.99 
10 4.57 0.38 0.53 0.99 30 and ∼pH3 
20 28.03 0.84 0.59 0.99 
5 2.33 0.07 0.76 0.99 

40 and ∼pH3 
10 1.85 0.05 0.79 0.99 

 

 

The variations of the HB yield stress of the dispersions without and with pH 

adjustment are given in Figure 5.66. The HB yield stresses were decreased by pH 

adjustment. The addition of fructose to the dispersions without pH adjustments 

increased the HB yield stresses. However, the preparation of the dispersions in 40 wt% 

fructose solution resulted in comparable yield stresses without fructose and with pH 

adjustment. The addition of fructose to the pH adjusted nano titania dispersions 

increased the HB yield stress of the dispersions. The variation of the HB yield stress 

with fructose concentration was more significant.  
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Figure 5.66. The variation of HB yield stress of the nano titania dispersions with solids 
content in semi-logarithmic distribution (a) without pH adjustment and (b) 
with pH adjustment. 
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HB yield stress. While the K values increased with solids content, the addition of 

fructose decreased the consistency coefficient of the dispersions. The K values were 

smallest for the dispersions without pH adjustment which were prepared in 40 wt% 

fructose solution except for the dispersion with 5 vol% solids (Figure 5.67.a). After pH 

adjustment, the relation of the K values with solids content and fructose concentration 

became complicated (Figure 5.67.b). The pH adjustment itself decreased the K. This 

indicated that the particle interactions under shear were very sensitive to pH of the nano 

titania dispersions. The addition of fructose led to smaller K values. High fructose 

concentrations (30 and 40 wt%) resulted in smallest K values except the dispersions 

with 5 vol% solids. The fructose concentrations higher than 10 wt% fructose increased 

the particle interactions under shear. 

The variation of the flow index of the nano titania dispersions is given in Figure 

5.68. The flow index became smaller at higher solids content. This showed the 

increasing tendency of shear thinning. The addition of fructose without pH adjustment 

decreased the n, but when the fructose concentration was 40 wt%, the flow index 

became higher. The pH adjustment of the dispersions resulted in smaller n values. The 

dispersions in 30 and 40 wt% fructose concentrations had much higher n values than the 

dispersions with only pH adjustment. 

  The effect of solids content on the viscosity of nano titania dispersions were 

significant. The presence of the fructose decreased the viscosity of the dispersion 

regardless of the pH adjustment (Figure 5.69). The dispersion with 5 vol% solids had a 

viscosity of 0.16 Pa.s at a shear rate of 50 1/s which was 10 times higher than the 

equivalent nano alumina dispersion. The viscosities of the dispersion in 10 wt% and 40 

wt% fructose solution without pH adjustment were 0.021 and 0.034 Pa.s, respectively. 

The variation in the viscosity of the dispersions with pH adjustment with respect to 

solids content is given in Figure 5.70. The adjustment of pH itself decreased the 

viscosity to 0.01 Pa.s. Further increase in fructose concentration resulted in higher 

viscosities for the pH adjusted dispersions. Similar results were observed for higher 

solids contents. 
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Figure 5.67. The variation of consistency coefficient, K, of the nano titania dispersions 

with solids content in semi-logarithmic distribution (a) without pH 
adjustment and (b) with pH adjustment. 
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Figure 5.68. The variation of flow index, n, of the nano titania dispersions with solids 
content in semi-logarithmic distribution (a) without pH adjustment and (b) 
with pH adjustment. 
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Figure 5.69. The viscosities of the nano titania dispersions at a shear rate of (a) 50 1/s 
and (b) 100 1/s. 
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Figure 5.70. The viscosities of the nano titania dispersions at a shear rate of (a) 50 1/s 
and (b) 100 1/s with pH adjustment. 
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titania dispersions are given in Appendix D-2. The variations in thixotropic area of the 

dispersions with and without pH adjustment with respect to solids content are given in 

Figure 5.72. The thixotropic area increased with increasing solids content. The fructose 

concentration necessary to maintain the lowest and/or the highest thixotropic area of the 

nano titania dispersions was different as the solids content was changed. This fact was 

also observed for the pH adjusted nano titania dispersions. The thixotropic areas without 

fructose and pH adjustment of the dispersions with different solids content were almost 

the same. The addition of fructose to the dispersions with 5 vol% solids decreased the 

thixotropic area. However, the thixotropic area became higher at higher solids contents 

with increasing fructose concentrations. The variation of thixotropic area with fructose 

concentration was more significant. Time dependency of the dispersions increased with 

the presence of relatively low levels of fructose at high solids contents, but decreased as 

the fructose concentration was increased. The opposite behavior was observed for the 

dispersions having 5 vol% solids. 
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Figure 5.71. The thixotropic behavior of 5 vol% nano titania in 10 wt% fructose 

solution without pH adjustment. 
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Figure 5.72. The variation of thixotropic loop areas of the nano titania dispersions with 
solids content (a) without pH adjustment and (b) with pH adjustment. 
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5.6.2. The Effect of Solids Content and Fructose on the Dynamic Shear 

Rheology of the Nano Titania Dispersions 
  

The stress sweeps of pH adjusted nano titania dispersions in 1 wt% fructose 

solution is given in Figure 5.73. Similar to the nano alumina dispersions, the LVER of 

the dispersions with low solids content most likely located at smaller stresses than our 

instrument can measure. Generally, the LVER of the dispersions with 5 vol% solids 

with or without pH adjustment in fructose solutions ended at 0.001 Pa. Since the 

beginning and the end of the LVER can not be determined, the stress value for 

frequency sweep test was chosen as 0.001 Pa. The pH adjustment and the presence of 

fructose had significant effect on the extent of the LVER of the nano titania dispersions. 

The addition of fructose to the dispersions without pH adjustment made the LVER 

shorter and lower the shear stress where the LVER is located. The adjustment of the pH 

did not change the extent of LVER. The addition of fructose to the pH adjusted nano 

titania dispersions decreased both G′ and G′′ in LVER. Most of the nano titania 

dispersions did not have the LVER at 0.01 Pa. Hence the variation of the G′ and G′′ 

with solids content at 0.01 Pa was not given. The stress sweeps of the nano titania 

dispersions with and without pH adjustment and fructose content are given in Appendix 

D-3. 
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Figure 5.73. The stress sweeps of pH adjusted nano titania dispersions in 1 wt% fructose 

solution. 
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The frequency sweep of pH adjusted nano titania dispersion in 1 wt% fructose 

solution is given in Figure 5.74. Similar to the behavior of submicron and nano alumina 

dispersions, the nano titania dispersions did not show glassy region which is observed at 

high frequencies regardless of solids content and fructose concentration. Both G′ and 

G′′ decreased rapidly upto 100 rad/s and then reached to plateau region for the 

dispersion without pH adjustment and fructose. The addition of fructose affected the 

frequency dependency of the dispersions. The G′ and G′′ of the dispersions in 10 and 20 

wt% fructose solutions decreased continuously in applied range of frequency. Further 

increase in fructose made the plateau region appear again but the G′ and G′′ values were 

at least ten times lower. The pH adjustment of the nano titania dispersions decreased the 

G′ and G′′ but the behavior were similar to the dispersions without fructose. The 

addition of fructose to the pH adjusted dispersions decreased initially the G′ and G′′ but  

the dispersions became frequency independent later which indicated solid like behavior. 

This effect was observed for fructose concentrations higher than 20 wt% for the 

dispersions with 10 and 20 vol% solids. The frequency sweeps of the nano titania 

dispersions are given in Appendix D-4. 
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Figure 5.74. The frequency sweep of pH adjusted nano titania dispersion in 1 wt% 

fructose solution.  
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The G′ and G′′ of nano titania dispersions in fructose solutions with and without 

pH adjustment at angular frequencies of 628, 6.28 and 0.0628 rad/s were collected to 

observe the variations at rubbery-elastic, plateau and flow regions. The variations of G′ 

and G′′ of the dispersions in fructose solutions at an angular frequency of 628 rad/s are 

given in Figure 5.75. The G′ was slightly decreased from 2.8×104 to 1.4×103 Pa by 

increasing solids content. Similar to the behavior of G′ and G′′ of submicron alumina 

and nano alumina, the G′ was not significantly effected by the increasing fructose 

concentration. When the angular frequency was lowered to 6.28 rad/s, the G′ was 

lowered by increasing fructose concentration (from 31 to 6.28 Pa) and increased by 

increasing solids content (from 31 to 450 Pa).  The viscous part of the dispersions was 

not a function of fructose concentration. The variations of G′ and G′′ with solids content 

in plateau region are given in Figure 5.76. Further decrease in angular frequency to 

0.0628 rad/s made the G′ and G′′ lower in magnitude. Both G′ and G′′ varied with solids 

content and fructose concentration in flow region and the fructose concentration for the 

lowest or highest G′ and G′′ were different for different solids contents. The variations 

of G′ and G′′ of the nano titania dispersions with fructose at 0.0628 rad/s are given in 

Figure 5.77. The dependency of G′ and G′′ on frequency was different from the 

equivalent dispersions of submicron alumina and nano alumina.  
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Figure 5.75. The variation of (a) G′ and (b) G′′ of the nano titania dispersions without 
pH adjustment at a angular frequency of 628 rad/s.  
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Figure 5.76. The variation of (a) G′ and (b) G′′ of the nano titania dispersions without 

pH adjustment at a angular frequency of 6.28 rad/s.  
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Figure 5.77. The variation of (a) G′ and (b) G′′ of the nano titania dispersions without 
pH adjustment at a angular frequency of 0.0628 rad/s.  

(a) 

(b) 



 147

 The frequency dependency of the pH adjusted nano titania dispersions with 

solids content and fructose concentration were determined by observing the variations 

of the G′ and G′′ at rubbery-elastic, plateau and flow regions. The G′ in rubbery-elastic 

region was almost the same order of magnitude with the dispersion without pH 

adjustment. The G′′ was more sensitive to fructose concentration. However, the fructose 

concentration for the highest G′′ differed with solids content. The variations of the G′ 

and G′′ with solids content at an angular frequency of 628 rad/s are given in Figure 5.78. 

The contribution of pH adjustment was more significant at lower angular frequencies. 

When the angular frequency was reduced to 6.28 rad/s, the G′ decreased from 2.6×104 

to 1.41 Pa. Both G′ and G′′ varied with solids content and fructose concentration but the 

relation between them can not be established (Figure 5.79). The G′′ of the dispersions in 

10 wt% fructose solution increased with solids content. For other dispersions, the G′′ 

was first increased and then decreased as the solids content was increased.  Lowering 

the angular frequency to 0.0628 rad/s made the G′ and G′′ smaller (Figure 5.80). Similar 

to the behavior at 6.28 rad/s, the G′ and G′′ were varied with solids content and fructose 

concentration but the relations of G′ and G′′ with solids content and fructose 

concentration was not understood. 
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Figure 5.78. The variation of (a) G′ and (b) G′′ of the nano titania dispersions with pH 
adjustment at a angular frequency of 628 rad/s.  
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Figure 5.79. The variation of (a) G′ and (b) G′′ of the nano titania dispersions with pH 
adjustment at a angular frequency of 6.28 rad/s.  
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Figure 5.80. The variation of (a) G′ and (b) G′′ of the nano titania dispersions with pH 
adjustment at a angular frequency of 0.0628 rad/s.  
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5.7. The Comparison of Dynamic Shear Rheological Behavior of       

Submicron Alumina, Nano Alumina and Nano Titania Dispersions 
 

 The dependency of angular frequency of the submicron alumina, nano alumina, 

and nano titania dispersions were compared considering the available surface in 1 mL 

dispersion. The comparison was done at constant solids content of 20 vol%. The 

variation of the G′/G′′ ratio was done for higher solids content, because higher solids 

content of nano titania dispersions can not be prepared. The available surface area was 

calculated by multiplying the required amount of powder and its surface area. The 

available surface area of submicron alumina, nano alumina and nano titania for 20 vol% 

dispersions were 9.8, 25.7 and 105.8 m2 in 1 mL dispersion. It was noted that the nano 

titania dispersions without pH adjustment were taken into account in this part. The G′ 

and G′′ values at 628, 6.28 and 0.0628 rad/s were collected and the ratio of G′ over G′′ 

was plotted with respect to the available surface area. The ratio of G′/G′′ gives the idea 

about how dominant the elastic part of the dispersion over the viscous part is. Lewis 

(2000) was stated that if the G′/G′′ >>1 the dispersion has solid like behavior. If the 

ratio was about 1, the dispersion has gel like structure. The liquid like behavior is 

observed when the ratio is below 1.  

Figure 5.81 shows the variation of G′/G′′ ratio of the dispersions having 20 vol% 

solids in rubbery–elastic region. It was observed that the G′/G′′ ratio was in order of 10 

in magnitude for submicron alumina and nano alumina dispersions and dependent on 

the fructose concentration. It was expected that the G′/G′′ ratio will be much greater 

than 10 for nano titania dispersions. However, the ratio varied between 13.09 to 0.25. 

This indicated that the dispersions had gel like behavior in 20 and 30 wt% fructose 

solutions and liquid like behavior in 10 and 40 wt% fructose solutions. It was believed 

that the nano titania particles was not dispersed as it was supposed to be and were 

agglomerated. Despite of high surface area, the particles in the dispersions were much 

higher than 11 nm which is the particle/crystal size determined from surface area and 

XRD data.  
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Figure 5.81. The variation of the G′/G′′ of the dispersions at 628 rad/s with surface area 
available in 1 mL dispersion. 
 

 The variation of G′/G′′ ratio of the dispersions at 6.28 rad/s with surface area is 

given in Figure 5.82. The G′/G′′ ratio was lower in plateau region than it was in rubbery 

elastic region as it was supposed to be. The ratio of submicron alumina dispersions were 

almost constant regardless the fructose concentration and was below 10. The variation 

of G′/G′′ ratio lowered and became fructose concentration dependent as the surface area 

was higher. 

Figure 5.83 shows the variation of G′/G′′ ratio in flow region. The G′/G′′ ratio of 

the submicron alumina, nano alumina and nano titania in flow region was lower then as 

it was in plateau region and dependent on fructose concentration. The higher the surface 

area available in 1 mL dispersion, the lower the G′/G′′ ratio was. However, the reverse 

was expected. The G′/G′′ ratio was lower than 1 for nano titania dispersion which 

means that the G′′ was dominant over G′ in flow region. Both submicron alumina and 

nano alumina dispersions had the lowest G′/G′′ ratio in 40w wt% fructose solution. 

However, the fructose concentration was needed to be 10 or 30 wt% fructose solutions 

to obtain the lowest G′/G′′ ratio.  
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Figure 5.82. The variation of the G′/G′′ of the dispersions at 6.28 rad/s with surface area 

available in 1 mL dispersion. 
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Figure 5.83. The variation of the G′/G′′ of the dispersions at 0.0628 rad/s with surface 

area available in 1 mL dispersion. 
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5.8. The Densification Behavior of Freeze Dried Submicron Alumina        

and Nano Alumina Dispersions 
 

 The submicron and nano alumina dispersions were consolidated by freeze drying. 

The details of the consolidation are given in experimental section.  The densities of  the 

green and sintered bodies are tabulated in Table 5.8. DP defines the dry pressed bodies 

and AC and NA represent freeze dried submicron alumina and nano alumina in the 

related Table. For example, AC40-4 defines the freeze dried sample prepared from a 

dispersion having 40 vol% solids in 4 wt% fructose solution.  

 

Table 5.8. The green body and sintered body densities of submicron and nano alumina. 

Submicron 

Alumina  

Before 

Sintering 

After 

Sintering 

(1400oC) 

Nano 

Alumina 

Before 

Sintering 

After 

Sintering 

(1200oC) 

DP1 1.59 2.85 DP1 1.4 2.38 

DP2 1.97 3.64 DP2 1.53 2.04 

DP3 1.87 3.56 DP3 1.53 2.05 

AC40-4 1.07 2.55 NA30-4 0.98 1.29 

AC40-10 1.12 2.64 NA30-4 1.08 1.3 

AC40-10 1.09 2.62 NA30-10 1.11 1.48 

 

  

 The nano titania dispersions were not freeze dried because the dispersions with 

high solids content can not be prepared. The nano alumina dispersions at high solids 

content did not have enough fluidity. The densities of the freeze dried bodies were much 

lower than the dry pressed bodies. Having insufficient solids content and expansion of 

water during freezing may lead to porous structure. The bodies prepared from nano 

alumina were much more porous than the bodies of submicron alumina. 

 The shrinkage curves of submicron alumina, nano alumina and nano titania are 

given in Figure 5.74. The powders were dry pressed at 37.5 MPa using a stainless steel 

die having a diameter of 10 mm. The alumina pellets start sintering at about 1100oC and 

the rate of densification of the nano alumina pellet is higher than submicron pellet at 

1200oC which may be attributed both to phase transformation and particle size 
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difference.  The nano titania densification occurs in two stages. The first stage in the 

500-850oC range may most likely be controlled by the 7-10 nm crystallites in the 

structure and account for the 18% of the total 26% shrinkage at 1200oC. The second 

stage is due to the sintering of densified submicron original agglomerates of the powder 

primary crystallites. 
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Figure 5.84. The shrinkage curves of submicron alumina, nano alumina and nano titania 
powders. 
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CHAPTER 6 

 

CONCLUSIONS 
 

 

This thesis focused on the determination of the effect of particle size and a non-

electrolyte dispersant on the rheological behavior of the nano and submicron ceramic 

powder dispersions. The effects of the volume fraction, the particle size and the 

concentration of D-fructose, a monosaccharide, on steady and dynamic shear rheology 

of ceramic powder dispersions were investigated. 

It was experienced that drying of samples during rheological measurements and 

the shear history of the dispersions led to inaccurate rheological measurements. The 

drying problem of the dispersions was eliminated by using two different protection tools. 

The steady shear experiments were done by placing a hemispherical cup on top of the 

measurement space and a wet tissue to provide a saturated environment. The dynamic 

measurements were conducted by using a non-volatile oil around the sample to prevent 

its contact with the atmosphere. The samples were presheared before rheological 

measurements to eliminate the dependency of the rheological behavior on shear history. 

The dispersions were presheared at different shear rates and hold undisturbed for 

different periods of time before dynamic measurements. After preshearing the storage 

modulus (G′) was observed with respect to shear stress. The G′ value was much closer 

to the value without preshear and the variation of the G′ became smaller. However, 

preshearing at high shear rates resulted in particle migration in the dispersions and the 

particle migration can be visually observed especially for the dispersions with low 

solids content. The preshearing was applied at low and constant shear stress instead of 

shear rate for longer times to eliminate shear history dependency. Preshearing at a shear 

stress of 0.1 Pa for 30 s and holding undisturbed for 300 s was chosen based on the 

measurements on stress sweep tests.  

The rheological behavior of the fructose solutions were determined by steady 

shear rheological techniques. The flow behaviors of the fructose solutions were 

Newtonian and the viscosity of the solution was between 8x10-4 and 28.12 Pa.s. The 

effect of fructose on the rheology of the dispersions was significantly affected by the 

surface characteristics. The point of zero charge of nano titania was much lower than 
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the submicron and nano alumina powders. The pH adjustment of the dispersions 

regulated the rheological behavior. The steady shear rheological experiments showed 

that the solids content and fructose concentration have significant effects on the 

rheological behavior of the dispersions. 

The HB yield stress, the consistency coefficient, and thixotropic area increased 

with solids content and decreased by fructose addition regardless of the particle size. 

Increasing solids content and fructose concentration made the dispersion more shear 

thinning. The particle-particle interactions under shear were lower with respect to the 

dispersions without fructose. When the particle size approaches to nano, the viscosity 

increased significantly and became time dependent for dispersions with solid contents 

higher than 20 vol%. 

The HB yield stress of submicron alumina suspensions with 40 vol% solids 

decreased approximately 10 times (12.81 to 1.40 Pa) by increasing the fructose 

concentration from 4 to 10 wt%. The HB yield stress of nano alumina dispersion with 

40 vol% solids decreased from 46.40 to 30.90 Pa by increasing the fructose 

concentration from 20 to 40 wt%. The HB yield stress of nano titania dispersions 

without pH adjustment decreased from 72.02 to 25.41 by increasing the fructose 

concentration from 10 to 30 wt%. The HB yield stress became lower with pH 

adjustment. The excess amount of fructose increased the HB yield stress and viscosity. 

The viscosity of the dispersions increased at all shear rates with the increasing solids 

content which was more pronounced in nano powder dispersions. Viscosity reduction 

was observed as the fructose concentration was increased. The submicron alumina 

dispersions had their lowest viscosity in the 10 wt% fructose solution. It was observed 

that the higher the fructose concentration at low solids content the higher the viscosity 

was. The higher the fructose concentration at high solids contents, the lower the 

viscosity became.  

The dynamic shear rheological experiments showed that the LVER of the 

dispersions at low solids content was relatively short. The LVER extended with 

increasing the solids content and fructose concentration. For all dispersions, the G′ was 

dominant over G′′ in the LVER. Similarly, G′ was dominant over the G′′ in frequency 

sweep tests regardless of the solids content, particle size and fructose concentration. 

This indicated that the dispersions had gel-like properties. There was no glassy region in 

the frequency sweep tests for all dispersions. It was observed that the G′ of the 
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dispersions rapidly decreased from 628 rad/s to 100 rad/s for submicron alumina 

dispersions. However, the decrease of G′ continued up to 50 rad/s for nano alumina 

dispersions. Both G′ and G′′ decreased rapidly as the angular frequency decreased to 

100 rad/s and then, reached to the plateau region for the nano titania dispersion without 

pH adjustment and fructose addition. Further increase in fructose concentration made 

the dispersions frequency dependent. However, the pH adjustment for the nano titania 

dispersions caused the dispersions to be frequency independent again. 

The energy stored by the solid part of the dispersions was observed by 

evaluating the G′ values at 0.0628 rad/s. The energy stored in the dispersion was 

increased with increasing fructose concentration indicating the contribution of free 

fructose to G′. At 40 vol% solids content, the G′ was independent of angular frequency. 

This behavior was attributed to a solid like and more elastic structure for both 

submicron and nano alumina dispersions. The G′ and G′′ of nano titania dispersions 

without and with pH adjustment varied with solids content and fructose concentration 

but their relation was not clearly established yet.  

The ratio of G′/G′′ decreased as the angular frequency was decreased regardless 

of the surface area available in 1 mL dispersion and fructose concentration. The G′/G′′ 

ratio of nano titania dispersions was lower than those of submicron alumina and nano 

alumina dispersions. This is an indication of the fact that nano titania powder was not 

well dispersed and were partially agglomerated. 

As a conclusion, nonionic small molecules like fructose can be used to regulate 

rheological behavior of ceramic powder dispersions. These environmentally friendly 

molecules may become new dispersants for the ceramic powder dispersions. 

This research demonstrated that particle size, solids content and dispersant 

concentration have important influence on the rheological behavior. The relations 

between the valuable rheological information reported in this work and the dispersion 

microstructure (particle-particle/liquid medium) have not been elucidated yet. The 

determination of rheological behavior of these and other ceramic powders with different 

surface characteristics may help on the development of a better understanding of the 

dispersion microstructure.  

The determination of the relation between the dispersion structure and 

green/fired body microstructure may help to improve the colloidal processing of the 
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ceramics. Freeze drying can be used for the consolidation of ceramic powder 

dispersions.  

Recent studies on the rheological behavior of the dispersions showed that shear 

thickening dispersions can be evaluated as new emerging applications such as dampers, 

armors, brakes in vehicles, sensors, micro-fluidic materials, vibration and/or noise 

reduction in vehicles, prosthetic limbs. Understanding the mechanism of the transition 

in this rheological behavior of the dispersions is the key for these applications of 

powder dispersions. The determination of the rheological behavior of the dispersions in 

organic media needs to be investigated for understanding of particle-particle and 

particle/medium interactions. 
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APPENDICES 
 
 
APPENDIX A. IMPORTANT PARAMETERS IN RHEOLOGICAL 

MEASUREMENTS OF CERAMIC POWDER 

DISPERSIONS 

 

If a material has Newtonian behavior, measuring its viscosity would be 

sufficient to characterize its properties. However, if the material is non-Newtonian it 

may have both viscous and elastic properties. The characterization of such fluids require 

both steady and dynamic shear rheological methods. Steady shear rheological methods 

include the determination of flow curves and viscosity curves, thixotropy and, yield 

point. Dynamic shear rheological methods include the determination of creep and 

recovery and stress/strain, frequency, time and, temperature sweeps (Schramm, 1994; 

Haake Rheometer Manual).  
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A.1. The Determination of Flow/Viscosity Curves 
 

Flow curves and/or viscosity curves are taken into consideration to examine the 

flow properties under changing shear and stress conditions. A flow curve actually 

represents the shear stress (τ) as a function of shear rate (γ& ) while a viscosity curve 

shows the viscosity (η) as a function of shear rate. There are four different ways to 

obtain flow curve or viscosity curve. The experiment can be done in controlled rate 

mode (reflects shear rate) or controlled stress mode (reflects shear stress). For both 

modes, there are two choices; ramping or stepwise controlling (known as steady shear) 

the changing parameter. In ramping, shear stress or shear rate is increased continuously 

depending on the defined time (t). If time is too short a noisy data will be collected. In 

stepwise controlling, shear stress or shear rate is increases in step wise way. The 

number of steps and time spent for each step are defined by user. If each data point is 

measured at equilibrium, there will be no time effect. Controlled rate is the most 

commonly used mode in which the start and the end shear rate are defined considering 

instrumental limitations. One must consider when a low viscous material is tested at low 

shear rates the corresponding shear stress can be out of the instrument limits. Likewise, 

very high viscous materials at low shear stresses may be resulted in very high shear 

rates which are out of specs. The time required for the observing a flow or a viscosity 

curve is directly affected by the materials time dependent behavior. These parameters 

should be well-defined and might not be changed from one test to other to make 

comparisons. The most common representation of a viscosity curve is a log-log 

distribution (viscosity as a function of shear rate) while flow curves represented in 

linear distribution (shear stress as a function of shear rate) (Schramm, 1994; Haake 

Rheometer Manual). 
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A.2. The Determination of Thixotropy 
 

The determination of time related flow properties of materials, a thixotropy test 

is considered. This test can be performed either controlled rate or controlled stress mode. 

The most common way to determine thixotropic loop is using controlled rate mode. It is 

very similar to a flow curve. Basically, this test involves two steps: a ramp up and a 

ramp down. In the controlled rate mode, the start and the end shear rates are defined. 

Sometimes at the maximum shear rate it is held for a certain time before ramping down. 

One of the important issue is to observe the maximum shear rate that the material stays 

stable. This maximum shear rate value may be material dependent but it should be set to 

a certain value for comparison. The measured data is represented in a linear diagram of 

shear stress as a function of shear rate. Due to destruction of interior structure of 

material, a shear thinning behavior usually observed during ramping up. The downward 

ramp usually shows lower shear stress values because the material can’t rebuild its 

structure fast enough. If the test is conducted too fast a noisy thixotropy curve is 

observed. Likewise, if the test is too slow, there will be much more time to rebuild 

interior structure during ramp down period and a smaller hysteresis area will be 

observed (Schramm, 1994; Haake Rheometer Manual). 
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A.3. The Determination of Creep and Recovery 
 

The creep and recovery test is an alternative way for obtaining the relaxation and 

viscoelastic properties of a material. A constant stress below yield stress is applied to 

the material and deformation monitored with time. Compliance (J) is defined as the 

reciprocal of modulus (J=1/G=γ/τ) where G is modulus and γ is strain. The value and 

shape of creep compliance curve are fundamentally important. Subject to a constant 

stress, the strain of a ideally elastic material would be constant and the material would 

return its original shape when the stress removed. In contrast, an ideal viscous material 

would show a steady flow, producing a linear response to stress with the inability to 

recover any of the imposed deformation. Viscoelastic materials will exhibit a non linear 

response to strain and, due to their ability to partially recover structure by storing energy, 

will show a deformation less than initial deformation (Schramm, 1994; Haake 

Rheometer Manual). 

 

A.5. The Determination of Stress Sweep Curves 
 

This test is applied in order to determine the range of LVER of a material. The 

practical way to determine the range of LVER is to observe the region where G′  and G′′ 

are independent of stress or strain value. However, LVER is frequency dependent. 

Therefore, several frequencies may need to be applied in order to figure out the 

frequency range. The relation between torque and shear stress must be considered. The 

minimum torque value should be checked and the starting shear stress should 

correspond to a torque value which is five or ten times of the minimum torque. The final 

shear stress value might be three decades greater than the starting one. However, high 

shear stress value might cause a shear like motion. A break criterion may be helpful. 

When deformation of material exceeds a certain value the measurement stops and 

proceeds with the next element in job procedure. The stress sweep test may give useful 

information to determine yield stress. Since this test is very sensitive to applied 

frequency value, one need to consider at which conditions yield stress is measured. The 

measured data presented in the material’s functions (G′, G′′, and δ) versus shear stress 

graph (Schramm, 1994; Haake Rheometer Manual).  
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A.7. The Determination of Frequency Sweep Curves 
 

The frequency sweep results indicate the structural conditions of the material. 

After a stress sweep test is applied to material in order to observe stress range of LVER 

of the material, a stress value is picked up in this region. This stress value correlates 

with a torque, which is at least 5 times higher than the specified minimum torque. The 

material is subjected to higher to lower frequencies and its structure is considered not 

changed during the test. It might be necessary to split the frequency sweep into a few 

steps. This is a simple way to prevent unacceptable test time by arranging different 

waiting period and repetitions. The test involves definition of a starting and an ending 

frequency values. Each data point requires at least two cycles. The estimated time 

required for each point is reciprocal of the actual frequency which is multiplied by the 

number of cycles that assigned. The number of data points is a number of 

logarithmically equidistant frequencies per decade depending on user. The measured 

data is presented in the material’s functions (G′, G′′, *η and δ) versus frequency graph 

(Schramm, 1994; Haake Rheometer Manual).  
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APPENDIX B. THE RHEOLOGICAL BEHAVIOR OF 

SUBMICRON ALUMINA DISPERSIONS 

 
B.1. The flow and viscosity curves 
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Figure 1. The flow curves of submicron alumina dispersions without fructose. 
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Figure 2. The viscosity curves of submicron alumina dispersions without fructose. 
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Figure 3. The flow curves of submicron alumina dispersions in 1 wt% fructose solution. 
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Figure 4. The viscosity curves of submicron alumina dispersions in 1 wt% fructose 

solution. 
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Figure 5. The flow curves of submicron alumina dispersions in 4 wt% fructose solution. 
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Figure 6. The viscosity curves of submicron alumina dispersions in 4 wt% fructose 

solution. 
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Figure 7. The flow curves of submicron alumina dispersions in 10 wt% fructose 

solution. 
 

V
is

co
si

ty
 (P

a.
s)

0.001

0.1

10

0 100 200 300 400 500

Shear Rate (1/s)

 
Figure 8. The viscosity curves of submicron alumina dispersions in 10 wt% fructose 

solution. 
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Figure 9. The flow curves of submicron alumina dispersions in 20 wt% fructose 

solution. 
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Figure 10. The viscosity curves of submicron alumina dispersions in 20 wt% fructose 

solution. 
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Figure 11. The flow curves of submicron alumina dispersions in 30 wt% fructose 

solution. 
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Figure 12. The viscosity curves of submicron alumina dispersions in 30 wt% fructose 

solution. 
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Figure 13. The flow curves of submicron alumina dispersions in 40 wt% fructose 

solution. 
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Figure 14. The viscosity curves of submicron alumina dispersions in 40 wt% fructose 

solution. 
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B.2. The thixotropy curves 
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Figure 1.The thixotropy curves of submicron alumina in water. 
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Figure 2.The thixotropy curves of submicron alumina in 1 wt% fructose solution. 
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Figure 3.The thixotropy curves of submicron alumina in 4 wt% fructose solution. 
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Figure 4.The thixotropy curves of submicron alumina in 10 wt% fructose solution. 
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Figure 5.The thixotropy curves of submicron alumina in 20 wt% fructose solution. 
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Figure 6.The thixotropy curves of submicron alumina in 30 wt% fructose solution. 
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Figure 7.The thixotropy curves of submicron alumina in 40 wt% fructose solution. 

 
B.3. The stress sweeps 
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Figure 1. The stress sweeps of submicron alumina dispersions in water. 

 

20 vol% 

10 vol% 

30 vol% 

5 vol% 

20 vol% 

10 vol% 

30 vol% 

5 vol% 

40 vol% 

G′ 
G′′ 



 181

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0.001 0.01 0.1 1 10

Shear Stress (Pa)

G
', 

G
'' (

Pa
)

 
 Figure 2. The stress sweeps of submicron alumina dilute dispersions in 1 wt% fructose 

solution. 
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 Figure 3. The stress sweeps of submicron alumina concentrated dispersions in 1 wt%  
fructose solution. 
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Figure 4. The stress sweeps of submicron alumina dilute dispersions in 4 wt% fructose 

solution. 
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Figure 5. The stress sweeps of submicron alumina concentrated dispersions in 4 wt% 

fructose solution. 
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Figure 6. The stress sweeps of submicron alumina dilute dispersions in 10 wt% fructose 

solution. 
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Figure 7. The stress sweeps of submicron alumina concentrated dispersions in 10 wt% 

fructose solution. 

5 vol% 

10 vol% 

20 vol% 

40 vol% 

30 vol% 

G′ 
G′′ 

G′ 
G′′ 



 184

 

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0.001 0.01 0.1 1 10

Shear Stress (Pa)

G
', G

'' (
Pa

)

 
Figure 8. The stress sweeps of submicron alumina dilute dispersions in 20 wt% fructose 

solution. 
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Figure 9. The stress sweeps of submicron alumina concentrated dispersions in 20 wt% 

fructose solution. 
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Figure 10. The stress sweeps of submicron alumina dilute dispersions in 30 wt% 

fructose solution. 
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Figure 11. The stress sweeps of submicron alumina concentrated dispersions in 30 wt% 

fructose solution. 
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Figure 12. The stress sweeps of submicron alumina dilute dispersions in 40 wt% 

fructose solution. 
Figure 13. The stress sweeps of submicron alumina concentrated dispersions in 40 wt% 

fructose solution. 
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B.4. The frequency sweeps 
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Figure 1. The frequency sweeps of submicron alumina dispersions water. 
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Figure 2. The frequency sweeps of submicron alumina dilute dispersions 1 wt% fructose 

solution. 
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Figure 3. The frequency sweeps of submicron alumina concentrated dispersions 1 wt% 

fructose solution. 
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Figure 4. The frequency sweeps of submicron alumina dilute dispersions 4 wt% fructose 

solution. 
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Figure 5. The frequency sweeps of submicron alumina concentrated dispersions 4 wt% 

fructose solution. 
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Figure 6. The frequency sweeps of submicron alumina dilute dispersions 10 wt% 

fructose solution. 
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Figure 7. The frequency sweeps of submicron alumina concentrated dispersions 10 wt% 

fructose solution. 
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Figure 8. The frequency sweeps of submicron alumina dilute dispersions 20 wt% 

fructose solution. 
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Figure 9. The frequency sweeps of submicron alumina concentrated dispersions 20 wt% 

fructose solution. 
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Figure 10. The frequency sweeps of submicron alumina dilute dispersions 30 wt% 

fructose solution. 
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Figure 11. The frequency sweeps of submicron alumina concentrated dispersions 30 

wt% fructose solution. 
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Figure 12. The frequency sweeps of submicron alumina dilute dispersions 40 wt% 

fructose solution. 
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Figure 13. The frequency sweeps of submicron alumina concentrated dispersions 40 

wt% fructose solution. 
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APPENDIX C. THE RHEOLOGICAL BEHAVIOR OF NANO 

ALUMINA DISPERSIONS 

 
C.1. The flow and viscosity curves 
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Figure 1. The flow curves of nano alumina dispersions without fructose. 
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Figure 2. The viscosity curves of nano alumina dispersions without fructose. 
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Figure 3. The flow curves of nano alumina dispersions in1 wt% fructose solution. 
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Figure 4. The viscosity curves of nano alumina dispersions in1 wt% fructose solution. 
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Figure 5. The flow curves of nano alumina dispersions in 4wt% fructose solution. 
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Figure 6. The viscosity curves of nano alumina dispersions in 4 wt% fructose solution. 
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Figure 7. The flow curves of nano alumina dispersions in 10wt% fructose solution. 
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Figure 8. The viscosity curves of nano alumina dispersions in 10 wt% fructose solution. 
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Figure 9. The flow curves of nano alumina dispersions in 20wt% fructose solution. 

 

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0 100 200 300 400 500

Shear Rate (1/s)

V
is

co
si

ty
 (P

a.
s)

 
Figure 10. The viscosity curves of nano alumina dispersions in 20 wt% fructose solution. 
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Figure 11. The flow curves of nano alumina dispersions in 30wt% fructose solution. 
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Figure 12. The viscosity curves of nano alumina dispersions in 30 wt% fructose solution. 
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Figure 13. The flow curves of nano alumina dispersions in 40wt% fructose solution. 
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Figure 14. The viscosity curves of nano alumina dispersions in 40 wt% fructose solution. 
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C.2. The thixotropy curves 
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Figure 1.The thixotropy curves of nano alumina in water. 
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Figure 2.The thixotropy curves of nano alumina in 1 wt% fructose solution. 
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Figure 3.The thixotropy curves of nano alumina in 4 wt% fructose solution. 
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Figure 4.The thixotropy curves of nano alumina in 10 wt% fructose solution. 
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Figure 5.The thixotropy curves of nano alumina in 20 wt% fructose solution. 
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Figure 6.The thixotropy curves of nano alumina in 30 wt% fructose solution. 
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Figure 7.The thixotropy curves of nano alumina in 40 wt% fructose solution. 

 
 
C.3. The stress sweeps 
 

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0.001 0.01 0.1 1 10

Shear Stress (Pa)

G
', G

'' (
Pa

)

 
Figure 1. The stress sweeps of nano alumina dispersions in water. 
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Figure 2. The stress sweeps of nano alumina dilute dispersions in 1 wt% fructose 

solution. 
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Figure 3. The stress sweeps of nano alumina concentrated dispersions in 1 wt% fructose 

solution. 
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Figure 4. The stress sweeps of nano alumina dilute dispersions in 4 wt% fructose 

solution. 
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Figure 5. The stress sweeps of nano alumina concentrated dispersions in 4 wt% fructose 

solution. 
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Figure 6. The stress sweeps of nano alumina dilute dispersions in 10 wt% fructose 

solution. 
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Figure 7. The stress sweeps of nano alumina concentrated dispersions in 10 wt% 

fructose solution. 
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Figure 8. The stress sweeps of nano alumina dilute dispersions in 20 wt% fructose 

solution. 
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Figure 9. The stress sweeps of nano alumina concentrated dispersions in 20 wt% 

fructose solution. 
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Figure 10. The stress sweeps of nano alumina dilute dispersions in 30 wt% fructose 

solution. 
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Figure 11. The stress sweeps of nano alumina concentrated dispersions in 30 wt% 

fructose solution. 
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Figure 12. The stress sweeps of nano alumina dilute dispersions in 40 wt% fructose 

solution. 
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Figure 13. The stress sweeps of nano alumina concentrated dispersions in 40 wt% 

fructose solution. 
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C.4. The frequency sweeps 
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Figure 1. The frequency sweeps of nano alumina dispersions water. 
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Figure 2. The frequency sweeps of nano alumina dilute dispersions 1 wt% fructose 

solution. 
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Figure 3. The frequency sweeps of nano alumina concentrated dispersions 1 wt% 

fructose solution. 
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Figure 4. The frequency sweeps of nano alumina dilute dispersions 4 wt% fructose 

solution. 
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Figure 5. The frequency sweeps of nano alumina concentrated dispersions 4 wt% 

fructose solution. 
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Figure 6. The frequency sweeps of nano alumina dilute dispersions 10 wt% fructose 

solution. 
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Figure 7. The frequency sweeps of nano alumina concentrated dispersions 10 wt% 

fructose solution. 
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Figure 8. The frequency sweeps of nano alumina dilute dispersions 20 wt% fructose 

solution. 

5 vol% 

10 vol% 

20 vol% 

30 vol% 

40 vol% 

G′ 
G′′

G′ 
G′′ 



 215

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0.01 0.1 1 10 100 1000

Angular Frequency (rad/s)

G
', G

'' (
Pa

)

 
Figure 9. The frequency sweeps of nano alumina concentrated dispersions 20 wt% 

fructose solution. 
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Figure 10. The frequency sweeps of nano alumina dilute dispersions 30 wt% fructose 

solution. 
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Figure 11. The frequency sweeps of nano alumina concentrated dispersions 30 wt% 

fructose solution. 
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Figure 12. The frequency sweeps of nano alumina dilute dispersions 40 wt% fructose 

solution. 
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Figure 13. The frequency sweeps of nano alumina concentrated dispersions 40 wt% 

fructose solution. 
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APPENDIX D. THE RHEOLOGICAL BEHAVIOR OF NANO 

TITANIA DISPERSIONS 

 
D.1. The flow and viscosity curves 
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Figure 1. The flow curves of nano titania dispersions without fructose and pH 

adjustment. 
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Figure 2. The viscosity curves of nano titania dispersions without fructose. 
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Figure 3. The flow curves of nano titania dispersions without fructose and with pH 

adjustment. 
 

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 100 200 300 400 500

Shear Rate (1/s)

V
is

co
si

ty
 (P

a.
s)

 
Figure 4. The viscosity curves of nano titania dispersions without fructose and with pH 

adjustment. 
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Figure 5. The flow curves of pH adjusted nano titania dispersions in 1wt% fructose 

solution. 
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Figure 6. The viscosity curves of pH adjusted nano titania dispersions in 1wt% fructose 
solution. 
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Figure 7. The flow curves of pH adjusted nano titania dispersions in 4 wt% fructose 

solution. 
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Figure 8. The viscosity curves of pH adjusted nano titania dispersions in 4 wt% fructose 

solution. 
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Figure 9. The flow curves of pH adjusted nano titania dispersions in 10wt% fructose 

solution. 
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Figure 101. The viscosity curves of pH adjusted nano titania dispersions in 10 wt% 

fructose solution. 
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Figure 11. The flow curves of pH adjusted nano titania dispersions in 20wt% fructose 

solution. 
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Figure 12. The viscosity curves of pH adjusted nano titania dispersions in 20 wt% 

fructose solution. 
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Figure 13. The flow curves of pH adjusted nano titania dispersions in 30wt% fructose 

solution. 
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Figure 14. The viscosity curves of pH adjusted nano titania dispersions in 30 wt% 

fructose solution. 
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Figure 15. The flow curves of nano pH adjusted titania dispersions in 40wt% fructose 

solution. 
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Figure 16. The viscosity curves of pH adjusted nano titania dispersions in 40 wt% 

fructose solution. 
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Figure 17. The flow curves of nano titania dispersions in 10wt% fructose solution. 
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Figure 18. The viscosity curves of nano titania dispersions in 10 wt% fructose solution. 
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Figure 19. The flow curves of nano titania dispersions in 20wt% fructose solution. 
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Figure 20. The viscosity curves of nano titania dispersions in 20 wt% fructose solution. 
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Figure 21. The flow curves of nano titania dispersions in 30wt% fructose solution. 
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Figure 22. The viscosity curves of nano titania dispersions in 30 wt% fructose solution. 
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Figure 23. The flow curves of nano titania dispersions in 40wt% fructose solution. 
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Figure 24. The viscosity curves of nano titania dispersions in 40 wt% fructose solution. 
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Figure 1.The thixotropy curves of nano titania in water. 
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Figure 2.The thixotropy curves of nano titania without fructose and with pH adjustment. 
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Figure 3.The thixotropy curves of pH adjusted nano titania in 1 wt% fructose solution. 
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Figure 4.The thixotropy curves of pH adjusted nano titania in 4 wt% fructose solution. 
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Figure 5.The thixotropy curves of pH adjusted nano titania in 10 wt% fructose solution. 
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Figure 6.The thixotropy curves of pH adjusted nano titania in 20 wt% fructose solution. 
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Figure 7.The thixotropy curves of pH adjusted nano titania in 30 wt% fructose solution. 
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Figure 8.The thixotropy curves of pH adjusted nano titania in 40 wt% fructose solution. 
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Figure 1. The stress sweeps of nano titania dispersions in water. 
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Figure 2. The stress sweeps of nano titania dispersions without fructose and with pH 

adjustment. 
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 Figure 3. The stress sweeps of pH adjusted nano titania dispersions in 1 wt% fructose 

solution. 
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Figure 4. The stress sweeps of pH adjusted nano titania dispersions in 4 wt% fructose 
solution. 
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Figure 5. The stress sweeps of pH adjusted nano titania dispersions in 10 wt% fructose 

solution. 
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Figure 6. The stress sweeps of pH adjusted nano titania dispersions in 20 wt% fructose 

solution. 
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Figure 7. The stress sweeps of pH adjusted nano titania dispersions in 30 wt% fructose 

solution. 
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Figure 8. The stress sweeps of pH adjusted nano titania dispersions in 40 wt% fructose 

solution. 
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Figure 9. The stress sweeps of nano titania dispersions in 10 wt% fructose solution. 
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Figure 10. The stress sweeps of nano titania dispersions in 20 wt% fructose solution. 
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Figure 11. The stress sweeps of nano titania dispersions in 30 wt% fructose solution. 
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Figure 12. The stress sweeps of nano titania dispersions in 40 wt% fructose solution. 
 
D.4. The frequency sweeps 
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Figure 1. The frequency sweeps of nano titania dispersions in water. 
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Figure 2. The frequency sweeps of nano titania dispersions without fructose and with 

pH adjustment. 
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Figure 3. The frequency sweeps of pH adjusted nano titania dispersions in 1 wt% 

fructose solution. 
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Figure 4. The frequency sweeps of pH adjusted nano titania dispersions in 4 wt% 

fructose solution. 
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Figure 5. The frequency sweeps of pH adjusted nano titania dispersions in 10 wt% 

fructose solution. 
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Figure 6. The frequency sweeps of pH adjusted nano titania dispersions in 20 wt% 

fructose solution. 
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Figure 7. The frequency sweeps of pH adjusted nano titania dispersions in 30 wt% 

fructose solution. 
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Figure 8. The frequency sweeps of pH adjusted nano titania dispersions in 40 wt% 

fructose solution. 
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Figure 9. The frequency sweeps of nano titania dispersions in 10 wt% fructose solution. 
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Figure 10. The frequency sweeps of nano titania dispersions in 20 wt% fructose solution. 
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Figure 11. The frequency sweeps of nano titania dispersions in 30 wt% fructose solution. 
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Figure 12. The frequency sweeps of nano titania dispersions in 40 wt% fructose solution. 
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