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ABSTRACT 
 

THE EFFECT OF MICROWAVES ON ION EXCHANGE IN ZEOLITES 
 
 Recent innovations of microwave field lead many scientists to focus on this 

phenomenon and it has been begun to be applied in different fields of zeolite 

applications.  

 The purpose of this study is to determine the effect of microwave irradiation on 

ion exchange degree and on the structure of natural zeolite. The clinoptilolite rich 

mineral from Western Anatolia was used throughout the experiments. The ion exchange 

experiments were performed using AgNO3, Co.(NO3)2
.6H2O and Cu.(NO3)2

.5/2H2O 

within 0.01M - 1M and 40 oC - 80 oC concentration and temperature range in 

conventional waterbath and microwave. Different solid and solution conditions on ion 

exchange degree were determined, as well. Metal exchanged minerals were 

characterized by using instrumental techniques. Antibacterial activity of the Ag-

exchanged clinoptilolite against E. coli was determined by Kirby–Bauer method. 

The Ag +, Co2+ and Cu2+ amounts within the mineral increased with decreasing 

S/L while increased with increasing temperature and time. For some utilized parameters 

microwave treatment was effective however on the whole it did not significantly 

improved the degree of ion exchange compared to waterbath treatment. The inspection of 

XRD patterns and FTIR spectra of metal exchanged minerals confirmed that no transition 

of clinoptilolite phase and no shifts in peak positions occurred with exchange methods 

applied. The sorption processes are controlled mainly by external-phase mass transfer. 

Ag+, Co2+ and Cu2+ sorptions on NaCLI exhibited a good fit to Freundlich model and 

Langmuir models. All metal exchanged minerals showed considerable superiority against 

E.Coli.  
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ÖZET 
 

MİKRODALGANIN ZEOLİTLERDE İYON DEĞİŞİMİNE ETKİSİ 
 

Mikrodalga alanında yapılan son zamanlardaki yenilikler bilim adamlarının 

konuya yönelmesini sağlamış ve mikrodalga zeolitin farklı dallarındaki kullanım 

alanlarında yerini almıştır.  

Bu çalışmada, mikrodalga kullanımının diğer yöntemlere kıyasla 

malzemelerin yapılarında birtakım değişiklikler meydana getirebileceği göz önünde 

bulundurularak mikrodalga kullanımının iyon değişim mekanizması ve zeolitlerin 

yapısına etkileri incelenmiştir.  Batı Anadolu’nun Manisa,Gördes yöresinden temin 

edilen klinoptilolit mineralince zengin zeolit minerali  deneysel çalışmada 

kullanılmıştır. Klinoptolit mineralinin AgNO3, Co.(NO3)2
.6H2O ve Cu.(NO3)2

.5/2H2O 

çözeltileriyle 0.01 M - 1M  ve 40oC -80oC derişim ve sıcaklık aralığında su banyosu ve 

mikrodalga yöntemleri kullanılarak iyon değişim deneyleri gerçekleştirilmiştir. 

Zeolit/çözelti oranının, sıcaklığının ve uygulanan metodun iyon değişimine etkisi 

incelenmiştir. Metal yüklenmiş mineraller farklı  analiz yöntemleri ile karakterize 

edilmiştir. Ag+, Co2+ ve Cu2+ yüklenmiş minerallerin E.Coli bakterisine karşı anti 

bakteriyel etkisi Kirby-Bauer yöntemiyle belirlenmiştir. 

Her iki iyon değişim yöntemi için, klinoptolit mineralinin içinde bulunan Ag+, 

Co2+ ve Cu2+ miktarlarının azalan klinoptolit /çözelti oranı, artan  çözelti sıcaklığı ve 

zamanla arttığı saptanmıştır. Mikrodalga yönteminin bazı parametrelerde daha etkili 

olmuştur fakat genel olarak söz edilen katyonlar için iyon değişim derecesini önemli 

ölçüde arttırmadığı gözlemiştir. XRD, ve FTIR  sonuçlarına göre, Ag+, Co2+ ve Cu2+ 

yüklemesinin klinoptolit mineralince yapısında herhangi bir değişikliğe neden olmadığı 

tespit edilmiştir. Sorpsiyon proseslerini, film fazındaki kütle transferi  kontrol 

etmektedir. Ag+, Co2+ ve Cu+  klinoptolit mineralinin adsorpsiyon denge izotermleri 

Freundlich ve Langmuir Modeline uygunluk göstermiştir. Ag+, Co2+ ve Cu2+ yüklenmiş 

klinoptolit minerali E.Coli bakterisine karşı direnç göstermiştir.  
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CHAPTER 1 

 

 

INTRODUCTION 
 

 
Porous materials have attracted the engineers’ attention due to their commercial 

applications in chemical separations and heterogeneous catalysis as well as the scientific 

interest came in sight by their synthesis, processing, and characterization. Zeolite 

minerals have been known since the eighteenth century but they remained a curiosity 

for scientists until their unique physical and chemical properties haven’t been attracted 

the attention of many researches. These minerals are recognized as some of the most 

important silicates in volcanic rocks. These are mostly formed by reaction of pore-

waters with volcanic glass and also by alteration of pre-existing feldspars, feldspathoids, 

poorly crystalline clays and biogenic silica (Palaban, 1987). They are porous crystalline, 

hydrated alumina silicates of group I and II elements in particular with sodium, 

potassium, calcium, magnesium, and barium. The zeolite framework structurally 

consists of an assemblage of SiO4 and AlO4 tetrahedra, joined together in various 

regular arrangements through shared oxygen atoms, to form an open crystal lattice 

containing pores of molecular dimensions into which quest molecules can penetrate. 

Since the positive charge of a silicon atom is higher than an aluminum atom, the net 

charge on each site of an aluminum tetrahedron is negative and it is balanced by one of 

the exchangeable cations present in the framework.  

Clinoptilolite is a member of heulandite group of natural zeolites which belongs 

to structural group 7 and have a monoclinic symmetry and a Si /Al ratio between 4.25 

and 5.25 (Gottardi and Galli, 1985). The structure of clinoptilolite consists of a three 

dimensional system of the three types of channels. Two parallel channels, channel A (10 

member ring) and channel B (8 member ring), are perpendicularly intersected by 

channel C (8 member ring) with sizes 0.44*0.72 nm, 0.41*0.47 nm and 0.40*0.54 nm, 

respectively (Tsitsishvilli et al., 1992). The main exchangeable cations located within 

the cationic sites of clinoptilolite are Na, Ca, K, Mg and Ba. 
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Zeolites have a number of characteristic properties and are important for 

commercial applications. They are summarized as; they have high degree of hydration 

and ease of dehydration, stable crystal structure, low density and large void volume 

when dehydrated, cation exchange property, uniform molecular sized channels, high 

thermal and hydrothermal stability, high internal surface area, catalytic property with H-

exchanged forms, special electrical properties and can adsorb gases and vapors. These 

properties of zeolites are strongly influenced by their chemical composition; framework 

composition and extra-framework composition such as the number, type and location of 

the exchangeable cations which strongly affect the ion exchange performance of 

zeolites. The ion exchange, adsorption and catalytic properties of zeolites as well as 

large deposits existing in different parts of the world lead many researchers to focus on 

their different applications. Zeolites are being widely used in many applications such as 

fertilizer in the agricultural and horticultural field, as catalyst in petroleum refining 

industry, as filler in paper industry, as adsorbents in the removal of organic 

contaminants, as fertilizer in the agricultural and horticultural field, as animal feed 

supply, and etc but they are often limited to countries having their own deposits. 

However, natural zeolites haven't had the commercial success of synthetic zeolites, 

partly because synthetics were developed and used extensively before the existence of 

large deposits of natural zeolites was known. Additional to the uses of zeolite in many 

industrial applications, in recent years these exciting minerals are being used in 

biomedical applications due to their good biological properties which are extremely 

important for industry. The synthetic zeolites are now doing the bulk of the work but 

natural zeolites are cheaper and more accessible though no less effective alternatives in 

biomedical area. 

The recent use of microwaves in various fields of science makes it an interesting 

topic for the last few years especially in chemistry and chemical engineering. 

Microwave is a kind of electromagnetic radiation with a high frequency between 0.3 

and 300 GHz. In microwaves a form of radio waves pass through the material instead of 

direct heating. The energy transformation may occur through different mechanisms; the 

most frequent among them are ionic conduction and dipole rotation (Bekkum et al., 

1991). The heating and processing of materials with microwave is getting increasingly 

popular for many industrial applications. It is used in many kinds of fields such as, 

biology, medicine, chemistry and chemical engineering, because it has been claimed by 

many researchers that microwave irradiation on heating and other processes have many 
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advantages. For example, it enhances the reaction speed, supplies uniform and direct 

heating, produces high efficiency in energy and high heating temperature, and reduces 

the reaction temperatures of some processes but also the cost and time of the process 

applied. After 1980s interdisciplinary phenomena which called microwave chemistry 

was introduced into the science world. At the beginning of 1990s, microwave technique 

began to be applied in the synthesis of zeolite and in the following years it has been 

started to be used in many researches. If microwave radiation is use as heat source for 

ion exchange process, rapid, uniform and direct heat without any problems of heat 

transfer through walls of container is achieved (Romero et al., 2004). The microwave 

heating to higher temperature studies showed that there are several factors which affect 

the heating. Hydrated zeolites absorb microwave energy more efficiently than dry 

zeolites, H-form of zeolites interacts little with microwaves and degree of interaction 

strongly depends on the chemical composition and structure (Ohgushi et al., 2001). 

Energy adsorption in zeolites is a complex process and was considered that it is strongly 

affected by the presence of metal ions. The Na+ ions within the large cavity in zeolite 

structure act as strong microwave absorbers.  Both ionic conduction by Na+, K+, and 

other ions, and dipole rotation by water molecules can take place (Pilter et al., 2000). 

Besides, the synthesis of zeolitic materials in a microwave environment has been 

successfully achieved in many cases with shortened nucleation and crystal growth 

periods. Interesting results were obtained by microwave activation of zeolitic catalyst. 

In the past few years, heating of materials, driving chemical reactions by 

microwave energy has been a popular theme in the scientific community. This non-

classical heating technique is slowly moving from a laboratory curiosity to an 

established technique heavily used in both academia and industry since it has many 

advantages on heating and on other processes. The ion exchange in the presence of 

microwave irradiation is a recent topic and it has many scientific vacancies. Because the 

mechanisms of microwave which assist reactions and processes are unclear deeper 

investigation is essential for wider and efficient application of microwave in many 

fields of science. Despite the fact that the mechanism of interaction of microwave 

radiation with a material has not been completely understood, it is comprehensible that 

a microwave treated material may present some different properties when compared to 

conventional treatment.  

The cation exchange process as a whole and the effect of microwave treatment 

method and parameters influence on ion exchange process are the subject of this PhD 
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study which covers the theoretical background of zeolites, sorption and ion exchange 

processes and microwaves. In the experimental part, the ion exchange with natural 

zeolite, clinoptilolite, will be performed with Ag+, Co2+ and Cu2+ in their appropriate 

nitrate solutions. The Ag+, Co2+ and Cu2+ exchanged minerals will be characterized 

using different characterization techniques that are available to describe the cation 

exchange mechanism and structural changes occurred within the mineral. The 

preference of Ag+, Co2+ and Cu2+  exchange on clinoptilolite is due to the potential use 

of its Ag+, Co2+ and Cu2+ exchanged forms in the antimicrobial material production 

such as antibacterial materials for medical applications and antimicrobial ceramics. The 

wide abundance of clinoptilolite in Turkey created an economical potential for the 

country besides the use of microwave irradiation in the process of ion exchange will be 

determined. 
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CHAPTER 2 

 

 

INTRODUCTION TO ZEOLITES 

 

 
2.1. Zeolites  
 

 

The history of zeolites began with the discovery of first zeolite mineral stilbite, 

by the Swedish mineralogist, Axel Fredrik Cronsdent in 1756. He recognized zeolites as 

a new class of mineral consisting of hydrated aluminosilicate of the alkali and alkaline 

earths. The history was followed the discovery of important properties of zeolite.  By 

the mid-1930’s the literature described the ion-exchange, adsorption, molecular sieve 

properties of zeolite minerals (Mumpton, 1997). From the mid to late 1940’s zeolite 

both the natural and the synthetic forms started to be used in industry. R. Milton and co-

worker D.W. Breck discovered a number of commercially significant zeolites, type A, 

X and Y (Bekkum et al., 1991). In the 1980’s there has been extensive work carried out 

on the synthesis and applications of zeolites of both types. 

 

 

2.1.1. Structure and Properties of Zeolites 
 

 

 Zeolites are porous crystalline, hydrated alumina silicates of group I and II 

elements in particular with sodium, potassium, magnesium, calcium, barium and 

strontium. The zeolite structurally framework consists of an assemblage of SiO4 and 

AlO4 tetrahedra, joined together in various regular arrangements through shared oxygen 

atoms, to form an open crystal lattice containing pores of molecular dimensions into 

which quest molecules can penetrate. The zeolite framework is open; contains channels 

and cavities in which the exchangeable cations and the water molecules exist. The 
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cations often have a high degree of mobility giving rise to facile ion exchange and water 

molecules which are readily lost and regained. It should be noted that the sites of all 

adsorption, catalytic and ion exchange reactions of both synthetic and natural zeolites 

are basically within the crystal structure. The isomorphic substitution of Si by Al causes 

a negative charge in the zeolite structure and it is balanced by introducing exchanged 

monovalent, divalent, or trivalent cations in the structural sites of the zeolite The mobile 

non-framework cations are located in cavities in the channel walls and coordinated with 

the water molecules within the channel. The structural formula of a zeolite is best 

expressed for the crystallographic unit cell as: (M+, M2+). ((AlO2)x (SiO2)y). wH2O ; 

where (M+ is usually Na+ or  K+,  M2+ is Mg2+, Ca2+ or Fe2+, rarely Ba2+, Li2+), w is the 

number of water molecules and the ratio y/x is Si/Al ratio (Breck,1974). 

 

Figure 2.1.  Representation of   SiO4
4- or AlO4

5-
. 

 

The extent and location of water molecules incorporation depends either on the 

size, shape of the cavities and channels present or the number and the nature of the 

cations in the structure. Water molecules greatly influence the position of exchangeable 

cations and regulate their mobility within the structure. If the framework cations 

hydrated, they are reluctant to exchange sites but required to give off their coordinated 

water molecules (Higgins et al., 2001).   

Zeolites have a number of characteristic properties and are important for 

commercial applications which make zeolites a promising material for various 

applications which are summarized as follows; they have microporous character with 

uniform pore dimensions, they allow certain molecules to enter the crystals while 

rejecting others based on their size and shape, they have ability to develop an internal 

acidity which makes them interesting materials for catalyzing organic reactions, have 

high thermal stability. These properties of zeolites make them a reliable material 

compared to other crystalline inorganic oxide materials (Bekkum et al., 1991). 

= 
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There are more than 50 types of zeolite which occur in nature; however only 

mordenite, clinoptilolite, ferrierite, chabazite, erionite, philipsite and analcime have a 

remarkable value as mineral resources. Among these naturally occurring zeolite 

minerals, clinoptilolite is the most abundant and well known zeolite and occurs in large 

mineable deposits of relatively high purity in many parts of the world, including Turkey 

with a uniform and regular pore sizes. The composition, purity and property show 

change among the deposits.  Clinoptilolite is a member of a heulandite group of natural 

zeolite and is iso-structural with the zeolite heulandite. The difference between 

clinoptilolite and heulandite is that, with heating at 450 oC clinoptilolite survives its 

crystal structure whereas heulandite does not (Gottardi and Galli, 1985). Si/Al ratio of 

clinoptilolite is in the range of 4.25- 5.25 whereas heulandite has Si/Al ratio below 4.00.  

Clinoptilolite has sheet like structure and is connected to each other by a few bonds. 

These sheets contain open and these rings stack together from sheet to sheet to form 

channels throughout the crystal structure. The size of these channels controls the size of 

the molecules or ions that can pass through them and therefore a zeolite like 

clinoptilolite can act as a molecular sieve. 
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Structure of clinoptilolite consists of a two dimensional system of the three types 

of channels; two parallel channels, channel A (10 member ring) and channel B (8 

member ring), are perpendicularly intersected by channel C (8 member ring) with sizes 

0.44*0.72 nm, 0.41*0.47 nm and 0.40*0.54 nm, respectively. In these channels there 

are four main sites namely M1, M2, M3 and M4. The Figure 2.2 shows the clinoptilolite 

structure and the main cation positions in the structure (Arcoya et al, 1996). 

 

 
 

Figure 2.2. The main cation positions in clinoptilolite. 
(Source: Arcoya et al, 1996). 

 

M1 is located in channel A, coordinated with two framework oxygen atoms, five 

water molecules and is occupied by Ca2+ and preferably Na+. M2 is situated in channel 

B, coordinated with three framework oxygen atoms and five water molecules. It is 

occupied by Na+ and preferably by Ca2+. M3, in channel C, coordinated by six 

framework oxygen atoms and three water molecules. This site is occupied by K+ and 

preferably by Ba2+. Because this position is very close to M1 which a simultaneous 

occupancy of both sites is not possible. M4 is located in channel A like M1, but a center 

of inversion. Its octahedral coordination is achieved by six water molecules. The 

occupancy of this position is low, and corresponds to Mg2+ (Arcoya et al, 1996). 

 

 

 

 

silicon or aluminium 
oxygen 
countercation 
water 
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2.1.2 Application and Uses of Zeolites 
 

 

 After zeolites were introduced as a new class of commercial adsorbent and 

mineral molecular sieve, they created a new branch of chemical technology and had 

considerable place in the industry. The applications of both zeolites in general are based 

on their unique adsorption, cation-exchange, dehydration–rehydration, and catalytic 

properties.  

 Zeolites are extremely used as catalysts in several important reactions involving 

organic molecules since they have the ability to act as catalysts for chemical reactions 

which take place within the internal cavities. The main industrial application areas of 

zeolites as catalyst are: petroleum refining, synfuels production, petrochemical 

production, cracking, isomerization and hydrocarbon synthesis. Today, zeolites are used 

commercially for enhanced hydrocarbon oxidation in conventional diesel engines and 

NOx reduction. Zeolites serve as oxidation or reduction catalysts; have often been 

introduced into the framework after metal. The most promising results were obtained 

with the studies done by using metal-exchanged (Cu, Fe, Co, Pt, Rh, and Ni) zeolites 

such as ZSM-5, mordenite, zeolite Y (Moreno et al., 2004). Additionally, in the 

production of high-value chemicals such as pharmaceuticals and cosmetics zeolite 

catalysis were taking the high portion in industry. 

The adsorption property is one of the most important characteristics of zeolites 

which strongly depend on the framework compositions. The ability to preferentially 

adsorb certain molecules, while excluding others, has opened up a wide range of 

molecular sieving applications. This includes applications in drying, purification, and 

separation. For example, they are being used as adsorbents in the removal of organic 

contaminants, such as phenol and aniline, the removal of water from organic solvents, 

the removal of organics from water, nitrogen and phosphorus removal from wastewater. 

The other important applications of adsorption of zeolites are the control of 

“greenhouse” gases (CO, CH4, N2O), the utilization of CH4, and the flue gas treatment 

(SOx, NOx) . Narin (2001) chromatographically studied the carbon monoxide 

adsorption in clinoptilolite which was conducted in the range of 60-120 oC. The 

equilibrium constants (Henry’s law constants, K) were in good agreement with the 
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results in the literature and mesopore diffusion resistance was found to be the 

controlling mechanism in CO diffusion in clinoptilolite. 

Natural and synthetic zeolites were introduced as ion exchangers after soils and 

clays and are being extensively used in that respect since the hydrated cations within the 

zeolite pores are loosely bound to the zeolite framework, and can readily exchange with 

other cations when in aqueous media. For example, clinoptilolite currently is used to 

remove Sr and Cs from low-level effluents from a nuclear power plant before they are 

released to sea. Several zeolite processes have been developed to counteract the fallout 

from the 1986 Chernobyl disaster. They are added to soils reduced the uptake of 137Cs 

by pasture plants in the vicinity of Chernobyl.  Additionally, they are being used for 

extracting NH4
+ from municipal and agricultural waste streams. Zeolite A, X, Y, Z and 

clinoptilolite supporting metal ions (Ag, Cu, Zn, Hg, Sn, Pb, Bi, Cd, Cr, Ti) are used as 

bactericides for water disinfection (Rivera-Garza, 2000). Türkmen. (2001) studied the 

removal of heavy metals (Pb2+, Cu2+, Zn2+) from wastewaters by use of natural zeolite 

from Western Anatolia and concluded that  it is an efficient ion exchanger and can be 

used for wastewater treatment. Cansever (2003) studied NH4
+ removal from wastewater 

effluent by means of natural zeolite from Gördes, Turkey and investigated the effect of 

experimental conditions on the exchange performance. The highest amount of NH4
+ 

removal per gram zeolite was found in the solution having 1% solid to liquid ratio. The 

exchange capacity was independent of the particle size and initial concentration of NH4
+ 

has an effect on the exchange degree. The competing cation namely K+ and Ca2+ have 

affected the exchange degree while Mg2+ ion has been found to have no effect.  

Zeolites are being used in the agricultural and horticultural field due to their 

ability to slow-release fertilization or combination of ion exchange and mineral 

dissolution reactions. Mainly K+ and NH4
+ saturated clinoptilolite are used for this 

purpose for producing fruits and vegetables without a need of fertilization. 

Natural zeolites also are used as dietary supplements. The animals fed with 

clinoptilolite added fodder generally grew faster and gained beneficial weight with 

simultaneous decrease in the amount and cost of the feed. Mineral adsorbent based on 

natural zeolite prevents mycotoxins from being poisoned. The apparent ability of 

clinoptilolite and other zeolites to absorb aflatoxins that contaminate animal feeds has 

resulted in measurable improvements in the health of swine, sheep, and chickens.  Due 

to uptake of NH4
+ by the zeolite, animals’ excrement was less odoriferous and zeolite-

filled air scrubbers were being used to improve poultry-house environments by 
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extracting NH3 from the air. Additionally, the removal of ammonium from hatchery and 

aquarium waters and generation of oxygen for aeration systems in aquaria and transport 

are done by zeolitic materials.  

The bulk of synthetic zeolites produced are used as detergent builders in order to 

reduce the effect of hard water ions. After the EPA regulations concerning water 

pollution, the use of phosphates in detergents was banned and synthetic zeolite has 

replaced in many formulations.  

 Perlite and volcanic glasses were being used as lightweight aggregate in 

concrete; recently zeolitic tuffs were used in that field. Predicting the thermal behavior 

of natural and cation-exchanged forms of clinoptilolites can provide useful information 

such as for thermal transformation into ceramics or lightweight aggregates. The heating 

temperatures for zeolite case are somewhat higher than those needed to expand perlite, 

but the products are much stronger. Çağlar et al. (2007) investigated the effect of heat 

treatment on zeolitic tuff from Turkey. The heat treatment conditions for maximum 

density and hardness were determined. Zeolitic tuff mainly containing clinoptilolite 

might be used in the production of lightweight aggregates and concrete bricks and also 

as an alternative source of substitute material in ceramic industry considering both its 

low cost and simple processing. Langella et al. (2003) investigated the thermal behavior 

of two clinoptilolites from an epiclastic and a pyroclastic deposit of Sardinia and of 

their exchanged forms (Li, Na, K, Cs, Mg, Ca, Sr and ammonium) by differential 

thermal analysis and thermogravimetry up to 1000ºC. The presence of cations such as 

Cs or K, which have low surface or volume charge densities, was found to increase the 

thermal resistance. In particular, the crystallinity of Cs- and K-exchanged forms of both 

clinoptilolites was not affected by thermal treatment at 450ºC and was just slightly 

reduced by thermal treatment at 600ºC. 

Additional to the zeolite uses in many industrial applications, in recent years 

these exciting materials are increasingly being used in biomedical applications. Due to 

their known biological properties with long term chemical and biological stability, their 

reversible binding ability small molecules, their size and shape selectivity, immune 

system regulation ability. Natural zeolites mainly clinoptilolite is being used for this 

purpose; however it is very important to investigate them properly due to eliminate their 

side effects. For example, the lead content in some zeolite and clays should be reduced 

to ppb levels to eliminate the toxicity problems. Purified natural clinoptilolite has been 

developed as a non-toxic pharmaceutical and an active material in the therapy of acute 



 12

diarrheic diseases (Rodriguez-Fuentes et al., 1997). In ruminants clinoptilolite alters 

rumen fermentation; thereby modify volatile fatty acid production by rumen microbes 

and changing milk and body fat. Pigs, chicken, and turkeys are protected from 

mycotoxins in contaminated grains. Aflatoxins include a group of widespread, naturally 

occurring, fungal poisons which have been seen in animal diseases and aflatoxin B1 

(AFB1) is the most toxic and cancerogenic of the aflatoxins. Hydration of the 

exchangeable cations creates a hydrophilic environment on the surface of zeolites and is 

important for the adsorption of different organic molecules, including mycotoxins on 

zeolites. A proposed mechanism of aflatoxin chemisorption by mineral adsorbents 

involves the rapid formation of a complex between a ligand and the mineral. The 

affinity of different cation-exchanged forms of clinoptilolite for aflatoxin B1 in vitro 

was studied by Tomasevic et al. (2001) and showed that the different exchanged forms 

of clinoptilolites adsorbed substantial amount of aflatoxin B1. Grce and Pevelic (2004) 

studied the antiviral properties of fine powder clinoptilolite. They treated different viral 

suspensions and concluded that, an antiviral property of clinoptilolite opens a possibility 

of therapeutical application of clinoptilolite either locally against herpesvirus infection 

or orally in case of adenovirus or enterovirus infections. Tomasevic-Canavic (2005) 

investigated the extraction efficiency of lead present as impurities in clinoptilolite using 

EDTA. They concluded that, this way of clinoptilolite purification is possible and can 

be used for medical application. 

Aspirin causes gastrointestinal side effects in many patients. Some studies 

suggest that the absorption of aspirin from buffered products can be decreased, while 

the others do not cause any change. Since the aspirin is administered in the form of solid 

dosage, it must first be dissolved by gastrointestinal fluids before it can be absorbed. In 

order to investigate the aspirin-zeolite combination product Lam et al. (1998) studied 

theoretically the physical adsorption of aspirin on the natural clinoptilolite. Since 

dimensions of the clinoptilolite channels are smaller compared to aspirin external 

surface interaction was only possible. They concluded that compared to Na zeolite 

aspirin molecule adsorbed in acidic zeolite better. 

The finely ground clinoptilolite is a potential adjuvant in anticancer and tumor 

therapy. Clinoptilolite treatment of mice and dogs suffering from a variety of tumor 

types led to improvement in the overall health status, prolongation of life-span, and 

decrease in the size of tumors. Local application of clinoptilolite to skin cancers of dogs 

effectively reduced tumor formation and growth. In vitro tissue culture studies showed 
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that finely ground clinoptilolite inhibits protein B, induces expression of different tumor 

suppressor proteins, and blocks cell growth in several cancer cell lines. These results 

indicate that clinoptilolite treatment might affect cancer growth by attenuating survival 

signals and inducing tumor suppressor genes in treated cells (Pavelic et al., 2001; 

Tomasevic-Canovic, 2005).  Doretea and Pivac (2003) studied the ex vivo effect of 

clinoptilolite on the serotonergic receptors (binding of 3H-8-OH-DPAT to 5-HT1A and 
3H-5-HT to 5-HT1B ) in the brain of mice non-tumourous and mammary carcinoma 

suffering female mice. The reduction in binding of 3H-8-OH-DPAT to 5-HT1A in 

mammary carcinoma bearing mice when compared to control mice fed with standard 

food was observed. The addition of clinoptilolite to the feed of mice stopped the 

decrease in 5-HT1A receptors binding; a possible beneficial effect of clinoptilolite was 

accomplished. 

Papaioannou et al. (2004) studied the use of clinoptilolite-rich tuff, alone or in 

combination with certain antimicrobials on the health status and performance of pigs 

and its compatibility during simultaneous oral administration of antimicrobials such as 

enrofloxain or salinomycin. The performances and health of pigs were tested with 

respect to their feed configuration; with and without the clinoptilolite and/or 

antimicrobials. The clinical test showed that the dietary use of clinoptilolite does not 

cause any worse effect to pigs than weaning to slaughter or any incompatibility with in-

feed of antimicrobials. Clinoptilolite addition to feeds was also supportive for 

antimicrobial medication. 

The antimicrobial effects of natural zeolites namely clinoptilolite and its certain 

metal-exchanged forms are well known. They controlled the release of agents against 

microbial pollution and exhibit good antibacterial and antifungal activity. Rivera-Garza 

et al. (2000) investigated the antimicrobial effect of the Mexican zeolitic mineral from 

Taxco, Guerrero exchanged with silver ions. Escherichia coli and Streptococcus faecalis 

as indicators of fecal contamination of water were chosen to determine the antibacterial 

effect of the silver zeolitic mineral. Silver clinoptilolite mineral removed the pathogenic 

microorganisms E. coli and S. faecalis from water. Farias et al. (2003) studied the 

interaction between the natural zeolite and its metal exchanged forms (Ca-zeolite and 

Na-zeolite) and two drugs namely metronidazole and sulfamethoxazole. Zeolitic 

materials and drugs could be simultaneously administrated to a patient without any loss 

of the individual pharmaceutical effect of each product. Top and Ülkü (2004) studied 

the silver, zinc and copper exchange in a Na-clinoptilolite mineral from Gördes, Turkey 
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and resulting effect on antibacterial activity toward Pseudomonas aeruginosa and 

Escherichia coli. The equilibrium studies were performed at 25 0C, 0.1N total normality.  

The results showed that Na-clinoptilolite was selective for silver ions over a wide 

concentration range, but unselective for zinc and copper ions except in low 

concentration range. The increase of metal loading to the clinoptilolite rich sample did 

not always yield increase in antimicrobial activity but reached certain limits. Finally, 

they concluded that Ag-clinoptilolite can be proposed as low cost antimicrobial 

material.  

As a conclusion, many benefits achieved from the properties and applications of 

zeolites which became the milestone of the basic investments from decades to the 

present in many areas. However, each property does not have the same value for every 

application; thus characterization related to specific application is a need. For that 

purpose, before using zeolite for certain application it is important to see if it has the 

desired properties for specific application otherwise zeolite has to be modified to meet 

specifications.  

 

 

2.1.3 Characterization Methods for Zeolite 
 

 

X-ray diffraction (XRD) technique is the best way to check the structure of the 

crystalline materials. Not only zeolite phase is quantitatively identified but also 

information on the adsorbent structure and microstructure is obtained by this technique. 
It is well known that the size and the charge of the exchangeable cations affect the 

framework of zeolite during the exchange process. A change of the peak intensities is 

due to a change of some atomic positions within the unit cell or to an atomic density 

change (Cullity, 1979). Arcoya et al. (1996) studied the role of counteractions on the 

molecular sieve properties of a clinoptilolite. Thermal and structural stability of the 

cation enriched forms of clinoptilolite activated at different temperatures studied by 

XRD showed that  cation exchange did not modify the X-Ray diffraction pattern of the 

minerals however, heating above 700K reflected as changes in peaks intensities at 9.92o, 

22.43o and 30.50o 2θ. Korkuna et al. (2005) investigated the structural properties of 

original, acid treated and Pd exchanged clinoptilolite. The decrease in peak intensities 
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after treatment and disappearance of some peaks after exchange was observed. Castaldi 

et al. (2008) doping this natural zeolite with Pb2+, Cd2+ and Zn2+ cations seems to 

change significantly the monoclinic structure of clinoptilolite but not the lattice 

parameters. The addition of Pb2+ cations, most intense (0 2 0) line around 9.6 in the 2θ 

degree is lowered with respect to the not polluted zeolite. Benaliouche et al. (2008) 

investigated the Ag-and Cu-exchanged X zeolites using XRD. They concluded that no 

shifts in the peak positions and no significant diffraction lines corresponding to 

formation of new phases were observed which are indicating well dispersion of these 

metals in zeolite framework. The decrease in peak intensity with the increasing 

exchange degree correspond a loss of crystallinity.  

Porous materials are generally defined in terms of their adsorption properties. In 

principle, volumetric and gravimetric systems are used for determination of adsorption 

related properties of zeolitc materials. The sorption on zeolitic particles is a complex 

process because of their porous structure, inner and outer charged surfaces, 

mineralogical heterogeneity, existence of crystal edges, broken bonds, and other 

imperfections on the surface (Perić et al., 2004). 

Erdem et al. (2004), studied adsorption behavior of natural (clinoptilolite) 

zeolites with respect to Co2+, Cu2+, Zn2+, and Mn2+. The sorption data have been 

subjected to different sorption isotherms, namely, Langmuir, Freundlich, and Dubinin– 

Kaganer–Radushkevich (DKR) and concluded that DKR and Langmuir equations 

describe the sorption isotherms of single-solute systems. Adsorption phenomena depend 

on charge density and hydrated ion diameter. Korkuna et al. (2005) investigated 

sorption properties of Transcarpathian zeolites namely clinoptilolite and mordenite and 

they showed Type IV sorption characteristic for mesoporous structures. Akdeniz and 

Ülkü (2005) investigated the adsorption-related properties of (K-Ca rich) clinoptilolite 

rich mineral by volumetric system using N2 and Ar as adsorptive gas.  BET and 

Langmuir Surface Areas were found as 22.65 g/cm2, 27.96 g/cm2 for N2 adsorption and 

17.25 g/cm2, 22.45 g/cm2 for Ar adsorption, respectively. The minerals showed bi-

porous structure with sizes of 9 Å and 18 Å (Akdeniz and Ülkü, 2005). Castro et al. 

(2008) studied the micro and mesoporosity of natural and ion-exchanged [Cu (II), Zn (II) 

and Ag (I)] mordenites from Palmarito ore (Cuba) by adsorption of N2 at 77 K, H2O at 

300 K and CO2 at 273 K and concluded that Palmarito ore possesses a high 

concentration of mordenite and a more open porosity than other naturally found 
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mordenites. The ion-exchange processes modify the micro and mesoporosity of the 

zeolite, resulting in more accessibility to N2 adsorption.  

 Inductively coupled plasma spectrometer (ICP) can provide elemental and 

isotopic information for a wide field of applications in the environmental and earth 

sciences. Top and Ülkü (2004) determined the chemical composition original and Na-

clinoptilolite rich mineral from Gördes region, Anatolia by means of ICP analysis and  

based on 72 oxygen atoms in the unit cell they determined the formulas of the minerals 

as follows; (Na0.816 K2.070) (Ca1.060 Mg0.264) (Al5.653 Fe0.390) (Si30.084) O72. 20.023 H2O, 

and(Na4.763 K1.057) (Ca0.076 Mg0.094) (Al5.843 Fe0.221) (Si29.911) O72.17.049 H2O. Akdeniz 

and Ülkü (2005) determined the chemical composition of clinoptilolite rich mineral 

from Bigadiç region, Anatolia in a same manner. The mineral was called K-Ca rich due 

to the highest amount for K and Ca determined as 2.23 and 2.29 w/w%, respectively. 

The other exchangeable cations within the mineral as Fe, Na and Mg were present in 

ppm levels while trace elements were found in ppb levels. The Si/Al ratio of the mineral 

was 6.60 supporting the literature.  
 Thermal analyses techniques such as; Thermogravimetric Analysis (TGA), 

Differential Thermal Analysis (DTA), are good and straightforward methods are used to 

determine the thermal stability of the zeolitic minerals. Aliberti et al. (1975) 

investigated the thermal behavior of clinoptilolite by means of DTA and derivative 

thermogravimetry DTG. They reported that the clinoptilolite exhibited strong 

dehydration effect centered on 130 oC and the weaker dehydration effect at about 400 
oC.  Bish (1978) studied the thermal behavior of zeolites and reported that in the 

determination of thermal stability of zeolites, the amount and type of extra framework 

cations, Al/Si ratio, presence or absence of water, time, temperature and heating rate are 

important parameters. Ca-clinoptilolite gives endotherm at lower temperatures than Na-

clinoptilolite. The endotherm at 230 oC was related to cationic ratio (Na+K/Ca+Mg) of 

clinoptilolite and only occurred on clinoptilolite DSC curve.  (Esenli and Kumbasar, 

1994). Afzal et al. (2000) studied on the thermal behavior of Co2+, Cu2+ and Ni2+ 

exchanged zeolite 4A. The mass loss for the metal-exchanged zeolite was found greater 

than that for the pure zeolite. The DTA peak maximum for the metal-exchanged zeolite 

(except for Cu) was shifted towards lower temperature and as the metal concentration 

was increased, the water content also increased. The water-cation, water-water and 

water-oxygen atom interactions differ for the zeolites having different cation content. 

Joshi et al. (2002) studied the influence of the size of the extra framework monovalnet 
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cations in X-type zeolite on their thermal behavior. They synthesized the NaX zeolite 

and followed the conventional ion exchange to obtain K+, Rb+, and Cs+ exchanged 

forms of NaX zeolite with the appropriate chloride solutions and characterized. They 

observed no changes in the framework composition, phase purity, crystallinity and 

crystallite size of the exchanged and parent minerals. The thermodynamically observed 

results showed that the temperature required for complete desorption of water decreases 

with the increase in the size of non-framework cations. Vujakoviæ et al. (2001) studied 

the surfactant and anion adsorption of clinoptilolite in different forms (Ca++, Na+, 

Ca++/H+ and H+) and surface modified clinoptilolite (SCM). SCM is greatly influenced 

by cationic and structural form of clinoptilolite and metal forms did not go under 

structural deformation with heating upto 700 oC.  

 Thermal stability of zeolites are also described in terms Si/(Si+Al) ratio.  

Zeolites with high silica content having Si/(Si+Al) ratio higher than 0.79 (Si/Al ≥ 3.80) 

and zeolites with low silica having Si/(Si+Al) ratio lower than 0.56 (Si/Al ≤ 1.28) 

exhibit a large and poor thermal stability, respectively. The intermediate Si/(Si+Al) ratio 

in between the region 0.6-0.8 comprises zeolites with thermal stability ranging from a 

very low to a very high degree which indicates that in the latter region Si/(Si+Al) ratio 

can not be used alone to predict the thermal stability of zeolites. In addition to that, 

zeolites containing monovalent alkali cations (e.g. K+, Na+) are said to be more stable 

than those containing divalent cations (e.g. Ca2+).  Larger cations (e.g. K+) prevent the 

zeolite structure from collapse while smaller cations (e.g. Na+, Ca2+) do not (Cruciani 

G., 2006).  

 Upon modification by ion exchange changes occurred within the minerals. The 

zeolitic water loss in the monovalent and bivalent cations decreased with increased size 

in the size of non-framework cations. Thermal stability of zeolites increased due to the 

presence of larger and less electronegative non-framework cations (Castaldi et. al, 

2005).  Castaldi et al. (2004) characterized the natural zeolite exchanged with different 

cations by thermal analysis. Misshra D. (2004) studied the structural and thermal 

stability of zeolite-13X and its Mn(II) and Zn(II) exchange forms up to 900°C and 

concluded that a little change in d-spacing occurred and peak intensities were reduced 

after exchange with Mn(II) and Zn(II) ions but the structure remained crystalline. 

Concepcion et al. (2005) studied the thermal behavior of Ag-exchanged natural and 

synthetic zeolites and they concluded that Ag-natural clinoptilolite samples were less 

thermally stable. Akdeniz and Ülkü (2005) studied the dehydration behavior 
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clinoptilolite rich mineral from Bigadiç and concluded that the mineral has good 

thermal stability. The phase transition started after 600 oC and decomposed after 850 oC. 

Çağlar et al. (2006) studied thermal behavior of zeolitic tuff from Gördes-Manisa in the 

temperature range of 200–1200 °C. They concluded that heating the tuff up to 600 °C 

did not cause any structural change detectable by X-Ray powder diffraction and thermal 

characterization methods with regard to the original sample, while further increase in 

the temperature caused structural breakdown of zeolitic tuff.  

Fourier transform infra-red spectroscopy (FTIR) is a measurement technique 

where most chemical compounds exhibit characteristic infrared spectra, depending on 

their molecular symmetry, atomic weights and bond strength. The intense and 

adsorption characteristic for clinoptilolite is given in Table 2.1. (Breck, 1974). 

 

Table 2.1. The IR Assignments of Clinoptilolite. 
 

CLASS VIBRATION 

Internal Tetrahedra 

 

Asymmetry Stretch  O-Si(Al)- O     1250 cm-1 – 950 cm-1 

Symmetry Stretch                              750 cm-1 – 650 cm-1  

 T-O Double Ring                               500 cm-1 – 420 cm-1 
 

External Linkages 

 

Pore Openning                                  420cm-1 – 300 cm-1 

T-O Double Ring                              650 cm-1 – 500 cm-1 

Symmetry Stretch                              750 cm-1 – 820 cm-1  

Asymmetry Stretch                          1150 cm-1 – 1050 cm- 

Additional 

 

H bonded H2O, H-O stretching                  3400cm-1 

            Isolated OH Stretching                              3700cm-1   

 

 According to Breck, IR spectra of zeolites are divided into two classes. The first 

class of vibrations arises due to internal vibrations of the TO4 tetrahedron, which is a 

primary unit structure, and is not sensitive to the other structural units. The second class 

of vibrations is related to the linkages between the tetrahedral. The introducing the non-

tetrahedral cations in the alumino-silicate framework can change the IR spectra in the 

pseudo lattice vibration range. These changes more often characterized by the shifts in 

the bands of the framework (Korkuna et al., 2005). 
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Rodriguez-Fuentes et al. (1998) had studied thermal and cation influence on IR 

vibrations of modified natural clinoptilolite. They observed small differences in the 

absorbance values for the minerals treated with sodium and silver and concluded that 

the difference is due to the nature of the ions in the zeolite network, because the position 

of a cation in the clinoptilolite structure is influenced by its ionic potential. FTIR spectra 

of hydrated exchanged zeolites do not change with introducing different cations such as 

Zn, Cd and Pb into framework however, for the samples dehydrated at 245 oC the 

changes were observed in the spectra region corresponding to pseudo-lattice vibrations 

(500- 700 cm-1).  The shift of these band positions were not evident for exchanged 

zeolites but their peak intensity at 615 cm-1 was increased following the order Zn> Cd> 

Pb indicating that these cations were absorbed by zeolites (Castaldi et al., 2005; 

Mozgowa et al., 2000).  In some cases, the presence of some exchangeable cations can 

cause change in IR spectra in the range of pseudo-lattice and lattice vibrations below 

400 cm-1 such as Pd can cause shifts in the bands related to Brφnsted acidic sites that 

interact with Pd (Korkuna et al., 2005). Çağlar et al. (2006) had studied thermal 

behavior of zeolitic tuff from Gördes-Manisa in the temperature range of 200–1200 °C.  

They observed the peaks related with isolated and H-bonded O–H stretching at 3700 

and 3400 cm_1, respectively, and H2O bending at 1620 cm_1, T–Ostretching at 1060 

cm_1, external T–O at 790 cm_1, external and internal double-ring vibrations at 609 cm_1 

for the zeolitic tuff at room temperature. The appearance of these characteristic peaks in 

the the IRspectrum of zeolitic tuff until heat to 600 oC were lost with further heating, the 

absorbance at 609 cm_1 is the characteristic peak related with the amount of 

clinoptilolite structure present in the zeolitic tuff was decreased and disappeared at 800 
oC regarding to structural deformation. 

The scanning electron microscope (SEM) is a type of electron microscope 

identifies and quantifies the element constituents of the sample. Rivera et al. (2000) 

investigated the antibacterial effect of silver supported natural Mexican Zeolite and used 

electron microscope for the microanalyses and silver particles were detected as white in 

the SEM micrographs. They have observed the similar crystal morphology as Mumpton 

and Ormsby reported for zeolites in 1976. Çağlar et al. (2006) studied thermal behavior 

of zeolitic tuff from Gördes-Manisa in the temperature range of 200–1200 °C and SEM 

micrographs of the minerals were taken before and after the heat treatment. They 

observed that the zeolite crystals were still present in the samples heated until 1000 oC 

but they were not exactly in the same form seen in the original rock sample. 

http://www.answers.com/main/ntquery;jsessionid=1bc4eaw53noxo?method=4&dsid=2222&dekey=Electron+microscope&gwp=8&curtab=2222_1&sbid=lc03a
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CHAPTER 3 

 

 

ADSORPTION AND ION EXCHANGE 
 

 

3.1. Adsorption 
 

 

The types of sorption classified according to the types of bonding involved 

which are namely physical sorption, chemical sorption and electrostatic sorption (ion 

exchange). In physical sorption, there is no exchange of electrons, rather intermolecular 

attractions occur between ‘valence free’ sites which are independent of the electronic 

properties. The heat of adsorption, or activation energy, is low and therefore this type of 

adsorption is stable only at temperatures below about 150 °C. Chemical adsorption, or 

chemisorption, involves an exchange of electrons between specific surface sites and 

solute molecules, which results in the formation of a chemical bond. Chemisorption is 

presented by much stronger adsorption energy than physical adsorption and it is more 

stable at higher temperatures. The last type of sorption is electrostatic sorption named 

also as ion exchange and involves coulombic attractive forces between ions and charged 

functional groups. 

 The term adsorption includes the uptake of gaseous or liquid components of 

mixtures on the external and/or internal surface of porous solids. In chemical 

engineering, adsorption is called the separation process during which specific 

components of one phase of a fluid are transferred onto the surface of a solid adsorbent. 

The adsorption of various substances on solids increases free surface energy of the 

solids due to their extensive surface area. According to the second law of 

thermodynamics, this energy has to be reduced and it is achieved by reducing the 

surface tension by the capture of external substances. Two competitive types of 

influence occur; repulsion between the cloud of electrons in the atoms and Van der 

Waals nuclear attraction force and as a result of the balance of these two forces, in the 

potential energy curve at a short distance from the surface there is a hollow as shown in 
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Figure 3.1. Molecules or atoms that reach this hollow are adsorbed by this potential 

energy and cannot be rescued unless they obtain enough kinetic energy to be desorbed. 

 

 
Figure 3.1. Potential Energy versus distance. 

 

 The number of pores, their shape, and size determine the adsorption capacity and 

adsorption rate of the adsorbent material. According to IUPAC, pores are classified as 

macro-, meso- or micropores for the pore diameters (nm) dp> 50, 2 ≤dp ≤50 and dp < 2, 

respectively. Adsorptive molecules transport through macropores to the mesopores and 

finally to the micropores. The micropores are the largest portion of the internal surface 

and make the most to the total pore volume and attractive forces are stronger in the 

microporosity. The total pore volume and the pore size distribution determine the 

adsorption capacity.  

 

 

3.2. Ion Exchange 
 

 

 Ion exchange takes the charged ions from a solution and releases an equivalent 

amount of other ions into the solution. The ability to exchange ions is due to the 

properties of the structure of the materials. The exchanger consists of positive and/or 

negative excess charge which is in specific locations in the solid structure or in 

functional groups. The charge is compensated by the counter ions, which can move 

within the structure and can be replaced by other ions of equal charge sign. Although 

distance x

distance x

surface

Potential  
Energy 

molecule
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ion exchange is similar to sorption but there is a characteristic difference between them: 

ion exchange is a stoichiometric process in contrast to sorption. In ion-exchange 

process, for every ion that is removed, another ion of the same sign is released into the 

solution while in sorption, no replacement of the solute takes place. In principle, ion 

exchange is redistribution of ions between two phases by diffusion and chemical factors 

are less trivial, even absent. It involves coulombic attractive forces between ions and 

charged functional groups. Ion exchange by solids sometimes involves more 

phenomena; much seen as inorganic natural materials the ion uptake is attributed to ion 

exchange and adsorption mechanisms, to even internal precipitation mechanisms 

(Inglezakis et al., 2004). It is dependent on chemical structure, size, and charge of ions. 

Some ions that can bind to ion exchangers are summarized as follows; H+ (proton) and 

OH− (hydroxyl); single charged monoatomic ions like Na+, K+, or Cl−; double charged 

monoatomic ions like Ca2+ or Mg2+; polyatomic inorganic ions like SO4
2− or PO4

3−;  

organic bases, molecules containing the amino functional group; organic acids, 

molecules containing carboxylic acid  functional group; bio-molecules, etc. 

 Ion exchange capacity is the total available exchange capacity of an ion 

exchanger described by the number of functional groups on it. This value is constant for 

a given ion exchange material and is generally given as milliequivalents per gram 

(meq/g) and/or milliequivalents per millilitre (meq/mL), based on the dry weight of 

material. The exchange capacity depends on the number of functional group per gram of 

exchanger. The extent of the use of the total exchange capacity depends on the level of 

ionization of the functional groups of the exchanger and on the chemical and physical 

conditions of the process.  

 The ion exchange reaction occurring between the particle and the solution will 

involve the steps as;  

i. Diffusion of the ions through the bulk solution in order to reach the ion 

exchanger particle. 

ii. Diffusion of the ion through the film surrounding the particle. 

iii. Diffusion of the ion across the film–particle interface. 

iv. Diffusion of the ion through the particle  

v. Actual chemical reaction involving the exchange of ions.  

Steps (i), (iii) and (v) are generally fast and do not determine the rate of the reaction 

whereas step (ii) or (iv) controls the kinetics of the overall process 

 

http://en.wikipedia.org/wiki/Chemical_structure
http://en.wikipedia.org/wiki/Proton
http://en.wikipedia.org/wiki/Hydroxide
http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/Potassium
http://en.wikipedia.org/wiki/Potassium
http://en.wikipedia.org/wiki/Chloride
http://en.wikipedia.org/wiki/Chloride
http://en.wikipedia.org/wiki/Calcium
http://en.wikipedia.org/wiki/Calcium
http://en.wikipedia.org/wiki/Magnesium
http://en.wikipedia.org/wiki/Magnesium
http://en.wikipedia.org/wiki/Inorganic_compound
http://en.wikipedia.org/wiki/Sulfate
http://en.wikipedia.org/wiki/Sulfate
http://en.wikipedia.org/wiki/Sulfate
http://en.wikipedia.org/wiki/Phosphate
http://en.wikipedia.org/wiki/Phosphate
http://en.wikipedia.org/wiki/Phosphate
http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Amine
http://en.wikipedia.org/wiki/Functional_group
http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Functional_group
http://en.wikipedia.org/wiki/Biomolecule
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3.3. Ion Exchange Materials 
 

 

 The ion exchange materials are available in a variety of forms which have 

different chemical and physical properties and can be naturally occurring or synthetic.  

 

 

3.3.1. Naturally Occurring Ion Exchangers 
 

 

Most common natural inorganic ion exchangers are clays and natural zeolites. 

Natural zeolites were the first materials to be used in ion exchange processes and clay 

materials are often used as backfill or buffer materials for radioactive waste disposal 

sites because of their low permeability and easy workability. The main disadvantages of 

natural inorganic ion exchangers are; their relatively low exchange capacities; their 

relatively low abrasion resistance and mechanical durability; their non-controllable pore 

size; zeolites are difficult to size mechanically; they can be partially decomposed in 

acids or alkalis; their limited chemical stability in many solutions, especially those with 

a very low salt content, they sometimes need a chemical or thermal pretreatment. 

A large number of organic materials such as polysaccharides, proteins and 

carbonaceous materials exhibit ion exchange properties. They exhibit a very low ion 

exchange capacity compared with synthetics but they are widely available at a very low 

cost. They are normally used as sorbents, with their ion exchange properties being a 

secondary consideration. The main limitations of natural organic ion exchangers are; 

their low exchange capacity compared with other materials; their excessive swelling and 

tendency to peptize; limited radiation stability of cellulosic and protein materials; their 

weak physical structures; their non-uniform physical properties; their being non-

selective and they are unstable outside a moderately neutral pH range. 
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3.3.2. Synthetic Ion Exchangers 
 

 

Synthetic ion exchangers are produced by creating chemical compounds with the 

desired physical and chemical properties. They can either be inorganic (mineral) or 

organic (generally polymer) based. The largest group of ion exchangers available today 

is synthetic organic ion exchangers in a powdered or bead form. The framework of them 

is a flexible random network of hydrocarbon chains which carry fixed ionic charges at 

various locations. The main advantages of synthetic organic ion exchangers are their 

high capacity, wide applicability, wide versatility and low cost relative to some 

synthetic inorganic media. However, their use is limited by their poor radiation and 

thermal stabilities and they exhibit a reduction in their ion exchange capacity, owing to 

physical degradation at both the molecular and macroscopic level.  

Synthetic zeolites were the first inorganic materials to be used for the large scale 

removal of radionuclides from nuclear waste effluents. They are used extensively in the 

cleanup of large volumes of contaminated water and many other applications but have 

limitations. A relatively high cost compared with natural zeolites; they have a limited 

chemical stability at extreme pH ranges; their ion specificity is susceptible to 

interference from similar sized ions; the materials tend to be brittle, which limit their 

mechanical stability. 

 

 

3.4. Possible Mechanisms in Zeolite-Solution System 
  

 

 Adsorption, ion exchange, surface precipitation and dissolution are possible 

mechanisms in zeolite– metal solution interaction.  Investigation of these interactions is 

important to understand the mechanism throughout the process and for selection of 

appropriate application. 
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3.4.1. Adsorption 
 

 

 Adsorption is one of the most important chemical processes in soils, clays, 

minerals. The adsorption may be controlled by weak forces as physical, Van der Waals 

and electrostatic outer-sphere complexes or by stronger forces as chemical interactions 

and inner-sphere complexes. In general, the process of adsorption begins as soon as 

outer-sphere complexes are formed on external surface sites of the adsorbent. The outer-

sphere mechanism in zeolite metal system is shown in the following reaction (Doula 

and Ioannou, 2003).  

 

           (S-O-)2  +  M2+              ( S- O)2 ……….. M2+       

where S corresponds to either surface central Si or Al  and M2+ for metal cation.  

 

 The outer-sphere complexation involves the ion-exchange reactions between 

metal ions and surface counterbalance cations. There is a strong dependence on ionic 

strength for an outer-sphere complex and it involves electrostatic bonding mechanisms. 

They are usually rapid and reversible which make them less stable compared to inner-

sphere surface complexes (Stumm, 1990). 

 

                    

Figure 3.2. Schematic presentation of outer-sphere complex formation in zeolite. 

 

 The increase in metal concentration forces metal ions into internal surface sites 

cause formation of inner-sphere complexes. The inner-sphere mechanism in zeolite 

metal system is shown in the following reaction.  

 

oxygen 

Al or Si 

hydrogen 
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              S-OH +  M2+                 S - OM+ + H+  

                     2S-OH + M2+                 ( S- O)2 M + 2H+  

where S corresponds to either surface central Si or Al  and M2+ for metal cation. 

 

 Inner-sphere complexation involves covalent bonding and makes more stable 

surface groups. Inner-sphere complexation is slower and irreversible in contrast to 

outer-sphere complexation. H+ ions are released as products of these complex 

formations and the process causes a total decrease in solution pH. 

 

 
 

Figure 3.3. Schematic presentation of inner-sphere complex formation in zeolite. 

 

 Outer and inner sphere complexes are formed soon after the metal is adsorbed by 

a surface. During metal adsorption, metals are in the form complexes with inorganic or 

organic ligands. These complexing ligands have a significant effect on metal ion 

behavior. The metal– ligand interaction with a solid is described by the following 

reactions (Stumm and James, 1990). 

 

               S-OH + L- + M+z                 S - L- M+ + OH-  

              S-OH + L- + M+z                 S - OM- L(z-2) + H+  

 

 The metal–ligand complexes may form in solution and adsorb weakly. They 

compete with surface complex formation reactions resulting with adsorption decrease 

compared to the ligand-free system.  The metal–ligand complexes may also interact 

indirectly at the surface, by altering the surface electrical properties or they may adsorb 
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strongly and enhance the removal of metal or ligand, or both from solution compared to 

the case where either one is present alone (Stumm and James, 1990).  

 Šljivić et al (2008) studied the adsorption of a zeolite, clay and diatomite from 

Serbia toward aqueous Cu2+ ions at different pH. The adsorbents were characterized 

with respect to phase composition, specific surface area and point of zero charge. The 

amounts of Cu2+ removed from the solution, increased with increasing initial pH, at 

pH=7, regardless of the adsorbent type and metal concentration, due to precipitation of 

Cu (OH)2. The maximum adsorption capacities decreased zeolite, clay and diatomite 

respectively where the Langmuir equation was most suitable for data fitting. The 

proportion of Cu2+ desorbed in acidic media decreased with the increase of previously 

adsorbed amounts by zeolite and clay while the opposite was true for diatomite. Ion 

exchange of exchangeable cations and protons were identified as main adsorption 

mechanisms.  

 

  

3.4.2. Ion Exchange 
 

 

Clay minerals because of their two-dimensional framework structure may 

undergo swelling or shrinking with ion exchange process while zeolites do not undergo 

any appreciable dimensional change since they have three dimensional structures. 

Together with their considerable ability to cation exchange, they are preferred by other 

organic exchangers. The ion exchange behavior of the zeolite mineral depends upon;  

the nature of the cation species, the cation size both anhydrous and hydrated and the 

cation valance, the exchange temperature, the concentration of the cation species in 

solution, the anion species associated with the cation in the solution, the solvent, the 

structural characteristics of the particular zeolite (Breck,1974). The ion exchange 

process may be represented as follows.  

 

  zB AZA +  zB BZB                    zB AZB      +  zA BZB  

        



 28

where;  zA  &   zB are the valances of the ions; AZA initially in the solution; BZB   initially 

in the zeolite and characters with a bar related to a cation inside the zeolite crystal. The 

followings are simple examples of ion exchange in zeolites. 

 

Na+    +   K+                           Na+  +  K+      for uni-univalent exchange             

2 Na+  + Ca2+                        2  Na+  + Ca2+   for uni-divalent exchange 

 
  
The exchangeable cations are located in the framework channel, coordinated 

with defined number of water molecules affect their mobility within the structure.  The 

ion exchangeability depends primarily on the charge of the ion, the ionic radius and the 

degree of hydration, as well (Trgo et al., 2006). The larger the charge on the ion the 

greater is the force with which it is attracted by the functional groups of opposite charge 

on the ion exchanger; hence, the larger is its exchange capacity, and it’s  more difficult  

to remove during the exchanger. There is also a relation between ionic charge and 

hydration enthalpy. Table 3.1 represents ionic radii, hydrated ionic radii and free 

energies of hydration for certain ions. 

 

Table 3.1. The properties of exchangeable cations. 

Cation Ionic Radius‡ (Å) Hydrated Radius‡ (Å) Heats of Hydration* 
(kcal/mol) 

Na+ 0.95 3.58 97 

K+ 1.33 3.31 79 

Mg2+ 0.65 4.28 450 

Ca2+ 0.99 4.12 373 

Fe3+ 0.75 4.28 1057 

Ag+ 1.28 3.43 162 

Cu2+ 0.82 4.19 536 

Co2+ 0.95 4.18     504 
*Woods and Gunter, 2001 
‡ Semmens et al., 1975 
  

 The higher charge shows the higher enthalpy. The large ion charge/size ratio 

results in an increase in the hydration energy and an increase in the ionic radius results 

by a decrease in the hydration enthalpy. If an ionic radius is compared with the free 

dimensions of the clinoptilolite channels (4.0x5.5-4.4x7.2 A), it is apparent that all of 
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the anhydrous ions can pass readily through the channels, but since the hydrated ions 

are approximately the same size as the channel dimensions, they may exchange only 

with difficulty (Semmens et al., 1974). Additionally, if the volume of the ion is greater 

the electric field in the solution will be weaker, thus, the smaller is its degree of 

hydration. The so-called hydrodynamic radii of ions decrease with increasing atomic 

weight; hence, their exchange energy is that the ion is transported from the solution to 

the ion exchanger. Erdem et al. (2004) studied the removal of heavy metal cations by 

natural zeolites taken from Enli Mining Company from Manisa Gördes in Western 

Anatolian Region. They studied the adsorption behavior of natural zeolites namely 

clinoptilolite  with respect to Co2+, Cu2+, Zn2+, and Mn2+ with the aim of considering its 

application to purity metal finishing wastewaters. According to the equilibrium studies, 

the selectivity sequence can be given as Co2+ > Cu2+ > Zn2+ > Mn2+. They concluded 

that, an adsorption phenomenon depends on charge density and hydrated ion diameter 

and natural zeolites have great potential to remove cationic heavy metal species from 

industrial wastewater. 

 The Eisenman’s model says that the selectivity of exchange cations is accounted 

for only in terms of their hydration free energies and their energies of electrostatic 

interaction with the zeolite fixed anions. The free energy of ion exchange reaction could 

be considered in two parts. The first part may represent the difference between the free 

energy of the ions in zeolite while the second part may represent the free energy 

differences of hydration of the ions in the solution. If the electrostatic fields in zeolite 

are strong, then the first part dominates and small ions are preferred. Strong electrostatic 

fields occur in zeolites with a high framework charge and correspondingly low Si/Al 

ratio. However, if these electrostatic fields are weak (as in zeolites with a high Si/Al 

ratio), the hydration free energy becomes more important. So, weakly hydrated cations 

are preferred. The low Si/Al ratio provides a weak anionic field within the zeolite. 

Consideration of Eisenman’s model in the case of exchange on zeolite in the presence 

of weakly anionic field indicates that selectivity is predominantly determined by the 

free energies of hydration of the competing cations. According to the theory, the free 

energies of hydration listed in Table 3.1 indicate that copper with the largest hydration 

energy, prefers the solution phase where it may satisfy its hydration requirements, and 

barium, with least hydration energy, prefers the zeolite phase.  

Cation exchange in zeolites leads to alteration of stability, adsorption behaviour, 

and selectivity, catalytic activity and other important physical properties. Ion exchange 



 30

is also considered as a modification process as well as a direct application. As 

mentioned above, ion exchange depends as much on the properties of the exchanger as 

on the properties of the ions undergoing exchange. Woods and Gunter (2001) studied 

the Na-and Cs-exchange in a clinoptilolite-rich rock. They analyzed the outgoing 

cations which are Na and Cs, the batch experiments performed with 1/25 of 

solid/solution ratio. They found that for the Na and Cs exchanged samples the 

concentration of the outgoing divalent cations increased with time and temperature. 

They also concluded the different and unpredictable behavior of monovalent cations.  

For several ion exchange and equilibrium studies, researchers have been 

reported different contact times range from a several minutes to even weeks in the 

literature. The adsorption and/or ion exchange sites on the clays i.e. clinoptilolite, are 

covered by the metal ions and the rate processes become dependent on the rate at which 

the adsorptive is transported from the bulk liquid phase to the actual adsorption sites. 

Bektaş and Kara (2004) investigated the removal of Pb from aqueous solution by means 

of clinoptilolite revealed that approximately 120 minutes of contact time is sufficient for 

the system to reach equilibrium. Trgo et al. (2006) studied the ion exchange kinetics of 

Zn and Pb modified clinoptilolite and they concluded that ion exchange of Zn is rapid at 

initial times with extended and slower uptake until equilibrium whereas ion exchange of 

Pb is more rapid and the equilibrium is accomplished in 20 min. Another recent study 

has been conducted by Sarı et al. (2007) on the similar topic and they concluded that 

maximum adsorption amount of Pb (II) onto clinoptilolite was obtained in 30min and no 

significant difference in adsorption amount occurred afterward. For their further 

adsorption study they used 30min for contact time. The difference of equilibrium times 

are basically related to the nature of exchanging cation and absorbent however influence 

of the dust produced during the grinding process on ion exchange kinetics is essential. 

Clinoptilolite surface and pore openings are partially covered by dust produced during 

grinding and results in pore clogging which was reduced on a great degree by washing . 

For example, smaller unwashed particles exhibit slower kinetics (Inglezakis et al., 

1999).  

At equilibrium amount of metal ions sorbed (qe ) by the adsorbent is determined 

by the mass balance given in Equation3.1. 

 

    qe= V(Ci-Ce)/ M                     (3.1) 
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where; V is the solution volume (mL), M is the amount of adsorbent (g) and Ci and Ce 

(mg/L) are the initial and equilibrium metal concentrations, respectively.  

 Analysis of adsorption isotherms is a extremely important in describing the 

adsorbate and adsorbent interaction.  Equilibrium studies determine the capacity of the 

adsorbent and are described by adsorption isotherms and constant which express the 

surface properties and affinity of the adsorbent toward the selected adsorbate. The 

Langmuir and Freundlich equations are mostly used to describe the sorption equilibrium 

isotherms and given in Equation 3.2 and Equation 3.3 respectively. 

 

  qe = Qo• b• Ce /( 1+ b• Ce)                     (3.2) 

   qe= Kf • Ce 1/n                     (3.3) 

where, qe (mg metal ion/g adsorbent), Ce is the equilibrium metal ion concentration in 

solution, Qo (mg metal ion/g zeolite) and b (L/mg metal ion) are Langmuir isotherm 

constants. Kf (mg metal ion/gr zeolite) and n (gr zeolite/L) are Freundlich isotherm 

constant.  

 Freundlich model is based on sorption on a heterogonous surface. KF is 

indicative of the adsorption capacity of the adsorbent, the greater the KF value the 

greater the adsorption. The other constant for this model is n which is used to verify the 

type of adsorption. If n is equal to unity the adsorption process is linear while if it is 

below unity it indicated that adsorption is a chemical process; whereas n above unity 

associated with a favorable adsorption and physical process (Vimonses et al., 2008).  

Langmuir based on the assumption that uptake occurs on homogenous surface by 

monolayer sorption without interaction between sorbed molecules. The characteristic of 

Langmuir isotherm is expressed in terms of dimensionless constant, separation factor or 

equilibrium parameter, RL, and it is defined by Equation 3.4. 

    

    RL = 1/ (1+ b Ci)                     (3.4) 

 

where Ci  is the initial metal ion concentration (mg/L) . Depending on the value of the 

constant, RL, there are four possibilities describing the adsorption character. Favorable 

adsorption for RL values determined between 0 and 1, unfavorable adsorption for RL>1, 
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linear adsorption for RL=1 and suggesting irreversible adsorption for RL=0 (Wang et.al, 

2007).  

 The Langmuir constant b is related to the free energy change of sorption (ΔG, 

J/mol) according to the following formula given in Equation 3.5. 

  

    ΔG = −RT ln b                         (3.5) 

 

where R is the gas constant (8.314 J/(mol K)) and T is the temperature (K). The Gibbs 

free energy indicates the degree of spontaneity of the sorption process, negative values 

reflecting a more energetically favorable sorption process. 

 Thermodynamic reaction of adsorption process can be determined via 

thermodynamic parameters, such as the changes in the standard free energy (ΔG◦), the 

enthalpy (ΔH◦) and entropy (ΔS◦) associated with the adsorption process, using the 

following Equation 3.6 and Equation3.7. 

 

   (ΔG◦) = (ΔH◦) – T (ΔS◦)                    (3.6) 

   (ΔG◦)  = - R T ln (1000 b)                    (3.7) 

where b is the langmuir isotherm, R is the ideal gas constant (8.314 J/ mol K) and T is 

the adsorption temperature in Kelvin. Values of (ΔG◦) (kJ /mol) at different 

temperatures were evaluated from equations above. Plot of ln b versus 1/T should give a 

linear line, where values of (ΔH◦) (kJ/mol) and (ΔS◦) (J/mol K) can be calculated from 

the slope and intercept of van’t Hoff plots. 

 Chemical kinetics is an informative way of describing the reaction pathways and 

time needed to reach equilibrium. The dependence of sorption kinetics on the physical 

and chemical characteristics of the adsorbent is obvious and influences the mechanism. 

The ion exchange process in most clay systems are fast and  rate is limited only by the 

rate at which ions can diffuse in and out of the exchanger structure. Sorption kinetics of 

clinoptilolite systems for understanding the reaction pathways and mechanisms of the 

process kinetic models, namely, the first order, pseudo-first order, pseudo-second order 

and intra-particle diffusion models generally used.  

 First order kinetic model based on a reversible reaction with equilibrium state 

being established between two phases. It is expressed as given in Equation 3.8. 

http://www.britannica.com/eb/article-9062854/reaction-rate
http://www.britannica.com/eb/article-9030421/diffusion
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   dCB/ dt   = - dCA/ dt = k1• CA- k2 • CB  

    = k1( CA0- XA • CA0) - k1 (CB0- XA • CA0)                  (3.8) 

 
where CA (mg/l) is the concentration of solute on the adsorbent and CB (mg/l) is the 

concentration of solute in solution at time t, CA0 and CB0 are the initial concentrations of 

solute on adsorbent and solution, respectively. XA is the conversion of solute; k1 and k2 

are the first order rate constants. At equilibrium the relation is given in Equation 3.9.  

 

    dCB/ dt = - dCA/ dt = 0                   (3.9) 

 

Boundary conditions: 

 t=0      Ct=0  

t = t     Ct = Ct 

 

  The equilibrium constant, Kc, is defined as the ration of k1 to k2. Finally, it 

becomes in the form given as in Equation 3.10 and Equation 3.11.  

 

   ln[ (Ct-Ce) / (Co-Ce) ] = - k′• t                  (3.10) 

    k′ = k1( 1+ 1/Kc) = k1 + k2.                         (3.11) 

Fist order kinetic model follows the plot of   ln[( Ct-Ce)/(Co-Ce)] versus  time, and the 

slope will give  k′ . 
 Pseudo-first order kinetic model is the first defined equation for the sorption of 

liquid/solid system based on the solid capacity. This kinetic is based on the assumption 

that the rate of change of solute uptake with time is directly proportional to the 

difference in saturation concentration and the amount of solid uptake with time 

(Vimonses, 2008).  Mostly, this equation does not will well through the whole range of 

contact time. It is represented by Equation 3.12. 

  

   dqt/dt=k2 (qe-qt)                  (3.12)   
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Boundary conditions: 

 t=0     qt=0  

t = t    qt = qt. 

   ln[qe-qt] = k2 • t                  (3.13) 

 

where qe (mg/g)  and qt (mg/g) are the amounts of solute on the surface of the adsorbent 

at equilibrium and at any time t, respectively and k2  is the  pseudo-first order rate 

constant (1/min). Plot of ln[qe-qt] versus time gives the slope of k2.  

 Pseudo-second order kinetic model is based on the sorption equilibrium capacity 

and it is expressed in the form of as given in Equation 3.14. 

 

   dq/qt=  k2′ ( qe - qt )2                   (3.14) 
 

Boundary conditions: 

 t=0     qt=0  

t = t    qt = qt. 

 
   t/qt= 1/ k2′ • qe

2
 + 1/qe • t                  (3.15) 

 
 

where qe (mg/g) amount of solute sorbed at equilibrium and k2′ (g/mg) min is the 

equilibrium rate constant of pseudo-second order model. Plot of 1/qt against time gives 

the k2′ .  

The sorption process, for example a batch adsorber in which zeolite particles are 

brought into contact with a fluid phase, is expressed with either one or more of the 

following steps. 

(i) Solute transfer from the bulk fluid surrounding the zeolite particle to the 

stagnant layer, of thickness δf, surrounding the zeolite particle. 

(ii) Solute transport from the boundary film to the zeolite’s surface, macropores.  

  (iii) Solute transfer from the surface to active pores of zeolite's. 

 (iv) Solute molecules diffuse into the internal surfaces of the adsorbent. 

 It is generally known that a typical liquid/solid sorption process was mainly 

described by two mechanisms which are external fluid film diffusion and/or internal-

micropore diffusion. The slowest step of the sorption process controls the speed of the 

process and called the rate-limiting step. 
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 The biporous zeolite consists of small microporous crystals formed in 

macroporous structure. For biporous adsorbents like zeolites at least two and possibly 

three resistances exist; the diffusional resistance of the micropores within the micro 

particles and the diffusional resistance of the meso and macropores. If the adsorption 

occurs from a binary or multi-component fluid phase, diffusion through the laminar 

fluid film surrounding the particle is the external fluid film or surface resistance.  

 In liquid/solid systems, if the diffusion within the adsorbent particle is rapid 

sorption occurs on the external surface where the rate of solute accumulation in the 

solid phase is equal to the solute transfer across the liquid film. Considering the system 

linear, isothermal and there is no concentration gradient through the particle and 

adsorbate as well. The driving force in this case is the difference across the boundary 

layer and sorption rate is then given as; 

 

    dCt / dt = -kf Ss (Ct - Cs)    (3.16) 

 

    SS=  6 ms / dp .ρp (1-εp)    (3.17) 

 

    ms = W / V      (3.18) 

 
 
where W is the mass of adsorbent, V is volume of particle free fluid,  dp  is mean 

particle diameter, ρp is particle density, C is the concentration in liquid phase and εp is 

particle voidage. The differential mass balance of the solute within the particle as Ct = 

Cs at t=0 becomes; 

 

    ln (Ct / Co)  = -kf Ss dt     (3.19) 

 

 The plot of ln (Ct / Co) versus time will yield a slope of -kf Ss from which 

external fluid film diffusion coefficient can be determined. 

 The sorption process may also be controlled by diffusion within the zeolite 

particles. Microporous diffusion is the diffusion of solutes within the zeolite 

intracrystallines. Macropore diffusion expresses the diffusion of solutes in fluid-filled 

surface and pores.  
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 In case of diffusion within the microparticle is the rate controlling the uptake 

rate for uniform spherical zeolite particle is expressed by the following equations by 

assuming that diffusion occurs in only radial direction and system is isothermal. 
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Boundary conditions: 
 
t<0  C=Co  q=qo 

t≥0  C=Cx  q(rc, t)  qx 

t ∞  C=Cx  q(r, t)  qx 
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 For the long term region and short term regions, further simplifications the final 

form of the equations are defined by Equation 3.22 and Equation.3.23, respectively. The 

slopes of the plots ln ⎥
⎦

⎤
⎢
⎣

⎡
−

∞m
mt1  versus t for long term region and 

∞m
mt  versus t for 

short term region micropore diffusion coefficient are to be calculated.  
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       If the micropore diffusion is rapid, there will be uniform concentration profile 

through a microparticle then diffusion through the macropores is the rate controlling the 

uptake rate for uniform spherical zeolite particle and is expressed by the following 

equation by assuming diffusion occurs in only radial direction, system is isothermal and 

pore diffusivity is independent of concentration.  
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Boundary conditions: 
 
C(R,0) = Co,  q(R,0) = qo, 

  
C(Rp,t) = Cx,  q(Rp,t) = qx 
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Effective macropore diffusivity is defined as, 
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 The solution of the uptake curve is identical to Equation 3.22 with Dc/ rc

2 

replaced by (Dp/ Rp
2)/ [ 1+ K (1-εp) /εp] and solution is obtained by Equation 3.23 and 

Equation 3.24. 

 As mentioned earlier, external film diffusion is a measure of the resistance to the 

transport of ions from bulk solution through the zeolite particle which depends mainly 

on the particle size, solution concentration and film thickness. Internal diffusion 

depends on the structure of zeolite particle and since they are bi-dispersed sorbents, 

both surface or pore diffusions may dominate different regions. In micropores, surface 
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diffusion may be dominant, while pore diffusion may be dominant in macropores thus, 

the use of lumped parameter De as effective parameter is recommended. Biot number is 

the ratio of the external-phase mass-transfer rate to pore- phase mass-transfer rate. 

 

                 Bi = rp  kf / De      (3.28) 

 

indicating which diffusion stage controls the adsorption rate. The value of Biot number 

generally over the 10-30 range, the pore-phase mass transfer rate is reduced and 

controls the overall exchange rate, while for a smaller Biot number signals an external 

(film) mass transfer rate controlled process (Paoli et al., 1996 and Chiang et al., 2002). 

 

 

3.4.3. Surface Precipitation 

 

  
 Surface precipitation form due to the increase in metal cation or anion sorbed on 

a surface to higher surface coverage. There is a strong and continuous relation between 

surface complexation and precipitation. At low surface coverage, complexation is the 

dominating mechanism while with the increase of surface coverage nucleation occurs 

and aggregates on the surface start forming. Surface precipitation becomes the only 

controlling mechanism in metal-zeolite system with further increase in surface 

coverage. Precipitation in the system depends on the solubility product, alkalinity of the 

exchanger and acidity of the metal solution. The controlling the pH of metal-zeolite 

solution is important in order to prevent significant precipitation during ion exchange 

(Doula and Ioannou, 2003).  In some cases, as metal ions exchanged in the mineral and 

solid species might grow on the surface, as precipitates and may clog the part of the 

pores and decrease the uptake of the metal. For example in the case of  Cu2+ exchange, 

atacamite CuCl2.2Cu(OH)2 grew on the surface of clinoptilolite and decreased the Cu2+  

uptake by the mineral (Inglezakis et.al, 2005). 
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3.4.4. Dissolution 
 

 

 In addition to ion exchange, adsorption and surface precipitation, dissolution 

also occurs in zeolite-solution system. The collision of metal ions and ligands on 

surface sites cause dissolution of Al3+ and/or Si+4. The type of the surface species 

strongly affects the dissolution process such as an inner-sphere complex with a ligand 

such as Cl- which makes the detachment of a central metal ion easier thus, dissolution 

increases. Shift of electron density from ligands toward the central metal ion at the 

surface is responsible for this case. Surface protonation also tends to increase the 

dissolution, because bonds in the surface central ions are polarized and cationic surface 

group becomes easily broken (Doula and Ioannou, 2003; Doule et al., 2002).  The 

dissolution of clinoptilolite framework is affected by the presence of exchangeable 

cations in the solution phase. Si and Al from the framework possibly move toward 

solution phase which is called as dissolution. It is mainly depends on the solution pH, 

but also on the surface protonation and nature of solution ions. The strong relation 

between ionic strength and pH of the solution with Si or Al dissolution in zeolites are in 

relation. Si dissolution increases with decreasing ionic strength and increasing solution 

pH while for the Al dissolution case visa versa situation is valid. At acidic and neutral 

pH values the dissolution of Al represented by the following reaction; 

 

           Al-OH + H+                 Al – OH2
+              Al3+ + H2O  

 

 As mentioned earlier, formation of surface complexes increases Al dissolution, 

and the related mechanism is given in the following reaction; 

 

             Al3+  +  OH-                    Al (OH)2+ + H+ 

          Al (OH)2+  + OH-               Al (OH)2
+ + H+ 

          Al (OH)2+  + OH-               Al (OH)3    + H+ 

 

 Si dissolution is independent of H+ and OH- ions but dependent on pH which is 

high at high pH. Si dissolution is represented by the following reaction; 

__ 
__ 
__ 
 

__ 
__ 
__ 
 

__ 
__ 
__ 
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At high pH values, Si-O bonds are polarized and weakened at basic condition by 

the presence of charged Si-O species; thus detachment Si atom becomes easier resulting 

in higher Si dissolution in the system. The minimum Si dissolution occurs at pH equal 

to pHpzc. 

As a conclusion, pH is an important and common parameter for the zeolite-metal 

interactions. It influences character of the exchanging ions and character of the zeolite 

itself. Possible mechanisms responsible for pH change in zeolite-metal solution can 

finally be summarized as: 

i. H+ in the solution exchanges with the extra framework cations in the zeolite 

(Na+,K+,Ca2+ and Mg2+) form outer and/or inner complexes in acid to neutral pH 

range. H+ competes with metal cations result in the metal uptake decreases.  As a 

result, solution pH increases. 

ii. H+ in surface hydroxyl groups (Si-OH and Al-OH) behaves as an exchangeable 

cation at acidic and neutral pH range which causes a decrease in solution pH. 

iii. Protonation of neutral and negative surface hydroxyl groups by H+ at acidic to 

neutral pH range causes an increase in solution pH. 

iv. At higher pH, OH- ions may react with clinoptilolite surface and cause a 

decrease in solution pH. 

v. Formation of metal-hydroxyl complexes cause decrease in solution pH (Doula et 

al., 2002; Ersoy and Çelik, 2002; Trgo and Peric, 2003). 

  

  

Si 
H2O  

H4SiO4(aq) 
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CHAPTER 4 

 

 

MICROWAVES  
 

 

In the past few years, heating of materials, driving chemical reactions by 

microwave energy has been a popular theme in the scientific community. This non-

classical heating technique is gradually moving from a laboratory curiosity to an 

established technique heavily used in both academia and industry.  

Microwaves are a form of electromagnetic radiation with frequencies ranging 

from several hundred MHz to several hundred GHz and wavelengths ranging 

approximately from 1 to 20 centimeters. In the electromagnetic spectrum, the 

microwave radiation region is located between infrared radiations and radiowave. 

Microwave frequency includes three bands; the ultra high frequency in the range 

300MHz to 3 GHz, the super-high frequency in the range 3GHz to 30 GHz and 

extremely high frequency in the range 30GHz to 300 GHz. Virtually all domestic and 

commercial equipment today uses a frequency of 2.45 GHz with wavelength of 12.2 cm 

for operation. The high frequency of microwaves bring advantage of being able to carry 

more information than ordinary radiowaves and their use in some areas was replaced by 

microwaves in the recent years.  Microwave energy is being used in many applications. 

In the early 1950s, the microwave energy primarily started to be used our home 

microwave ovens and cell phones. In the following years it took its place in the areas 

categorized; communication and information transfer; processing and manufacturing; 

diagnostic and analyses; weapons; and medical treatment.  

The microwave system is made up of four basic components: power supply, 

magnetron, and applicator such as, oven for the heating of the target material and 

waveguide for transporting microwaves from the generator to the applicator. The 

microwave power is supplied from a self-contained microwave power supply unit that 

contains a magnetron tube, transformer, relay, choke and controls. The microwave 

energy is directed to the applicator by a waveguide (Hoque, 1999).  
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4.1 Microwave Heating  
 

 

In the microwave systems, the energy transfer does not occur by conduction or 

convection as in conventional heating, but by dielectric loss. Materials dissipate 

microwave energy by two main mechanisms: dipole rotation and ionic conduction. 

When molecules with a permanent dipole are submitted to an electric field, they become 

aligned. If this field oscillates, the orientation changes with each alternation. The strong 

agitation, provided by the reorientation of molecules, in phase with the electrical field 

excitation, causes an intense internal heating. During ionic conduction, as the dissolved 

charged particles usually ions in a sample oscillate back and forth under the influence of 

the micro-wave field, they collide with their neighboring molecules or atoms. This 

collision causes agitation or motion, creating heat. Figure 4.1 shows the mechanism of 

microwave heating (Wathey et al., 2002).  

 

Figure 4.1. Mechanism of Microwave Heating. 

Dipoles within the substance to be heated are irregularly arranged, as shown 

above in part a, but, when irradiated with microwaves, they arrange themselves in a 

regular pattern, as in part b and c. As the positive and negative poles alternate with each 

other at high frequencies, the phenomena between in the parts b to c and c to b are 

repeated. The repeating event produces heat from the friction of the oscillating and 

rotating dipoles. In short, the heat generation in the microwave technology is dependent 

on the nature of the dipole and the frequency of the applied radiation. If the frequency 

Microwave irradiation  
(High frequency electric field) 

-       -       -

+      +     + -       -       - 

+      +     + 

           Polarity alteration 
(High frequency electric field) 

+ 
_ 

    - 
 
+ 

 +   
 
   - 

   - 
 
+ 

    - 
 
+ 

 + 
 
  - 

 + 
 
  - 

 + 
 
     - 

    - 
 
+ 

+ 
_ 

 + 
 
 - 

   +
 
  _ 

 + 
 
  - 

 + 
 
 - 

 + 
 
  - 

+ 
_ 

+ 
_ 

+ 
_ 

- 
 
+

- 
 
+

- 
 
+ 

- 
 
+

- 
 
+

- 
 
+

- 
 
+

- 
 
+

- 
 
+ 

 
HEAT 

    (a)                                                 (b)                                                  (c) 



 43

of the radiation is too high, the dipole does not have time to align itself with the field 

before the field changes its direction again. In these circumstances, no motion and 

consequently no heating occurs if the dipole align itself perfectly with the alternating 

electric field and, therefore follows the field fluctuations. However, if the applied field 

is in the intermediate frequency region, a phenomenon occurs that lies between these 

two extremes. In this situation, the dipole does not follow it perfectly. This results in the 

generation of heat (Wathey, 2002).  

 

 

4.2. Interaction of Microwaves with Material 
 

 

The amount of microwave energy absorbed by materials depends on many 

factors and their behavior in the microwave field can be measured by some physical 

properties. The size of the load, its orientation with respect to the waves, and the 

dielectric and thermal properties of the material are important factors but the most 

critical parameters that the microwave radiation depends on are dielectric constant, ε’, 

and dielectric loss factor, ε’’. The dielectric constant describes the case with which a 

material is polarized by an electric field while dielectric loss factor measures the 

efficiency of conversion of the electromagnetic radiation to heat. Both,ε’ and ε’’ vary 

with the frequency and their ratio gives the dielectric loss tangent. It defines the ability 

of a material to convert electromagnetic energy into thermal energy at temperature and   

frequency applied and is defined by Equation 4.1. 

 

tan loss= tan δ = ε’’/ ε’           (4.1) 

 

The dielectric properties of a material are dependent on its atomic/molecular 

geometry. Therefore, any thermally induced changes causing molecular or structural 

rearrangement will affect tan loss factor. Microwave interaction with matter is also 

characterized by a penetration depth, Dp, may also be the limiting factor and is defined 

in Equation 4.2. 
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2πε
ελo

pD ≈       (4.2) 

where, λo is wavelength of the microwave radiation. 

 Generally stated, the depth of penetration is smaller for microwaves because the 

frequency is many times higher than the radio frequency installations. Not only is the 

penetration depth a function of the frequency of the microwaves and the material 

composition, but also a function of dielectric properties of the material. When 

electromagnetic radiation strikes a material, part of radiation will be reflected. The 

remaining part penetrates into the material and is gradually absorbed. Thus, microwaves 

can penetrate only a certain distance into a bulk material as shown in Figure 4.2.  

 
 

Figure 4.2.  Flow electromagnetic wave into dielectric material. 

 

Microwaves may be reflected, passed through, or absorbed by the materials 

depending on the material type. Metals in general have high conductivity and are 

classed as conductors. They reflect microwaves and that is why the walls of a 

microwave oven are generally made of metal confining the microwaves inside the 

cavity. The see-through panel in the microwave oven door contains a metal screen 

which reflects the microwaves but the microwaves cannot penetrate this screen, because 

the holes in the screen are much smaller than the microwaves. Materials which are 

transparent to microwaves are classed as insulators such as some glass, pottery, paper 

and most plastics allow the waves to pass through. Insulators are often used in 

microwave ovens to support the material to be heated. These materials do not take up 
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microwave energy but allow the solutions inside to absorb the microwaves. Materials 

which are excellent absorbers of microwave energy are easily heated and are classed as 

dielectrics.  

 

Figure 4.3. Interaction Microwave with Materials 

In literature, many materials were investigated in order to determine their 

interaction with microwaves. Microwave heating behaviour of several metal oxides was 

investigated and they were classified according to heating rate into hyperactive, active, 

difficult to heat and inactive. The highest temperatures were obtained with carbon and 

most of the metals oxides such as; NiO, MnO , FeO , CoO , CuO and WO. In the 

beginning of 1990s heating of around 40 minerals was done in order to investigate if the 

microwave energy could be effective in the heating of minerals and inorganic 

compounds. The mineral samples were characterized before and after microwave 

heating and minerals were divided into two groups. In the first group samples, no or 

very little heat was generated and the mineral properties remained essentially 

unchanged. In the second group samples, heat was generated and the minerals were 

either thermally stable or decomposed reacted rapidly into a different product. The test 

results indicated that most silicates, carbonates, sulphates, some oxides and sulphides 

fall in the first group. Both synthetic and natural jarosite, some metal oxides such as 

hematite, magnetite and cassiterite are heated easily and fall in the second group 

(Wathey et al., 2002).  

As previously discussed, there are two specific mechanisms of interaction 

between materials and microwaves; dipole interactions and ionic conduction. Dipole 
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interactions occur with polar molecules. The polar ends of a molecule tend to align 

themselves and oscillate in step with the oscillating electrical field of the microwaves. 

Collisions and friction between the moving molecules result in heating. Consequently, 

the more polar a molecule is the more effectively it will be influenced by the microwave 

field. Ionic conduction different from dipole interactions do not have a dipole moment. 

They are charged species that are distributed and can couple with the oscillating 

electrical field of the microwaves. The effectiveness or rate of microwave heating of an 

ionic solution is a function of the concentration of ions in solution. The chemical 

composition of the material, as well as the physical size and shape, will affect how it 

behaves in a microwave field. The movements of the ions in the matrix by the 

interaction with microwave radiation are a much stronger heat generation than the 

corresponding motion of dipoles. Therefore, the ionic species heat up extremely rapidly 

when exposed to microwave irradiation. The property of ionic species can be used to 

improve the heating ability of non-polar solvents upon exposure to microwave 

radiation. For example when Fe is substituted instead for Zn in sphalerite, the resulting 

Fe sphalerite becomes microwave responsive.  It was also found that, dark-colored 

compounds heated rapidly to high temperature and heating rates of dark colored 

compounds were much higher than those of light colored materials (Haque, 1999). In 

order to allow efficient heating by microwave radiation of poor dielectric samples, the 

addition of small amounts of additives like ionic salts that have large loss tangent values 

enable adequate heating of the mixture. This is often provides an efficient way of using 

non-polar solvents for microwave radiation. Moreover, ionic liquids dissolved to 

appreciable extent in a wider range in organic solvents than water and alcohols in which 

they interact more efficiently. Thus, they can be used in non-polar organic solvents 

highly efficient additives to increase microwave absorption (Wathey et al., 2002; 

Haque, 1999). 

 

 

4.3. Microwave Heating System versus Conventional Heating System 
 

 

Microwave heating occurs somehow differently from conventional heating. In 

conventional heating systems, the mixture must be in physical contact with a surface 
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that is at a higher temperature than the rest of the mixture where energy is transferred 

from a surface to the bulk mixture by means of thermal conduction. The energy is 

supplied by the use of a heating mantle, oil bath, steam bath, or even an immersion 

heater. The energy can either make the reaction thermodynamically allowed or it can 

increase the reaction kinetics. On the contrary, in microwave systems the energy 

transfer does occur by dielectric loss. In other words, in conventional heating heat 

transfer occurs from the heating device to the medium, while in microwave heating heat 

is dissipated inside the irradiated medium.  Additionally, in all conventional heating of 

open reaction vessels, the highest temperature that can be achieved is limited by the 

boiling point of the particular mixture. In order to reach a higher temperature in the 

open vessel, a higher-boiling solvent must be used.  Figure 4.4 shows the comparison of 

the mechanisms of conventional and microwave heating systems. 

 

Figure 4.4. Conventional Heating System versus Microwave Heating System. 
 

Figure 4.4 clearly explains the differences between two mechanisms. In the 

conventional heating system, heat is transmitted from the exterior of a substance to its 

interior whereas in the microwave heating system, microwaves penetrate into the core 

of a substance to directly heat the inside.  

In contrast with conventional heating, microwave heat transfer is not limited by 

thermal conduction or convection currents. This means that a much faster temperature 

increase can be obtained. Furthermore, the maximum temperature of the material heated 
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by microwaves is only dependent on the rate of heat loss and the power applied. 

Although microwaves create volumetric heating, it is well known that the field 

distribution is uneven in the irradiated material, and therefore the energy is not 

homogeneously dissipated.  

As a general conclusion, advantages of microwave heating over conventional 

heating can be summarized as follows; 

1. Microwave has non-contact heating. 

2. Microwave heating is an energy transfer, not heat transfer. 

3. Microwave heating is more rapid. 

4. Selective heating of material is possible. 

5. Microwave is easy method with quick start-up and stop. 

6. No temperature gradient occurs. 

7. Microwave has higher level of safety and automation.  (Haque, 1999) 

To understand how microwave heating can have effects that are different from 

conventional heating techniques, thing that is absorbing the microwave energy in the 

reaction mixture should be determined. It is due to the fact that materials or components 

of a reaction mixture can differ in their ability to absorb microwaves.  

 

 

4.3.1. Case 1:  Solvent and Reactants Absorb Microwaves Equally 
 

 

If the bulk solvent and reactants absorb microwaves equally, the energy transfer 

and heating will occur to the allowed depth of penetration into the bulk mixture. 

Homogeneous reaction conditions can be established thorough mixing, and at 

equilibrium, the temperature of the reactants will be the same as that of the bulk solvent. 

In this case, reaction rates can be increased by increasing the temperature of the reaction 

mixture. The case is achieved using closed-vessel microwave techniques, and also using 

the same reaction chemistry and solvent. Alternatively, using conventional heating 

techniques, higher reaction temperatures can be achieved in a closed reactor system, or 

by using a higher-boiling solvent in an open vessel. 
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4.3.2. Case 2:  Solvent Absorbs Microwaves  
 

 

Microwaves are absorbed by bulk solvent not by the reactants so, the solvent 

energy transfer and heating of the solvent will occur to the allowed depth of penetration. 

Then bulk solvent in turn will heat the reactants by conduction. Homogeneous reaction 

conditions can be established with thorough mixing, and at equilibrium the temperature 

of the reactants will be the same as that of the bulk solvent. The ability of solvents to 

interact with microwave radiation can be classified into two important cases that have to 

be considered. The first one is the solvent’s ability to absorb microwave energy and the 

second one is its ability to convert the absorbed energy into heat. The interaction of a 

solvent with the microwave irradiation is really complex phenomena. 

 

 

4.3.3. Case 3:  Reactants Absorb Microwaves, Solvent Much Less 
 

 

If the bulk solvent does not absorb microwaves, but the reactants do, direct 

energy transfer and heating of the reactant molecules will occur to the allowed depth of 

penetration just as in case 2. The same situation is applicable for this case but just in 

visa versa reactant to solvent relation is valid.  

This case is significantly different from conventional heating techniques. 

Reaction rates can be increased by increasing the temperature of the reactants, 

delivering microwave energy faster than the heat that can be transferred to the bulk 

solvent and radiated to the environment 

 

 

4.3.4. Case 4:  Catalyst on Absorbing Microwaves 
 

 

Some unusual reaction conditions can be created in a microwave field when 

catalysts are present in the mixture, particularly when the catalyst is deposited on a 

microwave-absorbing material. For example, palladium on carbon is a common catalyst 
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in some reaction mechanisms. Carbon or graphite is an excellent absorber of microwave 

energy, with a dissipation factor significantly higher than most solvents. An unexpected 

effect of the microwave field is that it can directly heat some catalyst supports, and 

create a condition where the catalyst is at a substantially higher temperature than the 

rest of the bulk mixture. The catalyst support will transfer heat to the bulk mixture by 

conduction. 

 

 

4.4. Microwave in Zeolite Scientific Community  
 

 

The recent innovations of microwaves in various fields of science lead many 

researchers to focus on this phenomenon. After 1980s a new interdisciplinary of 

microwave chemistry was performed and at the beginning of 1990s, microwave 

technique began to be applied in the synthesis and other applications related to zeolites. 

Han et al.(1999) and Xrachum et al. (2000) studied the molecular sieve membrane of 

Na-A zeolite crystals on α-Al2O3 substrate and it has been successfully synthesized by 

means of microwave. They concluded that by microwave synthesis the reaction time 

reduced and more stable and dense membranes were obtained. 

There microwave irradiation on heating and other processes have many 

advantages compared to conventional methods as discussed in pervious pages. Katsuki 

et al. (1999) studied the microwave hydrothermal (MH) versus conventional 

hydrothermal (CH) synthesis of NaY Zeolite. They focused on the synthesis of NaY 

zeolite crystals from colloidal silica, sodium aluminate, and sodium hydroxide and 

deionized water at 100 oC-120 oC and concluded that NaY zeolite crystallization was 

enhanced by 3 to 4 times with MH process compared to CH. Stout and Komerneni., 

2002 studied microwave-assisted method for the rapid removal of K from Phlogopite. 

They investigated the ability to remove K rapidly with a solution containing sodium 

tetraphenylborate (NaTPB) from the interlayer of naturally occurring phlogopite using 

microwave and conventional heating treatments. They concluded that microwave 

assisted treatment considerably decreased the exchange time compared to continuous 

treatments. Chitrakar et al. (2002) had studied the synthesis of o-LiMnO2 by microwave 

They synthesized o-LiMnO2 with different routes including hydrothermal, reflux or 
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microwave irradiation They showed that with all synthesis is possible however, 

formation of semi-crystalline o-LiMnO2 was achieved by the interaction of microwave 

irradiation with suspension of γ-MnOOH in a 4M LiOH solution in a very short time 

when compared to conventional methods. 

If the microwave radiation is used as heat source to ion exchange process, the 

rapid, uniform and direct heat is achieved. The basicity on the framework of zeolites is 

linked to the partial negative charge on the oxygen atoms and can be increased by the 

ion exchange of the cation that counter balances the negative charges by a less 

electronegative cation. Yin and Yin, 1998 studied the dispersion and solid-state ion 

exchange of ZnCl2 onto the surface of NaY zeolite using microwave irradiation and 

resulting product was characterized by X-Ray diffraction and Infrared Spectrometer 

(IR) techniques. ZnCl2 was dispersed on the surface of NaY under microwave 

irradiation and increased with increasing ZnCl2 loadings. The appearance of a new band 

at 809 cm-1 in the framework IR spectra of the coordination of ZnCl2/NaY sample is 

considered due to the coordination of ZnCl2 with oxygen from the NaY zeolite lattice. 

Romero et al. (2004) studied potassium exchange in NaX zeolite by employing 

microwave radiation. The reaction was found very rapid even the volume of the 

exchange was reduced to conditions close to incipient wetness without the protonation 

of zeolite; thus, microwave reduced the time and volume required for the ion exchange 

process (Romera et al., 2004)  

Because of the unique heating mechanism of microwave irradiation it has a 

specific effect on ion exchange behavior of zeolite molecular sieve. Compared to the 

ion-exchange conducted in commercial waterbath method, microwave irradiation 

conducted ion exchange has many advantages for rare earth ions such as; Ce3+, Eu2+ and 

Sm2+ without structural changes observed for the exchanged zeolite. The movement of 

water molecules and rare earth ions is much higher in microwave heating compared to 

that commercial waterbath heating. This movement of water molecules results in rare 

earth ions entering into the c-direction channel, which is normally not accessible to rare 

earth ions in commercial waterbath ion exchange. Additionally, the degree of ion 

exchange is not affected by the ion concentration of the solution in commercial 

waterbath method. However, in microwave driven ion exchange, the concentration of 

the rare earth ion solution has a significant effect on the extent of ion exchange. Higher 

rare earth ion concentrations of solution will lead to a higher degree of ion exchange. 

Compared to the commercial waterbath ion exchange method the exchange time in 
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microwave driven ion exchange with fixed rare earth ion concentration and microwave 

power level will affect the luminescence intensity of the exchanged product. The start 

quenching time of Ce3+ luminescence is 8min in microwave driven ion exchange while 

it takes about 8hours in commercial waterbath ion exchange method. Therefore, the ion 

exchange conducted in microwave is feasible, convenient and fast compared to 

commercial ion exchange methods ( Xu et al., 2007)  

The microwave heating to higher temperature studies showed that there are 

several factors affect the heating. Hydrated zeolites absorb microwave energy more 

efficiently than dry zeolites, H-form of zeolites interacts little with microwaves and 

degree of interaction strongly depends on the chemical composition and structure 

(Ohgushi et al., 2001). The Na+ ions within the large cavity in zeolite structure act as 

strong microwave absorbers. This agrees with the MacDowell’s suggestion that is the 

sodium ions “rattling in the cavities” absorbs microwave (Whittington and Milestone, 

1992).   

Energy adsorption in zeolites is a complex process and it was thought that it is 

strongly affected by the presence of metal ions, first of all the Na+. Both ionic 

conduction by Na+, K+, and other ions, and dipole rotation by water molecules can take 

place. (Pilter et al., 2000). Ohgushi and Numata (2003) studied the importance of Site 

III cation of zeolite A in microwave Heating. They studied the properties of dehydrated 

Na12-2xCax-A zeolites, x is in the range of 0.1 to 4, in microwave heating and calculated 

the microwave absorption efficiencies of the zeolites as function of temperature by 

using their dielectric properties. They have found that Na12A is easily heated to higher 

temperature while Na12Ca4A is not so heated and final heating temperature of Na12 

Ca1A is much closer to that of Na12Ca4A than Na12A. The change in the cation 

compositions did also cause changes in absorption efficiency. The cation distribution in 

zeolite A denotes Na+ ion on the site III is the most weakly bound cation and has larger 

contribution towards microwave heating while Na+ is in site I/II and Ca2+ in site site has 

small contribution. 

Structural changes such as phase transition, amorphization might be observed 

during conventional heating of crystalline materials. Recently, the use of microwaves 

for heating and processing of materials in many areas of chemistry increased and it is 

important to determine if structural changes occurred within the material during 

microwave irradiation. For example; in steel making industry in order to modify the 

physical characteristics of iron and to recover iron from the slag, microwave heating 
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tests 1000 W, 2450 MHz are being used. In research and development laboratories, the 

heating behavior of the steel making slag was investigated with and without the addition 

of carbon or magnetite. Test results demonstrated that both carbon and magnetite 

addition increased the heating rate of the slag; 1000 oC with carbon, 800 oC with 

magnetite, compared to 650 oC without any addition and the amount of iron recovered 

increased with heating time. Microwave heating altered the physical and chemical 

properties of the slag (Hoque, 1999). Pilter et al. (2000) investigated the effect of 

microwave irradiation on zeolite Na-A in comparison with classical heat treatment. The 

classical heated and/or microwave heated samples were investigated by XRD and 

compared with respect to original using the intensities and the d values of the 

characteristic (0 0 2) refection of zeolite Na-A, which is the most intense peak of the 

original zeolite. The intensity of the (0 0 2) peak decreased significantly during the 

microwave treatment while it slightly changed upon conventional heating (Pilter et al., 

2000). 

Microwaves can cause different biological effects depending upon field strength, 

frequency of microwave, modulation and duration of the irradiation. The factors other 

than thermal effects might be involved in the effects of microwave irradiation on 

microorganisms. Microwave is used for food pack sterilization leading to the cell deaths 

by the heat and electric field produced. Compared to conventional heat sterilization the 

death rates of Eschorichia Coli were higher with microwave irradiation at 45-50 oC. 

Microwave affects all biological levels, from microbial cells to animals, as well as 

humans (Banik et al., 2003).  
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CHAPTER 5 

 

 

MATERIALS AND METHOD 
 

 

 The experimental section of this study is outlined as three parts. In the first part, 

zeolitic mineral to be used was characterized by different instrumental techniques. 

Following the characterization section the ion exchange experiments were conducted in 

constant temperature waterbath with orbital shaking and microwave. Finally, the 

characterization of the exchanged samples was performed and antibacterial tests were 

done. From this point forward, the zeolitic mineral used in the text will called as CLI. 

 

 

5.1. Characterization of Zeolitic Tuff 
 

 

CLI was supplied from Gördes Region, Western Anatolia of Turkey. Initially the 

mineral was prepared since the preparation step is important for obtaining representative 

samples prior to the experiments and is given as follows; 

1. The clinoptilolite rich mineral taken from deposit was crushed in Fritsch jaw 

crusher and sieved into different particle size ranges as given in Table 5.1. 

 

Table 5.1. Particle Size ranges. 

 
Size Range 

>1.7 mm 

850-500 μm 

500-250 μm 

250-150 μm 

150-75 μm 

<75 μm 



 55

2. The wet sieving was done in each particle size range order to remove soluble 

impurities. The remaining slurry having CLI with particle size of <25 micron was left in 

basket for 2 week. The clear solution of the suspension in basket was centrifuged in 

Sigma Laboratory Centrifuges 6K15 with 9000 rpm for an hour. 

3. The wet sieved clinoptilolite rich mineral was dried overnight at 65 oC and 

then kept in constant 75% RH for at least one week in order to obtain same condition 

before analysis.  

The characterization techniques and conditions set for each technique were as 

follows; 

 X-Ray Diffraction (XRD); To obtain the crystal structure and structural 

properties X-Ray patterns of the zeolitic tuff were determined. The X-Ray powder 

diffraction measurements were carried out using Philips X/Pert X-Ray diffractometer 

with Ni filtered CuKα radiation in the range of 5 to 40 o2Theta.  

The zeolitic minerals from different part of Turkey were investigated under the 

Governmental Projects which were held in İzmir Institute of Technology, Chemical 

Engineering Department. Reference Intensity Ratio (RIR) method was used and it was 

found that it was mainly clinoptilolite (%60-65) and additionally, quartz, analcime and 

mordenite was found in the structure. 

Inductively Coupled Plasma- Atomic Emission and Mass Spectrometry (ICP-

AES & ICP-MS); Chemical analyses of the zeolitic minerals were realized by 

Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES,Varian). The 

lithium borate fusion method used in the determination of the major elements within the 

zeolitic minerals such as sodium, calcium, magnesium, potassium, barium, iron, 

aluminum, and silicon. The wavelengths of the elements were chosen for the 

experimental conditions and are as follows; Ag (328.068 nm), Al (396.152 nm ), Ca 

(317.933 nm), Co (238.892 nm), Cu (324.754 nm), Fe (259.754 nm), K (769.896 nm), 

Mg (279.553 nm), Na (589.592 nm) and Si (251.611 nm).  First 0.1 g. sample was 

mixed thoroughly with 1g. lithuim tetraborate and metaborate and mixed thoroughly 

until homogeneity was obtained. Then it was placed in 1000 oC furnace for about 50 to 

60 min. The glass bead formed was dissolved in ≈70ml 1.6 M HNO3 and the volume 

was completed to 250 ml with de-ionized water. If necessary the solutions were diluted 

prior to ICP-AES analysis.  

The chemical analysis of trace elements in the zeolitic minerals used in Part I 

experiments were determined by Inductively Coupled Plasma Mass Spectrometry 
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(7500CE-Octopole Reaction System, Agilent). The acid digestion method was used to 

determine the chemical compositions of minor elements such as titanium, cadmium, 

chromium, silver, zinc, lead, lithium, nickel, copper and they were analyzed using ICP-

MS. First 0.2 g. sample was taken into a teflon beaker. Then, 4ml. HNO3, 5ml. HF and 

3ml. HClO3 was added onto sample and was mixed thoroughly. The solution was put on 

180 oC hot plate until all liquid part was evaporated. The residual was then dissolved in 

5ml. HNO3 (%65 w/w) and 5ml H2O and completed to 100 ml with de-ionized water. 

Three repetitions of the solid and liquid phase analyses of the ion exchanged 

minerals were done and all were given in Appendix. In the thesis, average values of 

three measurements were used for discussion. 

 Volumetric N2 Adsorption; The N2 adsorption analyses of the zeolitic minerals 

were done by means of volumetric method.  The samples were first degassed at 350 oC 

for 24 hours. The analysis was carried out with liquid N2 at its normal boiling 

temperatures of 77K. 

 Scanning Electron Microscopy (SEM); The morphology of the zeolitic minerals 

was determined by scanning electron microscope. The SEM micrographs were obtained 

on a Philips XL 305 SEM. EDX (Energy Dispersive X-Ray) analysis was performed to 

determine the chemical compositions of the cations within the mineral by using EDAX-

EDS connected to SEM Philips XL 30S FEG and results were compared with ICP data. 

 Fourier Transform Infra-red (FTIR ) Spectrometry; The Infrared spectra of all 

the samples were taken by Fourier Transform Infrared Spectrometer, Shimadzu (FTIR- 

Shimadzu 8601) using KBr pellet technique. Powdered mineral particles are mixed with 

KBr and compressed into 1cm diameter pellets under 8 ton force. Typical pellet 

contains 1-2 wt% samples in KBr. 

 Thermal Analysis (TGA, DSC, and DTA): In order to obtain thermal behaviour 

of zeolitic minerals, Thermogravimetric Analyzer (TGA-51/51H, Shimadzu), 

Differential Scanning Calorimetry (DSC-50, Shimadzu) and Differential Thermal 

Analysis (DTA-50, Shimadzu) were used.  The samples were heated up to 1000 oC for 

DTA and TGA and upto 500 oC for DSC analysis with a heating rate of 10 oC/min 

under 40 ml/min N2 atmosphere. 

 The dielectric constant of the NaCLI mineral was determined from the 

Capacitance (F) data. The powder mineral was first compressed into pellet having 

10mm diameter and 0.5mm thickness under 8ton forces. Electric contacts were taken on 

pellet’s surface using silver using film thermal evaporation technique. The capacitance 
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of the pellet was measured in the frequency range of 2*103-4*103 Hz at room 

temperature using Keithley 2420 Analyzer. 

 

 

5.2. Ion Exchange 
 

 

5.2.1. Chemicals 
   

 

 Chemicals and their specifications used in the experimental study are given as 

follows: 

1. Sodium Chloride -NaCl; Panreac QuimicaSa, 99.5%, Mw=58.44 g/mol. 

2. Silver Nitrate- Ag (NO)3 ; Fluka, 99.5%, Mw=169.88 g/mol. 

3. Copper (II) Nitrate pentahemihydrate– Cu (NO3)25/2H2O; Aldrich 99.99 %, 

Mw= 232.59 g/mol. 

4. Cobalt II Nitrate Hexahydrate- Co (NO3)2.6H2O; Sigma 98%, Mw: 291.03 

g/mol. 

5. Lithium metaborate anhydrous – LiBO2; Fluka 98%, Molar Ratio= B2O3/ LiO2= 

0.95-1.05; Mw= 49.75 g/mol. 

6. Lithium tetraborate - B4Li2O7; Fluka 99%, Mw=169.12 g/mol. 

7. Muller-Hinton Agar-Agar; granulated, purified and free from inhibitors for 

microbiology, Merck. 

8. Muller-Hinton broth; Merck 

The ion exchange experiments were performed using 150 –250 μm particle sized 

CLI. The exchange processes were carried out in a constant-temperature waterbath 

(GLC Model-1084) and microwave irradiation (Mars-CEM Digestion/Extraction & 

CEM Focused Microwave™ Synthesis System) methods for Ag+, Co2+ and Cu2+ ions in 

their appropriate nitrate solutions. The effect of solution temperature, Solid/Solution 

ratio and contact time on ion exchange was determined.  

Before the ion exchange experiments were performed, near homoionic form of 

CLI was prepared as follows; 125 g mineral was treated with 1250 ml of 1 N NaCl 

solution in a constant-temperature waterbath maintained at 80 oC for 10 days. NaCl 
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solution was replaced in every three days. After the exchange was completed, mineral 

was washed with de-ionized water until all Cl- was removed and dried overnight at 65 
oC. The Na-form of CLI will be called NaCLI from this point forward.  

 

 

5.2.2. Ion Exchange in Conventional Waterbath  
 

 

The conventional exchange was conducted using constant-temperature 

waterbath with orbital shaker at 180 rpm, GLC Model-1084. 

Ag+ exchange; NaCLI was put in 0.01 M AgNO3 solution in constant 

temperature waterbath maintained at 40 oC, 60 oC or 80 oC.  Solid/Solution ratios were 

chosen as; 1/20, 1/50 and 1/100. At first, the exchange was conducted for 30 min, 1hr 

24hrs, 48 hrs and 72 hrs. Additional of 0.1 M AgNO3 of exchange was conducted at 80 
oC for S/L=1/100, 1hr and 24hrs. 1M AgNO3 of exchange was conducted also at 80 oC 

for S/L=1/100, 10 min and 30 min in order to comparable with microwave treatment. 

Three parallel runs were performed for each condition. pH changes during the ion 

exchange process at  60 and 80 oC  was measured for all S/L ratios. For Ag+ exchange 

case; the minerals were covered with aluminum foil and kept at dark place for further 

analysis. 

Co2+ & Cu2+ exchange; NaCLI was put in 0.01 M Co.(NO3)2
.6H2O and 

Cu.(NO3)2
.5/2H2O solution in constant temperature waterbath maintained at 80 oC for 

1hr and 24 hrs.. Elimination of 48 hrs and 72 hrs of exchange time was decided after 

kinetic study was performed for each cation. Elimination of the exchange conducted at 

40 oC and 60 oC was due to the evaluation of first sight ICP-AES results of Ag+ 

exchange. Solid/Solution ratios were chosen as; 1/20, 1/50 and 1/100. Three parallel 

runs were performed for each condition. pH change during ion exchange process 

conducted at 80 oC was measured for all S/L ratios. Additional of 0.1 M 

Co.(NO3)2
.6H2O  of exchange was conducted at 80 oC for S/L=1/100, 1hr and 24hrs. 1M 

Co.(NO3)2
.6H2O of exchange was conducted at 80 oC for S/L=1/100, 10 min and 30 

min. 

After the exchange was completed in constant temperature waterbath, minerals 

were washed with de-ionized water and dried overnight at 65 oC. 
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5.2.2. Ion Exchange in Microwave  
 

 

 Exchange by microwave irradiation was conducted using Mars 5-CEM, 

Digestion and Extraction laboratory microwave oven system and CEM Focused 

Microwave™ Synthesis System. In Mars 5-CEM, Digestion and Extraction laboratory 

microwave oven system, the solutions were placed in a specially made Teflon-lined 

polyamide vessel through which microwave radiation in which temperature and 

pressure can be controlled within the vessels. The frequency of the microwave radiation 

was 2.450 GHz. Microwave power was manually set to appropriate watts depending on 

the number of the vessels used for the run in progress. However microwave power 

regulates itself in order to keep the temperature at the set value therefore alternating 

microwave power was applied throughout the runs. In CEM Focused Microwave™ 

Synthesis System, Discovery microwave system, fixed power control option offers the 

application of desired power from the beginning till the end of the reaction since there is 

a cooling feature in the system. It directs a gas source onto the outside wall of the 

reaction vessel which provides the ability to rapidly cool (quench) a reaction at the same 

time and/or after the application of microwave energy. It is the most direct method to 

energize reaction system and applies a specified amount of energy for a specified 

amount of time. For the exchange conditions considered in this study, the continuous 

microwave power of 50 watts used. After the exchange was completed in microwave 

oven, minerals were washed with de-ionized and dried overnight at 65 oC. 

Ag+ exchange; NaCLI was put in 0.01 M AgNO3 solution placed in a specially 

made Teflon-lined polyamide vessel. The exchange was conducted at 40 oC, 60 oC and 

80 oC for 30 min and 1hr. Solid/Solution ratios were chosen as; 1/20, 1/50 and 1/100. 

Three parallel runs were performed for each condition. Additional of 0.1 M AgNO3 of 

exchange was conducted at 80 oC for S/L=1/100, 10 min., 30 min. and 1hr. 1M AgNO3 

of exchange was conducted at 80 oC for S/L=1/100, 10 min and 30 min. 

Co2+ & Cu2+ exchange; NaCLI was put in 0.01 M Co.(NO3)2
.6H2O or 

Cu.(NO3)2
.5/2H2O solution placed in a specially made Teflon-lined polyamide vessels. 

The exchange was conducted at 80 oC for 30 min and 1hr. Solid/Solution ratios were 

chosen as; 1/20, 1/50 and 1/100. It has been determined from first evaluated ICP-AES 

results of Ag+ exchange that temperature did not have significant influence on exchange 
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degree therefore the exchanges at 40 oC and 60 oC were eliminated. Three parallel runs 

were performed for each condition. Additional of 0.1 M Co.(NO3)2
.6H2O  of exchange 

was conducted at 80 oC for S/L=1/100, 10 min., 30 min. and 1hr. 1M Co.(NO3)2
.6H2O of 

exchange was conducted at 80 oC for S/L=1/100, 10 min and 30 min. 

 

 

5.3. Characterization of Metal Exchanged Minerals and Antibacterial 

 Test  
 

 

The Na- CLI and Ag+, Co2+ and Cu2+ exchanged forms of the mineral were 

characterized by the techniques namely TGA, DTA, DSC, FTIR, XRD, Volumetric N2 

adsorption, ICP-AES and SEM. 

Antibacterial activity of the exchanged clinoptilolite rich minerals against E. coli 

was determined by the disk diffusion (Kirby–Bauer) method. First, agar – broth for the 

growth media was prepared by mixing 1 liters of deionized water with 20 g of agar and 

21 g of broth. Prepared solution was put into 121 oC autoclave for 15 minutes. Equal 

amounts of sterilized solution were poured into Petri dishes and they were left for 

drying and solidification of the growth media. Then, E.coli bacteria taken from the 

stock was taken on the Petri dishes by the help of a needle holder. Bacterial cultures 

grown on Mueller–Hinton agar medium were incubated at 37 oC for 24 hrs. One of the 

colonies was dissolved in 4 ml of distilled water; and its turbidity was adjusted to 

McFarland no. 0.5 for the preparation of bacterial suspension. After placing a sterile 

cotton swab in the bacterial suspension, the swab was streaked in at least two directions 

over the surface of the Mueller–Hinton agar to obtain uniform growth. (Ag+, Co2+ and 

Cu2+) exchanged minerals, ≈ 0.15g, in the form of pellets with 8 mm in diameter were 

placed into the Petri dishes. They were incubated at 37 oC for one day and finally, the 

width of inhibition zone of each sample in the plates was measured after 24hours. 
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CHAPTER 6 

 

 

RESULTS AND DISCUSSION 
 

 

6.1. Characterization of Zeolitic Tuff  
 

 

The X-Ray diffraction pattern and SEM micrograph of the zeolitic tuff namely 

CLI are presented in Figures 6.1 and 6.2, respectively.  
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Figure 6.1. X-Ray diffraction pattern of CLI. 

  

 The X-Ray peaks of CLI were examined by software in X-Ray diffractometer 

called SMSP. The main peaks matched with the clinoptilolite (monoclinic; a=17.66 

b=17.91 c=7.41 β= 116.40) and heulandite (monoclinic; a=17.69 Å b=17.92 Å c=7.42 

Å β= 116.47o) mineral characteristic peaks found in the SMSP library belonging to 

JSPDS card 83-1261 and JSPDS card 80-0465, respectively. CLI was identified as 

clinoptilolite rich mineral with 50 %-60 % purity having quartz (JSPDS card 83-0539 & 

78-1252) as a main impurity.  
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 Scanning electron micrograph of CLI is given in Figure 6.2 that shows typical 

hexagonal plate like clinoptilolite crystals. 

 

 

Figure 6.2. SEM micrograph of CLI. 

 

 Chemical compositions of major and trace elements of CLI are given in Table 

6.1a and 6.1b, respectively. 

 

Table 6.1. Chemical Composition of CLI. 

a) Major Elements in Oxide Forms    b) Trace Elements 

OXIDES CLI w/w %   ELEMENTS CLI-ppb 

SiO2 69.89  Ag <30 

Al2O3 11.21  Ba 154 

Fe2O3 1.15  Cd <10 

K2O 5.48  Co <30 

CaO 1.89  Cr <10 

Na2O 1.56  Cu 150 

MgO 0.22  Zn 60.12 

CEC(meq/g)          2.45  Ni <5 

∑(Ca2++Na++K++Mg2+)   Pb 48.72 

 

CLI is defined as K-rich mineral due to its highest K+ content. Trace elements 

within the mineral were found at ppb levels in which Ba2+ has the highest amount as 
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indicated in Table 6.1.b., hence their effect on metal ion exchange processes is 

considered to be negligible. Therefore, in this study the change in the chemical 

composition of major elements during ion exchange has been considered. 

The structural information of CLI was also determined by the FTIR technique 

and its spectrum is given in Figure 6.3.  
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Figure 6.3. FTIR spectrum of CLI. 

 

 The characteristic bands of clinoptilolite were at 1060 cm-1, 790 cm-1 and 609 

cm-1 due to asymmetry stretch  O-Si(Al)-O, symmetry stretch and  Si(Al)-O double 

ring, respectively (Breck, 1974).  Peaks related with isolated OH stretching at 3700 cm-1
,
 

H-bonded O–H stretching at 3400 cm-1 and H2O bending at 1620 cm-1 were detected on 

FTIR spectrum of CLI, as well.  

 Table 6.2 and Figure 6.4 summarize the thermal and adsorption related 

properties of CLI.  

 

Table 6.2.  Properties of CLI. 
 

Water Content –TGA 12.50 % 

Dehydration behaviour –DTA Endotherm at 53.73 oC Exotherm starts ∼ 800 oC 

BET Model (m2/g) Langmuir Model (m2/g)  

Surface Area (N2 Adsorption)  45.8 65.4 
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Figure 6.4. TGA and DTA curves of CLI. 

 

CLI was thermally stable up to 800 oC, and further increase in temperature 

causes structural changes due to conversion of its structure to another crystal or 

amorphous phase. The N2 volume adsorbed at highest P/Po for NaCLI is found as 42.1 

cm3/gr STP. Surface areas were found as 45.8 m2/gr and 65.4 m2/gr from BET and 

Langmuir models, respectively.  

  

 

6.2. Ag+, Co2+ and Cu2+ Exchange on NaCLI  
 

 

Since Na+ is the most weakly bound ion in clinoptilolite and it is easily 

exchanged with cations within the solution, Na-forms are preferred as a starting material 

for the ion exchange processes using zeolitic minerals. Therefore, before ion exchange 

experiments CLI was converted into Na-form (near homoionic) by treating the mineral 

with 1N NaCl at 80 oC for 10 days. Chemical compositions of NaCLI in the form of 

w/w% are tabulated in Table 6.3. Na+ amount in NaCLI was increased almost four times 

after the treatment. 
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Table 6.3. Chemical Composition of NaCLI. 
 

oxides NaCLI w/w % 

SiO2 69.14 

Al2O3 11.54 

Fe2O3 1.16 

K2O 3.92 

CaO 0.88 

Na2O 5.61 

MgO 0.18 

Si/Al 5.60 

CEC(meq/g)             
∑(Ca2++Na++K++Mg2+) 

2.45 

 

The exchange degree of Ag+, Co2+ and Cu2+ on NaCLI for different S/L ratio, 

time and temperature was determined in waterbath and with the microwave irradiation. 

Since the solid phase and liquid phase analysis is very important for defining the 

mechanism which describes the solid-solution interaction, both phases were analyzed 

for all set of exchange. The chemical compositions of solid phase raw data for all ion 

exchange processes were given from the average of three runs within 0.05 confidence 

interval. 

For the utilized conditions, w/w% of 0.01 M Ag (NO3) exchanged NaCLI in 

waterbath and with microwave irradiation is tabulated in Table 6.4 and Table 6.5, 

respectively which are being representative to whole Ag+ exchange on NaCLI. 
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Table 6.4. Average chemical composition against time in solid phase (w/w %) (0.01M 
 AgNO3 , 80 oC, waterbath). 
 

   
S/L=1/20 

 
S/L=1/50 

 
S/L=1/100 

 
 

 
NaCLI 

 
1 hour 

 
24 hours 

 
1 hour 

 
24 hours 

 
1 hour 

 
24 hours 

Al2O3 11.54 11.89 11.34 11.76 10.91 11.11 10.74 

SiO2 69.14 64.92 66.24 66.25 65.45 63.90 65.04 

CaO 0.87 0.50 0.39 0.55 0.34 0.50 0.33 

Fe2O3 1.16 1.59 1.18 1.40 1.26 1.70 1.18 

K2O 3.92 3.09 4.59 2.73 4.02 2.95 3.91 

MgO 0.18 0.22 0.17 0.14 0.17 0.16 0.15 

Na2O 5.60 5.11 4.68 2.92 2.25 3.15 2.39 

Ag2O 0.001 1.54 2.16 5.17 4.35 7.90 7.41 

 

 

Table 6.5. Average chemical composition against time in solid phase (w/w %) (0.01M 
 AgNO3 , 80 oC, microwave irradiation). 
 

   
S/L=1/20 

 
S/L=1/50 

 
S/L=1/100 

 
 
NaCLI 

 
30 min 

 
1 hour 

 
30 min 

 
1 hour 

 
30 min 

 
1 hour 

Al2O3 11.543 12.08 11.42 11.02 11.53 11.43 11.26 
SiO2 69.143 67.77 66.71 66.02 66.05 65.60 66.71 
CaO 0.877 0.46 0.59 0.48 0.48 0.54 0.59 
Fe2O3 1.162 1.40 1.40 1.45 1.45 1.66 1.61 
K2O 3.921 3.37 3.22 3.58 3.58 2.97 2.96 
MgO 0.186 0.18 0.18 0.18 0.18 0.18 0.16 
Na2O 5.606 4.37 4.20 3.90 3.90 3.16 3.47 
AgO 0.001 1.58 1.78 5.21 5.23 6.55 7.90 

 

As indicated in Table 6.4 and Table 6.5, after the exchange with Ag+ no 

considerable changes were observed for the major cations within the mineral except 

Ca2+ and Na+. The higher exchange level of these cations could be explained by their 

structural location in the mineral.  In the clinoptilolite structure Na+-Ca2+, K+-Ba2+ and 

Mg2+ are located in channel A at site Ml-M2, in channel C at site M3 and in channel A 
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at site M4, respectively. The strong bonding of K+ may affect its exchange capability 

since six framework oxygen atoms and three water molecules coordinate K+ at site M3. 

The higher exchange level of Na+ compared to other cations is not only due to its 

structural location but also due to its weak bound strength in clinoptilolite. 

The hydrated ionic radii of the cations affect their degree of exchange. The 

hydrated radii of the cations with nearly the same size of the channel dimensions results 

in difficulty of exchange. The ease of Na+ exchange with Ag+ is due to its lower 

hydrated radii compared to other cations. Mg2+ and Fe3+ having high hydrated radii 

cannot move easily out of the channels (Dyer and White, 1999) therefore their exchange 

with Ag+ is low. As well as the hydrated radii, heats of hydration of the exchangeable 

cations have also effect on the exchange process. Monovalent cations bond to their 

waters of hydration with much less energy than do divalent cations. Cation exchange in 

zeolites actually occurs in association with water molecules and in the presence of more 

water molecules, bonding is tighter to the smaller highly charged cation. Therefore the 

lack of exchange noted for Mg2+ comes from the inability of the charge on the 

clinoptilolite framework to remove the waters of hydration from the Mg2+ ions. The 

chemical compositions of solid phase raw data for all sets of Ag+ exchange NaCLI were 

plotted from the average of three runs within 0.05 confidence interval and are given in 

Appendix A between Figure A.1 and Figure A.12. 

Any adsorbent was positively charged at the pH lower than pHpzc and negatively 

charged at pH higher than pHpzc therefore adjusting the solution pH is important. Zeta 

potential measurement for the NaCLI system is given in Figure 6.5 in order to 

determine the pHpzc
1 for this specific mineral. 

 

                                                 
1 pHpzc :  pH for which the charge of particles is zero. 
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Figure 6.5. The relation between zeta potential and pH (ultra pure water –NaCLI 
 system). 

 

The pH is an important parameter for preferential sorption of cations or anions. 

As it was discussed in theoretical part, in addition to ion exchange and adsorption 

surface precipitation may also occur in zeolite-solution system. The pH control of 

zeolite-solution system is important in order to prevent significant precipitation during 

ion exchange. Additionally, depending on the solution pH, Si and Al from the 

framework possibly move toward solution phase which is called as dissolution (Doula 

and Ioannou, 2003). Therefore in the first place, the change in pH with time and liquid 

phase chemical compositions for ultrapure water–NaCLI system was determined. The 

presence of surface imperfections and mineralogical heterogeneity (soluble impurity) 

promote the solubility of the amorphous aluminosilicate surface layers besides 

detachment of framework ions. The data obtained may also help to distinguish the 

mechanism of zeolite-solution interaction. The pH versus time graphs and liquid phase 

chemical compositions for ultrapure water-NaCLI system at 80 oC are given in Figure 

6.6 and Table 6.6, respectively. 
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Figure 6.6. pH versus time  (ultrapure water–NaCLI , 80 oC, waterbath). 

 
 

 

Table 6.6. Solution phase chemical compositions (ultrapure water–NaCLI, 80 oC, 
 waterbath). 
       

 
S/L=1/20 

 
S/L=1/50 

 
S/L=1/100 Elements 

(mg cation/gr zeolite) 

Al 0.06 0.06 0.15 
Si 0.80 1.69 2.47 
Ca 0.00 0.01 0.04 
Fe 0.04 0.06 0.04 
K 0.06 0.10 0.00 

Mg 0.00 0.00 0.21 
Na 1.75 3.78 1.93 
Ag 0.00 0.01 0.04 

 
 

As indicated from data, cations exist in trace amounts while some do not even 

exist in the solutions which might be the soluble impurities within the mineral rather 

than strongly bound framework cations. Therefore, detection of exchangeable cations in 

trace amounts together with slight pH change of the solution is the indication of limited 

dissolution of the framework cations. The pH versus time graphs for ultrapure water-

NaCLI system at 60 oC is given in Appendix D.   

The change in pH for Ag (NO)3-NaCLI system can be explained by different 

events. For example, if H+ in the solution exchanges with exchangeable cations on 
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outer/inner surface of clinoptilolite or H+ in surface hydroxyl groups of Si-OH and Al-

OH behaves as an exchangeable cation, solution pH increases. Contrarily, due to the 

formation of metal-hydroxyl complexes pH of the solution decreases. Thus pH change 

with time for Ag+ exchange on NaCLI at 60 oC and 80 oC was monitored. pH versus 

time for 0.01 M Ag(NO)3 – NaCLI system at 80 oC is  given in Figure 6.7.     
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Figure 6.7. pH versus time (Ag+ -NaCLI ,80 oC , waterbath). 

 

Slight changes of pH were detected throughout the exchange process for all the 

S/L ratios. Similar to the ultrapure water-NaCLI system, the exchangeable cations exist 

in trace amounts while some even do not exist in the solution phase for Ag(NO)3-

NaCLI exchange. The total amount of H+ ion change is much lower than those for 

exchangeable cation (Appendix B) which is the indication of limited dissolution of the 

framework cations and protonation of surface hydroxyl groups by H+. The pH versus 

time for 0.01 M Ag(NO)3 – NaCLI system at 60 oC is given in Appendix D. 

Either the liquid cases or the solid cases were examined and reported widely in 

literature. However, chemical compositions of the cations in both phases have great 

importance in describing the mechanisms for metal solution-clinoptilolite interaction. 

The solid and liquid phase compositions of 0.01 M Ag (NO)3 exchanged NaCLI for 

S/L=1/20 for 1hr in waterbath and for S/L=1/100 for 30 min in microwave are given in 

Table 6.7 and Table 6.8.  
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Table 6.7. Solid and liquid phase compositions (0.01 M Ag(NO)3, 80 oC, S/L=1/100, 
 1hr, waterbath.) 
  

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.15 0 0.003 
Fe 0.44 0.72 0 0.003 
K 0.83 0.70 0 0.008 

Mg 0.09 0.10 0 0.000 
Na 1.81 0.96 0 0.365 
Ag 0.00 0.68 1.000 0.124 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 1.15 0.88 

 

 

 

Table 6.8. Solid and liquid phase compositions (0.01 M Ag(NO)3, 80 oC, S/L=1/100, 
 1hr, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 

Ca 0.31 0.21 0 0.02 
Fe 0.44 0.60 0 0.00 
K 0.83 0.63 0 0.01 

Mg 0.09 0.08 0 0.00 
Na 1.81 1.12 0 0.71 
Ag 0.00 0.68 0.500 0.38 

∑(Ca2++Na++K++Mg2+) Ag+ (meq/gr zeolite) 
 1.01 0.62 

 

There is a non-stoichiometry between the amount of Ag+ uptake and total 

amount of exchangeable cations release as indicated in Table 6.7 and 6.8 for waterbath 

and microwave irradiated exchanges, respectively. Total amount of exchangeable 

cations [∑(Ca2++Na++K++Mg2+)] release is higher than metal uptake for both exchanges. 

This may be due to the lack of the detection of change in the amounts of exchangeable 

cations in liquid phase where metal cation hydrolysis reaction might have occurred 

(inner-sphere complex formation). The exchangeable cations hydrolyzed with -OH 
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groups in the solution and form metal-hyroxyl complexes which are not detected by 

ICP-AES however due to the slight increase in solution pH (5.46-5.76) negligible 

formation of metal hydroxyl species was expected.  

Theoretical exchange capacity (TEC) of NaCLI was calculated as 2.75 meq/gr 

zeolite as given in Table 6.2. For the utilized conditions, experimental exchange 

capacities (CEC) of Ag+ exchanged NaCLI in waterbath and microwave were found 

1.01 meq/gr zeolite and 1.15 meq/gr zeolite as given in Table 6.7 and Table 6.8, 

respectively. The lower experimental CEC of the Ag+ exchanged NaCLI might be due 

to pretreatment of mineral which resulted with formation of incomplete homoionic form. 

Besides, some cations cannot be easily removed from the NaCLI structure due to their 

low mobility and strong bonding forces within the mineral. Additionally, impurities 

such as feldspar, quartz and salts within the structure do not allow the mineral exchange 

to a degree level of TEC. 

The chemical compositions of liquid phase raw data for all other sets of Ag+ 

exchanged NaCLI were plotted from the average of three runs within 0.05 confidence 

interval and are given in Appendix B between Figure B.1 and Figure B.12.  The liquid 

phase and solid phase compositions of Ag+ exchanged NaCLI for all other sets are given 

in Appendix C between Table C1 and C57.  

The effect of S/L ratio and time on the exchange degree of Ag+ for the 0.01 M 

Ag (NO)3 exchanged NaCLI at 80 oC in waterbath and with microwave irradiation in 

Figure 6.8 and Figure 6.9, respectively. 
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Figure 6.8. Effect of S/L ratio and time on Ag+ exchange (NaCLI, 80 oC, waterbath). 

 

 As concluded from Figure 6.8, amount of Ag + exchanged on NaCLI increased 

with decreasing S/L ratio. As the S/L ratio decreased from 1/20 to 1/100, Ag+   amount 

increased five percent by weight.  However, Ag + amount within the mineral did not 

change with time therefore it is not necessary to continue the exchange after 1 hr.  
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Figure 6.9. Effect of S/L ratio and time on Ag+ exchange (80 oC, microwave 
 irradiation). 
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 The amount of 0.01 M Ag (NO)3 exchanged against S/L ratio and time in 

waterbath at 40 oC and 60 oC were given in Appendix D. 

 For microwave irradiated exchange, the Ag + amount exchanged on NaCLI also 

increased with decreasing S/L ratio as indicated from Figure 6.9. As the time of 

treatment increased, the Ag+ amount did not increased as expected even slight decrease 

was observed for the run in which S/L ratio equals to 1/100. This might be due to the 

reason that during the total exchange period no continuous microwave energy was 

applied. Because in principal, as long as the system reaches to the set point temperature 

it stops the microwave energy and starts immediately after if a decrease in temperature 

occurs. Thus, due to the working principle of microwave system (EDMS) there is no 

continuous microwave supply through the total time of exchange. Total irradiation time 

for 10 min, 30 min and 1 hr of microwave processing was clocked and detected as 6 

min, 18 min and 42 min, respectively. Therefore, total microwave irradiation time used 

is not equal to the total exchange time. Additionally, as mentioned in Chapter 5, 

microwave power was adjusted to appropriate watts depending on the number of the 

vessels used for the run in progress. For example, if 1 to 4 vessels used microwave 

power is adjusted to 300watts or for 4 to 8 vessel it is adjusted to 600watts and for 

maximum capacity of 8 to 12 vessels microwave power was adjusted to 1200 watts. 

However, while ramping and keeping the temperature at “set value” the used 

microwave power changes with time. For example, for ion exchange in progress with 5 

vessels at 80 oC, microwave oven uses 70% of 600 watts initially with the preceding 

time it uses 20% of 600 watts. Besides the non-continuous microwave power used for 

any exchange process, microwave power was not used with 100% continuous power 

efficiency. Therefore, the exchange degree for Ag+ did not increase for microwave 

irradiated exchange compared to waterbath exchange as expected. For the microwave 

irradiated exchanges at 40 oC and 60 oC were given in Appendix D. 

The effect of temperature at constant S/L ratio and time was investigated for 

0.01 M Ag (NO)3 exchanged NaCLI in waterbath and with microwave irradiation. The 

effect of increase in temperature for waterbath (24hrs) and microwave (1hr) treatments 

with different S/L ratios is given in Figure 6.10 and Figure 6.11, respectively. 

 



 75

0

10

20

30

40

50

60

70

80

90

100

30 40 50 60 70 80 90 100
temperature(oC)

qe
   

(m
g 

A
g/

gr
 N

a-
C

LI
)

S/L=1/20 S/L=1/50 S/L=1/100

 
Figure 6.10. Effect of  S/L ratio temperature on Ag+ exchange (waterbath). 
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Figure 6.11. Effect of  S/L ratio temperature on Ag+ exchange (microwave irradiation). 

 

As the temperature increased from 40 oC to 80 oC, the Ag+ amount in the NaCLI 

increased slightly for every S/L both in waterbath and with microwave irradiation. 

Besides, Ag+ amount increased more significantly with decreasing S/L ratio at constant 

temperature. Therefore S/L ratio has higher effect on the exchange degree while 

temperature has less prominent effect. 
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In the same manner, the exchange degree of Co2+ in waterbath and with 

microwave irradiation for different S/L ratio, time and temperature was investigated. 

The chemical compositions (w/w %) of 0.01M Co(NO3)2.6H2O exchanged NaCLI for 

the utilized conditions in waterbath and with microwave irradiation are tabulated in 

Table 6.9 and Table 6.10, respectively which are representing whole Co2+ exchange on 

NaCLI in waterbath and with microwave irradiation.  

 

Table 6.9. Average chemical composition against time in solid phase (w/w %). (0.01M   
 Co(NO3)2.6H2O, NaCLI 80 oC,waterbath). 
 

   
S/L=1/20 

 
S/L=1/50 

 
S/L=1/100 

 
 

 
NaCLI 

 
1hour  

 
24 hours 

 
1hour  

 
24 hours 

 
1hour  

 
24 hours 

Al2O3 11.54 11.90 11.01 11.79 11.72 12.07 11.41 

SiO2 69.14 67.15 63.66 68.72 65.29 69.78 65.82 

CaO 0.87 0.36 0.35 0.53 0.39 0.38 0.40 

Fe2O3 1.16 1.28 1.46 1.32 1.43 1.36 1.45 

K2O 3.92 3.22 2.85 3.03 2.91 3.12 2.95 

MgO 0.18 0.15 0.17 0.15 0.18 0.15 0.18 

Na2O 5.60 3.92 3.57 2.84 2.61 2.27 2.15 

CoO 0.001 1.34 1.31 2.72 2.62 3.24 3.15 
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Table 6.10. Average chemical composition against time in solid phase (w/w %). (0.01M   
 Co(NO3)2.6H2O , NaCLI 80 oC,microwave irradiation). 
 

   
S/L=1/20 

 
S/L=1/50 

 
S/L=1/100 

 
 

 
NaCLI 

 
30 min 

 
1 hour 

 
30 min 

 
1 hour 

 
30 min 

 
1 hour 

Al2O3 11.543 10.74 11.84 11.32 11.95 11.55 12.02 

SiO2 69.143 63.35 65.01 63.92 64.45 63.70 64.53 

CaO 0.877 0.38 0.36 0.34 0.41 0.41 0.39 

Fe2O3 1.162 1.34 1.30 1.56 1.62 1.30 1.28 

K2O 3.921 3.37 3.22 3.29 3.13 3.24 3.30 

MgO 0.186 0.17 0.17 0.14 0.16 0.15 0.16 

Na2O 5.606 3.46 3.30 2.19 2.61 2.66 2.69 

CoO 0.001 1.29 1.34 2.38 2.66 3.27 3.34 

 
 

The behaviors of major exchangeable cations within the NaCLI during Co2+ 

exchanges in waterbath and with microwave irradiation were very much alike to Ag+ 

exchange studies. As indicated in Table 6.9 and Table 6.10, no considerable changes 

were observed for the major cations except Ca2+ and Na+ due to same reasons discussed 

for Ag+ exchange experiments. The chemical compositions of solid phase raw data for 

all other sets of Co+ exchanged NaCLI were plotted from the average of three runs 

within 0.05 confidence interval and are given in Appendix A in Figure A.13 and Figure 

A.14.  

Solid and liquid phase compositions of 0.01M Co (NO3)2.6H2O exchanged 

NaCLI with S/L=1/100 for 1hr in waterbath and with S/L=1/50 for 1hr with microwave 

irradiation are given and discussed in Table 6.11 and Table 6.12, respectively as being a 

representative case to whole.  
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Table 6.11. Solid and liquid phase compositions (0.01 M Co(NO3)2.6H2O, 80 oC, 
 S/L=1/100, 1hr, waterbath.) 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 

Ca 0.09 0.07 0 0.00 
Fe 0.31 0.26 0 0.00 
K 0.36 0.33 0 0.01 

Mg 0.04 0.04 0 0.00 
Na 0.92 0.37 0 0.31 
Co 0.01 0.43 1.000 0.43 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 0.61 0.57 

 

 

 
Table 6.12. Solid and liquid phase compositions (0.01 M Co (NO3)2.6H2O, 80 oC, 
 S/L=1/50, 1hr, microwave irradiation.) 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 

Ca 0.09 0.07 0 0.00 
Fe 0.31 0.30 0 0.00 
K 0.36 0.33 0 0.01 

Mg 0.04 0.04 0 0.00 
Na 0.92 0.42 0 0.26 
Co 0.01 0.36 0.500 0.09 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 0.55 0.41 

 

 

As indicated in Table 6.11 and 6.12, total amount of exchangeable cations 

[∑(Ca2++Na++K++Mg2+)] release is a little bit higher than Co2+ uptake which may be due 

to experimental and/or instrumental error since slight change of pH (5.50-5.86) was 

during the exchange was indicating negligible formation metal-hyroxyl complexes in 

liquid phase.  
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The experimental exchange capacity (CEC) for the given Co2+ exchanges is 

approximately 0.65 meq/gr zeolite which lower compared to TEC of NaCLI (2.75 

meq/gr zeolite) since all the exchangeable cations in different sites could not be 

replaced by Co2+ ions. Thus, in no case all Na+ and other exchangeable ions were 

replaced by Co2+ in all cases and H+ competes for the ionic exchange sites of the lattice 

with Co2+. Besides, cations cannot be easily removed from the NaCLI and impurities 

such as feldspar, quartz and salts within the structure do not allow the mineral to 

exchange up to a degree level of TEC. The pretreatment of the mineral might have an 

effect on CEC, as well. 

 The chemical compositions of liquid phase raw data for all other sets of Co2+ 

exchange NaCLI were plotted from the average of three runs within 0.05 confidence 

interval and are given in Appendix B between Figure B.13 and Figure B.14. The liquid 

phase and solid phase compositions of Co2+ exchanged NaCLI for all other sets are 

given in Appendix C between Table C.58 and C.71. 

The effect of S/L ratio and time on the exchange degree is summarized for 

0.01M Co (NO3)2.6H2O exchanged NaCLI at 80 oC in waterbath and with microwave 

irradiaiton in Figure 6.12 and Figure 6.13, respectively.  
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Figure 6.12. Effect of S/L ratio and time on Co2+ exchange (80 oC, waterbath). 
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Figure 6.13. Effect of S/L ratio and time on Co2+ exchange (80 oC, microwave 
 irradiation). 

 

 As indicated from Figure 6.12, the amount of 0.01M Co(NO3)2.6H2O exchanged 

on NaCLI increased with decreasing S/L ratio in the case of waterbath treatment. As the 

S/L ratio decreased from 1/20 to 1/100 Co2+ amount increased almost three percent by 

weight but did not change after 1hr. For microwave irradiated exchange shown in 

Figure 6.13, the Co2+ amount exchange on NaCLI also increased with decreasing S/L. 

As the time of treatment increased, Co2+ amount did not increase due to same reasons 

discussed for Ag+ exchange case.  

The exchange degree of Cu2+ in waterbath and with microwave irradiation for 

different S/L ratio, time and temperature was investigated in terms of major 

exchangeable cation compositions. Representing the whole, the chemical compositions 

(w/w %) of 0.01M Cu(NO3)25/2H2O exchanged NaCLI for the utilized conditions in 

waterbath and with microwave irradiation are tabulated in Table 6.13 and Table 6.14, 

respectively.  
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Table 6.13. Average chemical composition against time in solid phase (w/w %). (0.01M   
 Cu (NO3)25/2H2O, NaCLI 80 oC,waterbath). 
 

   
S/L=1/20 

 
S/L=1/50 

 
S/L=1/100 

 
 

 
NaCLI 

 
1hour  

 
24 hours 

 
1hour  

 
24 hours 

 
1hour  

 
24 hours 

Al2O3 11.54 11.51 11.62 11.43 11.46 11.90 11.62 
SiO2 69.14 66.35 65.34 66.67 64.42 67.67 64.95 
CaO 0.87 0.26 0.39 0.44 0.30 0.41 0.26 
Fe2O3 1.16 1.53 1.42 1.47 1.36 1.34 1.39 
K2O 3.92 2.98 3.03 3.11 2.94 3.45 2.89 
MgO 0.18 0.13 0.17 0.14 0.18 0.14 0.18 
Na2O 5.60 4.07 3.74 2.90 2.46 1.89 1.65 
CuO 0.001 1.51 1.59 3.00 3.16 3.93 3.98 

 

 

Table 6.14. Average chemical composition against time in solid phase (w/w %). (0.01M   
 Cu (NO3)25/2H2O, NaCLI 80 oC,microwave irradiation). 
 

   
S/L=1/20 

 
S/L=1/50 

 
S/L=1/100 

 
 

 
NaCLI 

 
30 min 

 
1 hour 

 
30 min 

 
1 hour 

 
30 min 

 
1 hour 

Al2O3 11.543 11.60 11.49 11.51 11.31 11.49 11.56 

SiO2 69.143 64.08 63.19 63.56 63.14 63.65 64.23 

CaO 0.877 0.53 0.39 0.47 0.44 0.38 0.39 

Fe2O3 1.162 1.84 1.36 1.64 1.80 2.04 1.48 

K2O 3.921 3.27 3.65 3.28 3.23 3.24 3.13 

MgO 0.186 0.17 0.16 0.17 0.16 0.16 0.16 

Na2O 5.606 4.70 4.23 3.07 2.91 2.12 1.99 

CuO 0.001 1.52 2.16 3.02 3.07 3.77 4.31 

 
 

As indicated in Table 6.13 and Table 6.14, the behaviors of major exchangeable 

cations within NaCLI for Cu2+ exchange were very much alike to Ag+ and Co2+ 

exchange. Considerable changes were observed for the major cations, Ca2+ and Na+, for 

Cu2+ exchange on NaCLI. The chemical compositions of solid phase raw data for all 
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other sets of Cu+ exchange NaCLI were plotted from the average of three runs within 

0.05 confidence interval and are given in Appendix A in Figure A.15 and Figure A.16. 

Solid and liquid phase compositions of 0.01M Cu(NO3)25/2H2O exchanged 

NaCLI with S/L=1/50 for 1hr in waterbath and with S/L=1/100 for 30 min with 

microwave irradiation  are given and discussed in Table 6.15 and Table 6.16.  

 

 
Table 6.15. Solid and liquid phase compositions (0.01 M Cu(NO3)25/2H2O, 80 oC, 
 S/L=1/50, 1hr, waterbath.) 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 

 Ca 0.09 0.08 0 0.003 
Fe 0.31 0.28 0 0.000 
K 0.36 0.33 0 0.006 

Mg 0.04 0.03 0 0.001 
Na 0.92 0.47 0 0.311 
Cu 0.01 0.38 0.500 0.103 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 0.50 0.40 

 
 
 
Table 6.16. Solid and liquid phase compositions (0.01 M Cu(NO3)25/2H2O, 80 oC, 
 S/L=1/100, 30 min, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 

 Ca 0.09 0.07 0 0.00 
Fe 0.31 0.38 0 0.00 
K 0.36 0.34 0 0.01 

Mg 0.04 0.04 0 0.00 
Na 0.92 0.34 0 0.36 
Cu 0.01 0.47 1.000 0.49 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 0.62 0.51 
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Total amount of exchangeable cations [∑(Ca2++Na++K++Mg2+)] release is a little 

higher than Cu2+ uptake as indicated in Table 6.15 and 6.16. Alike the Ag+ and Co2+ 

exchange cases, the change in the amounts of exchangeable cations in liquid phase is 

lower compared to solid case might be explained by hydrolysis of the exchangeable 

cation with -OH groups in the solution and form metal-hydroxyl complexes. However, 

alike the Ag+ and Co2+ exchange cases negligible formation of metal hydroxyl species 

was expected due to slight increase in pH (4.20-4.37) therefore difference may be due to 

experimental and/or instrumental error.  

Theoretical exchange capacity, of NaCLI, 2.45 meq/gr zeolite is again higher 

than experimental exchange capacity (CEC) which was calculated around 0.60 meq/gr 

zeolite for the given Cu2+ exchange conditions. The lack of the replacement of all 

exchangeable cations available in different sites by Cu2+ results in lower CEC. H+ 

competes for the ionic exchange sites of the lattice with Co2+, as well. 

The chemical compositions of liquid phase raw data for all other sets of Cu2+ 

exchange NaCLI were plotted from the average of three runs within 0.05 confidence 

interval and are given in Appendix B between Figure B.15 and Figure B.16. The liquid 

solid and liquid phase compositions of Cu (NO3)25/2H2O exchanged NaCLI for all other 

sets are given in Appendix C between Table C.72 and C.83. 

 The effect of S/L ratio and time on the exchange degree is summarized for 

0.01M Cu(NO3)25/2H2O exchanged NaCLI at 80 oC in waterbath and with microwave 

irradiation in Figure 6.14 and Figure 6.15, respectively.  
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Figure 6.14. Effect of S/L ratio and time on Cu2+ exchange (80 oC, waterbath). 
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Figure 6.15. Effect of S/L ratio and time on Cu2+ exchange (80 oC, microwave 
 irradiation). 

 

 As indicated in Figure 6.14, the amount of Cu2+ exchanged on NaCLI increased 

with decreasing S/L ratio for exchange conducted in waterbath. Microwave irradiated 

exchange as shown in Figure 6.15, the Cu2+ amount exchange on NaCLI also increased 

with decreasing S/L. As the time of treatment increased the Cu2+ amount did not 

increased alike to Ag+ and Co2+ exchange cases.  

The Ag+, Co2+ and Cu2+ exchange behaviors were investigated within each other 

in accordance with the amount in the solid phase. The exchange degree of Ag+, Co2+ 

and Cu2+ on NaCLI starting with 0.01M metal ion concentration are given in Figure 

6.16 and Figure 6.17 for waterbath and microwave treatments, respectively. 
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Figure 6.16. Ag+, Co2+ and Cu2+ on NaCLI (80 oC, waterbath). 
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Figure 6.17. Ag+, Co2+ and Cu2+ on NaCLI (80 oC, microwave irradiation). 

 

The exchange degree of Ag+, Co2+ and Cu2+ in waterbath and microwave are 

compared for 80 oC for different times and data are represented in Appendix D. Figure 

6.18 shows the 0.01M of Ag (NO)3, Co(NO3)26H2O and Cu(NO3)25/2 H2O  exchange for 

common time of 1hr at 80 oC for waterbath and microwave treatments.  
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Figure 6.18. Ag+, Co2+ and Cu2+ exchange on NaCLI  at 80 oC 
 

As indicated between Figure 6.16 and 6.18, the higher rate of Ag+ exchange both 

for the waterbath and microwave treatments as compared to Co2+ and Cu2+ exchange 

rates is possibly related to the higher hydrated radii and heats of hydration of Cu2+ and 

Co2+ compared to Ag+.  

Finally, ion exchange was predominating mechanism whereas limited inner-

sphere complex formation, dissolution and surface precipitation might exist for Ag+, 

Co2+ and Cu2+ exchanges on NaCLI. S/L ratio has the highest effect on the exchange 

degree compared to temperature and time. The microwave has equal and in some cases 

higher exchange degrees for each cation compared to waterbath. The efficiency of 

microwave irradiation on the exchange degree of Ag+, Co2+ and Cu2+ on NaCLI might 

be due its homoionic form (Na-form).  Na+ ion is the most weakly bound cation and has 

larger contribution towards microwave irradiation (Whittington and Milestone, 1992; 

Akdeniz. and Ülkü, 2007). The depth of penetration and dielectric properties of the 

metal solution-NaCLI system might have an influence on the exchange degree, as well. 

The dielectric constant of the NaCLI was determined as 13 however metal solution- 

NaCLI system probably have different dielectric constants and they needed to be 

determined for better analyze. Therefore, deeper investigation is needed in that respect.  

Microwave interaction with matter is characterized by a penetration depth, DP, 

which possibly changes the ion exchange degree as discussed in Chapter 4. For this 
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purpose, the solid and solution amounts were altered for the 30 min microwave 

treatment at 80 oC for Ag+, Co2+ and Cu2+ exchange on NaCLI starting with 0.01M 

metal solutions. The effect of DP on exchange degree is shown in Figure 6.19. 
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Figure 6.19. Depth of penetration effect on exchange degree. 
 

 The difference in the solid content of AgNO3 Co (NO3) 6H2O, Cu (NO3) 5/2H2O 

and NaCLI systems run under microwave irradiation did not significantly change the 

metal amounts sorbed on NaCLI. However, variations of solid and solution amounts 

thus the dielectric properties of the system should be considered in order to see the 

effect of DP on exchange degree. 

The concentration of the cation solutions might have significant effect on the 

extent of ion exchange. The higher ion concentrations of solution might lead to a higher 

degree of ion exchange with time in microwave compared to the commercial waterbath 

method (Xu et al., 2007). Therefore, ion exchange of Ag+, Co2+ and Cu2+ exchange on 

NaCLI with higher concentration of the cation solutions in waterbath and with 

microwave irradiation were considered. Solid phase chemical compositions conditions 

(w/w %) of 0.1 M Ag (NO3), 0.1 M Co(NO3)6H2O and 0.1M Cu(NO3)5/2H2O 

exchanged NaCLI in waterbath and microwave are tabulated in Table 6.17 through 

Table 6.19. 
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Table 6.17. Average chemical composition against time in solid phase (w/w %) (0.1M 
 AgNO3 , 80 oC, waterbath and microwave irradiation). 
 

   
Waterbath 

 
microwave 

 
 

 
 

 
NaCLI 

 
1 hour 

 
24 hours 

 
10min 

 
30min 

 
1hour 

Al2O3 11.99 11.02 10.70 10.49 10.77 10.66 
SiO2 72.33 69.88 67.25 68.07 68.44 69.40 
CaO 0.29 0.19 0.23 0.29 0.25 0.25 
Fe2O3 1.39 1.42 1.30 1.62 1.35 1.30 
K2O 2.77 2.12 1.98 1.96 2.08 2.09 
MgO 0.18 0.15 0.14 0.15 0.15 0.13 
Na2O 5.17 0.98 0.78 0.89 0.83 0.91 
Ag2O 0.22 14.30 14.38 13.71 13.45 13.41 

 

 

Table 6.18. Average chemical composition against time in solid phase (w/w %). (0.1M 
 Co(NO3)2.6H2O, 80 oC, waterbath  and microwave irradiation). 
 

   
Waterbath 

 
microwave 

 
 

 
 

 
NaCLI 

 
1 hour 

 
24 hours 

 
10min 

 
30min 

 
1hour 

Al2O3 11.99 11.45 11.69 11.30 11.30 11.38 
SiO2 72.33 71.66 67.71 72.88 73.10 72.98 
CaO 0.29 0.24 0.25 0.21 0.22 0.21 
Fe2O3 1.39 1.22 1.23 1.44 1.44 1.12 
K2O 2.77 2.27 2.37 2.43 2.43 2.35 
MgO 0.18 0.16 0.20 0.15 0.14 0.14 
Na2O 5.17 1.80 2.05 1.95 1.87 1.74 
CoO 0.22 4.00 4.05 3.33 3.38 3.62 
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Table 6.19. Average chemical composition against time in solid phase, (w/w %). (0.1M 
 Cu(NO3)2.5/2H2O , 80 oC, waterbath and microwave irradiation). 
 

   
Waterbath 

 
Microwave 

 
 
 

 
NaCLI 

 
1 hour 

 
24 hours 

 
10min 

 
30min 

 
1hour 

Al2O3 11.99 11.42 11.53 11.93 11.84 11.55 
SiO2 72.33 72.16 72.32 73.96 74.15 73.29 
CaO 0.29 0.31 0.16 0.33 0.25 0.45 
Fe2O3 1.39 1.89 1.15 1.99 1.53 2.09 
K2O 2.77 2.24 2.18 2.42 2.46 2.30 
MgO 0.18 0.16 0.15 0.16 0.15 0.15 
Na2O 5.17 1.25 1.22 1.16 1.40 1.46 
CuO 0.22 4.95 5.12 5.02 4.72 4.84 

 

 

As indicated in Table 6.17 through Table 6.19, increasing the metal solution 

concentration to 0.1M did not significantly increase the amount of Ag+, Co2+ and Cu2+ 

adsorbed on NaCLI for microwave irradiated ion exchange compared to ion exchange 

conducted in commercial waterbath as expected. The chemical compositions of solid 

phase raw data for other sets of Ag+, Co2+ and Cu2+ exchange NaCLI were plotted from 

the average of three runs within 0.05 confidence interval and are given in Appendix A 

in Figure A.17 through Figure A.19.  

The liquid phase and solid phase compositions of 0.1 M Ag (NO)3, 0.1 M 

Co(NO3)6H2O –NaCLI and exchanged NaCLI for utilized condition in waterbath and 

microwave are  given in Table 6.20 through Table 6.25.  
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Table 6.20. Solid and liquid phase compositions (0.1 M Ag(NO)3, 80 oC, S/L=1/100, 
 24hrs, waterbath 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 

Ca 0.10 0.08 0 7.031 
Fe 0.52 0.49 0 0.084 
K 0.58 0.42 0 0.068 

Mg 0.09 0.07 0 0.905 
Na 1.66 0.25 0 2.627 
Ag 0.00 1.25 10.000 8.457 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 1.60 1.54 

 
   
 
Table 6.21. Solid and liquid phase compositions (0.1 M Ag(NO)3, 80 oC, S/L=1/100, 
 1hr, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 

Ca 0.10 0.09 0 -0.414 
Fe 0.52 0.48 0 0.003 
K 0.58 0.44 0 0.049 

Mg 0.09 0.06 0 0.002 
Na 1.66 0.29 0 0.787 
Ag 0.00 1.16 10.000 8.688 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 1.54 1.31 
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Table 6.22. Solid and liquid phase compositions (0.1M Co(NO3)6H2O, 80oC, 
 S/L=1/100, 1hr, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 

Ca 0.05 0.04 0 0.331 
Fe 0.26 0.23 0 0.048 
K 0.29 0.24 0 0.021 

Mg 0.04 0.04 0 0.298 
Na 0.83 0.27 0 1.318 
Co 0.00 0.53 10.340 9.743 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 0.62 0.60 

 
 
 
 
Table 6.23. Solid and liquid phase compositions (0.1M Co(NO3)6H2O, 80oC, 
 S/L=1/100, 1hr, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 

 Ca 0.05 0.04 0 -0.030 
Fe 0.26 0.59 0 0.002 
K 0.29 0.25 0 0.010 

Mg 0.04 0.03 0 0.005 
Na 0.83 0.27 0 0.306 
Co 0.00 0.48 10.870 10.321 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

  0.60 0.54 

 

 

 

 

 

 



 92

Table 6.24. Solid and liquid phase compositions (0.1M Cu(NO3)2.5/2H2O, 80oC, 
 S/L=1/100, 1hr, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 

 Ca 0.05 0.05 0 4.052 
Fe 0.26 0.36 0 0.046 
K 0.29 0.24 0 0.035 

Mg 0.04 0.04 0 0.547 
Na 0.83 0.20 0 1.694 
Cu 0.00 0.68 11.673 10.906 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 0.70 0.76 

 
 
 
 
Table 6.25. Solid and liquid phase compositions (0.1M Cu(NO3)2.5/2H2O, 80oC, 
 S/L=1/100, 1hr, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 

 Ca 0.05 0.07 0 -0.052 
Fe 0.26 0.46 0 0.004 
K 0.29 0.24 0 0.016 

Mg 0.04 0.04 0 0.002 
Na 0.83 0.25 0 0.382 
Cu 0.00 0.64 10.650 10.128 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 0.65 0.53 

 

 There non-stoichiometry between the amount of Ag+, Co2+ and Cu2+  uptake and 

total amount of exchangeable cations release for waterbath and microwave irradiated 

exchange which was due to  hydrolysis of the exchangeable cation with -OH groups in 

the solution and formation metal-hydroxyl complexes. The experimental and/or 

instrumental error results with non-stoichiometry between the releasing and uptake of 
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the cations from the structure, as well. Ion exchange was considered as the predominant 

uptake mechanism for the processes conducted with higher metal concentration. The 

chemical compositions of liquid phase raw data for all other sets of Ag+, Co2+ and Cu2+ 

exchanged NaCLI were plotted from the average of three runs within 0.05 confidence 

interval and are given in Appendix B, Figure B.15 and Figure B.16.  The liquid phase 

and solid phase compositions of Ag+, Co2+ and Cu2+ exchanged NaCLI for all other sets 

are given in Appendix C between Table C 93 and Table C108.   

The exchange degree of Ag+, Co2+ and Cu2+ on NaCLI were investigated within 

each other in accordance with the amount in the solid phase. The Ag+, Co2+ and Cu2+ 

amounts (w/w%) starting with 0.1M initial metal ion concentration are given in Figure 

6.20 through 6.22 for waterbath and microwave treatments. 

 

 

 
Figure 6.20. Ag+, Co2+ and Cu2+ exchange on NaCLI ( 80 oC, waterbath). 
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Figure 6.21. Ag+, Co2+ and Cu2+ exchange on NaCLI ( 80 oC, microwave irradiaiton). 
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Figure 6.22. Ag+, Co2+ and Cu2+ exchange on NaCLI (1hr, 80 oC). 
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Almost the same exchange degrees for Ag+, Co2+ and Cu2 were observed as 

initial metal concentration was increased from 0.01 M  to 0.1M for  imicrowave and 

waterbath conducted exchanges. 

Further increase in initial concentration of the cation solution (1M) for Ag+, Co2+ 

and Cu2+ exchange on NaCLI in waterbath and with microwave irradiation were 

determined. Solid phase chemical compositions conditions (w/w%) of 1 M Ag(NO3), 

1M Co(NO)36H2O and 1M Co(NO)35/2H2O exchanged NaCLI in waterbath and 

microwave are tabulated in Figure 6.23, Figure 6.24 and Figure 6.25, respectively. 
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Figure 6.23. Ag+ exchange on NaCLI against time (80 oC ,S/L=1/100). 
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Figure 6.24. Co2+ exchange on NaCLI against time (80 oC, S/L=1/100). 
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Figure 6.25. Cu2+ exchange on NaCLI against time (80 oC, S/L=1/100). 

 
Starting from the fact that higher ion concentrations of solution might lead 

higher degree of ion exchange with time in microwave driven ion exchange compared 

to the waterbath exchange. However, the exchange degree for Ag+, Co2+ and Cu2+    
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starting with 0.01M, 0.1M and 1M metal ion concentration did not increase the 

exchange degree for Ag+, Co2+ and Cu2+  in microwave as expected.  The highest degree 

of exchange was observed for the Ag+ exchange compared to Co2+ and Cu2+ in both 

treatments for all cases. As well as the hydrated radii and hydration energies of ions, 

dielectric properties of system might have an influence on exchange degree therefore 

deeper investigation is needed in that respect.  

In addition to microwave conducted exchanges in Mars 5-CEM Digestion and 

Extraction laboratory microwave oven system (EDMS), the ion exchange of Ag+, Co2+ 

and Cu2+ exchange on NaCLI was conducted in Discovery-CEM microwave system 

(DMS) in which microwave power was continuous through the total time of exchange. 

The microwave conducted exchanges in EDMS and DMS were determined and 

considered. Solid phase chemical compositions conditions (w/w% ) of 0.1 M and 1M 

Ag(NO3), Co(NO)36H2O and  Cu(NO)35/2H2O exchanged NaCLI for 10 minutes in both 

microwave systems are tabulated in Figure 6.26. 
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Figure 6.26. Ag+, Co2+ and Cu2+ exchange on NaCLI (10min, 80 oC , S/L=1/100). 
 

 The DMS system uses 300 watts microwave power in principle. However for the 

above exchanges considered, 50 watts of continuous microwave energy was applied. 

Because, temperature of the system increases very much without control if 300 watts 

microwave power is being used. After several trials, the system temperature was kept at 
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80 oC for 10 minutes if 50 watts of continuous microwave power was applied. As 

indicated in Figure 6.26, the exchange degree for Ag+, Co2+ and Cu2+    starting with 

0.1M and 1M metal ion concentration did not increase the exchange degree for Ag+, 

Co2+ and Cu2+  in DMS as expected.  Because, the microwave power used was not 

sufficient enough to obtain higher exchange degrees compared to EDMS even if it was 

continuous.  

 Thus, two different microwave instruments with different working principles 

were used for ion exchange both having disadvantages. In EDMS, microwave power 

was not continuous and it was not used with 100% continuous efficiency through the 

total exchange time. Although microwave power was continuous in DMS it was 

insufficient for exchange systems considered here. As a suggestion, in order to work 

with higher microwave power, the cooling system around the vessel could be modified 

in DMS system. For example instead of air, liquid nitrogen could be used which might 

keep the system at 80 oC with the application of 300 watt microwave power. The ion 

exchange conducted with high and continuous microwave power, the higher exchange 

rates of different cations on clinoptilolite rich mineral could be obtained.  

 
 
6.3. X-Ray Analyses of Ag+, Co2+ and Cu2+ Exchanged NaCLI 
 

 

 Ag+, Co2+ and Cu2+ exchanged NaCLI samples were investigated by powder 

XRD. The patterns were examined using intensities which were outlined by Arcoya et. 

al, 1999. Additionally, the peaks of were examined by SMSP attached to X-Ray 

diffractometer and presence of extra peaks were examined in the same manner. The 

XRD patterns of Ag+, Co2+ and Cu2+ exchanged NaCLI for 24 hrs in waterbath and for 

1hr with microwave irradiaiton in comparison to NaCLI are given in between Figures 

6.27 and 6.29. X-Ray patterns of Ag+, Co2+ and Cu2+ exchanged NaCLI for the all 

utilized parameters for waterbath and with microwave irradiation are given in Appendix 

E. 
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Figure 6.27. XRD pattern of Ag+ exchanged NaCLI (80 oC, waterbath and 
 microwave irradiation). 
 
 The main peaks of Ag+ exchanged NaCLI in waterbath were overlapped with the 

archived data of clinoptilolite mineral peaks in the SMSP library belonging to JSPDS 

22-1235 card and main impurity was identified as quartz belonging to JSPDS 83-0335 

card. For the microwave case, main peaks were overlapped mainly with the 

clinoptilolite and heulandite mineral peaks belonging to JSPDS 39-1383 and JSPDS 82-

1229 card, respectively. Again the main impurity was quartz identified with JSPDS 86-

1630 card.  

The characteristic peak intensities at 9.92 and 30.05o 2theta relative to most 

intense peak at 22.40 o 2theta of Ag+ exchanged minerals were examined in comparison 

to NaCLI peak intensity ratios. The decrease on the peak ratio at 9.92o 2theta which is 

attributed to framework cations probably caused by the compositional change within the 

mineral after the exchange. The change in peak ratio at 30.05o 2theta was small 

compared to change in peak ratio at 9.92o 2theta. The comparative analysis showed that 

small peak appeared at around 42.5o 2theta Ag+ exchanged NaCLI for 1hr microwave. 
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Figure 6.28. XRD pattern of Co2+ exchanged NaCLI (80 oC ,waterbath and microwave 
irradiation). 

 

The main peaks of Co2+ exchanged NaCLI in waterbath were overlapped with 

the K-heulandite and clinoptilolite mineral peaks in the SMSP library belonging to 

JSPDS 76-2213 and JSPDS 25-1349 card, respectively. Main impurity was identified as 

quartz belonging to JSPDS 85-0335 card. For the microwave case, main peaks were 

overlapped mainly with heulandite mineral peaks belonging to JSPDS 82-1228 card. 

The main impurity was α-quartz identified with JSPDS 75-0443 card. The peaks 

appeared at around 13.60, 27.30 and 46.21o 2theta are attributed to Co oxide identified 

by the archived data found in SMSP library belonging to JSPDS 27-0516 card. 

For Co2+ exchanged NaCLI, peak intensities at around 9.92 and 30.05o 2theta 

relative to most intense peak at around 22.40 o 2theta were examined in comparison to 

NaCLI. The alteration of peak ratios at 30.05o 2theta and 9.92o 2theta are not significant 

but higher for 30.05o 2theta case. The intense peak at 41.4 o 2theta might depend on the 

nature of NaCLI mineral which is being K-rich (SMSP) 
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Figure 6.29. XRD pattern of Cu2+ exchanged NaCLI (80 oC, waterbath and 
 microwave irradiation). 

 

The main peaks of Cu2+ exchanged NaCLI in waterbath were overlapped with 

the Na-K-Ca clinoptilolite mineral peaks in the SMSP library belonging to JSPDS 39-

1383 and the additional peaks are between 44 and 46 o2theta are attributed to this 

match. Main impurity was identified as quartz belonging to JSPDS 85-0335 card. The 

comparative analysis showed that peaks appeared between 44- 45o 2theta is attributed to 

Cu2+. For the microwave case, main peaks were overlapped mainly with Ca-

clinoptilolite and heulandite mineral peaks in the SMSP library belonging to JSPDS 25-

1349 and JSPDS 77-0334 card, respectively. The main impurity was α-quartz identified 

with JSPDS 75-0443 card.   

Peak intensity ratios were examined for Cu2+ exchanged NaCLI in comparison to 

NaCLI both for waterbath and microwave exchanges. The alteration of peak ratios at 

30.05o 2theta and 9.92o 2theta are not significant. The intense peak at 41.4 o 2theta 

probably depends on nature of NaCLI mineral which is being K-rich (SMSP). 

The overall X-Ray examination of Ag+, Co2+ and Cu2+ exchanged NaCLI 

showed that modification of  NaCLI with ion exchange in waterbath and microwave 

showed that did not lead significant structural changes. No shifts in peak positions of 

characteristic peaks of clinoptilolite and insignificant decrease in characteristic peak 

intensities relative to most intense peak of clinoptilolite on XRD patterns of all samples 

is an indication of no crystallinity loss of NaCLI in its metal exchanged forms 

(Benaliouche et al., 2008). 
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6.4. FTIR Analyses of Ag+, Co2+ and Cu2+ Exchanged NaCLI 
 

 

 The FTIR of Ag+, Co2+ and Cu2+ exchanged NaCLI samples in comparison to 

NaCLI with S/L=1/100 for 24 hrs. in waterbath and 1hr in microwave are given in 

Figure 6.30 and Figure 6.31, respectively.  
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Figure 6.30. FTIR Spectra of Ag+, Co2+ and Cu2+ exchanged NaCLI (80oC, waterbath). 
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Figure 6.31. FTIR Spectra of Ag+, Co2+ and Cu2+ exchanged NaCLI (80 oC, microwave 
 irradiaiton). 
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 FTIR spectra are very useful in getting structural information, cation 

substitutions and channel sizes hence metal exchanged NaCLI samples were examined 

by FTIR. Following the Figures 6.30 and 6.31, major bands attributed to characteristic 

of clinoptilolite at 1060, 790 cm-1 and 609 cm-1 and related with isolated OH stretching 

at 3700 cm_1
,
 H-bonded O–H stretching at 3400 cm_1 and H2O bending at 1620 cm_1 

were observed for Ag+, Co2+ and Cu2+ exchanged NaCLI both in waterbath and 

microwave (Breck, 1974). The unchanged position of the main band at 1060 cm-1 due to 

Si-O(Si) and Si-O(Al) vibrations showed that no framework dealumination within the 

NaCLI with Ag+, Co2+ and Cu2+ metal exchanges.  

 However, it is not appropriate to examine the FTIR spectra on the region based 

between 400- 4000 cm-1 because getting right information is not possible through on 

that basis. Introducing the non-tetrahedral cations into the alumino-silicate framework 

change the IR spectra in the range of pseudo lattice vibrations at 500-700 cm-1 which 

are characterized by shifts and intensity changes in the bands (Korkuna et al., 2005).  

 The FTIR spectrum in the extended region from 500 to 750 cm-1 for Ag+, Co2+ 

and Cu2+ exchanged NaCLI samples with S/L= 1/100 at 80oC in waterbath and 

microwave are given in Figure 6.32 and Figure 6.33, respectively The peak intensity 

ratio at 609 cm-1 relative to the main band intensity at 1060 cm-1 were examined and are 

given in Table 6.26. 
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Figure 6.32. FTIR spectra in the 500-700 cm-1 region for Ag+, Co2+ and Cu2+ exchanged 
 NaCLI (80oC, waterbath). 
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Figure 6.33. FTIR spectra in the 500-700 cm-1 region for Ag+, Co2+ and Cu2+ exchanged 
         NaCLI (80oC , microwave irradiation). 

 

 

Table 6.26. The 609 cm-1 to 1060 cm-1 peak intensity ratio for Ag+, Co2+ and Cu2+        
 exchanged NaCLI (80oC, waterbath (wb) and microwave (mw)). 
 

 
S/L=1/20 

 
S/L=1/50 

 
S/L=1/100 

 
Peak Intensity 

Ratio 
 

 
NaCLI 

 
Wb

 
mw

 
Wb

 
mw

 
wb 

 
mw

 
Ag+ 0.17 0.16 0.18 0.15 0.19 0.17 

 
Co2+ 0.22 0.21 0.21 0.23 0.22 0.22 

 
Cu2+ 

 
 

0.18 
 
 0.21 0.20 0.22 0.21 0.19 0.23 

 

 

  The embedding the Ag+, Co2+ and Cu2+ cations into the structure of NaCLI do 

not result in the prominent shifts of the band positions as seen in Figure 6.32 and Figure 

6.33. As indicated in Table 6.26, introducing the cations into the structure did not 

distinctly change the peak intensities at 609 cm-1 whereas slight changes might due to 

the nature of the mineral, NaCLI. 

 The FTIR spectrum exhibits three major hydroxyl bands attributed to. (a) SiOH 

groups terminating the crystal structure (3740 -3730 cm-1), (b) AlOH gropus (3680-

3670 cm-1), and (c) OH groups in the supercage (3644-3628 cm-1) (Benaliouche et al., 
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2008). Therefore peaks due to formation hydroxyl species were examined in the range 

3600- 3750 cm-1. 

 The FTIR spectrum of Ag+, Co2+ and Cu2+ exchanged NaCLI samples examined 

in the extended region from 3600 to 3750 cm-1, as well. The spectrum of metal 

exchanged forms of NaCLI with S/L=1/100 at 80oC in waterbath and microwave are 

given Figure 6.34 and Figure 6.35, respectively.  

 The isolated OH- stretching vibrations at 3628 cm-1 are attributed to interaction 

between the water hydroxyl and also the cations present. The peak intensity ratio at 

3680 cm-1 relative to the main band at 1060 cm-1 were examined and given in Table 

6.27. 
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Figure 6.34. FTIR spectra in the 3400 cm-1 region for Ag+, Co2+ and Cu2+ exchanged 
 NaCLI (80oC, waterbath) 
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Figure 6.35. FTIR spectra in the 3400 cm-1 region for Ag+, Co2+ and Cu2+ exchanged 
 NaCLI (80oC, microwave irradiation). 
 

 

Table 6.27. The 3628 cm-1  to 1060 cm-1 peak intensity  ratio for Ag+, Co2+ and Cu2+       
 exchanged NaCLI  (80oC, waterbath (wb) and microwave (mw)). 
 

 
S/L=1/20

 
S/L=1/50

 
S/L=1/100

 
Peak Intensity 

Ratio 

 
NaCLI 

 
wb

 
mw

 
wb

 
mw

 
wb 

 
mw

 
Ag+ 0.14 0.14 0.15 0.13 0.16 0.14 

 
Co2+ 0.14 0.13 0.14 0.14 0.13 0.14 

 
Cu2+ 

 
 

0.14 
 
 0.14 0.14 0.19 0.15 0.16 0.15 

 

 

 As seen in Figure 6.34 and Figure 6.35, the intensity increased in the hydroxyl 

group in the supercages at 3644 cm-1, 3790 cm-1 and 3736 cm-1 indicating the 

association of OH groups with exchanged cations (Benaliouche et al., 2008). In 

addition, no shifts in the position of bands were observed. As indicated in Table 6.27, 

introducing the cations into the structure did not distinctly change the peak intensities of 

the NaCLI at 3628 cm-1. 

 FTIR patterns of Ag+, Co2+ and Cu2+ exchanged NaCLI for the all utilized 

parameters for waterbath and microwaves are given in Appendix F. 
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6.5. SEM Analyses of Ag+, Co2+ and Cu2+ Exchange NaCLI 
 
 

The micrographs of Ag+ exchanged NaCLIs were taken by using BSE back 

scattered electron (BSE) detector since elements with higher atomic number were seen 

brighter on BSE detector used micrographs. Therefore better clear identification of Ag+ 

ions within the mineral is possible. The SEM micrograph Ag+ exchanged NaCLI in 

waterbath and microwave are given in Figure 6.36 and 6.37, respectively 

 

      
 
Figure 6.36. SEM micrograph of Ag+ exchanged NaCLI in waterbath a) S/L=1/50 at 
 40 oC for 3days b) S/L=1/100 at 80 oC for 1hour. 
 

 

    

Figure 6.37. SEM micrograph of Ag+ exchanged NaCLI with microwave irradiation a) 
 S/L=1/100 at  80 oC for 30minute b) S/L=1/100 at 80 oC for 1hour. 
 

a b 

   a   b 
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In the above micrographs, white particles were corresponding to Ag+ ions and 

observed for all the exchange runs in waterbath and microwave which were given in 

Appendix G. In order to make clear that the white particles in micrographs are Ag+, 

EDX analysis was done directly onto the white particle on randomly selected run and it 

is given in Figure 6.38. 

 

 

Figure 6.38. EDX analysis of Ag+ exchanged NaCLI (S/L=1/100, 1day, 80 oC,          
 waterbath). 
 

It is agreed from the EDX analysis that those white particles were corresponding 

to Ag+ ions. Rivera-Garza, 2000, had studied the antibacterial activity of Ag-exchanged 

Mexican zeolite and observed similar white particles on the surface of the zeolitic 

material. They analyzed those particles showed that they have high concentration of Ag. 

As indicated from the micrographs, the distribution the Ag+ ions were not 

homogenous and in all exchanged NaCLI. This doesn’t mean those minerals have no or 

smaller Ag+ content compared to the ones that have white particles were seen on their 

SEM micrograph. The EDX analysis done on the Ag+ exchanged NaCLI with 

S/L=1/100 at 60 oC for 24hrs in waterbath and given in Figure 6.39. The element wt% 

shows that even the absence of the white particles the Ag+ amount within the mineral is 

quite high.    
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Figure 6.39. EDX analysis of Ag+ exchanged NaCLI (S/L=1/100, 24hrs, 60 oC, 
 waterbath) 
 

The exchanged the minerals were washed several times after the exchange 

completed, dried and kept for various analyses and during washing, Ag+ particles on the 

surface of the minerals might sweep away. This may cause non-homogenous 

distribution of Ag+ ions detected on SEM micrograph. The mapping result for the same 

experimental set is given in Figure 6.40. 

 

 

Figure 6.40. SEM Mapping for Ag+ exchanged NaCLI (S/L=1/100, 60 oC 24hrs, 
 waterbath). 
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 The micrographs of Co2+ and Cu2+ exchanged NaCLIs were taken by using 

secondary electron (SE) detector and are given in Figure 6.41 and 6.42 for waterbath 

and microwave treatments, respectively.  

 

    

Figure 6.41. SEM micrograph of Co2+ exchanged NaCLI at 80 oC a) S/L=1/50 for 24hrs, 
          in waterbath b) S/L=1/20 for 1hour with microwave irradiation. 
 
 

 

    
  
Figure 6.42. SEM micrograph of Cu2+ exchanged NaCLI at 80 oC a) S/L=1/20 for 24hrs, 
          in waterbath b) S/L=1/100 for 1hour with microwave irradiation. 
 

 The EDX analysis done on Co2+ and Cu2+ exchanged NaCLI were done for the 

runs which are selected randomly are given in Figure 6.43 and 6.44, respectively. 

 

 

a b 

    a   b 
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Figure 6.43. EDX analysis of Co2+ exchanged NaCLI (S/L=1/100, 80 oC, 24 hrs, 
 waterbath). 

 

 

 
 

Figure 6.44. EDX analysis of Cu2+ exchanged NaCLI (S/L=1/20, 80 oC, 1hr
 microwave irradiation). 

 

Co2+ and Cu2+ exchanged NaCLI did not show any structural changes with 

waterbath and microwave treatments. Typical clinoptilolite crystals were clearly 

observed in all SEM micrograph. Co2+ and Cu2+ exchange degrees on NaCLI 
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determined from EDX analysis are in good agreement and compatible with ICP data. 

SEM micrographs of some selected Ag+ Co2+ and Cu2+ exchanged NaCLI for the 

utilized parameters for waterbath and microwave irradiated exchange are given in 

Appendix G.  

 

6.6. N2 Adsorption Isotherms of Ag+, Co2+ and Cu2+ Exchanged NaCLI 

 
 The adsorption-desorption isotherms for Ag+, Co2+ and Cu2+ exchanged NaCLI 

for 24hrs in waterbath and 1hr in microwave are shown in Figure 6.45a and Figure 

6.45b, respectively. The full fill symbols are corresponding to adsorption whereas 

empty symbols are corresponding desorption. The S/L ratio parameter for these 

experimental sets was 1/100. 
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Figure 6.45. Sorption Isotherms of Ag+, Co2+, Cu2+ treated NaCLI. 

  

 Based on the IUPAC classification of sorption isotherms all the Ag+, Co2+, Cu2+ 

treated NaCLI showed Type 4 isotherm and hysteresis loops of the isotherms are typical 

for mesoporous materials. In addition, the presence of impurities within the mineral and 

the exchangeable cations located in NaCLI channels are generating a kind of barrier for 

N2 molecules and their diffusion becomes hard (Korkuna et. al, 2005). The volume 

adsorbed for the Ag+, Co2+ and Cu2+ exchanged NaCLI in waterbath are found as 35.13 
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cm3/gr STP, 40.16 cm3/gr STP and 37.75 cm3/gr STP, respectively. For the microwave 

case, volume adsorbed are found as 37.94 cm3/gr STP, 35.37 cm3/gr STP and 39.01 

cm3/gr STP for the Ag+, Co2+ and Cu2+ exchanged NaCLI, respectively. The volume 

adsorbed at highest P/Po for NaCLI is found 42.14 cm3/gr STP. The volume adsorbed 

decrease for Ag+, Co2+ and Cu2+ exchanged NaCLI was likely due to impurities and 

framework cations present within the structure. In the case microwave irradiation, Cu2+ 

exchanged NaCLI has different sorption isotherm which shows it has more microporous 

structure compared to Ag+ and Co2+ exchanged NaCLI. The external surface areas for 

Ag+, Co2+ and Cu2+ exchanged NaCLI were found as 31.48 m2/gr, 17.90 m2/gr and 9.25 

m2/gr, respectively. Because, formation of surface complexes and precipitations were 

higher in the case of Ag+ and Co2+ exchanged NaCLI which are supported by SEM and 

ICP. The sorption of N2 is lower in the case of Ag+ and Co2+ exchanged NaCLI 

compared to Cu2+ exchanged NaCLI due to the blockage of the precipitates and 

formations on the surface of NaCLI. All other sorption of Ag+, Co2+ and Cu2+ 

exchanged NaCLI for the utilized parameters for waterbath and microwaves are given 

in Appendix H. 

 

 

6.7. Thermal Analysis Results of Ag+, Co2+ and Cu2+ Exchanged NaCLI 
 

 

 Thermal analysis techniques are important in evaluating the thermal behavior of 

zeolitic material which is directly dependent on type and population of cations within the 

structure (Perraki and Orfanoudaki et al., 2004). TGA curves of Ag+, Co2+ and Cu2+ 

exchanged NaCLI with S/L=1/200 at 80 oC in waterbath for 24hrs and in microwave for 

1hr are given in Figure 6.46.a  and Figure 6.46.b, respectively.  
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Figure 6.46. TGA curve of Ag+, Co2+ and Cu2+ exchanged NaCLI. 

  

 Zeolites exchanged with monovalent cations have lower loss of zeolitic water 

compared to zeolites exchanged with bivalent cations. The quantity of of weakly bound 

water is dependent on the size of the cations (Castaldi et al, 2005). TGA curves indicating 

smooth mass loss without any evident steps. Conspicuously, desorption of water starts at 

around the same temperature but completed at different temperatures due to the different 

cation content of different metal exchanged forms of NaCLI. It can be seen from Figure 

6.46.a, the dehydration of Cu2+ exchanged NaCLI was completed at higher temperatures 

and its zeolitic water is high compared to Ag+ and Co2+ exchanged NaCLI in waterbath 

treatment. The temperature needed for complete dehydration of water decreases with 

increasing size of the non-framework cations (Korkuna et al, 2005).  

 DTA curves of Ag+, Co2+ and Cu2+ exchanged NaCLI with S/L=1/200 at 80 oC in 

waterbath for 24hrs and in microwave for 1hr are given in Figure 6.47  and Figure 6.48, 

respectively. 
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Figure 6.47. DTA curve of Ag+, Co2+ and Cu2+ exchanged NaCLI. 
 

 

 
Figure 6.48. DTA curve of Ag+, Co2+ and Cu2+ exchanged NaCLI . 

 

  As seen in DTA curves of Ag+, Co2+ and Cu2+ exchanged NaCLI low 

temperature endotherm peaks existed between 25-125 oC in accordance with the 
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dehydration of physically adsorbed water. The desorption of zeolitic water which is 

tightly bound to structure is responsible for the major mass loss observed between 200- 

400 oC.  

  Following the DTA figures above, thermal behavior of Co2+ and Cu2+ exchanged 

NaCLI did not change as compared to NaCLI. However, due to possible oxidation 

reaction occurrence in the case of Ag+ exchanged NaCLI resulted in exothermic 

reaction in waterbath treatment case. Si/Al ratio of Ag+, Co2+ and Cu2+ exchanged 

NaCLI samples discussed in Figure 6.47 and Figure 6.48 were found higher than 3.80 

and may be called thermally stable.  

 

 

6.8. Kinetic Study of Ag+, Co2+ and Cu2+ exchange NaCLI 
 

 

 The amount Ag+, Co2+ and Cu2+ adsorbed (qt) on NaCLI with time were 

determined. The sorption kinetics suggested that quite short times are sufficient to 

achieve equilibrium in all cases as indicated in Figure 6.49. Almost within an hour 

system reaches to equilibrium therefore further progress to exchanges are not necessary.  

It has been determined that Ag+, Co2+ and Cu2+ adsorbed (qt) on NaCLI with time 

increased with the decrease of S/L ratio due to increase in solute–solution interaction. 
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Figure 6.49. Amount adsorbed (qt) a) Ag+ b) Cu2+ c) Co2+ on NaCLI against time. 
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 The rate laws describing the metal ion sorption from batch with different kinetic 

models, namely, first order, pseudo-first and pseudo-second order are given in between 

Figures 6.50 and 6.52.  
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Figure 6.50.  a) First order model b) Pseudo-first order model c) Pseudo-second order 
model for Ag+ sorption on NaCLI at 80 oC. 
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Figure 6.51.  a) First order model b) Pseudo-first order model c) Pseudo-second order 

model for Co2+ sorption on NaCLI at 80 oC. 
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Figure 6.52.  a) First order model b) Pseudo-first order model c) Pseudo-second order 
model for Cu2+ sorption on NaCLI at 80 oC. 

 

 Several other studies on the sorption of divalent metals on heterogeneous 

sorbents show that the kinetics generally follows a pseudo-second order rate law (Jha et 

al., 2008).The calculated kinetic parameters are given in Table 6.28.  
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The kinetic experiments for all cases were carried out in 0.01 M metal nitrate 

solutions in waterbath at 80 oC for different S/L ratios. The sorption processes of metal-

NaCLI systems considered throughout this study did not followed the first and pseudo-

first order models however the high values of R2 for the pseudo-second order kinetic 

model show the agreement of experimental data. 

The external mass transfer coefficient (kf) and effective diffusion coefficients 

(De) were calculated for all metal-NaCLI systems with different S/L ratios in waterbath 

at 80 oC are given in Table 6.29. 

 

Table 6.29. External mass transfer coefficient (kf), pore diffusion coefficient (Dp) and    
Biot Number for (Ag+, Co2+ and Cu2+) –NaCLI systems. 

 

kf  (m/sec) Dp  (cm2/sec)  

Solid/Liquid 

Ratio Ag+ Co2+ Cu2+ Ag+ Co2+ Cu2+ 

 

S/L=1/20 

S/L=1/50 

S/L=1/100 

 

1.2•10-04 

1.3•10-04 

5.5•10-05 

 

1.5•10-04 

6.2•10-04 

5.7•10-04 

 

4.5•10-04 

7.2•10-04 

2.0•10-03 

 

2.1•10-06 

2.1•10-07 

2.0•10-07 

 

1.6•10-07 

9.8•10-07 

1.2•10-06 

 

3.9•10-07 

3.1•10-06 

9.1•10-06 

Biot Number  

 

 
S/L=1/20 

S/L=1/50 

S/L=1/100 

1.57 

17.16 

7.64 

23.17 

16.00 

12.01 

27.86 

5.92 

5.60 

 
 

 Since rapid initial (up to 3 min) uptake was observed for all sorption processes, 

mass transport was assumed to be controlled by external-phase mass transfer at earlier 

stages and by pore-phase mass transfer at later stages. Based on this assumption, the 

external mass transfer coefficient (kf) and pore diffusion coefficient (Dp) were calculated 

using Equation 3.19 and Equation 3.26 and are given in Table 6.29. The kf and Dp values 

were found in the range of 10-5 – 10-3 cm2/sec and 10-7 – 10-6 cm/sec, respectively. The 

upper limit of Biot number for external mass transfer rate-controlled processes was 

reported between 10 and 30 for different systems in literature (Ülkü et al., 1998 and 

Depaoli et al., 1996). The dimensionless Biot numbers for our systems were calculated 
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using Equation 3.28 indicates that the sorption processes are controlled mainly by 

external-phase mass transfer. Although the moderate Biot numbers might indicate the 

validity of both models, solute sorbed (qt) versus square root of time t1/2 did not yield a 

straight line passing through the origin as indicated in Figure 6.53 supporting the defined 

mechanism derived by means of Biot number. Thus, external-phase mass transfer 

mechanism has prominent effect on the sorption process compared to pore-phase mass 

transfer mechanism. The processes followed the pseudo-second-order model considered 

at all time intervals based on the sorption kinetics as given in Table 6.28. Therefore, for 

better evaluation of the dominating mass transport mechanism deeper investigation on 

the effect of process parameters like the agitation speed, concentration of the metal 

solutions, particle size of the adsorbent and etc is needed to be considered. 
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Figure 6.53. qt versus √time for a) Ag+  b) Co2+  c) Cu2+  sorption on NaCLI at 80 oC. 

c 

a b 



 124

6.9. Equilibrium Study of Ag+, Co2+ and Cu2+ exchange NaCLI 
 

 

  Several isotherm models are available to describe the equilibrium adsorption 

distribution in which in this study is Langmuir and Freundlich models were used to fit 

equilibrium data to experimental data. The sorption isotherms of Ag+ sorption on NaCLI 

at different temperatures are given in between Figure 6.54 and Figure 6.56.  
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  Figure 6.54. Equilibrium Isotherms for sorption of Ag+ on NaCLI at 40 oC a) waterbath 
            b) microwave irradiation. 
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Figure 6.55. Equilibrium Isotherms for sorption of Ag+ on NaCLI at 60 oC (waterbath). 
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   (a)       (b) 

Figure 6.56. Equilibrium Isotherms for sorption of Ag+ on NaCLI at 80 oC a) waterbath 
 b) microwave irradiation.      
   

 The maximum capacity of the Ag+ sorption on NaCLI samples has not been 

reached yet thus higher concentrations should be considered for more accurate results 

and interpretations. The Langmuir and Freundlich model constant determined from the 

linearized forms of the model equations are given in Table 6.30 for sorption of Ag+ on 

NaCLI at 40, 60 and 80 oC. 

a b 
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Table 6.30. Equilibrium constants of for sorption of Ag+ on NaCLI. 
 

Langmuir Model Freundlich Model  

T (oC) 
Qo  b  R2 ΔG (kj/mol) Kf  N  R2 

40′ 86.21 0014 0.98 -6.806 4.96 0.21 0.99 

60′ 90.09 0.012 0.92 -6.458 3.00 1.77 0.95 

80′ 81.96 0.016 0.92 -7.213 2.40 1.65 0.98 

40 ∼ 31.05 0.004 0.92 -3.404 2.53 1.68 0.94 

60∼ - - - - - - - 

80∼ 169 0.0003 0.40 2.932 0.11 1.54 0.96 

(′ corresponding to waterbath  , ∼corresponding to microwave irradiation) 

 

 As indicated from Table 6.30, the Ag+ sorption by NaCLI exhibited a good fit to 

Langmuir model (R2 > 0.95) however; a better fit to Freundlich model was concluded 

since greater R2 values which are closer to unity was obtained. The adsorptive behaviors 

indicate that the sorption takes place on heterogeneous surface, which may be attributed 

to the various active sites on of NaCLI and it is dominated as a physical sorption 

process. The theoretical Qo values calculated from Langmuir model equation are in good 

agreement with the experimental values determined from kinetic data. 

 The standard free energy (ΔG◦), the enthalpy (ΔH◦) and entropy (ΔS◦) and their 

changes are associated with the sorption process therefore it is important to determine 

them in order to describe the process. van’t hoff plots for sorption reaction of Ag+ onto 

NaCLI in waterbath and microwave are given in Figure 6.57.  
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Figure 6.57. Ln KC versus 1/T for sorption of Ag+ on NaCLI at 80 oC a) waterbath b) 
 microwave irradiation. 
 

 Thermodynamic parameters, ΔG◦, ΔHo and ΔS◦, determined using von’t Hoff 

plots given in Figure 6.56 for Ag+ sorption process are given in Table 6.31. 

 

Table  6.31. Thermodynamic properties of Ag+ Sorption onto NaCLI. 

Ag+ Waterbath Exchange Microwave Irradiated Exchange

S/L Ratio (ΔH◦) 

 (kJ /mol) 

(ΔS◦)  

(J/mol K) 

(ΔH◦) 

(kJ /mol) 

(ΔS◦) 

 (J/mol K) 
1/20 -13.260 -41.98 -13.61 -63.52 

1/50 -6.484 -26.682 -3.48 -35.09 

1/100 -3.136 -20.69 -5.72 -41.99 

 

 The apparent ΔG◦ is the fundamental criterion of spontaneity. It has been 

calculated from Langmuir relation (Han et.al, 2008). As indicated in Table 6.12, ΔGo 

values are negative and reveals that the reaction occurs spontaneously. In other words, at 

given conditions system does not gain energy from external resource. ΔHo value found 

as negative which is an evidence of exothermic sorption which controlled by physical 

processes. The negative calculated ΔS◦ values shows decrease in randomness at the 

solid-solution interface and no significant changes occur in the internal structure of the 

adsorbents through the sorption (Han et al., 2008). 

a b 
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 The sorption isotherms of Co2+   and Cu2+ sorption on NaCLI at 80 oC are given 

in Figure 6.58 and Figure 6.59, respectively.  
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Figure 6.58. Equilibrium Isotherms for sorption of Co2+ on NaCLI at 80 oC a) waterbath 
 b) microwave irradiation. 
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Figure 6.59.  EquilibriumIsotherms for sorption of Cu2+ on NaCLI at 80 oC a) waterbath  
            b) microwave irradiation. 
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 The maximum capacity of the NaCLI samples has not been reached for Co 2+  and 

Cu2+ cases alike the Ag+ case thus increasing concentartions should be considered for 

more accurate comments and interpretations. 

 

Table 6.32. Langmuir and Freundlich constants of Co2+ and Cu2+ at 80 oC. 

Langmuir Model Freundlich Model  

 

80 oC Qo  b  R2 
ΔG 

(kj/mol) 
Kf  n  R2 

 

Waterbath * 
 

28.02 

 

0.030

 

0.99
-8.828 

 

4.13

 

2.99 

 

0.93
 

Microwave* 
 

28.74 

 

0.036

 

0.99
-9.310 

 

4.88

 

3.26 

 

0.97
 

Waterbath • 
 

34.24 

 

0.029

 

0.99

 
-8.423 

 

5.42

 

3.16 

 

0.94
 

Microwave• 
 

34.14 

 

0.025

 

0.95

 
-8.101 

 

4.06

 

4.06 

 

0.95

( * corresponding to Co2+ , • corresponding to Cu2++) 

 

 As indicated from Table 6.32, the Co2+ and Cu2+ sorption by NaCLI exhibited a 

good fit to Freundlich model (R2 > 0.95) however; a better fit to Langmuir model was 

concluded since greater R2 values which are closer to unity was obtained in contrast to 

Ag+ sorption on NaCLI. The theoretical Qo values calculated from Langmuir model 

equation are also in good agreement with the experimental values determined from 

kinetic data. The adsorptive behaviors indicate that the sorption takes place on 

homogenous surface by monolayer sorption without interaction between sorbed 

molecules. 

 

 

6.10. Antibacterial Test Results of Ag+, Co2+ and Cu2+ Exchanged NaCLI 
  
 
 Antibacterial activities of the Ag+ , Co2+ and Cu2+ exchanged NaCLI for different 

set of experiments were determined by the disk diffusion method as discussed in 

Materials and Method chapter. The measured inhibition zone diameters in four directions 
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and averaged values for Ag+, Co2+ and Cu2+ exchanged NaCLI are given in between 

Table 6.33 and Table 6.35. 

 

Table 6.33. Inhibition Zone Diameters of Co2+ exchanged NaCLI ( 80 oC, 1hr). 
 
              Zone Diameter 

                           (mm) 
Mineral Code 

 
D1 

 
D2 

 
D3 

 
D4 

 
Davg 

waterbath 11.95 11.88 11.89 11.73 11.86  
S/L=1/20 microwave 11.43 11.44 11.48 11.44 11.45 

waterbath 12.03 11.78 12.05 12.05 11.98  
S/L=1/50 microwave 11.40 11.39 11.35 11.45 11.40 

waterbath 11.76 12.09 11.72 11.98 11.89  
S/L=1/100 microwave 11.39 11.34 11.31 11.42 11.36 

 
 
 
 
Table 6.34. Inhibition Zone Diameters of Co2+ exchanged NaCLI ( 80 oC, 1hr). 
 
              Zone Diameter 
                           (mm) 
Mineral Code 

 
D1 

 
D2 

 
D3 

 
D4 

 
Davg 

waterbath 13.65 14.07 13.80 13.89 13.85  
S/L=1/20 microwave 13.42 13.78 14.24 13.61 13.76 

waterbath 19.26 19.33 19.36 19.95 19.48  
S/L=1/50 microwave 19.13 19.14 19.56 19.11 19.24 

waterbath 20.96 21.42 21.45 21.43 21.32  
S/L=1/100 microwave 21.90 22.13 21.45 21.76 21.81 

 

 

 

 

 

 
 
 



 131

Table 6.35. Inhibition Zone Diameters of Cu2+ exchanged NaCLI ( 80 oC, 1hr). 
 
             Zone Diameter 

                           (mm) 
Mineral Code 

 
D1 

 
D2 

 
D3 

 
D4 

 
Davg 

waterbath 11.97 12.63 12.23 12.08 12.23  
S/L=1/20 microwave 11.16 11.23 11.72 11.46 11.39 

waterbath 14.01 13.97 14.70 14.57 14.31  
S/L=1/50 microwave 14.10 14.31 14.40 14.43 14.31 

waterbath 15.98 16.63 16.67 16.01 16.32  
S/L=1/100 microwave 16.12 15.79 15.86 15.96 15.93 

 

The NaCLI showed no antibacterial activity towards E.Coli whie the Ag+, Co2+ 

and Cu2+ exchanged NaCLI exchanged samples showed considerable superiority against 

E.Coli in the order of Co2+>Cu2+ >Ag+. It is also observed that, the S/L ratio, exchange 

of time and temperature has slightly affected the inhibition zone diameter. The pictorial 

representation of NaCLI and Ag+ exchanged NaCLI in waterbath and microwave is 

given in Figure 6.60 in which the inhibition zones around the pellets were clearly 

detected. 

 

      
Figure 6.60. Inhibition Zones of NaCLI and Ag+ exchanged NaCLI in waterbath and   

         microwave. 

  

 The measured inhibition zone diameters in four directions and averaged values 

for Ag+, Co2+ and Cu2+ exchanged NaCLI for the utilized parameters are given in 

Appendix H. 
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CHAPTER 7 

 

 

CONCLUSIONS 
  

 

 The main purpose of this study is describing the ion exchange process as a whole 

and the effect of microwave treatment on ion exchange process which also covers the 

theoretical background of zeolites, sorption process and microwaves. The effect of 

microwave irradiation on ion exchange process in zeolites as well as the zeolite 

properties owing to different cationic forms is important for their possible use in various 

applications. Therefore investigating the influence of microwave irradiation on ion 

exchange mechanism and structure of the natural zeolite has great importance and is the 

main purpose of this study. 

 The solid phase and liquid phase analysis is very important in determining the 

exchange mechanism in solid-solution systems therefore in this study both phases were 

analyzed. It has been concluded that no considerable changes within the solid were 

observed for the cations Fe3+, Mg2+ and K+ whereas the changes for the cations Ca2+ and 

Na+ were evident for Ag+, Co2+ and Cu2+ exchange on NaCLI. The higher extent of these 

cations exchange was explained by the structural location of Na+ and Ca2+ within the 

mineral and its lower hydrated radii compared to other cations. The ion exchange degree 

of Ag+, Co2+ and Cu2+ on NaCLI for the utilized parameters was determined and 

concluded that S/L ratio has higher effect. For some parameters microwave treatment 

was found effective however on the whole it did not significantly increase the ion 

exchange degree compared to waterbath treatment.  

 The non-continuity of the microwave power supply of EDMS might have 

influenced the microwave irradiation efficiency on ion exchange. Besides, applied 

microwave power was not used with 100% continuous efficiency throughout the total 

exchange time for EDMS. Although in DMS microwave power was continuous, 

maximum 50 watts of microwave power was being able to be used for the system.  It was 

claimed that microwave driven ion exchange, the concentration of the metal ion solution 

has an effect on the extent of ion exchange however for higher Ag+, Co2+ and Cu2+  ion 
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concentrations the exchange degree did not increase for  microwave as expected. The 

highest degree of exchange was observed for the Ag+ exchange compared to Co2+ and 

Cu2+ in both treatments for all cases. As well as the hydrated radii, hydration energies of 

ions have an influence on exchange degree. 

 There is a non-stoichiometry between the incoming and outgoing ions for all Ag+, 

Co2+ and Cu2+ exchange on NaCLI. Both for waterbath and microwave treatments, the 

amount of amount of exchangeable cations [∑(Ca2++Na++K++Mg2+)] release is higher 

than metal uptake for all Ag+, Co2+ and Cu2+-NaCLI systems. This may be due to the 

hydrolysis of the exchangeable cations with -OH groups in the solution and forming 

metal-hydroxyl complexes. For the systems considered, ion exchange is assumed to be 

blocked with the formation of inner-sphere complexes and surface precipitation. Ag+, 

Co2+ and Cu2+ exchange on NaCLI is mainly due to ion exchange whereas limited inner-

sphere complex formation, dissolution and surface precipitation thought to be existed for 

the systems considered. 

 FTIR spectra of metal exchanged forms of NaCLI indicated that no framework 

dealumination within structure occurred due to the unchanged position of the most 

intense bands. Introducing the cations into the structure of NaCLI did not distinctly 

change the peak intensities at 609 cm-1 whereas slight changes might due to NaCLI being 

a natural mineral. Peak intensities of the metal exchanged forms of NaCLI at 3628 cm-1, 

did not change distinctly. X-Ray patterns of Ag+, Co2+ and Cu2+ exchanged NaCLI 

showed no transition of clinoptilolite-heulandite phase and no shifts in characteristic 

peaks positions of NaCLI. Similarly, SEM micrographs of Ag+, Co2+ and Cu2+ 

exchanged NaCLI did not show any structural changes such as shape of clinoptilolite 

crystals with waterbath and microwave treatments.  The Ag+, Co2+, Cu2+ exchanged 

NaCLI showed Type 4 isotherm corresponding to mesoporous structure of Na-LI. The 

decrease of volume adsorbed determined for Ag+, Co2+ and Cu2+ exchanged NaCLI was 

probably due to clogging effect of impurities and framework cations present within the 

structure. 

 Desorption of water for the metal exchanged forms of NaCLI started at same 

temperature but they had been completed at different temperatures. This is related to 

different cation content of different metal exchanged forms of NaCLI. In addition to 

TGA, DTA concluded thermal behavior of Co2+ and Cu2+ exchanged NaCLI showed no 

significance change in their thermal stability compared to NaCLI however, due to 
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possible oxidation reaction occurrence in the case of Ag+ exchanged NaCLI mineral it 

showed different thermal behavior toward heating upto 1000 oC. 

 It has been concluded from kinetic studies that very short times, almost an hour, 

is enough for the completion of the process. It has been determined that amount of metal 

sorbed per gram of NaCLI increased with the decrease of S/L ratio due to increase in 

solute–solution interaction.  The dimensionless Biot number was found in between 2 and 

28 for sorption processes thus it has been concluded that mainly external (film) mass-

transfer was the controlling mechanism. The processes followed the pseudo-second-

order model considered at all time intervals based on the sorption kinetics. For better 

evaluation of the transport mechanism the process parameters like the agitation speed, 

concentration of the metal solutions, particle size of the adsorbent and etc is needed to be 

considered. Equilibrium studies which described by adsorption isotherms showed that 

Ag+ sorption on NaCLI fitted to Langmuir model (R2 > 0.95) however; a better fit to 

Freundlich model was concluded since greater R2 values which are closer to unity was 

obtained whereas reverse situation is obtained for Co2+ and Cu2+ -NaCLI system. The 

standard free energy (ΔG◦), the enthalpy (ΔH◦) and entropy (ΔS◦) and their changes are 

associated with the sorption process therefore it is important to determine them in order 

to describe the process. For the ion exchange process of all cases, the ΔGo values were 

determined as negative which showed that reactions were occurred spontaneously. The 

negative values of ΔHo and ΔS◦ were determined for all cases. 

It has been concluded from Kirby–Bauer antibacterial tests that NaCLI had no 

antibacterial activity towards E.Coli while the Ag+, Co2+ and Cu2+ exchanged NaCLI 

samples showed considerable superiority against E.Coli with following the order 

determined as; Co2+>Cu2+ >Ag+. Additionally, insignificant effects of S/L ratio, 

exchange of time and temperature on inhibition zone diameter were found. 

Consequently, the microwave irradiation can be proposed as an alternative and 

reliable method that can be used to prepare an ion-exchanged mineral for different 

purposes. Higher exchange rates of different cations on clinoptilolite rich mineral could 

be obtained with higher and continuous microwave power. Microwave interaction with 

matter is also characterized by a penetration depth, DP, but its effect has not been clearly 

understood. In that respect, more variations of solid and solution amounts providing 

different dielectric properties for the system might be considered to explain the DP for 

the Ag+, Co2+ and Cu2+ -NaCLI systems in microwave irradiated process.  
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APPENDIX A 
 

 

SOLID PHASE ICP RESULTS  
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Figure A.1. Solid phase ICP results (0.01 M AgNO3,  40 oC, S/L=1/20, waterbath). 
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Figure A.2. Solid phase ICP results (0.01 M AgNO3, 40 oC, S/L=1/50, waterbath). 
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Figure A.3. Solid phase ICP results (0.01 M AgNO3, 40 oC, S/L=1/100, waterbath). 
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Figure A.4. Solid phase ICP results (0.01 M AgNO3, 60 oC, S/L=1/20, waterbath). 
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Figure A.5. Solid phase ICP results (0.01 M AgNO3, 60 oC, S/L=1/50, waterbath). 
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Figure A.6. Solid phase ICP results (0.01 M AgNO3, 60 oC, S/L=1/50, waterbath). 
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Figure A.7. Solid phase ICP results (0.01 M AgNO3, 80 oC, S/L=1/20, waterbath). 
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Figure A.8. Solid phase ICP results (0.01 M AgNO3, 80 oC, S/L=1/50, waterbath). 
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Figure A.9. Solid phase ICP results (0.01 M AgNO3, 80 oC, S/L=1/100, waterbath). 
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Figure A.10. Solid phase ICP results a) S/L= 1/20 b) S/L=1/50 c) S/L=1/100 (0.01 M 
 AgNO3, 40 oC, microwave irradiation, SR=0). 

 

a b 

c 



 149

0

1

2

3

4

5

6

w
/w

%

30min-Si/Al=6.78

1hr-Si/Al=6.51

     CaO   Fe2O3   K2O   MgO  Na2O  Ag2O
0

1

2

3

4

5

6

w
/w

%

30min-Si/Al=6.11

1hr-Si/Al=6.50

     CaO  Fe2O3   K2O  MgO  Na2O  Ag2O

 

0

2

4

6

8

10

w
/w

%

30min-Si/Al=6.69

1hr-Si/Al=6.45

     CaO  Fe2O3   K2O  MgO  Na2O  Ag2O
 

 
Figure A.11. Solid phase ICP results a) S/L= 1/20 b) S/L=1/50 c) S/L=1/100 (0.01 M 
 AgNO3, 60 oC, microwave irradiation, SR=3). 
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Figure A.12. Solid phase ICP results a) S/L= 1/20 b) S/L=1/50 c) S/L=1/100 (0.01 M 
  AgNO3, 80 oC, microwave irradiation, SR=3). 
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Figure A.13. Solid phase ICP results a) S/L= 1/20 b) S/L=1/50 c) S/L=1/100 (0.01 M 
 Co.(NO3)2

.6H2O 80 oC, waterbath). 
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Figure A.14. Solid phase ICP results a) S/L= 1/20 b) S/L=1/50 c) S/L=1/100 (0.01 M 
 Co.(NO3)2

.6H2O 80 oC, microwave irradiation). 
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Figure A.15. Solid phase ICP results a) S/L= 1/20 b) S/L=1/50 c) S/L=1/100 (0.01 M 
 Cu.(NO3)2

.5/2H280 oC, waterbath). 
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Figure A.16. Solid phase ICP results a) S/L= 1/20 b) S/L=1/50 c) S/L=1/100 (0.01 M 
 Cu.(NO3)2

.5/2H280 oC, microwave irradiation). 
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Figure A.17. Solid phase ICP results a) waterbath b) microwave  irradiation (0.1 M 
 AgNO3,80 oC, S/L=1/100). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.18. Solid phase ICP results (0.1 M Co.(NO3)2

.6H2O,80 oC,S/L=1/100, 
 waterbath). 
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Figure A.19. Solid phase ICP results a) watrebath b) microwave irradiation (0.1 M 
 Cu.(NO3)2

.5/2H2O,80 oC,S/L=1/100).   
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APPENDIX B 

 

 

LIQUID PHASE ICP RESULTS  
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Figure B.1. Liquid phase ICP results (0.01 M AgNO3, 40 oC, S/L=1/20, waterbath). 
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Figure B.2. Liquid phase ICP results (0.01 M AgNO3, 40 oC, S/L=1/50, waterbath). 
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Figure B.3. Liquid phase ICP results (0.01 M AgNO3, 40 oC, S/L=1/100, waterbath). 
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Figure B.4. Liquid phase ICP results (0.01 M AgNO3, 60 oC, S/L=1/20, waterbath). 
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Figure B.5. Liquid phase ICP results (0.01 M AgNO3, 60 oC, S/L=1/50, waterbath). 
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Figure B.6. Liquid phase ICP results (0.01 M AgNO3, 60 oC, S/L=1/100, waterbath). 
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Figure B.7. Liquid phase ICP results (0.01 M AgNO3, 80 oC, S/L=1/20, waterbath). 
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B.8. Liquid phase ICP results (0.01 M AgNO3, 80 oC, S/L=1/50, waterbath). 
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Figure B.9. Liquid Phase ICP Results (mg); 0.01 M Ag+ exchanged NaCLI at 80 oC,   
 S/L=1/100, waterbath 
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Figure B.10. Liquid phase ICP results a) S/L=1/20 b) S/L=1/50  (0.01 M AgNO3, 40 oC, 
 microwave irradiation SR=0). 
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Figure B.11. Liquid phase ICP results a) S/L=1/20 b) S/L=1/50 c) S/L=1/100 (0.01 M 
 AgNO3, 60 oC, microwave irradiation SR=3). 
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Figure B.12. Liquid phase ICP results a) S/L=1/20 b) S/L=1/50 c) S/L=1/100 (0.01 M 
 AgNO3, 80 oC, microwave irradiation SR=3). 
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Figure B.13. Liquid phase ICP results a) S/L=1/20 b) S/L=1/50 c) S/L=1/100  (0.01 M 
 Co.(NO3)2

.6H2O, 80 oC,, waterbath). 
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Figure 14. Liquid phase ICP results a) S/L=1/20 b) S/L=1/50 c) S/L=1/100 (0.01 M 
 Co.(NO3)2

.6H2O, 80 oC, microwave irradiation SR=3). 
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Figure B.15. Liquid phase ICP results a) S/L=1/20 b) S/L=1/50 c) S/L=1/100 (0.01 M 
 Cu.(NO3)2

.5/2H2O, 80 oC waterbath). 
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Figure B.16. Liquid phase ICP results a) S/L=1/20 b) S/L=1/50 c) S/L=1/100 (0.01 M 
 Cu.(NO3)2

.5/2H2O, 80 oC, microwave irradiation). 
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Figure B.17. Liquid phase ICP results a) waterbath b) microwave irradiation (0.1 M 
 AgNO3, 80 oC, S/L=1/100). 
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Figure B.18. Liquid phase ICP results a) waterbath b) microwave irradiation (0.1 M 
 Co.(NO3)2

.6H2, 80 oC, S/L=1/100 ) 
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Figure B.19. Liquid phase ICP results a) waterbath b) microwave irradiation (0.1 M 
 Cu.(NO3)2

.5/2H2O, 80 oC, S/L=1/100). 
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APPENDIX C 
 
 

SOLID AND LIQUID PHASE COMPOSITIONS 
 
 
Table C.1. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 30 min, 
 S/L=1/20, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.21 0 0.004 
Fe 0.44 0.49 0 0 
K 0.83 0.90 0 0.001 

Mg 0.09 0.08 0 0.001 
Na 1.81 1.41 0 0.117 
Ag 0.00 0.18 0.200 0.004 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 0.58 0.20 

 
 
 
 
 
Table C.2. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 1 hr, 
 S/L=1/20, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.15 0 0.000 
Fe 0.44 0.49 0 0.001 
K 0.83 0.87 0 0.001 

Mg 0.09 0.08 0 0.109 
Na 1.81 1.33 0 0.004 
Ag 0.00 0.19 0.200 0.000 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 0.69 0.20 
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Table C.3. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 1 day, 
 S/L=1/20, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.14 0 0.001 
Fe 0.44 0.42 0 0.001 
K 0.83 0.81 0 0.002 

Mg 0.09 0.08 0 0.000 
Na 1.81 1.47 0 0.055 
Ag 0.00 0.17 0.200 0.004 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.55 0.20 

 
 
 
Table C.4. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 2 days, 
 S/L=1/20, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.14 0 0.001 
Fe 0.44 0.40 0 0.001 
K 0.83 0.79 0 0.002 

Mg 0.09 0.08 0 0.000 
Na 1.81 1.52 0 0.055 
Ag 0.00 0.17 0.200 0.003 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.52 0.20 

 
 
 
Table C.5. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 3 days, 
 S/L=1/20, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.14 0 0.003 
Fe 0.44 0.40 0 0.001 
K 0.83 0.75 0 0.002 

Mg 0.09 0.08 0 0.000 
Na 1.81 1.53 0 0.055 
Ag 0.00 0.16 0.200 0.003 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 0.55 0.20 
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Table C.6. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 30 min, 
 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.18 0 0.001 
Fe 0.44 0.48 0 0.017 
K 0.83 0.85 0 0.012 

Mg 0.09 0.08 0 0.000 
Na 1.81 1.09 0 0.004 
Ag 0.00 0.40 0.200 0.002 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.88 0.46 

 
 
 
Table C.7. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 1 hr, 
 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 6.47 -0.33 0 0.012 
Fe 0.31 0.17 0 0.000 
K 0.44 0.48 0 0.004 

Mg 0.83 0.86 0 0.002 
Na 0.09 0.08 0 0.325 
Ag 1.81 1.04 0.500 0.048 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.95 0.45 

 
 
 
Table C.8. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 1 day, 
 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.16 0 0.001 
Fe 0.44 0.42 0 0.000 
K 0.83 0.85 0 0.004 

Mg 0.09 0.07 0 0.000 
Na 1.81 1.22 0 0.131 
Ag 0.00 0.40 0.500 0.040 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.78 0.46 
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Table C.9. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 2 days, 
 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.19 0 0.001 
Fe 0.44 0.43 0 0.000 
K 0.83 0.81 0 0.004 

Mg 0.09 0.08 0 0.000 
Na 1.81 1.20 0 0.130 
Ag 0.00 0.39 0.500 0.045 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.76 0.46 

 
 
 
Table C.10. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 3 days, 
 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.17 0 0.001 
Fe 0.44 0.49 0 0.001 
K 0.83 0.78 0 0.004 

Mg 0.09 0.09 0 0.000 
Na 1.81 1.12 0 0.131 
Ag 0.00 0.39 0.500 0.043 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.88 0.46 

 
 
 
Table C.11. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 30 min, 
 S/L=1/100, waterbath)..  
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.30 0 0.026 
Fe 0.44 0.49 0 0.000 
K 0.83 0.81 0 0.013 

Mg 0.09 0.08 0 0.006 
Na 1.81 0.75 0 0.444 
Ag 0.00 0.59 1.000 0.228 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.10 0.77 
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Table C.12. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 1 hr, 
 S/L=1/100, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.19 0 0.029 
Fe 0.44 0.48 0 0.000 
K 0.83 0.86 0 0.013 

Mg 0.09 0.07 0 0.005 
Na 1.81 0.74 0 0.448 
Ag 0.00 0.64 1.000 0.252 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 1.25 0.75 

 
 
 
Table C.13. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 1 day, 
 S/L=1/100, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.15 0 0.004 
Fe 0.44 0.43 0 0.000 
K 0.83 0.82 0 0.013 

Mg 0.09 0.08 0 0.001 
Na 1.81 0.78 0 0.264 
Ag 0.00 0.64 1.000 0.258 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.22 0.74 

 
 
 
Table C.14. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 2 days, 
 S/L=1/100, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.14 0 0.003 
Fe 0.44 0.43 0 0.000 
K 0.83 0.79 0 0.012 

Mg 0.09 0.09 0 0.001 
Na 1.81 0.79 0 0.264 
Ag 0.00 0.64 1.000 0.250 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 1.24 0.75 
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Table C.15. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 3 day, 
 S/L=1/100, waterbath). 
  

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.15 0 0.002 
Fe 0.44 0.42 0 0.000 
K 0.83 0.77 0 0.013 

Mg 0.09 0.09 0 0.001 
Na 1.81 0.75 0 0.263 
Ag 0.00 0.63 1.000 0.268 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 1.29 0.73 

 
 
 
Table C.16. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 30 min, 
 S/L=1/20, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.18 0 0.005 
Fe 0.44 0.54 0 0.000 
K 0.83 0.81 0 0.002 

Mg 0.09 0.08 0 0.001 
Na 1.81 1.35 0 0.117 
Ag 0.00 0.18 0.200 0.005 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.63 0.20 

 
 
 
Table C.17. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 1 hr, 
 S/L=1/20, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.19 0 0.006 
Fe 0.44 0.48 0 0.001 
K 0.83 0.85 0 0.002 

Mg 0.09 0.08 0 0.001 
Na 1.81 1.36 0 0.118 
Ag 0.00 0.17 0.200 0.004 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 0.60 0.20 
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Table C.18. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 1 day, 
 S/L=1/20, waterbath). 
 

 

 
 
 
Table C.19. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 2 day, 
 S/L=1/20, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.12 0 0.000 
Fe 0.44 0.41 0 0.001 
K 0.83 0.88 0 0.002 

Mg 0.09 0.10 0 0.000 
Na 1.81 1.26 0 0.052 
Ag 0.00 0.19 0.200 0.006 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.80 0.19 

 
 
 
Table C.20. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC,  3 days, 
 S/L=1/20, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.14 0 0.000 
Fe 0.44 0.44 0 0.001 
K 0.83 0.91 0 0.002 

Mg 0.09 0.10 0 0.000 
Na 1.81 1.28 0 0.052 
Ag 0.00 0.20 0.200 0.004 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 0.78 0.20 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.12 0 0.000 
Fe 0.44 0.45 0 0.001 
K 0.83 0.95 0 0.002 

Mg 0.09 0.09 0 0.000 
Na 1.81 1.30 0 0.052 
Ag 0.00 0.16 0.200 0.005 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.82 0.20 
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Table C.21. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 30 min, 
 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.18 0 0.012 
Fe 0.44 0.49 0 0.000 
K 0.83 0.89 0 0.005 

Mg 0.09 0.07 0 0.002 
Na 1.81 1.08 0 0.266 
Ag 0.00 0.42 0.500 0.042 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 0.91 0.46 

 
 
 
Table C.22. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 1 hr, 
 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.16 0 0.04 
Fe 0.44 0.48 0 0.001 
K 0.83 0.82 0 0.005 

Mg 0.09 0.07 0 0.003 
Na 1.81 0.98 0 0.269 
Ag 0.00 0.42 0.500 0.043 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.01 0.46 

 
 
 
Table C.23. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 1 day, 
 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.17 0 0.002 
Fe 0.44 0.46 0 0.001 
K 0.83 0.92 0 0.006 

Mg 0.09 0.01 0 0.000 
Na 1.81 1.57 0 0.131 
Ag 0.00 0.41 0.500 0.045 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 0.55 0.46 
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Table C.24. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 2 days, 
 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.13 0 0.001 
Fe 0.44 0.50 0 0.001 
K 0.83 0.79 0 0.006 

Mg 0.09 0.01 0 0.000 
Na 1.81 0.91 0 0.131 
Ag 0.00 0.40 0.500 0.048 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.21 0.46 

 
 
 
Table C.25. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 3 days, 
 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.12 0 0.001 
Fe 0.44 0.46 0 0.001 
K 0.83 0.90 0 0.006 

Mg 0.09 0.01 0 0.000 
Na 1.81 1.60 0 0.131 
Ag 0.00 0.42 0.500 0.046 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.54 0.46 

 
 
 
 
Table C.26. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 30 min, 
 S/L=1/100, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.13 0 0.026 
Fe 0.44 0.46 0 0.000 
K 0.83 0.81 0 0.015 

Mg 0.09 0.07 0 0.005 
Na 1.81 0.71 0 0.429 
Ag 0.00 0.64 1.000 0.238 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.32 0.76 
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Table C.27. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 1 hr, 
 S/L=1/100, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.13 0 0.027 
Fe 0.44 0.45 0 0.000 
K 0.83 0.79 0 0.015 

Mg 0.09 0.07 0 0.005 
Na 1.81 0.68 0 0.444 
Ag 0.00 0.63 1.000 0.219 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.38 0.78 

 
 
 
Table C.28. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 1 day, 
 S/L=1/100, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.13 0 0.001 
Fe 0.44 0.55 0 0.001 
K 0.83 0.76 0 0.008 

Mg 0.09 0.01 0 0.000 
Na 1.81 0.60 0 0.262 
Ag 0.00 0.65 1.000 0.236 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.54 0.76 

 
 
 
 
Table C.29. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 2 day, 
 S/L=1/100, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.17 0 0.003 
Fe 0.44 0.43 0 0.000 
K 0.83 0.84 0 0.014 

Mg 0.09 0.02 0 0.001 
Na 1.81 0.57 0 0.264 
Ag 0.00 0.67 1.000 0.253 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.47 

 
0.75 
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Table C.30. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 3 days, 
 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.22 0 0.003 
Fe 0.44 0.47 0 0.000 
K 0.83 0.85 0 0.016 

Mg 0.09 0.02 0 0.000 
Na 1.81 1.72 0 0.264 
Ag 0.00 0.66 1.000 0.256 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.27 0.74 

 
 
 
Table C.31. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 30 min, 
 S/L=1/20, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.17 0 0.001 
Fe 0.44 0.60 0 0.000 
K 0.83 0.65 0 0.001 

Mg 0.09 0.09 0 0.000 
Na 1.81 1.46 0 0.090 
Ag 0.00 0.14 0.200 0.003 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.68 0.20 

 
 
 
 
Table C.32. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 1 hr, 
 S/L=1/20, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.21 0 0.000 
Fe 0.44 0.61 0 0.001 
K 0.83 0.65 0 0.001 

Mg 0.09 0.09 0 0.000 
Na 1.81 1.52 0 0.088 
Ag 0.00 0.15 0.200 0.003 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 0.58 0.20 
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Table C.33. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 1 day, 
 S/L=1/20, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.14 0 0.007 
Fe 0.44 0.44 0 0.012 
K 0.83 0.98 0 0.002 

Mg 0.09 0.08 0 0.004 
Na 1.81 1.51 0 0.177 
Ag 0.00 0.18 0.200 0.006 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.63 0.20 

 
 
 
Table C.34. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 2 days, 
 S/L=1/20, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.13 0 0.006 
Fe 0.44 0.44 0 0.017 
K 0.83 0.94 0 0.002 

Mg 0.09 0.08 0 0.004 
Na 1.81 1.46 0 0.159 
Ag 0.00 0.19 0.200 0.006 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.65 0.19 

 
 
 
Table C.35. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 2 days, 
 S/L=1/20, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.11 0 0.008 
Fe 0.44 0.42 0 0.011 
K 0.83 0.91 0 0.002 

Mg 0.09 0.08 0 0.004 
Na 1.81 1.45 0 0.171 
Ag 0.00 0.17 0.200 0.005 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 0.65 0.20 
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Table C.36. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 1 day, 
 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.10 0 0.008 
Fe 0.44 0.38 0 0.001 
K 0.83 0.74 0 0.005 

Mg 0.09 0.07 0 0.004 
Na 1.81 0.89 0 0.275 
Ag 0.00 0.28 0.500 0.053 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.25 0.45 

 
 
 
Table C.37. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 2 days, 
 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.08 0 0.008 
Fe 0.44 0.33 0 0.003 
K 0.83 0.58 0 0.004 

Mg 0.09 0.05 0 0.004 
Na 1.81 0.75 0 0.292 
Ag 0.00 0.39 0.500 0.037 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.59 0.46 

 
 
 
 
Table C.38. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 3 days, 
 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.13 0 0.010 
Fe 0.44 0.46 0 0.003 
K 0.83 0.88 0 0.005 

Mg 0.09 0.09 0 0.004 
Na 1.81 1.09 0 0.291 
Ag 0.00 0.41 0.500 0.042 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.95 0.46 
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Table C.39. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 30 min, 
 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.17 0 0.001 
Fe 0.44 0.58 0 0.000 
K 0.83 0.64 0 0.005 

Mg 0.09 0.08 0 0.000 
Na 1.81 1.13 0 0.208 
Ag 0.00 0.37 0.500 0.025 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.03 0.48 

 
 
 
Table C.40. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 1 hr, 
 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.20 0 0.000 
Fe 0.44 0.78 0 0.001 
K 0.83 0.62 0 0.005 

Mg 0.09 0.08 0 0.000 
Na 1.81 1.07 0 0.218 
Ag 0.00 0.42 0.500 0.025 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.08 0.48 

 
 
 
 
Table C.41. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 30 min, 
 S/L=1/100, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.19 0 0.001 
Fe 0.44 0.73 0 0.002 
K 0.83 0.67 0 0.008 

Mg 0.09 0.11 0 0.000 
Na 1.81 1.00 0 0.363 
Ag 0.00 0.54 1.000 0.132 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.11 0.87 
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Table C.42. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 1 hr, 
 S/L=1/100, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.15 0 0.003 
Fe 0.44 0.72 0 0.003 
K 0.83 0.70 0 0.008 

Mg 0.09 0.10 0 0.000 
Na 1.81 0.96 0 0.365 
Ag 0.00 0.68 1.000 0.124 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.15 0.88 

 
 
 
Table C.43. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 1 day, 
 S/L=1/100, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.12 0 0.027 
Fe 0.44 0.44 0 0.001 
K 0.83 0.83 0 0.013 

Mg 0.09 0.08 0 0.010 
Na 1.81 0.77 0 0.453 
Ag 0.00 0.64 1.000 0.216 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.25 0.78 

 
 
 
 
Table C.44. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 2 days, 
 S/L=1/100, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.10 0 0.023 
Fe 0.44 0.43 0 0.002 
K 0.83 0.80 0 0.015 

Mg 0.09 0.08 0 0.009 
Na 1.81 0.74 0 0.488 
Ag 0.00 0.64 1.000 0.213 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.34 0.79 
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Table C.45. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 3 days, 
 S/L=1/100, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.11 0 0.001 
Fe 0.44 0.44 0 0.032 
K 0.83 0.80 0 0.003 

Mg 0.09 0.07 0 0.908 
Na 1.81 0.75 0 0.985 
Ag 0.00 0.64 0.500 0.268 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.31 0.73 

 
 
 
Table C.46. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 30 min, 
 S/L=1/20, microwave irradiation).  
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.16 0 0.003 
Fe 0.44 0.45 0 0.000 
K 0.83 0.88 0 0.002 

Mg 0.09 0.08 0 0.001 
Na 1.81 1.33 0 0.090 
Ag 0.00 0.12 0.200 0.039 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.69 0.16 

 
 
 
 
Table C.47. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 1 hr, 
 S/L=1/20, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.13 0 0.003 
Fe 0.44 0.48 0 0.000 
K 0.83 0.85 0 0.002 

Mg 0.09 0.08 0 0.001 
Na 1.81 1.31 0 0.086 
Ag 0.00 0.13 0.200 0.038 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.71 0.16 
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Table C.48. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 30min, 
 S/L=1/50, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.12 0 0.010 
Fe 0.44 0.41 0 0.000 
K 0.83 0.80 0 0.004 

Mg 0.09 0.07 0 0.002 
Na 1.81 1.23 0 0.176 
Ag 0.00 0.22 0.500 0.256 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.83 0.24 

 
 
 
Table C.49. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 1 hr, 
 S/L=1/50, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.11 0 0.006 
Fe 0.44 0.39 0 0.000 
K 0.83 0.78 0 0.005 

Mg 0.09 0.07 0 0.002 
Na 1.81 1.09 0 0.183 
Ag 0.00 0.18 0.500 0.272 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.00 0.23 

 
 
 
 
Table C.50. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 30min, 
 S/L=1/100, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.12 0 0.02 
Fe 0.44 0.42 0 0.00 
K 0.83 0.75 0 0.01 

Mg 0.09 0.08 0 0.01 
Na 1.81 0.96 0 0.24 
Ag 0.00 0.31 1.000 0.66 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.14 0.34 
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Table C.51. Solid and liquid phase compositions (0.01 M AgNO3, 40 oC, 1 hr 
 S/L=1/100, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.12 0 0.02 
Fe 0.44 0.39 0 0.00 
K 0.83 0.69 0 0.01 

Mg 0.09 0.07 0 0.01 
Na 1.81 0.88 0 0.19 
Ag 0.00 0.22 1.000 0.66 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.29 0.34 

 
 
 
Table C.52. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 30 min, 
 S/L=1/20, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.20 0 0.001 
Fe 0.44 0.54 0 0.000 
K 0.83 0.81 0 0.002 

Mg 0.09 0.08 0 0.001 
Na 1.81 1.35 0 0.038 
Ag 0.00 0.18 0.200 0.065 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.61 0.14 

 
 
 
 
Table C.53. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC,  1 hr, 
 S/L=1/20, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.19 0 0.003 
Fe 0.44 0.48 0 0.000 
K 0.83 0.85 0 0.002 

Mg 0.09 0.08 0 0.001 
Na 1.81 1.36 0 0.047 
Ag 0.00 0.17 0.200 0.070 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.60 0.13 
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Table C.54. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 30 min, 
 S/L=1/50, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.17 0 0.010 
Fe 0.44 0.49 0 0.000 
K 0.83 0.89 0 0.004 

Mg 0.09 0.07 0 0.002 
Na 1.81 1.17 0 0.176 
Ag 0.00 0.42 0.500 0.169 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.86 0.33 

 
 
 
Table C.55. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 1hr, 
 S/L=1/20, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.16 0 0.006 
Fe 0.44 0.48 0 0.000 
K 0.83 0.82 0 0.006 

Mg 0.09 0.07 0 0.002 
Na 1.81 0.98 0 0.150 
Ag 0.00 0.42 0.500 0.144 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.01 0.36 

 
 
 
 
Table C.56. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 30 min, 
 S/L=1/100, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.14 0 0.012 
Fe 0.44 0.46 0 0.000 
K 0.83 0.81 0 0.009 

Mg 0.09 0.07 0 0.004 
Na 1.81 0.71 0 0.165 
Ag 0.00 0.64 1.000 0.406 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 1.32 0.59 
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Table C.57. Solid and liquid phase compositions (0.01 M AgNO3, 60 oC, 1 hr, 
 S/L=1/100, microwave irradiation). 
  

 SOLID LIQUID 
Elements Initial Final Initial Final 

Ca 0.31 0.13 0 0.000 
Fe 0.44 0.45 0 0.000 
K 0.83 0.79 0 0.004 

Mg 0.09 0.07 0 0.000 
Na 1.81 0.68 0 0.186 
Ag 0.00 0.63 1.000 0.388 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.39 0.61 

 
 
 
Table C.58. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 30 min, 
 S/L=1/20, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.17 0 0.004 
Fe 0.44 0.51 0 0.000 
K 0.83 0.68 0 0.003 

Mg 0.09 0.10 0 0.001 
Na 1.81 1.33 0 0.093 
Ag 0.00 0.14 0.200 0.059 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.78 0.14 

 
 
 
 
Table C.59. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 1 hr, 
 S/L=1/20, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.31 0 0.004 
Fe 0.44 0.51 0 0.000 
K 0.83 0.59 0 0.002 

Mg 0.09 0.10 0 0.001 
Na 1.81 1.33 0 0.051 
Ag 0.00 0.17 0.200 0.073 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 0.73 0.13 
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Table C.60. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 30 min, 
 S/L=1/50, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.17 0 0.008 
Fe 0.44 0.55 0 0.000 
K 0.83 0.76 0 0.004 

Mg 0.09 0.09 0 0.002 
Na 1.81 1.26 0 0.109 
Ag 0.00 0.45 0.500 0.116 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
0.77 0.38 

 
 
 
Table C.61. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 1 hr, 
 S/L=1/50, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.19 0 0.005 
Fe 0.44 0.54 0 0.000 
K 0.83 0.75 0 0.007 

Mg 0.09 0.10 0 0.002 
Na 1.81 1.28 0 0.222 
Ag 0.00 0.46 0.500 0.108 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 0.75 0.39 

 
 
 
 
Table C.62. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 30 min, 
 S/L=1/100, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.19 0 0.01 
Fe 0.44 0.62 0 0.00 
K 0.83 0.63 0 0.01 

Mg 0.09 0.09 0 0.00 
Na 1.81 1.02 0 0.68 
Ag 0.00 0.57 1.000 0.38 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.11 0.62 
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Table C.63. Solid and liquid phase compositions (0.01 M AgNO3, 80 oC, 1 hr, 
 S/L=1/20, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.31 0.21 0 0.02 
Fe 0.44 0.60 0 0.00 
K 0.83 0.63 0 0.01 

Mg 0.09 0.08 0 0.00 
Na 1.81 1.12 0 0.71 
Ag 0.00 0.68 0.500 0.38 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.01 0.62 

 
 
 
Table C.64. Solid and liquid phase compositions (0.01 M Co.(NO3)2

.6H2O, 80 oC, 1hr     
       S/L=1/20,waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.09 0.06 0 0.001 
Fe 0.31 0.24 0 0.001 
K 0.36 0.34 0 0.001 

Mg 0.04 0.04 0 0.000 
Na 0.92 0.63 0 0.144 
Co 0.01 0.18 0.200 0.001 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
0.34 0.20 

 
 
 
 
Table C.65. Solid and liquid phase compositions (0.01 M Co.(NO3)2

.6H2O, 80 oC, 24 
 hrs, S/L=1/20,waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.09 0.06 0 0.001 
Fe 0.31 0.27 0 0.004 
K 0.36 0.30 0 0.001 

Mg 0.04 0.04 0 0.000 
Na 0.92 0.58 0 0.160 
Co 0.01 0.17 0.200 0.002 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
0.44 0.20 
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Table C.66. Solid and liquid phase compositions (0.01 M Co.(NO3)2
.6H2O, 80 oC, 1hr     

       S/L=1/50,waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.09 0.09 0 0.001 
Fe 0.31 0.25 0 0.000 
K 0.36 0.32 0 0.005 

Mg 0.04 0.04 0 0.000 
Na 0.92 0.46 0 0.208 
Co 0.01 0.36 0.500 0.102 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
0.50 0.40 

 
 
 
Table C.67. Solid and liquid phase compositions (0.01 M Co.(NO3)2

.6H2O, 80 oC, 24 
 hrs, S/L=1/50,waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.09 0.07 0 0.000 
Fe 0.31 0.27 0 0.001 
K 0.36 0.31 0 0.005 

Mg 0.04 0.05 0 0.000 
Na 0.92 0.42 0 0.218 
Co 0.01 0.35 0.500 0.103 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
0.58 0.40 

 
 
 
 
Table C.68. Solid and liquid phase compositions (0.01 M Co.(NO3)2

.6H2O, 80 oC, 1 hr, 
 S/L=1/100,waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.09 0.07 0 0.00 
Fe 0.31 0.26 0 0.00 
K 0.36 0.33 0 0.01 

Mg 0.04 0.04 0 0.00 
Na 0.92 0.37 0 0.31 
Co 0.01 0.43 1.000 0.43 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
0.61 0.57 
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Table C.69. Solid and liquid phase compositions (0.01 M Co.(NO3)2
.6H2O, 80 oC, 24 

 hrs, S/L=1/100,waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.09 0.07 0 0.00 
Fe 0.31 0.27 0 0.00 
K 0.36 0.31 0 0.01 

Mg 0.04 0.04 0 0.00 
Na 0.92 0.35 0 0.36 
Co 0.01 0.42 1.000 0.26 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
0.65 0.74 

 
 
 
Table C.70. Solid and liquid phase compositions (0.01 M Co.(NO3)2

.6H2O, 80 oC, 10 
 min, S/L=1/20, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.09 0.07 0 0.000 
Fe 0.31 0.27 0 0.000 
K 0.36 0.37 0 0.001 

Mg 0.04 0.04 0 0.000 
Na 0.92 0.57 0 0.145 
Co 0.01 0.16 0.500 0.004 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
0.40 0.20 

 
 
 
 
Table C.71. Solid and liquid phase compositions (0.01 M Co.(NO3)2

.6H2O, 80 oC, 30 
 min, S/L=1/20, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.09 0.07 0 0.000 
Fe 0.31 0.25 0 0.002 
K 0.36 0.36 0 0.002 

Mg 0.04 0.04 0 0.000 
Na 0.92 0.56 0 0.148 
Co 0.01 0.17 0.200 0.003 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
0.40 0.20 
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Table C.72. Solid and liquid phase compositions (0.01 M Co.(NO3)2
.6H2O, 80 oC, 1hr, 

 S/L=1/20, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.09 0.06 0 0.001 
Fe 0.31 0.24 0 0.002 
K 0.36 0.34 0 0.002 

Mg 0.04 0.04 0 0.000 
Na 0.92 0.53 0 0.148 
Co 0.01 0.18 0.200 0.004 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
0.44 0.20 

 
 
 
Table C.73. Solid and liquid phase compositions (0.01 M Co.(NO3)2

.6H2O, 80 oC, 10 
 min, S/L=1/50, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.09 0.07 0 0.001 
Fe 0.31 0.26 0 0.000 
K 0.36 0.34 0 0.004 

Mg 0.04 0.04 0 0.000 
Na 0.92 0.45 0 0.158 
Co 0.01 0.31 0.500 0.130 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
0.52 0.37 

 
 
 
Table C.74. Solid and liquid phase compositions (0.01 M Co.(NO3)2

.6H2O, 80 oC, 30 
 min, S/L=1/20, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.06 0 0.002 

Fe 0.31 0.29 0 0.001 
K 0.36 0.35 0 0.005 

Mg 0.04 0.03 0 0.001 
Na 0.92 0.35 0 0.244 
Co 0.01 0.32 0.500 0.111 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 0.62 0.39 
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Table C.75. Solid and liquid phase compositions (0.01 M Co.(NO3)2
.6H2O, 80 oC, 1 hr, 

 S/L=1/50, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.09 0.07 0 0.00 
Fe 0.31 0.30 0 0.00 
K 0.36 0.33 0 0.01 

Mg 0.04 0.04 0 0.00 
Na 0.92 0.42 0 0.26 
Co 0.01 0.36 0.500 0.09 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
0.55 0.41 

 
 
 
Table C.76. Solid and liquid phase compositions (0.01 M Co.(NO3)2

.6H2O, 80 oC, 10 
 min, S/L=1/100, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.09 0 0.007 

Fe 0.31 0.24 0 0.000 
K 0.36 0.86 0 0.006 

Mg 0.04 0.07 0 0.001 
Na 0.92 1.26 0 0.266 
Co 0.01 0.49 1.000 0.438 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
0.88 0.56 

 
 
 
 
Table C.77. Solid and liquid phase compositions (0.01 M Co.(NO3)2

.6H2O, 80 oC, 30 
 min, S/L=1/100, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.10 0 0.005 

Fe 0.31 0.23 0 0.001 
K 0.36 0.83 0 0.008 

Mg 0.04 0.06 0 0.001 
Na 0.92 1.16 0 0.271 
Co 0.01 0.55 1.000 0.434 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
0.74 0.57 
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Table C.78. Solid and liquid phase compositions0.01 M Co2+ exchanged Na-CLI at   
         80 oC, S/L=1/100, 30min., microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.07 0 - 

Fe 0.31 0.24 0 - 
K 0.36 0.35 0 - 

Mg 0.04 0.04 0 - 
Na 0.92 0.43 0 - 
Co 0.01 0.45 0.500 - 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
0.52 - 

 
 
 
Table C.79. Solid and liquid phase compositions (0.01 M Co.(NO3)2

.6H2O, 80 oC, 1hr, 
 S/L=1/100, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.05 0 0.001 

Fe 0.31 0.29 0 0.000 
K 0.36 0.32 0 0.001 

Mg 0.04 0.03 0 0.000 
Na 0.92 0.66 0 0.153 
Cu 0.01 0.19 0.200 0.003 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.36 0.20 

 
 
 
 
Table C.80. Solid and liquid phase compositions (0.01 M Cu.(NO3)2

.5/2H2O, 80 oC, 24 
 hrs, S/L=1/20, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.07 0 0.001 

Fe 0.31 0.27 0 0.000 
K 0.36 0.32 0 0.002 

Mg 0.04 0.04 0 0.000 
Na 0.92 0.60 0 0.157 
Cu 0.01 0.20 0.200 0.003 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.38 0.20 
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Table C.81. Solid and liquid phase compositions (0.01 M Cu.(NO3)2
.5/2H2O, 80 oC,1 hr,  

 S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.08 0 0.003 

Fe 0.31 0.28 0 0.000 
K 0.36 0.33 0 0.006 

Mg 0.04 0.03 0 0.001 
Na 0.92 0.47 0 0.311 
Cu 0.01 0.38 0.500 0.103 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.50 0.40 

 
 
 
Table C.82. Solid and liquid phase compositions (0.01 M Cu.(NO3)2

.5/2H2O, 80 oC, 24 
 hrs, S/L=1/50, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.05 0 0.003 

Fe 0.31 0.25 0 0.000 
K 0.36 0.31 0 0.005 

Mg 0.04 0.04 0 0.000 
Na 0.92 0.40 0 0.300 
Cu 0.01 0.40 0.500 0.079 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.62 0.42 

 
 
 
Table C.83. Solid and liquid phase compositions (0.01 M Cu.(NO3)2

.5/2H2O, 80 oC, 24 
 hrs, S/L=1/100, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.05 0 0.009 

Fe 0.31 0.26 0 0.000 
K 0.36 0.31 0 0.013 

Mg 0.04 0.05 0 0.001 
Na 0.92 0.27 0 0.421 
Cu 0.01 0.50 1.000 0.520 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.76 0.48 
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Table C.84. Solid and liquid phase compositions (0.01 M Cu.(NO3)2
.5/2H2O, 80 oC, 10 

 min, S/L=1/20, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.06 0 0.000 

Fe 0.31 0.28 0 0.000 
K 0.36 0.38 0 0.001 

Mg 0.04 0.04 0 0.000 
Na 0.92 0.72 0 0.145 
Cu 0.01 0.20 0.200 0.005 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.27 0.20 

 
 
 
Table C.85. Solid and liquid phase compositions (0.01 M Cu.(NO3)2

.5/2H2O, 80 oC, 30 
 min, S/L=1/20, microwave irradiation). 
  

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.09 0 0.000 

Fe 0.31 0.35 0 0.000 
K 0.36 0.35 0 0.001 

Mg 0.04 0.04 0 0.000 
Na 0.92 0.76 0 0.142 
Cu 0.01 0.19 0.200 0.004 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.45 0.20 

 
 
 
 
Table C.86. Solid and liquid phase compositions (0.01 M Cu.(NO3)2

.5/2H2O,80 oC, 1 hr, 
 S/L=1/20, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.07 0 0.000 

Fe 0.31 0.26 0 0.000 
K 0.36 0.39 0 0.001 

Mg 0.04 0.04 0 0.000 
Na 0.92 0.68 0 0.140 
Cu 0.01 0.20 0.200 0.006 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.30 0.20 
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Table C.87. Solid and liquid phase compositions (0.01 M Cu.(NO3)2
.5/2H2O, 80 oC, 10 

 min, S/L=1/50, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.07 0 0.001 

Fe 0.31 0.28 0 0.000 
K 0.36 0.34 0 0.003 

Mg 0.04 0.04 0 0.000 
Na 0.92 0.47 0 0.283 
Cu 0.01 0.42 0.500 0.092 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.50 0.41 

 
 
 
Table C.88. Solid and liquid phase compositions (0.01 M Cu.(NO3)2

.5/2H2O, 80 oC, 30 
 min, S/L=1/50, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.10 0 0.003 

Fe 0.31 0.23 0 0.000 
K 0.36 0.83 0 0.003 

Mg 0.04 0.06 0 0.001 
Na 0.92 - 0 0.290 
Cu 0.01 0.51 0.500 0.083 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 0.51 0.42 

 
 
 
 
Table C.89. Solid and liquid phase compositions (0.01 M Cu.(NO3)2

.5/2H2O, 80 oC, 1 hr 
 S/L=1/50, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.08 0 0.00 

Fe 0.31 0.34 0 0.00 
K 0.36 0.34 0 0.00 

Mg 0.04 0.04 0 0.00 
Na 0.92 0.47 0 0.27 
Cu 0.01 0.39 0.500 0.10 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.48 0.40 
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Table C.90. Solid and liquid phase compositions (0.01 M Cu.(NO3)2
.5/2H2O, 80 oC, 10 

 min, S/L=1/100, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.07 0 0.00 

Fe 0.31 0.31 0 0.00 
K 0.36 0.34 0 0.01 

Mg 0.04 0.04 0 0.00 
Na 0.92 0.32 0 0.34 
Cu 0.01 0.52 1.000 0.49 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.65 0.51 

 
 

 
Table C.91. Solid and liquid phase compositions (0.01 M Cu.(NO3)2

.5/2H2O, 80 oC, 30 
 min, S/L=1/100, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.07 0 0.00 

Fe 0.31 0.38 0 0.00 
K 0.36 0.34 0 0.01 

Mg 0.04 0.04 0 0.00 
Na 0.92 0.34 0 0.36 
Cu 0.01 0.47 1.000 0.49 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.62 0.51 

 
 
 
 
Table C.92. Solid and liquid phase compositions (0.01 M Cu.(NO3)2

.5/2H2O, 80 oC, 1hr 
 S/L=1/100, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.07 0 0.00 

Fe 0.31 0.28 0 0.00 
K 0.36 0.33 0 0.00 

Mg 0.04 0.04 0 0.00 
Na 0.92 0.32 0 0.34 
Cu 0.01 0.54 1.000 0.50 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.65 0.50 
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Table C.93. Solid and liquid phase compositions (0.1 M AgNO3, 80 oC, 1hr 
 S/L=1/100,waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.10 0.07 0 9.419 
Fe 0.52 0.55 0 0.096 
K 0.58 0.44 0 0.096 

Mg 0.09 0.07 0 0.991 
Na 1.66 0.30 0 2.844 
Ag 0.00 1.24 10.000 nd 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.54 nd 

 
 
 
Table C.94. Solid and liquid phase compositions (0.1 M AgNO3, 80 oC, 24 hr 
 S/L=1/100,waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.10 0.08 0 7.031 
Fe 0.52 0.49 0 0.084 
K 0.58 0.42 0 0.068 

Mg 0.09 0.07 0 0.905 
Na 1.66 0.25 0 2.627 
Ag 0.00 1.25 10.000 8.457 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.60 1.54 

 
 
 
Table C.95. Solid and liquid phase compositions (0.1 M AgNO3, 80 oC,10 min 
 S/L=1/100,microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.10 0.10 0 -0.047 
Fe 0.52 0.58 0 0.005 
K 0.58 0.42 0 0.015 

Mg 0.09 0.07 0 0.071 
Na 1.66 0.28 0 0.899 
Ag 0.00 1.20 10.000 8.674 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.56 1.32 



 202

Table C.96. Solid and liquid phase compositions (0.1 M AgNO3, 80 oC,30 min 
 S/L=1/100,microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.10 0.09 0 -0.106 
Fe 0.52 0.54 0 0.005 
K 0.58 0.44 0 0.044 

Mg 0.09 0.07 0 0.000 
Na 1.66 0.27 0 0.774 
Ag 0.00 1.17 10.000 8.642 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.56 1.36 

 
 
 
Table C.97. Solid and liquid phase compositions (0.1 M AgNO3, 80 oC, 1hr 
 S/L=1/100,microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.10 0.09 0 -0.414 
Fe 0.52 0.48 0 0.003 
K 0.58 0.44 0 0.049 

Mg 0.09 0.06 0 0.002 
Na 1.66 0.29 0 0.787 
Ag 0.00 1.16 10.000 8.688 

∑(Ca2++Na++K++Mg2+) Ag+  
(meq/gr zeolite) 

 
1.54 1.31 

 
 
 
Table C.98. Solid and liquid phase compositions (0.1 M Co.(NO3)2

.6H2O, 80 oC, 1hr 
 S/L=1/100, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.05 0.04 0 0.331 
Fe 0.26 0.23 0 0.048 
K 0.29 0.24 0 0.021 

Mg 0.04 0.04 0 0.298 
Na 0.83 0.27 0 1.318 
Co 0.00 0.53 10.340 9.743 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 0.62 0.60 
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Table C.99. Solid and liquid phase compositions (0.1 M Co.(NO3)2
.6H2O, 80 oC, 24 hr 

 S/L=1/100, waterbath). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
Ca 0.05 0.09 0 1.687 
Fe 0.26 0.22 0 0.026 
K 0.29 0.25 0 0.016 

Mg 0.04 0.04 0 0.235 
Na 0.83 0.30 0 0.841 
Co 0.00 0.55 10.340 9.743 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
0.60 0.60 

 
 
 
Table C.100. Solid and liquid phase compositions (0.1 M Co.(NO3)2

.6H2O,80 oC,10min, 
 S/L=1/100, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.05 0.04 0 -0.059 

Fe 0.26 0.27 0 0.001 
K 0.29 0.26 0 0.004 

Mg 0.04 0.04 0 0.003 
Na 0.83 0.32 0 0.278 
Co 0.00 0.44 10.870 10.487 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 0.56 0.39 

 
 
 
Table C.101. Solid and liquid phase compositions (0.1 M Co.(NO3)2

.6H2O,80 oC,30min, 
 S/L=1/100, irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.05 0.04 0 -0.058 

Fe 0.26 0.27 0 0.001 
K 0.29 0.26 0 0.005 

Mg 0.04 0.04 0 0.006 
Na 0.83 0.30 0 0.285 
Co 0.00 0.45 10.870 10.462 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
0.58 0.40 
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Table C.102. Solid and liquid phase compositions (0.1 M Co.(NO3)2
.6H2O,80 oC,1 hr, 

 S/L=1/100, microwave irradiation) 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.05 0.04 0 -0.030 

Fe 0.26 0.59 0 0.002 
K 0.29 0.25 0 0.010 

Mg 0.04 0.03 0 0.005 
Na 0.83 0.28 0 0.306 
Co 0.00 0.48 10.870 10.337 

∑(Ca2++Na++K++Mg2+) Co2+  
(meq/gr zeolite) 

 
 0.61 0.53 

 
 
 
Table C.103. Solid and liquid phase compositions (0.1 M Cu.(NO3)2

.5/2H2O,80 oC,1 hr,  
  S/L=1/100, waterbath) 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.05 0.05 0 4.052 

Fe 0.26 0.36 0 0.046 
K 0.29 0.24 0 0.035 

Mg 0.04 0.04 0 0.547 
Na 0.83 0.20 0 1.694 
Cu 0.00 0.68 11.673 10.906 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 0.70 0.76 

 
 
 
 
Table C.104. Solid and liquid phase compositions(0.1 M Cu.(NO3)2

.5/2H2O,80 oC,24 hr, 
  S/L=1/100, waterbath) 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.05 0.03 0 2.568 

Fe 0.26 0.22 0 0.045 
K 0.29 0.23 0 0.028 

Mg 0.04 0.04 0 0.343 
Na 0.83 0.20 0 1.151 
Cu 0.00 0.69 11.673 11.010 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.72 0.48 
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Table C.105. Solid and liquid phase compositions (0.1 M Cu.(NO3)2
.5/2H2O,80 oC, 10 

 min, S/L=1/100, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.05 0.06 0 -0.029 

Fe 0.26 0.37 0 0.002 
K 0.29 0.26 0 0.013 

Mg 0.04 0.04 0 0.000 
Na 0.83 0.19 0 0.359 
Cu 0.00 0.67 10.650 9.795 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.69 0.86 

 
 
 
Table C.106. Solid and liquid phase compositions (0.1 M Cu.(NO3)2

.5/2H2O,80 oC, 30  
  min, S/L=1/100, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.09 0.07 0 -0.058 

Fe 0.31 0.28 0 0.001 
K 0.36 0.33 0 0.005 

Mg 0.04 0.04 0 0.006 
Na 0.92 0.32 0 0.285 
Cu 0.01 0.54 10.650 10.162 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.64 0.50 

 
 
 
Table C.107. Solid and liquid phase compositions (0.1 M Cu.(NO3)2

.5/2H2O,80 oC,1 hr 
 S/L=1/100, microwave irradiation). 
 

 SOLID 
(meq/gr zeolite) 

LIQUID 
(meq/gr zeolite) 

Elements Initial Final Initial Final 
 Ca 0.05 0.07 0 -0.052 

Fe 0.26 0.46 0 0.004 
K 0.29 0.24 0 0.016 

Mg 0.04 0.04 0 0.002 
Na 0.83 0.25 0 0.382 
Cu 0.00 0.64 10.650 10.128 

∑(Ca2++Na++K++Mg2+) Cu2+  
(meq/gr zeolite) 

 
0.65 0.53 
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APPENDIX D 
 

 

WATERBATH AND MICROWAVE IRRADIATION 
 

 
 
 

 

Figure D.1. pH versus time for Ag+ – Na-CLI system  (60 oC,  waterbath). 

 

 

2

3

4

5

6

7

8

0 300 600 900 1200 1500
time (min)

pH

S/L=1/20
S/L=1/50
S/L=1/00

 

Figure D.2. pH versus time for ultrapure water–Na-CLI system  (60 oC,  waterbath). 
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Figure D.3. Effect of S/L ratio and time on Ag+ exchange 40 oC  b) 60 oC  (NaCLI, 
 waterbath). 

 

 

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5time

qe
   

(m
g 

A
g/

gr
 N

a-
C

L
I)

S/L=1/20 S/L=1/50
S/L=1/100

30 min 1hour
0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5
time

qe
   

(m
g 

A
g/

gr
 N

a-
C

L
I) S/L=1/20 S/L=1/50 S/L=1/100

30 min
1hour

 
Figure D.4. Effect of S/L ratio and time on Ag+ exchange 40 oC  b) 60 oC  (NaCLI, 
 microwave irradiation). 
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Figure D.5. Microwave versus Waterbath  (S/L=1/20, 80 oC, 0.01M Metal  Solution). 
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Figure D.6. Microwave versus Waterbath  (S/L=1/50, 80 oC, 0.01M Metal  Solution). 
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Figure D.7. Microwave versus Waterbath  (S/L=1/10, 80 oC, 0.01M Metal  Solution). 
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APPENDIX E 

 

 

XRD PATTERNS  
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Figure E.1. XRD pattern of  a) Ag+ b) Co2+ c) Cu2+ exchanged Na-CLI ( 24hrs, 

 waterbath, 1hr microwave irradiation, 80 oC). 
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APPENDIX F 

 

 

FTIR SPECTRA  
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Figure F.1. FTIR Spectra of Ag+ exchanged Na-CLI (waterbath). 
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Figure F.2. FTIR Spectra of Ag+ exchanged Na-CLI (microwave irradiation). 
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Figure F.3. FTIR Spectra of Co2+ exchanged Na-CLI at 80 oC. 
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Figure F.4. FTIR Spectra of Cu2+ exchanged Na-CLI at 80 oC.  
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APPENDIX G 
 

 

SEM MICROGRAPHS  
 

 

 

           
Figure G.1. SEM micrograph of Ag+ exchanged Na-CLI (3 day, waterbath) a) S/L=1/50 
 40 oC  b) S/L= 1/100, 60 oC  c) S/L=1/50, 80 oC. 
 

 

 

           
Figure G.2. SEM micrograph of Ag+ exchanged Na-CLI (1 hr, microwave irradiation) a) 
 S/L=1/20, 40 oC  b) S/L= 1/50, 60 oC  c) S/L=1/50, 80 oC. 
 
 
 

 

            
 
Figure G.3. SEM micrograph of Co2+ exchanged Na-CLI (24 hr, 80 oC, waterbath) 
 a)S/L=1/20 b) S/L=1/50 c) S/L=1/100. 
 

a                                               b                                               c 

a                                               b                                               c 

a                                               b                                               c 
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Figure G.4. SEM micrograph of Co2+ exchanged Na-CLI (24 hr, 80 oC, microwave 
 irradiation) a) S/L=1/20 b) S/L= 1/50  c) S/L=1/100. 
 

 

 

           
Figure G.5. SEM micrograph of Cu2+ exchanged Na-CLI (24 hr, 80 oC, waterbath) 
 a)S/L=1/20 b) S/L=1/50 c) S/L=1/100. 

 

 
 

         
Figure G.6. SEM micrograph of Cu2+ exchanged Na-CLI (24 hr, 80 oC, microwave 
 irradiation) a) S/L=1/20 b) S/L= 1/50 c) S/L=1/100. 

 
 

 a                                               b                                               c 

 a                                               b                                               c 

 a                                               b                                               c 
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APPENDIX H 
 
 

SORPTION ISOTHERMS  
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Figure H.1. Sorption Isotherm of  a) CLI b) NaCLI. 
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Figure H.2. Sorption Isotherm of Ag+ exchanged Na-CLI a) S/L=1/100, 80 oC, 
 waterbath, 24hrs b) S/L=1/100 at 80 oC , microwave irradiation, 1hr. 
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Figure H.3. Sorption Isotherm of Co2+ exchanged Na-CLI a) S/L=1/100, 80 oC, 
 waterbath, 24hrs b) S/L=1/100 at 80 oC , microwave irradiation, 1hr. 
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Figure H.4. Sorption Isotherm of Cu2+ exchanged Na-CLI a) S/L=1/100, 80 oC, 
 waterbath, 24hrs b) S/L=1/100 at 80 oC , microwave irradiation, 1hr. 
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APPENDIX I 
 
 

ANTIBACTERIAL TESTS 
 
 
 

Table I.1. Inhibition Zone Diameters of Ag+ exchanged NaCLI (waterbath,40 oC). 
 
               Zone Diameter  
                             (mm) 
Mineral Code 

 
1 

 
2 

 
3 

 
4 

 
Average 

1 day 11.28 11.33 11.33 11.31 11.32 

2 days 11.21 11.21 11.13 11.30 11.23 

 
 
S/L=1/20 

3 days 11.14 11.20 11.16 11.09 11.15 

1 day 11.30 11.18 11.25 11.35 11.27 

2 days 11.32 11.35 11.23 11.21 11.28 

 
 
S/L=1/50 

3 days 11.22 11.15 11.13 11.25 11.19 

1 day 11.24 11.18 10.96 11.16 11.14 

2 days 11.22 11.40 11.17 11.16 11.24 

 
 
S/L=1/100 

3 days 11.08 10.88 11.04 10.92 10.98 

 
 
 
 

Table I.2. Inhibition Zone Diameters of Ag+ exchanged NaCLI (waterbath,60 oC). 
 
                Zone Diameter 
                             (mm) 
Mineral Code 

 
1 

 
2 

 
3 

 
4 

 
Average 

1 day 11.27 11.43 11.26 11.28 11.31 

2 days 11.43 11.38 11.18 11.26 11.31 

 
 
S/L=1/20 

3 days 11.15 11.19 11.18 11.26 11.20 

1 day 11.23 11.21 11.16 11.24 11.21 

2 days 11.22 11.22 11.08 11.21 11.23 

 
 
S/L=1/50 

3 days 11.23 11.15 11.20 11.19 11.19 

1 day 10.98 11.10 10.92 11.11 11.03 

2 days 11.09 11.01 11.11 11.09 11.08 

 
 
S/L=1/100 

3 days 11.06 11.11 11.08 11.05 11.08 
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Table I.3. Inhibition Zone Diameters of Ag+ exchanged NaCLI (waterbath ,80 oC). 

 

               Zone Diameter 
                           (mm) 
Mineral Code 

 
 
1 

 
 
2 

 
 
3 

 
 
4 

 
 
Average 

1 day 11.22 11.18 11.19 11.26 11.22 

2 days 11.21 11.19 11.30 11.10 11.20 

 
 
S/L=1/20 

3 days 11.31 10.97 11.16 11.16 11.28 

1 day 11.35 11.12 11.13 11.19 11.20 

2 days 11.30 11.20 11.26 11.38 11.24 

 
 
S/L=1/50 

3 days 11.43 11.32 11.59 11.56 11.48 

1 day 11.46 11.26 11.62 11.98 11.58 

2 days 11.85 11.91 11.42 11.29 11.62 

 
 
S/L=1/100 

3 days 11.54 11.38 11.48 11.96 11.59 

 
 

 
 

Table I.4. Inhibition Zone Diameters of Ag+ exchanged NaCLI (waterbath ,40 oC). 

 
              Zone Diameter 
                           (mm) 
Mineral Code 

 
1 

 
2 

 
3 

 
4 

 
Average 

1hour 11.33 11.23 11.38 11.03 11.24 
 
S/L=1/20 

24 hour 11.59 11.60 11.61 11.69 11.62 

1hour 11.55 11.68 11.51 11.58 11.58 
 
S/L=1/50 

24 hour 11.47 11.66 11.76 11.89 11.70 

1hour 11.76 11.92 11.58 11.62 11.72 
 
S/L=1/100 

24 hour 11.98 11.52 11.22 11.70 11.61 
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Table I.5. Inhibition Zone Diameters of Ag+ exchanged NaCLI (microwave irradiation,
 40oC). 
 
                 Zone Diameter 
                             (mm) 
Mineral Code 

 
1 

 
2 

 
3 

 
4 

 
Average 

30 min 12.39 12.25 12.31 12.23 12.29  
S/L=1/20 

1 hour 11.53 11.43 11.37 11.59 11.48 

30 min 11.34 11.38 11.49 11.31 11.38  
S/L=1/50 

1 hour 11.92 11.85 11.60 11.32 11.67 

30 min 11.93 12.25 12.40 12.26 12.21  
S/L=1/100 

1 hour 11.50 11.66 11.73 11.31 11.55 

 
 
 

Table I.6. Inhibition Zone Diameters of Ag+ exchanged NaCLI (waterbath ,60 oC). 

 
              Zone Diameter 
                           (mm) 
Mineral Code 

 
1 

 
2 

 
3 

 
4 

 
Average 

1hour 11.08 11.48 11.37 11.45 11.35 
 
S/L=1/20 

24 hour 11.46 11.19 11.35 11.08 11.27 

1hour 11.13 11.59 11.37 11.68 11.44 
 
S/L=1/50 

24 hour 11.36 11.76 11.72 11.22 11.52 

1hour 11.47 11.31 11.35 11.23 11.34 
 
S/L=1/100 

24 hour 11.74 11.66 11.36 11.40 11.54 
 

 
 
Table I.7. Inhibition Zone Diameters of Ag+ exchanged NaCLI (microwave irradiation,
 60oC). 
 
                Zone Diameter 
                           (mm) 
Mineral Code 

 
 
1 

 
 
2 

 
 
3 

 
 
4 

 
 
Average 

30 min 11.70 11.49 11.64 11.57 11.60  
S/L=1/20 

1 hour 11.74 11.53 11.53 11.63 11.61 

30 min 11.44 11.49 11.59 11.40 11.48  
S/L=1/50 

1 hour 11.62 11.36 11.36 11.36 11.42 

30 min 11.34 11.50 11.60 11.58 11.50  
S/L=1/100 

1 hour 11.59 11.39 11.38 11.38 11.43 
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Table I.8. Inhibition Zone Diameters of Ag+ exchanged NaCLI (waterbath at 80 oC). 

 
              Zone Diameter 
                           (mm) 
Mineral Code 

 
1 

 
2 

 
3 

 
4 

 
Average 

1hour 11.95 11.88 11.89 11.73 11.86 
 
S/L=1/20 

24 hour 12.01 11.98 11.94 11.95 11.97 

1hour 12.03 11.78 12.05 12.05 11.98 
 
S/L=1/50 

24 hour 11.75 11.79 11.65 11.98 11.79 

1hour 11.76 12.09 11.72 11.98 11.89 
 
S/L=1/100 

24 hour 11.77 12.02 11.91 11.95 11.91 
 
 
 
Table I.9. Inhibition Zone Diameters of Ag+ exchanged NaCLI (microwave irradiation,
 80oC). 
 
              Zone Diameter 
                           (mm) 
Mineral Code 

 
1 

 
2 

 
3 

 
4 

 
Average 

30 min 11.22 11.35 11.28 11.32 11.29  
S/L=1/20 

1 hour 11.43 11.44 11.48 11.44 11.45 

30 min 11.31 11.33 11.26 11.28 11.29  
S/L=1/50 

1 hour 11.40 11.39 11.35 11.45 11.40 

30 min 11.38 11.38 11.55 11.42 11.43  
S/L=1/100 

1 hour 11.39 11.34 11.31 11.42 11.36 

 

 
 

Table I.10. Inhibition Zone Diameters of Co2+ exchanged NaCLI (waterbath at 80 oC). 
 
              Zone Diameter 
                           (mm) 
Mineral Code 

 
1 

 
2 

 
3 

 
4 

 
Average 

1hour 13.65 14.07 13.80 13.89 13.85 
 
S/L=1/20 

24 hour 13.66 14.02 14.03 14.36 14.02 

1hour 19.26 19.33 19.36 19.95 19.48 
 
S/L=1/50 

24 hour 19.33 19.38 19.21 19.25 19.29 

1hour 20.96 21.42 21.45 21.43 21.32 
 
S/L=1/100 

24 hour 21.14 21.66 21.40 21.70 21.48 
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Table I.11. Inhibition Zone Diameters of Co2+ exchanged NaCLI (microwave irradiation,
 80oC). 
 
              Zone Diameter 
                           (mm) 
Mineral Code 

 
1 

 
2 

 
3 

 
4 

 
Average 

30 min 14.00 13.26 13.76 13.42 13.61 
 
S/L=1/20 

1 hour 13.42 13.78 14.24 13.61 13.76 

30 min 18.77 19.06 18.78 18.91 18.88 
 
S/L=1/50 

1 hour 19.13 19.14 19.56 19.11 19.24 

30 min 20.93 20.43 20.89 20.90 20.79 
 
S/L=1/100 

1 hour 21.90 22.13 21.45 21.76 21.81 
 
 
 

Table I.12. Inhibition Zone Diameters of Cu2+ exchanged NaCLI (waterbath at 80 oC). 

 
              Zone Diameter 
                           (mm) 
Mineral Code 

 
1 

 
2 

 
3 

 
4 

 
Average 

1hour 11.97 12.63 12.23 12.08 12.23 
 
S/L=1/20 

24 hour 12.04 11.70 11.78 12.21 11.93 

1hour 14.01 13.97 14.70 14.57 14.31 
 
S/L=1/50 

24 hour 13.38 13.45 13.42 13.67 13.48 

1hour 15.98 16.63 16.67 16.01 16.32 
 
S/L=1/100 

24 hour 14.78 14.88 14.83 14.85 14.84 
 
 
 
Table I.13. Inhibition Zone Diameters of Cu2+ exchanged NaCLI (microwave irradiation,
 80oC). 
 
              Zone Diameter 
                           (mm) 
Mineral Code 

 
1 

 
2 

 
3 

 
4 

 
Average 

30 min 11.36 11.76 11.65 11.83 11.65 
 
S/L=1/20 

1 hour 11.16 11.23 11.72 11.46 11.39 

30 min 14.28 14.19 14.21 14.22 14.23 
 
S/L=1/50 

1 hour 14.10 14.31 14.40 14.43 14.31 
 
S/L=1/100 30 min 

16.08 15.92 16.16 16.26 16.11 
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